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Chapter 1

Data Compression, Universal Codes, and Fibonacci Codes

In computer science, data compression is the process of converting a given set of data into

a compressed, smaller format. There are many reasons to compress data into smaller sized

files, including reducing the storage space required for large files and decreasing the size of a

message prior to sending it over a network [14]. In this way, the field of data compression is

concerned with improving the efficiency of storing and communicating data. Different types

of data, including text, images, and videos, require different types of algorithms to compress

and decompress, due to the fact that data compression involves eliminating redundancies

specific to a given data type. In this work, we will be concerned exclusively with text

compression.

1.1 Fixed-Length Codes

If one wishes to send a message over a network, one must have a method by which they

may encode each character in such a way that they can then be decoded correctly by the

receiver. More precisely, let us have an alphabet Σ from which we take symbols to compose

our message, then we must construct an encoding for each symbol which allows the receiver

to then decode each codeword, such that they can retrieve the original message. ASCII

encoding is one such scheme by which this may be done.

ASCII is the abbreviation for the American Standard Code for Information Interchange,

and is a character encoding standard which assigns 128 characters to 7 bit binary represen-



tations between 0 and 127 [2]. ASCII characters include the capital and lowercase English

alphabet, the digits 0 through 9, as well as other symbols such as parentheses and punctua-

tion. Typically, a parity bit is added to the end of each encoding, such that each character

utilizes a full byte for representation.

If the alphabet used by our message is a subset of the ASCII characters, then we may

encode each character in our message using the provided encodings, resulting in an encoded

message which is 8 ∗ l bits long, where l is the length of the message. ASCII represents a

fixed-length solution to the encoding/decoding of an alphabet, in that we are encoding all

symbols to be the same length, so that the receiver may then decode the resulting codewords

by taking a fixed amount of bits, in our case 8, and looking up the corresponding codeword.

Fixed-length encodings thus provide us with one important feature for sending a message,

and for the general encoding of a message: unique decodability.

Definition 1.1.1. An encoding scheme for an alphabet Σ is uniquely decodable if, for any

message m composed of symbols from Σ, the resulting encoded message may only be decoded

in one way, that being into the original message m.

Without this property, it cannot be guaranteed that an encoded message m will not

be read out as an alternate message m′, and thus any useful text-encoding scheme must

be uniquely-decodable. However, ASCII codes do not consider the probability with which

symbols will appear in a given message. ASCII, being a general encoding scheme, seeks only

to provide encodings for a comprehensive alphabet. If we wanted to try to send our message

using fewer bits, we could do better by creating a shorter collection of encodings tailored to

that specific message. Further, we could attempt to provide encodings for symbols based on

how often they appear in our message. As an example, consider the message ”therefore.” It

would make sense to try to represent e with as short of a code as possible, while less common

symbols like t and f can be allowed to have longer encodings. To this end, we can utilize

variable-length encodings.
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1.2 Huffman Coding

One type of useful variable-length code for text compression is a prefix code.

Definition 1.2.1. An encoding scheme for an alphabet Σ is a prefix code if no codeword is

a prefix of any other codeword. A message encoded with a prefix code is uniquely-decodable,

and can be decoded from left to right by reading until you have a complete codeword.

David Huffman developed an algorithm for producing minimum-length prefix codes for

a finite set of symbols based on the probability with which they appear in a message [8].

That is, he developed an algorithm which allows one to produce an optimally compressed

representation for some set of symbols, whereby more frequent symbols are assigned shorter

encodings, and less frequent symbols are left with longer encodings.

The algorithm can be viewed as building a tree based on the probabilities associated with

the symbols, or based on the number of occurrences of each symbol which imply probabilities.

One begins to build this tree by considering all symbols to be their own separate tree, with

each symbol being the only node in that tree. Next, the two lowest probabilities trees become

children of a new node, where one of the children is assigned the value 0, and the other is

assigned the value 1. The new tree has a probability equal to the sum of the two children’s

probabilities, and the combining step is repeated until one tree remains. The final tree is

then able to yield an encoding for each symbol, which can be constructed by concatenating

the bits at each node required to reach the symbol from the root of the tree. This algorithm

bypasses the need for fixed-length encodings by producing a prefix-code over the symbols

utilized.

Consider the following toy example. Let our alphabet be e, f, and k, with probabilities

.5, .3, and .2 respectively. Considering each symbol as a separate tree, we combine the trees

with symbols f and k because they have the lowest probabilities, assigning f to 0 and k to

1. Now, we have two trees, each with probability of .5: the tree which consists of only e as

the root node, and the tree which has an empty root node and f and k as its children. We
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can combine these last two trees by assigning the tree e to 0, and the tree with f and k to 1.

Thus, our resulting code book encodes e to be 0, f to be 10, and k to be 11.

Huffman’s algorithm produces optimal Huffman Codes over a given alphabet by greedily

constructing the codebook for the message. This is illustrated in our example above, where

symbols with lower frequencies appear further down in the final tree, and thus obtain larger

encodings than the most frequent symbols, which are added to the tree towards the end and

obtain shorter encodings. Unlike ASCII encoding, which is a fixed-encoding, the Huffman

Code for a message depends on the codebook used to encode it, and so the codebook must

be sent along with the message so that the receiver has the codebook to decode the message

with, adding to the overhead of transmission.

Huffman Coding is not suitable for infinite sets of symbols due to the fact that an infinite

alphabet would prevent the algorithm from terminating, and the storage and transmission

of an infinite codebook would not be feasible. The solution to finding small representations

for an infinite set of symbols comes in the form of universal codes.

1.3 Universal Codes

A universal code maps an infinite alphabet Σ onto an infinite set of encodings, such that

the resulting scheme is uniquely-decodable [6, 14, 15]. Universal codes accomplish this by

mapping a symbol x to a positive integer i, such that encoding all of the positive integers

is equivalent to encoding an infinite alphabet of symbols which are indexed to the positive

integers. Further, we assume that for two symbols indexed at i and j such that i < j, the

symbol represented by i is more common in our message than the symbol represented by

j. Hence, higher indices correspond to symbols with lesser probability of occurrence. This

section covers two universal codes, Unary Coding and Elias Coding.

Universal codes may possess many other properties, one of which is robustness. A code

can be considered to have some degree of robustness if it has some ability to limit the

corruption of a message caused by introducing an error into the encoded version. Some
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universal codes have little to no robustness, such that some errors can propagate indefinitely

throughout the message, while some universal codes, such as the Fibonacci Code, can limit

error propagation from a single error to a small number of codewords [9].

1.3.1 Unary Coding

Unary coding is an exceedingly simple universal coding convention by which an integer

n is represented by n 1’s followed by a 0, or equivalently, n 0’s followed by a 1 [15]. As an

example, 5 would be represented by the unary code 111110. This coding scheme is indeed

a prefix code, and hence it is uniquely decodable, but it is exceedingly inefficient, since it

requires n + 1 bits to encode n, versus the blog2(n)c + 1 bits required for a direct binary

encoding. We could not utilize direct binary encodings for text encoding, however, due to

binary encodings not being uniquely decodable.

To give an example of how inefficient unary coding can be, consider n = 1000, whose

binary encoding is 1111101000, and whose unary encoding is 1000 1’s followed by a 0. The

unary encoding is indeed 100 times larger than the binary encoding. It is, however, useful

in constructing coding schemes which are substantially more efficient. One such scheme is

Elias’s gamma coding scheme, which is described in the next section.

1.3.2 Elias Gamma Coding

Peter Elias published three universal codes in his 1975 paper [6]. Here, we give Elias

gamma coding as an example of a more efficient universal code.

Elias gamma coding encodes an integer based on it’s binary representation. Let β(n) be

the binary representation of the integer n to be encoded, and let α(β(n)) be the length of the

binary representation of n. Then the gamma code of n, γ(n), is α(β(n)) − 1 0’s prepended

onto β(n). Let us take, as an example, n = 25. The binary encoding of 25 is 11001, which

is 5 bits long, and so γ(25) = 000011001. In order to decode the code, one reads and counts

the 0’s from left to right until a 1 is encountered. Letting the number of zero’s counted be
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x, we then calculate n as 2x + y, where y is the next x bits read after the first 1 as an integer

in binary form [14].

Compared to just using the binary form of an integer, which requires blog2(n)c+ 1 bits,

Elias gamma coding requires 2blog2(n)c + 1 bits [14]. Unlike the binary representation of

an integer, however, gamma coding produces a prefix code for the integers. This property

is ensured by the prepending of 0’s to the binary representation. If two encodings are the

same length, they may not be a prefix of each other. Otherwise, if two encodings are of

different length, it must be because the binary representations of the two integers which are

being encoded have different lengths. This means that one code begins with more 0’s than

the other, meaning one may not be the prefix of the other.

This is only the basic code provided by Elias in his paper. In [6], he also produces a delta

code, which invokes his gamma encoding scheme, and an omega code, which is self-contained

and recursively calls itself. Rather than looking at these, we will next examine the Fibonacci

Code, which is important in understanding its generalization, Gopala-Hemachandra Codes,

the primary concern of this thesis.

