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Abstract: The retrofit of wood-frame residential buildings is a relatively effective strategy to mitigate damage caused by windstorms.
However, little is known about the effect of modifying building performance for intense events such as a tornado and the subsequent
social and economic impacts that result at the community level following an event. This paper presents a method that enables a com-
munity to select residential building performance levels representative of either retrofitting or adopting a new design code that computes
target community metrics for the effects on the economy and population. Although not a full risk analysis, a series of generic tornado
scenarios for different Enhanced Fujita (EF) ratings are simulated, and five resilience metrics are assigned to represent community goals
based on economic and population stability. To accomplish this, the functionality of the buildings following the simulated tornado is
used as input to a computable general equilibrium (CGE) economics model that predicts household income, employment, and domestic
supply at the community level. Population dislocation as a function of building damage and detailed sociodemographic US census-based
data is also predicted and serves as a core community resilience metric. Finally, this proposed methodology demonstrates how the
metrics can help meet community-level resilience objectives for decision support based on a level of design code improvement or
retrofit level. The method is demonstrated for Joplin, Missouri. All analyses and data have been developed and made available on
the open-source IN-CORE modeling environment. The proposed multidisciplinary methodology requires continued research to char-
acterize the uncertainty in the decision support results. DOI: 10.1061/(ASCE)ST.1943-541X.0003338. This work is made available
under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

The performance of civil infrastructure systems supports community
resilience but has been primarily controlled by probability-based
limit states design over the last several decades (e.g., ASCE 7-16).

In 2015, the US National Institute of Standards and Technology
(NIST) proposed a general framework to help communities develop
resilience plans for building clusters (a group of buildings that sup-
port a community function such as education) and infrastructure
associated with social and economic systems (NIST 2015). Since
then, an increasing number of researchers have focused on physical
infrastructure systems and related distributed networks to quantita-
tively assess community-level resilience with multidisciplinary
measurements (e.g., Doorn et al. 2019; Wei et al. 2020; Wang et al.
2021; Roohi et al. 2020). According to McAllister (2016), engi-
neering outcomes can be quantitatively coupled with socioeco-
nomic performance, providing more flexible and informative
support for risk-informed decision-making with the public interest
in mind. Advancements in community resilience modeling can help
accelerate the development of building codes and standards to meet
the requirements of communitywide resilience goals of the broader
built environment at a higher level, consistent with performance
objectives of individual buildings throughout their service lives
(e.g., Ellingwood et al. 2017; Masoomi and van de Lindt 2019).
For example, in the United States, building codes and standards
(e.g., ASCE 2016) have focused on life safety goals, but the role
of the individual building performance in fulfilling community
resilience goals is unknown (Ellingwood et al. 2017). In order to
address this grand challenge over the next decade, there is a need to
link resilience design objectives with individual building perfor-
mance levels (Wang et al. 2018). Physical performance of buildings
has been quantitatively linked to communitywide social and eco-
nomic outcomes in only one study by Roohi et al. (2020), without
focusing on achieving community-level goals. Therefore, in this
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paper, a systematic community-level analysis of linked physical,
social, and economic systems is proposed to deaggregate perfor-
mance targets of buildings to enable the community to achieve
predefined socioeconomic communitywide resilience goals. The
performance targets can be expressed in terms of individual building
fragilities to further guide the performance-based engineering de-
sign of structural components given specific design features.

Community resilience goals mainly focus on robustness and
rapidity (NIST 2015). The robustness goals emphasize improve-
ments in the performance of building components, and the rapidity
goals are devoted to allocating limited resources and creating
organizational guidelines to ensure community recovery is imple-
mented effectively and efficiently (Wang et al. 2018; Wang and van
de Lindt 2021). The NIST Community Resilience Planning Guide,
the San Francisco Planning and Urban Research Association, and
the Oregon Resilience Plan provided examples of specifying the
desired time-to-recovery as performance goals for building clusters
at different functional levels (NIST 2015, 2020; OSSPAC 2013;
Poland 2009). Schultz and Smith (2016) developed rapidity resil-
ience objectives for housing, utility systems, and transportation
individually when the community is exposed to flood events at dif-
ferent return periods. However, only a few studies have focused on
examining the achievement of robustness goals. Chang and Shino-
zuka (2004) set a reliability goal of 95% likelihood of being able to
meet the objectives for water systems (e.g., major pump station
loses function) in given seismic events. Sabarethinam et al.
(2019) estimated the likelihood of achieving robustness perfor-
mance goals (i.e., the performance of infrastructure systems from
0% to 100%) for the coastal town of Seaside, Oregon, subjected to
combined seismic and tsunami hazards. Wang et al. (2018) used the
direct loss ratio (DLR) and uninhabitable ratio (UIR) as the resil-
ience goals for measuring the robustness of a residential building
cluster under tornado hazards, with the damage values linked to
direct loss and uninhabitability as defined from the HAZUS-MH
MR4 technical manual for consistency.

