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Abstract

As advanced driver-assistance systems (ADAS) such as smart cruise control and lane keeping

have become common technologies, self-driving above SAE level 3 are being competitively

developed by major automobile manufacturers, autonomous vehicles (AVs) will prevail in

the near future traffic network. In particular, evasive action algorithms with collision detec-

tion by sensors and faster braking response will enable AVs to drive with a shorter gap at

higher speeds which has not been possible with human drivers. Such technologies will be able

to improve current traffic performance as long as raising concerns on safety are addressed.

Therefore, there have been efforts to improve understanding between stakeholders such as

regulatory authorities and developers to draw a consensus about autonomous driving stan-

dard and regulations. Meanwhile, a mixed traffic network with human driving vehicles and

AVs will show transient system behavior based on penetration rate of AVs thereby requiring

different optimal AV settings. We are interested in understanding this system behavior over

transitional period to achieve an optimal traffic performance with safety as a hard constraint.

We investigate the system behavior with agent-based simulation with different penetration

rates by mixing of human-driving and AV vehicle models, identify the key parameters of

ADAS algorithms for traffic flow, and find the optimal parameter set per penetration rate

by using genetic algorithm (GA). Simulation results with optimal parameter values reveal

improvement in average traffic performance measures such as flow (5.6% increase), speed

(4.9% increase), density (15.9% decrease), and waiting time (48.2% decrease). We provide

simulation examples and discuss the implication of the optimal parameter values for both

traffic control authorities and AV developers during the transitional period.
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Chapter 1

Introduction

Major vehicle manufacturers are shifting towards producing autonomous capable electrical

vehicles. There are concerns in how self driving vehicles will effect traffic and how safe

these vehicles really are. The increase in self-driving cars on our roads has resulted in safety

concerns with the possibility of accidents created by them and the possibility of negative

effects on overall traffic performance. It is important to ensure the public’s safety and

provide assurance that self-driving cars will not cause potential danger. It is essential to

be able to take preemptive actions in simulating traffic networks and agents accurately so

that these situations can be investigated before incidents occur. While doing this, we take

into consideration how traffic performance can be improved for different transitional periods.

Previous papers have investigated similar approaches to improving ADAS in a connect vehicle

environment [6]. This study investigated the use of GA to improve the traffic performance for

freeway traffic simulations [6]. We propose a framework for an urban road network that can

implement other vehicle behavior models. In our framework, multiply performance measures

are incorporated and investigated to determine the correlation between them. Included in

this framework is the alteration of the ratio of Intelligent Driver Model (IDM) to Krauss

vehicles which represents the market penetration rate of ADAS vehicles. As the penetration

rate of self-driving capable vehicles increases, the replacement of conventional vehicles by

these vehicles is predicted to result in changes to the traffic system. This transition will be

made gradually by the increased availability of affordable autonomous vehicles on the market.

Therefore, we are interested in developing microscopic agent-based traffic network simulation



models with different traffic mix ratios of conventional and autonomous vehicles. There are

traffic simulation platforms available to create road network models and implement traffic

demand to analyze traffic performance. Some examples of software available is VISSIM,

Simmobility, and Simulation of Urban MObility (SUMO). These traffic simulation software

platforms are capable of creating traffic networks that represent real world networks and are

capable of introducing different vehicle models that represent a variety of vehicle behaviors.

Since we look to develop a framework for analyzing and improving mixed traffic performance,

the software is simply a tool to do so as long as the software is capable of producing such

simulations. We chose SUMO due to its proven scholarly academic use and since it is an

open source software available to the public. SUMO is a traffic simulation platform that can

incorporate millions of agents to investigate various traffic network models [7]. In doing so,

we aim to analyze the efficacy of our proposed mixed traffic scenarios. We propose methods

to improve self driving vehicle behavior performance by developing a framework to alter

behavior model parameters then implement methods of measuring performance. We use the

framework to analyze penetration rates of self-driving vehicle models into a traffic network

of conventional vehicles behavior models. Using the proposed framework, we will be able to

predict how the replacement of conventional vehicles will transform the traffic network over

time. The insight learned will be useful for better decision making in traffic network control

and the development of self-driving vehicles embedded control systems.

The major contributions of this thesis are:

• This paper provides a framework that allows us to alter car following behavior in
a simulated environment to improve traffic performance measures including density,
waiting time, flow, and average speed.

• This framework can be applied to other self-driving vehicle behavior models to provide
a means to verify that the behavior meets safety constraints and limitations while
improving the vehicle models performance within a traffic system.

The rest of the thesis provides sections describing our proposed methodology, results

analysis and discussion, conclusions, and future work.
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Chapter 2

Methodology

Using statistical and computer science methods, we look to deliver a framework to analyze

and improve traffic performance while considering constraints and limitations of self-driving

vehicles. We use SUMO traffic simulation platform to simulate traffic networks since it allows

for different vehicle models to be implemented into traffic networks modeled from physical

roads [7]. Sumo provides different vehicle models for car following and lane changing. The

vehicle behaviors of interest in this study are the car-following behavior models. We use

Krauss as the conventional driver [5], and the IDM [11] as the self-driving vehicle. Python is

used to interact with SUMO to alter input parameters for IDM vehicle types, alter the ratio

of IDM to Krauss models, run simulations, and collect output performance measurements.

With the use of python, SUMO’s XML configuration files can be accessed allowing for

behavioral model parameter modification and performance data collection. In the next

sections we explain SUMO capabilities and how it was used to alter car following models,

generate a road network, and apply traffic demand.

2.1 Vehicle Behavior Modeling

Vehicle behavior modeling allows for realistic vehicle behavior to be implemented into sim-

ulated traffic scenarios to better understand how traffic network changes will effect the

performance of the network. It is important to understand vehicle behavior models since

they determine how simulated vehicles interact with each other within a network. Since



this study involves the analysis of autonomous vehicle behavior for different penetration

rates onto conventional roads, we implement both the Krauss model [5] and the Intelligent

Driver Model [11]. Each of the models have behavioral parameters that can be altered to

change the behavior of the vehicle. In the physical world, AV behavior is determined by

vehicle/hardware limitations, safety regulations, and how the vehicle behavior model is de-

veloped. NIST.SP.1900-301 proposes safety measures based on the design of ADAS vehicles

for environmental factors [3]. We look at how the behavioral models can be altered. Since

it is possible to alter autonomous vehicle behavior within these constraints, it is vital to be

able to understand how parameter changes for IDM vehicles effect the interactions within a

network and how they can be used to improve performance. Through the use of simulation,

we gain a better understanding of vehicle constraints and are provided methods to improve

efficiency of traffic networks. The next sections discusses the car following models, IDM and

Krauss, and gives a brief description of lane changing models provided by SUMO.

