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Abstract 

 

Swipe-gestures are by far the most common way to 

interact with mobile devices such as phones, tablets, and 

even some computers. As touch-screen technology has 

improved, the possibility of obtaining high-quality swipe-

gesture data from touch-screen devices has become more 
and more prevalent. This has led to the exploration of its 

use in further improving authentication systems, and more 

recently, as the basis for soft biometrics prediction. This 

paper discusses the process of using swipe-gesture data for 

prediction of sex and age of individuals using mobile 

devices. The software used to obtain the data is presented, 

the features collected from the swipe data are detailed, and 

the machine learning classifiers are displayed in a way that 

the experiment can be replicated. During this experiment, a 

total of ten well-known classifiers have been used. The 

results of this analysis have further confirmed the 

possibility of predicting sex, obtaining an accuracy rate of 
79% for a single classifier as well as a group average of 

almost 70%. Moreover, in the prediction of age category, 

the results are even more encouraging, obtaining an 

accuracy rate of nearly 80% on average as well as several 

of the classifiers performing well above the average. 

 

1. Introduction 

Traditionally, biometrics has been defined by [1] as the 

science of automatically recognizing people based on 

physical or behavioural characteristics. More recently, 

however, is the emergence of soft biometrics that uses traits 

such as height, weight, sex, and hair color as descriptive 

characteristics, but they cannot be used exclusively to 

identify a unique individual [2]. The fusion of soft-
biometrics and traditional biometrics has been used to 

enhance a system’s reliability as well as the overall 

performance by integrating typical physiological 

biometrics (iris, face, fingerprint) along with behavioural or 

soft biometrics (iris color, sex, height, age) traits of the 

same identity [3]. In such a fusion, soft biometrics are used 

as to complement the hard biometrics performance. 

However, the use of soft biometrics is not exclusive to 

biometrics scenarios. In the past, standard input devices 

such as mouse and keyboard have been used as biometric 

resources to help classify the emotional state of individuals 
based on their interaction [4]. In recent years, similar 

methods have been implemented using mobile devices and 

swipe-gestures as the basis for interaction. For example, the 
use of swipe-gestures on a mobile device in a recent study 

[5] has confirmed the possibility of sex prediction with a 

high rate of accuracy (78%) using data from two different 

directions. Predictions based on soft biometrics may soon 

be able to provide dynamic and enhanced interfaces that 

adapt to different individuals or emotional states [5].  

The first instance of touch-screen technology used for the 

purposes of studying human-computer interaction dates 

back over 50 years to a paper published by [5,6]. In his 

paper, authors of [6] used wires connected to a CRT 

(cathode-ray tube) device that was sensitive to touch, 

simulating a touch-screen. Today, touch-screen 
technologies are everywhere, such as mobile devices, 

tablets, and even some computers that support a touch 

interface. With worldwide adoption of the touch-screen, 

these technologies have been getting continuously better, 

which enables the possibility to use data from touch input 

to predict user information [5]. In the recent past, these 

capabilities have led to more effective and secure means of 

authentication [7-10]. However, few works exist that use 

soft biometrics as a basis for prediction based on swipe-

gestures on a touch-screen.  

This paper aims to assess the possibility of predicting 
both the sex and age of individuals using swipe-gesture data 

from a game played on a mobile device. More specifically, 

we want to evaluate the accuracy of the prediction, as well 

as determining which classification algorithm best suits 

swipe-gesture data for soft biometric prediction. 

2. Related Works 

The use of soft biometrics and related swipe-gesture data 

have been proposed in several studies as a way of further 

enhancing authentication methods on mobile, touch-screen 

devices. One of the earliest studies [3], dating back to 2004, 

used the fusion of soft and hard biometrics to improve 

identity verification. Some years later, another related study 

emerged with the proposition of replacing text-based 

passwords with graphical patterns [7]. During this time 

(2010), touch-screen technologies were beginning to take 
off thanks to increasingly capable devices from Apple, 

Samsung, and other manufacturers. 