In order to measure socioeconomic aspects of community resil-
ience, researchers have proposed metrics that can be potentially
considered indicators of community resilience. Potential indicators
of economic resilience include the unemployment rate, income
equality (e.g., based on gender and race or ethnicity), and business
diversity (e.g., ratio of large to small businesses). Social resilience
metrics reflect individual human and social needs, which can be
represented in population changes and the distribution of sociode-
mographic characteristics (e.g., age, race, education levels) over
time (Burton 2015; Cutter et al. 2014), access to social services
and networks, and quality of life assessments. Some metrics can
reflect the multifaceted socioeconomic indicators of resilience.
For example, temporary and permanent population dislocation fol-
lowing a disaster is a complex social and economic process jointly
impacted by the functionality loss of physical systems and the so-
ciodemographic characteristics (Wang et al. 2018). The effects of
population dislocation can ripple through the local economy, social
institutions, and building inventory. For example, local businesses
may lose both employees and customers and therefore decide to
close permanently and relocate. As residents and businesses leave
and relocate, tax revenue for local government shrinks, forcing lay-
offs that can induce more residents to leave (Mieler et al. 2015), as
well as shrinking resources for restoring and maintaining physical
infrastructure.

In the present study, building functionality, employment, do-
mestic supply, household income, and housing unit and population
dislocation are used as physical and socioeconomic resilience met-
rics in the context of a disaster. This is the first study in the literature
where structural performance goals selected for buildings (or any

physical system) are based on the ability to achieve both social and
economic goals at the community scale. This is accomplished by
chaining the performance of the built environment to a computable
general equilibrium (CGE) model for economic metrics (i.e., house-
hold income, employment, domestic supply) and an existing popu-
lation dislocation algorithm for sociological metrics (i.e., household
or population dislocation) and ultimately determining the deaggre-
gated performance targets for individual buildings to meet a speci-
fied goal. The proposed methodology provides a structured but
flexible approach to support resilience decision-making by helping
stakeholders develop integrative implementation strategies to im-
prove their resilience. The proposed multidisciplinary methodology
builds on and integrates previous work (Wang et al. 2021), and con-
tinued research is needed to characterize uncertainty in the final
decision support results.

Deaggregation of Community Resilience Goals

Fig. 1(a) summarizes the methodology used in this study to develop
individual residential building performance targets to achieve
community-level resilience goals in terms of physical, social,
and economic metrics. The approach starts by articulating commu-
nity resilience goals, such as less than an x% increase in unemploy-
ment immediately after an EF-3 tornado occurring anywhere in the
community. The preliminary design for individual residential build-
ings shown in Fig. 1(a) refers to structural combinations such as
roof covering and is controlled by fragility functions. Please refer
to the section “Wind Design to Achieve Community Resilience”
for more details about the design. Fig. 1(b) depicts the sequencing
of analyses for a given community and its physical, social, and eco-
nomic attributes; damage and functionality models; computable
general equilibrium economic model; and population dislocation
algorithm, which is introduced in later subsections of this paper,
to evaluate the hazard impacts and support community resilience
planning. The percentage of residential buildings that were as-
signed the specified retrofit were analyzed using values ranging
from 0% to 100%, in intervals of 10%, for the community. The
objective is to determine the percentage of buildings that should
be retrofitted such that the communitywide building performance
and socioeconomic metrics calculated in the resilience analysis
meet the community resilience goals. Community resilience goals
would typically be community defined and could be adjusted based
on community-specific needs, but illustrative values are used in
this study.

Damage and Functionality Model

Eq. (1) determines the building damage probability (Pdamage) using
fragility functions for each building, which can be grouped by each
building archetype and have been fitted to lognormal cumulative
distribution functions (CDFs) controlled by two parameters (median
λ and standard deviation ξ). The fragility functions (FrDS) represent
the probability of exceeding damage state i (i.e., slight, moderate,
extensive, complete) for each building as a function of the intensity
measure (e.g., 3-s gust wind speed, spectral acceleration). For each
Monte Carlo realization of a tornado event, a uniformly distributed
random variable Rj, between 0 and 1, is generated and compared to
the building damage probabilities corresponding to the four dam-
age states. As shown in Eq. (2), if the realization experiences the
moderate damage state or greater, then the building is assumed to
lose functionality in this study. The moderate damage state in tor-
nado damage assessment means the building has moderate damage
to windows or doors and roof covering, but the building itself can
be occupied and repaired (Memari et al. 2018). For business, it
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would not be possible to have an operational business in the mod-
erate damage state; thus, the building would be deemed nonfunc-
tional in the CGE analysis. The building functionality status (Ikfun;j)
of Eq. (2) is either functional (1) or nonfunctional (0) for each reali-
zation. The index j is representative of each realization of the
Monte Carlo simulation (j ¼ 1 to N) for each building k. Sub-
sequently, the building functionality probability (Pfun) can be ap-
proximated using Eq. (3)

Pk
damage;i ¼ FrkDSiðIM ¼ xÞ ð1Þ

Ikfun;j ¼
(
1 Rj > FrDS2

0 Rj ≤ FrDS2
ð2Þ

Pk
fun ≈ Nk

fun

N
¼

P
N
j¼1ðIkfun;j ¼ 1Þ

N
ð3Þ

After the Monte Carlo simulation (MCS) building damage
analysis, the results are passed to the CGE economic analysis,
where the building is considered nonfunctional if the probability
of being in or exceeding DS2 (moderate damage) is greater than
0.5. The CGE is only run once after the structural analysis, and
this full sequence shown in Fig. 1(a) is completed for each tornado
scenario to develop a suite of scenarios.

