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The seasonal timing of key biological events (phenology), such as migrations, can vary greatly 

and have strong impacts on fisheries and their management. The Striped Bass (Morone saxatilis) 

population of the Roanoke River undergoes a yearly upstream spawning migration and 

subsequently becomes susceptible to an estuarine and freshwater fishery that has a seasonal 

closure set on May 1st each year. This seasonal closure is static each year yet tagging studies of 

Albemarle Sound/Roanoke River (A/R) Striped Bass stock indicate their migration timing can be 

highly variable. The objective of this study is to create an ecological forecast of the A/R stock of 

Striped Bass migration timing. The forecast revealed the overwhelming importance of Roanoke 

River discharge on A/R stock migration timing, with a consistent indication that late February to 

early March is when discharge becomes a key factor. This may be of interest to stakeholders 

involved in the management of the Roanoke River flow regime, especially as impacts of flows 

on Striped Bass recruitment have been highlighted as an area of future research in the most 

recent stock assessment. Another implication of this research for management is that the 

migration timing of Striped Based has shifted earlier in the year in relation to the current 



seasonal fishery closure. Temperatures in the Roanoke River and overwintering grounds of 

coastal Virginia have increased over the study period, which could be driving this shift to earlier 

migration phenology. Nonetheless, despite a high amount of variance explained, the forecast 

proved to have low predictive skill up until right before the typical spawning timing and was 

only able to skillfully predict Striped Bass spawning during years with normally timed 

phenology. Thus, an operational nowcast of Striped Bass spawning phenology would be possible 

to develop, but additional research would be needed if stakeholders require longer lead times to 

act on a forecast. A separate analysis using historical egg survey data analyzed the effect of 

different sampling frequencies on phenology metrics. These metrics were computed based on a 

hypothetical sampling schedules of between one and five days per week. Accuracy of calculated 

phenology metrics compared to observed phenology gradually increased with increasing 

sampling effort. Eggs have not been collected on the Roanoke River since 1993, yet migration 

phenology has shifted earlier in recent years. Additional efforts to survey Striped Bass eggs on 

the Roanoke River should be considered to assess if spawning has also shifted earlier and to 

support development of a potential phenology nowcast, which could be useful for anglers, 

fisheries managers, and water managers. 
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CHAPTER 1: Literature Review    

1.1 Striped Bass Ecology and Management in North Carolina 

Striped Bass (Morone saxatilis) are a highly valuable recreational and commercial 

species and are a popular sportfish for anglers along the East Coast (ASMFC 2017). 

Understanding how Striped Bass will be affected by climate change is an important issue for US 

East Coast stakeholders. North Carolina holds the southernmost major spawning population of 

anadromous Striped Bass (A/R stock). There is a separate North Carolina stock south of the A/R 

stock in the Tar-Pamlico and Neuse Rivers. However, this stock supports very little natural 

spawning and is heavily dependent on stocking (Knight et al. 2015). The A/R stock is a specific 

management unit that describes the Striped Bass population that spawns in the Roanoke River 

(Figure 1.1) that then spend their early years primarily in the Albemarle Sound (Figure 1.1). 

Hughes et al. (2015) used otolith microchemistry to show that a significant proportion of adult 

Striped Bass sampled in their study used the Perquimans River in the northern Albemarle Sound 

as nursery habitat. This stock is considered a facultative anadromous stock since anadromy is 

size dependent (Callihan et al. 2014). Small, but sexually mature, fish, which are between 450-

600 mm total length (TL) for females and 350-600 mm TL for males, remain in Albemarle 

Sound when not spawning in riverine habitat (Callihan et al. 2015). 96.8% of female A/R Striped 

Bass are mature at age four with a mean TL of 475 mm (Boyd et al. 2011). Female Striped Bass 

tend to be longer and heavier than males, with the larger size classes mostly females (Callihan et 

al. 2015; Secor et al. 2020a). During years of low abundance, Striped Bass tag returns from the 

Roanoke River Management Area (RRMA) and the Albemarle Sound Management Area 

(ASMA) show a preference towards the western ASMA, with greater expansion into the eastern 
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ASMA and Pamlico Sound during high abundance periods (Hassler et al. 1981; Callihan et al. 

2014; Zurlo et al. 2014). The RRMA extends from the mouth of the Roanoke River to the 

Roanoke Rapids Dam (Figure 1.1) and the ASMA is comprised of four main water bodies: the 

Croatan Sound, Albemarle Sound, Currituck Sound, and Chowan River. Intermediate-sized fish 

(700-850 mm TL) emigrate into oceanic waters during summer but generally stay close to the 

coast of North Carolina (Callihan et al. 2015). Chesapeake Bay Striped Bass typically begin 

overwintering in Southern New England ocean waters at about 800 mm TL and ages 10-12, with 

a high degree of year-round residency in the Chesapeake Bay at smaller sizes (Secor et al. 

2020b). Striped Bass exhibit a high degree of natal homing in the RRMA, Chesapeake Bay, and 

Hudson Bay (Callihan et al. 2015, Secor et al. 2020a, 2020b).  

 Similar to the aforementioned pattern seen in Chesapeake Bay, A/R Striped Bass larger 

than 900 mm TL show consistent migratory patterns where they leave the Roanoke River in the 

late spring (May-June) after spawning and migrate to coastal waters as far north as 

Massachusetts in the summertime (Callihan et al. 2015; ASFMC 2017). This group of Striped 

Bass joins the Atlantic Ocean Striped Bass Migratory Stock (AOSBMS), which is comprised of 

all anadromous Striped Bass on the East Coast that leave their respective natal rivers at the end 

of the spring and migrate poleward to cooler coastal waters (Zurlo et al. 2014; Callihan et al. 

2015; ASFMC 2017; Essig et al. 2019). The AOSBMS is primarily made of four stocks 

including the RRMA, Delaware Bay, Hudson River, and the Chesapeake Bay, comprising 70-

90% of the overall coastal stock (Essig et al. 2019). Large anadromous individuals of these 

stocks overwinter off the coasts of Virginia and North Carolina in the winter after feeding in 

southern New England during summer and early fall months (Callihan et al. 2014, 2015; Secor et 

al. 2020a, 2020b). Large highly migratory Striped Bass move away from Southern New England 
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in the fall (September-October) to coastal Virginia and North Carolina waters, with this 

southward migration occurring in January for Hudson River fish and March for the A/R stock 

(Callihan et al. 2015; Secor et al. 2020a). Striped Bass from the A/R stock enter the Roanoke 

River once temperatures consistently remain above 9-10º C, while Hudson Bay fish initiate 

marine exit at a similar temperature of 10-12º C (Callihan et al. 2015; Secor et al. 2020b). 

Striped Bass from the A/R stock then start migrating upriver when river temperatures reach 17-

18º C, which typically occurs in March-April (Carmichael et al. 1998; Callihan et al. 2015). 

Spawning onset is associated with temperatures rising above 18º C in the RRMA and occurs 

primarily in Weldon, NC (Figure 1.1) at river mile 131 (Hassler et al. 1981; Rulifson 1990).  

The A/R stock is managed based on distinct management areas that the fish travel 

through, with the present boundaries between management areas established in 1991 (Gambill & 

Bianchi 2019). RRMA covers the lower Roanoke River (Figure 1.1), which makes up 130 miles 

of brown-water river below the Roanoke Rapids Dam (Figure 1.1; LeGrand & Hall 2014). The 

lower Roanoke River officially begins at the fall line, which divides the Piedmont, north and 

west of the Roanoke Rapids just below the nearby dam, and the Coastal Plain that begins around 

Weldon, NC (Figure 1.1) (LeGrand & Hall 2014). The Roanoke River has the widest floodplain 

of any North Carolina river. Flow is heavily regulated by the three dams in the lower river, with 

the headwaters beginning in the mountains of Virginia (LeGrand & Hall 2014). The multiple 

dams affect the sediment and average river flows, creating a more consistent release of sediment 

and water compared to a natural flow regime (LeGrand & Hall 2014). Flow regimes in spring are 

regulated to meet Striped Bass spawning criteria with a three-tiered flow regime that began in 

1988 (Zincone & Rulifson 1991). The negotiated flow regime, which is based on pre-

impoundment conditions begins with an initial high flood flow from March 1 – April 16, a 



4 
 

gradually diminishing flow from April 17 – May 12, and a level plateau from May 13 – June 30 

(Zincone & Rulifson 1991). In 2016 a flow regime was implemented where weekly outflows 

from the Roanoke Rapids Dam (Figure 1.1) roughly equal the previous week’s intake into the 

Kerr Reservoir to mimic a quasi-run of river operation (Army Corp of Engineers 2016). The new 

flow regime allows for discharges to reach 35,000 cubic feet per second (cfs), with the previous 

flow regime limiting flows from 9,500-13,700 cfs during the anadromous fish migration period 

(i.e., April 1-June 15) (Army Corp of Engineers 2016).  

The influence of dams on this river system makes the management of flow regimes very 

important to this fishery. Water resource managers are a stakeholder that could benefit from 

improved understanding of changes and variations in the Striped Bass migration timing as this 

could allow them to optimize flows to maximize fish passage and spawning success. The optimal 

flow regime for fish migration may depend on the size distribution of Striped Bass each year. 

Highly migratory A/R Striped Bass showed faster upriver migration speeds in larger individuals 

than small individuals (Callihan et al. 2015). The ability of Striped Bass to move against 

artificial velocity barriers greatly improves with increasing size (Haro et al. 2004).  

As of 2022, the Striped Bass fishery in the RRMA has an open season from March 1-

April 30, with the May 1st closure intended to protect large spawning females. Male Striped Bass 

typically arrive on the spawning grounds about two weeks before females, causing most fish 

found in the Roanoke River before May to be males (Callihan et al. 2015). The seasonal closure 

is designed to limit catch of female Striped Bass so they can spawn that season. Striped Bass 

migration timing in North Carolina rivers varies interannually by about ~1 month (Callihan et al. 

2015; Smith & Rulifson 2015). For example, in 2013 ocean temperatures off Virginia reached 9-

10° C a month later than it did in 2012, causing tagged Striped Bass to migrate 19 days later than 
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in 2012 (Callihan et al. 2015). During some years, females arrive at their spawning grounds well 

in advance of the fishery closure intended to protect them (Peer & Miller 2014). This occurrence 

will likely become more frequent under climate change since many spring-spawning fishes are 

reproducing earlier in the year in response to warming temperatures (Poloczanska et al. 2013; 

Asch 2015). This is likely to occur for Striped Bass since throughout the range of this species the 

migration and spawning activities are cued by rising spring temperatures (Rulifson 1990; Van 

den Avyle & Maynard 1994; Secor et al. 1995; Douglas et al. 2009; Callihan et al. 2015).  

The NC Wildlife Resources Commission (NC WRC) is responsible for inland fisheries 

and manages the RRMA as a recreational fishery only. The commercial RRMA fishery ended in 

1991 (Gambill & Bianchi 2019). Since 1991, the total allowable catch (TAC) of the A/R stock 

has been divided with half going to the commercial ASMA fishery and to the other half split 

evenly between the RRMA and ASMA recreational fisheries (NCMDF & NCWRC 2014). NC 

Department of Marine Fisheries (NC DMF) manages the ASMA as a joint coastal water system 

with commercial and recreational fishing (Gambill & Bianchi 2019). The Albemarle Sound is 

shallow, relatively fresh estuary with salinities usually below 11 psu in the eastern extremity 

close to the Croatan Sound (Hassler et al. 1981). The ASMA is connected to the ocean through 

the Oregon Inlet and is the final drainage for eight rivers in NC (Figure 1.1; Hassler et al. 1981). 

The AOSBMS is subject to authority of the Atlantic States Marine Fisheries Commission 

(ASMFC) when fish are residing in the Atlantic Ocean. The Atlantic Ocean management area 

covers waters less than three miles from shore, with catch in the U.S. exclusive economic zone 

(3-200 miles) prohibited since 1990.  

Records of Striped Bass landings in NC go back to 1887, yet the data available are sparse 

and difficult to draw any concrete conclusions from until data collection improved in the 1950s 
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(Hassler et al. 1981; Gambill & Bianchi 2019). Historically, catch of Striped Bass on the East 

Coast was high from the 1950s and peaked in 1973 at 14.7 million pounds (Essig et al. 2019). In 

1983 East Coast landings saw a 90% decline from the peak observed in the 1970s, and the 

population was classified as having experienced a crash (Essig et al. 2019). With commercial 

ASMA landings displaying a distinct decline starting in 1988, landings in this fishery reached an 

all-time low in 1997 (Gambill & Bianchi 2019). Strong declines were also seen in the juvenile 

abundance indices in multiple Striped Bass spawning systems. High fishing mortality was 

attributed as the primary cause for the overall decline (Essig et al. 2019). Management measures 

were put in place and the four east coast stocks were declared recovered between 1995-1998 

(Essig et al. 2019; ASFMC 2019). In 1997 the A/R stock was officially declared recovered by 

the ASMFC, with an estimated two million fish in the RRMA in 1999 (NCDMF & NCWRC 

2004). After the recovery, TAC for the A/R stock slowly increased to a recent maximum of 

505,000 pounds from 2003-2014 (NCMDF & NCWRC 2014; Gambill & Bianchi 2019).  The 

TAC was then lowered after the 2014 benchmark stock assessment and reduced to 275,000 

pounds (NCMDF & NCWRC 2014; Gambill & Bianchi 2019). Commercial landings are split 

evenly between beach seine, trawl, and gill net gear as mandated by state fishing regulations 

(Gambill & Bianchi 2019). The commercial fishery extends from October through April with the 

primary catch occurring in March during the years 1994 – 2018 (Gambill & Bianchi 2019).  

As of 2018, the AOSBMS was overfished and experiencing overfishing, with the 

spawning stock biomass (SSB) below target levels and fishing mortality above target levels 

(Gambill & Bianchi 2019; ASFMC 2019). The Atlantic Striped Bass Management Board 

concluded that fishing mortality needed to be reduced by 18% to meet target mortality levels 

(ASFMC 2019). To meet this goal, most states employed catch reduction efforts with increased 
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regulations, such as a slot limit of 28 – 35 inches (ASFMC 2019). The 2017 stock assessment of 

the A/R stock shows that the population is also overfished and experiencing overfishing (Lee et 

al. 2020). The A/R stock SSB for 2017 was estimated at 35.6 metric tons, well below the 121 

metric ton threshold (Lee et al. 2020). Similarly, the A/R stock fishing mortality for 2017 was 

0.27, well above the threshold level of 0.18 (Lee et al. 2020). The overfished stock is also 

estimated to have a severely truncated age structure, with age 8+ fish almost nonexistent in 

recent years (Lee et al. 2020). In the ASMA and RRMA, the combined commercial and 

recreational harvests of this species was approximately 240,000 pounds in 2017, which was the 

last year of data covered in the A/R stock 2020 stock assessment (ASMFC 2017).  In 2022 the 

combined harvest quota for commercial and recreational fisheries in the ASMA and RRMA was 

reduced to about 50,000 pounds, the lowest TAC since the 1990s.  

 

1.2 Forecasting Fish Phenology 

Climate change and climate variability lead to shifts in the seasonal timing of fish 

migration and reproduction (i.e., fish phenology) across many ecosystems and species (Asch et 

al. 2015), with changes especially common among anadromous fishes, such as Striped Bass 

(Peer & Miller 2014; Nack et al. 2019). Phenology is the study of the timing of biological events 

and the factors that drive that timing (Asch 2019). Warming temperatures can lead to faster 

gonadal development in poikilothermic fishes (Pankhurst & Porter 2003). Many marine species 

are highly susceptible to changing environmental conditions and can alter behavior to adapt 

(Tommasi et al. 2017a). Changes in river flow and oceanic currents under climate change can 

alter fish migration phenology (Peer & Miller 2014; Asch 2015). For instance, Striped Bass 

migration timing has been shown to be variable as a response to changing temperatures in the 
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Roanoke River, Chesapeake Bay, and Hudson River (Rulifson et al. 1993; Peer & Miller 2014; 

Nack et al. 2019; Secor et al. 2020a). Similarly, river herring in the Albemarle Sound watershed 

and Gulf of Maine have also shifted toward earlier phenology as a response to rising 

temperatures (Lombardo et al. 2019; Staudinger et al. 2019). These changes in fish phenology 

can have ecosystem consequences leading to mismatches between trophic levels if prey items 

favored by fishes do not also show a synchronous response to climate change (Cushing et al. 

1990). Variability in phenology can also affect reproductive success of species, which can have 

negative impacts on fisheries (Cushing et al. 1990; Payne et al. 2017). Mismatches in phenology 

are a key point in studying how marine species can or will adapt to climate change and climate 

variability.  

The recent progress made in developing earth system and biogeochemical models makes 

skillful seasonal and decadal scale forecasts now possible (Payne et al. 2017; Fennel et al. 2019; 

Jacox et al. 2020). Biogeochemical models can generate hindcasts, short-term forecasts, and 

long-term projections involving different climate scenarios. These forecasts make it possible to 

anticipate regional changes to important environmental and biological factors relevant to 

fisheries (Park et al. 2019; Fennel et al. 2019). Forecasts can be utilized to inform fisheries 

management and avoid future fisheries collapse (Hobday et al. 2016; Park et al. 2019). Forecasts 

can be generated for both aquaculture of fish and shellfish in stationary pens and large open-

water fisheries for migratory species (Hobday et al. 2016). Global marine biogeochemical 

predictions developed using coupled ocean climate models can skillfully predict chlorophyll 

concentration a season to a full year in advance (Park et al. 2019; Fennel et al. 2019). Currently 

there are only a few operational forecasting systems for aquatic living resources run by a natural 

resources management agency due to constraints related to the large manpower commitment, 
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access to data at a meaningful spatial scale, computational resources, poor understanding of all 

relevant environmental variables, and adequacy of data assimilation methods (Fennel et al. 

