
ANALYSIS OF THE IMPACT OF TAGS ON STACK OVERFLOW QUESTIONS

by

Von Ithipathachai

May, 2022

Director of Thesis: Mark Hills, PhD

Major Department: Computer Science

User queries on Stack Overflow commonly suffer from either inadequate length or inadequate

clarity with regards to the languages and/or tools they are meant for. Although the site makes use

of a tagging system for classifying questions, tags are used minimally (if at all). To investigate the

impact of tags in the quality of results returned by the queries, in this research we propose a new

query expansion solution. Our technique assigns tags to queries based on how well they match the

queries’ topics. We evaluated our technique on eight sets of queries categorized by overall length

and programming language. We examined the retrieval results by adding varying numbers of tags

to the queries, and monitored the recall and precision rates. Our results indicate that queries yield

considerably higher recall and precision rates with extra tags than without. We further conclude

that tags are a particularly effective means of enhancement when the original queries do not already

return sufficient yields to begin with.

ANALYSIS OF THE IMPACT OF TAGS ON STACK OVERFLOW QUESTIONS

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Computer Science

by

Von Ithipathachai

May, 2022

Copyright Von Ithipathachai, 2022

ANALYSIS OF THE IMPACT OF TAGS ON STACK OVERFLOW QUESTIONS

by

Von Ithipathachai

APPROVED BY:

DIRECTOR OF THESIS:

Mark Hills, PhD

COMMITTEE MEMBER:

Venkat Gudivada, PhD

COMMITTEE MEMBER:

Rui Wu, PhD

CHAIR OF THE DEPARTMENT OF

COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

Table of Contents

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK . 4

2.1 Background . 4

2.1.1 Query Expansion/Reformulation Studies 4

2.1.2 Stack Overflow Question Analysis . 5

2.2 Related Work . 6

2.2.1 Studies with LDA Topic Modeling . 6

2.2.2 Other Studies . 7

3 APPROACH . 9

3.1 Overview of the Approach . 9

3.2 Query Construction . 10

3.3 Tag Generation . 11

3.3.1 Latent Dirichlet Allocation . 11

3.3.2 Topic Generation . 12

3.3.3 Query Tagging . 12

3.4 Document Construction . 13

3.5 Document Retrieval . 13

4 EMPIRICAL STUDY . 15

4.1 The Dataset . 15

4.2 Variables and Measures . 16

4.2.1 Independent Variables . 16

4.2.2 Dependent Variable and Measures . 16

4.3 Data Collection and Experimental Setup . 17

5 DATA AND ANALYSIS . 18

5.0.1 Programming Language . 21

5.0.2 Long vs. Short Query Sets . 22

6 DISCUSSION . 23

6.1 Performance for Individual Queries . 23

6.2 Effects of Chosen Topic on Retrieval Results . 23

6.3 Limitations of Adding Extra Tags . 24

6.4 Parameter Sensitivity Analysis . 26

7 THREATS TO VALIDITY . 27

8 CONCLUSIONS AND FUTURE WORK . 28

BIBLIOGRAPHY . 29

LIST OF TABLES

5.1 Average quantities of documents retrieved by each query set given some number

of extra tags added to each query. 19

5.2 Average cosine similarity of query-answer pairs for each query set given number

of extra tags added to each query. 19

5.3 Average quantities of documents retrieved by each query set with vs without extra

tags extra tags. 20

5.4 Average cosine similarity of query-answer pairs for each query set with vs without

extra tags. 20

6.1 Data gathered for long C++ queries with no extra tags added versus with five extra

tags added. 24

6.2 Original Long C++ Queries . 25

6.3 Experiment Objects and Associated Data. 25

LIST OF FIGURES

3.1 An Overview of the Framework . 9

Chapter 1

INTRODUCTION

Whenever we have a problem, but do not have the solution to it ourselves, we frequently turn to

search engines to find one. These search engines often require users to input their own queries to

act as search criteria. Unfortunately, due to not fully understanding how to express their needs,

user queries may sometimes be underdeveloped and insufficient for finding their answers, neces-

sitating further enhancements on the part of the system so that they can more effectively retrieve

satisfactory ones. Typically, when a search engine receives a query from a user, it pre-processes

the query and divides it into distinct terms, then refers to those terms to retrieve documents that it

judges to be relevant. However, retrieving relevant documents is challenging for underdeveloped

queries, which may return results that are overly broad. In addition, the documents retrieved may

not even satisfy the user’s needs, particularly when the user doesn’t know the precise terminol-

ogy for what it is he/she is looking for. Automatically expanding the query with more terms can

remedy the problem, but not just any terms can be chosen if improvement is to be noticeable and

misguided users are to be put back on the right track.

Stack Overflow is a popular website to refer to for help with difficult coding problems [6, 9,

16, 18, 15, 13]. It is frequented by programmers in training and seasoned software developers

alike, and presents a classic example of this issue. Among the site’s numerous features is its own

search engine [1], to which users can feed queries in order to find answers that might solve their

problems, often attached to question threads from users experiencing similar problems. However,

like with all search engines, not all users know how to write queries that are strong enough to

make optimal use of it [15, 13]. There are a couple of notable recurring problems with queries on

Stack Overflow. One problem is that queries are often short, giving the search engine relatively

little material to work with for finding matching documents. Another problem is that queries

are too general, being worded vaguely or failing to specify whichever of the many programming

languages, libraries, and/or other tools in existence their users are struggling with. Phrases like

”nested for loop”, ”linux apache2 flask folium”, ”encapsulate executable”, ”two html drop down

list event”, etc., are just a few examples of these kinds of deficient queries that will probably fail

to help users find useful answers, taken from the Stack Overflow dataset itself.

A number of studies [17, 14, 9] have already been performed on possible ways to fix these in-

adequate Stack Overflow queries. These typically entail automated query expansion/reformulation

techniques that derive extra terms to add from different sources depending on the study. To the

best of our knowledge, no studies appear to have incorporated the tags attached to questions and

answers into the process. In addition to its search engine, Stack Overflow also includes its own

tagging system [1], which enables questions to be tagged for easier classification and location by

the search engine. The search engine even allows users to search for posts directly by tags [1],

though it is difficult to articulate a user problem to search for entirely through tags alone. We feel

that these tags are underutilized and have potential utility for query improvement.