Computable General Equilibrium Model

The design or retrofit of infrastructure systems can be quantitatively
related to community-level economic resilience metrics through a
dynamic economic impact model. In this study, the CGE model
served as the economic impact model to quantitatively evaluate the
varying impacts of natural disasters on the local economy. The fol-
lowing section provides a brief summary of the CGE model and its
data. The implementation of the CGE model in this study is con-
sistent with that of Wang et al. (2021); for further details on the
CGE model or its data and assumptions, please refer to Cutler et al.
(2016) and Attary et al. (2020).

CGE Model Description
CGE models assume that firms maximize profits and households
maximize welfare as a guide to making economic decisions.
CGE models are data-driven models that provide descriptions of
how households, firms, and the local government interact to pro-
duce goods and services for an economy. In recent years, CGE
models have become a particularly effective tool when applied to
regional impact analysis of external shocks that are assimilated
from other fields (e.g., Rose and Guha 2004; Rose and Liao 2005;
Cutler et al. 2016; Attary et al. 2020). As such, financial shocks,
health consequences of pollution, climate change, and, as this study
conveys, natural hazards can all be linked with a CGE model to
simulate economic outcomes. Prior to the extensive use of CGE
models, Input–output (I-O) economic models were commonly used
to model the impact of natural hazards (e.g., Rose and Liao 2005).
Although I-O models adequately simulate demand-side shocks,
they have been limited in their ability to determine impacts to the
supply side, such as the loss of buildings and lifeline systems
(Koliou et al. 2020). Because the CGE model can address both
demand-side and supply-side factors, it is the tool of choice to ex-
amine the impact of natural disasters.

A social accounting matrix (SAM) organizes data for three en-
tities, households, firms, and the local government, that represent
the flow of resources in an economy at a point in time. A SAM is a
method to organize the data in a consistent way for modeling the
interactions between all three entities. The SAM, along with input
from other matrices, such as tax revenue, are input data to the CGE
model. See Schwarm and Cutler (2003) for an extensive description
of a SAM. The SAM used in this study is based on data from the
Bureau of Labor Statistics, Bureau of Economic Analysis, and US
Census Bureau. In addition, county tax assessor data are used to
obtain parcel-level physical characteristics of residential homes and
business buildings. The buildings from this data set are merged
with building-specific archetypes to summarize the impact of a tor-
nado on the functionality of these buildings.

CGE models are based on a range of fundamental microeco-
nomic principles that include (1) utility-maximizing households

Initial Interdependent
Community Description

at time = 0; PD = k

1a) Built Environment
1b) Social Systems
1c) Economic Systems

Start

2c) Damage to
Physical

Infrastructure

2b) Damage
Models

2a) Hazard
Model

3b) Functionality of
Physical Infrastructure

3d) Social
Science Models

3c) CGE
Model

3a) Functionality
Models

3e) Direct and Indirect
Economic and Social Losses

(a) (b)

Fig. 1. (Color) (a) The framework of the deaggregation of community-level resilience goals; and (b) the sequence of analyses for community
resilience assessment and metrics.
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that supply labor and capital and use the proceeds to pay for goods
and services and taxes; (2) the production sector is based on per-
fectly competitive firms that choose profit-maximizing amounts of
intermediate inputs, capital, land, and labor to produce goods and
services for both domestic consumption and export; (3) the
government sector collects taxes and uses tax revenues in order to
finance the provision of public services; and (4) the local economy
trades with the rest of the world. These principles help to formulate
the CGE model, which consists of a series of equations and is cali-
brated when those equations exactly reproduce the data in the
SAM. The CGE model can then be used to simulate the outcomes
from a wide range of exogenous shocks, such as from a tornado.

Linking the Building Functionality Model and the CGE
Model
Capital stock within a community is the key variable of interest
linking the functionality model to the CGE model. The market val-
ues of commercial and residential buildings were aggregated into a
goods, trade, and other commercial sector and three housing serv-
ices sectors (HS1, HS2, HS3). Goods, trade, and other are them-
selves aggregations of the North American Industry Classification
System (NAICS) sectors. Goods represent large manufacturing in-
dustries, trade is mostly retail, and other is a combination of indus-
tries including services, health, and finance. This study focuses on
residential buildings, where HS1 is lower-value homes, HS2 is
higher-value homes, and HS3 is rented residential buildings.

Tornado damage to buildings, and their reduced functionality, is
modeled as negative “shocks” in the CGE model. These shocks are
the connection point between engineering outputs and the CGE
model. Eq. (4) calculates the sector shocks (γs) as a percentage
of capital stock remaining

γs ¼
P

n
k¼1 C

k
s × Pk

fun;sP
n
k¼1 C

k
s

ð4Þ

where C = capital stock of each building k attributed to each
sector s.

Incorporating the output from the engineering models into
external shocks enables the CGE model to estimate a range of post-
hazard economic losses such as employment effects and domestic
supply by sectors (Cutler et al. 2016). Furthermore, retrofit strat-
egies that mitigate damage to residential properties will attenuate
the shock to capital stock in the housing services sector and thus
tend to reduce overall economic loss.