2019). Forecasts can be used at a variety of spatiotemporal scales and by multiple types of 

stakeholders who may not necessarily rely on the forecast heavily each year or use the forecast 

on its own without additional management considerations (Hobday et al. 2016). However, 

forecasts can be especially helpful when they can predict drastic shifts in environmental 

conditions, which can prepare fisheries and management for those changes (Hobday et al. 2016, 

2019; Mills et al. 2017).  

Ecological forecasts can predict biological productivity, spatial distribution, and 

phenology, with forecasts of spatial distribution among the most common type of forecast 

developed for living marine resources (LMR). Seasonal forecasts of fish phenology, abundance, 

and distribution have been developed for several US fisheries, including Maine lobster (Homarus 

americanus) (Mills et al. 2017), Pacific sardine (Sardinops sagax) (Tommasi et al. 2017b), and 

Chinook Salmon (Oncorhynchus tshawytscha) (Anderson & Beer 2009). However, no such 

forecasting system has been developed for the LMR of the Southeast US. Phenological forecasts 

require high-temporal-resolution datasets (i.e., daily to weekly resolution) to accurately address 

key fisheries issues, such as the opening/closure of a fishery (Payne et al. 2017). There are 

multiple decades of sub-daily data on the A/R Striped Bass migration making it an ideal species 

to study the effects of climate change on fish phenology in the Southeast US.  

The goal of this project was to create a model that can forecast the Striped Bass migration 

timing based on the environmental conditions encountered in the months and weeks leading up 

to spawning. The timing of spawning in Striped Bass has been linked to seasonal changes in 

temperature both locally and throughout the species range. Warming spring temperatures cue 
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movement of Striped Bass to spawning grounds in New Brunswick, Canada (Douglas et al. 

2009), Chesapeake Bay and its tributaries (Secor & Houde 1995), the Roanoke River and 

Albemarle Sound (Rulifson 1990; Callihan et al. 2015), and the Hudson River in New York 

(Nack et al. 2019). Interannual variations in the onset and end of the spawning season in the 

Roanoke and Tar Rivers in North Carolina have been linked to temperature anomalies (Callihan 

et al. 2015; Smith & Rulifson 2015).  

Skillful forecasts of LMR can be developed based on either accurate forecasts of future 

climate conditions, persistence of current climate anomalies, or the continued influence of past 

climate anomalies on marine organisms as they age, grow, and reproduce (Payne et al. 2017). 

The model developed herein focuses on the latter two processes that can lead to forecast skill. 

The current generation of seasonal climate forecasts, such as the National Center for 

Environmental Prediction Climate Forecast System v2 (Saha et al. 2014) and North American 

Multi-Model Ensemble (Kirtman et al. 2014), have not been tested over the full period of the 

available biological data that were used to generate an ecological forecast for Striped Bass. 

Forecasts for Gulf of Maine lobster and Pacific salmon migrations use lags based on observed 

data rather than coupled climate models to create seasonal forecasts (Payne et al. 2017). A 

similar approach was used for this forecast where biological and environmental data from early 

in the season informed a forecast for later in the season. Over 1,000 pages of data tables on 

historical A/R Striped Bass egg and creel surveys going back to 1960 were digitized for the 

model developed herein. The sub-daily fisheries independent egg survey and the fisheries 

dependent creel survey at Weldon, NC make it possible to have accurate estimates of the daily 

phenology of the A/R stock Striped Bass migration and spawning events. 
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Figure 1.2 displays the hypothesized relationships that could lead to early migration of 

Striped Bass in the proposed forecast. Rising temperatures in the ASMA and RRMA are 

hypothesized to have the strongest effect on A/R Striped Bass migration as a similar effect has 

been demonstrated for spring water temperature on Chesapeake Bay Striped Bass phenology 

(Peer & Miller 2014). Overwintering temperatures will also likely have a strong impact on 

migration timing as these temperatures will directly affect the rate of gonadal development 

(Clark et al. 2005; Genner et al. 2010). In a controlled environment, Chesapeake Bay Striped 

Bass showed large increases in spawning-related hormones starting in January when 

temperatures at the time of the study began to rapidly increase (Woods & Sullivan 1993).  

Pulse duration timing (PDT) metrics are used in this analysis as they capture the timing 

and occurrence of high flow and wind events that can create barriers to fish migration (Haro et 

al. 2004; Peer & Miller 2014). Peer & Miller (2014) showed river flow PDT and wind PDT were 

not key factors in migration timing among Chesapeake Bay Striped Bass, but they could have a 

different relationship to the A/R stock Striped Bass phenology. Since the RRMA is highly 

influenced by three main stem dams in the river, high flow events are unlikely and don’t occur as 

often as they would under natural conditions (LeGrand & Hall 2014). It is unlikely that river 

PDT will have a strong influence on the migration timing, but it is important to consider in case 

of unusually high flows. River discharge prior to marine exit may play a role in anadromous fish 

migration timing due to the changes in potential salinity and olfactory cues to fish waiting to 

migrate in staging areas (Mundy et al. 2011). To account for these additional potential effects, 

average daily discharge from the Roanoke Rapids Dam will also be included in the forecast.  

Stock composition and variation in the percentage of the stock that is highly migratory 

(i.e., that uses ocean habitat) could have a substantial influence on migration timing as different 
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sizes of spawning individuals may migrate from very different regions and environments 

(Callihan et al. 2015). Larger individuals may be better suited for surpassing velocity barriers 

and be less impacted by high flow periods (Haro et al. 2004).  

Regional climate indices may affect migration timing due to their influence on a variety 

of climate and weather patterns in a region. Also, large Striped Bass spend a significant amount 

of time in ocean waters, which are influenced by regional climate indices. El Niño Southern 

Oscillation (ENSO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation 

(AMO) are the principal regional climate indices that impact temperature and precipitation in the 

Roanoke River basin (McCulloch 2017). These climate indices can influence precipitation and 

river flow patterns and consequently Striped Bass phenology. NAO measures the sea surface 

pressure differences between the subtropical high near the Azores Islands and the subpolar low 

located near Iceland (Hurrell 1995; Roberts et al. 2019). Decadal climate variability affects air 

temperatures within the lower Roanoke River watershed, such that the NAO is positively 

correlated with winter temperatures whereas the AMO is more closely associated with annual 

mean temperature (McCulloch 2017; Roberts et al. 2019). The AMO describes a 65-80-year 

cycle in temperature anomalies, which is based on variations in sea surface temperatures from 

the North Atlantic basin (0ºN-70ºN) (Enfield et al. 2001). The AMO has distinct warm and cool 

phases affecting the whole North Atlantic basin, with a cool phase in the 1970-1990s and warms 

phases occurred in the 1960s and from the mid-1990s to present (McCulloch 2017). ENSO is a 

naturally occurring anomalous state in the tropical Pacific Ocean where positive values of this 

index indicate an El Niño phase and negative values indicate La Niña phases (Wolter & Timlin 

1998). Teleconnections associated with ENSO-related climate variations in the tropical Pacific 

lead to changes in precipitation in North Carolina, such that El Niño years are characterized by 
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greater rainfall and La Niña years by drier conditions during winter (Roswintiarti et al. 1998). 

Changes in precipitation may affect flow rates or water levels in the Roanoke River; however, 

for the lower Roanoke River, these conditions are controlled by releases from the main stem 

dams (Legrand et al. 2014).  

In terms of the influence of climate indices on fishes, the AMO is negatively correlated 

with the larval abundance of freshwater fishes in the Roanoke River, whereas the NAO is 

hypothesized to modulate the abundance of anadromous fish larvae via its effect on winter 

temperature (McCulloch 2017). More specifically, the AMO is positively correlated to Striped 

Bass larval abundance in Chesapeake Bay (Nye et al. 2014). In the Hudson River estuary, 

Striped Bass abundances increased during the positive AMO phase (Buchsbaum & Powell 2008; 

O’Connor 2012; Nye et al. 2014). McCulloch (2017) showed that minimum winter air 

temperatures, spring flows and spring precipitation had an impact on Striped Bass larval 

abundance in the lower RRMA. Neither NAO nor AMO had a strong impact on Striped Bass 

larval abundance; however, NAO may indirectly impact larval abundance since the NAO is 

positively correlated with winter RRMA air temperatures (McCulloch 2017). NAO is an 

important factor influencing the presence of several coastal NC species in the fall but had a less 

important influence on fish presence in the spring (Roberts et al. 2019). Given the regulation of 

spring flows in the Roanoke River, precipitation changes and wet vs. dry seasons affected by 

NAO and ENSO may have muted effects on conditions that A/R Striped Bass experience. NAO 

was not strongly associated with precipitation in RRMA (McCulloch 2017). With the shift 

toward a quasi-run of river dam release schedule in 2016, variability in climate indices may be 

more important in the lower Roanoke River in recent years and have a stronger impact on Striped 

Bass phenology. Since local climate rather than regional climate is more likely to directly impact 
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adult Striped Bass, regional climate indices are not hypothesized to have a strong effect on yearly 

forecasts but are potentially more important for future decadal projections, especially since these 

indices exhibit strong fluctuations at this time scale. However, there are some exceptions to this 

pattern. For example, Auth et al. (2011) found that climate indices explained more variation in 

larval concentration and diversity than local environmental variables.  

 

1.3 Research Objectives 

The primary objective of my thesis was to establish an ecological forecast of Striped Bass 

migration timing that emulates a potential operational forecast that could be used by managers. 

Ecological forecasts have been developed for several LMR in the US but not for any in the 

Southeast US. This forecast should identify key environmental and biological variables that 

affect the migration timing of A/R Striped Bass. Factors affecting the phenology of Chesapeake 

Bay Striped Bass have been established by Peer and Miller (2014); however, this has not been 

done for the A/R stock. This research has been made possible by digitizing historical surveys of 

Striped Bass eggs and recreational catch (Hassler et al. 1981).  

The Hassler (1981) egg survey was also used to assess the effect of reduced egg sampling 

effort on phenology metric accuracy. Few fisheries independent surveys sample populations 

daily; instead, monthly, seasonal, or annual surveys are much more commonplace (Mackas et al. 

2012). However, less frequent sampling may reduce the ability of researchers to accurately 

estimate long-term phenological changes. Since Striped Bass spawning has been assessed 

historically at a sub-daily scale, I estimated how the accuracy of estimating phenological metrics 

changes with reduced sampling by modeling subsets of this historical dataset. This may help 
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determine the ideal design of fisheries independent surveys that aim to study phenological 

change. Striped Bass eggs have not been collected on the Roanoke River since 1993 and 

resuming this survey may be important for assessing if Striped Bass spawning has shifted earlier 

in the year, which would in turn impact the effectiveness of the static seasonal fishing closure. 

This thesis is broken up into four chapters with an appendix section. Chapter I is a 

literature review of topics influencing the creation of an ecological forecast on Striped Bass 

phenology. The chapter is made to be broad and provide background information on the ecology 

and management of Striped Bass, as well as background on ecological forecasting. Chapter II 

and Chapter III are written to be independent chapters, so they may be easily submitted as 

publications in the near future. Both chapters repeat some information from Chapter I, since they 

are all written to be read independently of each other. Chapter II covers the development and 

results of the ecological forecast on A/R Striped migration and spawning. Chapter III focuses on 

creating hypothetical sampling schedules of the Striped Bass egg survey to assess the efficacy of 

sampling at intervals of less than once a day. Information in Chapter III may inform future 

survey design. Chapter IV focuses on summarizing conclusions from previous chapters, 

management recommendations, and future modeling considerations.  
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Figure 1.1. Map of Striped Bass spawning grounds in the Roanoke River and data collection 

sites. 
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Figure 1.2. This conceptual diagram represents the environmental and biological variables that 

are used in the ecological forecast. The arrows represent relationships that would lead to an 

early spawning event. 

              

           
       

            
            

           

                   

             
                
              
       

             
           

          
            

        
       

               
             

        
        

    



 

 
 

 

CHAPTER 2: Phenology in a Changing Environment: An Ecological Forecast of 

Albemarle Sound/Roanoke River Striped Bass Stock Migration 

2.1 Introduction:  

Environmental variability can cause the seasonal timing of key biological events 

(phenology), such as migrations and spawning, to be altered relative to the typical seasonal cycle 

(Asch et al. 2015). Anadromous fishes, such as Striped Bass (Morone saxatilis), exhibit variable 

phenology, due to a sensitivity to environmental conditions regardless of whether those 

conditions reflect interannual variation or longer-term changes in climate (Peer & Miller 2014; 

Nack et al. 2019). Warming temperatures can lead to faster gonadal development in 

poikilothermic fishes, which may impact the timing of migrations to spawning grounds 

(Pankhurst & Porter 2003). Changes in river flow, temperature, oceanic currents, genetic 

diversity, population dynamics, and other abiotic and biotic factors can alter fish migration 

phenology (Anderson & Beer 2009; Peer & Miller 2014; Asch 2015). Variability in phenology 

can affect reproductive success of a population or lead to mismatches with other trophic levels, 

which can have negative impacts on fisheries (Cushing et al. 1990; Payne et al. 2017). 

Multiple researchers around the world have developed ecological forecasts for living 

marine resources (LMR) to help stakeholders prepare for changes in fish phenology, abundance, 

habitat, or distribution (Hobday et al. 2019). Seasonal forecasts of LMR have been developed for 

several US fisheries, including Maine lobster (Tommasi et al. 2017a; Mills et al. 2017), Pacific 

sardine (Tommasi et al. 2017b), and chinook salmon (Anderson & Beer, 2009). However, to the 

best of my knowledge, no such forecasting system has been developed for the LMR of the 

Southeast US. The migration timing of anadromous fishes may offer opportunities for ecological 

forecasting in this region. In particular, Striped Bass migration timing has shown variability in 
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response to changing temperatures in the Roanoke River, Chesapeake Bay, and Hudson River 

(Rulifson et al. 1993; Peer & Miller 2014; Nack et al. 2019). Phenological forecasts require high 

temporal resolution datasets (i.e., daily to weekly resolution) to accurately address key fisheries 

issues, such as optimizing the seasonal opening and closure of a fishery (Payne et al. 2017). The 

Albemarle Sound / Roanoke River (A/R) stock of Striped Bass is a well-studied population with 

an abundance of environmental and biological data going back to the 1960s, thus making them a 

good candidate species for development of a phenological forecast (Hassler et al. 1981; Essig et 

al. 2018). 

North Carolina holds the southernmost spawning population of anadromous Striped Bass 

on the east coast of the US (i.e., the A/R stock). Spawning onset is associated with temperatures 

rising above 18º C. Spawning primarily occurs in Weldon, NC at river mile 131 (Figure 1.1; 

Hassler et al. 1981; Rulifson 1990). Small, but sexually mature, fish below 600 mm TL remain in 

Albemarle Sound year round when not spawning in riverine habitat (Figure 1.1; Callihan et al. 

2015). Intermediate sized fish (700-850 mm TL) emigrate into oceanic waters during summer 

but generally stay close to the coast of North Carolina and Virginia as they overwinter (Callihan 

et al. 2015). Highly migratory fish are those larger than 900 mm, showing consistent migratory 

patterns where they leave the Roanoke River in the late spring after spawning and migrate to 

coastal waters as far north as Massachusetts in the summertime (Zurlo et al. 2014; Callihan et al. 

2015; ASFMC 2017). Abundance is related to the size structure of the stock and consequently 

changes the proportion of fish migrating from different areas to spawn in the Roanoke River 

(Lee et al. 2020). For example, a less abundant stock will have fewer large individuals that are 

migrating from ocean overwintering habitats. These larger and older individuals may have 

different phenologies than the younger spawners. Similarly, larger Striped Bass have also been 
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shown to migrate upriver faster and more easily surpass river velocity barriers (Haro et al. 2004; 

Callihan et al. 2015).  

There are multiple hypothesized environmental variables that could affect Striped Bass 

phenology, with the following relationships describing the environmental variables used in this 

study. The Roanoke River is heavily regulated by the three dams extending north to its 

headwaters in the mountains of Virginia, with the Kerr Dam actively regulating discharges that 

flow through the other two dams (Figure 1.1; LeGrand & Hall 2014). Beginning in the early 

1990s, flow regimes in spring were regulated to meet Striped Bass spawning criteria with a 

three-tiered flow regime that starts with a high initial water release that diminishes into a level 

plateau over the season (Zincone & Rulifson 1991). Rising temperatures in the Albemarle Sound 

Management Area (ASMA) and Roanoke River Management Area (RRMA) are hypothesized to 

have a strong effect on the Striped Bass migration timing since spring water temperature has a 

substantial influence on Chesapeake Bay Striped Bass phenology (Peer & Miller 2014; Callihan 

2015). Wind and river pulse duration timing (PDT) metrics are a second factor that are 

hypothesized to influence A/R stock phenology as they capture the timing and occurrence of 

high river flow and high wind events that can create barriers to fish migration (Haro et al. 2004; 

Peer & Miller 2014). River discharge prior to marine exit may play a role in anadromous fish 

migration timing due to the changes in potential salinity and olfactory cues to fish waiting to 

migrate in staging areas (Mundy et al. 2011).  

Regional climate indices may affect migration timing due to their connections to regional 

environmental state. El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), 

and Atlantic Multidecadal Oscillation (AMO) are the principal regional climate indices that 

impact temperature and precipitation in the Roanoke River basin (McCulloch et al. 2017). 
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ENSO-related climate variations in the tropical Pacific lead to changes in precipitation in North 

Carolina, such that El Niño years are characterized by greater rainfall and La Niña years by drier 

conditions during winter (Roswintiarti et al. 1998). Precipitation changes may affect Roanoke 

River flows, including pulses in river flow. The AMO describes a 65-80-year cycle in 

temperature anomalies, which is based on variations sea surface temperatures from the North 

Atlantic basin (0ºN-70ºN) (Enfield et al. 2001). The NAO measures the sea surface pressure 

differences between the subtropical high near the Azores Islands and the subpolar low located 

near Iceland (Hurrell 1995). Decadal climate variability affects air temperatures within the lower 

Roanoke River watershed, such that the NAO is positively correlated with winter temperatures 

whereas the AMO is more closely associated with annual mean temperature (McCulloch 2017; 

Roberts et al. 2019). These three indices are all calculated using variables from the ocean basins 

they represent and will have a stronger hypothesized impact on the larger Striped Bass that 

overwinter in the ocean. 