1.4 Fibonacci Coding

Fibonacci Coding is a universal coding scheme first defined by Apostolico and Fraenkel

[1], and involves encoding an integer using its representation using the Fibonacci Sequence.

Therefore, we first discuss the Fibonacci Sequence its properties.

1.4.1 The Fibonacci Sequence

The Fibonacci sequence is a sequence of positive integers whose terms are defined by

the recurrence relation F [n] = F [n − 1] + F [n − 2] for all n > 2 with the initial conditions

F [1] = 1 and F [2] = 2, where F [n] indicates the nth term of the Fibonacci Sequence. In

order to generate the sequence from the two initial terms, we would first generate F [3] as
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follows:

F [3] = F [2] + F [1] = 2 + 1 = 3

and then F [4] as:

F [4] = F [3] + F [2] = 3 + 2 = 5

The first few terms of the sequence are then:

1, 2, 3, 5, 8, 13, 21, 34, 55, ...

One property of the Fibonacci Sequence, which we use a generalization of later, is found

in [11]. For the sake of completeness, we prove this property here.

Lemma 1.4.1. Let r be an integer greater than or equal to 1. Then the sum of the first r

terms of the Fibonacci Sequence is equal to F [r + 2]− 2.

r∑
i=1

F [i] = F [r + 2]− 2

Proof. We will prove the above identity by induction. As a base case, let r = 1, then

1∑
i=1

F [i] = F [1] = 1 = 3− 2 = F [1 + 2]− 2

and we have shown our base case.

Now, assume
∑k

i=1 F [i] = F [k+ 2]− 2, and let us try to prove
∑k+1

i=1 F [i] = F [k+ 3]− 2.

Now we have:

k+1∑
i=1

F [i] =
k∑
i=1

F [i] + F [k + 1]

= F [k + 2]− 2 + F [k + 1]

= F [k + 3]− 2

Thus, we have proven
∑r

i=1 F [i] = F [r + 2]− 2 by induction.
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Just as every positive integer n has a binary representation where n is equal to the

sum of some powers of 2, every positive integer (as well as zero) may also be represented

as the sum of some terms of the Fibonacci Sequence. Zeckendorf’s Theorem [18], states

that every positive integer can be represented uniquely as the sum of some set of non-

consecutive Fibonacci numbers, and such a representation is called an integer’s Zeckendorf

representation. It turns out that the Zeckendorf representation can be constructed greedily.

Definition 1.4.2 (Greedy Method). The greedy construction of the Zeckendorf represen-

tation of an integer n involves taking the largest Fibonacci term up to and including n as

part of the Zeckendorf representation, subtracting this term from n, and then iterating the

process on the remainder until the remainder is 0. The terms taken by this process form the

Zeckendorf representation.

Lemma 1.4.3. Let n be a positive integer, then the Zeckendorf representation of n may be

constructed greedily.

Proof. We will prove that the Zeckendorf representation of n may be constructed greedily

by induction. As a base case, we have for free that 1, 2, and 3 are in the Fibonacci Sequence,

and thus, we can represent them as follows:

1 : 1

2 : 01

3 : 001

Since these representations have no consecutive 1’s and are constructable via the greedy

method, we have shown our base case.

Next, we prove our induction step, which states that if all integers from 1 to n− 1 have

a Zeckendorf representation, then n also must have a Zeckendorf representation.

If n = F [i] for some i, then we are done, as n is in the Fibonacci Sequence. We may then

represent n by taking F [i], setting the bits at all indices to 0 except i, which will be set to 1.

Otherwise, let us apply the greedy technique to the construction of the Zeckendorf rep-

resentation for n by taking as part of the sum the largest Fibonacci term up to n. Let
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F [i] < n < F [i + 1], and let us take F [i] as part of the Zeckendorf representation. Then,

examining the remainder r = n− F [i].

r = n− F [i]

< F [i+ 1]− F [i]

= F [i]− F [i] + F [i− 1]

= F [i− 1]

We have shown that if we are to take F [i], the remainder to be encoded is less than

F [i− 1], meaning that we will not take F [i− 1], and there will not be consecutive 1’s in our

representation at this point. Further, we know that 0 ≤ r ≤ n− 1, and so, by the induction

hypothesis, we have a Zeckendorf representation for r. Then, the Zeckendorf representation

of n is the representation of r, along with the bit at index i equal to 1, with all bits in-between

set to zero.

Now that we have shown the greedy technique to work, we will prove Zeckendorf’s The-

orem.

Theorem 1.4.4 (Zeckendorf’s Theorem). Any positive integer n can be written uniquely as∑l
i=1 αiF [i], where F [i] represents the ith term of the Fibonacci Sequence, αi is either 0 or

1, and αl = 1. Moreover, for any αi and αi+1, it is not the case that both are 1.

Proof. In order to prove Zeckendorf’s Theorem, we must show that any positive integer n

has a Zeckendorf representation, and that that representation is unique. By Lemma 1.4.3,

we know that for any n, the greedy method will produce the Zeckendorf Representation of

n. Thus, all that remains is to prove uniqueness.

We now show that Zeckendorf representation for any integer is unique. We know that we

can construct the representation of n greedily, so let us call the Zeckendorf representation

constructed by the greedy method S. If T is indeed a distinct Zeckendorf representation,

then at some point, it must choose a different term from the greedy method, which is to say

that at some remainder r from the greedy method, it must refuse to take the largest term up

to and including r. Let F [i] ≤ r < F [i+1] be the first remainder r at which we deviate from
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the greedy method. If it does not use F [i], then the greatest term we could use is F [i−1], as

F [i+ 1] will give us a sum greater than r at this step, and the final sum will be greater than

n. Let us then try to construct the largest number r′ that we can form by taking F [i − 1]

and not taking any two consecutive terms. Without loss of generality, assume 1 is the last

index that we use.

r′ = F [i− 1] + F [i− 3] + ...+ F [1]

= F [i− 2] + F [i− 3] + F [i− 4] + F [i− 5] + ...+ F [2] + 2 ∗ F [1]

= F [i]− 2 + F [1] By Lemma 1.4.1

= F [i]− 1

< F [i]

≤ r

Therefore, if we do not take the greedy step at every point, we cannot possibly construct

a Zeckendorf representation for n. Therefore, we cannot deviate from the greedy method’s

choices in constructing the Zeckendorf representation of n, and hence the Zeckendorf repre-

sentation of n is unique.

Since we have proven the existence and the uniqueness of the Zeckendorf representation

for all positive integers, we have proven Zeckendorf’s Theorem.

Although attributed by name to Edouard Zeckendorf, the same property of the Fibonacci

Sequence was published 20 years earlier by Cornelis Gerrit Lekkerkerker [10], in 1951.

1.4.2 The Fibonacci Code

Utilizing Zeckendorf’s Theorem, and in particular the property that these representa-

tions possess no consecutive 1’s, it is then possible to produce a Fibonacci universal code.

Defined in [1], the Fibonacci Coding Scheme encodes any integer into a binary codeword by

appending a 1 to the end of the Zeckendorf representation of n. That is, given a Zeckendorf

representation n =
∑l

i=1 αiF [i], the Fibonacci Code for n is α1α2α3...αl1. Since the Zeck-

endorf representation does not use consecutive terms of the Fibonacci Sequence, the only

time it is possible to see consecutive 1’s in the Fibonacci code is at the end of the encoding,
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meaning that the Fibonacci Coding Scheme is a variable length prefix code, and thus is

uniquely decodable. Fibonacci encodings for small values of n can be found in Table 1.1.

We use the notation F (n) to refer to the Fibonacci Code of n, and some examples are that

F (1) = 11, F (5) = 00011, and F (25) = 10100011.

In [7], the Fibonacci Coding Scheme is said to represent n using blogφ(
√

5n) + 1c bits,

where φ = 1+
√
5

2
is the golden ratio. The Fibonacci Code is slightly less efficient at compress-

ing symbols than Elias Delta Coding, as an example, which uses blog2(n)c+2blog2(blog2(n)c+

1) + 1c bits, but more efficient than Elias Gamma Coding. Fibonacci Coding has the inter-

esting property that it is quite robust against errors introduced into an encoded message,

significantly more than other coding schemes like Elias’ codes, in which certain errors can

propagate indefinitely, invalidating the decoding of the entire portion of the message which

comes after the error. Single-bit errors introduced into an encoding include insertion of a

bit into the encoding which does not belong, deletion of some bit within the encoding, and

substitution of the value of one bit for another. A single bit error introduced into a message

encoded with Fibonacci Codes may only propagate over at most 3 codewords. This prop-

erty arises from the use of two consecutive 1’s to terminate each code. If an error does not

change one of these terminating 1’s or the bit leading up to these 1’s, then the error is en-

tirely contained in one codeblock. Otherwise, if the error is introduced into the terminating

area of some codeword, it has the ability to add false information to the next codeword, but

it cannot corrupt more than three symbols, including the current one [7].