Population Dislocation Algorithm

The population dislocation algorithm, which has input from the
building damage analysis, and detailed sociodemographic data pre-
dict the probability of dislocation immediately following the event
(Girard and Peacock 1997; Peacock et al. 1997; Rosenheim et al.
2019). Eq. (5) uses a logistic regression model with five constants,
c1 to c5, to estimate population dislocation probabilities (Pdis) for
each damage state i based on property value loss (ploss) and build-
ing types (single-family or multifamily, dsf) for each building k
and neighborhood characteristics (percent of black, pblack, and
Hispanic populations, phisp) by each census groupm. The variable
dsf is set to 1 if the number of estimated housing units was 1. The
variable is 0 if the number of estimated housing units is greater
than 1. The logistic regression constants were not changed for this
specific community, but the variables such as the percent of the
black and Hispanic population were updated based on the Census
Bureau’s data. Eq. (6) sums the dislocation probabilities for each
damage state (Pk

dis;i;m). Damage state 1 (slight or no damage) is
evaluated separately from damage states 2 to 4, consistent with the

building functionality evaluations, to determine the dislocation
probability of each building k in each census group m (Pk

dis;m).
For each Monte Carlo realization, the population dislocation algo-
rithm can help predict whether the households leave their housing
unit immediately after a hazard event. For more details on the pop-
ulation dislocation algorithm and the logistic regression model,
please see Rosenheim et al. (2019) and Lin et al. (2008)

Pk
dis;i;m ¼ 1

1þ e−ðc1þc2plosski;mþc3dsfkmþc4pblackmþc5phispmÞ
ð5Þ

Pk
dis;m ¼ Pk

dis;1;m × Pk
damage;1 þ

X4
i¼2

Pk
dis;i;m

× ðPk
damage;i − Pk

damage;i−1Þ ð6Þ

Illustrative Example for Tornado Hazards

In this study, simulated tornado wind fields defined as a peak three-
second gust were used. Joplin was selected as the testbed to per-
form resilience assessments for tornado-induced events due to its
history with a large double-vortex Enhanced Fujita 5 (EF5) tornado
in May of 2011. The purpose of the illustrative example was to
determine the minimum percentage of wood-frame residential
buildings that need to be retrofitted for the community to meet its
resilience goals. These community-level resilience goals were de-
fined in terms of building functionality and social and economic
metrics using the proposed methodology. All analyses and data
were performed and are available in the open-source IN-CORE
modeling environment. Please refer to Wang et al. (2020) for
more details regarding the manual, data sets, and example note-
books for the IN-CORE modeling environment. This example fo-
cuses on the resilience assessment at the community level specific
to tornado events because tornadoes only strike a small footprint
area within a community. The resilience model and the retrofit
can be applied to a large urban area for other natural hazards such
as earthquake events (e.g., Roohi et al. 2020).

Community Description

Joplin is a typical small to medium-sized community, located in
southwest Missouri in the United States and spanning Jasper
and Newton counties. In this illustrative example, a total of 19 ar-
chetype buildings (e.g., residential, business, healthcare, education)
were used to represent the buildings within the community. Five
typical wood-frame residential buildings from Masoomi et al.
(2018) with different footprint areas, roof structures, and number
of stories were used to describe all the residential buildings. The
electric power network is generally regarded as the most impacted
infrastructure system by tornado (and most wind) events and was
therefore also included herein to examine the dependency between
the building infrastructure and electric power network. Transmis-
sion or distribution substations and wood poles are the two types of
vulnerable components included in the electric power network.
Other networks such as water, transportation, and telecommunica-
tion networks were not considered in this study but could be mod-
eled in future work as needed. It is acknowledged that the
functionality of other network systems depends on the reliability
of the electric power network (e.g., Unnikrishnan and van de Lindt
2016; Zou and Chen 2019). For example, water towers are vulner-
able in that they need to be supplied with electric power (Masoomi
and van de Lindt 2018), so they may only last several days follow-
ing a tornado if backup generators for pumps are not available or
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supplied. Additionally, damaged or fallen trees or poles can block
the roads following tornadoes and cause adverse impacts on the
transportation networks (e.g., Hou and Chen 2020; Hou et al.
2019).

Table 1 provides a summary of the built environment and social
systems for the testbed and example in this study. The number of
buildings and housing units in Joplin is 28,152 and 23,261 (multi-
family units will have multiple households in one building), respec-
tively, and the building data set was developed circa 2010 before
the 2011 Joplin tornado. Nonresidential buildings include 13 build-
ing types, such as commercial buildings and social institutions,
such as schools. The housing unit estimation was determined based

on the 2010 Decennial Census data and an existing housing unit
allocation algorithm (see Rosenheim et al. 2019 for details). The
allocated housing units are also designated by race or ethnicity
and household income, in addition to tenure status, as shown in
Table 1. The number of workers employed in Joplin in 2010
was 39,831, and the total domestic supply was $3.04 billion. Please
refer to Wang et al. (2021) for more details on the building inven-
tory, electric power network, housing unit characteristics, and
economy in Joplin.

Initial capital stock values come from the Newton and Jasper
County Assessor’s offices that encompass Joplin. The building
level county assessor’s data and the building-level archetype data
used in the functionality model are from different sources. Fortu-
nately, both data sets had detailed geographic coordinate location
information for every building. Therefore, in order to connect
individual building-level archetypes and functionality to economic
sectors, the building-level sector information from the county as-
sessor’s office was merged with the archetype data sets using a GIS
spatial join algorithm. Building level data were then aggregated to
the sector level.