Therefore, to address the currently limited usability of tags for search purposes and show how

they can be used to strengthen user queries, in this paper, we present a query expansion solution

that incorporates both the base tags from questions and additional tags derived from LDA (Latent

Dirichlet Allocation) topics into user queries for the purposes of retrieving answers1. To test this

approach, we perform an experiment on questions and answers from the Stack Overflow dataset

for multiple programming languages, in which initial queries composed of question titles and their

associated tags are assigned topics and used to retrieve answer documents, with gradually more

tags from the assigned topics being added with each experiment iteration. The results of this

experiment demonstrate that the extra tags chosen and added to queries always result in the queries

having greater levels of document recall. In addition, the results also demonstrate that the addition

1The source code is available at https://github.com/24karatDVNO/StackOverflow-Query-Improvement-with-Tags

2

of these tags leads to increased precision, with the top most relevant documents having greater

cosine similarity with their queries. Our approach is thus shown to enhance query results, which

should lead to more satisfied users. The rest of this paper explains the process and results in greater

detail.

The remaining sections are as follows. Section 2 provides additional background information

from other studies using Stack Overflow for query expansion and/or question analysis, as well as

from other related studies. Section 3 explains our approach, including our reasoning for opting

to use LDA for tag generation. Section 4 describes details of the experiment used to evaluate our

approach, including the research questions used to guide the experiment. Section 5 presents the

results of our study. Section 6 discusses what the results indicate including their practical impli-

cations. Section 7 discusses possible threats to the validity of our study, and Section 8 discusses

conclusions and future work.

3

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Background

This section of the paper discusses pre-existing studies with the Stack Overflow dataset that are

similar to ours. These primarily include other studies related to query expansion and/or reformula-

tion. They also include studies related to the analysis of Stack Overflow questions and how useful

they may be considered for users.

2.1.1 Query Expansion/Reformulation Studies

Over the past decade, several studies have been conducted to investigate ways to improve queries

in terms of either the quality of retrieved code snippets [17, 14] or the clarity and/or grammatical

correctness of the queries themselves [9]. However, none of them discuss retrieval results in terms

of non-code text content. Most importantly, they also make minimal use or no use at all of Stack

Overflow tags for enhancement in the way that our study does.

A study by Nie et al. [17] describes a method of Query Expansion based on Crowd Knowledge

(QECK), i.e. document-extracted software development knowledge useful for answering ques-

tions. The documents, in this case question-approved answer pairs, are used as pseudo-relevance

feedback for identifying useful terms to add to a query based on its initial ones. Jason Liu et

al. [14] describe a method of Neural Query Expansion (NQE) which works in conjunction with

Facebook’s pre-existing Neural Code Search (NCS) approach that retrieves relevant code snippets

from Stack Overflow for natural language queries. After extracting the query’s keywords, NQE is

able to predict new keywords to add based on their co-occurrence in the document corpus with the

original keywords. Both of these studies demonstrate the effectiveness of their solutions through

use in conjunction with pre-existing code search algorithms.

In another study, Cao et al. [9] describe a deep learning-based query reformulation solution

which makes use of Stack Overflow query logs for improving deficient user queries. The solution

extracts existing original-reformulated query pairs from the query logs and derives reformulation

patterns from them. Using these patterns, it can then receive an original query to fix and gener-

ate multiple possible improved versions of that query to replace the original. The study puts its

solution to the test against common evaluation metrics and other enhancement tools and performs

beyond their standards to varying degrees. Here, improvement is measured primarily in terms of

typographical error correction, increase in query clarity, and reduction of time spent on manual

query reformulation, rather than what the queries themselves return.

2.1.2 Stack Overflow Question Analysis

In addition to these query enhancement-related studies, numerous studies on the analysis of Stack

Overflow questions themselves have also been performed within the past decade. These studies

discuss question analysis in terms of either the questions themselves [4, 7, 10] or the code snippets

they contain [11, 16]. Although our solution does not take question quality into account for topic

generation, it will be helpful to consider for future revisions.

The more general question quality studies, such as the ones by Arora, Baltadzhieva, Correa,

etc. [4, 7, 10] evaluate quality based on numerous different factors. The factors found to reliably

indicate whether or not questions are of good quality include (but are not limited to) their compo-

sition [4, 7], the scores they have received [4, 7], the number of answers they have received [7],

and their similarity to other questions that have received high/low scores [4]. It is also important to

consider whether or not a question has been closed, as questions can be closed if they have serious

flaws such as being a duplicate, off-topic, subjective, overly-localized, or not real questions [4, 10].

The more code snippet-centric studies, such as the ones by Nasehi, Dujin, etc. [6, 9, 16, 18] ac-

5

knowledge the fact that Stack Overflow is heavily relied upon by programmers of all skill levels as a

source of helpful code examples and therefore reasonably conclude that good quality questions will

often include at least some amount of reusable code. As such, they include code quality among the

other factors that determine whether or not a question is good. Some metrics used in these studies

for measuring code quality include (but are not limited to) readability/conciseness [11, 16], style

compliance [11], and number of constructs [11].

2.2 Related Work

The studies presented in this section do not fit neatly into either query expansion/reformulation or

question analysis. However, they either use similar methodology to our own to answer different

research questions or offer additional insights into how the Stack Overflow user experience can be

improved. Because of this, the knowledge they offer may also be useful to take into consideration

for future revisions of our solution.

2.2.1 Studies with LDA Topic Modeling

Allamanis and Sutton [3] performed a study in which they used LDA to classify Stack Overflow

questions according to views of concept (concepts being subjects such as ”applets”, ”games”, ”lan-

guages”, etc.) and type of information (such as how to fix a problem or locate helpful resources).