With more capable touch-screen technologies, better data 

can be obtained through the soft biometrics of swipe-

gestures. The study [10] was conducted on the soft 

biometrics data collected from users utilizing the Android 

lock pattern. For those unfamiliar with Android, the 
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Android lock pattern consists of a 3 x 3 grid of circles that 

users can use to create unique designs for authentication on 

Android devices. The authors [10] proved that security 

could be enhanced using the soft biometrics data from the 

swipe-gestures during the process of drawing the unlock 
pattern. The use of graphical passwords inputted through 

multi-touch-screens on tablets was also analyzed [11] for 

user authentication, where the authors’ work yielded a 

result in which the equal rate error was 10% using a single 

multi-touch gesture on the tablet screen. Other studies like 

[12, 13] have analyzed the strength of such pattern 

authentication methods to determine the factors and 

complexity that make a particular pattern more secure. 

The study [14] combined touch biometrics along with 

various sensors in a mobile device to verify the ownership. 

The biometric touch gestures observed were Tap, Scroll, 

and Fling. The features captured during each touch-gesture 
were: coordinates on the device screen, touch duration, as 

well as touch pressure across the use of three different 

applications. One hundred users interacted with the 

applications (Message, Album, and Twitter) in a static test. 

With ten interactions, the model demonstrated 80% 

accuracy for identifying a non-owner, whereas with six 

interactions, the model was nearly 100% accurate for the 

owner of the smartphone. 

Even now, the use of touch-screen soft biometrics is still 

being used to identify users on mobile devices more 

securely. In [15], the authors proposed a method for 
enhancing traditional authentication systems through the 

incorporation of soft biometric information as a second 

level of user authentication. In this study, users draw each 

digit of a password rather than typing it in as usual 

authentication systems often use. The authors then analyzed 

the handwritten password, determining the discriminative 

power of each handwritten digit, and how the length of the 

passcode affected its robustness. The results of the study 

found that the handwriting method produced equal error 

rates of approximately 4.0% when an attacker knows the 

passcode. When compared to traditional methods of 

password authentication, the attacker would have a nearly 
100% success rate when knowing the password under the 

same scenario (password obtained by looking over the 

shoulder of the user). 

Up to this point, soft biometrics has nearly only been 

used to complement mobile authentication for more secure 

interaction with mobile devices. However, in [5] and [16-

19] the authors used soft biometrics, not as a means for 

enhancing user authentication, but rather, as a way to 

predict specific characteristics of the user. In [16], the 

authors investigate sex prediction from iris images using a 

combination of geometric and texture features. The study 
yielded accuracies of up to 90% using the BioSecure 

Database for sex prediction. [17] used mouse biometrics for 

the classification of sex, incorporating kinematic and 

spatial analyses of 256 mouse movements performed by 

each user. The study yielded encouraging results that were 

further validated through binary logistic regressions. 

[5] is more aligned to the purpose of this paper than 

previous studies on security and user authentication. In [5], 

swipe data were collected from 116 participants as they 
swiped through a set of jokes on a mobile device. The swipe 

data contained features such as total length, total time, 

width, height, area, as well as average thickness and 

pressure for each swipe. They used averages from this data 

as input for the selected machine learning classifiers 

(Decision Tree, Naïve Bayes, Support Vector-Machines, 

and Logistic Regression) to predict the sex of participants. 

According to [5] the results of the study yielded an 

encouraging 78% accuracy rate for the prediction of a 

user’s sex. Also, in [18], the authors were able to obtain 

encouraging results for the prediction of age, sex, and 

operating hand through the use of keystroke extraction on a 
mobile device. Although this study does incorporate age in 

their prediction scheme, timing-based keystroke features 

were used rather than swipe-gestures. Moreover, in a very 

recent study, even greater performance is achieved for sex 

prediction on a mobile device using swipe-gestures [19].  

As far as we are aware, [5] and [19] are the only previous 

works that have used swipe-gesture data as a basis for the 

prediction of sex, and there exist no other works that use 

swipe data (collected from a mobile game) to predict both 

the sex and age group of a user. 