2.1.1 Krauss Car-Following Model

The Krauss model [5] was developed based on addressing the assumptions made on general

properties of traffic flow that dictates the individual behavior of drivers within a traffic

network. Two types of vehicle motion are addressed where the first scenario being a free

flow scenario and the other being the behavior exhibited when a vehicle is interacting with

another vehicle [5]. The model is developed with consideration that the main goal is to

not collide when vehicles react with each other, otherwise, the model should reach a desired

maximum speed, being the speed limit of the road [5]. Equation 1 gives the equation used

to determine a safe velocity, vsafe(t), for a following vehicle.

vsafe(t) = vl(t) +
g(t)− gdes(t)

τb + τ
(2.1)

4



Where vl(t) is the velocity of the leading vehicle (m/s), g(t) is the current gap (m), gdes(t) is

the desired minimum gap (m), τb is the time scale (s), and τ is the reaction time for drivers

(s), [5]. Equation 2 is used to calculate the desired velocity, vdes(t).

vdes(t) = min[vmax, v(t) + a(v)∆t, vsafe(t)] (2.2)

Where vdes(t) is the desired velocity of following vehicle (m/s), vmax is the maximum velocity

the vehicle can travel in the road (m/s), v(t) is the current velocity of the following vehicle

(m/s), and a(v) is the maximum acceleration parameter (m/s2), [5]. Equation 3 is used to

ensure that the velocity of the following car does not become negative.

v(t+∆t) = max[0, vdes(t)] (2.3)

Equation 4 determines the position for the following vehicle for the next time step,

x(t+∆t).

x(t+∆t) = x(t) + v∆t (2.4)

Given Equations 1 through 4 there are five input parameters that can alter the vehicle

behavior for the Krauss model as well as a consideration for emergency deceleration for

unexpected conditions that would cause collision [5]. The six input parameters are shown

below in Table 2.1.
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Table 2.1: Krauss Car Following Model Parameters

Attribute Default Range Description

minGap 2.5 ≥ 0 Minimum Gap when standing (m)
accel 2.6 ≥ 0 The acceleration ability of vehicles of this type (inm/s2)
decel 4.5 ≥ 0 The deceleration ability of vehicles of this type (inm/s2)
emergencyDecel 9 ≥ decel The maximum deceleration ability of vehicles of this

type in case of emergency (in m/s2)
sigma 0.5 [0,1] The driver imperfection (0 denotes perfect driving)
tau 1 ≥ 0 The driver’s desired (minimum) time headway. Exact

interpretation varies by model. For the default model
Krauss this is based on the net space between leader
back and follower front

For this study, the default parameters for the Krauss model remain the same. The

Krauss model is used as a conventional driver model, therefore, this model is used with

varying penetration rates of IDM vehicles. The next section will go over the IDM vehicles.

2.1.2 Intelligent Driver Model (IDM)

IDM focuses on single lane car-following behavior [11]. IDM is a car-following model that

represents the behavior of an automated system SAE level 4 and is conservatively designed

to be collision free [4]. The IDM proposes a model that is simple but reproduces collective

dynamics results in a plausible microscopic acceleration and deceleration behavior. The

IDM vehicles are able to replicate realistic self-driving behavior with relatively few intuitive

parameters [4]. The IDM car-following model can be described in the following equation

where Equation 5 describes the v̇α as the acceleration (m/s2) of the IDM vehicle.

v̇α = a(α)

1−( vα

v
(α)
0

)δ

−
(
s∗(vα,∆vα)

sα

)2
 (2.5)

Where a(α) is the maximum acceleration (m/s2), vα is the current velocity of the IDM

vehicle (m/s), v
(α)
0 is the velocity the vehicle would drive at in free traffic (m/s), δ is the

acceleration exponent, s∗(vα,∆vα) is the desired gap (m), and sα is the current gap (m)

[11]. Given this equation, the free flow acceleration, af (vα) can be describe using Equation
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6 shown below.

af (vα) := a(α)

1−( vα

v
(α)
0

)δ
 (2.6)

Given Equation 5, The tendency to brake with decceleration, −bint(sα, vα,∆vα) in (m/s2),

can be described using Equation 7 shown below.

− bint(sα, vα,∆vα) = a(α)

[
1−

(
s∗

sα

)2
]

(2.7)

The desired gap, s∗(v,∆v), is calculated with Equation 8 shown below.

s∗(v,∆v) = s
(α)
0 + s

(α)
1

√
v

v
(α)
0

+ Tαv +
v∆v

2
√
a(α)b(α)

(2.8)

Where s
(α)
0 is the minimum gap (m), s

(α)
1 is the jam distance (m) with a typical value of

0, v is the current vehicle velocity (m/s), Tα is the time headway (s) referred to as ”tau”,

∆v is the velocity difference (m/s) or approach rate, and b(α) is the deceleration (m/s2).

The velocity difference is calculates using ∆v = vα − vα−1, where α dictates the following

IDM vehicle and α − 1 would represent the leading vehicle [11]. Table 2.2 shows the input

parameters for the IDM vehicle model with their defaults, range, and description.

Table 2.2: Intelligent Driver Model (IDM) Car Following Model Parameters

Attribute Default Range Description

minGap 2.5 ≥ 0 Minimum Gap when standing (m)
accel 2.6 ≥ 0 The acceleration ability of vehicles of this type (inm/s2)
decel 4.5 ≥ 0 The deceleration ability of vehicles of this type (inm/s2)
emergencyDecel 9 ≥ decel The maximum deceleration ability of vehicles of this

type in case of emergency (in m/s2)
tau 1 ≥ 0 The driver’s desired (minimum) time headway. Exact

interpretation varies by model. For the default model
Krauss this is based on the net space between leader
back and follower front

delta 4 N/A acceleration exponent

7



2.1.3 Lane-Changing Models

The lane-changing model determines lane choice on multi-lane roads and speed adjustments

related to lane changing. When simulating traffic networks with multi-lane roads there will

be routes that require vehicles to change lanes. Lane changing is a hard determinant when

coming to traffic efficiency and is important in developing an accurate behavior model. This

study focuses on the car-following behavior models Krauss and IDM, for more information

on lane-changing models refer to [1] on the references section of this paper.