Striped Bass are a valuable recreational and commercial species across the East Coast, 

and many stocks have experienced periods of overfishing and recovery (ASMFC 2017). For 

instance, commercial A/R stock landings displayed a distinct decline in the 1980s due to 

overfishing, with large declines in landings in 1990s reflecting changing regulations in part 

(Gambill & Bianchi 2019). Following the implementation of fishing effort controls, in 1997 the 

A/R stock was officially declared recovered by the Atlantic States Marine Fisheries Commission 

(ASMFC), with an estimated population size of two million fish in 1999 (NCDMF & NCWRC 

2004). Following an increase over time in fishing effort, the 2017 stock assessment of the A/R 

stock showed that the population is once again overfished and experiencing overfishing (Lee et 

al. 2020). Currently the A/R stock fishery has an open season from March 1-April 30, with the 
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May 1st closure intended to protect large spawning females (Lee et al. 2020). Male Striped Bass 

typically arrive on the spawning grounds about two weeks before females, making most fish in 

the Roanoke River before May likely to be males (Callihan et al. 2015). The seasonal closure is 

designed to limit catch of female Striped Bass so they can spawn that season, which occurs 

typically in May. A forecast of A/R stock phenology could help better inform the timing and 

effectiveness of this seasonal closure. A similar seasonal closure exists in the Chesapeake Bay 

for Striped Bass, which can have variable effectiveness given changing phenology (Peer & 

Miller 2014). A forecast of Striped Bass migration timing may be of interest to fisheries and dam 

management agencies who actively control the Roanoke River flow regime and set the yearly 

fishing season.  

With multiple decades of sub-daily data on the A/R Striped Bass migration and spawning 

activity, they make an ideal population to study the effects of climate change on fish phenology 

in the Southeast US. The historical and more recent phenology of this stock has been described, 

including trends over time using recently analyzed historic data. The goal of this research was to 

create a model that can forecast the Striped Bass migration and spawning timing based on the 

environmental and biotic conditions encountered in the months and weeks leading up to 

spawning (Figure 1.1). This forecast was based on the continued influence of past and current 

climate anomalies on marine organisms as they age, grow, and reproduce (Payne et al. 2017). 

The primary forecast described herein was designed to emulate an operational forecast and took 

weekly averages of explanatory variables to forecast the day of the year of key phenology 

metrics (Figure 1.1). A retrospective forecast was generated to create confidence intervals of 

predicted values and assess model skill. By iteratively leaving out data from different years, an 

ensemble of models was generated with slightly different data used for model fitting in each 
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iteration. These modeling methods were used to identifying key variables that influence A/R 

migration and spawning phenology.  

 

2.2 Methods: 

2.2.1 Environmental data:  

Based on previous research on Striped Bass spawning habitat, phenology, and migration 

patterns, eight independent environmental variables were chosen to include in the forecast 

models: spring river temperature anomalies, winter ocean temperature anomalies, river pulse 

duration timing (PDT), wind PDT, river discharge, and three regional climate indices ENSO, 

NAO, and AMO. The abiotic independent variables will be described in greater depth below.  

 

2.2.1.1 Temperature in oceanic and river habitats: 

River and ocean temperature have been shown to be linked to the onset of spawning in 

A/R Striped Bass (Callihan et al. 2015; Smith & Rulifson 2015). Daily data on air and water 

temperature in Halifax, NC for April-June are included in reports on historical egg production 

surveys (Figure 1.1; Hassler et al. 1981; Rulifson 1993). However, my model required 

temperature data from months prior to egg production surveys since the goal of this project was 

to produce a forecast that could be disseminated in advance of the spawning season. As a result, I 

utilized daily air temperature data (Table 1.1) from a time series that integrates observations 

from Weldon, NC and Roanoke Rapids, NC spanning between 1904 and the present (Figure 1.1; 

McCulloch 2017; State Climate Office of North Carolina 2017).  
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In-situ water temperatures were not available from January – June in each year of the 

historical period; however, daily air temperatures are available for the entire period. Air 

temperatures were converted to river temperature via a bias correction to account for the fact that 

releases of water from the Kerr Reservoir upstream of the Striped Bass spawning grounds can 

impact river temperature, potentially causing discrepancies between the air temperatures and in 

situ temperatures experienced by fish (Figure 1.1; Rulifson & Manooch 1990).  Regression 

models (Table 2.2) were created using the entirety of each water temperature data source, as well 

as two additional models of the US Geological Survey (USGS) temperature data that modeled 

data before and after day of the year 81 (first day of spring) separately to create a winter and 

spring model. The regression model with the highest adjusted R2 (0.80) was the USGS 

temperature-based model that included data from the entire modeling period (Jan 1-June 30) 

rather than the alternative models divided by season (Table 2.2). The bias correction was applied 

to the raw Roanoke Rapids air temperatures that was then smoothed using a three-day moving 

average (Mills et al. 2017). These river temperature data were then converted to daily anomalies 

using combined means from both periods including the years 1960-1993 and 2005-2016. This 

was done since using absolute values can lead to overinflated skill estimates in forecasts 

(Hobday et al. 2019).  

 The overwintering grounds of the migratory component of the A/R Striped Bass stock are 

important since the temperatures in this area can affect the rate of gonadal development, which 

could influence spawning timing (Laney et al. 2017). Air temperature data from overwintering 

grounds were obtained from the weather station at the Oceana Naval Air Station in Virginia 

Beach, VA (Table 2.1; State Climate Office of North Carolina 2017). This site was selected due 

to its spatial overlap with A/R Striped Bass overwintering grounds identified based on acoustic 
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telemetry (Callihan et al. 2015), the availability of air temperature data that have been collected 

daily since March 1945 (State Climate Office of North Carolina 2017), and the fact that air and 

sea surface temperature at this site have been shown to be closely correlated (Peer & Miller 

2014). 

 

2.2.1.2 Wind speed and river flow pulse duration timing (PDT):   

Daily pulses of fast-moving water can be created in the Roanoke River through wind 

events, rain events, or large dam releases. River and wind pulse events have been shown to affect 

egg and larvae abundances, overall reproductive success, and recreational catches of pre-

spawning female Striped Bass (North et al. 2005; O’Connor et al. 2012; Peer & Miller 2014). 

Similarly, in the Roanoke River, spring river discharge is negatively correlated with interannual 

variations in juvenile abundance of estuarine fishes, including Striped Bass (Rulifson & 

Manooch 1990; McCulloch 2017; Lee et al. 2020). Intermediate flow levels (5,000-11,000 cfs) 

in this river are associated with heightened egg viability and greater recruitment in the A/R 

Striped Bass stock (Rulifson & Manooch 1990). Flow levels that are too low can cause eggs to 

get buried in the sediment and high flow levels (> 20,000 cfs) can cause eggs to become stranded 

on flooded riverbanks, both leading to poor recruitment (Rulifson & Manooch 1990). In addition 

to effects on early life stages, it has also been hypothesized that strong winds and river flow may 

inhibit spawning migrations, thus, delaying spawning phenology (Anderson & Beer 2009; Peer 

& Miller 2014).  

Pulse Duration Timing (PDT) was calculated as follows using methods outlined in Peer & 

Miller (2014):  
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1. The direction of wind flow was analyzed when the wind was parallel to water flow in the 

Roanoke River below the Roanoke Rapids Dam (Figure 1.1). In other words, wind 

direction was southeast or blowing in directions between 90-180°. 

2. Pulses were calculated as the number of days when these conditions were met:  

a. Mean wind velocity on a given day exceeded the climatological mean for 1960-

1993. 

b. River velocity on a given day was over 2 m s-1. This is a modification from the 

PDT calculation methodology from Peer & Miller (2014). The justification for 

this modification is explained below.  

3. The pulse event in question occurred between the earliest historically observed migration 

start date from either the creel or egg surveys and the latest observed spawning date (tstart 

and tend, respectively).  This is important because pulses occurring at other times of the 

year would not likely affect fish migration. 

4. Pulse duration (Pd) for week y was calculated as the cumulative number of days with 

pulses between tstart and week y. Pulse timing (Pt) was computed as the difference 

between the first day when water temperatures estimated for the Roanoke River reached 

10º C consistently and the first day of a wind or river flow pulse in a year. The day when 

the temperature threshold reached 10º C consistently was defined as when the 

temperature remained above that point for the rest of the season. The 10º C temperature 

was used in this calculation because Callihan et al. (2015) showed that tagged Striped 

Bass consistently started entering the Roanoke River when temperatures were 9-10o C. 

Since potential delays in spawning due to pulses are influenced by both the event’s 

timing and duration, these two metrics were combined into a single quantity, such that:   
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PDT(y) = |[Pt(y) – Pd(y)] – c| 

where c is a constant equal to the difference between tstart and tend. 

5. Years where no pulses occurred were listed as 0 for the entire year.  

To evaluate the possibility that river flow and wind velocity may affect A/R Striped Bass 

spawning migrations, I used flow data from the US Geological Survey (USGS) river discharge 

gauge in Roanoke Rapids, NC and wind data from Climate Retrieval and Observations Network 

of the Southeast (CRONOS) database (Figure 1.1; Table 2.1; State Climate Office of North 

Carolina 2017). Daily data from this gauge were available for the years 1911-present (Table 2.1). 

The nearest weather station in CRONOS that has wind observations encompassing the full 

period of the egg production surveys is located at Raleigh-Durham Airport, which is ~90 miles 

from the A/R Striped Bass spawning grounds (Figure 1.1). A bias correction was developed 

comparing this data source with wind data from the Halifax-Northampton Regional Airport 

(KIXA) station in Roanoke Rapids, which had data from a shorter period (2009- 2020) that did 

not encompass the full duration of this study (Table 2.2). The KIXA station was chosen due to its 

proximity to the spawning grounds and relatively greater temporal coverage when compared to 

other nearby CRONOS wind stations (Figure 1.1).  

Peer and Miller (2014) used a PDT method for determining the effect of river flow on 

Striped Bass migration timing. I improved upon this previous work by using an alternative 

method of calculating river flow PDT that incorporated Striped Bass physiological thresholds. 

Haro et al. (2004) ran Striped Bass through a flume in which only 65% of the Striped Bass could 

swim to the top of the flume when the flume had a flow velocity of 2 m s-1. This indicated that at 

2 m s-1 water velocity, a sizable portion of Striped Bass were hindered from moving passed this 

velocity barrier. For my model, river pulses were described as any day in which the daily 
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velocity exceeds 2 m s-1. To calculate velocity of the Roanoke River, I used the equation 

Velocity = Discharge / Cross Sectional Area. Daily discharge was available across the entire 

modeling period through the USGS gauge at Roanoke Rapids (Table 2.1; State Climate Office of 

North Carolina 2017). D. Walters (USGS, 2020) provided multiple cross sectional area 

measurements a year taken at the Roanoke Rapids gauge site. A regression model was developed 

to generate daily cross sectional area estimates based on daily gauge height values regressed 

against available cross sectional area values:  

Equation 1: Cross Sectional Area (ft2) = Gauge Height (ft) * 826.53 + 239.89 

Gauge height was only readily available from 1974-present. Doug Walters from USGS 

provided a relationship between gauge height and discharge to estimate the gauge heights from 

1960-1973 when direct measurements of gauge height were missing (D. Walters, USGS, 

personal communication). Then daily velocity was calculated as described above and used to 

identify pulses over 2 m s-1. Raw river discharge values were also considered in the forecast 

models to account for the direct effects of discharge on migration rather than the effects of 

occurrence and timing of large pulses. River discharge prior to marine exit may play a role in 

anadromous fish migration timing due to the changes in potential salinity and olfactory cues to 

fish waiting to migrate in staging areas (Mundy et al. 2011).  

 Peer and Miller (2014) used a different method to calculate flow PDT that was updated 

for this study. In Peer and Miller (2014), a pulse was counted when the daily average river flow 

was greater than twice the yearly average. Peer and Miller (2014) found many years with zero 

values of PDT in their study of Striped Bass phenology in Chesapeake Bay. Using the original 

Peer and Miller (2014) PDT calculation method, I also had zero-inflated data for flow PDT 

(Figure 2.1). When using that calculation method, a day with relatively high discharge across the 
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time series could be a relatively average discharge in a high discharge year. This created more 

pulses in low discharge years and less pulses in years with high flow. To make the pulse 

threshold more relevant to Striped Bass biology, the pulse threshold was changed when the daily 

average velocity was above a specific velocity threshold. Originally the velocity threshold used 

velocities of 3 m s-1 to define a pulse. This velocity had a strong effect on the ability of Striped 

Bass to climb an experimental flume (Haro et al. 2004). The 3 m s-1 velocity only had about 5% 

of Striped Bass fully passing the velocity barrier, indicating that it was a hard barrier to 

migration for most Striped Bass. In contrast, the 2 m s-1 threshold indicated a hindrance to 

Striped Bass migration timing (Haro et al. 2004). The 3 m s-1 pulse threshold also yielded many 

years with zero pulses, so a 2 m s-1 threshold was adopted in my ecological forecast to minimize 

zero inflation.  

 

2.2.1.3 Regional climate indices:  

ENSO, NAO, and AMO are the principal regional climate indices that impact 

temperature and precipitation in the Roanoke River basin (McCulloch et al. 2017). Given the 

influence of these climate indices on the early life history of Striped Bass and other anadromous 

fishes, I hypothesize that they may also modulate interannual variations in the timing of 

spawning migrations. Consequently, I incorporated monthly data on the Multivariate ENSO 

Index (MEI) (Wolter & Timlin 1998), AMO (Enfield et al., 2001), and daily NAO (Hurrell, 

1995) into my forecast model using data available from the NOAA Climate Prediction Center 

and NOAA Earth System Research Laboratory. As with winter ocean temperatures, climate 

indices values inputted into the models were cumulative values to reflect impact of persisting 
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conditions. Climate indices were entered into models as the cumulative value of the climate 

indices data during each initialization week.  

 

2.2.2 Biological data: 

 My model development takes advantage of a historical dataset that includes 34 years of 

Striped Bass egg production surveys conducted in the Roanoke River (Hassler et al. 1981; 

Rulifson 1993). These surveys were initiated in 1959 by Dr. William W. Hassler from North 

Carolina State University and were continued up until 1987 (Hassler et al. 1981). Dr. Roger 

Rulifson from East Carolina University then assumed responsibility for egg production surveys 

during 1988-1993. Yearly summaries of daily data generated by these surveys are hereafter 

referred to as the Hassler and Rulifson reports, respectively (Rulifson et al. 1995). Collectively, 

the Hassler and Rulifson reports document an egg survey that sampled Striped Bass eggs 

throughout the spawning season from 1960-1993 creating a rich long-term dataset that was able 

to effectively capture the timing of the Striped Bass spawning in that period. Striped Bass eggs 

hatch within 48 hours of fertilization making them effective indicators of recent spawning 

activity (Hassler et al. 1981). Prior to my initial work on this research project, these surveys had 

not been converted to a spreadsheet format and some have never been digitized. The initial phase 

of data processing included digitizing all relevant data sources from the historical surveys using 

Able2Extract conversion software (investintech.com/prod_a2e.htm#convert).  

 These surveys collected fish eggs from late April through mid-June below the Striped 

Bass spawning ground at Barnhill Landing, NC and Halifax, NC (Figure 1.1). The Rulifson 

surveys spanned between approximately April 15 through June 14. The Hassler reports 
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documenting these surveys generally did not begin their full sampling effort until after April 29, 

with only the occasional once a day sample taken before late April to assess the presence of any 

Striped Bass eggs. During the Hassler surveys, eggs were sampled with 5-minute tows every 

three hours, whereas Rulifson collected samples at 4-hour intervals for five minutes (Rulifson 

1993). Sampling occurred 24 hours a day for the duration of the spawning season (Hassler et al. 

1981; Rulifson 1993). Samples were collected at the surface for all years and oblique tows were 

also collected in the years of the Rulifson reports (Hassler et al. 1981; Rulifson 1993). Surface 

tow results were used in my model to remain consistent between the Rulifson and Hassler 

surveys. The egg survey used a 10-inch diameter, 6:1 mouth-to-tail ratio bongo net with a 500-

µm mesh. The nets used solid sample cups and a low-speed flow meter to calculate water 

filtered.  

The Hassler and Rulifson reports both used standardized daily estimated egg 

concentrations that accounted for the cross-sectional area of the river where the samples were 

collected. Using standardized data from these egg production surveys, my forecast made 

predictions of three indicators of Striped Bass spawning phenology: start of season (date of 15th 

cumulative percentile of egg concentration each year), season midpoint (date of the 50th 

percentile), and season end (date of the 85th percentile). These cumulative percentiles are well-

established indicators of interannual phenological variability and have been used to study 

phenology of marine organisms, particularly zooplankton and larval fishes, across many 

ecosystems (Greve et al. 2005; Chiba et al. 2012; Mackas et al. 2012). Research on Striped Bass 

in Chesapeake Bay has already established that these metrics are useful for assessing interannual 

phenological variability in this species (Peer & Miller 2014).  
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The Hassler reports also listed daily estimates of Striped Bass catch and effort from a 

creel survey in Weldon, NC, which I used to calculate a second phenology metric in the same 

way that they were calculated for the egg survey. Full-time creel clerks were employed at 

Weldon, NC boat ramp day and night to conduct full interviews of anglers and obtain data on the 

amount of time fishing and number of fish caught (Hassler et al. 1981). The creel survey is a 

fisheries-dependent data source with very different collection methods than the egg survey, but 

with the same level of temporal and spatial resolution. This allowed for a key comparison into 

the performance of fisheries independent and dependent data sets.  

Years in which the egg or creel survey start of season metric occurred in the first week of 

the survey were excluded from analyses since the survey may not have started sampling close 

enough to the true beginning of the spawning run to accurately assess phenological metrics. 

