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Abstract. Regional hurricane risk is often assessed assum-
ing a static housing inventory, yet a region’s housing inven-
tory changes continually. Failing to include changes in the
built environment in hurricane risk modeling can substan-
tially underestimate expected losses. This study uses publicly
available data and a long short-term memory (LSTM) neu-
ral network model to forecast the annual number of housing
units for each of 1000 individual counties in the southeastern
United States over the next 20 years. When evaluated using
testing data, the estimated number of housing units was al-
most always (97.3 % of the time), no more than 1 percentage
point different than the observed number, predictive errors
that are acceptable for most practical purposes. Comparisons
suggest the LSTM outperforms the autoregressive integrated
moving average (ARIMA) and simpler linear trend models.
The housing unit projections can help facilitate a quantifica-
tion of changes in future expected losses and other impacts
caused by hurricanes. For example, this study finds that if
a hurricane with characteristics similar to Hurricane Harvey
were to impact southeastern Texas in 20 years, the residen-
tial property and flood losses would be nearly USD 4 billion
(38 %) greater due to the expected increase of 1.3 million
new housing units (41 %) in the region.

1 Introduction

Probabilistic regional hurricane risk assessments typically
have been static, where the hazard is modeled as station-

ary and the built environment is considered to be unchang-
ing. Recently, researchers have begun relaxing the former
assumption as the effects of climate change on hurricane
frequency and intensity are captured (Emanuel, 2011; Liu,
2014; Pant and Cha, 2018). Nevertheless, changes in the
building inventory over time have not received similar at-
tention. The number, locations, and types of buildings ex-
posed to hurricanes change continually over time in ways
that can alter risk. In Harris County, Texas, home to Houston,
for example, the population grew 36 % from 2000 to 2020
(US Census Bureau, 2020a). Such a transformation could
have a large effect on hurricane risk. If a risk assessment had
been conducted in Harris County in 2000 based on the build-
ing inventory at the time, when there were 3.4 million resi-
dents living in 1.2 million housing units, it would have un-
derestimated the losses that occurred in Hurricane Harvey in
2017, by which time there were 4.5 million residents living in
1.7 million housing units. Hurricane risk implications are es-
pecially notable for rapidly growing coastal counties such as
Flagler County, Florida, where the number of housing units
has doubled since 2000, from 24 000 to 57 000 housing units.

Focusing on the number of housing units and their regional
distribution by county (not changes in exact location or type),
this paper has two outcomes. First, using data for 1000 coun-
ties in the southeastern United States (US) from Texas to
Delaware (Fig. 1), a long short-term memory (LSTM) neural
network model is developed to predict the number of housing
units in each county over the next 20 years. LSTMs include
feedback mechanisms for data in sequence and thus are well-

Published by Copernicus Publications on behalf of the European Geosciences Union.



1056 C. J. Williams et al.: Regional county-level housing inventory predictions and the effects on hurricane risk

Figure 1. Study area of 1000 counties in the southeastern US.
AL: Alabama. DE: Delaware. DC: Washington, DC. FL: Florida.
GA: Georgia. LA: Louisiana. MD: Maryland. MS: Mississippi. NC:
North Carolina. SC: South Carolina. TX: Texas. VA: Virginia.

suited for predictions on time series data. The LSTM model
is evaluated through comparison to other model types com-
monly used for time series analyses, including a simple lin-
ear trend model and autoregressive integrated moving aver-
age (ARIMA) models. Second, using the recommended new
LSTM model, named the 20-Year Regional Annual County-
Level Housing (REACH20) model, changes in the predicted
number and distribution of housing units in the next 20 years
are described, and implications of those changes for hurri-
cane risk are discussed.

Following a review of related literature on land use change
and housing change modeling in Sect. 2, the data and model
types are described in Sects. 3 and 4, respectively. The set of
specific analyses conducted are listed in Sect. 5 together with
the metrics for evaluating and comparing the models. Results
are presented in Sect. 6, including a comparison of the model
types, evaluation of the final recommended LSTM model,
and discussion of the implications of projected change in
the housing inventory. The paper concludes with a summary
of the key findings and discussion of limitations and future
work.

2 Literature review

Three bodies of literature support the proposed housing
model, those focused on (1) regional land and population
modeling, (2) housing economics, and (3) the intersection of
natural hazards and the changing built environment.

2.1 Land use–land cover change and population
projections

The expansive land use–land cover (LULC) change litera-
ture estimates physical changes to a landscape across a study
region over time (Daniel et al., 2016; Sleeter et al., 2017).
These models are used for a wide range of applications, such