2.2 Traffic Network Generation

When creating a traffic simulation, elements that represent a physical road network are

needed which include roads, lanes, traffic lights, and stop signs [7]. These elements come

together to form the road network. It is very time consuming when developing a simulation

scenario based on real world data [7]. In SUMO, the traffic network consists of nodes and

edges that represent roads [7]. Edges are geometric line consisting of a series of line segments

that represent the lanes on the road. Attributes describe these edges with width, speed limit,

and access permissions. Within Sumo, tools are provided that grab open source road network

data from OpenStreetMap [8]. OSM Wizard is a tool provided by SUMO and is a preferred

choice for importing road data [7]. This allows a user to select a region in OpenStreetMap

and import the associate elements within a latitude and longitude environment. In this

study, A portion of Greenville, NC was imported which included East Carolina University

and its surrounding roads. Figure 2.1 shows the network created by the OSM Wizard.
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Figure 2.1: Subsection of Greenville, NC Traffic Network in SUMO

The OSM Wizard generated random traffic for the simulation which will be described

more in the next section.

2.3 Traffic Demand

The demand for the Greenville, NC traffic network can be generated through tools provided

by SUMO [7]. We describe methods used for importing traffic demand and list resources for

validating and calibrating demand of a traffic simulation to match the traffic system being

represented.

2.3.1 Demand Generation

Sumo provides different methods of defining traffic demand through either trips, flows, or

routes [7]. Information that is needed for these elements are departure time, origin, desti-

nation, and transport mode. Transport mode can be defined as either a pedestrian or as

a vehicle. Routes does not require information about origin and destination but instead

9



uses a sequences of edges to define the path taken by the vehicle [7]. There are different

tools provided by SUMO so generate the traffic demand. For our purposes, the demand

was generated when importing the network from OSM Wizard [7]. If demand is selected

from the OSM Wizard tool the demand is created using the randomTrips.py file provided

by SUMO [7]. The trips are created based on the roads imported but are not an accurate

representation of the actual demand of the roads. To further improve this model, traffic data

of the physical traffic flow is desired to generate an accurate demand that represents the real

world traffic demand [2]. Figure 2.2 shows the traffic network that has demand created with

the randomTrips.py program where the colors represent the average speed of vehicles on an

edge.

Figure 2.2: Greenville, NC Traffic Network Average Speed (m/s)

Figure 4 shows congestion at an intersection resulting in the average speed being reduced.

The legend of the map is in m/s and is provide in the SUMO GUI [7]. The next section will

discuss the performance measurements that are used to analyze traffic efficiency.

10



2.4 Performance Measure - Microscopic

The traffic network performance can be quantified through microscopic performance mea-

surements that describe the traffic conditions and efficiency. SUMO produces nine perfor-

mance measurements that include density, sampled seconds, waiting time, occupancy, time

loss, speed, entered, and collisions [7]. Flow is a tenth performance measure calculated by

dividing the entered performance measure sampling time [7]. This study looks at considering

density, waiting time, flow, speed, and collisions as the primary performance measurements.

Density is the amount of vehicles within a given space measured in vehicles per kilometer per

edge or lane, waiting time is the average time vehicles spend idle, flow is the rate at which

vehicle move through the network measured by vehicles per second per edge/lane, speed is

the average velocity of vehicles measured in meters per second, and collisions is when vehicle

come in contact with one another measured as the number of collisions that occurs during

the simulation [7]. Collisions is used as a hard constraint since any collisions within the

simulation is considered a nonviable solution. Figure 2.3 shows the relationship between

density and flow within the traffic model for different penetration rates of IDM vehicles.
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Figure 2.3: Flow and Density for Edges in Network Depicting a Positive Correlation Between
The Two Measurements

Given Figure 2.3, we can see that on free flow roads with lower densities and flows, the

changes are not noticeable. Based on the simulation results, a positive correlation exists

between density and flow. However, there are significant changes in density and flow on high

demand roads. Given the results, we can determine that mixed traffic flow scenarios have

an impact on performance of congested roads and the vehicle behavior should be adjusted

according to penetration rates of IDM vehicles onto the traffic network.

2.5 IDM Behavior Improvement Framework

The framework developed is a methodology to improve the performance of self-driving vehi-

cles while maintaining safe driving environments for drivers. Our methodology uses iterative

traffic simulation and statistical methods to analyze and determine behavioral model param-

eters to improve traffic performance. To transition this framework to real world applications,

modern self-driving behavioral modeling, traffic flow validation, and traffic network valida-

12



tion must be implemented when developing a traffic simulation environment to ensure the

viability of the results. This is discussed further highlighting possible concerns and the

processes that should be used to solve these issues.

2.5.1 Framework Structure

The theoretical methodology of developing the framework comes from the following require-

ments that must be met to ensure an accurate and reliable result. The following requirements

can be used to ensure quality results when implementing the framework.

Feasibility and Limitation Analysis - Method to determine the infeasible regions and

limitations of each behavior model parameter. The purpose of this is to remove any

lower or higher parameter regions that would result in collisions, cause safety concerns,

are physically impractical, and would cause an uncomfortable driving experience for

users. Standards of the industry can be applied as well to guarantee a reliable outcome.

This will help to guarantee a valid model and that requirements are met to provide

realistic behavior modeling.

Individual Parameter Optimization - This phase involves running separate algorithms

designed to improve the performance or fitness of an objective function. In this case,

the objectives are to increase flow and average speed while reducing density and waiting

times for vehicles. Each parameter is individually improved where the relationships

between the performance measures can be investigated.

Performance Measure Standardization - Given the data sets from previous individual

parameter optimization, the data-sets can be used to create a distribution of possible

performance measure values. This distribution can then be used to standardize each

performance measurement where they can be combined. This is crucial since the

performance measurements should be balanced when combined in a fitness function.

Weights can then be used to increase the importance of specific performance measures

13



of interest.

Combined Performance Measure Optimization - Given the feasible parameter regions

and the standardization of performance measures, an optimization method can be ap-

plied to produce a weighted result where multiple performance measures are considered.

The result will be considered a final solution for improved behavioral model parameter

selection.

Behavior Model Validation - Once a final solution is developed, The behavioral model

must be validated to ensure the driving behavior is realistic and comfortable for a

human drive. This process involves determining the extreme conditions that the be-

havioral model may experience as well as the model’s observed behavior at the time

of these occurrences. The transient states between one situation to another are also

of interest to determine that conditional state changes and how the vehicle will react

given abrupt environmental changes.