There should be multiple days with zero catch early in an annual dataset to indicate the spawning 

migration had not yet begun (Staudinger et al. 2019). In these years when the survey began late 

relative to the spawning run, a substantial portion of the eggs or catch was observed before the 

occurrence of days with zero catches. Years removed for this reason from the spawning 

phenology metrics were 1967, 1972, 1974, 1975, 1979, 1985, and 1986. The years removed from 

the creel survey on adult migration beginning and midpoint were 1964-1967, 1969, 1975, and 

1982-1987.  

Initial results showed key differences in the phenology of the two surveys indicating that 

the egg survey-based phenology was measuring spawning activity whereas the creel survey 

measures migration phenology (Figure 2.2). Key differences were especially noticeable in the 

beginning metrics with the creel survey-based phenology occurring much earlier in the year 

(Figure 2.2). Therefore, hereafter I refer to the egg survey when referencing spawning phenology 
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and the creel survey when referencing migration phenology. In many years of the egg survey, a 

distinct and large burst of egg abundance was observed, with sometimes a few small peaks 

following later (Rulifson 1995). Therefore, a peak egg concentration metric was also forecasted 

that represented the highest daily abundance of eggs estimated in a single day to try to predict 

this important feature of the Striped Bass spawning run. A peak metric was not considered for 

the creel survey as large single daily spikes in abundance were not observed.  

 The following biological variables were included as independent variables in all 

modeling approaches. Stock abundance was accounted for in modeling because Callihan et al. 

(2014) reported that, in years with high abundance, Striped Bass utilize the adjacent Pamlico 

Sound estuary system as habitat and overwintering grounds, whereas the western Albemarle 

Sound is the preferred habitat used by juveniles. Stock abundance was also used as a forecast 

covariate since years with higher or lower stock abundance can coincide with robust or reduced 

size structure, respectively, which can influence habitat use. The Hassler reports list a yearly 

catch per unit effort (CPUE) estimate based on a creel survey conducted throughout the lower 

Roanoke River (Hassler et al. 1981). Here CPUE was used as a proxy for stock size.  To 

calculate CPUE, creel census observers use a stratified design to record boat counts, angler 

effort, and catch data (Hassler et al. 1981). From 1988-1993 and 2005-2016, CPUE (fish/trip) 

estimates were obtained from NCWRC that were derived from their creel survey also measured 

by fish caught per trip (J. McCargo, NCWRC, pers. comm.). The Hassler creel survey focused 

most of its effort in Weldon, NC where the Striped Bass spawning grounds are centered. CPUE 

annual anomalies was inputted into the models to account for slight differences in collection 

methods between the Hassler derived estimates and the more recent NCWRC estimates.  
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Correlation coefficients were assessed using the exact data that was entered in the 

generalized additive models (GAMs) with Bonferroni corrected p-values. Many environmental 

variables were correlated with at least one other variable, and all biological variables were 

correlated with at least one other variable (Table 2.3). Furthermore, all three biological 

independent variables used were significantly correlated with each another (Table 2.3). The 

largest significant correlation coefficient was between cumulative ocean temperature anomalies 

and cumulative NAO values (r = 0.54), with most correlation coefficients being less than ± 0.4 

(Table 2.3). Variance inflation factors were also generated to test for multicollinearity. 

Multicollinearity was not an issue across all models as no variance inflation factor was above ten 

(Tommasi et al. 2015). Many variables considered in the modeling were significantly correlated. 

However, most were weak to moderate correlations (r = 0.3-0.5) (Mundy et al. 2011; Muhling et 

al. 2018). Collinearity could be a potential issue in the models. To assess this possibility, a 

principal component analysis among environmental variables was generated for the spawning 

beginning metric. The first three principal components, which are orthogonal to each other, were 

used as independent variables to create weekly GAM forecasts. The results of the principal 

component-based GAMs were very similar to the weekly forecast GAMs based on the original 

environmental variables. As a result, the weekly forecast was kept as the primary modeling 

method for ease in interpreting the results.  

 Univariate regression models were run using all dependent variables to obtain the rate of 

phenological change per unit of change in each dependent variable. Environmental variables 

were averaged yearly and compared to the phenology response variables using univariate 

regression models to obtain rates of change in phenology per unit of each variable (Table 2.4). 
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2.2.3 Ecological forecasting:  

2.2.3.1 Weekly forecasts: 

Three different modeling approaches were utilized to forecast Striped Bass migration and 

spawning phenology. The primary approach was a series of models that generated sequential 

weekly forecasts of spawning and migration timing during each year using a GAM approach. 

GAMs have been shown to be an effective tool for modeling phenology data (Ciannelli et al. 

2007; Lombardo et al. 2019). This approach was used to simulate operational forecasting and 

will be referred to as weekly models. The second modeling approach was a retrospective forecast 

performed on a monthly basis with the goal of generating confidence intervals of predicted 

phenology that can be used to assess whether intervals based on multiple predicted values per 

year encompass observed phenology values. The third modeling approach was a comparison of 

three different models: a base, a reduced, and a biological model with the aim of estimating the 

impact of excluding or including biological variables to predictive models (e.g., yearly sex ratio 

and average length of spawning fishes). Goodness of model fit was assessed using generalized 

cross validation (GCV) scores. All weekly GAMs were also compared using an information-

theoretic approach based on the corrected Akaike Information Criterion (AICc) and Akaike 

weights (Burnham & Anderson 2011). F scores of all model variables were compared to assess 

importance of the environmental variables to migration and spawning phenology. The GAM 

output plots describing the partial effects of each independent variable were also characterized 

and summarized in terms of statistical significance, linearity, and positive or negative 

relationships to show the relationship between explanatory and response variables (Appendix 

Figure 1).  
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All modeling was conducted with R version 4.0.5 (R Core Team, 2021) using the mgcv 

package for GAMs (Marra & Wood 2011). Knots were limited to three for all variables in 

models since all modeling had less than thirty data points (Tommasi et al. 2015). A double 

penalty shrinkage approach was applied to models to improve performance and automatically 

remove or limit the effect of non-significant variables (Marra & Wood 2011). The forecasts were 

initialized using the Hassler daily eggs survey data from 1960-1987 and the Hassler daily creel 

survey data from 1963-1987. Initialization in this context refers to the time period when data 

were directly inputted into a model prior to making a forecast of conditions during a subsequent 

time period. For this forecast, models were initialized on a weekly basis each year during the 

season between January 1st to June 30th. The Chesapeake Bay stock of Striped Bass showed large 

increases in spawning related hormones starting in January when temperatures at the time began 

to rapidly increase, so only data after January 1st were used for model initialization (Woods & 

Sullivan 1993).  

Each weekly forecast  of migration and spawning timing incorporated weekly mean data 

from that particular initialization week on river and ocean temperature anomalies, weekly 

cumulative river and wind PDT, annual A/R stock CPUE estimates, and monthly data on the 

three regional climate indices. All biological variables used in modeling were lagged by one 

year, meaning CPUE estimates entered into a model for 1965 were observed CPUE estimates 

from 1964. This reflects the fact that much of this biological context for the current year would 

be unknown at the time of forecast initialization. Note that the yearly estimates of average length 

and average sex ratio were not available for as many years as the other variables, allowing for 

fewer years of data to be entered into the models. A model with few years of data and many 

variables can lead to over-parameterization, which can lead to poor forecast performance 
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(Burnham & Anderson 2002). Therefore, a separate biological model was generated using a 

reduced set variables to compare to base models.  

Variables that focus primarily on the ocean component of the Striped Bass migration are 

most likely to have a strong impact on the rate of gonadal development and affect migration and 

spawning timing in a different way than more direct impacts of other variables. The cumulative 

effect of ocean conditions is likely more aligned with earlier phenology than a snapshot from one 

particular week (Wolkovich et al. 2012). To account for this distinction, the ocean temperature 

anomalies and the three climate indices were inputted into the model as cumulative values where 

each new anomaly value was added to the total of all previous values that year. For each 

initialization period the maximum value from the yearly cumulative total was then selected as the 

input value for that weekly model. However, instantaneous values of river variables may provide 

a more direct cue for migration or spawning. Therefore, river variables (i.e., discharge, river 

temperature anomalies, river and wind PDT) were averaged by week during model initialization. 

Since ocean conditions are unlikely to affect Striped Bass once they reach the Roanoke River, 

models switch from examining mostly ocean-based variables to examining mostly river-based 

variables. This switch occurs after day of the year 87 (March 13 in non-leap years), which is the 

earliest observed data of migration based on the creel survey. Another justification for this aspect 

of my modeling approach is that there are many covariates considered for these models and a 

limited number of years of data making it difficult to use all the variables in a single model 

without resulting in issues with lack of convergence when fitting the model. In GAM model 

equations, k is the number of splines used for a given variable, DOY is Day of Year, and s 

denotes use of a smoother. The equations for the ocean and river models are: 
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Equation 2.   Ocean Model (DOY < 87):   DOY of Phenology Metric ~ s(Cumulative Ocean 

Temperature Anomalies, k=3) + s(River Discharge, k =3) + s(Cumulative NAO, 

k=3) + s(Cumulative ENSO, k=3) + s(Cumulative AMO, k=3) + s(Lagged CPUE 

Anomalies, k=3)  

 

Equation 3.   River Model (DOY >= 87):   DOY of Phenology Metric ~  s(River Temperature 

Anomalies, k=3) + s(River Discharge, k=3) + s(River Velocity PDT, k=3) + 

s(Wind PDT, k=3) + s(Lagged CPUE Anomalies, k=3)  

Multiple model checks were implemented to test key assumptions of GAMs, such as lack 

of autocorrelation, normal residuals, and the absence of multicollinearity. The acf plot function 

in R was used to assess autocorrelation with none of the models exhibiting high correlations 

across lags in the data. QQ plots were examined to assess whether residuals were normally 

distributed using the qq.gam function, with no models showing non-normal residuals. 

2.2.3.2 Retrospective forecast: 

 A series of retrospective forecast GAMs was also created to test model skill.  The 

purpose of the retrospective forecasts was to create confidence intervals by rerunning a model 

with one year of data missing and changing the missing year in each iteration. For example, one 

model will aim to predict the phenology of 1972 and was missing data from 1960 (and 1972), 

with the next iteration of the model missing data from 1961. By iteratively leaving out data from 

different years, an ensemble of models is generated with slightly different data used for model 

fitting in each iteration (Figure 2.3). Confidence intervals can then be generated by looking at the 
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range of predictions across these iterations. This process was repeated for each prediction year 

(Figure 2.3).  

The same datasets from the weekly forecast approach were used in this analysis. Four 

versions of this approach were conducted for each prediction year using initialization periods 

split up by the months January, February, March, and April.  These were also the four months 

that lead up to the average beginning of the spawning phenology where an accurate forecast 

during this time would be more useful. Since this approach was not developed to parallel an 

operational forecast, but instead to generate confidence intervals to evaluate model skill, fewer 

initialization periods were run for simplicity (i.e., monthly rather than weekly resolution). Each 

version only included data from a given month to generate forecasts. Retrospective forecasts for 

the first three months used the ocean model (Equation 2), while April used the river model 

(Equation 3). Violin plots with the overlayed observed phenology were used in comparisons with 

predicted values generated. Initial predictive skill was analyzed by examining the percentage of 

predicted violin distributions that contained the observed phenological event. The predictive skill 

was also analyzed on a broader basis by comparing predicted values in years that exhibited early, 

normal, or late observed phenology. Early, normal, and late phenology was determined by 

sorting observed phenology metrics from smallest to largest and then evenly splitting up the 

years into thirds.  

 The previous two modeling methods were also applied to the migration phenology end 

metric based on the creel survey. Many of the Hassler creel survey years have late survey start 

dates, with only thirteen years having adequate start dates where the beginning metric does not 

occur in the first week of the survey. The creel survey end metric is likely not affected much by 

late survey start dates. Thus, forecasts were generated for the end metric only, as opposed to the 
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beginning, midpoint, and end metrics, which were used for the egg survey. The end metric may 

still be useful to managers as the fishery typically closes on a specific date, which could be 

informed by migration or spawning end timing.  

 

2.2.3.3 Biological model comparison: 

 Given the limited number of years in the timeseries and large number of covariates, a full 

model with all theoretically important variables would likely be overparameterized or may not 

converge due to insufficient degrees of freedom. This is further complicated by a lack of data 

available on average length and sex ratio between 1960-1987, with only 16 years of available 

data (Table 2.1). The sex ratios and average length data have biases. Most of the available sex 

ratio and length data come from a tagging survey done in the lower Roanoke River commercial 

gillnet fishery during 1960-1977. Little information on gillnet mesh sizes used was available to 

assess whether all size classes of Striped Bass were represented in the catch. Only smaller fish 

were chosen to be tagged as fishermen were compensated by the pound of the released fish (R.A. 

Rulifson, pers. comm.). Despite this bias, there is still variation in these data and Peer and Miller 

(2014) have shown the strong influence of length on Striped Bass migration timing. More 

accurately collected biological data from the NCWRC occurred between 1988-1994 when the 

stock was severely overfished and larger individuals were likely not well represented in the 

population. However, the 1988-1994 period is needed for forecast validation. To assess the 

potential importance of these variables, a separate model considering these biological variables 

was created to run with a reduced dataset for the seventeen years that have available yearly sex 

ratio and average Striped Bass length (1960-1974, 1976-1977, 1985). Spawning beginning was 
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the only phenological metric used in this analysis for simplicity and because this metric would be 

of high interest to managers to have forecasts.  

To properly isolate the impacts of the additional biological variables, three different 

models were compared to one another. A base model from the full weekly forecasting results 

was compared with a reduced model and a biological model. The reduced model contained less 

variables to avoid overparameterization and the biological model consisted of the reduced model 

plus yearly average Striped Bass length and sex ratio. The reduced set of variables was selected 

based on importance of the F scores from the full model for each phenological metric and data 

visualization in GAM partial effect plots. The following are the reduced equations used in the 

biological model comparison: 

Equation 4.   Reduced Ocean Model (DOY < 87): DOY of Phenology Metric ~ s(Cumulative 

Ocean Temperature Anomalies, k=3) + s(River Discharge, k=3) + s(Lagged CPUE 

Anomalies, k=3) 

 

Equation 5.   Reduced River Model (DOY >= 87):   DOY of Phenology Metric ~ s(River 

Discharge, k=3) + s(River Temperature Anomalies, k=3) + s(Lagged CPUE 

Anomalies, k=3)  

 

2.2.4 Forecast validation:  

 When creating ecological forecasts, the skill to which the response variable can be 

forecasted and the amount of lead time that can be accurately forecasted needs to be assessed 
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with one method involving use of historical data (Hobday et al. 2016). Forecast skill should be 

evaluated with historical data that are distinct from those used for model development because 

otherwise the assessment of forecast accuracy can be overly optimistic, especially if a model is 

overfit (Brun et al. 2016; Muhling et al. 2020). Initial results examining the spawning and 

migration phenology revealed key differences in phenology patterns such that using the creel 

survey to validate the egg survey-based forecasts wasn’t possible. Therefore, for validation 

purposes, forecasts for the egg survey-based models were validated using data from the Rulifson 

period (1988-1993). The Rulifson period has almost identical methods to the Hassler period but 

was carried out by a different research group and was considered a different dataset for the 

purposes of forecast validation. For the creel survey-based models, I used creel data from 2005-

2016 for model validation. Data between 1994-2004 were not available and after 2016 the 

management of water releases from the Kerr Reservoir changed, which may affect phenology 

(US Army Corp of Engineers 2016; Riggs 2021). The models generated predictions based on 

environmental and biological data from the validation periods, but used the models developed 

during the original time period. These predictions were then compared to observed phenology 

metrics from the Rulifson egg survey and the 2005-2016 NCWRC creel survey, respectively.  

Forecast skill was evaluated across each forecast week using three model performance 

indicators: root mean square error (RMSE), anomaly correlation coefficients (ACC), and 

absolute error (Tommasi et al. 2017b). Forecast skill was evaluated in a similar manner to Stock 

et al. (2015) and Tommasi et al. (2017b) to determine how far in advance the timing of Striped 

Bass spawning and migration can be forecasted. This was accomplished by using the ACC to 

compare forecasted and observed phenology:  
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Equation 6:  

where x is the year for which a forecast is developed; N is the number of years with forecasts; y 

is the week when a forecast is made; p is the phenological metric (i.e., start of season, season 

midpoint, end of season, and spawning peak); F’ is the forecasted anomaly in spawning time and 

O’ is the observed anomaly in spawning time. In meteorology, forecasts are considered useful 

when skill exceeds 60% (ACC > 0.6) and are classified as highly accurate if skill > 80% (ACC > 

0.8) (Bauer et al., 2015; Payne et al. 2017). 
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2.3 Results:  

2.3.1 Striped Bass migration and spawning phenology and their trends: 

The start of the spawning phenology began as early as May 2nd (DOY 123) and the 

spawning season ended as late as May 31st (DOY 154), with an average beginning date of May 

7th (DOY 131.4 ± 5.3 S.D.) (Figure 2.2). Over the historical period (1960-1993), the four 

spawning metrics varied between 20 and 25 days. The spawning season length (difference 

between the beginning and end metrics) was 10.4 ± 4.0 days on average, with the shortest season 

being 4 days and the longest 21 days. The mean spawning peak occurred on May 14th (DOY 

135.8 ± 6.9 S.D.), with the earliest occurrence on May 4th (DOY 125) and the latest on May 29th 

(DOY 150). Similarly, the spawning midpoint occurred as early as May 4th (DOY 125) and as 

late as May 26th (DOY 147), with an average date of DOY 135.0 ± 6.1 S.D. The spawning 

metrics did not display significant changes over the historical period, with the exception of the 

spawning beginning that became slightly later over time. The other three spawning metrics also 

displayed later phenology over the historical period, albeit with a non-significant trend (Figure 

2.2). 