Generic Tornado Models

A series of generic tornadoes based on the gradient technique
(Standohar-Alfano and van de Lindt 2015) was used as the hazard
model impacting the community, resulting in physical damage to
buildings and the electric power network and propagating eco-
nomic losses, household disruption, and population dislocation.
Tornadoes with different EF ratings (EF0–EF5) are associated
with different ranges of wind speeds. Fig. 2 shows the geometry
of the gradient model for an EF2, EF3, and EF4 single tornado,

Table 1. Built environment and human social system for Joplin testbed

Joplin testbed Description Values

Built environment
Buildings Residential 24,903

Nonresidential 3,249
In total 28,152

Electric power network Substations 18
Poles 23,857

Human social system
Housing units Owner-occupied 11,344

Renter-occupied 9,435
Vacant 2,455

Group quarters 22
In total 23,261

Population Owner-occupied 26,873
Renter-occupied 20,949

In total 49,810

EF2: 50-60 m/s (111-135 mph)
EF1: 38-49 m/s (86-110 mph)
EF0: 29-37 m/s (65-85 mph)
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Fig. 2. The geometry of generic tornado models for different EF ratings: (a) EF2; (b) EF3; and (c) EF4.
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respectively, where the width of the applied tornadoes is equal to
the average of the historical tornado data for the Enhanced Fujita
rating (Attary et al. 2018). The start points, end points, and the di-
rections of all tornado scenarios were assigned randomly within the
community boundaries. The NIST Community Resilience Planning
Guide (NCRPG) encourages communities to use routine levels
(i.e., hazard events that are more frequent with less consequential
events that should not cause significant damage), design levels
(i.e., hazard events used to design structures), and extreme levels
(i.e., beyond design levels and likely to cause extensive damage) to
address a range of potential damage and consequences (NIST 2020).
This study examined the community resilience impacted by 100
random tornadoes for each different intensity level (i.e., EF2,
EF3, EF4) individually in line with the concept encouraged in the
NCRPG. Most tornadoes travel in paths from the southwest to-
wards the northeast (Suckling and Ashley 2006). Additionally, it
is important to mention that the building inventory was developed
for Joplin exclusive of other nearby homes outside of the Joplin
boundaries. Thus, some of the tornado scenarios might damage
buildings outside of Joplin in the simulation, but they are not in-
cluded in the determination of physical damage and the associated
socioeconomic losses in this study.

The methodology presented herein is general and can be imple-
mented for any hazard type. The socioeconomic goals defined for
the community, partially or wholly, do rely on a hazard-specific
analysis. For example, earthquake events commonly impact the
entire community, whereas a tornado directly impacts a relatively
small geographic footprint within a community, but the impact can
extend to the entire community in terms of social and economic
impacts. Additionally, building functionality is highly related to
tornado intensity, tornado path and width, and housing density
(urban or rural).

Multidisciplinary Community Resilience Goals

In this study, core resilience metrics inform three community sta-
bility areas: physical services, economic activity, and population
stability. Physical service stability was estimated by determining
building functionality two different ways: with and without the
impact of the reliability of the electric power network. Percent
changes in employment, domestic supply (e.g., food, care, secu-
rity), and household income were used to jointly reflect the activity
of the local economy. Population stability was calculated as the
percent change in households being dislocated by housing unit

Table 2. Community resilience goals based on core metrics

Community
goals

Tornado
intensity
(NCRPG
hazard
level)

Physical service metrics Population stability metrics Economic stability metrics

% buildings
remaining
functional
(due to

damage) (%)

% buildings
remaining

functional (due
to damage +
electrical

power) (%)

% households
dislocated(unit:
households)

(%)

% population
dislocated(unit:
people) (%)

% change in
employment

% change
in domestic

supply

% change
in mean
household
income

Goal A EF2 (routine) 98 95 1 1 0.2 0.5 0.2
Goal B EF3 (design) 96 89 3 3 0.5 1.0 0.5
Goal C EF4 (extreme) 94 83 5 5 0.8 1.5 0.8

Table 3. Lognormal parameters for residential wood-frame building fragilities in this study

Building
type Building description

Damage
states

Original fragility
functions (m/s)

Retrofit design in terms of
fragilities (m/s)