2.5.2 Framework Implementation

The implementation of the given framework involves applying statistical methods to analyze

performance measures returned from simulation instances. The methods are used within

this framework structure are one at a time (OAT) sensitivity analysis, GA, and z-score

standardization. OAT sensitivity analysis is used to determine parameter impact on per-

formance measures and where safety is compromised. GA was used as the optimization

method to improve the model. This method allows us to alter behavioral model parameters

through crossover and mutation where a fitness function is then implemented to quantify

the performance where lower is better. We apply z-score standardization to each perfor-

mance measure and combining them giving a balanced fitness model for overall performance

analysis. The fitness function was used in GA to give a balanced solution that considers

multiple performance criteria. After a final solution is developed, the model is validated
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by plotting the behavioral model based on the inputs for current and desired velocity. The

given implementation is explained in greater detail in the analysis and discussion section.

2.5.3 Translating Methodology to Commercial Vehicles

Given the framework developed, it is important to discuss the transition necessary for this

framework to be applied in the physical world. Below we discuss the main concerns and so-

lutions for implementing this framework to help developers utilize the framework to improve

their own models.

Creating an Accurate Road Network - Replicating an traffic network accurately into

a simulation environment is important since the the network attributes must match

real world road networks to be able to find viable solutions for improvement. SUMO

provides means to import a traffic network based on OpenStreetMap data. Since this

is an open resource and is updated by the community, there may be discrepancies

and outdated network features. These variations in network features may create issues

and point researchers in the incorrect direction for altering existing roads. Studies

have shown that implementing deep learning methods on aerial and satellite images

for road extraction has outperformed other methods for road data extraction [10].

These methods have proven themselves in developing traffic network simulations with

accuracy of 98.83% [10].

How to Import Manufacturers Driving Models - In typical self-driving vehicles, deep

learning and neural network models are used to train the driving behavior of the vehi-

cles [9]. It is common that data-sets are collected from vehicles where the models are

developed by using hyper-parameters and altering the data-set till a model’s results

meet an expected accuracy. Since this differs from the traditional equation model for

IDM vehicles, we can alter how we use GA’s where hyper-parameters and k-folds are

used to reach a specified accuracy while also improving the performance measures of a
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simulated system. Comma is a company that provides ADAS systems that can be inte-

grated into modern vehicles [9]. Comma provides an open source software for training

a neural network to provide automated driving assistance [9]. Although this is not a

product meant for fully autonomous driving, it does give an example of how behavior

modeling of self-driving vehicles is performed and provides proof that this modeling

is common within the industry. Given these models, it is possible to implement them

into simulation environments. SUMO allows for new car-following and lane changing

models to be imported into the SUMO infrastructure. A manufacturers behavioral

modeling approach can be integrated into SUMO where parameters relating to the

model can be defined similar to the preexisting IDM model. With this approach, we

can take a desired self-driving model and implement them in a simulation environment.

Understanding and Restrictions and Limitations - Restrictions for self-driving vehi-

cles mainly concerns that ADAS equipped vehicles can reliable handle critical driving

situations. NIST.SP.1900-301 [3] gives specifications for self-driving vehicles to as-

sess safety of the vehicle control system. They provide descriptions of environmental

factors, referred to as an Operating Envelope Specification (OES), the vehicles may

encounter and relates them to the Operational Design Domain (ODD) [3]. How the ve-

hicles are able to interact with their environment is an important factor in determining

a driving behavior that assures the safety of passengers and the public. The specifica-

tions propose a NIST Framework for Cyber-Physical Systems (CPS Framework) that

identifies and classifies constraints on system behavior. Other Limitations to consider

for behavioral models are the capabilities of a given vehicle, and the behavior that is

deemed comfortable to passengers. Constraints developed from restrictions and limi-

tations should be integrated into the framework to ensure the solution developed is a

viable behavioral model.

Verifying Traffic Simulation Demand using Measured Data - Traffic demand within
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a simulation should be equivalent to measured data taken from traffic networks of in-

terest. Traffic demand calibration methods can be used to alter and verify that a

simulations demand is correctly depicting the flow of a real world network [2]. Along

with this method of demand validation, there are other approaches that can be taken to

verify that the demand in the simulation matches the physical traffic network. These

methods can be implemented into SUMO traffic simulations to ensure that the de-

mand is being represented correctly so that results of a implementing the framework

are reliable and applicable to real traffic scenarios in the network of interest.
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Chapter 3

Analysis and Discussion

This study investigates the effects of modifying autonomous vehicle car following behavior.

SUMO is used to simulate different penetration rates of autonomous vehicles onto current

network using SUMO’s IDM and Krauss models. Krauss models remain unaltered while IDM

model parameters are changed. The penetration rate describes the amount of IDM vehicles

to the Krauss models vehicles within the network. Sensitivity analysis is used to show the

impact parameters have on performance measures. Regression tree analysis uses data-sets

of simulation results to show relationships between IDM parameters and the performance

parameters. GA is used to find an optimal solution that increase the traffic performance

while maintaining safety. The results for each analysis method are discussed in the following

sections.

3.1 Sensitivity Analysis

One at a Time (OAT) Sensitivity Analysis is applied to the Greenville traffic simulation to

determine the importance of individual car following model parameters and the infeasible

regions that will cause collisions. The analyzed parameters include minGap, accel, decel, tau,

and delta [7]. Emergency deceleration was not considered since it is a conditional parameter

that is only applied when specific conditions are met, therefore it is not important for the

model in the sense it does not directly effect the car following model performance. By doing

this, the aim is to better understand the impact of IDM model parameters and predict how



the parameter changes may impact density, waiting time, flow, speed, and collisions. The

simulation was run for 20 iterations spaced evenly where parameter values were changed

from 10% to 200% of the default parameter set by SUMO. This procedure was repeated

for ten penetration rates of 10% increments between 0% and 100% where the penetration is

given as a percentage of IDM to Krauss vehicles. The effects from the penetration rate can

be seen in the figures below were we show the penetration rates for 10%(0.1), 50%(0.5), and

100%(1.0) to illustrate the differences in the mixed traffic flow networks. Shown on the next

page in Figure 3.1 are the results for sensitivity analysis of traffic performance of flow and

density with given penetration rates of 10%, 50%, and 100% of IDM vehicles.
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(a) Density 10% IDM (b) Flow 10% IDM

(c) Density 50% IDM (d) Flow 50% IDM

(e) Density 100% IDM (f) Flow 100% IDM

Figure 3.1: Sensitivity Analysis of Traffic Performance Measures for Flow and Density at
Varying Penetration Rates of IDM Vehicles Showing Increased Impact of Parameter Changes
at Higher Penetration Rates
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The results from Figure 3.1 show us that there is variance in flow and density when the