The resulting topics generated for these viewpoints were able to provide useful insights, such as

which questions lend themselves best to the use of code snippets, the universality of questions

between programming languages, how the orthogonality of different tools and technologies can

be evaluated, and how concepts and types can be connected to each other to solve user prob-

lems. Zou et al. [20] also performed a study with LDA in which they analyzed Stack Overflow’s

non-functional requirements (NFRs) to develop a more comprehensive understanding of the site’s

development activities. Much like our study, they extracted questions and bodies from the Stack

Overflow dataset and used them to generate development-related topics. The topics were then la-

beled with whichever NFRs fit them the best, or with none at all if no NFRs fit. After validating

6

the topics against another corpus, they found that the developers focused most greatly on usability

and reliability, with maintainability and efficiency being secondary concerns.

2.2.2 Other Studies

Yang et al. [19] performed a study analyzing Stack Overflow code snippets and their usability

rates. Like our study, this one also categorized extracted code snippets by programming languages

(Python, Java, C#, and JavaScript). Snippets could be classified as parsable and/or either compil-

able depending on the language. Code snippets for Java and C# were found to have significantly

lower usability rates by comparison, even after additional repairs and the removal of one-word

snippets.

Bhat et al. [8] conducted a study in which they investigated potential factors influencing re-

sponse time to new Stack Overflow questions. Tag-related factors included the amount of popular

tags used, the specificity (co-occurrence rate) of the tags, and the quantity of subscribers to those

tags. These tag-related factors were found to be more effective in eliciting fast response times

than non-tag-related factors such as length of the body and titles, the amount of code and images

present in the question, grammar and punctuation, and even whether the question was posted on

a weekend. This study further reinforces our findings that the use of tags plays an important role

in finding answers and also notes at the time of its writing the lack of exploration of tag-based

features from previous studies.

Sengupta and Haythornthwaite [18] conducted a study in which they analyzed comments on

Stack Overflow posts in order to gain an understanding of their contribution to user learning. They

found that comments fell into a number of different categories, (improvements, code and/or ex-

planation, limitations, etc.), with each category serving some sort of purpose contributing to both

learning and community-building. Like tags, comments were noted not to have received much

attention as subjects of analysis, and subsequently demonstrated to be a valuable asset in enriching

discussions.

Li et al. [12] performed a study with query reformulation which was similar to that of Nie et. al.

7

in that it made use of crowd knowledge for query reformulation. Their solution focuses on locating

high-quality open-source software, using list and detail pages for software featured on Oschina as

its documents. Although the solution does not use documents from Stack Overflow, it does use the

site’s tags for building a lexical database with which is used to aid in locating terms in documents

that may be related to the user’s query to some degree.

Mingwei Liu et al. [15] propose their own solution for addressing the knowledge gap between

user needs and query construction. Their approach for searching Stack Overflow questions entails

an initial keyword-based query being elaborated upon with multi-faceted categorization from the

candidate questions retrieved by the query with the use of natural language processing and data

mining. The approach is implemented as an interactive tool called MFISSO (Multi-Faceted and

Interactive Searching of Stack Overflow) which facilitates iterative refinement of search results

until suitable questions are found. Their approach uses their own defined facets of Stack Overflow

questions, which includes, among other things, topics but not tags.

Jiakun Liu et al. [13] carried out a study in which they sought to characterize developer search

activities on Stack Overflow. Their analysis made use of data from real-world search logs, which

few contemporary query reformulation solutions had at the time. Some of their findings included

immediate reformulation of an immediately preceding query as the most common search activity,

that the majority of Stack Overflow reformulations adhered to known general reformulation strate-

gies, and that a small but noticeable portion of search sessions searched only for code snippets

without specifying a programming language or other key element.

8

Chapter 3

APPROACH

3.1 Overview of the Approach

Figure 3.1: An Overview of the Framework

Our query expansion solution is divided into four basic phases, illustrated in Figure 1. First,

initial queries are constructed from Stack Overflow question titles and their initial tags. Next, LDA

topics containing additional tags are generated from question bodies using the Gensim library

for Python; these topics are then assigned to the queries that are determined to fit them the best.

In addition, answer documents are generated (also from the Stack Overflow dataset), which can

potentially be matched to queries. Finally, the queries are used to retrieve matching answers,

and the compatibility of the queries with each of their found answers is measured by their cosine

similarities. The rest of this section elaborates on each step in greater detail.

3.2 Query Construction

In order to prepare the queries for further analysis, the raw questions and tags retrieved from

the Stack Overflow dataset need to be preprocessed. Preprocessing entails normalizing text data

such that non-alphabetic characters and other unwanted elements are not present and all of the

data follows a consistent format. Our standard preprocessing algorithm for questions involves

lowercasing every word, removing punctuation, isolating distinct words from one another with

NLTK’s word tokenizer, stemming words to basic forms with NLTK’s Snowball stemmer, and

removing stop words (extremely common words that carry insufficient meaning or value to be

worth consideration). Question titles and bodies are retrieved separately from each other and used

for different purposes; here, the titles and their initial tags will form the initial queries to use for

retrieval. The titles are able to be preprocessed with the standard algorithm, but their tags need a

special version due to how they are stored in the Stack Overflow dataset. Each of these tagsets is

stored as a single large string, with tags being separated by vertical bars, e.g. ”python — matplotlib

— label — legend”. Since the tags themselves are already lowercased, each tagset string simply

needs to be broken apart into individual tokens at the vertical bars, with the tags themselves being

stemmed afterwards.

10

3.3 Tag Generation

3.3.1 Latent Dirichlet Allocation

Adding extra tags to queries helps make them less vague and provides the search engine with

more clues about what kind of documents to search for. However, manually choosing extra tags

in sufficient quantities to add to a query is highly time-consuming. To make matters worse, these

manually decided tags can vary widely based on what different individuals feel is best, which can

lead to inconsistencies in tagging logic [5]. To address this issue, we opt to use LDA to guide and

partially automate the process. The question bodies contain enough information that we can gather

which ones fall under the same or similar topics as well as what those topics might be. In addition,

LDA is also known to perform well for a variety of tasks, such as classification [3] and discovering

trends [20].