as evaluating urbanization trends or comparing ecosystem
conservation approaches, and often model changes in land
dynamics over a long period of time, usually at decadal in-
tervals. The units of analysis are typically at 1 km2 or less
and can span a regional (multi-county) area. There are three
predominant methods for LULC modeling for a large spa-
tial scale: machine learning (ML), cellular automata (CA),
and a combination of ML and CA. While ML methods use
historical land use data to predict land use change behavior,
CA methods develop localized land use or land cover transi-
tion maps with neighborhood transition rules over a uniform
grid to predict how the land use or land cover in a grid cell
will change over time (National Research Council, 2014).
Aburas et al. (2019), Briassoulis (2019), Musa et al. (2017),
and Verburg et al. (2004) provide reviews of different ML and
CA methods for LULC modeling as well as commonly used
model parameters. In the common combination methods, ML
is often used to calibrate the weighting for land use transition
maps, and CA is used to define local rules for land use tran-
sition (Aburas et al., 2019). In recent years, deep learning
neural network methods for LULC modeling have developed
substantially, where convolutional neural networks (CNNs)
perform well for a study of spatial dynamics at a point in
time; recurrent neural networks (RNNs) work well for time
series data for a single location; and a combination of the two
methods, ConvLSTM, incorporates both spatial and temporal
data (Cao et al., 2019; Ienco et al., 2017; Ye et al., 2019).

Population projection models estimate the number of peo-
ple residing in an area over a series of time steps in the fu-
ture. While most population projections are developed with
a unit of analysis at a country or state level (University
of Virginia, 2018; US Census Bureau, 2017), one popula-
tion projection dataset developed by Hauer (2019) uses the
Hamilton–Perry method (Swanson et al., 2010) to estimate
population changes for all US counties at 5-year intervals
between 2020 and 2100 for 18 age groups, 2 sex groups,
and 4 race groups under five climate change scenarios. As-
suming the amount of urban land cover and infrastructure is
proportional to the number of people within an area, popula-
tion estimates are commonly used as a metric for a society’s
exposure to risk (Tellman et al., 2021; Wing et al., 2018).

While the LULC models and population projection mod-
els aim to represent physical and demographic changes
over many years across a region, little work has studied
the changes in regional housing dynamics specifically. This
study aims to address this gap in the literature.

2.2 Housing economics

The urban economics, real estate, and housing literature ex-
amine the theorized drivers of housing development. Re-
searchers largely agree that drivers of real estate cycles
are rooted in economic fundamentals, such as local supply
and demand and urban growth theory (Edelstein and Tsang,
2007; Mayer and Somerville, 2000). Computable general
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equilibrium (CGE) and supply-and-demand land value mod-
els are especially common in the housing market literature
and can be applied from a local to country spatial scale (Ali
et al., 2020; Cho et al., 2005; Ustaoglu and Lavalle, 2017).
Modeling methods also include system dynamics and agent-
based modeling (ABM) approaches, which capture the inter-
action between individual decision-making and economic ef-
fects at a local scale (Filatova, 2015; Magliocca et al., 2011;
Wheaton, 1999). The spatial and temporal scales of eco-
nomic and housing models ultimately depend on the degree
of detail for change interaction (such as agent decisions),
the amount of data available, and the study point of interest.
However, none of the models reviewed incorporated the ex-
plicit spatial component of annual changes in housing units
across a region at a county level over time.

2.3 Exposure to natural hazards over time

There is a limited group of studies that evaluate a society’s
changing exposure to natural hazard risk over time. Davidson
and Rivera (2003) use population projections and headship
rate data to predict the number, location, and types of housing
units per census tract in a region at 5-year intervals between
2000 and 2020. The results were later used in a hurricane risk
study for North Carolina (Jain and Davidson, 2007). Multiple
studies have evaluated the “expanding bull’s-eye effect”, a
phenomenon in which the expansion of a metropolitan area’s
urban, suburban, and exurban regions leads to an increase
in the area’s natural hazard risk, due to the expanding foot-
print of the built environment (Ashley et al., 2014). Ashley
and Strader (2016) explored the expanding bull’s-eye effect
on tornado impacts in the conterminous US as a whole, as
well as five multi-state regions within the US between 1950
and 2010 at decadal intervals by utilizing the housing den-
sity data produced by the CA-based Spatially Explicit Re-
gional Growth Model (SERGoM) (Theobald, 2005). Strader
et al. (2015) used SERGoM and the Integrated Climate and
Land-Use Scenarios (ICLUS) of the US EPA (Environmen-
tal Protection Agency) to forecast exposure to volcanic haz-
ard in the northwestern US at a decadal scale between 2010
and 2100 under five scenarios. Similarly, Freeman and Ash-
ley (2017) used SERGoM to forecast hurricane risk in the US
for the same time interval under two hurricane scenarios, and
Strader et al. (2018) explored how 10 different land develop-
ment patterns would impact a region’s tornado risk. Chang et
al. (2019) studied the effect of urban development patterns on
future flood risk or earthquake risk in the Vancouver region
for the year 2041 under three prescribed development sce-
narios – status quo, compact, and sprawl. Song et al. (2018)
compared three ML methods to predict the land use change
in Bay County, Florida, in 2030 and evaluated the risk due
to sea level rise under two growth rates and two policy sce-
narios. Hauer et al. (2016) also used a modified version of
the Hammer method (Hammer et al., 2004) to predict the
number of people at risk of sea level rise per census block,

based on decadal housing estimates for the coastal areas of
the conterminous US, between 2010 and 2100 under five de-
velopment scenarios. Sleeter et al. (2017) used a CA model to
evaluate changes in land cover and the effect on tsunami risk
in the US Pacific Northwest at annual increments between
2011 and 2061. Keenan and Hauer (2020) compared 30-year
population projections in Puerto Rico with planned hurricane
recovery and resiliency investments, finding an overestima-
tion of future fiscal and infrastructure needs compared to the
projected decline in population.