3. Methodology 

This section describes our experimental 

methodology as well as the steps taken from the development 

of the mobile game to the swipe-gesture data acquisition and 

eventual sex and categorical age prediction. It will elaborate 

on how the data were collected, which features from the data 

were utilized, as well as how these features were selected and 

used with machine learning algorithms to obtain the 

prediction for a user’s sex and categorical age. 

3.1. Data Collection 

The swipe-gesture data used in this experiment 

were collected manually. Rather than using an available 

dataset, the data were collected by asking approximately 48 

participants to play the mobile game. Each participant was 

required to give their first name, age category (above or 

below 40), and their sex (male or female). In total, there were 

27 males and 21 females with 18 participants being over the 

age of 40, and the rest below. While the participants played 

the game on a touch screen device, their swipe-gestures were 

being captured. The instrument used was an iPad 2 IOS tablet 

with a 9.70-inch touch display and a resolution of 1024 x 768 

pixels (132 pixels per inch). No screen protectors or external 

casing was on the device during the participants’ interaction 

during the study. Participants were instructed to hold the 
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device in landscape orientation with their non-dominant hand 

while using the index finger on their dominant hand to 

perform the swipe- gestures necessary to play the game (see 

Figure 1). 

  
 

Figure 1: Mobile game used for swipe-gesture acquisition 
 

Each participant played the game for approximately 

five minutes, continually restarting the game session until the 

time limit expired. The time limit of five minutes was 

determined to be best suitable for the manual collection 

process. Five minutes allows sufficient swipe-gesture data to 

be collected while also not exhausting a user’s interest. The 

swipe-gestures of each participant were captured using a 

mobile game developed specifically for this study’s purpose. 

The IOS game automatically captured the swipes of each 

participant as well as storing their personal information (age 

group, sex, name) with their swipe data locally on the iPad 

until it was uploaded to the server. The game itself consisted 

of a series of obstacles where the user would have to swipe 

up or down to avoid a collision. If the user’s character 

collided with a barrier, the game would restart. Each 

participant averaged nearly 134 swipe-gestures during the 

span of five minutes with the game. 

The swipe-gesture data collected consisted of angle 

from start to end, average acceleration, ending acceleration 

(vx, vy, and vz), staring acceleration (x, y, and vz, z), total 

length, total time, as well as width and maximum speed for 

each swipe. 

3.2. Machine Learning Classifiers 

The raw swipe data collected were used as inputs 

for a set of machine learning classifiers [20] in order to 

predict sex as well as age group. The data were initially tested 

using a set of 10 different classifiers in order to test the 

possibility of prediction. This set of classifiers consisted of 

the following: Nearest Neighbors [21], Linear and Radial 

Support-Vector Machines [22], Gaussian Process [23], 

Decision Tree and its ensemble Random Forest [24,25], 

Neural Network [26], Adaptive Boosting [27], as well as 

Naïve Bayes [28] and Quadratic Discriminant Analysis [29]. 

The collection of ten classifiers, as well as the parameters 

used, can be seen in Table 1. From the initial set of ten, the 

classifiers were narrowed down to three that best predicted a 

user’s sex and age group based on the data collected, as well 

as those that produced poor predictions. 

 
Table 1. Machine learning classifiers and parameters used. 