1.4.3 Higher Order Fibonacci Sequences

The Fibonacci Code as has been discussed so far may also be called the second order

Fibonacci Code, because it is based on the second order Fibonacci Sequence. The Fibonacci

Sequence is ”second order” in that it is constructed from a second order recurrence relation:

F [n] = F [n − 1] + F [n − 2]. In the same way, one may consider the general mth order

Fibonacci Sequence, which is given in [1]. The mth order Fibonacci Sequence uses the

11



n F (n)

1 11
2 011
3 0011
4 1011
5 00011
6 10011
7 01011
8 000011
9 100011

10 010011
11 001011
12 101011

Table 1.1: Fibonacci Encodings for small n

recurrence relation Fm[n] = Fm[n− 1] + Fm[n− 2] + ...+ Fm[n−m] for all n > 1 with the

initial conditions Fm[0] = Fm[1] = 1 and Fm[−1] = Fm[−2] = ... = Fm[−m+ 2] = 0. Here,

we have added a superscript, m, to indicate the order of the relation used to construct the

Fibonacci Sequence.

As an example, we present the third order Fibonacci Sequence. The third order Fibonacci

Sequence, which is constructed from the recurrence relation F 3[n] = F 3[n− 1] +F 3[n− 2] +

F 3[n − 3] for all n > 1 with the initial conditions F 3[−1] = 0, F 3[0] = 1 and F 3[1] = 1.

Therefore, the first few terms of the third order Fibonacci Sequence are

1, 2, 4, 7, 13, 24, 44, 81, ...

From [5, 9], we know that the concept of a Zeckendorf Representation generalizes to order

3. That is, we have for every positive integer n, that it can be written uniquely as n =∑l
i=1 αiF

3[i], where F 3[i] represents the ith term of the third order Fibonacci Sequence, αi

is either 0 or 1, and αl = 1. Further, we have that for any αi, αi+1 and αi+2, it is not the

case that all three are 1.

The presence of the third order Zeckendorf Theorem allows one to consider the possibility
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of a generalization from the second order Fibonacci Code to the third order Fibonacci Code.

Given a Zeckendorf representation n =
∑l

i=1 αiF
3[i], the third order Fibonacci Code for n

can be defined as α1α2α3...αl11. In the case of the third order Fibonacci Code, we append

2 1’s onto the end of the Zeckendorf representation of n on the premise that 3 consecutive

1’s should now only appear at the end of an encoding, courtesy of Zeckendorf’s Theorem for

the third order.

However, in [9], it is made apparent that this is not sufficient to produce a uniquely-

decodable coding scheme. The problem is that while Zeckendorf’s Theorem guarantees there

shall be no instance of 3 consecutive 1’s, it certainly allows for 2 consecutive 1’s to appear

anywhere in the code, particularly at the end of the representation. Attempting to decode a

third order code in the same way one would decode a second order code could then possibly

result in outputting a different message from what was encoded. Consider the following two

codewords which encode 6 and 5 respectively :

01111 10111

The problem is that, were these to be concatenated together, these two codewords would be

indistinguishable from the following two codewords:

0111 110111

which represent 2 and 10. This counterexample, of which there are many, shows that while

the third order Fibonacci Code is universal in the sense that it too provides unique repre-

sentations for all positive integers, it is not uniquely decodable. Additionally, it is easy to

see that the problem generalizes to higher order Fibonacci Codes, since even in the presence

of higher-order Zeckendorf Theorems, it is still possible for two or more 1’s to appear prior

to the terminating ones and thwart a second-order style decoding algorithm.
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Chapter 2

Gopala-Hemachandra Codes

The Fibonacci Sequence is named for Leonardo of Pisa, also known by the name Fi-

bonacci, who published the sequence in 1202. However, according to [16], the sequence in

question was studied in India far prior to its publication by Fibonacci. Among those who

studied the sequence were Gopala and Hemachandra, between the years 1135 and 1150. In

addition to studying and setting out the rules for the formation of the sequence, they also

studied variations of the Fibonacci Sequence. One such variation named for them is the

Gopala-Hemachandra Sequence, which generalizes the Fibonacci Sequence by allowing the

same recursive construction of the Fibonacci Sequence to be used with arbitrary starting

terms. That is, one can define GHa,b to be the sequence:

a, b, a+ b, a+ 2b, 2a+ 3b, 3a+ 5b, ...

An interesting note about this sequence is that if one lets a = b = 1, or a = 1, b = 2,

then one obtains the Fibonacci Sequence, with either two 1’s or a single 1 at the beginning

respectively.

In 2007, J.H. Thomas proposed a specific variation on the Gopala-Hemachandra Sequence

which restricts the parameterization of the sequence to one variable [17]. The variation he

proposed involves letting b = 1 − a and letting a ≤ −2. Otherwise, the sequence is formed



using the same recursive construction, which yields the following general sequence:

a, 1− a, 1, 2− a, 3− a, 5− 2a, ...

As an example, one could choose a = −2 to yield the sequence:

−2, 3, 1, 4, 5, 9, ...

A few interesting properties that follow from the choice of the b parameter and the restriction

on a are that 1 will always be included as the third term of the sequence, a itself is the only

negative term in the sequence, and that the sequence is monotonically increasing beginning

at 1, the third term.

J.H. Thomas extended the concept of a Zeckendorf representation to these variant Fi-

bonacci Sequences in order to consider Gopala-Hemachandra Codes (GH) over these se-

quences, formed in a similar way to Fibonacci Codes. We denote GHa[n] to be the nth term

of the GH sequence parameterized by a. Further, we define GHa(n) to be a GH code for an

integer n in the sequence parameterized by a. We then denote a Zeckendorf representation

n to be: n =
∑l

i=1 αiGHa[i], where αi is either 0 or 1, and αl = 1. Moreover, for any αi

and αi+1, it is not the case that both are 1. Then, in the same way as for Fibonacci Codes,

a Gopala-Hemachandra Code for an integer n is α1α2α3...αl1, where αi is the coefficient of

GHa[i] from the above Zeckendorf representation.

J.H. Thomas observed that GHa(n) may not exist and may not be unique if it does exist,

unlike Fibonacci Codes, which always exist and are unique. Some examples provided by [17]

include that GH−2(3) can be written either as 011 or 100011, and that GH−5(5) does not

have a representation. When GHa(n) does not exist, we say that GHa(n) = N/A, meaning

there is no applicable code for n under the parameter a.

As with the Fibonacci Sequence, there are sequences in the family GHa which permit

universal codes. Let a be a particular integer, then we refer to the GHa code as universal
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when all positive integers possess GHa codes.

We present three major results on second order GH sequences as defined by J.H. Thomas:

a new universality proof for GHa when−2 ≥ a ≥ −4; two new algorithms for the determining

the existence GHa(n) for any positive integer n, and constructing a code if it exists; and a

general proof bounding the number of consecutive N/A codes for a given a.

2.1 Universality of GHa for −2 ≥ a ≥ −4

In [17], Thomas presented tables showing codes for GHa(n) where −2 ≥ a ≥ −5 and

1 ≤ n ≤ 15, when applicable. In [4], Basu and Prasad continued this experimental approach

by publishing tables for GHa(n) where −2 ≥ a ≥ −20 and 1 ≤ n ≤ 100, when they exist.

In [3], Basu and Das present a proof of universality for GHa when −2 ≥ a ≥ −4 which uses

the technique of strong induction. We present their proof below.

Theorem 2.1.1. GHa(n) always exists when −2 ≥ a ≥ −4.

Proof. Adapted from [3]. We will do a proof by strong induction. Our base case will require

that all positive integers be constructable up to the integer n we seek to construct. This

allows us to start at n = 101 where the tables in [4] end, and use those tables as the base

case.

Now, let us assume we have GHa codes for 1 through n − 1, and try to construct the

GHa(n). If n = GHa[l] for some index l, then we are done, and GHa(n) is l−1 0’s followed by

11. Otherwise, we have that, for some l, GHa[l] < n < GHa[l + 1]. We can then attempt to

construct n by taking GHa[l] as part of our sum. Now, we must try to construct n−GHa[l].

Since n > GHa[l], we have n − GHa[l] > 0, and by our induction hypothesis, we have a

code for n − GHa[l]. Therefore, we can construct the code for n by taking the Zeckendorf

Representation from the code for n−GHa[l] and setting the lth index to 1, filling in 0’s for all

indices between l and the representation of n−GHa[l], and adding the ending 1 to complete

the code.
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Unfortunately, this proof does not always construct the Zeckendorf representation for

n. It does; however, construct a representation for n, which can then be turned into a

Zeckendorf representation.

As an example of a bad GH code constructed by this method, we take n = 135 and

a = −4. First, we construct the first few terms of GH−4:

−4, 5, 1, 6, 7, 13, 20, 33, 53, 86, 139

We certainly have that 135 is not in the GH−4 sequence, so we start by taking 86 as the first

element of the sum. Next, we subtract 86 from 135, and obtain 49. 49 is well within the

base case provided by [4], and the GH code for 49 is 1000000011. Thus, we are done, and

we construct our final code by taking the Zeckendorf Representation of 49 setting the index

of 86 (10) to be 1, and adding the ending 1. This results in the code 10000000111, which is

not a Zeckendorf representation, due to the fact that it features two consecutive 1’s before

the end of the code.