This paper contributes to this literature by similarly mod-
eling the effect of changing exposure on natural disaster risk
over time. In general, the best method will depend on the spe-
cific intended use and required output, which together with
data availability, determine the target metric and most appro-
priate spatial and temporal units of analysis and scope. With
a focus on hurricane risk, in this paper we aim to develop an-
nual forecasts of the number of housing units in each county
in the hurricane-prone US for the next 2 to 3 decades. The
aforementioned studies that similarly include county-level
housing unit forecasts (although with varied overall aims)
compute those forecasts by obtaining population projections
and applying a constant housing unit per population ratio to
produce county-level housing projections in 5- or 10-year
increments (Hauer et al., 2016; Ashley and Strader, 2016;
Strader et al., 2015, 2018; Freeman and Ashley, 2017; Sleeter
et al., 2017; Davidson and Rivera, 2003). In this study, we
examine whether accurate annual county-level housing unit
forecasts are possible using machine learning with a housing
unit target variable and land and socio-economic features.

2.4 Predictor variables

An important piece of developing the proposed housing
model in this paper is understanding the theorized predictors
of land use change, population change, and housing develop-
ment among the different bodies of work reviewed. Thirty-
two predictors emerged from the literature as important pre-
dictors of housing inventory changes (Table 1). Section 3 de-
scribes the data selection methodology used for the proposed
model.

3 Data

Modeling the annual changes in the number of housing units
for 1000 counties over a 10-, 20-, or 30-year time horizon
requires a dataset of annual county-level data for more than
10 years for all counties in the study area. Counties were
chosen as the unit of analysis, as opposed to census tracts,
block groups, or a grid analysis, because county boundaries
rarely change over a multi-decade period, and data are avail-
able at the county-level over multiple decades for most of
the predictors in Table 1. Of the 32 predictors identified as
potential predictors of new housing construction, 25 (indi-
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Table 1. Predictors of housing inventory changes over time.

Category Predictors1 Category Predictors1

Population Population2 Demographics Race2

Population density2 Age2,3

Migration2,3 Marital status2,3

Housing Housing units2,3 Education2,3

Housing density2,3 Land Land cover2

Single-family housing units2,3 Land use
Single-family housing unit density2,3 Available buildable land2

Vacancy rate2,3 Proximity to coastline2

Owner occupancy rate2,3 Economic Property value2,3

Household size2,3 Land value
Lot size Property tax rate2,3

One-unit building permits2 Mortgage interest rate
Year built2,3 Construction cost
Householder tenure2,3 Cost of living
Household income2,3 Gross domestic product (GDP)2

Gini index
Employment rates2

1 Data sources for all predictors are available in Table S1 (Sect. S1.4). 2 Denotes it was considered in the proposed model. 3 Denotes data
only available on a decadal basis prior to 2010 (Fig. S1 and Sect. S1.3).

cated by “2” in Table 1) had county-level data available for
more than 10 years and were considered for this study. Data
for these 25 predictors were compiled into a dataset for all
available years from 1970 on (Sect. S1 in the Supplement).
Data for 16 predictors are only available on a decadal basis
prior to 2010 (indicated by “3” in Table 1), requiring linear
interpolations to provide a consistent annual dataset. Of the
25 predictors considered, 19 have data available starting in
1990 or earlier. Lastly, due to the significant impact of the
Great Recession on the nation’s housing construction indus-
try, data in 2008, 2009, and 2010 were removed. While the
impact of shocks, such as the Great Recession or the COVID-
19 pandemic, have caused sizable disruptions to the housing
market and should be considered in resiliency planning, the
goal of this work is to predict the number of net new housing
units under normal conditions. Predicting economic shocks
is outside the scope of this work. In total, the individual vari-
ables used for this study are available in time intervals from
16 years (2001–2007 and 2011–2019) to 46 years (1971–
2007 and 2011–2019) for 1000 counties. For details about
the data preprocessing, see Sect. S1.

4 Model types

To estimate the number of new housing units per county over
the next 10 to 30 years across a region, a set of time se-
ries models and range of model parameters were considered.
The time series models tested include a simple linear trend
model, ARIMA models, and LSTM neural network models.

The ranking criteria for all models compared in this study
was prediction performance of the number of housing units
for 30 years in the future. Linear trend models were included
in the model comparison as a baseline because they are com-
monly used in forecasting applications, are quick to imple-
ment, and are easy to interpret. ARIMA models were tested
because they are easy to use, commonly applied across a
range of disciplines, and interpretable. LSTM models were
considered for their ability to handle large quantities of spa-
tial and temporal data and produce small errors. These three
models were ultimately chosen to compare the tradeoffs be-
tween model simplicity and model accuracy; if the linear
or ARIMA models produce errors in the same range as the
LSTM models, then these simpler models may be recom-
mended for housing projections.