Nearest 

Neighborhood 

n_neighbors=5, weights=’uniform’, 

algorithm=’auto’, leaf_size=30, p=2, 

metric=’minkowski’, metric_params=None, 

n_jobs=None, **kwargs 

Linear SVM C=0.025, kernel=’linear’, degree=3, 

gamma=’auto_deprecated’, oef0=0.0, 

shrinking=True, probability=False, tol=0.001, 

cache_size=200, class_weight=None, 

verbose=False, max_iter=-1, 

decision_function_shape=’ovr’, 

random_state=None 

RBF SVM C=1, kernel=’rbf’, degree=3, gamma=2, 

oef0=0.0, shrinking=True, probability=False, 

tol=0.001, cache_size=200, class_weight=None, 

verbose=False, max_iter=-1, 

decision_function_shape=’ovr’, 

random_state=None 

Gaussian 

Process 

kernel=1.0*RBF(1.0), 

optimizer=’fmin_l_bfgs_b, 

n_restarts_optimizer=0, 

max_iter_predict=100, warm_start=False, 

copy_X_train=True, random_state=None, 

multiclass=’one_vs_rest’, n_jobs=None 

Decision Tree criterion=’gini’, splitter=’best’, max_depth=5, 

min_samples_split=2, min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, 

max_features=None, random_state=None, 

max_leaf_nodes=None, 

min_impurity_decrease=0.0, 

min_impurtity_split=None, 

class_weight=None, presort=False 

Random Forest n_estimators=10, criterion=’gini’, 

max_depth=5, min_samples_split=2, 

min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, 

max_features=1, random_state=None, 

max_leaf_nodes=None, 

min_impurity_decrease=0.0 

min_impurity_split=None, 

class_weight=None, presort=False, 

bootstrap=True, oob_score=False, 

n_jobs=None, verbose=0, warm_start=False 

Neural Network hidden_layer_sizes=(100, ), 

activation=’relu’,solver=’adam’, alpha=1, 

batch_size=’auto’, learning_rate=’constant’, 

learning_rate_init=0.001, power_t=0.5, 

max_iter=200, shuffle=True, 

random_state=None, tol=0.0001, 

verbose=False, momentum=0.9, 

nesterovs_momentum=True, 

early_stopping=False, 

validation_fraction=0.1, warm_start=False, 
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beta_1=0.9, beta_2=0.999, epsilon=1e-08, 

n_iter_no_change=10 

Adaptive 

Boosting 

base_estimator=None, n_estimators=50, 

learning_rate=1.0, algoritm=’SAMME.R’, 

random_state=None 

Naïve Bayes priors=None, var_smoothing=1e-09 

Quadratic 

Discriminant 

Analysis 

priors=None, reg_param=0.0, 

store_covariance=False, tol=0.0001 

 

The classifiers used in this study are well-known 

machine learning algorithms that have been used 

successfully in various other machine learning studies [30-

33]. All ten of the used classifiers were from the Scikit-learn 

repository [34] for python. Three different machine learning 

classifiers were selected for being the best candidates for 

predicting the sex and age group of a user. These classifiers 

range from Decision Trees (Random Forest) and ensemble 

boosting classifiers (AdaBoost) to probabilistic models 

(Gaussian Process). The next 2 sections (3.3 and 3.4) 

describe the three best classifiers, along with two classifiers 

that did not perform well when compared to other studies 

using the same classifiers. 

3.3. Best Performing Classifiers 

Decision Tree (Random Forest): Decision tree 

learning is undoubtedly one of the most popular algorithms 

for automatic machine learning. A Random Forest is not a 

Decision Tree, but rather, a collection of Decision Trees. A 

Random Forest is a meta estimator that fits several Decision 

Tree classifiers on various samples of the used dataset. 

Random Forests also use averaging to improve accuracy for 

a prediction as well as limit over-fitting. In short, it uses 

multiple Decision Trees to generate results that are typically 

more accurate than a simple Decision Tree algorithm is on its 

own [24].  

Adaptive Boost (AdaBoost): AdaBoost is an 

ensemble classifier that combines several smaller 

classification algorithms to create a classifier that performs 

well and produces accurate predictions. The basic idea 

behind AdaBoost was presented by Freud and Schapire in 

1997 [27]. Without delving too deep into how this classifier 

works, it combines several weak classifiers and uses the 

assignment of weights to produce a result that is an average 

of the weighted classifiers. This boosting method for 

classification has successfully been used for the prediction of 

subcellular localization in a previous study.  

