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Abstract 
 

Within the past two decades, gun detection became an 
increasingly popular research topic as gun violence continued 
to threaten public safety.  Of all machine learning algorithms 
employed to identify weapons, Convolution Neural Networks 
(CNN) stood out as the most robust method for identifying guns 
in images.  Although CNN had outstanding image classification 
performances, it is not without limitations.  A  CNN without 
large quantities of data suffers from overfitting.  While complex 
architectures reduce overfitting, it also results in slower 
detection speed and increased memory usage.  This study 
analyzed three image preprocessing techniques’ effect on 
reducing overfitting in VGG16 Fast Regional Convolutional 
Neural Network (F-RCNN) without modifying network 
architectures.  The base VGG16 was trained with transfer 
learning in MATLAB on a dataset of 1500 selected images to 
artificially induce overfitting.  The average testing precision of 
the base VGG16 detector was then compared with the results of 
other VGG16 detectors supplemented with image processing 
techniques.  The three image processing techniques used are 
color contrast enhancement, principle component analysis 
(PCA), and combined preprocessing methods.  The study 
concluded that color contrast enhancement had the greatest 
impact on reducing the effects of overfitting.  It was found that 
with proper levels of color contrast enhancements, the average 
testing precision went up noticeably.  The PCA supplemented 
model failed to reduce the number of irrelevant features and did 
not retain the important features.  The PCA method proved to 
be ineffective in reducing overfitting and resulted in an overall 
loss of average precision.  The combined preprocessing 
methods combined the images of both PCA and color contrast 
enhancements into two different training datasets.  The first 
dataset combined PCA with color enhancements and the second 
only combined color enhancement results.  Both combined 
preprocessing methods did not increase the average precision 
potentially due to conflicting features. 
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1 Introduction 
 

Past breakthroughs in Convolutional Neural Networks (CNN) 
using VGG16 and VGG19 architectures achieved an incredible 
90 percent accuracy in image classification [3, 23].  As the search 
for better neural networks continues, increasing complexity 
becomes unavoidable [3].  A CNN’s classification accuracy 
often increases with layer complexity, however, increasing 
complexity also causes slower detection speeds and increased 
memory usage [6].  The new 1000+ layered Inception V 
networks are strong evidence that CNN is getting increasingly 
complex at the expense of memory and speed [26].  Maintaining 
the simplicity of the network architecture while achieving high 
identification precision becomes a growing concern in recent 
years [24].  Of the existing neural networks, VGG16 remained 
one of the simplest yet robust neural networks ever created.  This 
study applied a Fast-Regional Convolutional Neural Network 
(F-RCNN) model that modified a VGG16 net into an F-RCNN 
object detector for pistol detection [7].  A base VGG16 net was 
trained using transfer learning with an original blend of 1500 
ground truth images.  The base VGG16 was trained within 
MATLAB to achieve an overall true positive percentage of over 
98 percent on pistol detection for the training dataset.  Such high 
levels of training accuracy are often a sign of overfitting [19].  
By running the precision versus recall test [8], it was revealed 
that the base detector had a low average precision.  This study 
focused on determining viable image preprocessing techniques 
that can address the overfitting problem and increase network 
performance without modifying the internal architecture. 

This experiment utilized MATLAB to both train the F-
RCNN object detector and implement various image 
preprocessing techniques. MATLAB was used because the 
Deep Learning toolbox is easy to implement with robust 
support for various neural networks [11, 25].  The built-in 
conversion function of images to matrix form made image 
processing easy and efficient due to various image processing 
techniques requiring matrix transform and matrix transpose 
[16, 17].  Three image pre-processing trials were applied to the 
training dataset for the VGG16 F-RCNN pistol detector in 
hopes of raising average testing precision.  A neural network 
performs best if trained with great variance in the pose and 
lighting of an object [29].  The image preprocessing 
techniques applied in this study operated under the assumption 
that pose and lighting are key features that greatly affect the  
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precision of any object recognition system [29].  The neural 
network’s tendency of relying on color and lighting makes it 
challenging to distinguish dark simple objects from 
lowlighting backgrounds [18].  To resolve the problem of low 
color contrast with the background, the first trial used color 
enhancement techniques at set intervals to widen the gap 
between dark and light-colored regions.  The second trial used 
PCA analysis to reduce the background while retaining most 
of the pistol’s features [10, 22].  After the results of the first 
two methods were obtained, a fusion of the two modified image 
datasets along with the original dataset was used to train two 
combined VGG16 F-RCNN detectors. 

In the rest of this paper, Section 2 describes the related works 
in the area of pistol detection and image preprocessing. Section 
3 describes the dataset used in the study as well as the source 
images used.  Section 4 describes the performance of the 
VGG16 F-RCNN detector on the base dataset.  Section  5 
describes the effects of various color enhancement trials on 
detector precision.  Section 6 describes the effect of PCA 
analysis on detector performance.  Section 7 describes the effect 
of combining the different image preprocessing techniques into 
one dataset.  Section 8 discusses the results of the previous 
experimental trials.  The conclusion is given in Section 9. 