 Migration season length lasted longer than the spawning season, with an average 

duration of 38.3 ± 7.8 S.D. days (Figure 2.2). The shortest migration season was 25 days, while 

the longest was 60 days. The historical migration beginning came as early as March 28th (DOY 

87) and ended as late as June 12th (DOY 163), with an average beginning date of April 11th 

(DOY 102.3 ± 7.6 S.D.). The more recent migration period (2005-2016) beginning started as 

early as March 11th (DOY 70) and ended as late as May 22nd (DOY 142), with an average of 

beginning date of April 3rd (DOY 94.5 ± 13.5 S.D.). The migration midpoint occurred as early as 
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April 18th (DOY 109) and as late as May 27th (DOY 147), with an average date of May 6th (DOY 

127.4 ± 11.1). Between 1960 and 1993 spawning and migration phenology metrics became 

gradually later in the year (Figure 2.2). When jointly examining the historical and more recent 

migration periods, the end metric varied by 47 days. The migration end metric showed 

significantly earlier phenology over time at a rate of change of 0.19 days earlier per year. This 

pattern of earlier migration was consistent for the two migration phenology metrics although 

these relationships were statistically insignificant (Figure 2.2).  

My results showed large differences in phenological metrics and season length between 

the egg and creel surveys, suggesting that they are measuring different ecological processes 

(Figure 2.2). Migration season length was 28 days longer on average or almost four times as long 

as the average spawning season. Migration and spawning phenology beginning showed stark 

differences with the migration season occurring earlier in the year (Figure 2.2). In the RRMA, 

the fishing season typically closes on May 1st with the entire spawning season occurring after 

this date in all years (Figure 2.2). The migration beginning always occurred before this date in all 

years and the migration midpoint occurred before this date 38% of the time overall and 48% of 

the time in recent years (Figure 2.2).  

2.3.2 Summary of trends in environmental variables: 

Both ocean and river temperatures showed a small but significant increase over the 

course of the combined historical (1960-1993) and validation (2005-2016) periods (Table 2.5, 

Figure 2.4). When looking at the historical period only, there was no significant increase in either 

river or ocean temperature over time. Flow PDT calculation methods varied greatly with the 

velocity-based method that defines pulses as flows greater than 2 m s-1 having the most years 
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with non-zero flow PDT values (Figure 2.1). Velocities greater than 3 m s-1 only occurred in 6 of 

the 34 years during the historical period creating a variable with mostly zeroes, which also 

occurred with the Peer and Miller (2014) flow PDT calculation method (Figure 2.1). Wind PDT 

had no zero value years and exhibited minimal variation over time (Figure 2.5). The AMO had a 

cool phase occurring in the 1970-1990s and warms phases in the 1960s and from the mid-1990s 

to present. NAO varied greatly over the study period with mostly positive phases in the mid-

1970s and early 1980s – mid 1990s. NAO also had some mostly negative phases in the late 

1960s, late 1970s, and late 2000s. ENSO also varied greatly over the historical period with nine 

El Niño events and seven La Niña events occurring over the entire study period.  

 

2.3.3 Weekly GAMs:  

 To assess environmental variable significance and their relationship to the phenology 

metrics, GAM output plots were characterized based on the prevailing shape (i.e., linear vs. 

nonlinear) and direction of the relationship if linear (Appendix Figure 1). F statistics from the 

weekly GAMs were also extracted to compare environmental variable importance across all 

weekly models (Figure 2.6). Most variables when examined across phenology metrics had less 

than 50% of the GAM output plots produce a relationship that did not include zero across its 

range or where the variable was not removed by the double penalty approach applied during the 

modeling (Figure 2.7). Discharge was the notable exception, which was frequently significant. 

Discharge also exhibited a mostly positive linear relationship with phenology metrics (Figure 

2.7). Across metrics, most significant, non-linear discharge plots showed minimal effects at low 

discharges, but increased impact of discharge on phenology at high discharges (Appendix Figure 

2). These positive linear and non-linear trends can be interpreted as indicating later migration 
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and spawning phenology occurred with increase discharge. Both the migration midpoint and end 

dates both occurred one day later per 1,000 cfs increase in discharge and all spawning metrics 

occurred about a half day later in the season per 1,000 cfs increase in discharge (Table 2.4). 

Between late February and early March (initialization weeks 7-9), the discharge relationships of 

all spawning metrics switched from a mixture of relationships (e.g., linear, non-linear, 

unsignificant) to a clear trend of positive, linear output plots (Appendix Figure 2). A similar 

pattern is also exhibited in the F scores, with higher F scores observed at that time of the year. 

This pattern persisted through the rest of the migration season indicating that at this time of the 

year discharge becomes a key factor for Striped Bass spawning phenology and continues to be 

important (Figure 2.6).  

Flow-based PDT exhibited low F scores and mostly non-significant GAM output plots 

for the spawning beginning and the migration and spawning end metrics (Figures 2.6, 2.7). Wind 

PDT also did not have a strong impact on Striped Bass phenology, except for the spawning 

midpoint and peak. This trend in wind PDT indicated that the timing and occurrence of large 

flow pulses did not significantly impact Striped Bass phenology, especially in the beginning and 

end of the migration and spawning run.  

The ecological forecasts indicate that ocean and river temperature anomalies did not have 

a strong impact on phenology when analyzed on a weekly basis. However, yearly regression 

models indicated that increasing river temperatures lead toward earlier phenology for the 

midpoint, end, and peak spawning and migration metrics (Table 2.4). This difference in model 

results could be due to the use of anomalies vs. raw temperatures, the inclusion of additional 

variables beyond temperature in the GAMs, or differences in the time scales used (weekly vs. 

yearly). River temperature did lead toward earlier phenology at a rate of -4.4 days per degree 
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Celsius in the migration midpoint and end metrics when examined as annual averages, but not 

the migration beginning (Table 2.4). Spawning metrics had a similar trend with slightly smaller 

slope estimates (Table 2.4). Cumulative ocean temperature anomalies produced several positive 

linear relationships indicating that warmer winters can lead to later spawning phenology (Figure 

2.7). This trend was the opposite of the hypothesized impact as warmer ocean temperatures 

should lead to faster gonadal development and earlier migratory phenology for spring-spawning 

fishes (Woods & Sullivan 1993). Both river and ocean temperature anomalies also produced 

many non-linear and non-significant GAM plots across all metrics (Figure 2.7). Ocean 

temperature anomalies had high F scores in some egg models initialized early in the year but 

were near zero in most other models (Figure 2.7). River temperature anomalies had relatively 

low F scores across most weekly models, with very little impact on the spawning beginning and 

end at the weekly forecast scale (Figure 2.7). Spawning midpoint, peak, and migration end 

showed some relatively higher river temperature F scores and few significant GAM output plots, 

with mostly non-linear relationships (Figures 2.6, 2.7).   

The three climate indices produced few significant GAM output plots across the 

phenology metrics, with only NAO having at least some significant effect on most metrics 

(Figure 2.7). NAO had the most significant GAM output plots for the spawning end phenology, 

with a partially positive linear effect (Figure 2.7). The three climate indices showed low F scores 

across the spawning metrics, except for the migration and spawning end metrics (Figure 2.6).  

The only biological variable in the weekly forecast, lagged CPUE anomalies, had low F 

scores and mostly insignificant GAM output plots for all metrics, except spawning beginning. 

The effect was largely non-linear, but otherwise had a negative, linear effect indicating earlier 

phenology at higher abundances. When abundance is lower, there tends to be a less diversified 
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stock structure leading to fewer individuals coming from different overwintering grounds and 

results in delayed migrations. Increases in lagged CPUE anomalies leads to earlier phenology for 

all migration metrics and spawning beginning at a rate of -0.8-2.2 days per increase in CPUE 

anomalies (Table 2.4).  

 Weekly forecasts were assessed for goodness of fit and prediction performance (Figure 

2.8). Good model fit is indicated by low GCV and RMSE scores and high deviance explained. 

High ACC scores and low absolute errors show good predictive skill. Generally, GCV gradually 

declined as the weekly models progress towards later in the season, with the later models having 

lower GCV scores. However, note the spike in GCV scores during week 15 (early April) (Figure 

2.8). AIC scores can be compared across weeks, but not across response variables. AIC scores 

across all metrics did not vary much across initialization weeks. However, the AIC showed a 

slight decline in most models between initialization weeks 9-18. (Figure 2.8). Across all weeks, 

the spawning beginning and end metrics had a consistently lower GCV scores, indicating better 

model fit than the models of spawning midpoint, peak, and migration end metrics (Figure 2.8). 

The migration end models exhibited much higher GCV scores and lower percentage of deviance 

explained than all the other spawning phenology models (Figure 2.8). Percentage of deviance 

explained fluctuates in similar patterns across metrics, with the first few weeks of January and 

March through early April for egg beginning and end having over 70% deviance explained 

(Figure 2.8). For migration survey end models, RMSE remained higher across most weekly 

models (Figure 2.8).  

 Absolute errors across models and metrics were relatively high relative to the short 

duration of the spawning season (Figure 2.8). Few models had average absolute errors less than 

five days (Figure 2.8). With an average spawning season length of ten days for the egg survey 
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and some spawning seasons estimated as short as four days, a small forecast error could 

potentially miss the spawning season. Most models across spawning metrics have average 

absolute errors between five to ten days, with the migration end metric typically greater than ten 

days (Figure 2.8). Spawning beginning had some of the lowest absolute errors across models and 

phenology metrics, with the migration end metric having one of the highest sets of absolute 

errors. ACC scores across the models and metrics were almost entirely below the 0.6 threshold 

associated with good forecasting skill, except for the late season models (Figure 2.8). Migration 

end was the only metric producing a good forecast occurring more than two weeks before 

spawning typically occurs (Figure 2.8). Low ACC scores indicate that the current suite of 

variables and modeling approach is unable to accurately forecast Striped Bass phenology, 

although a rise in the ACC at the end of the forecast period suggests an accurate nowcast may be 

possible.  

Using an information theoretic approach, the top weekly GAMs with delta AIC scores 

under 10 were compared (Appendix Table 1). This comparison only used full weekly GAM 

models and assessed which week had the best forecasts for each phenology metric from an 

information theoretic approach. Weekly GAMs using data from weeks 16-19 (mid-April to early 

May) appeared in at least three of the five metric’s top AIC scores (Appendix Table 1). This 

covers the period right before the average spawning beginning date. Few models across the 

metrics had top AIC scores from earlier in the spawning season using mostly ocean variables 

(Appendix Table 1). 

2.3.4 Retrospective forecast GAMs: 
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 GAMs were created using monthly averaged data to predict spawning metrics one year at 

a time where in each iteration a year of data was left out (Figure 2.9). The goal of this modeling 

method was to create confidence intervals using a leave-one-out approach. Predicted value 

distributions varied greatly across years, with some being highly clustered around short periods 

and others having ranges expanding across multiple weeks (Figure 2.9). To initially analyze 

model skill, the number of years in which the distribution of the predicted values contained the 

observed phenology metric date was calculated (Table 2.6). Spawning forecasts contained the 

observed phenology date 34-57% of the time, with the migration forecasts ranging from 41-66% 

(Table 2.6). The migration end forecasts had the highest average percentage (54.2%), while the 

spawning peak had the lowest (37.5%) (Table 2.6). Looking across the spawning metrics, the 

month of March had the highest average percentage (51.8%) with the month of February 

displaying the lowest (44.8%) (Table 2.6). Absolute mean error was calculated to further assess 

model skill (Table 2.6). The spawning peak metric had the highest absolute prediction errors, 

with the highest value of 7.5 days from the January models (Table 2.6). The spawning beginning 

had the lowest average absolute errors, with the lowest value of 3.9 days in the March models 

(Table 2.6). Standard deviations across the spawning metrics remained low, with the migration 

errors having much higher standard deviations (Table 2.6). The larger predicted distributions for 

the migration end could be driving the higher percentages of distributions that contain the 

observed phenology.  

 To further assess model prediction skill, the average predicted spawning metric date 

across the four months analyzed was compared to general historical spawning timing (Figure 

2.10). Across the spawning metrics, the models generally were able to better predict years with 

normal phenology dates (Figure 2.10). For most of the metrics, the later months of March and 
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April had higher prediction skill; however, the opposite was typically true for phenology metrics 

with normal timing (Figure 2.10). The migration end metric did not exhibit as distinct differences 

in ability to predict different seasonal timings as the spawning metrics (Figure 2.10). The 

migration end metric showed consistently low prediction accuracy across initialization months 

and seasonal timings (Figure 2.10).  

 

2.3.5 Biological model comparison: 

 A series of three weekly forecasts were generated to compare the effectiveness of 

including the yearly average length of Striped Bass and sex ratio in the models. A base model 

used in the full ecological modeling approach was compared to a reduced model for the 

spawning beginning metric. Across model performance metrics and ACC scores, the base and 

reduced models had very similar results (Figure 2.11). However, the biological model showed far 

lower GCV scores indicating better model fit (Figure 2.11). The biological model’s deviance 

explained varied greatly across weekly models and was both greater and lower than the base and 

reduced models at times (Figure 2.11). ACC scores of all three model methods were well below 

the ‘good’ threshold of 0.6 for all weeks except at the end of April (Figure 2.11). Average length 

and sex ratio had several models with high F scores, but for most of the modeling period 

produced near-zero F scores (Appendix Figure 3).  

 

2.4 Discussion:  

  A/R and Chesapeake Bay Striped Bass stocks are subject to important seasonal 

management decisions whose efficacy could be affected by trends and changes in Striped Bass 
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phenology. The goal of this project was to create an ecological forecast of A/R stock phenology; 

however, the forecast created was not skillful. The weekly forecast method aimed to simulate a 

potential operational forecast, such as the Maine Lobster forecast of migration and spawning 

phenology that would be produced each week (Mills et al. 2017). Despite high deviance 

explained in my models, predictive skill was poor across the metrics and initialization periods. 

The ACC scores across almost all initialization weeks and metrics were unable to yield many 

‘very good’ (0.8) scores and only a few ‘good’ (0.6) scores (Figure 2.8). ACC statistics removes 

the average value from phenological events. The low ACC scores from the base model are 

similar to the retrospective analysis since both show that the models are only capable of 

forecasting close to normal phenology and not early or late phenology (Figure 2.10). Predicting 

early or late phenology is likely of most use to many user groups as large shifts could greatly 

impact preparations for fisherman or efficacy of management measures. Skillful forecasts of all 

spawning metrics occurred in late April, which is very close to the average spawning start time 

of May 7th. This small lead time would likely not be far enough in advance to make management 

or fishing decisions, although appropriate lead times could be established by surveying 

stakeholders. Average absolute errors remained high across all models, especially considering 

that the average length of the spawning season was ten days. Mills et al. (2017) was able to 

forecast lobster phenology within one week, whereas most initialization weeks in my model had 

absolute errors at or above one week. The A/R stock is the southernmost major spawning 

population of Striped Bass on the east coast, which may make predicting its phenology more 

difficult; Brun et al. (2016) showed that model prediction often declines close the edge of a 

species range.  However, deviance explained remained high across most metrics and 

initialization weeks. Thus, the weekly forecast was able to explain a high amount of variability, 
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but unable to accurately predict future phenology with new conditions, which could be indicative 

of overparameterization or perhaps not including the most relevant variables.  Week 13 showed 

an increase in deviance explained in most metrics. This point is when the models switch from 

being parameterized with winter variables based on oceanic conditions to river variables, 

pointing to possible discontinuity issues. The deviance explained rises after this point and this 

trend is not seen in other skill metrics.  

These results prompted the biological variable comparison. This comparison was done to 

assess if additional biological data would help predictive skill. Given the similar performance of 

modeling methods in the biological model comparison with the fully parameterized model, it is 

unlikely that overparameterization is reducing predictive skill. The deviance explained in the 

biological model was higher than many of the base and reduced models indicating that the 

additional biological variables, such as size and sex composition of Striped Bass, helped to 

explain more variation in phenology. Sex ratio and average length only showed high F scores in 

a few weeks across the modeling period (Appendix Figure 3). The biological model also 

exhibited lower GCV scores. Together these factors indicate that length and sex ratio play an 

important role in the phenology of the A/R stock, but with the current data limitations, such as 

biases and limited degrees of freedom due to fewer years of available data, are unable to boost 

predictive skill. The importance of length is consistent with the Chesapeake stock. A potential 

explanation is that stock structure, such as the number of larger individuals coming from farther 

overwintering grounds, is an important driver of phenology (Callihan et al. 2015). Larger Striped 

Bass overwintering off the coast of the Mid-Atlantic Bight may be arriving later in the migration 

run, so when they are not present in the population, the phenology is pushed earlier by more 

smaller individuals coming from the Albemarle Sound. However, regression models indicate that 
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increasing CPUE anomalies leads toward earlier phenology (Table 2.4). Larger individuals could 

exhibit earlier phenology due to increased swimming capabilities; however, it is not possible to 

assess this for the A/R stock due to limited size data (Haro et al. 2004; Callihan et al. 2015). 

Many of the historical years come when the A/R stock was either overfished or experiencing 

overfishing and likely had few larger individuals. This could result in the phenology of larger 

individuals playing a small role in the forecast and the current effect of lagged CPUE in the 

models. This could also be driven by the practice of males typically arriving earlier in the 

spawning run (Carmichael et al. 1998; Callihan et al. 2015). A more male dominated migration 

run would have a large portion of the overall run arriving earlier in season and would push 

phenology metrics earlier. Given the biases described in Table 2.1 in collection of most of the 

available length and sex data, these results cannot be interpreted as the true impact of these 

biological variables on A/R Striped Bass phenology. Most of the length data are from fish below 

600 mm TL, which is when Striped Bass start overwintering outside of the ASMA. Larger 

individuals that overwinter in coastal NC and those that overwinter in the Northern Mid-Atlantic 

Bight coastal waters will not be well represented by the available data used in this comparison 

analysis. Any future efforts to forecast A/R stock phenology should aim to utilize a different 

dataset or estimates size and age structure. 