Gaussian Process: The Gaussian Process classifier 

is an algorithm for probabilistic classification in which 

predictions take the form of class probabilities. The specific 

classifier used is from Scikit-learn, but it is based on 

algorithms from [23] described by Rasmussen and Williams. 

This classifier is said to use “lazy learning” (A generalization 

of training data is delayed until a query is made.) and 

generates a measure of similarity between points to predict a 

specified value. 

3.4. Poor Performing Classifiers 

Although the above classifiers performed quite 

well, two classifiers did not produce expected results. Of the 

ten total classifiers used, three performed consistently well 

across both predictions for sex and age group (discussed in 

3.2.1), two performed mediocrely, and the rest fell 

somewhere in between. The Naïve Bayes classifier, as well 

as the Quadratic Discriminant analysis (QDA), produced 

results that were below the average when compared to the 

eight other classifiers in both sex and age category 

predictions.   

Naïve Bayes: The Naïve Bayes classifier [35,28] is 

based on a probabilistic Bayes’ rule and is best suited for high 

dimensional inputs. The classifier assumes that the effect of 

a particular feature is independent of the effects of other 

predictors. This assumption is seemingly unrealistic, but it 

has performed quite well for additional studies in a range of 

uses. 

Some possible reasons the classifier did not perform 

as well as expected could include limited dimensionality in 

the input data or unrealistic and simplified assumptions made 

by the algorithm.  

Quadratic Discriminant Analysis: the Quadratic 

Discriminant Analysis (QDA) classifier uses a Quadratic 

Decision Boundary (QDB) that is generated by fitting class 

conditional densities to data and utilizing Bayes’ rule. This 

classifier also has performed well in other predictive studies, 

but its results from this study were mediocre at best.  

It is possible that this classifier performed similarly poor 

because of its reliance on Bayes’ rule, a key component in 
the Naïve Bayes classifier that also produced below-

average results. 

3.5. Evaluation of Predictive Models 

              The machine learning models were created for all 

ten of the classifiers and the two categories of age group 

and sex. 75% of the acquired data were used as a training 

set, and the remaining 25% was used to test the predictive 

capability of the model. The evaluation of each model was 

carried out through a score value that each model produced. 
The score associated with each model was a percentage that 

quantified how accurate each model was in its prediction. 

Along with the score, the precision and recall were 

computed for each model to better analyze the results. 

4. Results 

In this section, the results obtained from the 

machine learning models are analyzed and discussed in 

detail. In A, the score of each classifier is presented for the 
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prediction of sex. In the following section, the score of each 

model is given for the prediction of age category. 

4.1. Sex Prediction 

As can be seen in Figure 2, some machine learning 
models performed quite differently than others in terms of 
accuracy. The average rate of accuracy for the prediction of 
sex across the ten classifiers was approximately 70%. Some 
classifiers, like Decision Tree and Gaussian Process, 
performed well above the average in this case. Decision 
Tree showed an accuracy of 80% whereas Gaussian Process 
and AdaBoost were not far behind at 76% and 77% 
accuracy, respectively. However, other classifiers like 
Naïve Bayes and QDA failed to meet the average. Their 
scores were well below the average at 45% and 62%, 
respectively. The remaining six classifiers produced rates 
of accuracy that fell between the average and the higher 
accuracy rates of the Decision Tree and Gaussian Process. 
Without incorporating the poor results from Naïve Bayes 
and Quadratic Discriminant Analysis, the average for the 
remaining eight classifiers was an encouraging 74% accuracy 

rate. 

 
Figure 2: Classifier accuracy for sex prediction 

 
However, accuracy alone is not enough to justify the 

results of the classifiers. Table 2 shows the precision and 

recall values computed from a confusion matrix generated 

for each of the classifiers when attempting to predict a 

user’s sex. Although the accuracy of the Support-Vector 

Machine (SVM) classifier was around the group average of 

70%, its confusion matrix illustrated that this model was not 

a good fit for the data. Linear SVM’s matrix only showed 

values for the false positives and true positives sections in 

the matrix, meaning that the classifier solely predicted that 

every participant was a male. Similar results were produced 
by the Radial Basis Function (RBF) SVM classifier [36]. 