 
2  Related Works 

Pistol detection has been a widely researched topic ever since 
Neural Networks first gained popularity with Alex-net in 2012 
[12].  Many studies in the past have tackled the problem of 
handgun detection using Regional Proposal Networks and 
transfer learning from established neural networks such as 
VGG16 [2, 18].  Two methods are generally used to improve the 
performance of specific object detectors.  The first method is 
modifying the neural network architectures to become deeper 
and more robust [26], and the second method is applying image 
preprocessing techniques to help detectors better separate the 
important features from background noise [21].  This paper 
tackles the problem of using image preprocessing techniques to 
increase the performance of a VGG16 F-RCNN pistol detector. 

 
2.1 Pistol Detection 

Pistol detection differs from pistol classification in that object 
detectors must identify the part of the image with the weapon 
[5, 13-14, 18].  Various pistol detectors have been trained in the 
past using both neural networks and traditional machine 
learning techniques such as SVM(Support Vector Machine) and 
Histogram of Oriented Gradients (HOG) [18, 27].  However, the 
best performances came from using Regional Proposal 
Networks(RCNN) and its variants the FAST-RCNN and Faster- 
RCNN [5, 18]. 

Akcay et al. [2] used a variety of neural networks with 
different types of object detectors to detect pistols in x-ray 
images.  Five different object detection models were used in  the 
study including Sliding Windows Convolutional Neural 

Network(SW-CNN), Regional Convolutional Neural Network 
(RCNN), Faster Regional Convolutional Neural Network 
(Faster-RCNN), Region-based Fully Convolutional Networks 
(R-FCN) and You Only Look Once object detectors (YOLOv2).  
The object detection models were trained with Alexnet, VGG16, 
VGG19, and residual neural networks (ResNets).  The resultant 
data shows that both RCNN and Faster-RCNN outperformed 
both traditional handcrafted Bag of visual words(BoVW) 
features and fellow SW-CNN detectors.  Akcay et al. [2] have 
proved with their study that it is possible to achieve high object 
detection precision with R-CNN models and their variants. 

Olmos, Tabik, and Herra [18] analyzed a VGG16 based 
Faster- RCNN detector for video pistol detection with limited 
success.  The Faster-RCNN’s large false positives rates 
drastically lowered the overall detector precision.  The 
researchers contributed the high false positives ratio to low 
contrast and luminosity of certain video frames.  The pistols 
that are not clearly distinguished from the backgrounds are 
often missed and other objects are falsely identified. 

 
2.2 Neural Network Image Preprocessing 

Within the field of image analysis, image preprocessing 
techniques are frequently used in combination with a variety 
of image classification algorithms [5, 13, 28, 30].  Many image 
preprocessing techniques aimed to either reduce noise or 
enhance desired features.  Rehman et al [21] discussed a 
variety of image preprocessing methods for character 
recognition using neural networks.  Within the various 
preprocessing techniques discussed, the researchers 
highlighted the importance of thresholding in image 
processing.  Thresholding sets a boundary on the original color 
scheme from which the image is converted to binary or 
grayscale.  Threshold simplifies the image and highlights the 
desired characters making it an important preliminary image 
processing technique.  The other image preprocessing 
techniques included the elimination of unwanted features and 
extraction of key features.  The importance of image 
preprocessing techniques was highlighted by Rehman et al 
[21] and its effect in increasing neural network performances 
cannot be overlooked. 

 
3 Dataset 

 
This study utilized 2,000 open source images from various 

image datasets under an academic license as well as original 
images taken by the research team.  Out of a training dataset 
of 2,000 images, 1,500 were randomly selected for training 
and 500 were used for testing.  The first dataset used was the 
IMFDb online firearm dataset, a free gun image dataset that 
contains a variety of pistols, rifles, shotguns, and other 
firearms [9].  The second dataset used was the Sci2s weapons 
dataset from the University of Granada [5, 18].  For this 
experiment, only pistols were selected from a variety of movie 
images.  The selection criteria for the combined image dataset  
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included a variety of background and contextual information at 
various backgrounds, angles, and distances for a balanced 
selection of various pistol images.  The combined image 
dataset was biased towards images with a variety of 
background and contextual information for accurate object 
recognition [20].  The limited number of training images meant 
a larger chance for the network to overfit, while a diverse 
spread of gun sample images helped the detector to maintain 
an acceptable testing precision. 