When LDA generates topics for a document, each topic z for the document d is described based

on the probabilities of certain terms occurring in the document, given by the formula

P (ti|d) =
Z∑

j=1

P (ti|zi = j)P (zi = j|d)

where P(ti|d) is the probability of the ith term for the document and zi is a latent topic for that

document. P(ti|zi = j) is the probability of the ith term of the latent topic occurring within another

topic j, while P(zi = j|d) is the probability of a term shared by the other topic and the document

being selected for the latent topic [5]. Every document receives latent topics, with each one having

some percentage likelihood of contributing to the overall document. In this context, the documents

receiving LDA topics are the initial queries, which will be expanded so that they include both the

initial tags of the question titles taken directly from the Stack Overflow dataset and extra tags from

discovered topics.

11

3.3.2 Topic Generation

Since the question bodies will be used for generating topics, special measures must be taken when

preprocessing them. One such measure includes the removal of all program code and associated

code and formatting tags from the bodies. We opt to remove program code in preprocessing due

mainly to the inherently idiosyncratic nature of variable names and naming conventions making

them highly unlikely to constitute recurring and noteworthy items of discussion. In addition, a

substantial amount of Python code snippets from Stack Overflow have been found to suffer from

style violations, making them poorly suited for use in topic generation [6]. To preserve neutrality

in our study and protect the integrity of the results, program code is removed from question bodies

for all languages.

The other measure that has to be taken is a broader definition of stop words, i.e. any words like

”code”, ”program”, ”bug”, etc. which occur frequently enough to carry little meaning on their own

in the context of programming, in addition to the typical stop words like ”my”, ”it”, ”the”, etc. used

merely for purposes of grammatical correctness. Our solution opts to treat the 2% most frequently

occurring words in the question bodies as stop words; a higher percentage of frequently occurring

words being removed is more likely to result in potentially useful words for topic identification

being lost. Once the question bodies have finished preprocessing, they are ready to be used for

generating LDA topics. Each topic consists of 20 tags (terms) along with their probabilities of

appearing together expressed as decimal values between 0 and 1. Furthermore, to make query

tagging, answer retrieval, and cosine similarity calculation easier later, the terms and values are

also isolated from one another.

3.3.3 Query Tagging

Queries to use for answer retrieval are selected at random from the preprocessed question titles

available. Each chosen title is then combined with its respective tagset to form an initial query

that will be expanded later. Next, each query is manually assigned a topic containing the extra

tags it will be expanded with. When possible, topics were assigned to queries that shared at least

12

one word with them, with the understanding that the query sharing a tag with a topic indicates that

the topic’s other tags are also usually relevant or searched for alongside the shared tag. In cases

where the query shares no tags with any topics, it is instead assigned a topic containing tags that

are thought to be similar in meaning and/or appearance.

3.4 Document Construction

Like the questions and their tags, the answers are also taken from the Stack Overflow dataset. To

ensure better compatibility with the queries used to retrieve them, they are preprocessed with the

exact same methods used for the question bodies; like the bodies, the answers sometimes contain

code snippets and related formatting artifacts that will interfere with accurate retrieval and thus

need to be removed. The unaltered answers are also written to text documents identified by their

ID numbers so that they can be quickly referred back to when analyzing the queries’ retrieval

results.

3.5 Document Retrieval

Within a corpus of documents, each distinct word has term frequencies and a document frequency.

The document frequency for a term is simply the number of documents it appears in, while its

term frequencies are how many times it appears in each document where it is present. Together,

they form tf-idf weights for each term in a document, indicating how important each term is in the

context of that document. A term’s tf-idf weight is simply equal to its term frequency multiplied

by its inverse document frequency. The latter is itself derived from the document frequency using

the formula

idf = log2(x/df)

where df is the document frequency, idf is the inverse document frequency, and x is the total

number of answer documents present. Once a document has been weighted, its vector length can

be calculated. The vector length of a document is equal to the square root of the sum of the squares

13

of all of its tf-idf weights. When calculating cosine similarity values, tf-idf weights and vector

lengths must be calculated for both the query and the answer.

Cosine similarity is a commonly used measure of how similar a pair of documents are to each

other. It represents each document as being part of the same vector space, with document vectors

that are closer to each other in the space (based on the cosine of the angle between them) being

more similar. We opt to use this measure as our main metric for document relevance because

queries tend to retrieve many documents and directly comparing every document to its query is a

highly time-consuming and error-prone process. Cosine similarity values are calculated for every

pair consisting of a query and one of the answer documents it retrieves. This also requires tf-idf

weights and vector lengths for both the query and answer to be found.

When answers are retrieved for a query, any answer that shares at least one term with the query

is considered a match, however minimal the resemblance may be. While these loose requirements

may sound problematic in theory, they are acceptable in practice because the most relevant answers

will share many more terms with the query than just one, and search engine users will realistically

stop considering documents returned past a certain quantity threshold as they gradually decrease in

relevance. For this reason, when determining how cosine similarity values for each query-answer

pair have changed in quality as more extra terms are added to the query, we only consider at most

the top 50 documents in the likely event that more than 50 documents are retrieved.

With tf-idf weights and vector lengths in hand, the inner product of the query and the document

can be found. This is equal to the sum of the squares of the weights of every term they share; terms

present in either the query or the document but not both have weights of zero. Finally, the cosine

similarity value is equal to the inner product divided by the product of the query and document’s

vector lengths. The closer a cosine similarity value is to 1, the better the query and document

match.

14

Chapter 4

EMPIRICAL STUDY

To evaluate our proposed technique, we performed an empirical study considering the following

research questions:

• RQ1: Is our proposed technique effective in identifying relevant answers for Stack Overflow
queries?

• RQ2: To what extent does our proposed technique improve the performance of Stack Over-
flow queries as measure by precision and recall?

4.1 The Dataset

The Stack Overflow dataset is publicly accessible through Google Cloud using Google’s BigQuery

API and includes detailed tables of Stack Overflow question and answer posts. Often included in

the tags for question posts is the programming language and/or related tools for which the ques-

tion is intended. Since programming languages are not always designed with the same purposes in

mind, we felt it necessary when preparing our experiment to organize the questions by the program-

ming languages they are intended for. We performed the experiment on four languages: Python,

Java, C++, and JavaScript, which are among the most commonly used and therefore provide many

questions to use.