 Even though the ecological forecasts may not have high predictive skill, they revealed 

variables that are important to Striped Bass phenology in the A/R stock. For example, key 

variables were compared to important factors that drive the phenology of Chesapeake Bay 

Striped Bass stock (Peer & Miller 2014). The Chesapeake Bay Striped Bass phenology was 

primarily driven by fish size and spring temperatures (Peer & Miller 2014). Temperature plays a 

much smaller role than other variables in the A/R stock, which could be due to the use of 
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anomalies in this study versus raw temperature values (Figures 2.8, 2.9). Temperature was also 

not an important variable for Colombia River Chinook Salmon run timing (Anderson & Beer 

2009). Phenology of both Striped Bass stocks are not strongly driven by winter ocean 

temperatures in coastal VA. The A/R stock was in decline for many years of the historical time 

series, with low abundance years likely resulting in few larger individuals that are overwintering 

in the ocean. This potential loss of stock structure could be driving the weak influence of ocean 

variables on the phenology of the A/R stock. GAM outputs from all spawning metrics showed 

positive, linear relations with ocean temperatures indicating warm winters lead to later 

phenology, which is contrary to the hypothesized effect. Coupled with the weak importance of 

the three climates indices, this could indicate that ocean factors are not important to Striped Bass 

spawning and migration phenology. NAO was the only climate index of importance with a 

mostly positive, linear effect on spawning end (Figure 2.7). Thaxton et al. (2020) also observed 

similar reduced importance of NAO and AMO in the timing of ichthyoplankton ingress into the 

nearby Newport River, NC estuary.  

Peer and Miller (2014) did not include raw river discharge in their model and used a 

different calculation method for flow PDT that could be driving the differences in importance of 

flow related variables for these stocks. Chesapeake Bay Striped Bass spawning occurs closer to 

the salt front than the A/R stock, which could make the A/R stock phenology more dependent on 

Roanoke River flows since they spawn far up the Roanoke River (Peer & Miller 2014). These 

differences could warrant stock-by-stock considerations for seasonal management decisions, 

such as fisheries opening and closures. There could be genetic stock structure effects, such as 

those observed among Colombia River Chinook Salmon populations, that could be driving some 
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of these differences in phenology (Anderson & Beer 2009); however, more data are needed to 

assess this as a potential effect.  

 Changes in flow patterns in the Roanoke River may be the primary environmental driver 

of phenology and should be considered by fishery and dam managers. Roanoke River discharge 

was the most important variable for A/R Striped Bass phenology across all metrics, with a 

mostly positive, linear trend indicating high flows lead to later phenology at a rate of one day 

later phenology per 1,000 f s-1 (Figures 2.8, 2.9). This trend was also consistent with that of 

Colombia River Chinook Salmon (Anderson & Beer 2009). Given the importance of discharge in 

the phenology models of the A/R stock, the recent 2016 change in Kerr Dam discharges could 

affect migration and spawning phenology. Throughout the historical period, discharges have 

remained below 20,000 cfs in most years (Appendix Figure 4). Discharges above 22,900 cfs 

coincide with velocities above 3 m s-1 and represent strong barriers to Striped Bass migration up 

the Roanoke River (Appendix Figure 5). After 2016, there were multiple days of flows greater 

than 20,000 cfs during the migration of Striped Bass in every year, showing a sharp increase in 

velocity barriers (Riggs 2021). Discharge of 10,000 cfs coincides with velocities of 2 m s-1 and 

represent a less severe velocity barrier to Striped Bass migration (Appendix Figure 5). Previously 

established discharge release limits, with a maximum of 13,700 cfs, during the migration season 

are similar to the 2 m s-1, a moderate velocity barrier, and should be considered when managing 

Striped Bass migration phenology. Rising F scores (Figure 2.6) and significant GAM output 

plots (Appendix Figure 2) between mid-February and early March indicate that this is when flow 

conditions begin to affect Striped Bass spawning and migration phenology. This also indicated 

that river conditions affect Striped Bass before DOY 87 when the PDT metrics begin to be 

calculated. Previous flow considerations for anadromous fish migrations began on April 1st, 
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which is well behind when flow conditions are affecting Striped Bass in the Roanoke River 

(Army Corp of Engineers 2016). Water resource managers should consider this impact of flows 

on the Striped Bass when establishing flow regimes in the Roanoke River.  

 Given the low importance of PDT metrics on phenology and the importance of discharge, 

pulses may not be a strong driver of phenology. Wind and river velocity PDT metrics only had a 

strong impact on spawning midpoint metrics indicating that high frequency of pulses or early 

pulses led to later spawning midpoint dates. While Striped Bass remain on the spawning grounds 

a pulse could delay the actual spawning event but does not impact fish that are more actively 

moving toward the spawning grounds. Given the effect of higher discharges leading to later 

phenology but pulses having a minimal effect, Striped Bass may prefer to not spawn in high flow 

conditions. There may be specific flow rates or water quality conditions associated with those 

flow rates that Striped Bass prefer to spawn in. Discharges above 20,000 cfs can lead to Striped 

Bass eggs spilling into newly flooded riverbanks away from the main stem of the river and 

preventing them from reaching suitable habitat for early life history stages (Rulifson & Manooch 

1990; Zincone & Rulifson 1991). This may be a potential factor for Striped Bass choosing when 

to spawn as they may wait for high flow conditions to subside towards slightly lower, more 

favorable flow levels. The most recent stock assessment has also cited the importance of 

appropriate flow rates for transporting eggs and larvae to the nursery habitat of the Western 

Albemarle Sound that yields high recruitment (Lee et al. 2020). Onset of spawning may also be 

influenced by some social dynamic that is not currently captured in modeling. When spawning, 

as many as fifty male Striped Bass will follow a single female to the water surface in a ‘rock 

fight’ to fertilize the eggs that the female releases (Hassler et al. 1981; Lee et al. 2020). Male 



59 
 

Striped Bass have been observed spending more time on the spawning grounds than females, so 

there may be sex specific dynamics affecting phenology (Carmichael et al. 1998).  

The ocean temperatures of the overwintering grounds and river temperatures are 

significantly increasing over time (Table 2.5, Figure 2.4). Increasing temperature and salinity 

trends have also been observed in the Pamlico Sound during the same period of increase in 

temperatures in the AMSA (Bangley et al. 2018). Increasing temperatures have led to earlier 

observed migration timing in tagged A/R Striped Bass and the Chesapeake Bay stock (Peer & 

Miller 2014; Callihan et al. 2015). Lombardo et al. (2019) also found shifts toward earlier 

phenology in River Herring in the Albemarle Sound that coincided with rising temperatures. The 

forecasts indicate that the A/R stock migration timing is not strongly driven by ocean or river 

temperatures; however, this may indicate that temperatures are simply not important for 

predicting phenology. Specific temperatures thresholds that relate to physiological tolerances or 

spawning preferences may be more impactful to Striped Bass than anomalies. Regression models 

between river temperatures and migration phenology indicated earlier phenology with increasing 

temperatures (Table 2.4). The migration end metric does show a significant shift toward earlier 

phenology in more recent years (Figure 2.2). During the recent period of migration (2005-2016), 

beginning phenology has a minimum DOY of 70, with the historical migration beginning having 

a minimum DOY of 87. The trend of earlier phenology in the recent survey period could make a 

larger portion of the stock susceptible to exploitation during the window when the fishing season 

is open. These shifts toward earlier phenology could be driven by the increases in river and 

ocean temperature (Figure 2.4). As climate change continues to warm the planet, the migration 

timing of the A/R stock may also continue to shift along with the changing climate. This shift 

could also be present in the spawning phenology; however, it is difficult to assess this possibility 
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without additional egg sampling in more recent years. Shifts toward earlier phenology could 

make current seasonal closures mismatched with current management objectives to maintain a 

high level of Striped Bass escapement.   

Another potential cue for initiating migrations could be day-light progression (Asch 

2019). As days become longer, this could initiate spawning or migration phases. With the current 

weekly modeling approach, day light hours or DOY is not possible to include as a variable as the 

amount of change in day light hours for a given DOY will remain consistent each year across the 

time series. This yields a variable with zero variation from year to year and is not possible to 

include in the models as it has no degrees of freedom. If this variable was to be included in 

modeling, it would help reinforce the predictive skill of normally timed phenology as daylight 

hours will not change from year to year. Another potentially important environmental factor is 

dissolved oxygen since tagged Striped Bass in the Chesapeake Bay actively avoided hypoxic 

areas (Kraus et al. 2015). To the best of my knowledge, there is no daily dataset on dissolved 

oxygen that covers the full historical period used in this study.  

It should be noted that climate indices in the Pacific have recently been shown to have 

non-stationary correlations with regional climate patterns and ecosystem characteristics since the 

early 1980s in the Northern Pacific (Litzow et al. 2020). Similar non-stationarity patterns are also 

evident with NAO in the eastern United States (Joyce et al. 2002). Furthermore, climate change 

could negatively affect the ability of climate indices to predict changes in ecosystems and 

fisheries. As a result, regional-scale climate indices could improve model skill at an interannual 

or decadal scale but are unlikely to improve forecasts at a multidecadal or centennial scale, 

which could be driving the low importance of climate indices in the forecasts. Climate indices 

are often proxies for more localized conditions and, when the most appropriate local 
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environmental factors are included in models, climate indices may not provide additional 

benefits to modeling.  

 This analysis included phenology metrics from both fisheries dependent and fisheries 

independent sources. The creel survey-based migration phenology was consistently 

outperformed by the spawning metrics in predictive skill and model fit. The average migration 

season length is much longer making it a less discrete event and could be more difficult to 

predict than the more condensed spawning season. However, larger forecast errors are less of a 

concern with this less discrete event. Also, fisher behavior and fisheries regulations may add 

additional sources of process error to forecasts reliant on fisheries-dependent data. Dennis et al. 

(2015) found a similar pattern in the Torres Strait tropical lobster fishery, with skill level of total 

allowable catch model predictions significantly improving with the inclusion of fisheries-

independent data. The poor predictive ability in the migration end models may also be attributed 

to shifting baselines, as the river and ocean temperatures didn’t significantly increase in the 

historical period but did increase in recent years. Brun et al. (2016) found that, in predicting 

distribution of several plankton species in the North Atlantic, model skill decreased as temporal 

distance between predictions and the training dataset period increased. The gap between 1993 

and 2005 in the migration initialization period and validation period could be driving some of the 

model’s poor performance. The historical data may be limiting the model’s ability to predict 

under novel conditions. Having an adequate source of fisheries-independent data will be an 

important consideration for future operational forecasts.  

 In conclusion, this study aimed to create an ecological forecast of the A/R stock of 

Striped Bass migration timing. The forecast proved to have low prediction skill up until right 

before the typical spawning period and was only able to skillfully predict years with normally 
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timed phenology. The full potential of the forecast predictability is likely not yet realized as 

sufficient data on variables hypothesized to be important, such as average length, are not 

currently available. The forecasts did reveal the overwhelming importance of raw river discharge 

on A/R stock migration timing, with a consistent indication that late February to early March is 

when discharge becomes a key factor influencing migration. This result may be of interest to 

stakeholders involved in the management of the Roanoke River flow regime, especially as 

impacts of flows on Striped Bass recruitment have been highlighted as an area of interest in the 

most recent stock assessment (Lee et al. 2020). Fisheries managers may also have to consider the 

implications of the migration timing shifting earlier in the year in regard to current seasonal 

fishery closures. 
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 Table 2.1. Summary of data sources and variables considered 

Summary of Environmental and Biological Variables  

  

Variables Source  Location and Notes 

Striped Bass Size 

and Sex 

Composition (Sex 

Ratio, Average 

Length) 

Hassler reports 

(yearly, 1960-1977), 

NCWRC Creel 

Survey (yearly, 

1989-1993), 

NCDMF (yearly, 

1981-85) 

Hassler tagging data was primarily collected at 

Williamston, NC. However, only small fish were 

collected purposely since the researchers paid 

commercial fishermen by the pound for tagged 

fish. NCWRC and NCDMF data come from 

several locations throughout the Roanoke River.  

Spawning Stock 

Abundance (CPUE 

Anomalies) 

Hassler Creel Survey 

(yearly, 1963-1988), 

NCWRC Creel 

Survey (yearly, 

1989-1993, 2005-

Present) 

Generated from creel survey data from 

throughout the Roanoke River 

Measured in fish/trip 

Spawning and 

Migration Activity 

(Phenology 

Markers) 

Hassler (daily, 1960-

1988) and Rulifson 

(daily, 1989-1993) 

Egg Survey Reports 

Eggs collected in Halifax, NC and daily creel  

data used was from Weldon, NC 

River Water and 

Air Temperature 

(River 

Temperature 

Anomalies) 

Hassler and Rulifson 

reports (daily, water 

temperature, 1960-

1977), NC State 

Climate Office 

(daily, air 

temperature, 1960-

Present), USGS 

water temperature 

(daily, 1999-2016) 

River air temperature from Roanoke Rapids,  

NC. River water temperature used for bias  

correction from Halifax, NC. NC State Climate 

Office temperatures switch from collection at 

Weldon to Roanoke Rapids in 1972.  

Albemarle Sound 

Water Temperature  

Albemarle Sound 

Water Quality 

Monitoring Program 

(daily, 2009-2016) 

Only data source close to Albemarle Sound 

is at the mouth of the Scuppernong River 

Overwintering 

Grounds Ocean 

Water Temperature  

State Climate Office 

of North Carolina 

(daily, 1945- 

present) 

 Oceana Naval Air Station in Virginia Beach, 

VA 
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Roanoke River 

Discharge and 

Gauge Height 

(Discharge, PDT) 

USGS gauge 

02080500 discharge 

(daily, 1911-

present), gauge 

height (daily, 1974-

present) 

Roanoke Rapids, NC 

Wind Speed (PDT) CRONOS (daily, 

1960- 

present) 

Primary dataset from Raleigh-Durham Airport,  

NC (KRDU station) and bias correction data 

from Roanoke Rapids (2009-2020, KIXA 

Station)  

Climate Indices 

(ENSO, NAO, 

AMO) 

NOAA Climate 

Prediction Center 

and NOAA, Earth 

System Research 

Laboratory (daily 

and monthly, 1960-

present) 

AMO (North Atlantic Ocean, 0º-70ºN) and NOA 

(North Atlantic Ocean, 20ºN-90ºN) and ENSO 

(east-central tropical Pacific between 120°-

170°W) 
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Table 2.2. Regression models generated for bias correction of: (1) air temperatures in the 

Roanoke River relative to water temperatures, and; (2) wind velocity from Raleigh-Durham 

Airport relative to Roanoke Rapids, NC 

Equation R2 

Slope  

p-value d.f. 

Spawning Grounds Air Temps  ~  0.466 * (Hassler Water Temps)  +   

9.121 ; Slope CI: 0.441 - 0.491, Intercept CI: 8.665 - 9.577 0.49 <2e-16 1367 

Spawning Grounds Air Temps  ~  0.734 * (USGS Water Temps)  +   

4.349 ;  Slope CI: 0.721 - 0.747, Intercept CI: 4.144 - 4.554 0.80 <2e-16 3133 

Spawning Grounds Air Temps  ~  0.273 * (Winter USGS Water 

Temps)  +   

5.732 ;  Slope CI: 0.647 - 0.690,  Intercept CI: 6.180 - 7.032 0.41 <2e-16 1353 

Spawning Grounds Air Temps  ~  0.668 * (Spring USGS Water 

Temps)  +   

6.606 :  Slope CI:  0.256 - 0.291, Intercept CI: 5.591 - 5.873 0.68 <2e-16 1778 

 

 

Roanoke Rapids Wind Data  ~  0.607 * (Raleigh-Durham Airport) +  

1.192 ;  Slope CI: 0.547 - 0.667, Intercept CI: 0.842 - 1.543 0.50 <2e-16 399 
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Table 2.2. Correlation matrix of variables used in ocean model (Equation 2; upper table) and 

river model (Equation 3; lower table). Bold values are correlation coefficients that have 

Bonferroni corrected p-values below 0.05. The CPUE anomalies (fish/trip), sex ratio, and 

average length are all values lagged by one year. Cum stands for cumulative. All other 

abbreviations are described in the thesis text. 

  Discharge 

Cum 

Ocean 

Anomaly 

Cum 

NAO 

Cum  

AMO 

Cum  

ENSO 

CPUE  

Anomaly 

Sex  

Ratio 

Average  

Length 

Discharge 1               

Cum Ocean 

Anomaly 0.09 1             

Cum NAO 0.06 0.54 1           

Cum AMO 0.01 -0.18 -0.33 1         

Cum ENSO 0.05 -0.14 -0.15 0.23 1       

CPUE 

Anomaly -0.17 -0.14 -0.5 0.37 -0.02 1     

Sex Ratio -0.04 0.08 0.17 -0.47 -0.26 -0.29 1   

Average 

Length 0.1 0.25 0.24 -0.35 0.05 -0.31 0.24 1 

 

  Discharge 

River  

Anomaly 

Velocity 

PDT 

Wind 

PDT 

CPUE 

Anomaly 

Sex 

Ratio 

Average  

Length 

Discharge 1             

River 

Anomaly -0.09 1           

Velocity PDT 0.38 0.01 1         

Wind PDT -0.23 0.01 -0.15 1       

CPUE 

Anomaly -0.23 0.03 -0.16 0.12 1     

Sex Ratio 0.03 0.01 0.08 -0.01 -0.29 1   

Average 

Length 0.27 -0.03 0.03 -0.09 -0.31 0.24 1 
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Table 2.4. Yearly averaged regression parameter estimates of the effect of environmental 

variables on Striped Bass migration and spawning timing. Days are the units of phenological 

variability used in this table. 95% confidence intervals are in parentheses. Bold estimates are 

parameters with significant p-values at the 0.05 level. 