IDM parameters are changes. From a, c, and e of Figure 3.1 we can see density changes

depending on the parameter being altered. We see that minimum gap and acceleration had

the most significant changes in density. The deceleration had moderate effects to the density

and finally, tau and delta have less impact on density. From b, d, and f of Figure 3.1 we can

see a steadier change of flow in correlation to changes in parameter values. As the penetration

rate increases, the parameters had a negative effect on the flow of the system. For both flow

and density it can be seen that as the penetration rate of IDM vehicles increase, we see

more of an impact when parameters are altered. It is also noted that each parameter impact

changes depending on the penetration rate and that the parameter changes do not guarantee

that the optimal parameter set created from GA at one penetration rate will give the same

optimal parameters at other penetration rates. In the next section the method of regression

tree analysis is performed on a data set created from the GA ran on sumo simulations of

varying penetrations of IDM vehicles.

3.2 Regression Tree Analysis

We use Classification and Regression Tree (CART) tool in Minitab to analyze simulation

results from random parameter values for different penetration rates (25%, 50%, 75%, and

100%) to identify boundary limits of several parameters. The benefits of parameter bound-

aries are two-fold: (i) ensuring hard-constraint such as zero collision by setting a threshold

for a related parameter and (ii) reducing parameter regions to improve GA efficiency. A

CART analysis involves organizing data into similar groups based on correlations between

inputs and outputs. Tree-based machine learning assists in constructing a tree diagram to

help better visualize the grouping. Multiple trees are produced with different number of

nodes, but only the tree diagram with the maximum R-squared value is considered since this

tree breaks down the groups completely. Specific inputs have more significant effects on the

classification of groups, thus they have more influence on the resulting output. The relative
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importance of the input parameters helps in identifying which parameters and at what value

lead to a distinct outcome. First, we consider all the parameters’ relative importance on

collision performance and traffic performance. Figure 3.2 displays the relative importance

graphs created for the collision performance.

(a) 25% Penetration Rate (b) 50% Penetration Rate

(c) 75% Penetration Rate (d) 100% Penetration Rate

Figure 3.2: Relative Parameter Importance for Collision Performance Measure

The parameter tau is found to be the most important decision basis when classifying the

groups by collisions, while the accel parameter is the most important when classifying by

the chosen performance-related outputs. Hence, decision trees are generated using tau and

accel as the primary determiners. An example of the decision tree for the flow output at

the 75% penetration rate is displayed in Figure 3.3. When looking at the terminal nodes,

or groups, terminal node 7 has the highest average flow of vehicles. As a result, a solution

will only be considered defensible if the accel value at 75% penetration rate is greater than

5.135 m/s2. A summary of the boundaries for all the decision trees is compiled in Table

3.1. These findings refine the viable parameter region and narrow the search in the GA,
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thereby allowing the GA to run more efficiently. Additionally, the boundaries validate the

correctness of the GA and the accuracy of the results.

Figure 3.3: Decision Tree for Flow Output at 75% Penetration Rate

Table 3.1: Optimal Decision Tree Boundaries for Each Measured Output

Collisions Density Waiting Time Flow Speed

Penetration
Rate tau accel accel accel accel

25% > 0.795 > 2.595 > 1.785 > 5.675 > 4.865
50% > 0.785 > 2.455 > 2.525 > 3.725 > 4.100
75% > 0.765 > 4.565 > 3.625 > 5.135 > 5.135
100% > 0.865 > 5.785 > 2.905 > 4.585 > 5.005

3.3 Genetic Algorithm Optimization

GA is a technique that alters input variables through mutation and crossover and checks the

results to improve a fitness function that represents the performance of a system. In this

case, desired fitness is determined by the performance measurements representing the whole
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system since the aim is to improve the entire traffic network. GA is used to investigate sev-

eral performance measurements that include density, waiting time, flow, and speed. Density,

waiting time, flow, and speed are related where density in relation to waiting time and flow

in relation to speed have positive correlations. The two groups have negative correlations

to each other. This push and pull between the performance measurements is important to

consider in determining a proper representation of the overall performance of the system.

Furthermore, a hard constraint is set for collisions since any simulation that produces col-

lisions is considered infeasible since the model behavior is creating an unsafe environment.

We use the IDM car following parameters acceleration, deceleration, minimum gap, tau, and

delta to alter the IDM car following model behavior. We do this repeatedly for each of

the performance measurements until GA does not produce a new solution with considerably

improvement for a set amount of iterations. It is important that a fitness function is devel-

oped that includes all the performance measures of interest. With a fitness function that

considers all four performance measures, it allows the implementation of weights to control

what measurements take priority while considering the improvement of all measurements of

interest.

3.3.1 Individual Performance Measurement Fitness Models

This section shows the convergence of GA where the models use fitness functions for individ-

ual performance measurements. The following results shown are for a traffic network with

100% IDM vehicle penetration rate. The convergence graphs for density, waiting time, flow,

and speed are shown in Figure 3.4.
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(a) Density (veh/km) (b) Waiting Time (s)

(c) 1/Speed (1/(m/s)) (d) 1/Flow (1/(veh/s))

Figure 3.4: GA Convergence for Performance Measures

From the graphs above in Figure 3.4, the convergence of the performance measures are

acceptable since they do not exhibit significant changes over thousands of iterations of sim-

ulations. Since GA looks to decrease the fitness function, the inverse of flow and speed are

used to increase these measurements. Next, we look at the elite solutions found throughout

the convergence to determine trends in IDM parameters and the relationships between the

performance measures. Table 3.2 has the IDM parameters and performance measures of

interest for convergence of density.
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Table 3.2: IDM Parameters and Performance Measures for Convergence of Density

IDM Parameter Performance Measure

Iteration minGap accel decel tau delta density waitingTime flow speed

2 2.53 3.66 4.99 1.67 3.07 4.36 113.18 50.06 10.09
6 4.08 5.71 5.34 1.80 5.30 4.12 82.45 51.44 10.46
80 3.68 5.79 10.44 1.28 2.94 4.11 88.07 53.00 10.83
194 2.37 5.79 3.79 1.38 2.94 4.04 81.38 51.36 10.50
210 4.44 5.79 3.79 1.06 4.86 4.03 88.86 52.60 10.89
348 4.49 5.79 4.20 1.06 3.70 3.99 85.87 52.87 10.83

Table 3.2 shows some notable trends with tau, and acceleration. Where tau converges

toward 1(s) and acceleration converges toward 5.79(m/s2). It is also shown that as the

density converges, the flow and speed tend to increase while waiting time decreases. Table

3.3 has the IDM parameters and performance measures for convergence of waiting time.