4.2 Variables and Measures

4.2.1 Independent Variables

The independent variables for this experiment are query length, programming language, and num-

ber of tags added. In addition to the four languages mentioned above, queries were also organized

by preprocessed length of question titles without any tags at all, even their initial ones. Queries

comprised of titles eight words or longer after preprocessing were considered long, while all others

were considered short. In total, the experiment was performed on eight different sets of queries,

with each query set consisting of either long or short queries for each language. Each experiment

iteration increases the number of extra tags added to each query from its assigned topic, starting

with no extra tags and incrementing by five every iteration until twenty tags have been added.

4.2.2 Dependent Variable and Measures

The dependent variables for this experiment are precision and recall. Precision is typically defined

as a ratio of retrieved documents that are relevant to all documents that are retrieved, while recall

is typically defined as a ratio of number of documents retrieved to total number of documents in

the corpus. When discussing our results, we opt to use modified definitions of these two due to

the probabilistic rather than deterministic nature of the problem, as well as the lack of true/false

labeling. For precision, we opt to select the top 50 most relevant documents by cosine similarity

value that are retrieved by a query and calculate the average of their values to determine the overall

precision rating for the query. This is because our definition of what constitutes a ”relevant” query

is relatively loose, resulting in queries often retrieving hundreds of documents with only a small

fraction likely to be examined by the typical search engine user. For recall, we opt to simply state

the number of documents retrieved by the query out of all of the documents in the corpus, since

the typical user will think of recall in terms of the raw number of answers retrieved and not the

percentage out of all answers that is retrieved.

16

4.3 Data Collection and Experimental Setup

From the dataset, we retrieved 100,000 question posts each for Python, Java, C++, and JavaScript,

with questions for each language being retrieved based on the presence and/or absence of specific

language tags. Retrieving Python and C++ questions was fairly straightforward, but special care

needed to be taken when retrieving the Java and JavaScript questions. Java and JavaScript are often

conflated with one another, and the latter language is also often referred to as ”js” for short. There-

fore, while the Python and C++ questions only needed to include ”python” or ”c++” respectively

in their tags, Java questions were required to include ”java” but not ”javascript”, and JavaScript

questions could have either ”javascript” or ”js” in their tags. We also retrieved 200,000 answer

documents to use as potential answers to retrieve for queries; this set of answers was used for all

experiment iterations.

The experiment was carried out using a Python program running on a Windows 10 machine

with Python 3.9.5 installed. This program performs a single experiment iteration per execution and

requires three integer command line parameters to be entered. The first parameter indicates which

language the program will be run for (0 for Python, 1 for Java, 2 for C++, or 3 for JavaScript). The

second parameter indicates how many extra tags needed to be added to each query, i.e. 0, 5, 10,

15, or 20 extra tags. The third parameter indicates whether long (0) or short (1) queries will be

used. In addition, because the topics LDA produces when provided data are not always consistent,

a separate program was used to produce files containing topic data in advance. These files are then

read by the main program and used in all iterations to produce more consistent results. The specific

extra tags to add to each query set are also hardcoded into the main program for this reason.

When an experiment iteration is finished executing, for each query a list of every retrieved

query-answer pair along with its cosine similarity value is produced. The results for each query

are sorted in descending order of the latter, with average cosine similarity for that query’s top 50

results appearing at the bottom of its results list. There are eight sets of results in total for the

experiment, all of which can be stably replicated given pre-generated topic data and extra tags to

add chosen in advance.

17

Chapter 5

DATA AND ANALYSIS

RQ1 Analysis: Our first research question investigates whether the proposed technique effective

in identifying relevant answers for Stack Overflow queries or not. Tables 5.1 and 5.2 show average

recall and precision values respectively for each query set given some number of extra tags added.

Long queries are those for which the question titles used to create them are eight words or longer

after preprocessing, while short queries are those for which they are seven words or shorter af-

terwards. For recall, Table 5.1 shows clear evidence of significantly improved retrieval rates with

extra tags added, as every five extra tags for all of the queries in each set results in a consistent

increase of roughly 300-500 documents retrieved per experiment iteration. This is to be expected,

as every extra term broadens the search criteria to provide more reach. For precision, Table 5.2

shows less dramatic increases in precision with each increment of five extra tags; average cosine

similarities initially show increases of about 0.05 to 0.09 from 5 to 10 tags added, then increases

of about 0.03 to 0.04 for later increments. Though the changes in precision are not as impressive,

the most important thing to note from these results is that adding more extra tags always results in

an increase for both precision and recall values, meaning that adding more tags to queries causes

them to retrieve results that are both more numerous and better matches. By the time 20 tags have

been added, all query sets consistently retrieve about 1,500 documents (versus about 100 without

them) and average cosine similarities of about 0.8 (versus about 0.4 to 0.52 without them). Thus,

for the purposes of our research, we can say that our technique is effective in identifying relevant

answers for Stack Overflow queries.

Query Set
Extra Tags Added

5 10 15 20

Python (Long) 343.1 686.2 1096.4 1461.5

Python (Short) 350.1 773.2 1168.2 1444.4

Java (Long) 509.8 945.4 1296.7 1646.2

Java (Short) 522.3 890.2 1279.9 1585.3

C++ (Long) 411.4 795.5 1172.2 1456.4

C++ (Short) 280.6 701.4 1140.3 1577.6

JavaScript (Long) 346.4 688.9 1085.9 1397.9

JavaScript (Short) 342.4 793.6 1123.7 1428.7

Table 5.1: Average quantities of documents retrieved by each query set given some number of
extra tags added to each query.

Query Set
Extra Tags Added

5 10 15 20

Python (Long) 0.633 0.723 0.761 0.795

Python (Short) 0.661 0.735 0.777 0.805

Java (Long) 0.704 0.760 0.787 0.822

Java (Short) 0.714 0.769 0.803 0.832

C++ (Long) 0.653 0.747 0.782 0.807

C++ (Short) 0.639 0.730 0.770 0.792

JavaScript (Long) 0.694 0.751 0.792 0.822

JavaScript (Short) 0.665 0.741 0.779 0.809

Table 5.2: Average cosine similarity of query-answer pairs for each query set given number of
extra tags added to each query.

19

Query Set
Extra Tags Added?