We now prove that if we have some representation of n which is not a Zeckendorf repre-

sentation, it can be converted into a Zeckendorf representation using the following lemma:

Lemma 2.1.2. Let n be representable as the sum of some terms of the GHa sequence. In

other words, let n =
∑l

i=1 αiGHa[i], where αi is either 0 or 1, and αl is 1. Then there exists

a Zeckendorf representation of n. In other words, there exists n =
∑k

i=1 βiGHa[i], where βi

is either 0 or 1, βk is 1, and for any βi and βi+1, at most one of them is 1.

Proof. Let n be represented by the string α1α2α3...αl. If the string is not already a Zeckendorf

representation of n, then there must be two consecutive 1’s within the string. Scan from

right to left until you find the first incidence of the substring 11, and replace the substring

110 with 001. This preserves the value of the sum represented by the string, since GHa[i] =

GHa[i − 1] + GHa[i − 2], and we are replacing two consecutive terms with the term which

they sum to. Repeat the process as long as two consecutive 1’s may be found in the string.
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n a = −2 a = −3 a = −4

0 00000 00000 00000
1 00100 00100 00100
2 10010 10010 10010
3 10001 10001 10001
4 10101 10101 10101
5 00001 00010 01000
6 00101 00001 00010
7 01010 00101 00001
8 01001 10011 00101
9 - 01010 10011

10 - 01001 10111
11 - - 01010
12 - - 01001

Table 2.1: Representations for 0 ≤ n ≤ GHa[6] for −2 ≥ a ≥ −4.

Once there are no longer any consecutive 1’s, the new string β1β2β3...βk will be a Zeckendorf

representation of n. We will have k = l + 1 if αl = αl−1 = 1, such that the last two indices

of the representation must be replaced. Otherwise, we have k = l.

By Lemma 2.1.2, it is sufficient that every integer n have a representation for there to

be a Zeckendorf representation of n. Using this Lemma, we can repair our example of a

bad GH code. Our bad code for 135 in GH−4 was 10000000111, with a representation of

1000000011 when the terminating 1 is removed. Lemma 2.1.2 can be applied by converting

the two consecutive 1’s in this representation into 0’s, and then placing a 1 after them,

to yield the Zeckendorf representation 10000000001, and the GH code 100000000011. In

addition to repairing this proof, we also present a new proof of Theorem 2.1.1, which is a

constructive proof.

Alternative Proof of Theorem 2.1.1. We present explicit codes for the integers 0 ≤ n <

GH[6] for −2 ≥ a ≥ 4 in Table 2.1. We use these concrete codes at the end of our general

construction.

Now, let n be the integer one wishes to encode. If it is between 0 and GHa[6], we are done,

as we have those codes prewritten. If n = GHa[l] for some integer l, then we are done, and the
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code is i−1 0’s followed by 11. Otherwise we have that, for some l, GHa[l] < n < GHa(l+1).

We can then attempt to construct n by taking GHa[l] as part of our sum. Now, we must

try to construct n − GHa[l], which we will call n′ now. If n′ < GHa[6], then we have the

encoding of our current remainder, and we can construct the code using the representation

of the remainder and the terms we took so far. Otherwise, n′ ≥ GHa[6], and we may again

find the greatest term up to n′ and include it in our sum. We repeat the process until,

eventually, our remainder is less than GHa[6], and we have an encoding for the remainder.

We may then construct a representation by setting all the bits corresponding to the terms

selected to 1, including those of the remainder’s representation. If this is not a Zeckendorf

Representation, we may apply Lemma 2.1.2 in order to make it a Zeckendorf representation,

and then add an additional 1 at the end to obtain the GHa(n).

2.2 Algorithms to construct GH Codes

We know from [4, 17] that there are integers for which GHa codes do not exist where

−5 ≥ a ≥ −20. We take a moment to prove a generalization of this observation stated in

the following theorem.

Theorem 2.2.1. If a ≤ −5, then GHa codes do not exist for all integers.

Proof. We can prove that no GHa for a ≤ −5 is universal by finding at least one integer for

each a that does not possess an encoding, and so, we will show that n = 5 may never be

encoded when a ≤ −5.

Consider the general form of the GH sequence:

a, 1− a, 1, 2− a, 3− a, 5− 2a, ...

and let us rule out ways which will not allow us to add terms to equal 5. Firstly, we may not

use any terms greater than or equal to GHa[6], which is 5 − 2a. If a ≤ −5, then any term

at or beyond 5 − 2a will be greater than or equal to 15, and thus greater than 5. Second,
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we may not use only a single term from the sequence. If we use just 1 or just a, the sum

will be less than 5, and if we use 1− a, 2− a, or 3− a, then the sum must be greater than 5

if a ≤ −5. Finally, we cannot use two or more terms which feature −a in them, or else we

encounter the same problem as using a term at or beyond GHa[6].

This leaves us to try to construct 5 using exactly one term from the set {1−a, 2−a, 3−a},

and at least one term from the set {a, 1}. If we do not include a, the resulting sum will be

greater than or equal to 2− a, whose smallest possible value is 7 at a = −5. If we only use

a, then we are only able to construct 1, 2, and 3. If we use both 1 and a and then we can

only construct 2, 3, and 4

Since the only integers we can construct when a ≤ −5 are either less than or greater

than 5, it is not possible to construct 5 from GHa when a ≤ −5.

Since we know that for no a ≤ −5, GHa forms a universal code, the natural next question

is when does a code exist for an integer n, and if it does exist, how do we find one. In [13],

Pal and Das provide an algorithm for constructing GHa(n), when it exists, for an arbitrary

a and n, which is shown here as Algorithm 1. Their algorithm works by trying to reduce

the construction of a GHa code for n down to construction of GHa(k) for a smaller integer

k while accumulating a list of indices for additional terms to add to the representation of

GHa(k).

Their algorithm, like the universality proof from [3], produces some incorrect results in

that they are not necessarily GH codes, but are representations of the n that they tried to

encode. As an example. we attempt to construct GH−6(649) using their algorithm. The

GH sequence for a = −6 is shown below.

−6, 7, 1, 8, 9, 17, 26, 43, 69, 112, 181, 293, 474, 767, ...

To begin, we have r = 1 and we have the greatest GH term up to 649 is 474. Then,

m − mr = 649 − 474 = 175. The algorithm then checks whether 175 > 38 − 13 ∗ −6,
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or 175 > 116. The condition is true, so the algorithm takes 474 as part of the sum, and

then tries to construct 175. The greatest GH term up to 175 is 112, and so we compute

m−mr = 175− 112 = 63. 63 > 116 is not true, and so the algorithm would like us to try to

find the code which corresponds to 63 from the tables, which is 1000000011. We can then

construct the code as 10000000110011. Indeed, the final ”code” has two consecutive 1’s and

is thus not a GH code. It can however, be turned into a GH code through the use of Lemma

2.1.2.

In addition to not necessarily producing GH codes as outputs, the authors did not

present a proof of correctness of their algorithm. They also presented the algorithm in an

unclear manner which makes it difficult to implement. We provide two new algorithms which

construct GHa(n) if it exists, and we then prove the correctness of these two algorithms.

We first present several theorems and lemmas that aid in proving the correctness of our

algorithms.

Lemma 2.2.2. Let r be an integer greater than or equal to 2. Then GHa[r+ 2]− 1 is equal

to the sum of the terms from GHa[2] to GHa[r].

r∑
i=2

GHa[i] = GHa[r + 2]− 1

Proof. We will prove this lemma by induction. Firstly, recall that the general form of the

sequence GHa is:

a, 1− a, 1, 2− a, 3− a, 5− 2a, ...

As a base case, let r = 2. Then, we have

r∑
i=2

GHa[i] = GHa[2] = 1− a

GHa[2 + 2]− 1 = 2− a− 1 = 1− a

Thus, we have proven that our lemma is true for r = 2. For our induction step, assume the
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Figure 2.1: Finding GHa(n) from [13]

Let r = 1, m = n;
if m ∈ GHa then

Write the representation with the index of m to be 1, all other indices 0, and add
the ending 1, then stop.

end
if m− a ∈ GHa then

Write the representation with the index of m and a to be 1, all other indices 0,
and add the ending 1, then stop.

end
if m− a− 1 ∈ GHa then

Write the representation with the index of m, 1 and a to be 1, all other indices 0,
and add the ending 1, then stop.

end
while true do

Let mr = GHa[ir] be the greatest term in GHa less than m;
if m−mr > 38− 13a then

m = m−mr r = r + 1
else

if m−mr satisfies a straight line property from [13] then
Lookup the codeword associated with the applicable straight line
property, delete the ending 1, and then fill in 1’s in all positions ir
chosen by the algorithm, zeros in all other positions, then add the
ending 1, and stop.

else
Let mr+1 = GHa[ir+1] be the greatest term in GHa less than or equal to
mr ;

if m−mr+1 ≥ mr+1 then
The code does not exist for GHa(n), exit.

else
r = r + 1

end

end

end

end
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lemma is true for some k. Then, we have:

k∑
i=2

GHa[i] = GHa[k + 2]− 1

. We now need to prove the statement in the lemma is true for k + 1, or

k+1∑
i=2

GHa[i] = GHa[k + 3]− 1

Starting from the left-hand side:

k+1∑
i=2

GHa[i] = GHa[k + 1] +
k∑
i=2

GHa[i]

= GHa[k + 1] +GHa[k + 2]− 1

= GHa[k + 3]− 1

Since we have proven both the base case and the induction step, we have proven our

theorem by induction.