The confusion matrix for each classifier can be seen in 

Figure 3. This being said, the precision and high recall 

values for the SVM classifiers were not good 

representations of how they actually performed. 

 
Table 2: Precision and recall values produced by each classifier 
for sex prediction 

Classifier Precision Recall 

Nearest Neighbors 0.75 0.86 

Linear SVM 0.7 1 

RBF SVM 0.71 0.99 

Gaussian Process 0.78 0.92 

Decision Tree 0.8 0.92 

Random Forest 0.76 0.99 

Neural Net 0.75 0.97 

AdaBoost 0.79 0.97 

Naïve Bayes 0.79 0.28 

QDA 0.71 0.65 

 

Most other classifiers produced reasonable confusion 

matrices, and the most accurate classifiers (Decision Tree, 
Gaussian Process, AdaBoost) demonstrated relatively high 

recall and precision values to match. Decision Tree and its 

ensemble Random Forest posted precision values of 0.80 

and 0.76, respectively while their recall values were closer 

to 1. Similarly, the precision and recall values of the 

Gaussian Process and AdaBoost were also encouraging. 

 
Figure 3: Confusion matrices produced by each classifier for sex 

prediction 

 

The confusion matrices produced by Naïve Bayes 

and QDA seemed reasonable, and they each produced 
precision scores that were comparable to the other 

classifiers. However, the recall score from Naïve Bayes was 

even worse than its rate of accuracy. The recall of QDA, 

although quite better than that of Naïve Bayes, was still low 

when compared to the other classifiers. 
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4.2. Age Category Prediction 

Figure 4 illustrates the performance, in terms of 

accuracy, for the prediction of age category for each of the 
ten classifiers. Keep in mind, age category is a general 

prediction for a user’s age. In this study, there was an age 

category for those users below 40 years old as well as one 

for those above. 

 

Figure 4: Classifier accuracy for age prediction 

 

Similar to the results of the sex prediction, there 

are apparent performance differences between the 

classifiers used. However, the average rate of accuracy 

across the ten classifiers for age category prediction (80%) 

was significantly better than that of sex prediction (69%). 

Moreover, the results of each classifier, independently, 
were also mostly better than their predictions on the sex of 

a user. Naïve Bayes improved significantly, just barely 

performing below the average with an accuracy rate of 

77%.  Much like the results from sex prediction, Decision 

Tree, and Gaussian Process performed quite well. 

Decision Tree -as well as Random Forest- produced rates 

of accuracy near 87% while the Gaussian Process was not 

far behind at 85%. Another ensemble classifier, AdaBoost, 

boasted an 86% rate of accuracy, falling in between the 

performance of Decision Tree and Gaussian Process in 

terms of accuracy.  

With the prediction of age group, the values of 
precision and recall for each classifier varied. Precision 

values for some classifiers were closer to 0.70 while others 

managed to achieve above 0.80. Table 3 shows the results 

of the precision and recall calculations performed from the 

confusion matrix of each classifier. 

 
Table 3: Precision and recall values produced by each classifier 
for age prediction 

Classifier Precision Recall 

Nearest Neighbors 0.69 0.57 

Linear SVM 0.81 0.49 

RBF SVM 0.73 0.01 

Gaussian Process 0.78 0.64 

Decision Tree 0.82 0.69 

Random Forest 0.83 0.62 

Neural Net 0.81 0.56 

AdaBoost 0.81 0.67 

Naïve Bayes 0.72 0.3 

QDA 0.38 0.73 

 

More interestingly, the recall values of each 

classifier in the prediction of age category were quite low 

when compared to the values of sex prediction. Naïve 

Bayes obtained a similarly low recall value when 

compared to its results on sex prediction, but most others 

demonstrated significantly different values. While the 

recall values of the Gaussian Process, Decision Tree, and 

AdaBoost were between 0.90 and 1 in the prediction of 
sex, their recall values in the prediction of age group were 

between 0.60 and 0.70, a significant drop in recall. 