 
4 Base VGG16 F-RCNN Performance 

 
This study was conducted on the basis that large false 

positives are generated often due to the overfitting of neural 
networks [19].  Where a model trained to recognize features in 
the training dataset might fail to generalize features onto the 
testing dataset resulting in low testing identification rates.  To 
fully express the influences of various color enhancement 
methods on overfitting, this research focused on simple VGG-16 
nets trained with limited images.  This was meant to introduce 
overfitting in the model and compare the effect of various 
preprocessing methods on reducing overfitting.  Within 
MATLAB,  a pre-trained VGG16 net was trained with the 1,500 
pistol images.  The VGG16 object detector reached a training 
accuracy of 98.8 percent after 5 epochs.  The trained detector 
was then tested on the 500 testing images with an average 
precision of 0.2138.  The low precision likely resulted from 
boxing errors where either a part of the gun or too much of the 
background was selected.  However, upon physical 
examination, it was found that although the detection boxes did 
not precisely match the ground truth labeling, over 90 percent 
of the highest confidence detection box correctly identified most 
of the weapons and did not mistake other objects for pistols.  
Thus, the overall accuracy of the base F-RCNN object detector 
was found to be in an acceptable range.  Figure 1 shows the 
MATLAB’s precision evaluation of the VGG16 during testing.  
Figure 1 shows the performance graph plotted for precision 
versus recall, where recall and precision are ratios of true 
positive instances to the sum of true positives and false 
negatives in the detector, based on the ground truth [2, 18].  By 
running through each image and visually judging the accuracy 
of the neural net, three different category metrics were used to 
determine true the performance of a neural net performance.  i) 
True Positive means that the network has correctly identified 
the weapon with an appropriate bounding box.  ii) False 
Positive means that the network has failed to select most of the 
weapon or has mistaken something else for the pistol.  iii) 
Negative means the Neural net has failed to recognize guns in 
the image with high confidence.  The results of the visual 
analysis will change slightly from person to person and trial to 
trial, but five successive repetitions on the testing dataset prove 
the general effectiveness of the trained F-RCNN object 
detector.  Table 1 shows the classification criteria for accuracy 
evaluation and the average performance of the VGG16 detector 
over the five repetitions. 

 
Figure 1: VGG16 precision vs recall on 500 images 

 
 
Table 1: VGG16 judgment criteria and percentage number 

 

 
 

5 Fixed Ratio Color Enhancement Trial 
 
The color enhancement preprocessing techniques operate 

under the assumption that neural nets rely heavily on color and 
texture for target identification [1, 18].  Since most pistols have a 
darker color as opposed to their surroundings, by increasing the 
color contrast the neural network should be able to better  
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distinguish dark pistols from light backgrounds to avoid false 
positives.  A flowchart of the color enhancement process is 
shown in Figure 2. 

 

 
Figure 2: Color enhancement trial flowchart 

 
The first preprocessing method separated light and dark 

colors at 75 out of 255 for all three RGB color schemes.  The 
75 separation value is selected because it separates the darker 
gun color scheme from the lighter background.  The parts of the 
image with an RGB value less than 75 are darkened by -30 and 
the parts with a number larger than 75 are lightened by +30.  
The 30 enhancement value was chosen because initial trials 
indicated that any value less than 30 produced had no significant 
impact on the testing precision.  If a particular pixel has an RGB 
value of less than 30 it will simplify to zero after preprocessing 
and the same concept applies to values greater than 225.  The 
images with a mean RGB value of 85 or below were deemed too 
dark for the pistol to be separated from the background and thus 
the color enhancement was not performed.  Only the training 
dataset underwent this preprocessing technique and the testing 
results on the original testing dataset are shown in Figure 3.  In 
the rest of this paper, the “x” of “enhanced-x” refers to the 
specific RGB value that is modified in the image. 

From Figure 3 it can be observed that the enhanced-30 dataset 
did not result in significant improvements in MATLAB recorded 
average precision from 0.2138 to 0.2208. Since initial trials with 
the color enhanced-30 showed only slight improvements in 
precision, the second trial doubled the modification ratio to 
+60 and -60.  From Figure 3 it is observed that the enhanced- 
60 trial noticeably increased the average precision from 0.2138 
to 0.2944 for a 38 percent increase in precision.  Based on the 
success of the enhanced-60 trial, the enhanced-90 trial further 
increased the contrast to +90 and -90 in an attempt to achieve 
higher precision.  As it can be observed from Figure   3, overly 
increasing the color enhancement ratio to +90 and -90 
negatively impacted detector performance decreasing the 
average precision to only 0.0759. 

 

 
 

Figure 3: Color enhancement trial performance 
 
Table 2 shows the full comparison of the effect of different 

color enhancement ratios on training images.  It can be seen 
from the color-enhanced images that the pistol has a 
drastically higher color contrast as opposed to the background.  
By using color enhancement techniques, the background noise 
is also whitewashed resulting in an overall simpler image. 

 
5.1 Varied Ratio Color Enhancement Trial 
 

After initial promising results with the enhanced-60 dataset, 
new color enhancement trials were conducted.  The new color 
enhancement trials focused on analyzing the effect of changing 
threshold values and enhancement ratios had on average 
precision.  The result of the extended tests is shown in Table  3.   
FR stands for Fast R-CNN model trained and the number after 
the ” - ” symbol stands for various color enhancement ratios 
used with a threshold of 75. For FR-60/50, FR-60/100, and FR-
60/125 the number after the ”/” symbol indicates the threshold 
used to separate light and dark regions.  Pixel values below the 
low threshold are considered light regions.  Pixel values above 
the high threshold are considered dark regions.  Low ratios are 
applied to light regions and high ratios are applied to dark  
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Table 2: Original and color-enhanced images 
 

 
 

regions; where integer values indicate subtraction and decimal 
values indicate multiplication.  The average precision shows the 
model performance. 