Next, we present a theorem concerning the composition of representations which forms

the basis for our algorithms.

Theorem 2.2.3. Let n be a positive integer. If n can be realized as the sum of some terms of

the sequence GHa, then there exist integers n0 and n1 which satisfy the following conditions:

1. n = n0 + n1

2. n0 =
5∑
i=1

αiGHa[i] where αi are either 0 or 1 and 0 ≤ n0 < GHa[6]

3. n1 =
k∑
i=6

αiGHa[i] where αi are either 0 or 1 and forms a Zeckendorf representation

of n1 which can be constructed greedily.

Proof. Assume that n can be realized as some sum of terms from the sequence GHa such

that
∑k

i=1 βiGHa[i], and let n′0 =
∑5

i=1 βiGHa[i] and n′1 =
∑k

i=6 βiGHa[i], and let us first

focus on n′0.
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Consider the first five terms of the general GH sequence:

a, 1− a, 1, 2− a, 3− a

If 0 ≤ n′0 < GHa[6], then we can set αi = βi for 1 ≤ i ≤ 5, and we have a valid n0.

If n′0 < 0, then it must be the case that β1 = 1, β2 = β4 = β5 = 0, and β3 is either 0 or 1.

We remedy this issue by using the recurrence relation GHa[n] = GHa[n − 1] + GHa[n − 2]

to move a portion of the sum from n′1 to n′0. If n′0 < 0, then n′1 > 0, since n is a positive

integer. Since n′1 > 0, there must exist some smallest index j such that βj = 1. Using the

recurrence relation GHa[n] = GHa[n− 1] +GHa[n− 2], we can change the bit βj to be zero,

and set βj−1 = βj−2 = 1. We know βj−1 and βj−2 were zero to begin with, since βj was the

first 1 in n′1. Since the last two indices of n′0 are guaranteed to be 0 by the fact that n′0 < 0,

this method can then be repeated until the bits which are replaced fall within n′0. The final

replacement will set β5 = 1, and β4 equal to either 0 or 1. Since β5 is now 1 in n′0, it is no

longer possible for n′0 to be negative, and we have preserved the sum n = n′0 + n′1 by usage

of the GH recurrence relation. Thus, we may now set αi = βi for 1 ≤ i ≤ 5, and we have a

valid n0.

If n′0 ≥ GHa[6], then β4 = β5 = 1, or n′0 is represented by 01101, in which case the

GH recurrence relation can be used to convert the representation such that β4 = β5 = 1.

Therefore, let us assume that β4 = β5 = 1. Since we have two consecutive 1’s, we can remove

at least β5 and from n′0 using Lemma 2.1.2, depending on where the first 0 index lies in n′1.

Once we have removed β5 from n′0, the new β terms will represent a sum less than GHa[6],

and we may now set αi = βi for 1 ≤ i ≤ 5, and we have a valid n0. This takes care of all the

possibilities for which n′0 could deviate from our criteria.

Now, we must consider n1, for which our main requirement is that it constitutes a

Zeckendorf representation which may be constructed greedily. In order to do this, we set

n1 = n − n0, so that condition 1 is satisfied. We know that n1 must be the sum of some
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terms of the remaining segment of the GH sequence, and we know that if we have some rep-

resentation of n1 which is not a Zeckendorf representation, we may use Lemma 2.1.2 to turn

it into a Zeckendorf representation. With this in mind, we will show that this representation

may be found using the Greedy Approach.

When we refer to constructing a code for n1 greedily, we refer to the process of taking the

largest GH term up to n1 as being part of the sum, subtract that term from n1, and then

iterating the process on the difference until we have all of the terms of the code. Formally,

let r be the current remainder we are trying to construct, and let GHa[m] ≤ r < GHa[m+1],

then we must choose GHa[m].

We prove by contradiction that the Zeckendorf representation must be constructed greed-

ily for n1. Assume that the sum is not being constructed greedily, meaning that there is

some first r where GHa[m] ≤ r < GHa[m + 1], and we do not choose GHa[m]. One cannot

choose GHa[m + 1] or greater terms because the resulting sum would be greater than the

remainder which we are trying to construct. Therefore, the largest term we may then choose

for a non-greedy step is GHa[m− 1]. Now, consider the largest Zeckendorf representation r′

that we may form by taking this non-greedy step:

r′ = GHa[m− 1] +GHa[m− 3] + ...+GHa[6]

= GHa[m− 2] +GHa[m− 3] +GHa[m− 4] +GHa[m− 5] + ...+GHa[5] +GHa[4]

=
m−2∑
i=4

GHa[i]

<

m−2∑
i=2

GHa[i]

= GHa[m]− 1 By Lemma 2.2.2

< GHa[m]

≤ r

Thus, we have shown that if at all one were to take a non-greedy step to try to construct

n1, it will no longer be possible to add up terms to the remainder at that step while still

forming a Zeckendorf representation. Thus, the greedy construction is the only method

which will terminate correctly, and thus construct the representation for n1.
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Now, we present our simple algorithm, which is a consequence of Theorem 2.2.3. The

idea is as follows: for a given a, there are a maximum of 13 constructable n0’s. If an integer

is encodable, then its encoding must utilize one of these n0. Therefore, we can construct a

GH code for an integer n by testing different possibilities for n0 until we either find one that

permits a valid n1, or until we run out of possibilities for n0 which we can try, from which we

can conclude that there is no encoding of n. The possible options for n0 are listed in Table

2.2 for −2 ≥ a ≥ −4, and in Table 2.3 for a ≤ −5.

Figure 2.2: Simple Algorithm for Finding GHa(n)

for n0 := 0 to GHa[6]− 1 do
if n0 can be represented using GHa[1] through GHa[5] then

n1 = n− n0;
if n1 can be constructed greedily using GHa[6] and up then

GHa(n) exists;
Concatenate the representations of n0 and n1;
Use Lemma 2.1.2 to ensure the result is a Zeckendorf Representation;
Add the ending 1, print the code, and stop;

end

end

end
GHa(n) is N/A

The correctness of Algorithm 2 follows from Theorem 2.2.3. If at all there is a rep-

resentation of n in GHa, then there is one which must use one of the n0 representations

available for a, and we can construct the corresponding n1 greedily. Otherwise, if there is

no representation which uses a valid n0 for a, then there can be no representation of n in

GHa. Regarding complexity, the actual work of the algorithm is in the greedy attempts to

construct n1, which is a linear-time operation in the length of the Zeckendorf representation

of n. Additionally, the invocation of Lemma 2.1.2 is a linear time operation. The loop runs

a constant amount of times, and so Algorithm 2 is linear in the length of the Zeckendorf

representation of n.

Next, we provide a more efficient algorithm which exploits characteristics of non-greedy

codes in order to prevent us from checking up to 13 cases. Algorithm 3 relies on the following
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n a = −2 a = −3 a = −4

0 00000 00000 00000
1 00100 00100 00100
2 10010 10010 10010
3 10001 10001 10001
4 10101 10101 10101
5 00001 00010 01000
6 00101 00001 00010
7 01010 00101 00001
8 01001 10011 00101
9 - 01010 10011

10 - 01001 10111
11 - - 01010
12 - - 01001

Table 2.2: Representations for 0 ≤ n0 < GHa[6] for −2 ≥ a ≥ −4.

n a = −(4 + k)

0 00000
1 00100
2 10010
3 10001
4 10101

k + 5 01000
k + 6 00010
k + 7 00001
k + 8 00101
k + 9 10011
k + 10 10111

2k + 11 01010
2k + 12 01001

Table 2.3: Representations for 0 ≤ n0 < GHa[6] for a = −(4 + k) where k ≥ 1
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lemmas.

Lemma 2.2.4. Let n be a positive integer. If n has an encoding which is produced by a

non-greedy method, then the second bit of the encoding must be 1.

Proof. Let n be a positive integer whose encoding is not produced by the greedy method.

Recall that the greedy method works by picking the largest term which may be included in the

sum, continuing this for the remainder until we reach a known encoding. If n is not produced

greedily, then at some point it must ignore the greedy step and choose an alternative next

term. Let r be the remainder at which we deviate from the greedy algorithm.