λ ξ λ ξ

T1 Residential wood building, small rectangular
plan, gable roof, one story

DS1 3.68 0.13 3.68 0.14
DS2 3.56 0.14 3.85 0.12
DS3 3.63 0.13 3.98 0.11
DS4 3.68 0.14 4.16 0.13

T2 Residential wood building, small square
plan, gable roof, two stories

DS1 3.60 0.13 3.60 0.13
DS2 3.53 0.13 3.76 0.12
DS3 3.59 0.13 3.91 0.11
DS4 3.68 0.13 4.17 0.12

T3 Residential wood building, medium
rectangular plan, gable roof, 1 story

DS1 3.61 0.13 3.61 0.13
DS2 3.51 0.13 3.77 0.12
DS3 3.57 0.13 3.92 0.11
DS4 3.74 0.12 4.23 0.12

T4 Residential wood building, medium
rectangular plan, hip roof, two stories

DS1 3.73 0.13 3.73 0.13
DS2 3.65 0.13 3.87 0.12
DS3 3.71 0.13 4.00 0.11
DS4 3.76 0.13 4.28 0.12

T5 Residential wood building, large rectangular
plan, gable roof, two stories

DS1 3.75 0.13 3.75 0.13
DS2 3.65 0.13 3.88 0.12
DS3 3.70 0.13 3.98 0.11
DS4 3.64 0.15 4.06 0.14
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Fig. 3. (Color) Residential buildings retrofitted randomly assigned through the community: (a) 0% retrofitted; (b) 40% retrofitted; and (c) 80% retrofitted.
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(or population) following a disruptive event. Three community
resilience goals (Goal A, Goal B, and Goal C) were targeted as
routine level (EF2), design level (EF3), and extreme level (EF4)
tornado events, respectively, as indicated in Table 2. The commu-
nity resilience goals may be viewed as modest but reasonable be-
cause tornadoes typically strike a portion of the entire community,
sometimes 5% to 10%. All residential and commercial buildings
outside the tornado path were not physically damaged but may still
lose electric power. Therefore, two types of physical service metrics
related to building functionality were proposed herein: considering
the dependency between buildings and the electric power network
or neglecting the dependency of buildings on electric power.

It is important to mention that each community is unique, with
its own characteristics, and each will have its own specific resil-
ience goals and potential solutions. In this study, having clearly
defined resilience goals in terms of core metrics is intended to dem-
onstrate how a community can change a physical design of a com-
ponent within its infrastructure (buildings in this case) to effect
change in their physical service, population, and economic stability
areas if a natural hazard were to strike. For example, keeping the
percentage of households dislocated below 5% is one of the social
resilience goals identified for tornadoes at the extreme hazard level.

Wind Design to Achieve Community Resilience

Tornadoes are low-probability high-consequence events that often
result in significant physical damage and socioeconomic impacts
but have not been considered in the structural design codes and
standards (e.g., ASCE 7-16) so far. That will change soon because
tornadoes are planned to be included for Risk Category 3 and 4
buildings (e.g., hospitals, emergency operation centers, etc.) begin-
ning in 2022. Some challenges such as pressure deficit, vertical
components of the tornadic winds, and windborne debris in torna-
does made it difficult to rationalize a design process for most build-
ings (e.g., Haan et al. 2010; van de Lindt et al. 2013; Masoomi and
van de Lindt 2017). In this study, basic construction improvements
were modeled using modified fragilities for individual building per-
formance. Table 3 presents building fragility functions for typical
and retrofitted residential buildings with a different structural com-
bination of roof coverings, roof sheathing nailing patterns, and

roof-to-wall connection types (Wang et al. 2021). The typical de-
sign would have regular asphalt shingles, 8d common nails spaced
at 150=300 mm (6=12 in:) attaching roof sheathing panels to
trusses, and two 16d toenails to connect the roof rafters over the
vertical studs. The retrofit design used regular asphalt shingles, roof
sheathing nails spaced at 150=150 mm (6=6 in:), and two H2.5
hurricane clips as roof-to-wall connections. A series of cases
was examined, ranging from 10% of residential buildings in a com-
munity being retrofitted to 100%, to select how many residential
buildings would need to be retrofitted to achieve the desired com-
munity resilience goals. Several of these scenarios are illustrated in
Fig. 3. The damage fragility curves for a suite of 19 building ar-
chetypes incorporating 13 nonresidential building types, each with
four damage states (i.e., slight, moderate, extensive, and complete),
are available to cover the entire range of wind speeds (Masoomi
et al. 2018; Memari et al. 2018; Koliou et al. 2017; Masoomi
and van de Lindt 2016).

Table 4. Community resilience metrics for physical and social systems that benefit from residential building retrofits (mean values)

Residential
building
retrofits (%)

Physical service metrics Population stability metrics

The number of
buildings nonfunctional

(due to damage)

The number of
buildings nonfunctional

(due to damage + electrical
power)

Housing unit
dislocation (unit:
housing units)

Population
dislocation (unit:

people)

EF2
0 315 (1.1%) 981 (3.5%) 231 (1.0%) 478 (1.0%)
40 251 (0.9%) 971 (3.5%) 197 (0.9%) 409 (0.8%)
70 200 (0.7%) 963 (3.4%) 169 (0.7%) 350 (0.7%)
100 150 (0.5%) 955 (3.4%) 142 (0.6%) 295 (0.6%)

EF3
0 703 (2.5%) 1,387 (4.9%) 501 (2.2%) 1,021 (2.1%)
40 601 (2.1%) 1,377 (4.9%) 436 (1.9%) 894 (1.8%)
70 523 (1.9%) 1,368 (4.9%) 388 (1.7%) 796 (1.6%)
100 443 (1.6%) 1,360 (4.8%) 339 (1.5%) 692 (1.4%)

EF4
0 1,187 (4.2%) 2,583 (9.2%) 847 (3.6%) 1,711 (3.4%)
40 1,048 (3.7%) 2,570 (9.1%) 754 (3.2%) 1,532 (3.1%)
70 939 (3.3%) 2,558 (9.1%) 685 (2.9%) 1,392 (2.8%)
100 828 (2.9%) 2,547 (9.1%) 613 (2.7%) 1,231 (2.5%)