The previous enhanced-60 model used a fixed threshold of  
75 to differentiate between light and dark colors. To test for  the 
effect on changing the threshold, new tests were conducted for 
thresholds at 50, 100, and 125 with the same enhancement ratio 
of +60 and -60. From Table 3, it can be observed that both 
decreasing and increasing the threshold has a detrimental effect 
on model performance. However, by comparing the three new 
models, FR-60/125 had the most detrimental effect on accuracy 
with a -0.1743 or 81 percent decrease in average precision. 
Overall, the new trials indicate that changing the thresholds too 
far up or down can have a detrimental effect on performance. 

The second variable that changed was the enhancement ratio. 
While enhancement-30, 60, and 90 had fixed changes to pixel 
values, new tests incorporated varying changes based on the old 
pixel value.  The new trials multiplied the original pixel values 
with a ratio between 0.1 - 0.9 for value reduction, and 1.1 to 1.9 
for value increase.  Out of the eight new models, FR-0.1 and FR-
0.5 tested for the effect of only enhancing the light portions of 
the image. FR-1.5 and FR-1.9 tested for the effect of enhancing 
the darker sections of the image.  Trials FR-0.1-1.9 to  FR-0.9-
1.1 tested for the effect of increasing both the dark and light 
contrasts.  Out of the eight new trials, FR-0.1 had the  

Table 3: Color-enhancement Trials. 
 

Trials Low 
Threshol

d 

High 
Threshol

d 

Low 
Ratio 

High 
Ratio 

Average 
Precisio

n 
Base N/A N/A N/A N/A 0.2138 
FR-30 75 75 30 30 0.2208 
FR-60 75 75 60 60 0.2944 
FR-90 75 75 90 90 0.0759 
FR- 
60/50 

50 50 60 60 0.1158 

FR- 
60/100 

100 100 60 60 0.1569 

FR- 
60/125 

125 125 60 60 0.0395 

FR-0.1 75 N/A 0.1 N/A 0.2852 
FR-0.5 75 N/A 0.5 N/A 0.2386 
FR-1.5 N/A 180 N/A 1.5 0.1299 
FR-1.9 N/A 180 N/A 1.9 0.1725 
FR-0.1- 
1.9 

75 180 0.1 1.9 0.0015 

FR-0.3- 
1.7 

75 180 0.3 1.7 0.1077 

FR-0.5- 
1.5 

75 180 0.5 1.5 0.1503 

FR-0.7- 
1.3 

75 180 0.7 1.3 0.1755 

FR-0.9- 
1.1 

75 180 0.9 1.1 0.1822 

 
 

highest increase in precision of 34 percent to 0.2852 followed 
by an  11 percent increase for FR-0.5 at 0.2386.  In contrast, 
FR-1.5 and FR-1.9 both had detrimental effects on precision 
at 0.1299 and 0.1725.  From the single ratio trials, it can be 
judged that that enhancing the lighter part of the image is more 
beneficial than enhancing the darker parts.  The last four rows 
of 3 show the result of the multiple ratio trials. The FR-0.9-1.1 
had the highest precision and FR-0.1-1.9 had the lowest 
precision.  The average precision of the ”FR-X-X” trials 
followed a distinct trend, where larger enhancement ratios are 
related to decreases in performance.  The combined result of 
new color enhancement ratio trials suggested that lighter 
region enhancements have the best result, where dark value 
enhancements likely resulted in a loss of important pistol 
features. 

Table 4 shows the effect of various color enhancement trials 
on pixel values.  The X-axis is the original pixel values from   
0 to 255. The Y-axis is the modified pixel values.  The base 
color spectrum shows the unmodified pixel graph where the X   
and Y-axis follows a linear one-to-one correlation.  Both FR-  
60 and FR-0.1 both outperformed the base model, and from 
Table 4 it can be observed that both had a noticeable drop in 
values less than 75.  FR-60/125 had the most dramatic effect  



50  IJCA, Vol. 28, No 1, March 2021  

Table 4: Color spectrum comparison chart 
 

 
on the color spectrum, which could correlate to loss of important 
features resulting in poor performance.  Both FR-1.9 and FR- 
0.1-1.9 underperformed against the base model and both had a 
noticeable rise in darker color regions.  Overall,it can be  
inferred from Table 4 that lighter region enhance-ments without 
sharp rises in darker regions offer the best enhancement results. 

 
6 PCA Feature Reduction 

 
Each layer of a Convolutional Neural Network retains a 

specific feature of the image [6, 26].  Because of the curse of 
dimensionality, some researchers showed that fewer features 
can be less misleading for a machine learning model.  PCA 
feature reduction aimed to reduce the number of features the 
neural net was exposed to. PCA compresses the data and retains 
principle features in the original image [10, 22].  The PCA 
works substantially better for binary images that have only have 
two dimensions as opposed to the three dimensions of RGB 
images [15].  While there are ways to perform PCA for RGB 
images using multi-linear subspace learning algorithms [15], 
performing PCA on binary images often produces cleaner 
results.  However, binary PCA reduced images cannot take on 
color as the principle components are analyzed as 1 and 0 inputs.  
To restore the original color to the PCA image, MATLAB was 
used to fuse the original image with the PCA binary reduction 
image.  The resultant color scheme differs from the original 

image because of the merging process.  However, most of the 
color features are retained through this method. 