Table 3.3: IDM Parameters and Performance Measures for Convergence of Waiting Time

IDM Parameter Performance Measure

Iteration minGap accel decel tau delta density waitingTime flow speed

0 2.04 4.60 5.57 1.52 5.41 4.95 121.46 51.69 10.54
5 3.09 4.33 12.81 0.75 2.21 4.57 113.63 52.61 10.87
9 2.73 4.35 5.56 1.70 7.01 4.04 83.38 51.59 10.5
59 1.49 4.67 5.56 1.70 3.63 4.07 78.91 51.06 10.41
70 2.19 5.69 5.68 1.70 3.63 4.04 75.54 51.07 10.46
93 2.19 5.16 5.07 1.70 3.63 4.27 70.29 51.82 10.41
805 1.87 5.16 3.94 1.70 3.76 4.01 67.87 51.135 10.36
1975 1.87 4.84 6.81 1.55 3.76 4.10 66.69 51.32 10.57

Table 3.3 shows similar trends as Table 3.2. Where tau converges toward 1.55(s) and

acceleration converges toward 4.84(m/s2). It is also shown that as the waiting time con-

verges, the density decreases with a few variations where they are lowered with waiting time

improvements. Table 3.4 has the IDM parameters and performance measures of interest for

convergence of speed.
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Table 3.4: IDM Parameters and Performance Measures for Convergence of Speed

IDM Parameter Performance Measure

Iteration minGap accel decel tau delta density waitingTime flow speed

0 3.76 4.68 9.50 0.81 2.94 4.45 137.16 53.05 10.91
18 2.45 5.04 10.07 1.25 7.62 4.38 130.53 53.10 10.94
24 2.21 4.66 10.07 0.88 5.49 4.38 131.88 53.31 11.08
29 2.21 5.01 10.07 0.88 4.66 4.23 113.52 53.52 11.12
38 2.21 4.85 10.07 0.88 4.66 4.38 96.51 53.70 11.14
65 2.21 5.18 10.07 0.88 4.66 4.19 104.49 53.83 11.16
119 2.21 5.75 14.05 0.88 4.66 4.43 127.01 52.95 11.20
135 2.82 5.59 14.05 0.88 5.74 4.30 103.38 53.36 11.21
177 2.82 5.59 12.83 0.88 7.55 4.38 111.94 53.44 11.23
611 1.90 5.59 13.96 0.88 7.55 4.34 118.55 52.95 11.26
1130 2.48 5.59 13.67 0.88 6.30 4.16 86.74 53.63 11.27
1352 2.48 5.59 13.67 0.88 7.84 4.33 90.94 54.14 11.28
2451 1.36 5.66 13.50 0.88 7.38 4.40 110.24 54.67 11.29
3653 1.37 5.76 13.50 0.89 7.38 4.20 94.19 54.43 11.30

Table 3.4 shows similar trends as Table 3.2 and 3.3. Where tau converges toward 0.89(s)

and acceleration converges toward 5.76(m/s2). It is also shown that as the speed converges,

the density decreases and flow increases with a few variations where they are lowered with

speed improvements. Table 3.5 has the IDM parameters and performance measures of in-

terest for convergence of flow.

Table 3.5: IDM Parameters and Performance Measures for Convergence of Flow

IDM Parameter Performance Measure

Iteration minGap accel decel tau delta density waitingTime flow speed

0 4.53 3.08 8.85 1.04 5.36 4.69 200.16 51.05 10.60
2 3.15 4.50 14.01 0.92 4.26 4.34 129.54 53.61 11.01
44 3.08 4.00 9.85 0.92 4.92 4.44 115.81 53.87 10.98
151 1.76 5.66 12.00 0.92 3.78 4.43 112.36 54.07 11.12
663 1.76 5.62 10.82 0.97 3.87 4.39 104.72 54.23 11.09
903 1.92 5.62 8.64 0.97 7.95 4.89 102.93 54.23 11.19
1190 1.92 5.62 8.64 0.97 6.31 4.33 117.67 54.30 11.15
1233 2.03 5.52 10.51 1.00 6.31 4.30 108.20 54.47 11.17
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Table 3.5 shows similar trends as Tables 3.2, 3.3, and 3.4. Where tau converges to-

ward 1(s) and acceleration converges toward 5.52(m/s2). It is also shown that as the flow

converges, the density decreases and speed increases with a few variations where they are

lowered with flow improvements.

3.3.2 Standardization of Performance Measures

After running sensitivity analysis for individual performance measures we combine the data-

sets and create distributions for each performance measure of interest. From this data we

can implement standardization to balance performance measures to determine the overall

performance of a given simulation. The data is plotted below in Figure 3.5 showing the

distribution of the four performance measures of interest.

Figure 3.5: Distribution of Performance Measures

With the given plots, we see that the distributions are roughly normal with some leaning

toward one side or the other. We further illustrate the distributions using whisker plots

to show outliers in the distribution. In Figure 3.6 are the whisker plots for each of the

performance measures.
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Figure 3.6: Whisker Plots of Performance Measures

The whisker plots prove that there are outliers present in each of the performance measure

distributions. Given the outliers, the standardization method is a better fit for balancing

performance measure. We calculate the following statistical metrics to be used to standardize

each measure. Below is Table 3.6 showing the mean, median, minimum, maximum, and

standard deviation.

Table 3.6: Statistical Data From GA Data Sets

Performance Measure Mean Median Minimum Maximum Standard Deviation

density 4.48 4.42 3.87 6.84 0.30
waitingTime 133.46 120.67 66.69 892.08 51.81
flow 51.59 51.94 37.01 55.22 1.92
speed 10.65 10.68 8.74 11.51 0.41

Since there exists maximum and minimum values as outliers for given performance mea-

sures from the data-set, it is not ideal to use a normalization method. Given that the

mean and median for performance measurement data sets are similar, we can say that the

distributions are normal enough to where z-score is an effective method in standardizing

the performance measures. We use the standardization z-score method to calculate values
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to represent the performance of the system for each measurement respectively. The next

section discusses the z-score fitness method and how it is applied.