Table 5. Economic stability metrics given different levels of residential
building retrofits and tornado scenarios (mean values)

Residential
building
retrofits (%)

Economic stability metrics

Employment
loss (unit:
person)

Domestic supply
loss (unit: millions

of $)

Household income
loss (unit: millions

of $)

EF2
0 78 (0.2%) 10.4 (0.3%) 2.0 (0.2%)
40 62 (0.2%) 8.4 (0.3%) 1.6 (0.1%)
70 49 (0.1%) 6.9 (0.2%) 1.3 (0.1%)
100 36 (0.1%) 5.3 (0.2%) 0.9 (0.1%)

EF3
0 160 (0.4%) 22.0 (0.7%) 3.9 (0.3%)
40 136 (0.4%) 19.2 (0.6%) 3.3 (0.3%)
70 118 (0.3%) 17.0 (0.6%) 2.9 (0.3%)
100 99 (0.3%) 14.7 (0.5%) 2.5 (0.2%)

EF4
0 270 (0.7%) 36.8 (1.2%) 6.7 (0.6%)
40 236 (0.6%) 32.7 (1.1%) 5.9 (0.5%)
70 211 (0.5%) 29.6 (1.0%) 5.3 (0.5%)
100 182 (0.5%) 26.2 (0.9%) 4.6 (0.4%)
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Community Resilience Metrics

After combining the fragility functions for retrofitted residential
buildings and the original fragility functions for other buildings
in the community model, the community assessment was per-
formed by chaining the algorithms, as described earlier. Resilience

metrics in terms of physical services, economic activity, and pop-
ulation stability were examined to explore the effect of wind mit-
igation retrofits on community resilience enhancement, that is, to
link resilience goals at the community level with the selection of a
mitigation policy for building retrofit. Tables 4 and 5 indicate some

Fig. 4. (Color) Statistics of resilience metrics in terms of physical service and population stability: (a) building functionality without retrofit; (b) build-
ing functionality with 100% residential retrofit; (c) housing unit dislocation without retrofit; and (d) housing unit dislocation with 100% residential
retrofit.
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key findings for these core community resilience metrics in terms
of the physical, economic, and social stability areas. The full suite
of results for buildings retrofitted at each of the different percent-
ages for the building stock under different scenarios are not shown
herein for brevity. As an example, when the community was im-
pacted by the idealized EF4 tornadoes, the number of nonfunctional
buildings and housing units dislocated can be reduced by 11.7%
(1,187 to 1,048) and 11.0% (847 to 754), respectively when 40%
of residential buildings are retrofitted. The percentages shown in
Table 4 are defined as the change in the metrics being measured
(e.g., household dislocation) out of the total value that can be mea-
sured for that metric (e.g., households) for the community. Fig. 4
illustrates the histograms of typical metrics in terms of physical
service and population stability from 100 EF2 tornado scenarios as
an example. The reason for a few extreme values at the left end in
the histograms is that the socioeconomic losses caused by the tor-
nado event are also highly related to the attributes of the area hit by
the tornado, such as population density. In more rural areas, both
population and building density is lower, and tornadoes striking
these areas impact the local economy and cause household dislo-
cation at a smaller scale compared to dense urban areas.

Workers employed at damaged or nonfunctional commercial
buildings may face work interruption or job loss, leading to reduced
household income and consumption expenditures. As part of the
CGE simulation of this event, these values are calculated and rep-
resented in Table 5. Table 5 conveys that retrofitting played a sig-
nificant role in mitigating economic impacts to domestic supply,
especially employment and household income. From the lowest to
highest retrofit application (from 0% to 100%) for EF2 and EF3, a
more than 36% reduction (from $3.9 million to $2.5 million) in
household income loss and a 53.8% reduction (from 78 to 36)
in employment loss is observed.

The minimum percentage of residential buildings retrofitted to
achieve the community-level resilience goals can be determined for
each tornado scenario (e.g., average of EF rating tornado striking
anywhere in the community), as illustrated in Tables 6 and 7. The
column fields shown in Tables 6 and 7 are consistent with those
representing each metric in Table 2. In order to meet all the multi-
disciplinary community resilience goals for EF2 tornadoes (see
Goal A in Table 2), the metrics for household dislocation controlled
the retrofit level and at least 34.2% of residential buildings would

need to be retrofitted. However, the employment metrics control the
retrofit level for the EF3 and EF4 tornado scenarios. The funda-
mental contribution of this analysis methodology is the ability
to essentially deaggregate the community-level resilience goals in
terms of physical, social, and economic metrics into building retro-
fit requirements. The goals themselves are flexible and can be ad-
justed by the analyst on a case-by-case basis. Additionally, it would
also be possible to quantify the impact of a change in building code
for new construction following a tornado or with some modifica-
tion to the methodology and examine the effect of implementing
new building code requirements over time as a community grows.