 

 

Figure 4: PCA detector performance 
 

Table 5 shows the comparison between the original image, 
PCA reduced image, and fused image used for analysis.  
Figure 4 shows the performance of the VGG16 net trained 
with PCA reduced images on unmodified test images.  Figure 
4 also shows the performance of the PCA trained net on PCA 
reduced test images.  From Figure 4, it can be observed that the 
PCA reduced detector tested with the original testing dataset 
resulted in a significant decrease in average precision from 
0.2138 to 0.1223.  In comparison, the PCA reduced detector 
tested with PCA reduced testing dataset resulted in a less 
significant decrease in average precision from 0.2138 
to0.1636.  This disparity between the test results can be  
 

 Table 5: PCA sample images 
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attributed to the loss of features between original and PCA 
datasets. 
 

7 Combined Dataset 

For a neural network to retain information about an object 
from various angles and lighting conditions, a great variance in 
the training dataset is required [4].  While individual approaches 
can yield no conclusive results towards increasing accuracy, 
combining the various approaches into a single dataset can 
increase data variations without requiring additional images.  
The first combined dataset used a combination of the color 
enhance-30, color enhance-60, PCA analysis, and original 
images to form the 1500 training dataset.  The second combined 
dataset used a combination of the three-color enhance trials and 
original images. Since color enhance-60 yielded the best 
results, the combined dataset uses 750 images from the color 
enhance-60 dataset, 250 images each from color enhance-90, 
color enhance-30, and the original images.  Figure 5 shows the 
combined F-RCNN performance. 

From Figure 5 it can be observed that combining PCA 
reduced images with color-enhanced images had no statistically 
significant changes in performance as the average precision 
raised from  0.2138 to 0.2398.  From  Figure 5 it can also be 
observed that mixing different color enhancement ratios 
significantly decreases the average precision to 0.1524. 

 

 

Figure 5: Combined detector performance 
 

8 Discussion 
 
Of all the common image preprocessing techniques used in 

machine vision, three methods were chosen to address the 
overfitting problem of the base detector. Color enhancement 
was chosen to address target and background separation.  Its 
flexible nature with many parameters makes it easily 
transferable from detecting pistols to other objects of interest. 
Secondly, PCA was introduced to reduce the number of 

overlapping features thus lowering the chance for overfitting. 
Finally, the combined approach focused on merging the two 
techniques to produce high feature variations. 

Three different fixed color enhancement ratios were used at 
intervals of 30, 60, and 90 with a 75 threshold.  Figure 3 shows 
color enhancement-30 slightly increased the average precision 
by 0.007 from 0.2138 to 0.2208, which was not statistically 
significant.  The second trial increased the enhancement ratio to 
60 which resulted in a noticeable rise in average precision by 
0.0806, from 0.2138 to 0.2944.  Although this result is not a 
significant change in precision, it shows that basic color 
enhancement can mitigate the background noises associated 
with low lighting environments.  The third trial increased the 
enhancement ratio to 90 and resulted in a significant drop in 
average precision of -0.1379 from 0.2138 to 0.0759. 

To further study the extensive effect of color enhancement, 
new trials were conducted using various thresholds and 
enhancement ratios.  From the results of Table 3,  it can be seen 
that the varying ratio trials indicated a strong correlation 
between color contrast and network performance.  Since the 
color enhancement-60 trials yielded the greatest increase in 
precision, the new trials first aimed at adjusting the 75 percent 
threshold.  FR-60/50 lowered the threshold to 50 and saw a 46 
percent loss of precision which is surprising due to the success 
of the color enhancement-60 trials. FR-60/100 and FR-60/125 
then had a more detrimental effect on average precision with 
FR- 60/125 having an 82 percent loss of precision.  The failure 
to raise average precision despite using a tested enhancement 
ratio suggests that there is an optimal threshold that separates 
light and dark regions for each database, and deviations from 
the threshold can lead to detrimental results.  FR-60/50 
enhanced made 25 pixels in the light region darker when 
compared to the original color enhancement-60 trials, and this 
difference contributed to the loss of information.  By adjusting 
the threshold to 100 and 125, more regions are classified as light 
regions and had their values decreased, also leading to a loss of 
information.  At this point it is unclear why 75 presumably 
works for this dataset, however, it can be hypothesized that only 
regions with color values less than 75 are lighter regions that 
require light enhancement to reduce background noise.  The rest 
of the varying ratio trials will continue to adopt 75 as the low 
threshold since it provided the best results.  The high threshold 
was chosen at 180 because it was 75-pixel values lower than 
255.  The varied ratio trials multiplied each pixel value by a 
ratio instead of adjusting every pixel by the same amount.  The 
difference between the fixed and varying ratio adjustments can 
be observed in Table 4. 