We now prove by contradiction that taking the non-greedy step requires us to include

GHa[2] in our sum. If GHa[m] ≤ r < GHa[m+ 1], taking GHa[m] for the sum would be the

greedy step. We cannot take a term greater than GHa[m], as this would create a sum greater

than our remainder. Therefore, the largest term we may take for our sum is GHa[m−1]. Let

r′ be the largest possible Zeckendorf representation that we can create by not taking GHa[2]

and GHa[m]. We have two possible cases for our ending term, depending on the parity of

m. Without loss of generality, we assume the ending term is GHa[4].

r′ = GHa[m− 1] +GHa[m− 3] + ...+GHa[4]

= GHa[m− 2] +GHa[m− 3] +GHa[m− 4] +GHa[m− 5] + ...+GHa[3] +GHa[2]

=
m−2∑
i=2

GHa[i]

= GHa[m]− 1 By Lemma 2.2.2

< GHa[m]

≤ r

Therefore, if we are not allowed to include GHa[2] in our non-greedy construction, it is

not possible to construct n.

Lemma 2.2.5. Let n be a positive integer. If n has an encoding which is produced by a

non-greedy method, then the fourth bit of the encoding must be 1.

Proof. Let n be a positive integer whose encoding is not produced by the greedy method. If
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n is not produced greedily, then at some point it must ignore the greedy step and choose an

alternative next term.

We now prove by contradiction that taking the non-greedy step requires us to include

GHa[4] in our sum. Let r be the remainder at which we deviate from the greedy algorithm. If

GHa[m] ≤ r < GHa[m+1], taking GHa[m] for the sum would be the greedy step. We cannot

take a term greater than GHa[m], as this would create a sum greater than our remainder.

Therefore, the largest term we may take for our sum is GHa[m − 1]. Let us now try to

construct the largest possible Zeckendorf representation for r′ that we can create by not

taking GHa[4] and GHa[m]. By Lemma 2.2.4, we must include GHa[2] in our sum, and since

we are working with a Zeckendorf representation, we may not use GHa[1] or GHa[3]. We

have two possible cases for our ending term, depending on the parity of m. Without loss of

generality, we assume the ending term is GHa[5].

r′ = GHa[m− 1] +GHa[m− 3] + ...+GHa[5] +GHa[2]

= GHa[m− 2] +GHa[m− 3] + ...+GHa[4] +GHa[3] +GHa[2]

=
m−2∑
i=2

GHa[i]

= GHa[m]− 1 By Lemma 2.2.2

< GHa[m]

≤ r

Therefore, if we are not allowed to include GHa[4] in our non-greedy construction, it is

not possible to construct n.

Lemma 2.2.4 and Lemma 2.2.5 together then claim that GHa[2] and GHa[4] must both be

utilized if the code for n is constructed non-greedily. However, if we are creating a Zeckendorf

representation, then we are not allowed to use GHa[1], GHa[3] or GHa[5]. Thus, n0 must be

01010 if the code we are constructing requires us to deviate from the greedy method. This

gives rise to the principal of our second algorithm. We can assume that the encoding for n

can be constructed by using the greedy method until the remainder n′ ≤ GHa[6], at which

point we can then lookup whether the remainder has an encoding n0. If it does not, we can
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conclude that the encoding for n may not be constructed by the greedy method, and we can

then try to construct it using n0 = 01010 as the only n0 for Algorithm 2. In other words, we

set n0 = 01010, compute n1 = n − n0, and then construct n1 greedily. If this method does

not work, then we can conclude that the encoding does not exist. The resulting algorithm

is outlined as Algorithm 3.

Figure 2.3: More Efficient Algorithm for Finding GHa(n)

Attempt to construct n greedily using terms GHa[6] and up;
Let n1 be the sum of the numbers picked by the greedy attempt;
n0 = n− n1;
if n0 has an encoding then

GHa(n) exists;
Concatenate the representations of n0 and n1;
Use Lemma 2.1.2 to ensure the result is a Zeckendorf Representation;
Add the ending 1, print the code, and stop;

else
n0 = GHa[2] +GHa[4];
n1 = n− n0;
if n1 can be constructed greedily using GHa[6] and up then

GHa(n) exists;
Concatenate 01010 and the encoding for n1;
Use Lemma 2.1.2 to ensure the result is a Zeckendorf Representation;
Add the ending 1, print the code, and stop;

else
GHa(n) is N/A

end

end

The correctness of Algorithm 3 follows from Lemma 2.2.4 and Lemma 2.2.5. If a code

can be constructed greedily from n, then we simply attempt to construct it greedily until

the remainder is less than GHa[6], at which point we can check whether the remainder n0 is

encodable. Otherwise, by Lemma 2.2.4 and Lemma 2.2.5, a constructable code which is not

greedy-constructable must possess n0 = 01010, and so it can either be constructed in this

way, or not at all.

Both Algorithm 2 and 3 run in the asymptotically linear time in the length of the Zeck-

endorf representation of n, but in practice, Algorithm 2 may take up to 13 attempts to
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construct a code, while Algorithm 3 makes only 2 attempts to construct a code, making it

significantly more efficient.

2.3 Non-existence of GH codes for consecutive integers

In [4], Basu and Prasad produced tables of encodings for GHa(n), where −2 ≥ a ≥ −20,

and 1 ≤ n ≤ 100. They observed that for a = −(4 + k), there were a maximum of k

consecutive integers which could not be encoded for GHa. That is, the largest block of

integers whose encodings were N/A was of length k. We prove that, for general a and for

unlimited values of n, there are a maximum of k consecutive integers that cannot be encoded

for GHa, where a = −(4+k) and k ≥ 1. We first prove a lemma which connects the existence

of N/A encodings greater than GHa[6] to N/A encodings less than GHa[6].

Lemma 2.3.1. If an integer n > GHa[6] does not possess a code, then there is some integer

less than GHa[6] which does not possess a GH code.

Proof. Assume some integer n > GHa[6] is N/A, meaning it does not possess a GH code,

and attempt to construct it greedily by taking the largest term up to the n as part of the sum,

subtracting it from n, and repeating this process continually on the difference n′. Eventually,

the remainder, which we can call r, must be less than GHa[6]. If GHa(r) is not N/A, then it

has some valid encoding such that, combined with the terms chosen by the greedy method,

would represent n. Since this would be a contradiction, we can conclude that GHa(r) does

not have an encoding, and is thus N/A. Therefore, if n > GHa[6] does not have an encoding,

there is also an integer r < GHa[6] which also does not have an encoding.

Theorem 2.3.2. Let k be a positive integer. Then, there exists at most k consecutive integers

for which GH−(4+k) codes are N/A.

Proof. Our proof relies on where encodings exist when n < GHa[6]. Recall that, according

to Table 2.3, we can only encode the integers 0 through 4, k + 5 through k + 10, 2k + 11

and 2k + 12, for a ≤ −5, where a = −(4 + k). Therefore, the integers from 5 to k + 4, and
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k + 11 to 2k + 10, have no encodings. Note how each of these ranges contains exactly k

integers which we are unable to encode. Also, recall that if an integer n does not possess an

encoding, there is some integer less than GHa[6] which also does not have an encoding by

Lemma 2.3.1.

Consider two consecutive integers n and n′ which do not have encodings. Let i be the

index such that GHa[i] is the greatest GH term up to n, then GHa[i] ¡ n ¡ GHa[i+ 1]. This

must also be the case for n′, as it is either n+ 1 or n− 1, and n′ must not have an encoding.

Now, attempt to construct n and n′ greedily using terms greater than or equal to GHa[6]. At

this first step, both must choose GHa[i], since this is the greatest term less than both n and

n′. Since both constructions choose the same step, the remainders will differ only by 1, and

must also fall within some range GHa[i
′] ¡ r, r′ ¡ GHa[i

′ + 1], where r and r′ are the current

remainders of n and n′ respectively. Therefore, both greedy constructions must take all of

the same steps until both remainders fall between 0 and GHa[6]. By Lemma 2.3.1, we know

both n and n′ rely on some n0 less than GHa[6] not being encodable, and since the same

steps were taken in both constructions, the value of the n0’s created by both constructions

only differ by 1. Therefore, for these two consecutive integers to not be encodable, there

must be two consecutive n0’s greater than 0 and less than GHa[6] which are not encodable.

We can argue in the same way that if k + 1 consecutive integers lack encodings, then

there must be k + 1 consecutive integers less than GHa[6] which do not possess encodings.