% Improvement
No Yes

Python (Long) 112.4 896.8 698

Python (Short) 116.5 934.0 702

Java (Long) 135.5 1099.5 711

Java (Short) 111.2 1069.4 862

C++ (Long) 107.9 958.9 789

C++ (Short) 88.9 925.0 940

JavaScript (Long) 125.4 897.8 602

JavaScript (Short) 91.3 922.1 910

Table 5.3: Average quantities of documents retrieved by each query set with vs without extra tags
extra tags.

Query Set
Extra Tags Added?

% Improvement
No Yes

Python (Long) 0.524 0.728 39

Python (Short) 0.431 0.745 73

Java (Long) 0.494 0.768 55

Java (Short) 0.471 0.780 65

C++ (Long) 0.395 0.748 90

C++ (Short) 0.420 0.747 89

JavaScript (Long) 0.521 0.765 47

JavaScript (Short) 0.403 0.748 86

Table 5.4: Average cosine similarity of query-answer pairs for each query set with vs without extra
tags.

RQ2 Analysis: Our second research question investigates the extent to which our proposed

technique improves the performance of Stack Overflow queries as measured by precision and re-

call. Tables 5.3 and 5.4 show average recall and precision values respectively for each query set

without any extra tags added versus with extra tags; the latter is the average of all the values

obtained for each experiment iteration as seen in Tables 5.1 and 5.2. For recall, the baseline perfor-

mance observed without the addition of extra tags to queries is incredibly poor, with all query sets

20

returning only roughly 100 documents on average. When extra tags are added, these amounts in-

crease drastically, ranging anywhere between 600% to 950% more documents being returned than

without. For precision, the baseline performance without extra tags is also rather mediocre, with

average cosine similarity values often falling below 0.5, indicating poor matches that are unlikely

to be relevant. With extra tags, these values increase at broadly varying rates from about 40% to

90%, but always exceed 0.7, indicating that the documents retrieved are likely to at least be pass-

able matches with a fair degree of relevance to the user. As before, the results clearly indicate that

the addition of extra tags always causes queries to return both more numerous and more relevant

results. Thus, we can say that our technique offers a significant level of performance improvement

for identifying relevant answers for Stack Overflow queries.

Results by Category: In general, our results indicate that adding extra tags to queries affects

their search performance independently of programming language or length. Although some data

to the contrary exists, it is inconclusive and insufficient for definitively proving bias towards a

particular language or length class.

5.0.1 Programming Language

When viewed in terms of programming languages, all four languages display roughly equal rates

of improvement for recall and precision. For raw recall and precision rates, Python, C++, and

JavaScript continue displaying similar results to one another, but Java achieves higher rates than

all three, with Java queries returning 200 more documents on average and having average cosine

similarity values 0.2 to 0.4 points higher given a nonzero amount of extra tags added.

The higher numbers for Java queries can most likely be attributed to overlap between Java

and JavaScript answers. Due to their similar names, they are often conflated with one another

or otherwise believed to be directly related when in reality neither is the case. Because of this

misconception, it is possible that some number of questions intended to be JavaScript-related were

wrongly tagged as being Java-related, resulting in some answers retrieved by Java queries actually

being for JavaScript. When selecting questions to use as queries for the Java query sets, it was

21

necessary to filter out questions tagged as being for JavaScript in order to ensure more trustworthy

results, i.e. selecting questions with ”java” in their tags, but not ”javascript” or ”js”. However, the

possibility of some Java questions being erroneously tagged as such remains, and may explain the

relatively high recall and precision values obtained for the Java query sets. As such, the higher

values for Java as seen in the tables should not be taken to mean that queries for Java benefit more

from our solution than queries for other languages.

5.0.2 Long vs. Short Query Sets

Performance differences between long and short query sets for the same language are generally

negligible, although one type may outperform the other at different extra tag intervals. For raw

recall rates, the difference is only a few documents at the lowest and usually does not exceed 100

documents at the highest. For raw precision rates, the difference in cosine similarity values is

usually between 0.01 and 0.03 points. However, for both recall and precision rates, unusually high

performance differences between long and short query sets can be observed at specific extra tag

intervals. For recall rates, the two C++ query sets display high performance differences at 5 and

20 tags added, and the two JavaScript query sets display high performance differences at 10 tags

added. For precision rates, the Python and JavaScript query sets display high differences at 0 tags

added, and the C++ query sets display high differences at 5 tags added.

The explanation for these abnormalities in the data lies in the performance of individual queries

within the sets. Due to certain terms being more commonly encountered than others, performance

changes for individual queries moving from one interval of extra tags added to the next may vary

widely depending on the tags that have been added. Thus, performance differences between long

and short query sets may become especially high if the queries in one set mostly grow quickly

in performance and the queries in another set mostly grow slowly in performance. Regardless of

whether the performance differences between query sets of a certain language in the same interval

are large or small, they ultimately do not detract from the consistent upward trends in recall and

precision rates seen as queries receive more extra tags.

22

Chapter 6

DISCUSSION

6.1 Performance for Individual Queries

Of the 80 total queries used in the experiment, 30 queries (37.5% of all queries) failed to retrieve

at least 50 documents prior to receiving extra tags; of those 30, 15 queries (18.75% of all queries)

failed to retrieve any documents. The reasons for certain queries returning zero or extremely few

documents are unknown, but such queries are highly likely to have contributed to the very low

recall and precision rates observed for all query sets with no extra tags added. Conversely, as more

extra tags were added to each query, they would return increasing numbers of documents that had

cosine similarity values of 1.0. Such documents would often be comprised mainly of code with

very little non-code text or simply be very short in length. Even without taking these 1.0 cosine

similarity documents into account, each addition of 5 extra tags to queries would consistently result

in the queries retrieving some number of new documents with relatively high cosine similarity

values which the previous iteration of extra tags failed to retrieve. Thus, regardless of whether

query-document pairs with 1.0 cosine similarity values are to be accounted for, extra tags are

always shown to have positive effects on recall and precision when added to queries.