4.1 Linear trend

The simple linear trend method consisted of fitting one uni-
variate linear model to each county using ordinary least-
squares (OLS) regression (i.e., y =mx+b). Each model was
fit to the number of housing units, and the resulting trend line
was extrapolated to estimate the number of housing units for
the following 10, 20, and 30 years.

4.2 Autoregressive integrated moving average
(ARIMA)

ARIMA models are univariate linear models that use lagged
observations of the time series data and are the most com-
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mon methods for time series modeling (Box et al., 2016).
Equation (1) presents an ARIMA model to predict the value
of variable y at time t as a function of values of y at pre-
vious time steps (yt−1, . . .,yt−p) and error terms at time t
and at previous time steps (εt , . . .,εt−q ). The parameters
α;β1, . . .,βp; and φ1, . . .,φq are estimated from the data.
ARIMA models are typically referred to by the values p,
d , and q, where p is the number of lags for the autoregres-
sive term, d is the number times the data must be differenced
to be stationary prior to model fitting, and q is the number
of lagged forecast errors for the moving average term. This
study also compares the method of using one ARIMA model
for all counties in the study area (one set of p, d, and q val-
ues) vs. an individual ARIMA model for each county to un-
derstand whether a simple uniform ARIMA model could be
used across the study region. The annual percent change in
number of housing units was used as y in Eq. (1).

yt = α+β1yt−1+β2yt−2+ . . .+βpyt−p

+φ1εt−1+φ2εt−2+ . . .+φqεt−q + εt (1)

4.3 Long short-term memory (LSTM)

Neural network models have emerged as a common method
for analyzing complex problems due to their ability to handle
large, nonlinear datasets with high accuracy. Recurrent neu-
ral networks (RNNs) are specifically utilized for sequential
modeling applications, such as time series forecasting and
natural language processing, and can be used to predict future
housing inventories given a sequence of variables with non-
linear relationships across a large study area. LSTM models
are the most common among the family of RNNs available
and were chosen in this study for their ability to learn both
long-term and short-term dependencies across a sequence of
multivariate input data. The time dependencies are learned in
an LSTM unit across a series of LSTM memory cells. Each
cell consists of three “gates” that manage the information
passed across the sequence of input data. The “input gate”
regulates whether to add new information to the memory of
the cell; the “forget gate” removes information to be consid-
ered in the given memory cell; and the “output gate” reg-
ulates the information leaving the cell. For more on LSTM
models, see Hochreiter and Schmidhuber (1997), Ienco et al.
(2017), and Wang et al. (2020b).

All neural network models, including LSTMs, have a set
of hyperparameters that are unique to a given model and are
tuned to improve model performance. For LSTM models,
tuning parameters include the number of input time steps and
output time steps, number of features and targets, number of
layers and nodes, activation method, loss metrics, type of op-
timizer, learning rate, batch size, batch normalization, use of
dropouts and dropout rates, and number of epochs. Data are
also split into training and testing sets typically using a 70/30
or 80/20 ratio, allowing a model’s performance to be evalu-
ated both on the data for which it is developed (the training

set) and an independent dataset (the testing set). Lastly, due
to variability in each run of the neural network algorithm, a
single model configuration is often tested multiple times to
search for the model producing the lowest errors.

5 Analyses and evaluation

To identify the best time series model for predicting the num-
ber of housing units up to 30 years in the future, a range
of model configurations was tested (Table 2). Four sets of
feature variables (also known as independent or explana-
tory variables) and the target variable (also known as the
dependent or response variable) for each model were also
compared in the analysis (Table 3). The target variable for
the linear trend model is hitk , with the number of housing
units for county i ∈ (1, . . ., I ) in year t ∈ (1, . . .,To) in sam-
ple k ∈ (1, . . .,K), where a sample k is one sequence of input
and output years for county i (Fig. 2). The target variable for
remaining models is ritk , with the annual percent change of
the number of housing units for county i in year t in sam-
ple k, defined in Eq. (2).

ritk =
hitk −hi,t−1,k

hi,t−1,k
· 100 (2)

The two target variables, hitk and ritk , are directly related,
but the range of hitk values for all counties across all avail-
able years spans multiple orders of magnitude, from 50 to
1.8 million housing units. The large spread in the data makes
it difficult to fit a model across all counties and all years
with hitk as a target variable. The use of ritk overcomes this
problem, with values from−78 % to 132 % annual change in
housing units.

Each test predicts values for all 1000 counties over a
10-, 20-, or 30-year time period so that a model with a 30-
year projection period, for example, predicts 30 000 unique
county-year values. A range of input sequence lengths were
compared across all tests to determine the optimal input and
output length structure for each model type. The combined
input and output lengths determine the total number of sam-
ples K used to train and test the model, where a shorter
time interval leads to more samples for training and testing
a model, while a longer time interval leads to fewer samples
for the model. Specifically, when the sum of the input and
output length (Ti+To) is less than the number of years in the
dataset T there are (T − (Ti+ To)+ 1) samples of data for
each county. As an example, say Test C3 was implemented
for just one county. Test C3 uses Feature Set I, which has
T = 46 years of available data and a To = 30-year output
length. For one case evaluated in Test C3 that has an input
length of Ti = 6 years, the resulting total input–output time
interval is 36 years, leading to a total of 46−(6+30)+1= 11
different time intervals across the 46 years of available data
for the single county. For all 1000 counties in the study area,
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Table 2. Model tests.