However, according to our analysis of Table 2.3 from above, there are only k consecutive

integers less than GHa[6] which are not encodable. Thus, we can conclude that there are at

most k consecutive integers which are not encodable for GHa, where a = −(4 + k).
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Chapter 3

Cryptanaylsis of a stream cipher based on GH codes

The GH sequence as defined by J.H. Thomas can be described as being of order 2,

meaning it utilizes a recurrence relation which generates the next term by adding the past

two terms. In [12], Nalli and Ozyilmaz put forth a generalization to the third order for

Gopala-Hemachandra Sequences, as well as third order GH codes. We denote GH3
a [n] to be

the nth index of the 3rd order GH code, and we define 3rd order GH codes with the notation

GH3
a , where GH3

a(n) represents a code for n from the sequence GH3
a , if it exists. The third

order Gopala-Hemachandra code is based on the third order Gopala-Hemachandra sequence,

which utilizes the recurrence relation GH3
a [n] = GH3

a [n−1]+GH3
a [n−2]+GH3

a [n−3] for all

n > 2 with the initial conditions GH3
a [0] = 0, GH3

a [1] = a and GH3
a [2] = 1− a, and a ≤ −2.

In general, we have GH3
a as:

a, 1− a, 1, 2, 4− a, 7− a, 13− 2a, ...

As an example, one could choose a = −2 to yield the sequence:

−2, 3, 1, 2, 6, 9, 17, ...

While the concept of a third order Zeckendorf representation is not defined explicitly for

GH3
a in [12], their article uses the same type of Zeckendorf representation as the third order

Fibonacci Sequence presented earlier from [1], save that we are now working with terms



of the GH3
a sequence. The third order Zeckendorf representation for n under GH3

a is then

n =
∑l

i=1 αiGH
3
a [i], where GH3

a [i] represents the ith term of the third order GH3
a Sequence,

αi is either 0 or 1, and αl = 1. Further, we require that for any αi, αi+1 and αi+2, it is not

the case that all three are 1.

Given a Zeckendorf representation n =
∑l

i=1 αiGH
3
a [i], the GH3

a Code for n is α1α2...αl11.

In the same way as the third order Fibonacci Code, we append two 1’s onto the end of the

Zeckendorf representation of n on the premise that three consecutive 1’s should now only

appear at the end of an encoding. Again, this approach is plagued with the same problems

as the third order Fibonacci Sequence, in that it is not uniquely decodable.

One application which has been explored in the literature besides data compression is

the use of GH codes in cryptography, particularly in the design of stream ciphers. In 2014,

Nalli and Ozyilmaz presented a stream cipher in the context of order 2 and order 3 GH

codes [12]. We cryptanalyze the stream cipher presented in [12] here.

3.1 The GH Cipher

A stream cipher takes a plaintext composed from some plaintext alphabet P , which is a

set of symbols that may be encoded, and encodes them into a ciphertext composed from some

ciphertext alphabet C. It does so by generating a keystream using a keystream generator

g, and an initializing key from the keyspace K of possible keys. The keystream itself also

has an alphabet, L, of possible symbols which may compose the keystream. Finally, there

must be an encryption and decryption rule which enciphers an arbitrary plaintext into a

ciphertext, and a valid ciphertext into a plaintext respectively.

The cipher presented in [12] uses English alphabetic characters as the plaintext alphabet.

The plaintext is processed prior to encryption by replacing each plaintext letter with its index

in the alphabet (a number between 1 and 26), and then by converting that number into a GH

code for a given sequence. Once all the GH Codes have been obtained, each one is padded

with zeros so that they are all of the same length, and then the codes are concatenated
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together. Encryption is done by taking the keystream generated by a key and performing

the bit-wise exclusive or operation on the encoded plaintext string and the keystream.

The key for the stream cipher has three components. These components are the order

m of the recurrence relation (2 or 3), the specific parameter a used, and the length of the

longest GH code used in the message. Using the tables from [4], the only parameters a for

which GH2
a encode all of the integers 1 through 26 are −2 ≤ a ≤ −4, and using the tables

from [12], the only parameters a for which GH3
a encode all of the integers 1 through 26 are

−2 ≤ a ≤ −10. For order 2, the shortest code that can be used is of length 3, and for order

3, the shortest code is of length 4. For both orders 2 and 3, the longest code is of length 9.

In order to get the key, one looks up or determines the order m Fibonacci code for −a, and

then pads the end of the code with zeroes until its length matches the length of the longest

GH code used to encode the plaintext. Note that this implies possessing just the order m

and the parameter a is not enough to fully determine the key, and thus the final key used

is dependent on the message. Once the key has been found, the keystream is generated by

simply repeating the key until it is as long as the processed plaintext, after which encryption

is performed by taking the bit-wise exclusive or of the keystream and the plaintext.

The receiver generates the keystream as above, and then performs the bit-wise exclusive

or operation on the ciphertext and the keystream, which returns the encoded version of

the plaintext. To decode the plaintext, the receiver will then split the string into blocks of

the length of the key, remove all zero padding, and then convert each GHm
a code into its

associated integer. Once the list of integers is obtained, all that remains is to convert each

integer back into a letter by finding which letter is at that index in the alphabet.

As an example, let us encipher the word ”secure”. Firstly, we must convert each letter

to its index in the alphabet. In this case, we have:

19 5 3 21 18 5
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Now, we must convert each of these numbers into a GH encoding for some sequence. Let

us use order m = 3 and a = −4, then the codes associated with each number are, from [12,

Table 3]:

100100111 0111 001111 000000111 101000111 0111

Next, we must pad each code with zeroes in order for every code to be the same length.

Since the longest code in our plaintext comes from s, with a length of 9, each code must be

padded to length 9 with 0’s:

100100111 011100000 001111000 000000111 101000111 011100000

Now, we have everything we need to find the total key and construct the keystream. Since

m = 3 and a = −4, we look up the order 3 Fibonacci Encoding of 4 in [12, Table 1]. We

find the encoding to be 00111. After padding with zeroes, we get the key as 001110000.

This gives us a plaintext string of:

100100111011100000001111000000000111101000111011100000

and a keystream of:

001110000001110000001110000001110000001110000001110000

Performing the exclusive or operation, we get the ciphertext as:

101010111010010000000001000001110111100110111010010000

Now, in order to decipher the ciphertext, we use the key to again generate the keystream, and

perform the exclusive or of the ciphertext and the keystream, yielding the encoded plaintext
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string:

100100111011100000001111000000000111101000111011100000

From here, we split the string into blocks of length 9 since our key is of length 9, yielding

the following blocks of codes:

100100111 011100000 001111000 000000111 101000111 011100000

We then remove all zero padding, and get:

100100111 0111 001111 000000111 101000111 0111

We then use the GH3
−4 table [12, Table 3] to determine the integers encoded by these codes:

19 15 3 21 18 5

Finally, we convert these integers back into letters, and obtain ”secure”.

3.2 Cryptanalysis

The relatively small range of valid a parameters over order 2 and order 3 raises the

question of how effective a brute force attack might be on this stream cipher. When we refer

to brute force, we refer to an attack on the cipher by which we try to decrypt a ciphertext

with all possible keys, eventually obtaining the correct decryption in the process. In order to

carry out such an attack, we must first know how many valid keys there are for this cipher.

The two orders of GH code used by the authors are m = 2 and m = 3. Since the size of

the key is dependent on the size of the largest code used, we must know how small and how

large a message can be. Order 2 GH codes have a minimum length of 3 and a maximum

length of 9. There are 3 values for the a parameter for order 2 which encode the integers 1
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through 26, and so we have 3 ∗ 7 = 21 possible keys. Order 3 GH codes have a minimum

length of 4 and a maximum length of 9. There are 9 values for the a parameter for order 3

which encode the integers 1 through 26, and so we have 9 ∗ 6 = 54 possible keys. This gives

us a total of 75 keys. That lends itself kindly to a brute-force approach, in which we simply

try all these possible key combinations on the ciphertext and analyze the outputs of these

75 decryptions.

While a keyspace of 75 keys is rather small, the brute force approach for this stream cipher

can be further optimized based on two principles. Firstly, some keys may be disqualified

before even attempting decryption due to the length of the key relative to the ciphertext.

Second, not all keys will lend themselves to a valid decryption of the ciphertext.

Before examining the contents of the ciphertext, one may examine the length of the

ciphertext to disqualify a wide range of keys. Again, take our ciphertext for the word

”secure.” The length of that ciphertext is 54 bits because we had 6 codeblocks of length 9.

Since the key is padded to the length of each codeblock, the length of the key must divide

the length of the ciphertext. Since 4,5,7 and 8 do not divide the length of the ciphertext

evenly, no key with a block length of 4,5,7 or 8 could possibly have generated the ciphertext

in question.

Of the remaining keys which can be used to decrypt a ciphertext, most keys are unable

to yield a valid decryption, in that a codeblock in the decrypted ciphertext will often not

be interpretable as a GH code under the given key. We consider a key to be a valid key

relative to a ciphertext if it can be decrypted into some plaintext (independent of whether it

is meaningful or not), and we consider a key to be invalid for a ciphertext if it is unable to

be used to decrypt a ciphertext into a sequence of characters from the English alphabet. For

example, take our ciphertext for the word ”secure” encoded using the key a = −4, m = 3,

and block length 9:

101010111010010000000001000001110111100110111010010000
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Let us not change the order and a parameter, and instead only change the block length to

be 6 instead of 9. The key would now be 001110, and the first ciphertext block we would

examine would be 101010. Then 100100 would be the first GH codeword to be interpreted

from the GH3
−4 table [12, Table 3]. Since this code does not end in three 1’s, the first

codeblock of this ciphertext does not correspond to a valid GH3
−4 code. This is just one

instance of an invalid key which can be disqualified very quickly without performing the full

decryption. These two characteristics of this particular cipher substantially speed up brute

force attacks.