6.2 Effects of Chosen Topic on Retrieval Results

The nature of the answer documents retrieved by a query appears to be heavily dependent on the

topic it is assigned. This is best observed in queries that fail to retrieve any documents at all when

they are not given any extra tags, such as queries 6 and 7 in Table 6.1. A few pairs of such queries

that were used in the experiment ended up returning identical results when they did receive extra

tags, and continued to retrieve the same documents throughout their usage period. These queries

had been assigned the same topic before the experiment began, as said topic was judged to fit them

both. With these observations in mind, the possibility arises that manually assigned topics may

cause the documents their queries retrieve to deviate from the intent of the queries themselves.

6.3 Limitations of Adding Extra Tags

Query ID Topic ID # Docs Returned Avg. Cos. Sim.

+0 tags +5 tags +0 tags +5 tags

1 47 71 440 0.547 0.711
2 35 32 270 0.423 0.601
3 12 221 668 0.598 0.720
4 58 123 645 0.619 0.733
5 62 232 487 0.631 0.677
6 40 0 216 0 0.627
7 59 0 53 0 0.373
8 13 0 447 0 0.684
9 20 375 694 0.705 0.753

10 3 25 194 0.424 0.647

Table 6.1: Data gathered for long C++ queries with no extra tags added versus with five extra tags
added.

Table 6.1 shows retrieval results for each of the long C++ queries with 0 and 5 extra tags added.

The queries themselves and the extra tags added to them can be found in Tables 6.2 and 6.3. While

extra tags have been observed to be useful for enhancing the recall and precision rates of queries,

there are some scenarios where they may not be necessary and could in fact be a detriment. As

noted in the previous subsection, adding too many extra tags to a query can cause the retrieved

documents to more closely reflect the topic they came from and not the original query. This can

be especially harmful if the query is mistakenly assigned the wrong topic, similarly to how Java

queries can have abnormally high recall and precision rates if they mistakenly include JavaScript

tags in addition to regular Java tags. To mitigate this issue, potential solution could be to enlist a

human expert to review the extra tags assigned to queries and verify that they fit adequately.

24

Table 6.2: Original Long C++ Queries

Query ID Query
1 How to connect to a ZMQ REQ socket to another endpoint, once sending to the original address has timed-out?
2 is there a way to disable message map handlers during runtime, in mfc?
3 Core profile vs version string? Only getting GLSL 1.3/OGL 3.0 in mesa 10.0.1
4 boost::iostreams::copy - sink - ENOSPC (No space left on device) error handling
5 Is emitting a signal from C++ to QML for reading a Q PROPERTY a synchronous event?
6 Best way to store string of known maximum length in file for fast load into vector<string>in C++
7 Overloading operator<<for template class. Impossible to get private members even with friend keyword
8 Grabbing file name from a command line argument in C++ console app
9 I am getting a ’base(const std::ios base)’ is private error in my code. What is wrong with it?
10 Why does GetProcessImageFileName return null instead of the address of the process?

Table 6.3: Experiment Objects and Associated Data.

Query ID Extra Tags
1 portion, discov, challeng, dispatch, capabl
2 str, plus, simpler, ultim, blob
3 illustr, qstring, factor, restart, expens
4 intersect, lack, vec, stage, uniform
5 emit, belong, chanc, sphere, among
6 bracket, sizeof, worri, concret, repli
7 getter, setter, pod, toolchain, crc
8 scroll, cpprefer, impli, grab, highest
9 iostream, deleg, filesystem, deploy, abort
10 act, smallest, dereferenc, proxi, worth

Recall and precision rates for queries that receive no extra tags are also important to consider.

Although some queries used in the experiment returned fewer than 50 documents with no extra

tags added, others were able to return as many as 200 with no extra tags. Although these recall

rates are lower than they would be without extra tags, they can still be acceptable in some cases,

especially when users have limited time budgets and cannot look at every document their query

retrieves.

Additionally, although it was not implemented in our experiment program due to time con-

straints, complexity issues, and a desire to focus on the use of LDA topics for query enhancement,

substituting base tags from queries that don’t appear in any documents for similar ones could help

with enhancing recall and precision rates. This could be accomplished by retrieving questions

from the Stack Overflow dataset that contain such tags and deriving associated tags from them. An

associated tag could then be substituted in for the base tag, and a new search could be performed

with it. It may also be necessary to set some sort of limit on the number of associated tags usable

for base tag substitution if the amount of associated tags available for use is too large. Finally, it

25

would be prudent to determine a threshold for the maximum number of extra tags to add to a query

so that the topic for that query does not influence the retrieval results too heavily. This threshold

could be chosen based on a minimum probability for a term in a topic also appearing in the query.

6.4 Parameter Sensitivity Analysis

For the experiment, 50 topics were created for each of the four programming languages to ensure

a wide pool of topics to choose from when assigning them to queries. Additionally, the topic sizes

were doubled from the normal 10 tags each [2] to 20 tags each to allow for more easily measurable

increments of extra tags to add. Besides these, none of the parameters for creating the LDA model

itself were altered from their defaults, except for the number of passes performed through the

corpus during training, which was increased from the normal 1 pass [2] to 2 passes to improve

the reliability of generated topics without potentially having drastic, unforeseen effects elsewhere.

The effects of higher numbers of passes cannot be reliably tested at this time due to Gensim’s

implementation of LDA models not always producing the same topics with every use.

26

Chapter 7

THREATS TO VALIDITY

As observed in earlier sections of this paper, the main threats to validity are the numbers chosen

for increments of extra tags and amount of topics and the interpolation parameter used for system

tagging. The reason for this is that the results observed may vary depending on the chosen param-

eter values. We are also uncertain how the size of the training datasets would affect the results.

The external validity refers to the generalization of our findings. In order to address this threat, we

selected four different programming languages, Python, Java, C++, and JavaScript. A larger set of

queries and larger dataset would strengthen the results from this perspective. Other threats to the

validity of our solution include topics being sub-optimally generated (i.e. due to not performing

enough passes through the corpus) and queries receiving tags and/or topics that are not necessarily

the best fits for them. Both of these are attributable to human error in some capacity and would

likely be alleviated by the assistance of an expert knowledgeable in a wide variety of programming

languages and their related tools to verify the queries are receiving tags that match their language.