Test Model type2 Feature and Input length Output length Number of Spatial
target set1 (years), Ti (years), To samples, K weighting

A1 Linear trend I
6 to 36 10 31 000 to 1000 NoA2 ARIMA II

A3 LSTM II

B1 Linear trend I
6 to 26 20 21 000 to 1000 NoB2 ARIMA II

B3 LSTM II

C1 Linear trend I
6 to 16 30 11 000 to 1000 NoC2 ARIMA II

C3 LSTM II

D LSTM III 6 to 36 10 31 000 to 1000 No
E LSTM III 6 to 26 20 21 000 to 1000 No
F LSTM III 6 to 16 30 11 000 to 1000 No

G LSTM IV 6 to 17 10 12 000 to 1000 No
H LSTM IV 6 to 7 20 2000 to 1000 No

I LSTM III 6 to 26 20 21 000 to 1000 Yes

1 Feature and target sets are defined in Table 3. 2 For Tests A3, B3, and C3, for each input–output combination, the best result of
five runs was chosen. For Tests D, E, F, G, H, and I, for each input–output combination, the best result of 10 runs was chosen.

Figure 2. The change in sample size (K) for two different input year lengths (Ti) for Test C1.

this test configuration would result in K = 11000 samples
available to train and test the model (Case 1, Fig. 2). How-
ever, if the input length is instead Ti = 16 years and the out-
put length is To = 30 years, the total length of the time in-
terval is 46 years, allowing only 46− (16+30)+1= 1 sam-
ple for a given county and K = 1000 samples over the entire
study area (Case 2, Fig. 2).

In Tests A, B, and C, the univariate linear trend, ARIMA,
and LSTM models were compared to identify the best input–
output length combination for each model and the best
univariate model performance. Since the linear trend and
ARIMA models are restricted to one variable, for fair com-
parison, the LSTM was similarly restricted in Tests A, B,
and C. These tests used data available since 1971, thus pro-

viding 46 years of data to fit the model (note that the Great
Recession is excluded). For the simple linear trend modeling,
each county was fit to an individual linear model, and errors
were aggregated across all counties. Similarly, the ARIMA
models fit individual ARIMA models for each county for a
given p, d, and q combination, and errors were aggregated
across all counties. The p, d , and q values tested ranged
from 0 to 2. For LSTM models in Tests A, B, and C, the
best of five LSTM runs for each input–output combination
was taken as the solution.

Tests D, E, and F compared the multivariate LSTM models
to identify the best input–output length combination for each
model and the best multivariate model performance. These
tests only included the 13 feature variables in Feature Set III
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Table 3. Feature and target sets.

Feature and Years Total Features Target
target set available years

I 1971–2007,
2011–2019

46 – Number of housing units (hitk) Number of housing units (hitk)

II 1971–2007,
2011–2019

46 – Annual percent change in number of housing units (ritk) Annual percent change in number
of housing units (ritk)

III 1971–2007,
2011–2019

46 – Population
– Population density (person per square kilometer)
– Number of housing units
– Housing unit density (units per square kilometer)
– Percentage of vacant housing units
– Percentage of owner-occupied housing units
– Average household size
– Percentage of non-white population
– Percentage of population with high school degree
– Percentage of population with college degree
– Percentage of non-buildable land area
– Distance to coastline (m)
– Annual percent change in number of housing units (ritk)

Annual percent change in number
of housing units (ritk)

IV 1990–2007,
2011–2019

27 All features in Feature Set III and
– Number of one-unit detached housing units
– One-unit detached housing unit density (units per square
kilometer)
– Percentage of one-unit detached housing units of total
housing units
– One-unit detached housing units per capita
– Number of one-unit housing building permits
– Number of one-unit housing building permits per number
of one-unit detached housing units
– Median household income (USD)
– Median age
– Percent of married population
– Median property value (USD)
– Number of jobs
– Jobs per capita

Annual percent change in number
of housing units (ritk)

which were available since 1971 and provided 46 years of
available data. LSTM models in Tests D, E, and F recorded
the best of 10 LSTM runs.

Tests G and H used LSTM models with 25 feature vari-
ables to understand whether more features improve model
performance. A tradeoff exists between including more fea-
tures but having a shorter time span of available data and
including fewer features but having a longer time span of
available data. Feature Set IV used in Tests G and H is only
available since 1990 and provides just 27 years of data. These
two tests recorded the best of 10 LSTM runs.

The literature suggests there are both time and space de-
pendencies when modeling housing projections (Cho et al.,
2005; Strader et al., 2015); thus Test I reviewed an LSTM
model that included spatial weighting across all counties for
all features in Feature Set III. With influence from graph neu-

ral network methods (Wu et al., 2021), spatial weighting was
applied so that feature values in each county were averaged
among all contiguous counties prior to model fitting. For ex-
ample, the population feature variable for a given county
would be reassigned as the non-weighted average popula-
tion value of the county itself and all counties directly ad-
jacent. The values for the remaining feature variables for a
given county would then be similarly reassigned. Once spa-
tial weighting was applied to all counties for all feature vari-
ables, then the model was fit accordingly. No spatial weight-
ing was applied to the target variable, and this test recorded
the best of 10 LSTM runs.