Of all the varied ratio trials, FR-0.1 showed a 34 percent 
increase in average precision to 0.2852.  A follow-up experiment 
with FR-0.5 showed a less significant increase of 11 percent in 
average precision to 0.2386.  The two trails suggest that large 
lighter region enhancements can have positive effects on testing 
precision.  FR-1.5 and FR-1.9 were then tested for the effect of 
enhancements on darker regions.  However, FR-1.5 resulted in 
a 39 percent decrease in average precision and FR-1.9 resulted  
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in a 19 percent decrease in average precision.  The two dark 
enhancement results suggest that enhancement of dark regions 
correlates with a small loss of precision.  Trials FR-0.1-1.9 to 
FR-0.9-1.1 tested the combined effect of both enhancing the 
lighter and darker regions.  Although all four trials resulted in a 
loss of average precision, there is a clear trend linking the level 
of enhancement with the amount of precision loss.  FR- 0.1-1.9 
had the most loss in precision of 99 percent.  It can then be 
observed that as the enhancement ratios went down to FR-0.5-
1.5, the precision loss also went down to 30 percent.  While the 
lowest enhancement ratio of FR-0.9-1.1 only had a 15 percent 
loss in precision.  The exponential loss of precision following 
larger enhancement ratios can be attributed to the loss of critical 
information during the double enhancement process.  By 
enhancing the color spectrum from 0 to 75 and 180 to 255, 150 
different pixel values were enhanced.  Enhancing over 58 
percent of the original color scheme could lead to conflicting 
features and loss of useful features. 

From the color enhancement trials, it can be determined that 
the ratios of enhancement greatly affect the detector 
performance; too little color enhancement results in no 
significant changes but a huge enhancement ratio can have 
negative impacts.  The rise in precision with the color 
enhancement-60 trial can be attributed to correctly separating 
key features of the pistol from the background while retaining 
most of the context.  The color enhancement-90 trial likely 
overly enhanced the image so that key features of the pistol 
might be lost while the background context became too mono-
toned.  Although the current color enhancement trials do not 
show significant increases in precision, the preliminary results 
obtained using minimalist preprocessing algorithms open the 
way for more advanced enhancement techniques.  For future 
works, potential extensions of this algorithm are directly 
amplifying a range of pistol color spectrum with machine 
learning algorithms. 

Applying PCA to the training dataset did not result in any 
increases in average precision.  PCA reduced the number of 
features by half in the training data images, which resulted in a 
loss of distinguishing features for the VGG16 to use.  Figure 4 
showed that the PCA trained detector performed poorly when 
tested on the original testing dataset as the average precision 
dropped from 0.2138 to 0.1223.  In comparison, the detector 
performed noticeably better when tested on the PCA reduced 
testing dataset with the average precision only dropping from 
0.2138 to 0.1636.  This change in performance can be attributed 
to the VGG16 only retaining features pertinent to the PCA 
images.  While too many features can confuse the neural 
network, too little feature will cause the learned PCA features 
to not transfer to original images. 

The first combined dataset with an evenly distributed color 
enhanced, PCA and original images only raised the average 
precision from 0.2138 to 0.2398.  The insignificant change in 
average precision indicates that blind variations in the training 
dataset do not necessarily improve performance due to 
conflicting features.  The PCA reduced features likely interfered 
with the positive effects of the color-enhanced trials.  The 
second dataset focused entirely on the effect of varying color  

enhancements.  The second combined dataset hoped to retain 
thepositive effects from the color enhance-60 trials while adding 
beneficial contrast variations.  Contradicting initial predictions, 
the second detector trained with the three color-enhanced image 
datasets performed drastically worse than the original detector.  
The combined color-enhanced detector lowered the average 
precision from 0.2138 to 0.1524.  The significant drop in average 
precision can be attributed to the color enhance-30 and 90 
dataset offering conflicting features that overruled the positive 
effects of the color enhance-60 dataset. 

 
9 Conclusions 

 
In conclusion, this paper analyzed three different image 

preprocessing techniques that can be applied to reduce 
overfitting in a VGG16 F-RCNN detector.  The color 
enhancement method proved to be most impactful in 
increasing the average testing precision.  A positive 
correlation was found between increasing the lighter region 
enhancement ratios and increases in average testing precision.  
While enhancing darker regions were observed to have 
detrimental impacts on precision.  It was found that on average 
a small amount of color enhancement is unlikely to result in 
noticeable changes in detector performance.  However, over 
enhancement can also have negative impacts on performance.  
The optimal color enhancement ratio and threshold will 
depend on the target objects and their relative backgrounds.  It 
is recommended that different object databases go through 
extensive trials to find the correct enhancement ratios and 
thresholds to optimize performance. 

Applying PCA to reduce the number of features in the image 
proved to be an ineffective method to increase average testing 
precision for pistol detection.  The VGG16 F-RCNN detector 
trained with PCA reduced images had an overall detrimental 
effect on testing precision.  The loss of precision was largely 
attributed to a loss of critical information during the feature 
reduction phase.  The first combined dataset of PCA and color 
enhancement images resulted in no significant increases in 
performance.  The second dataset of only color enhancement 
trials resulted in a detriment to performance.  Overall, the 
combined methods had no significant impact on performance.  
The underwhelming performance of the combined method can 
be contributed to conflicting features.  Too large of a color 
variation can result in conflicting features and had a negative 
impact on performance. 