3.3.3 Multi-Performance Measurement Fitness Model

The most significant differences between the three algorithms is the minimum gap, decelera-

tion, and delta. When density is used as convergence the minimum gap converges to 4.49(m),

deceleration converges to 4.2(m/s2), and delta converges toward 3.7. When flow is used as

convergence the minimum gap converges to 2.03(m), deceleration converges to 10.51(m/s2),

and delta converges toward 6.31. When speed is used as convergence the minimum gap con-

verges to 1.37(m), deceleration converges to 13.5(m/s2), and delta converges toward 7.38.

This differences are significant enough to propose a new method in determining a optimal

solution where density, waiting time, flow, and speed are all considered into the algorithm.

Next we use GA with a combined model including the four performance measurements dis-

cussed above. To standardize the data we use the Z-score for each performance measurement

set created from the previous GAs. Each GA data set is changed into a distribution for the

performance measurement of interest. The z-score equation is given below.

Z − score =
x− µ

σ
(3.1)

Where x is the performance measure for each iteration of the GA, µ is the mean calculated

from the previous GA data set, and σ is the standard deviation for the previous GA data

set. This method allows for each measurement to be considered equally in the combined

fitness function. To combine the performance measures we denote each variable with an

abbreviation relating the variable to the performance measure it represents. The following

equation is developed using the z-score equation to consider all four performance measures.

fitness =

(
xdens − µdens

σdens

+
xwait − µwait

σwait

)
−
(
xflow − µflow

σflow

+
xspeed − µspeed

σspeed

)
(3.2)
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The above equation takes into account each of the performance measures values and

standardizes them so that they are of equal importance in the fitness function. The subscripts

of dens, wait, flow, and speed reflect the density, waiting time, flow, and speed respectively.

Since the flow and speed are variables that are desired to increased, we give their Z-scores a

negative value. Note, that weights can be added to each Z-score of Equation 3.2. We use a

multiplier of 0.25 to each weight since there are four performance measures of interest. This

results in the following shown below in Equation 3.3.

fitness =

(
wdens

xdens − µdens

σdens

+ wwait
xwait − µwait

σwait

)
−
(
wflow

xflow − µflow

σflow

+ wspeed
xspeed − µspeed

σspeed

) (3.3)

wdens = wwait = wflow = wspeed = 0.25 (3.4)

We use w to denote the weight variable of each performance measure with its subscript

representing the parameter it pertains to. For our purposes, we decide to leave the weights as

1 since there has been no evidence that the importance of any specific performance measure

is greater than the others. Given our final fitness function, we implement this in our GA to

find a well rounded solution. The graph showing the convergence for the combined fitness

function is shown below.
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Figure 3.7: Convergence at 2500 Iterations for Combined Fitness Function Including Density,
Waiting Time, Flow, and Speed using Combined Z-scores Equation (Refer to Equation 3.3)

From the graph above in Figure 3.7, the convergence is acceptable since it does not

exhibit significant changes over thousands of iterations of simulation. Next, we look at

the elite solutions found during convergence. Table 3.7 shows the IDM parameters and

performance measurements for the GA that uses the combined Z-score fitness function.
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Table 3.7: IDM Parameters and Performance Measures for Convergence of Combined Model

IDM Parameter Performance Measure

Iteration minGap accel decel tau delta density waitingTime flow speed Fitness

0 2.57 2.14 6.55 1.95 2.33 4.71 159.99 46.15 9.40 0.84
2 2.27 1.96 14.59 1.04 7.54 4.86 200.92 49.56 10.39 0.47
3 4.18 4.57 9.01 1.69 5.20 4.20 84.33 51.99 10.56 -0.22
9 2.96 5.72 13.61 1.02 2.41 4.38 113.12 53.54 10.96 -0.30
36 4.04 5.72 8.13 1.02 5.08 4.22 105.93 53.16 11.04 -0.38
41 2.96 5.72 13.61 1.02 7.98 4.20 90.62 53.59 11.18 -0.49
87 2.96 5.72 3.93 0.86 7.98 4.07 97.04 53.89 11.12 -0.53
222 4.89 5.72 3.93 0.80 6.09 4.00 89.18 53.43 11.09 -0.54
294 4.89 5.72 3.93 0.80 6.17 4.03 88.37 53.87 11.13 -0.57
1938 4.89 5.72 12.57 0.80 7.99 4.13 98.60 54.23 11.28 -0.58
2097 3.87 5.27 12.18 0.80 7.99 4.09 91.18 54.28 11.28 -0.61
2685 3.87 5.27 12.14 0.80 7.99 4.07 87.62 54.37 11.26 -0.62
2862 3.54 5.27 12.14 0.80 7.99 4.00 82.59 53.78 11.26 -0.63

From Table 3.7 we see as the fitness decreases, the density and waiting time decrease

while the flow and speed increase as desired. There is some push and pull between the

performance measures but over all they tend to improve with each elite solution found.

We see similar trends with IDM parameters acceleration and tau. Acceleration converged

toward 5.27 where tau converges toward 0.80. Further investigation into the lower tau limit

is needed since the definition of tau is the headway time where below 1 means the model is

giving a headway time below the step time that the simulation runs at. Next, we look at

the different solutions from the fitness functions to determine which method produces a well

rounded solution and to select a final set of IDM parameters for our model.

3.3.4 Solutions for Fitness Functions

This section shows the final solutions produced through GA utilizing different fitness func-

tions for both individual performance measurements and combining performance measure-

ments. Table 3.8 shows the different fitness types and their final solutions produced from

applying GA to the traffic simulation.
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Table 3.8: IDM Parameters and Performance Measures for Convergence of GA Models

IDM Parameter Performance Measure

Fitness Type minGap accel decel tau delta density waitingTime flow speed

Density 4.49 5.79 4.20 1.06 3.70 3.99 85.87 52.87 10.83
Waiting Time 1.87 4.84 6.81 1.55 3.76 4.10 66.69 51.32 10.57
Flow 2.03 5.52 10.51 1.00 6.31 4.30 108.20 54.47 11.17
Speed 1.37 5.76 13.50 0.89 7.38 4.20 94.19 54.43 11.30
Combined 3.54 5.27 12.14 0.80 7.99 4.00 82.59 53.78 11.26

From Table 3.8 we see the results from the different fitness functions. There are corre-

lations between certain performance measurements. The waiting time and density have a

direct correlation where the waiting time decreases as does the density. It is also seen that

as the flow increases, the speed also increases. The combined fitness shows the second low-

est density, third highest flow, second highest speed, and second lowest waiting time. This

proves that the combined Z-score fitness function successfully weighs the performance mea-

surements equally and results in solution that takes into account each of the measurements.