For all LSTM models in Tests A through I, samples were
randomly divided for a given input–output combination into
a training and testing set using an 80/20 split. As a result,
the set of samples for a given county were randomly dis-
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tributed into the training and testing sets. Holdout validation
was not implemented in this study because the developed
model is not intended for use outside the defined study area
of 1000 counties. Both training and testing errors are tracked
to identify possible overfitting. The same hyperparameters
were used in all LSTM models (Table S2 and Sect. S2.3.2).

All models were evaluated using the root mean squared
error RMSEr of the annual percent change of housing units
(Eq. 3), as well as the expected valueE[|H |] and standard de-
viation s|H |, over all I , To, andK values of the absolute value
of the percent relative error in number of housing units Hitk
(Eq. 4), where r̂itk is the predicted annual percent change of
housing units in county i, year t , and sample k; ritk is the
observed annual percent change of housing units; ĥitk is the
predicted number of housing units; hikt is the number of ob-
served housing units; and I , To, and K are the numbers of
counties, number of years in the output series, and number
of samples, respectively.

RMSEr =

√∑
ikt (r̂itk − ritk)

2

IToK
(3)

Hitk =
ĥitk −hitk

hitk
· 100 (4)

The RMSEr is based on the target value optimized by the
LSTM and the response variable for the ARIMA ritk;E[|H |]
and s|H | are included because they are based on the more
easily interpreted variable hitk . The linear trend and ARIMA
models do not separate the data into a training and testing set;
therefore the errors were calculated across all output years
in all samples. Of the multiple input–output lengths evalu-
ated for each test and the multiple runs for the LSTM mod-
els, the input–output combination with the lowest average of
RMSEr , E[|H |], and s|H | values for each test is reported.
For example, in Test A3, where 6 to 36 input years were
evaluated and the output length was 10 years, there were
36− 6+ 1= 31 different models evaluated, each over five
runs. Of those 31 · 5= 155 models, the model with the low-
est average RMSEr , E[|H |], and s|H | value was reported as
the best model for Test A3.

Each time series model was fitted and evaluated using a
publicly available Python (Van Rossum and Drake, 2009)
library: the scikit-learn package for the linear trend model
(Buitinck et al., 2011), the statsmodel package for ARIMA
(Seabold and Perktold, 2010), and the TensorFlow package
for LSTM models (Abadi et al., 2015).

6 Results

6.1 Model comparison

6.1.1 Model type comparison

We first compare the model types. For the univariate models
evaluated in Tests A, B, and C, the LSTM method outper-

forms the simple linear trend and ARIMA models for 10-,
20-, and 30-year prediction periods (Table 4). For the 30-year
prediction period, for example, the linear trend, ARIMA, and
LSTM models have RMSEr values of 2.0, 1.8, and 1.2, re-
spectively, andE[|H |] values of 11.4, 12.7, and 0.64, respec-
tively (Table 4, Tests C1, C2, and C3).

Comparing the linear trend and ARIMA models, the best
model type depends on the metric used and output length.
In terms of RMSEr , the ARIMA model performs better than
linear trend models for all output lengths. In terms ofE[|H |],
however, the linear trend model is 2.17 and 1.27 percentage
points better than the ARIMA model for 20- and 30-year out-
put lengths, respectively. The error distribution for the lin-
ear trend and ARIMA models are nearly the same (Fig. 3a,
b, and c). Therefore, when quick long-term projections are
needed, a simple linear trend model method may be ade-
quate. The distribution of the testing errors for the LSTM
model is much smaller than for linear trend and ARIMA
models, and all output lengths have a similar distribution
(Fig. 3d).

6.1.2 Input and output lengths

A key issue in fitting these models is determining the best
number of years of input and output data to use. The number
of years of output To will depend in general on the intended
use of the model, although it may be important to understand
the tradeoff between forecasting for a longer duration into
the future and keeping errors lower in case there is flexibility
on the required output length. The results suggest that, as ex-
pected, errors in terms of E[|H |] are larger for longer output
lengths (Tests A, B, and C, Table 4). That is, it is easier to
forecast the number of housing units accurately for 10 years
than for 20 years and easier to forecast for 20 years than for
30 years. For errors in terms of RMSEr , the pattern is similar,
though not as consistent.

For a specified desired output length, the optimal number
of years of input is not obvious a priori, as it depends on data
availability and the extent to which variable values from pre-
vious years help predict target variable values in future years.
If the value of a variable x in each year t is related to that in
the preceding year t−1, then xt−2 has an implicit indirect ef-
fect on xt as well, through xt−1. Thus, it may be that includ-
ing data for x from many input years helps predict xt , but it
may not be required and could just add noise. The housing
vacancy rate in 1970 may not be relevant to the change in the
number of housing units from 2020 to 2021, for example, be-
yond the indirect influence it has on the changes in the inter-
vening years. The input length also affects the total number
of samples available to fit a model, where there is a tradeoff
between a longer input length and fewer total samples vs. a
shorter input length with more training samples (Fig. 2).