However, their precision values were quite comparable to 

the values produced for sex prediction.  

The confusion matrix for each classifier can be 

seen in Figure 5. Similar to confusion matrix issues for sex 

prediction, the RBF SVM classifier’s confusion matrix 

was not at all reasonable. As a result, it produced an 

inferior recall value of 0.01. However, all other classifiers 

produced rational confusion matrices with fairly balanced 

recall and precision scores to reflect. 

 
Figure 5: Confusion matrices produced by each classifier for age 

prediction 

5. Conclusion 

As of now, the primary form of interacting with a 

mobile device is through the use of a touch-screen. From 

this study, we have seen that swipe-gesture data are useful 

for the prediction of soft biometrics such as sex and age 
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category. However, this opens the possibility for other soft 

biometrics predictions such as single- or two-handed usage, 

handedness, or even emotion [5]. Moreover, as touch-

screen devices improve, it will be possible to obtain higher 

quality swipe-gesture data that will enhance the prediction 
of such soft biometrics.  

The soft biometric traits discussed above can be 

utilized to further improve authentication systems on 

mobile devices, enhance the experience between mobile 

device and user, or even modify mobile advertisements or 

product suggestions to better suit the current user. This 

opens up the possibility of enhancements in the Human-

Computer Interaction (HCI) field. With the ability to 

predict certain characteristics of a user (age, sex, etc.), 

interactions between systems and users can be more 

adaptive and tailored to the current user. 

In short, this paper has explored and analyzed the 
possibility of sex and age category prediction using swipe-

gesture data collected from a touch-screen mobile device. 

In this study, an IOS tablet (iPad 2) was used, but very 

similar swipe-gestures are used across all touch-screen 

devices, independent of their operating system or 

manufacturer.  

The results of this exploration and analysis have 

further confirmed the possibility of sex prediction as first 

explored in [5] as well as demonstrating the potential of age 

category prediction. This study took a very different 

approach than [5], from the development of a mobile game 
and manual collection of data to the classifiers and data 

analysis techniques used. Moreover, the data used in 

similar, recent, predictive studies like [5,18,19] used heavy 

pre-processing of data whereas this study did not.  For sex 

prediction, an average accuracy rate of 70% was 

demonstrated across ten classifiers, whereas the Decision 

tree alone produced an accuracy rate of 80% using the 

swipe-gesture data collected. Age category prediction 

produced even more encouraging results with an 80% group 

average accuracy rate across ten classifiers as well as 

Decision tree’s high 87% rate of accuracy alone.   

Regarding the most suitable machine learning 
classifier for the prediction of both sex and age category, 

the Decision Tree and its ensemble proved to be the best 

performers in both cases. Decision tree had the highest rate 

of accuracy in both predictive studies as well as 

demonstrating strong precision and recall values. 

Moreover, its ensemble, Random Forest, produced 

similarly high rates of accuracy as well as encouraging 

recall and precision values for both sex and age category 

prediction. Although each classifier utilized all the features 

from the swipe-gesture data, Decision Tree and its 

ensemble seemed to be the most capable of predicting sex 
and age category. Keep in mind that the swipe-gesture data 

used as inputs for the classifiers was raw, unprocessed data. 

More detailed analysis is needed to determine what features 

in the swipe-gesture data prompted enhanced prediction in 

the Decision Tree based models when compared to other 

classifiers.  
Due to the small sample population used for this 

study, it is essential to acknowledge that general 
conclusions cannot be drawn due to this limitation. 
However, this study serves as valuable knowledge for the 
possibility of using swipe-gesture data for prediction. 
Future research on this topic of soft biometrics prediction 
could include exploring other traits for prediction like 
single or double handed use, handedness, or emotion. But 
also, future studies could explore the effect of large datasets 
on previous studies for prediction. More interestingly, 
however, are the possibilities of using similar predictive 
models to enhance Human-Computer Interaction (HCI). 
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