Next, the combined performance measure GA is applied to penetration rates of IDM for 25%,

50%, 75%, and 100%. An additional limitation is added where tau’s lower limit is set to

0.86 since, given simulation results, this is a threshold for when collisions become most likely.

3.3.5 Results for Varying Penetration Rates of IDM Vehicles

Using the combined performance measure fitness function and inserting a lower limit of tau

determine to be 0.86, we perform GA for four penetration rates. The penetration rates are

25%, 50%, 75%, and 100%. We perform this step to analyze the improvement that can be

made to mixed traffic scenarios of varying ratios and to determine if driving behavioral model

parameters should be altered for different penetration rates of IDM vehicles. Figure 3.8 shows

the convergence of the combined performance measure fitness at the various penetration

rates.
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Figure 3.8: Convergence for Penetration Rates of IDM Vehicles

Given the convergence shown above, we see that as the penetration rate of IDM vehicles

increases, the improvement in performance also increases. We can see that at lower pen-

etration rates the convergence takes longer than the simulations with more IDM vehicles.

Table 3.9 shows the IDM parameters and performance measures for the penetration rates

analyzed.

Table 3.9: IDM Parameters and Performance Measures for Convergence of IDM Penetration
Rates

IDM Parameter Performance Measure

Rate minGap accel decel tau delta density waitingTime flow speed Fitness

25% 1.75 5.31 13.64 1.1 2.6 4.2 90.94 53.06 10.79 -0.34
50% 1.51 5.06 6.984 1.0 6.53 4.09 92.68 52.51 10.91 -0.39
75% 1.53 4.7 5.81 0.92 6.98 4.12 81.47 53.78 11.06 -0.52
100% 4.05 5.58 4.67 0.93 5.84 4.06 76.4 54.02 11.08 -0.58

As the penetration rate increases, the overall performance can be improved. We see that

the density, waiting time, flow, and speed are generally improved as more IDM vehicles are

introduced into the network. There are some changes in IDM behavioral parameters where

35



the most significant changes are with minGap, decel, and delta. The minGap stays around

1.6 m for lower penetration rates and increase to 4.05 m at 100% penetration. The decel

parameter decreases from 13.64 m/s2 to 4.67 m/s2 as the penetration of IDM vehicles in-

creases. Delta is 2.6 at 25% and increases to 6.53 at 50% where it has some variation between

the final two penetration rates. The next section discusses the relationships between perfor-

mance measures where the optimal solutions are shown visually by combining performance

measures with positive correlations.

3.3.6 Correlation of Performance Measures

Plotting the performance measures establishes the possible solutions based on what per-

formance measure are desired to be increased. With the use of weights, the performance

measures can take priority over others when calculating the overall performance of a system.

For our purposes, we combine measures that have the same dimensional impact to be able

to illustrate a simplistic representation of the performance measure correlation. Density and

waiting time are both measurements that are desired to be reduced to show improvement in

a network, on the other hand, flow and speed are combined since the goal for these measures

is to be increased. When combining the performance measures, the z-score method is used

once again to make sure that the combined measurement are represented equally in each

axis. The goals for the performance measures are to decrease density and waiting time and

to increase flow and speed. Figure 3.9 shows the plotted combined data-set created from

GA algorithms.
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Figure 3.9: Correlation of Performance Measures, Density, Waiting Time, Flow, and Speed
for Simulations of Altered IDM Parameters using Z-score to Combine Measures with Aligning
Goals

The above plot shows all performance measures from different simulations of 100% IDM

vehicles. The solutions for given performance measures are shown in the legend. The blue

points are simulations that had no collisions where the transparent red dots are simulations

where collisions occurred. We can see from the plot that depending on the fitness function

used, there is bias toward the performance measure used. When using the combined fitness

function, the overall performance is balanced among the given performances measure. The

performance of the simulation using default IDM model parameters is included to show how

the GA’s improved the performance of the system.
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Chapter 4

Conclusions

The framework proposed applies sensitivity analysis, standardization, and GA to investigate

how much self-driving vehicle behavioral model parameters can improve traffic performance

while taking into consideration safety related constraints. The framework includes feasibil-

ity analysis, performance measure standardization, combined parameter optimization, and

behavioral model validation. This framework was applied to four penetration rates of IDM

vehicles including 25%, 50%, 75%, and 100% IDM Vehicles. Sensitivity analysis reveals that

the penetration rates of IDM vehicles have impact on the traffic performance measures and

that optimal IDM behavior parameter value can improve the traffic performance. As pen-

etration rates of IDM vehicles increase, notable performance improvement is observed. A

CART analysis performed on the constraint of achieving zero collisions, refined the bound-

aries of the feasible region for the IDM behavior parameter tau as the hard constraint for

safety while searching optimal parameter values. The GA was used for convergence of per-

formance measures including density, waiting time, flow, and speed. It was observed that

each model had similar results for specific parameters including tau and acceleration while

other parameter values varied. This shows that we can determine solutions for tau and

acceleration based on the algorithm results. In order to consider several simultaneous per-

formance measures, a fitness function that used z-score was used. Depending on priority,

the weights can be changed to emphasize performance measure importance. The results

from this study have successfully demonstrated that this framework can be implemented to

develop an improved behavioral model for autonomous vehicles while ensuring safety.



Chapter 5

Future Work

This studies focus was on the development of a model-based simulation framework to im-

prove vehicle behavior models. Results are based on road networks and demand generated

through SUMO instead of real traffic data because the fidelity of the simulation software

has already been proven by multiple researchers. Still, we can use real traffic data input if

we want to estimate specific situation or time. Another addition for this framework is to

integrate automotive standards for self-driving vehicles. There are standards given through

government organizations [3] as well as car manufactures who apply their own standards for

self-driving vehicles. Since manufacturers are applying deep learning to develop self-driving

models [9]. It would be beneficial to import these models into simulation environments to

apply the provided framework. It may allow developers, manufacturers, or future traffic net-

work planners to implement their models in a traffic simulation similar a virtual twin to help

improve their models. Implementation for a variety of road networks will definitely improve

the fidelity of this framework. This is important since the vehicles in the physical world will

come across different situations that may not be present in all simulated traffic networks.

To improve the solution, machine learning methods could be implemented so that the model

responds to traffic scenarios differently based on attributes of the road type, speed limits,

congestion, and interactions observed by other vehicles. It is important to consider that

certain vehicle behavior will be better suited for different traffic situations. Given the listed

additions discussed in this section, the self-driving behavior model optimization framework

will provide directions that can be applied to real-world self-driving vehicles.
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