 
Acknowledgments 

 
The following people of ECU’s Innovation Design Lab 

contributed greatly in funding and supporting the project:  Dr. 
Todd Fraley, Dr. Ted Moris, Director Wayne Godwin, lab 
assistants Marco Agostini and Elliot Paul.  This material is 
based upon work supported by the National Science 
Foundation under grant number IUSE/PFE: RED award 
#1730568.  Any opinions, findings, and conclusions, or 
recommendations expressed in this material are those of the 
 



IJCA, Vol. 28, No 1, March 2021  53  

   

authors and do not necessarily reflect the views of the National 
Science Foundation. 

 
References 

 
[1] A. Akbarinia and K. R. Gegenfurtner, “How is Contrast 

Encoded in Deep Neural Networks?”, arXiv preprint 
arXiv:1809.01438, 2018. https://arxiv.org/abs/ 
1809.01438, Last Accessed 17 Feb 2021. 

[2] S. Akcay, M. E. Kundegorski, C. G. Willcocks, and T. P. 
Breckon, “Using Deep Convolutional Neural Network 
Architectures for Object Classification and Detection 
Within X-ray Baggage Security Imagery,” IEEE 
Transactions on Information Forensics and Security,  
13(9):2203–2215, 2018. 

[3] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. 
Sidike, M. S. Nasrin, B. C. Van Esesn, A. A. S. Awwal, 
and V. K. Asari, “The History Began from Alexnet:  A 
Comprehensive Survey on Deep Learning Approaches,” 
arXiv preprint arXiv:1803.01164, 2018. 

[4] C. M. Bishop, Neural Networks for Pattern 
Recognition.Oxford University Press, 1995. 

[5] “Brightness Guided Preprocessing for Automatic Cold 
Steel Weapon Detection in Surveillance Videos with Deep 
Learning,” Neurocomputing, 330:151–161, 2019. 

[6] A.  Dhingra,  “Model Complexity-Accuracy Trade-off for 
a Convolutional Neural Network,” arXiv preprint 
arXiv:1705.03338, 2017. https://arxiv.org/abs/ 
1705.03338, Last Accessed 17 Feb 2021. 

[7] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE 
International Conference On Computer Vision, pp. 1440– 
1448, 2015. 

[8] J. Grau, I. Grosse, and J. Keilwagen, “PRROC:  Computing 
and Visualizing Precision-Recall and Receiver Operating 
Characteristic Curves in R,” Bioinformatics, 31(15):2595–
2597, 2015. 

[9] N. A, “IMFDB:  Internet Movie Firearms Database,” 
2020. http://www.imfdb.org/wiki/Main Page [Accessed 
on 5 May 2020].  

[10] I. T. Jolliffe and J. Cadima, “Principal Component 
Analysis:  a Review and Recent Developments,” 
Philosophical Transactions of the Royal Society A:  
Mathematical, Physical and Engineering Sciences, 
374(2065):20150202, 2016. 

[11] P. Kim, “Matlab Deep Learning,” With Machine 
Learning, Neural Networks and Artificial Intelligence, 
vol. 130, 2017. 

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet 
Classification with Deep Convolutional Neural Networks,” 
Advances in Neural Information Processing Systems, pp. 
1097–1105, 2012. 

[13] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, 
“Scale-Aware Fast R-CNN For Pedestrian Detection,” 
IEEE Transactions on Multimedia, 20(4):985–996, 2017. 

[14] M. Lokanath, K. Sai Kumar, and E. Sanath Keerthi, 

“Accurate Object Classification and Detection by Faster-
RCNN,” Materials Science and Engineering Conference 
Series, vol. 263, 2017. 

[15] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A 
Survey of Multilinear Subspace Learning for Tensor 
Data,” Pattern Recognition, 44(7):1540–1551, 2011. 

[16] A. McAndrew, “An Introduction to Digital Image 
Processing with Matlab Notes for SCM2511 Image 
Processing,” School of Computer Science and 
Mathematics, Victoria University of Technology, 264(1): 
1–264, 2004. 

[17] J. G. Nagy, K. Palmer, and L.  Perrone, “Iterative 
Methods for Image Deblurring: a Matlab Object-Oriented 
Approach,” Numerical Algorithms, 36(1):73– 93, 2004. 

[18] R. Olmos, S. Tabik, and F. Herrera, “Automatic Handgun 
Detection Alarm in Videos Using Deep Learning,” 
Neurocomputing, 275:66–72, 2018. 

[19] A. P. Piotrowski and J. J. Napiorkowski, “A Comparison of 
Methods to Avoid Overfitting in Neural Networks Training 
in the Case of Catchment Runoff Modelling,” Journal of 
Hydrology, 476:97–111, 2013. 

[20] J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. 
Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C. 
Russell, A. Torralba, et al., “Dataset Issues in Object 
Recognition,” Toward Category-Level Object Recognition, 
pp. 29–48, 2006. 

[21] A. Rehman and T. Saba, “Neural Networks for Document 
Image Preprocessing:  State of The Art,” Artificial 
Intelligence Review, 42(2):253–273, 2014. 