Conclusions

Community resilience assessments help the community determine
what is needed to improve its performance and long-term benefits
relative to the “do nothing” case. This study presented a method-
ology to determine building retrofit targets to achieve community-
level physical, social, and economic resilience goals in support of
community resilience decision-making. A series of tornado scenar-
ios at different intensity levels was simulated and applied to an
illustrative community testbed. A set of core resilience metrics in-
cludes the percent of buildings that are analytically predicted to
remain functional, the percent of households or population dislo-
cated, and the percent change in the local economy (i.e., employ-
ment, domestic supply, household income). The mitigation focused
on residential buildings, and the objective was to determine the
minimum percentage of residential buildings across a community
that need to be retrofitted in order to achieve the multidisciplinary
community resilience goals. Based on the work presented herein,
and recognizing that uncertainty in the results is not addressed, the
following preliminary conclusions can be drawn:
• The percentage of loss of functionality to buildings and house-

hold dislocation, as the key resilience metric in the study, may
be reduced by approximately 11% when 40% of residential
buildings are randomly retrofitted throughout the community
for the assigned EF4 tornado scenario. For the EF2 and EF3
tornado scenarios, 40% of residential building retrofit may help
mitigate the housing unit dislocation by approximately 14%.

• Building retrofits can play a significant role in reducing capital
stock damage and further mitigating economic loss to domestic
supply, employment, and household income. From the lowest
(0%) to highest (100%) retrofit application for residential build-
ings for the EF2 and EF3 tornado scenarios, there would be
more than a 35% reduction in unemployment and more than
a 50% reduction in household income loss.

• To meet all the multidisciplinary resilience goals for tornadoes
in the routine level intensity (EF2) defined in this study, the
household dislocation metric controlled the retrofit level, and at
least 34.2% of residential buildings would need to be retrofitted.
For tornadoes at the design (EF3) and extreme (EF4) level haz-
ard intensity, the employment metric controlled the retrofit level.

Table 6. Percentage of residential buildings requiring retrofit to achieve community resilience goals

Community
goals

Physical service metrics Population stability metrics

% buildings
remaining functional
(due to damage) (%)

% buildings remaining
functional (due to
damage + electrical

power) (%)

% households
dislocated (unit:
households) (%)

% population
dislocated (unit:
people) (%)

Goal A 3.4 12.0 34.2 33.3
Goal B 8.0 6.0 17.5 14.0
Goal C 15.1 16.0 19.8 15.4

Table 7. Percentage of residential buildings requiring retrofit to achieve
community resilience goals

Community
goals

Economic stability metrics

% change in
employment

(%)

% change in
domestic supply

(%)

% change in
mean household
income (%)

Goal A 28.7 13.1 19.4
Goal B 21.5 18.7 11.6
Goal C 29.0 29.0 18.0
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The resilience goals are flexible and can be quantitively adjusted
for different levels based on community input and the unique
needs of a community. Clearly, different multidisciplinary met-
rics may control the retrofit requirements for different hazard
intensities but are also specific to the resilience goals selected.
This further underscores the need to consider goals across differ-
ent community stability areas.
The study did not address budget constraints of the community

and costs to retrofit, which would further limit selections of differ-
ent retrofit strategies for different households. Communities have
access to many funding sources outside of their own tax dollars
for mitigation programs. The Federal Emergency Management
Agency (FEMA) Building Resilient Infrastructure and Commun-
ities (BRIC) and Department of Housing and Urban Development
(HUD) Community Development Block Grant–Disaster Recovery
(CDBG-DR) programs are two examples.

Residential buildings were assumed to be retrofitted randomly
without consideration of the community retrofit priorities for res-
idential buildings or individual capacity (e.g., high-income owners
versus low-income renters).

Additionally, future studies will directly incorporate the CGE
model and population dislocation algorithm into the analysis sequence
to enable addressing uncertainty in the results. The results can then
reflect the uncertainty of the socioeconomic description specific for
each hazard event.

Addressing the previous limitations is beyond the scope of this
study, but future studies may include a risk-based cost-benefit
analysis for wind mitigation retrofits and the impact of insurance
incentives and other policies, such as insurance companies offering
a discount in annual insurance premiums for homeowners to
encourage them to retrofit their houses.

In summary, the ability to deaggregate community resilience
goals to individual building performance targets can help accelerate
the development of resilience-based building codes and standards
that satisfy communitywide resilience goals of the broader built
environment. The ability to achieve community-level resilience
goals in terms of socioeconomic metrics can provide community
decision-making support for stakeholders and planners.

Data Availability Statement

Some data and models involved in this study are available online
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allows users to reproduce this research with Python codes, data,
and visualization.
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Notation

The following symbols are used in this paper:
C = capital stock;

c1–c5 = parameters for logistic regression model;

dsf = building types (single-family or multifamily);
FrDS = fragility functions;
Ikfun;j = building functionality status;

i = damage states;
j = each realization of Monte Carlo simulation;
k = each building;
m = each census group;
N = total number of Monte Carlo simulation realizations;

Pdamage = building damage probability;
Pdis = population dislocation probability;

Pk
dis;i;m = dislocation probabilities for each damage state;
Pk
dis;m = dislocation probability of each building in each census

group;
Pfun = building functionality probability;

pblack = percent of black population throughout census group;
phisp = percent of Hispanic population throughout census

group;
ploss = property value loss;

Rj = random variables between 0 and 1;
s = each sector;
γs = sector shocks;
λ = medians of fragility functions; and
ξ = standard deviation of fragility functions.
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