We developed an encryption program and a decryption program for experimenting with

the cipher. The encryption program takes a message, a parameter a, and an order m, and

generates a ciphertext with a block length determined by a and m, just as described. The

decryption program takes a ciphertext, the parameter a, the order m, and the block length of

the message (which fully determines the key), and produces the resulting plaintext provided

the ciphertext is a valid ciphertext produced by the key.

Next, we developed a program which cracks a single ciphertext. The cracking program

implements the brute force approach described above, using the length of the ciphertext to

disqualify several keys before feeding it to the decryption function, which stops immediately

if it tries to decode an invalid code for a given key. Finally, we developed a program which

streamlines the cracking of multiple ciphertexts and gathers statistics on these cracking

attempts.

3.3 Experimental Results

Our experimental testing of the program that cracks the stream cipher from [12] sought to

quantify how few valid decryptions that plaintexts of various sizes yield on average. Plain-

texts for testing were generated by breaking up the King James Bible found on Project

Gutenberg after removing the license information added to the document. Plaintexts were

generated in lengths of 2, 3, 4, 5, 10, 20, 50, 100, 1000, and 10000 characters, with 1000
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Instance Length Avg Time (s) Avg # of Valid Keys Max # of Valid Keys

2 0.000753983 1.441 5
3 0.000982375 1.149 4
4 0.001160898 1.048 3
5 0.001347399 1.031 3

10 0.002342737 1.004 2
20 0.002612016 1 1
50 0.002767603 1 1

100 0.003831668 1 1
1000 0.013544820 1 1

10000 0.113696467 1 1

Table 3.1: Experimental results for cracking ciphertexts of varying lengths

instances for all lengths below 10000 and 332 instances for length 10000. 332 instances was

the largest number of 10000 character plaintexts that could be generated from the full-text

of the bible. These plaintexts were encrypted en mass by choosing a random m and a com-

bination for each plaintext, and then running the encryption program. Next, the resulting

ciphertexts were cracked en mass. The average time in seconds of cracking a ciphertext of a

given length is shown in Table 3.1. Also shown in the table are the average number of valid

keys and maximum number of valid keys found when cracking a ciphertext produced from

a plaintext of a given length. The timing of a cracking attempt starts when the program

feeds the loaded in ciphertext to the cracking function, after which the program begins test-

ing possible keys. The timing of a cracking attempt stops after all keys have either been

disqualified or attempted.

We observe that even when the original plaintext is almost trivially small, down around

two characters total, the maximum number of valid keys is 5. This means that in the absolute

worst case, less than 7% of the possible 75 keys are going to allow decryption to complete

and yield a valid output, regardless of whether the outputs of these keys make sense to

a human observer. The most striking result here is that by the time the message length

reaches 10 characters, the average number of valid keys is almost 1, and by 20 characters,

there were no instances found which had more than 1 valid key. This means that there is

40



really only one key which can produce a valid output. Using this fact, we were able to further

optimize our cracking algorithm. Rather than examining the whole ciphertext, we choose

never to examine more than the first 10 characters of ciphertext for the purposes of running

a decryption to find the key. Only when we have a list of valid keys do we then go back

and perform the full decryption on the whole ciphertext. This drastically cuts the time that

it takes to crack a ciphertext obtained from a plaintext which is longer than 10 characters,

and is particularly noticeable when the message size is larger than 1000 characters. Table

3.1 presents the average time for the optimized version of the cracking program.

In summary, the time to crack even a large ciphertext is less than a second, given nothing

but the ciphertext itself. Further, small ciphertexts have on average less than 2 potential

keys to choose from before even considering whether a decryption makes sense as a message.

Hence, we conclude that this stream cipher is quite insecure. Further, were one to use a

standard stream cipher with a random binary key of length 8, which is the smallest block

length generally used by a meaningful message in the analyzed GH cipher, there would be

28, or 256 possible valid keys. Comparatively, the keyspace of the GH stream cipher over

all lengths is limited to 75, making brute force attacks significantly faster.

In 2016, Basu and Das presented a different design for a stream cipher in their paper

utilizing GH2
a sequences and codes [3]. We did not analyze the construction in [3], since their

design is equivalent to a standard stream cipher which simply uses GH codes to encode the

plaintext into binary. Their scheme utilizes an arbitrary codebook in which they assign each

character to specific GH codes. The key in their scheme is a random binary key, and has

no relation to GH sequences or codes themselves. Since the encodings from plaintext to

GH code must be public knowledge by Kerckhoffs’ principle, their scheme cannot provide

additional security beyond that of a standard stream cipher.
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Chapter 4

Conclusion and Open Problems

Our work here consisted of proving theoretical results on GH2
a sequences, thus providing

more solid ground upon which further investigations of GH2
a sequences may be conducted.

On universality, we provided a new proof of universality for GH2
a when −2 ≥ a ≥ −4,

and provided a means to correct a flawed proof in the literature. We provided two new

algorithms for determining whether a GH2
a(n) code exists for given parameters a and n and

constructing one if it indeed exists. Our algorithms are provably correct and run in linear

time in the length of the code output and are thus asymptotically optimal. We also provide

a general proof of a bound the maximum number of consecutive integers whose encodings do

not exist, relative to a. Finally, we cryptanalyze a stream cipher based on GH codes from

[12], developing an optimized brute force approach which allows arbitrary ciphertexts to be

easily cracked without knowledge of the key.

While we now have several general results for GH2
a , as far as we know, [12] is the only

paper in the literature which examines the GH3
a sequence and its codes in any detail. Further,

said paper consists of providing a definition for GH3
a , providing GH3

a(n) encodings for −2 ≥

a ≥ −20 and 1 ≤ n ≤ 100, and presenting a stream cipher which utilizes these codes. This

means that there are essentially no general results on GH3
a as a whole, let alone higher order

GH sequences and codes. It would be interesting to see if results similar to ours might be

proven for order 3 GH codes, or in general for order m GH codes. In particular, it would

be interesting to prove whether some range of a exists for order 3 such that GH3
a permits a

universal code, to develop an algorithm which determines whether a GH3
a(n) code exists for



a given set of parameters a and n, and construct one if it exists, and to prove a similar bound

on the maximum number of consecutive integers with N/A codes relative to a in order 3.

The usefulness of sequences GHm
a for m > 2 for data compression is questionable though,

as these sequences are not necessarily uniquely decodable. From the tables presented in [12],

we can easily find concatenations of GH3
a encodings which are not uniquely decodable, an

important property that is needed for use in data compression. For example, take the

encodings of 15 and 13 in GH3
−4:

10001111 00010111

We know that those decode to 15 and 13 because we were the ones to encode them. However,

because 15 has four consecutive 1’s, and the concatenation of these two codes could be

interpreted in two different ways by the receiver. As above, or as

1000111 100010111

which for GH3
−4, would correspond to the integers 4 and 25. This example shows that, while

it may be possible to prove that some range of a allows universal GH3
a codes, these codes do

not guarantee unique decoding. We note that in [9], Klein et al made a similar observation

that third order Fibonacci Codes are not uniquely decodable.

The above example illustrates the need in general to obtain a fixed-length code if one

intends to use the GH3
a code in the cipher from [12]. Initially, the idea of padding out a

variable length code seems like a strange choice, both for the sake of security and the size of

the encodings. The advantages of having small encodings for small integers such as 1 are lost

once one has to pad out the encoding with zeros for the cipher, and the concept of breaking

up the ciphertext into codeblocks significantly streamlined the process of testing keys, even

if the associated padding had a multiplicative effect on the size of the keyspace. However,

as GH3
a is not uniquely decodable, there is no guarantee that the parameters a and m will

43



be sufficient for deciphering the ciphertext, and thus it was required that zero padding be

added to the codeblocks.

Despite the fact that higher order GH codes may not be useful in the area of data

compression, there is still room also to produce even more general results for order m, such

as a finding a function f(m), if it exists, such that for GHm
a , −2 ≥ a ≥ f(m) permits

universal codes. Another interesting problem is to develop an algorithm which determines

whether a GHm
a (n) code exists for a given set of parameters m, a, and n, and construct one

if it exists. That is, it takes a, m, and n as inputs, and produces an encoding of n using the

order m GH sequence parameterized with a, if it exists.

Finally, our work on GH sequences and codes focuses primarily on the specific case of

the general Gopala-Hemachandra sequence in which b = 1 − a for a ≤ −2. This family of

sequences is interesting due to the fact that it can permit universal codes, but there may be

other interesting parameterizations of the Gopala-Hemachandra Sequence to investigate, as

well as the possibility of general results on GH sequences with arbitrary initial values of a

and b.
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