[22] G. Shakhnarovich and B. Moghaddam, “Face 
Recognition in Subspaces,” in Handbook of Face 
Recognition, pp. 141–168, 2005.  

[23] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,” 
arXiv preprint arXiv:1409.1556, 2014. https://arxiv.org/ 
abs/1409.1556 Last Accessed 17 Feb 2021. 

[24] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. 
Riedmiller, “Striving for Simplicity:  The All 
Convolutional Net,” arXiv preprint arXiv:1412.6806, 
2014. https://arxiv.org/abs/1412.6806 Last Accessed 17 
Feb 2021. 

[25] D. P. Strik, A. M. Domnanovich, L. Zani, R. Braun, and P. 
Holubar, “Prediction of Trace Compounds in Biogas from 
Anaerobic Digestion using the MATLAB Neural Network 
Toolbox,” Environmental Modelling & Software, 
20(6):803–810, 2005. 

[26] C. Szegedy, W. Liu, Y. Jia, P.  Sermanet, S. Reed, D. 
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 
“Going Deeper with Convolutions,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 1–9, 2015. 

[27] G. K. Verma and A. Dhillon, “A Handheld Gun 
Detectionusing Faster R-CNN  Deep  Learning,” 
Proceedings of the 7th International Conference on 
Computer and Communication Technology, pp. 84–88, 

https://arxiv.org/abs/%201809.01438
https://arxiv.org/abs/%201809.01438
https://arxiv.org/abs/%201705.03338
https://arxiv.org/abs/%201705.03338
https://arxiv.org/


54  IJCA, Vol. 28, No 1, March 2021  

2017.  
[28] Y. Xu, Z. Zhang, G. Lu, and J. Yang, “Approximately 

Symmetrical  Face  Images for Image Preprocessing in 
Face Recognition and Sparse Representation based 
Classification,” Pattern Recognition, 54:68–82, 2016. 

[29] L. Yann, H. Fu, and B. Leon, “Learning Methods for 
Generic Object Recognition with Invariance to Pose and 
Lighting:  Computer Vision and Pattern Recognition.” 
CVPR 2004, Proceedings of the 2004 IEEE Computer 
Society Conference, vol. 2, 2004. 

[30] Y. Zhu, H. Yuan, C. Zhang, and C. Lee, “Image-
Preprocessing Method for Near-Wall Particle Image 
Velocimetry (PIV) Image Interrogation with Very Large 
In-Plane Displacement,” Measurement Science and 
Technology, 24(12):125302, 2013. 

 
 
 

Jiahao Li is a machine learning 
researcher at East Carolina University.  
His primary research interest includes 
the main areas of machine learning 
from deep neural networks to 
evolutionary computing systems.  His 
recent research is aimed at developing 
intelligent threat response systems with  
 

robust auto-regressive models.  Outside of technical research 
pursuits, Li is also pursuing sensible A.I. ethics and studying 
the impact of automation on society. 

 
 

 
 

Charles Ablan is an undergraduate 
researcher at East Carolina University 
pursuing his BS in Engineering.  His 
main areas of research interest include 
machine learning and engineering 
technological innovation.  He is a 
member of the ECU underground water 
level research team developing 
autoregressive models. 

Wu Rui received a bachelor’s degree 
in Computer Science and Technology 
from Jilin University, China in 2013.  
He received his Master and Ph.D. 
degrees in Computer Science and 
Engineering from the University of 
Nevada, Reno in 2015 and 2018, 
respectively.  Dr. Wu is now working 
as an assistant professor in the 
Department of Computer Science at 
East Carolina University and  
 

collaborates with geological and hydrological scientists to 
protect the ecological system.  His main research interests are 
data imputation, machine learning, and data visualization using 
AR/VR devices. 

 
 
 

Guan Shanyue received his B.S. 
degree in civil engineering from 
Tongji University, Shanghai, China, in 
2011, and the Ph.D. degree in civil 
engineering from the University of 
Florida, Gainesville, FL, USA, in 
2017.  From 2017 to 2018, he was a 
Post-Doctoral Fellow with the 
University of Florida.  He joined East 
Carolina University,  Greenville,  NC,  
USA, in 2018, where he is currently an 
Assistant Professor of Engineering. 

His research interests include smart and resilient 
infrastructure, wireless sensor networks, UAV-based 
monitoring, image processing, and data analysis. 

 
 
 

Jason  Yao has research interests in the 
areas of wireless/wearable medical 
sensors,  sensor networks for home 
environments, telemedicine, and 
industrial process monitoring and 
control.  Dr. Yao received his Ph.D. 
degree in electrical engineering from 
Kansas  State  University.  He is a 
senior member and an active volunteer 
of IEEE. 


	Abstract
	1 Introduction
	2  Related Works
	2.1 Pistol Detection
	2.2 Neural Network Image Preprocessing
	3 Dataset
	4 Base VGG16 F-RCNN Performance
	5 Fixed Ratio Color Enhancement Trial
	5.1 Varied Ratio Color Enhancement Trial
	6 PCA Feature Reduction
	7 Combined Dataset
	8 Discussion
	9 Conclusions
	Acknowledgments
	References