Chapter 8

CONCLUSIONS AND FUTURE WORK

With our research, we have proposed and demonstrated a new approach for query expansion that

utilizes question tags and LDA topics generated from question bodies to enhance the retrieval per-

formance of Stack Overflow queries. To evaluate the effectiveness of our approach, we conducted

an experiment on long and short query sets for the Python, Java, C++, and JavaScript programming

languages in which they were used to retrieve answer documents, adding greater numbers of extra

tags from topics to each query with each experiment iteration. The consistent increases in recall

and precision rates observed for all query sets throughout the experiment indicate that the addition

of extra tags has a significant positive impact on query performance, and that tags should not be

overlooked as a means of enhancement.

One possible goal to pursue next for our research is determining how our solution performs

across multiple different sets of answers, with the same sets of queries being used for each answer

set. Although we could not investigate this ourselves due to time constraints, it would be prudent

to do so in order to verify its practical applications. Other possible future work to pursue includes

investigating ways to simultaneously automate the assignment of topics to queries and reduce the

need to rely on a human expert to do so accurately, determining the best threshold for how many

extra tags should be added to a query, and further experimentation with the various optional param-

eters used by Gensim’s LDA model implementation to determine how they may affect generated

topics for query expansion.

BIBLIOGRAPHY

[1] https://stackoverflow.com/. [Accessed: July 14, 2021].

[2] https://radimrehurek.com/gensim/models/ldamodel.html. [Accessed: September 10, 2021].

[3] ALLAMANIS, M., AND SUTTON, C. Why, when, and what: Analyzing Stack Overflow
questions by topic, type, and code. In Working Conference on Mining Software Repositories
(MSR) (2013), IEEE.

[4] ARORA, P., GANGULY, D., AND JONES, G. J. The good, the bad and their kins: Identifying
questions with negative scores in Stack Overflow. In International Conference on Advances
in Social Networks Analysis and Mining (ASONAM) (2015), IEEE.

[5] AZIZI, M. A tag-based recommender system for regression test case prioritization. In In-
ternational Conference on Software Testing, Verification and Validation Workshops (2021),
IEEE.

[6] BAFATAKIS, N., BOECKER, N., BOON, W., SALAZAR, M. C., KRINKE, J., OZNACAR,
G., AND WHITE, R. Python coding style compliance on Stack Overflow. In International
Conference on Mining Software Repositories (MSR) (2019), IEEE.

[7] BALTADZHIEVA, A., AND CHRUPAŁA, G. Predicting the Quality of Questions on Stack
Overflow. Proceedings of Recent Advances in Natural Language Processing (Sept. 2015).

[8] BHAT, V., GOKHALE, A., JADHAV, R., PUDIPEDDI, J., AND AKOGLU, L. Min(e)d your
tags: Analysis of question response time in Stack Overflow. In International Conference on
Advances in Social Networks Analysis and Mining (ASONAM) (2014), IEEE.

[9] CAO, K., CHEN, C., BALTES, S., TREUDE, C., AND CHEN, X. Automated query re-
formulation for efficient search based on query logs from Stack Overflow. In International
Conference on Software Engineering (2021), IEEE.

[10] CORREA, D., AND SUREKA, A. Fit or unfit : Analysis and prediction of ‘closed questions’
on Stack Overflow. In ACM Conference on Online Social Networks (COSN) (2013), ACM.

[11] DUJIN, M., KUCERA, A., AND BACCHELLI, A. Quality questions need quality code:
Classifying code fragments on Stack Overflow. In Working Conference on Mining Software
Repositories (MSR) (2015), IEEE.

[12] LI, Z., WANG, T., ZHANG, Y., ZHAN, Y., AND YIN, G. Query reformulation by leveraging
crowd wisdom for scenario-based software search. In Asia-Pacific Symposium on Internet-
ware (2016), ACM.

[13] LIU, J., BALTES, S., TREUDE, C., LO, D., ZHANG, Y., AND XIA, X. Characterizing
search activities on Stack Overflow. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE (2021),
ACM.

[14] LIU, J., KIM, S., MURALI, V., CHAUDHURI, S., AND CHANDRA, S. Neural query ex-
pansion for code search. In International Workshop on Machine Learning and Programming
Languages (2019), ACM, pp. 29–37.

[15] LIU, M., PENG, X., JIANG, Q., MARCUS, A., YANG, J., AND ZHAO, W. Searching
Stack Overflow questions with multi-faceted categorization. In Tenth Asia-Pacific Symposium
(2018), ACM.

[16] NASEHI, S. M., SILLITO, J., MAURER, F., AND BURNS, C. What Makes a Good Code
Example? A Study of Programming Q&A in Stack Overflow.

[17] NIE, L., JIANG, H., REN, Z., SUN, Z., AND LI, X. Query Expansion Based on Crowd
Knowledge for Code Search. IEEE Transactions on Services Computing (Sept. 2016).

[18] SENGUPTA, S., AND HAYTHORNTHWAITE, C. Learning with comments: An analysis of
comments and community on Stack Overflow. In Hawaii International Conference on System
Sciences (2020), HICSS.

[19] YANG, D., HUSSAIN, A., AND LOPES, C. V. From query to usable code: An analysis
of Stack Overflow code snippets. In Working Conference on Mining Software Repositories
(MSR) (2016), MSR.

[20] ZOU, J., XU, L., GUO, W., YAN, M., YANG, D., AND ZHANG, X. Which non-functional
requirements do developers focus on? In Working Conference on Mining Software Reposito-
ries (2015), MSR.

30

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Background
	Query Expansion/Reformulation Studies
	Stack Overflow Question Analysis

	Related Work
	Studies with LDA Topic Modeling
	Other Studies

	APPROACH
	Overview of the Approach
	Query Construction
	Tag Generation
	Latent Dirichlet Allocation
	Topic Generation
	Query Tagging

	Document Construction
	Document Retrieval

	EMPIRICAL STUDY
	The Dataset
	Variables and Measures
	Independent Variables
	Dependent Variable and Measures

	Data Collection and Experimental Setup

	DATA AND ANALYSIS
	Programming Language
	Long vs. Short Query Sets

	DISCUSSION
	Performance for Individual Queries
	Effects of Chosen Topic on Retrieval Results
	Limitations of Adding Extra Tags
	Parameter Sensitivity Analysis

	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