Variable 

Spawning 

Beginning Midpoint Peak End 

River 

Temperature 

 (°C) -2.0 (-4.2, 0.2) -3.1(-5.8, -0.4) -3.3(-6.2, -0.3) -3.8(-6.1, -1.6) 

Ocean 

Temperature  

(°C) 0.3 (-1.1, 1.7) 0.7(-1.1, 2.4) 0.7(-1.2, 2.7) 0.8(-0.8, 2.4) 

Wind PDT 

(unitless) 0.06(-0.1, 0.3) 0.09(-0.1, 0.3) 0.09(-0.13, 0.31) 0.05(-0.1, 0.2) 

Flow PDT 

(unitless) 0.03(-0.03, 0.09) 0.06(-0.01, 0.1) 

0.07(-0.007, 

0.15) 0.05(-0.02, 0.1) 

Discharge  

(cfs) 

0.0005 

(0.0001, 0.0009) 

0.0007 

(0.0002, 0.0013) 

0.0007 

(0.0002, 0.0013) 

0.0006 

(0.0001, 0.0011) 

Lagged CPUE  

Anomalies 

(fish/trip) 

-0.76 (-1.4, -

0.16) -0.7(-1.5, 0.1) -0.7(-1.6, 0.2) -0.7(-1.4, 0.08) 

NAO 

(anomaly 

units) 3.7(-0.5, 7.9) 4.6(-0.8, 9.9) 4.1(-1.8, 10.0) 4.7(-0.2, 9.5) 

ENSO 

(anomaly 

units) 0.1(-2.4, 2.7) 1.0(-2.2, 4.2) 0.9(-2.6, 4.4) 2.0(-0.9, 4.8) 

AMO 

(anomaly 

units)  -8.0 (-21.6, 5.7) -3.9(-21.7, 13.8) -2.8(-22.2, 16.5) 2(-14.4, 18.4) 

 

Variable 

Migration 

Beginning Midpoint End 

River Temperature 

(°C) -4.36 (-10.8, 2) -4.4 (-8.6, -0.2) -4.4 (-7.7, -0.6) 

Ocean Temperature 

(°C) -1.48 (-4.7, 1.8) -0.56 (-2.8, 1.7) -0.56 (-2.6, 1.1) 

Wind PDT 

(unitless) -0.32 (-0.5, -0.1) -0.11 (-0.3, 0.03) -0.11 (-0.3, -0.03) 

Flow PDT 

(unitless) -0.09 (-0.2, 0.04) 0.00003 (-0.1, 0.1) 0.00003 (-0.1, 0.1) 

Discharge (cfs) 0.1(-0.0005, 0.002) 0.001 (0.0004, 0.002) 0.001 (0.0004, 0.002) 
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Lagged CPUE 

Anomalies 

(fish/trip) -2.23 (-4, -0.5) -1.39 (-2.6, -0.2) -1.39 (-2.4, -0.4) 

NAO (anomaly 

units) -8.47 (-23.1, 6.2) -1.41 (-11.6, 8.8) -1.41 (-8.8, 8.6) 

ENSO (anomaly 

units) 3.05 (-2.8, 8.9) 3.71 (-0.2, 7.6) 3.71 (-1.42, 5.39) 

AMO (anomaly 

units) -9.25 (-39.2, 20.7) 7.28 (-13.2, 27.7) 7.28 (-21.1, 13.8) 
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Table 2.5. Regression equations for changes in river and ocean temperatures over time. 

Equation R2 Slope  

p-value 

df 

River Temperature  ~  0.015 (Year)  -  17.815 ;  

Slope CI: 0.004 - 0.026, Intercept CI: -39.767 - 4.138 

0.001 0.0069 8,295 

Ocean Temperature  ~  0.037  (Year)  -  59.678 ; 

Slope CI:  0.026 - 0.047, Intercept CI: -80.250 - -39.105 

0.006 <0.0001 8,423 
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Table 2.6. Average absolute error (days) of predicted values from retrospective forecast GAMs 

and the percentage of prediction distributions where the tails of the distribution contain the 

observed phenology DOY.  

Survey 

Type 

Metric Initialization  

Month 

Percentage Average Error  

(Days) 

Standard  

Deviation 

(Days) 

Egg Beginning Jan 57.7 4.4 4.0 

Egg Beginning Feb 46.2 4.2 3.2 

Egg Beginning March 53.8 3.9 2.6 

Egg Beginning April 50.0 4.6 3.7 

Egg Midpoint Jan 50.0 6.0 4.7 

Egg Midpoint Feb 42.3 6.4 4.3 

Egg Midpoint March 46.2 4.7 3.8 

Egg Midpoint April 42.3 5.5 4.2 

Egg Peak Jan 34.6 7.5 4.6 

Egg Peak Feb 34.6 7.1 5.1 

Egg Peak March 38.5 5.6 4.3 

Egg Peak April 42.3 4.8 3.7 

Egg End Jan 50.0 5.4 4.0 

Egg End Feb 38.5 4.8 4.0 

Egg End March 53.8 4.7 3.7 

Egg End April 50.0 4.3 3.9 

Creel End Jan 45.8 7.2 5.4 

Creel End Feb 62.5 7.1 5.6 

Creel End March 66.7 7.0 6.1 

Creel End April 41.7 7.0 4.9 

 



 

 
 

 

Figure 2.1. River discharge pulse duration timing values split up by year using three different 

calculation methods where the criteria for a pulse event is changed. Blue lines are a discharge-

based method from Peer and Miller (2014); the red lines use a velocity pulse threshold of 2 m s-1 

and the green lines use a 3 m s-1 threshold. This metric is cumulative over the course of the 

season.  
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Figure 2.2. Phenological metrics from the egg and creel surveys. Solid regression lines indicate 

significant regression models at the 0.05 significance level, whereas dashed lines are non-

significant. Yellow lines are migration phenology based on creel data and purple lines are 

spawning phenology based on egg survey data. The blue dotted line at DOY 120 is when the 

RRMA fishery typically closes for harvest.  
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Figure 2.3. Conceptual diagram explaining development of the retrospective GAM forecasts. 

Distributions of predicted phenology are created for one year at a time based on multiple 

iterations of the same GAM model with each iteration missing one year of that is different from 

the other iterations.  
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Figure 2.4.  Weekly averaged winter and spring (January 1 – June 30) temperatures from the 

bias corrected river air temperatures at Roanoke Rapids and ocean temperatures from Oceana 

Naval Air Station, Virginia Beach. Dashed lines are both significant regression models of 

temperature over time at the 0.05 significance level (Table 2.5). The gap between 1994 and 2005 

is due to insufficient biological data during that period was available for modeling. 
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Figure 2.5. Wind Pulse Duration Timing (PDT) split up by year over the historical period. This 

metric is cumulative over the course of the season. 
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Figure 2.6. F statistics from weekly GAMs. Vertical line at week 13 initialization represents the 

shift from ocean variable-based models to river variable-based models. Initialization week 0 

begins on Jan 1st.  
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Figure 2.7. Summary of GAM output plots characterized by response curve shape and direction. 

The percentages shown in this graph reveal how frequent a given variable was or was not 

significant. Plots where the confidence intervals for the modeled relationship included zero 

across the full range of an environmental variable were cosidered as having an insignificant 

impact. An example demonstrating how GAM response curve shape was characterized is 

included in Appendix Figure 1. 
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Figure 2.8. Performance metrics for all weekly based GAMs.     AIC, RMSE and absolute error 

are plotted to track changes over initialization weeks and not changes between the phenology 

metrics. In the upper left plot, the lowest dashed line shows an ACC score of 0.6, which is when 

a forecast is considered useful. The upper dashed line shows an ACC score of 0.8, which is when 

forecast skill is considered highly accurate 
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Figure 2.9. Distribution of predicted egg midpoint phenology using a retrospective forecast. 

Graphs of predictions for other metrics are available in Appendix Figures 6-9. Dashed line is the 

average egg midpoint day of the year, black dots showed observed phenology, and violin plots 

show the distribution of model predictions, with thicker areas indicating more frequently 

predicted values. 



80 
 

 

Figure 2.10. This graph estimates prediction skill using the average predicted spawning metric 

dates from the egg and creel survey based on retrospective forecast GAMs. The timing bins are 

defined by evenly dividing the historical spawning metric dates into three categories: early, 

normal, and late. The percentage represents the number of predicted years that fell within the 

correct range of the binned observations.  
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Figure 2.11. Performance metrics for biological model comparisons. The lowest dashed line in 

the lower, righthand subplot shows an ACC score of 0.6, which is when a forecast is considered 

useful. The upper dashed line shows an ACC score of 0.8, which is when forecast skill is 

considered highly accurate. 

  



 

 
 

Chapter 3.  Determination of the optimal sampling frequency for investigating phenological 

change for anadromous fish spawning 

3.1 Introduction: 

 The seasonality of many marine species is changing due to climate change (Ji et al. 2010; 

Mackas et al. 2012; Asch et al. 2015). Shifting phenology is often an early indication of climate 

change impacting species and ecosystems (Mackas et al. 2012; Asch et al. 2015, Kharouba et al. 

2018). However, it is difficult for ecologists to document these changes since it is more costly to 

conduct high-frequency surveys in marine and aquatic environments that require ship time 

compared to equivalent terrestrial sampling (McClatchie et al. 2014; Staudinger et al. 2019). As 

many marine species surveyed are mobile, they may have varying levels of site fidelity making it 

difficult to decouple phenology changes from distribution changes and migration patterns 

(Staudinger et al. 2019).  

Richardson and Poloczanska (2008) highlight that terrestrial ecosystems have had far 

more research assessing the impacts of climate change compared to marine ecosystems even 

though marine species appear to be far more vulnerable to changing conditions by some 

measures. Marine species are expanding at their leading range edge an order of magnitude faster 

than expansions in terrestrial species (Poloczanka et al. 2013). Many marine taxa, such as 

phytoplankton, and more generally summer and spring spawning taxa, have shifted toward 

earlier phenology at faster rates than in terrestrial environments (Poloczanka et al. 2013). 

Terrestrial ecosystems are often more easily sampled, have better funded resources, and have 

better representation of scientists in international efforts, such as the IPCC, than the marine 

environment (Richard & Poloczanska 2008; Genner et al. 2010). Many marine surveys tend to be 
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nearshore surveys, mostly in the northern hemisphere, that sample a limited range of taxa (Ji et 

al. 2010; Mackas et al. 2012; Poloczanka et al. 2013).  

 Monitoring phenology change can be difficult when there are large temporal gaps 

between observations and available data are patchy (Mackas et al. 2012; Staudinger et al. 2019). 

Frequent sampling in marine environments of zooplankton and ichthyoplankton often is on the 

scale of weekly to monthly, with at least biweekly sampling being enough to capture interannual 

variability (Ji et al. 2010; Genner et al. 2010; Mackas et al. 2012).  Surveys at this temporal scale 

have high temporal resolution but are often limited in spatial scope (Genner et al. 2010; Mackas 

et al. 2012). River-based sampling of anadromous species is often more frequent on a daily to 

weekly scale (Anderson & Beer 2009; Peer & Miller 2014; Lombardo et al. 2019). Many marine 

surveys cover broader spatial areas with reduced temporal resolution at the monthly to seasonal 

scale (Mackas et al. 2012; McClatchie et al. 2014). Timing of peak abundance is often of prime 

interest in survey design; however, this metric can be sensitive to data patchiness and most 

accurate when using spatial averages of multiple samples (Mackas et al. 2012). Differences in 

phenology can exist within a species range with greater shifts in phenology observed in leading 

range edges vs. trailing edges, making adequate spatial coverage an important methodology 

factor to separate differences within a population (Poloczanka et al. 2013). Surveys with 

approximately monthly sampling may be able to solely report monthly to seasonal scale 

information on phenology, but not fine-scale (weekly) variations and changes (Mackas et al. 

2012; McClatchie et al. 2014). Much of the effectiveness at different frequencies is, however, 

based on data from mid-to-high latitudes. Warmer water taxa grow faster and likely need more 

frequent sampling to achieve similar levels of precision (Mackas et al. 2012; Poloczanka et al. 

2013). As sampling frequency increases, it allows for more complex analysis techniques to be 
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used, which can provide more precise information and additional metrics. This can be especially 

important for surveys with irregular spacing between samples or for species that exhibit more 

than one distinct peak in abundance, such as Chinook Salmon in the Columbia River, USA, 

which have three distinct migrations upriver by three distinct stocks (Anderson & Beer 2009; 

Mackas et al. 2012).  

Monitoring ecological change could be made more efficient by investigating the trade-

offs between reduced sampling frequency and changes in the accuracy of phenological data.  

Zooplankton commonly have interannual variability in phenological metrics of one to two 

months and peak abundance duration of one to two months (Ji et al. 2010; Mackas et al. 2012; 

Staudinger et al. 2019). While early work on fish phenology assumed that most species had very 

little interannual variation in reproductive phenology (Cushing 1974), more recent research 

demonstrates that many fish species exhibit a similar amount of phenological interannual 

variability and similar long-term trends in phenology to those of zooplankton (Asch 2019). For 

example, Gulf of Alaska walleye pollock show similar spawning season length and variability 

(Rogers et al. 2018).  

To determine the optimal sampling frequency for documenting changes in fish 

phenology, historical Striped Bass (Morone saxatilis) egg survey data were used to assess the 

effectiveness of reduced egg survey sampling. This egg survey is ideal to study this issue since 

this time series surveyed Striped Bass eggs multiple times a day surpassing the sampling 

frequency of many other river-based surveys and far more than most marine surveys. North 

Carolina is home to the Albemarle Sound/Roanoke River (A/R) stock of Striped Bass, which is 

the southernmost spawning population of anadromous Striped Bass on the east coast of the US. 

The A/R stock is a specific management unit to describe the Striped Bass population that spawns 
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primarily in Weldon, NC in the lower Roanoke River below the Roanoke River Dam (Callihan et 

al. 2014, 2015). Spawning onset is associated with temperatures rising above 18º C in the 

Roanoke River (Hassler et al. 1981; Rulifson 1993). Egg survey data used in this study show that 

spawning seasons typically last ten days but can range from four to twenty-one days in length 

(See Chapter 2). The start of the spawning season begins as early as May 2nd and the spawning 

season has ended as late as May 31st, with an average beginning date of May 7th (± 5.3 S.D. 

days). The goal of this analysis is to show how different reduced sampling schedules of Striped 

Bass eggs may affect the ability to detect phenology metrics. In turn, this can reveal how 

different survey designs may affect our ability to assess phenological changes in fish species that 

may not have been sampled as intensively as the A/R Striped Bass population. 

3.2 Methods: 

A historical survey spanning from 1960-1993 collected Striped Bass eggs along the 

Roanoke River in North Carolina with sub-daily temporal resolution (Hassler et al. 1981; 

Rulifson et al. 1993). This survey created a rich long-term dataset that was able to effectively 

capture the timing of the Striped Bass spawning in that period. Striped Bass eggs hatch within 48 

hours of fertilization making them effective indicators of spawning activity (Hassler et al. 1981). 

Prior to initial work on this project, these surveys had not been converted to spreadsheet format 

and some have never been digitized. The initial phase of data processing included digitizing all 

relevant data sources from the historical surveys using Able2Extract conversion software 

(investintech.com/prod_a2e.htm#convert).  

 The survey collected Striped Bass eggs from late April through mid-June below the 

Striped Bass spawning ground in Halifax, NC. During the period of 1960-1987 when the surveys 

conducted by William Hassler from North Carolina State University, scientists generally did not 
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begin their full sampling effort until after April 29, with only the occasional once a day sample 

taken before late April to assess the presence of any Striped Bass eggs. As a result, some years 

started sampling too late to produce an accurate spawning beginning metric. Years in which the 

start of spawning (as defined below) occurred in the first week of sampling were excluded from 

analyses since the survey may not have sampled the true beginning of the spawning run. There 

should be multiple days with zero catch early in an annual dataset to indicate that spawning had 

not yet begun (Staudinger et al. 2019). In these years when the survey began late relative to 

spawning, a substantial portion of the eggs were observed before the occurrence of days with 

zero catches. Years removed from my analysis due to this issue were 1967, 1972, 1974, 1975, 

1979, 1985, and 1986.  

The egg surveys used a 10-inch diameter, 6:1 mouth-to-tail ratio bongo net with a 500-

µm mesh. The nets used solid sample cups and a low-speed flow meter to calculate water 

filtered. Through 1987, eggs were sampled with 5-minute surface tows every three hours 

(Hassler et al. 1981; Rulifson 1993). In the years 1988-1993, the egg survey was conducted by 

Dr. Roger Rulifson from East Carolina University with a key difference being the sampling 

always started on April 15th and ended on June 15th (Rulifson et al. 1993). Between 1988-1993 

sampling intervals changed from every three hours to every four hours (Rulifson et al. 1993). 

Relative to other fish species, Striped Bass eggs are large, with an average diameter of 3.4 mm 

(Hassler et al. 1981). American Shad (Alosa sapidissima) eggs are the only other similar sized 

egg occurring in the Roanoke River, but they lack a distinctive oil globule that Striped Bass have 

(Hassler et al. 1981).  

 Standardized daily estimated egg abundance was used to account for the constantly 

changing cross-sectional area of the river. Counts of eggs per volume of water sampled were 
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multiplied by cross sectional area at the sampling site to standardize egg counts. Using 

standardized data from these egg production surveys, this analysis used three indicators of 

Striped Bass spawning phenology: start of season (15th cumulative percentile of egg 

concentration each year), season midpoint (50th percentile), and season end (85th percentile). 

These cumulative percentiles are well-established indicators of interannual phenological 

variability and have been used to study phenology of marine organisms across many ecosystems 

(Greve et al. 2005; Chiba et al. 2012; Mackas et al. 2012). Research on Striped Bass in 

Chesapeake Bay established that these metrics are useful for assessing interannual phenological 

variability in this species (Peer & Miller 2014). Many years of the egg surveys exhibit a distinct 

and large burst of egg abundance with sometimes a few small peaks in egg abundance following 

later (Rulifson 1993). Consequently, a peak spawning metric was included that represents the 

highest daily standardized abundance of eggs estimated in a single day to assess interannual 

variation in this important feature of the Striped Bass spawning run.  