The best-performing linear trend models all had input se-
quence lengths shorter than the output sequence lengths.
With 46 years of data total, when the output length is
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Table 4. Results.

Test1 Model type Set2 Parameters Ti Ti+ To K Spatial RMSEr (%) E[|H |] (%) s|H | (%)
weighting

A1 Linear trend II n/a 9 10 1000 No 1.883 4.199 5.329
A2 ARIMA I p,d,q = 1,0,1 16 10 21 000 No 1.433 3.637 5.118
A3 LSTM3 I LSTM hp4 21 10 16 000 No 0.961/1.161 0.484/0.558 1.608/1.31

B1 Linear trend II n/a 6 20 1000 No 1.759 6.220 7.727
B2 ARIMA I p,d,q = 1,0,1 14 20 13 000 No 1.643 8.390 12.049
B3 LSTM I LSTM hp 11 20 16 000 No 1.497/1.084 0.626/0.623 2.64/1.046

C1 Linear trend II n/a 16 30 1000 No 1.997 11.432 12.234
C2 ARIMA I p,d,q = 1,0,1 6 30 11 000 No 1.767 12.704 18.648
C3 LSTM I LSTM hp 11 30 6000 No 1.388/1.164 0.556/0.644 2.482/1.014

D LSTM III LSTM hp 21 10 16 000 No 0.484/0.636 0.209/0.287 0.947/0.869
E5 LSTM III LSTM hp 11 20 16 000 No 0.195/0.426 0.116/0.196 0.406/0.557
F LSTM III LSTM hp 11 30 6000 No 0.534/0.781 0.107/0.254 0.917/0.804

G LSTM IV LSTM hp 12 10 6000 No 1.531/1.134 0.326/0.501 4.015/1.243
H LSTM IV LSTM hp 7 20 1000 No 0.098/1.384 0.122/0.708 0.515/1.413

I LSTM III LSTM hp 11 20 16 000 Yes 0.303/0.495 0.138/0.279 0.519/0.643

1 Of the multiple input–output lengths evaluated for each test and the multiple runs for the LSTM models, the input–output combination with the lowest average of RMSEr ,
E[|H |], and s|H | values for each test is reported. 2 Feature and target sets are defined in Table 3. 3 All LSTM models report training errors and testing errors. 4 See Table S2 for a
list of the hyperparameters (hp) used for all LSTM models. 5 Recommended REACH20 model. n/a stands for not available.

Figure 3. Absolute percent relative error (|H |itk) distributions for univariate models. (a) Linear trend vs. ARIMA 10-year output. (b) Linear
trend vs. ARIMA 20-year output. (c) Linear trend vs. ARIMA 30-year output. (d) LSTM for all output lengths (note that the x-axis scale
for d differs from the others).

10 years, for example, the maximum input length is 36 years,
but the best linear trend model had an input length of 9 years
(Table 4, Test A1).

For the ARIMA models, shorter input lengths performed
better, where 16, 14, and 6 years were identified as the best
input lengths corresponding to 10, 20, and 30 years of output
(corresponding to 21 000, 13 000, and 11 000 available sam-
ples, respectively). Additionally, for all output lengths, the
best p, d, and q values tested were 1, 0, and 1, respectively,
suggesting that just one lag of the autoregressive term, one
lag of error terms, and no differencing for the annual per-
cent change of housing units data can be used for quick and
approximate housing forecasts.

The univariate and multivariate LSTM models have the
same best input length for a given output length, where
the best input lengths include the years in either 1 decade
(11 years inclusive) or 2 decades (21 years inclusive). This
could result from the nature of the data availability, where
most variables are only available at a decadal scale prior to
2010 (Fig. S1 in the Supplement and Sect. 1.3).

6.1.3 LSTM model comparisons

Focusing on the LSTM models, which offer the smallest
errors, we investigate feature selection, spatial weighting,
and possible overfitting. To determine if additional feature
variables help forecast the number of housing units in each
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county, we compare models that are the same except for the
feature set. Tests A3, B3, and C3 use Feature Set I (only the
target variable); Tests D, E, and F use Feature Set III (13 fea-
ture variables); and Tests G and H use Feature Set IV (with
another 12 additional feature variables) (Table 3). The mul-
tivariate LSTM models in Tests D, E, and F outperform the
univariate LSTM models evaluated in Tests A, B, and, C on
all metrics and for all output lengths, where the errors from
the multivariate model are approximately half those from the
univariate model (Table 4). This suggests that the feature
variables in Feature Set III do substantially improve predic-
tion of future numbers of housing units. Comparing Tests D
and E to Tests G and H, however, indicates that incorporat-
ing the additional 12 feature variables of Feature Set IV does
not improve prediction. Since data are only available since
1990 for variables in Feature Set IV, there is a tradeoff be-
tween adding the features and maximizing the duration of
data availability, and the results suggest incorporating the ad-
ditional features does not add value to the modeling.

Of all the LSTM models evaluated in Tests A through H,
the best-performing model is Test E, a multivariate LSTM
having 11 input years and 20 output years with 13 features
of data that are available since 1971. When, in Test I, spatial
weighting was added to the features for the same 11-year in-
put, 20-year output model, there was no substantial improve-
ment in errors. The test data E[|H |] for Tests E (without spa-
tial weighting) and I (with spatial weighting) are 0.196 and
0.279, respectively.