 To test how sampling frequency may affect estimation of these phenological metrics, 

reduced sampling schedules were generated (Figure 3.1). Multiple sampling schedules were 

created based on the number of days per week that sampling would occur. Sampling frequency 

schedules between one day a week to five days per week were considered. Given the condensed 

nature of the Striped Bass spawning season, sampling frequencies less than once a week were not 

considered. Reduced sampling schedules assumed approximately even spacing between 

sampling days. All combinations of possible evenly spaced sampling schedules were extracted 

(Figure 3.1, panel A). The phenology metrics were then recalculated individually for all possible 

iterations (Figure 3.1, panel B). All the phenology metrics for each iteration were then averaged 

to create a mean for each year and each sampling schedule frequency (Figure 3.1, panel C). To 
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assess the accuracy of sampling at different frequencies, anomalies of phenology metric were 

calculated by subtracting the observed phenological metrics (i.e., those from the full sampling 

schedule of seven days a week) from the mean values from the reduced sampling schedules.  

 

3.3 Results: 

 Across metrics, the four and five days per week sampling schedules had smaller 

anomalies than the less frequent sampling schedules (Figures 3.2, 3.3). Increasing sampling 

effort reduces error in phenology metrics with the five days per week schedule having the lowest 

average absolute anomaly (0.85 days) and the one day per week schedule (2.09 days) having the 

highest (Table 3.1). The midpoint ( ±1.5 days S. D.) and end (±1.4 days S. D.) metrics have 

lower standard deviations across years and sampling schedules than the beginning (±2.6 days S. 

D.) and peak (±2.4 days S. D.) metrics and showed smaller anomalies from observed phenology 

within each sampling schedule (Table 3.1; Figure 3.3). The peak metric anomalies were greater 

and more variable than the other phenology metrics indicating that sampling for a single, short-

lived spawning peak may be more difficult to detect accurately than broader patterns that reflect 

cumulative measurements throughout the whole spawning period (Table 3.1; Figure 3.3). The 

beginning metric had the top five largest anomalies across all metrics and schedules (Figure 3.2). 

Most of these particularly large anomalies occurred in 1983. The 1983 spawning season length 

was slightly longer than average and didn’t exhibit comparatively large peaks in single day egg 

abundance.  

 

3.4 Discussion: 



89 
 

Monitoring phenology at lower temporal resolutions can still lead to highly accurate 

results (Figure 3.3). Striped Bass spawning occurs in a discrete area of the Roanoke River with 

an average spawning season length of ten days. The small sampling errors and standard 

deviations are particularly encouraging given that Striped Bass spawning events on the Roanoke 

River are short and condensed. Even greatly reduced sampling schedules of two days a week 

showed very similar modes of variability of egg abundance compared to the full sampling effort. 

All sampling schedules had similar patterns in interannual variability with the overall size of the 

anomalies being the primary difference between schedules. This is notable as interannual 

variability in Striped Bass of the A/R stock can be as much as six weeks (Callihan et al. 2014). 

Anomalies from the reduced sampling schedule were never biased toward occurring early or late 

timing, since two standard deviations of the mean always contained zero (Table 3.1). 

Researchers looking to assess spawning phenology of marine species, especially anadromous 

species with similar ecology to Striped Bass, might accurately assess spawning timing with a 

sampling frequency on a less than daily scale. Hassler et al. (1981) concluded that egg 

abundances did not significantly vary with time of day. This trend may not persist with the 

phenology of all species and may need to be assessed when developing a survey designed to 

monitor spawning or migration phenology. Other marine plankton surveys sampling species with 

a much longer season length should also consider the role of sampling frequency in analysis; 

however, the levels of precision described here is for a species whose spawning season length is 

1-2 weeks rather than 1-2 months seen in other species (Mackas et al. 2012). Researchers 

weighing sampling design decisions for taxa with a short spawning season, can use this analysis 

to consider tradeoffs between sampling frequency and accuracy of phenological data. A similar 

analysis should be conducted with an available data from a marine plankton survey that has a 
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high sampling frequency (~1-2 weeks) to assess if these results hold true for other taxa that are 

typically sampled on a monthly-to-seasonal basis.  
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Table 3.3. Summary of absolute value of anomalies from the reduced sampling schedules 

compared to the observed phenology 

Metric Sampling Schedule 

Average 

Anomalies (days) 

Standard 

Deviation (days) 

Beginning 1 Day/Week 2.3 3.0 

Beginning 2 Days/Week 1.9 3.0 

Beginning 3 Days/Week 1.4 2.6 

Beginning 4 Days/Week 1.2 2.3 

Beginning 5 Days/Week 1.0 2.2 

Midpoint 1 Day/Week 1.7 1.9 

Midpoint 2 Days/Week 1.5 1.7 

Midpoint 3 Days/Week 1.2 1.6 

Midpoint 4 Days/Week 0.9 1.2 

Midpoint 5 Days/Week 0.6 0.8 

Peak 1 Day/Week 2.5 2.9 

Peak 2 Days/Week 2.5 2.8 

Peak 3 Days/Week 2.1 2.5 

Peak 4 Days/Week 1.7 2.0 

Peak 5 Days/Week 1.3 1.6 

End 1 Day/Week 1.8 2.2 

End 2 Days/Week 1.2 1.7 

End 3 Days/Week 0.8 1.1 

End 4 Days/Week 0.6 0.8 

End 5 Days/Week 0.4 0.5 
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Figure 3.1. Methodology used to create reduced sampling schedules from which estimated 

phenology metrics would be calculated. This process was repeated for sampling frequencies or 

1-5 days/week. From left to right, the green boxes will be referred to as panels A, B, and C. 
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Figure 3.2. The difference in the day of the year of observed phenology metrics and metrics 

calculated from several reduced sampling schedules. 
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Figure 3.3. Average of absolute value of anomalies across phenology metrics and sampling 

frequencies. 

 

  



 

 
 

Chapter 4. Management Applications and Future Directions 

4.1 Conclusions and Management Implications: 

 Historical creel and egg surveys measure different aspects of Striped Bass phenology 

among the A/R stock. The spawning phenology metrics showed greater predictive skill and 

model fit than the migration phenology end metric. This indicates that models based on data 

from fisheries-independent surveys are more adept at forecasting A/R stock spawning 

phenology. A formal egg survey on the Roanoke River has not taken place since 1993. A 

renewal of this egg survey could be an important step towards identifying changes in A/R stock 

spawning phenology and forecasting future phenology. This is especially important as changes in 

the management of the Kerr Dam release protocol may be impacting spawning and migration 

phenology given the important role that discharge plays in cuing migrating and spawning 

phenology. Results from the sampling frequency analysis indicate that egg surveys with greatly 

reduced effort could still accurately capture many aspects of spawning phenology.  

 The end of migratory phenology indicates a trend toward earlier average phenology with 

a significant regression relationship (Figure 2.4). This shift could make current management 

measures that open and close the fishing season in need of adjustment to be more in line with the 

changes in observed phenology. Additional efforts to forecast Striped Bass phenology more 

accurately could help aid stock recovery from its status as overfished and experiencing 

overfishing through protecting the spawning stock biomass. With estimated river and ocean 

temperatures rising, climate change could continue to push the migration phenology earlier 

(Poloczanka et al. 2013). In its current form the weekly forecast cannot produce skillful 

predictions with weekly or monthly lead times. However, a nowcast, or forecast with a very short 

lead time (1-2 weeks) may be possible given the high ACC scores for all spawning metrics 
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starting in late April (Figure 2.10). Some of the first forecasts of living marine resources were 

nowcasts and can be effective management tools in the right fishery (Payne et al. 2017).  

 For ecological forecasts to be effectively utilized, the lead times at which key 

management or business decisions need to line up with lead times of a skillful forecast (Hobday 

et al. 2016). This forecast is highly useful for a variety of stakeholders who could be further 

involved in a formalized survey to establish the lead times involved in decision making. 

Decisions of interest in the fishery could be when managers need to close the RRMA portion of 

the fishery, when commercial fishermen deploy their boats, or when recreational fishermen plan 

fishing trips. The ASMA commercial fishery is currently a bycatch fishery meaning Striped Bass 

has to be less than 50% of landings by weight. Improved forecasts could help commercial 

ASMA fisherman by making them more aware of Striped Bass movements so they can prevent 

overfishing. A survey or a series of interviews with key informants could give a concrete picture 

of how this project is perceived by stakeholders and help secure future funds to develop an 

operation nowcast. A social science survey to understand decision lead times would target 

stakeholders, such as managers in the fishery, commercial fishermen, recreational anglers, water 

resource managers, and for-hire captains. The survey would be aimed at gaging general interest 

in using an ecological forecast for the Striped Bass migration. Short interviews of a few key 

individuals could also be useful in gathering information on stakeholder responses to the project. 

There may be points when knowing about the upcoming migration season is either too far in 

advance or too close to the migration to be actionable. Involving various stakeholders could not 

only help aid in developing an operational forecast, but also increase the communities use of its 

efforts (Hobday et al. 2016).  
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4.2 Future Modeling Directions:  

Due to differences in the travel distance needed to return to their spawning grounds, 

migratory phenology is likely to differ among different size classes of A/R Striped Bass, with 

some indication that larger females arrive later at the spawning grounds in the A/R stock 

(Callihan et al. 2015). These differences could have a strong effect on migration time given the 

lack of unbiased length data (Table 2.1) and the limited number of large females at the time of 

the Hassler and Rulifson surveys, it cannot be included in a wholistic modeling approach. 

Ideally, data for improved forecast development would include the proportion of fish in these 

size classes: < 600 mm TL, 600-900 mm TL, and >900 mm TL. These size classes coincide with 

those identified in Callihan et al. (2015). Percentages of individuals in each size class could be an 

important predictor of spawning phenology in future models that better consider their 

overwintering ground differences. Future GAM modeling approaches could also be adapted by 

using a threshold GAM that changes based on the percentages of fish over a specific length 

threshold. For example, most fish under 600 mm TL will not enter ocean water and will likely 

not be affected by any ocean conditions that may affect larger individuals. Better sources of A/R 

stock characteristics should be sought out given their likely importance in improving predictive 

skill.  

A/R Striped Bass is a very well-studied stock with a variety of different surveys currently 

conducted that may be used to assess phenology or aid in future research. Some of these datasets 

could be potentially leveraged in the future to expand on the research presented herein. There 

two primary surveys that collect information on juvenile Striped Bass in the Albemarle Sound. A 

weekly beach seine is conducted weekly from June to mid-July and a biweekly trawl survey has 

been implemented since 1955 with sampling occurring from July to October (Lee et al. 2020). 
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North Carolina implements a creel survey in the ASMA during the harvest period for Striped 

Bass with a similar sampling design to the RRMA creel survey (Lee et al. 2020). A gill net 

survey from 1990 to present has been sampling in the fall and winter (November to February) 

and the spring (March through May) where effort is concentrated in the western ASMA to target 

Striped Bass (Lee et al. 2020). Sampling occurs seven days a week with sampling locations 

selected randomly (Lee et al. 2020). A weekly electroshocking survey started in 1990 in the 

upper Roanoke River near the Striped Bass spawning grounds during the spring and continues 

through the present (Lee et al. 2020). These additional biological datasets may provide additional 

information on multiple A/R stock characteristics, including phenology, which could be used in 

future research. However, these surveys were not used in the current analysis as they either lack 

proximity to the spawning grounds, do not sample the appropriate life stage, lack high sampling 

frequency, or have reduced years of available data.  

Current forecast results indicate that river and ocean temperatures were not important for 

forecasting A/R Striped Bass phenology. Specific temperature thresholds that relate to 

physiological tolerances or spawning preferences may be more important to Striped Bass than 

the temperature anomalies that were used for this study. To assess the impact of using 

temperature thresholds in the forecast, two different types of thresholds were calculated. The day 

of the year (DOY) when ocean temperatures exceed 9º C was used to assess when Striped Bass 

begin entering the Roanoke River (Callihan et al. 2014). The DOY when river temperatures 

reach 18º C was recorded to assess when Striped Bass would initiate spawning (Hassler et al. 

1981; Rulifson 1993). The DOY when a temperature threshold crossed and remained over that 

threshold was recorded rather than the first time that threshold was crossed. An approach similar 

to the biological model comparison was used to assess the impacts of using temperature 
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thresholds on forecast predictive skill. A fully parameterized base model from the weekly 

forecasts was compared to a similar version of the weekly forecast with a variable of the DOY 

when the temperature thresholds were crossed each year. The ocean model (Equation 2 in 

Chapter 2) used the 9º C threshold DOY and the river model (Equation 3 in Chapter 2) used the 

18º C threshold DOY. Versions of the reduced and biological models from the biological model 

comparison were generated using the temperature thresholds rather than anomalies. The fully 

parameterized threshold model had two weeks of ‘good’ forecasts (e.g., ACC > 0.60) in mid-

March (Appendix Figure 10). The reduced threshold model also produced two ‘good’ forecasts 

in January and February. The biological model using temperature thresholds showed little 

difference from the base model using anomalies. These results indicate that using the timing of 

yearly temperature thresholds results in greater overall model predictive skill than using weekly 

temperature anomalies. These results will continue to be investigated by applying threshold 

models to other phenology metrics in future research.  

 In addition to oceanic and riverine temperature, estuarine temperatures in Albemarle 

Sound during the pre-spawning staging period may influence migration and spawning 

phenology. To the best of my knowledge, there is not a sustained time series of in situ estuarine 

temperature covering the full period of egg production surveys. It is possible that river and ocean 

temperatures are sufficient to model the impact of temperature on the A/R stock migration, and 

estuarine temperatures may not aid predictive skill. To assess this possibility, Albemarle Sound 

water temperature data from the ASWQMP from 2009-2016 at the Scuppernong River mouth 

site was compared to river and ocean temperature for the same period (Appendix Figure 11). 

Albemarle Sound water temperatures at the mouth of the Scuppernong River were very similar to 
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river and ocean temperatures used in the current modeling so would likely not add predictive 

skill or better model fit to forecasts.  

The current modeling approach is limited by availability of data for the historical period 

that extends between 1960-1993 (Table 2.1). The recent rise in available ecological forecasts for 

living marine resources is largely brought on by recent availability of skillful nowcasts and 

forecasts of ocean temperature and ocean color (Hobday et al. 2019). Certain technologies and 

datasets that are now more standard in the development of ecological forecasts, such as satellite-

based ocean data, were not available to cover the historical period (Payne et al. 2017; Fennel et 

al. 2019). Starting in 2007, there are multiple daily USGS water temperature loggers along the 

Roanoke River that could be more effective sources of river water temperature. With satellite 

data and greater availability of ocean water temperatures, a composite of ocean water 

temperatures that stretch across the entire overwintering grounds up to the Mid-Atlantic Bight or 

a single actual water temperature buoy could be a better source of overwintering ground ocean 

temperatures. Future modeling approaches could make use of newer and potentially more 

accurate data sources if a fisheries-independent survey for assessing Striped Bass phenology is 

resumed.  
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Appendix:   

Appendix Table 1. DAIC scores under 10 of weekly full GAMs. Model week refers to the data 

from the week of the year which created the model (i.e., forecast initialization week). All models 

contain the full suite of variables in the primary weekly modeling approach. Models are 

compared across weeks and not within weeks.  

Beginning Midpoint Peak End  Migration End 

Weekly  

Model AIC 

Weekly  

Model AIC 

Weekly  

Model AIC 

Weekly  

Model AIC 

Weekly  

Model AIC 

18 0 18 0 18 0 12 0 20 0 

16 5.5 16 0.9 19 2.3 2 8.5 17 2.2 

17 6.4 14 7.5     17 8.5 18 2.7 

3 9.8 20 7.9     16 8.6 11 2.9 

            10 8.9 19 3.6 

            14 9.8 10 7.3 
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Appendix Figure 1. Examples of GAM output plots that were classified into the following 

categories: A shows no response curve due to use of the double penalty approach for eliminating 

insignificant variables from a model, B is positive, linear, C is non-linear, and D is non-

significant as its confidence intervals contain zero across the entire range, (Marra & Wood 

2011). In each subplot, the solid line indicates estimates from the GAM, while the dotted lines 

indicate 95% confidence intervals 
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Appendix Figure 2. Discharge GAM output plots for the egg midpoint metric. 
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Appendix Figure 2 continued. Discharge GAM output plots for the egg midpoint metric. 
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 Appendix Figure 3. F scores from biological models. The black line at initialization week 13 is 

when the models switch from being based on ocean variables to being based on river variables  
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Appendix Figure 4. Discharge (cfs) at Roanoke Rapids broken down by year 
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Appendix Figure 5. Comparison between discharge (cfs) and calculated velocity (ms-1) of the 

Roanoke River and Roanoke Rapids. The intersection at 2 m s-1 (yellow dashed line) represents a 

moderate velocity barrier to Striped Bass migration, with the 3 m s-1 intersection (red dashed 

line) marking a severe velocity barrier to Striped Bass.  
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Appendix Figure 6. Distribution of predictions from the retrospective forecast for the spawning 

beginning metric. Dashed line is the average observed egg beginning day of the year.  
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Appendix Figure 7. Distribution of predictions from the retrospective forecast for the spawning 

peak metric. Dashed line is the average observed egg peak day of the year 
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Appendix Figure 8. Distribution of predictions from the retrospective forecast for the spawning 

end metric. Dashed line is the average observed spawning end day of the year 
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Appendix Figure 9. Distribution of predictions from the retrospective forecast for the spawning 

migration end metric. Dashed line is the average observed migration end day of the year 
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Appendix Figure 10. Anomaly correlation coefficient scores for the weekly temperature 

threshold-based forecast of spawning beginning. The lowest dashed line shows an ACC score of 

0.6, which is when a forecast is considered useful. The upper dashed line shows an ACC score of 

0.8, which is when forecast skill is considered highly accurate. 
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Appendix Figure 11. Weekly averages of temperatures, from Jan 1-June 30 for three primary 

regions used by Striped Bass. Scuppernong is water temperatures from the mouth of the 

Scuppernong River that flows into the Albemarle Sound 

 