Finally, comparing the testing and training errors for
all LSTM models and both RMSEr and E[|H |] does not
suggest a substantial overfitting or underfitting problem.
Across the nine LSTM models, the median value of the ra-
tio RMSEr (testing)/RMSEr (training) is 1.71, and the me-
dian of E[|H |](testing)/E[|H |](training) is 1.54.

Based on all the results in Table 4, the best LSTM model
in Test E is considered the recommended model to predict
the number of housing units hitk for the 1000 counties in
the study area over a 20-year period. This model is hence-
forth referred as the 20-Year Regional Annual County-Level
Housing (REACH20) model. If an application required a 30-
year prediction period, the best LSTM model in Test F, with
11 input years and 30 output years, would be recommended.

6.2 Evaluation of the recommended LSTM model

This section evaluates the recommended 11-year input and
20-year output multivariate LSTM REACH20 model in more
detail, examining the magnitude and distribution of errors.
The REACH20 model has an expected absolute percent rela-
tive error (E[|H |]) for the testing set of less than 0.2 % when
comparing the predicted number of housing units hitk with
the observed number of housing units ĥitk . That means, on
average, across all predicted years t ∈ To, samples k, and
counties i, the number of housing units predicted differs from
the actual number of housing units by less than 0.2 %, likely

negligible for many applications. Additionally, of the 64 000
predicted data points in the testing set (3200 samples in the
testing set (16000 · 0.2) and 20 predicted years), almost all
(97.3 %) had absolute percent relative errors of less than 1 %
(|Hitk|< 1.0). The distribution of the relative errors among
the predicted data points has essentially no bias and an even
balance of over- and underprediction (Fig. 4a).

When reviewing the variability of the testing set errors
over the duration of the 20-year prediction period, the ex-
pected value Et [|H |] over all counties i and samples k of
the absolute value of the percent relative error for each time
step t for the testing set remains under 0.5 %. There is a
noticeable, gradual increase in the errors as the predicted
year horizon expands. The Et [|H |] value, for example, is
0.12 % in the first time step and 0.47 % in the 20th time step
(Fig. 4b). This suggests that while the errors are quite low for
all years in the 20-year prediction period, the model does not
predict the number of housing units 20 years in the future as
well as it does the number of housing units 1 to 5 years in the
future, as expected. Furthermore, the population projection
method provided by Hauer (2019) for all US counties pro-
duce aggregated relative errors of 0.9 % to 3.6 % over a 15-
year projection period, while the recommended model in this
study produces average absolute relative errors of less than
0.5 % over a 20-year projection period. This suggests that if
a static housing unit per population ratio was applied to the
population estimates produced by Hauer (2019), as is done in
other studies evaluating natural hazard risk in the context of a
changing housing inventory (Hauer et al., 2016; Ashley and
Strader, 2016; Strader et al., 2015, 2018; Freeman and Ash-
ley, 2017; Sleeter et al., 2017; Davidson and Rivera, 2003),
these housing estimates would likely be less accurate than
those produced by the recommended REACH20 model.

Errors across space were also reviewed to understand
whether the model performs better for certain geographic
areas (e.g., urban vs. rural counties or East Coast vs. Gulf
Coast). There is no obvious spatial pattern of the expected
value Ei[|H |] across the study area, with a balance of over-
prediction (purple) and underprediction (green) across the
region (Fig. 5). There were 987 counties (98.7 %) with av-
eraged Hitk across all time steps less than 0.2 %. Errors in
western Texas are slightly larger than other regions of the
study area perhaps due to the relatively small population
of these counties and the associated sensitivities to small
changes in the error.

6.3 Implications of projected change in housing
inventory

Over the entire study region, the REACH20 model predicts
approximately 16.7 million more homes in the 20-year fore-
cast period between 2019 and 2039 (38 % growth, Fig. 6).
The aggregated county-level projections are based on the
last 11 years of available data excluding the Great Recession
(2006, 2007, and 2011–2019) for the 13 included features to
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Figure 4. (a) Distribution ofHitk of the testing set using the REACH20 model. (b) Average absolute percent relative error for each time step
over all counties and samples Et [|H |] for the testing set using the REACH20 model.

Figure 5. Average percent relative error for each county over all
predicted time steps and samples, Ei [|H |], for the combined train-
ing and testing set using the REACH20 model. Given that the sam-
ples for a given county and time sequence were randomly split into
the training and testing set, a spatially complete view of the errors
required a combination of the training and testing errors.

estimate 20 years of future housing unit projections across
all 1000 counties using the REACH20 model.

The projected housing rates of change across all counties
over 20 years (2019–2039) vary spatially, where the hous-
ing inventory in almost all counties (97.4 %) is expected to
grow over the next 20 years (Fig. 7). Suburban and exur-
ban counties are projected to have large housing growth rates
over the next 20 years, which is reasonable, as urbanization
in metro areas continues. There are noticeable differences in
projected housing rates within the state of Texas. In the east-
ern half of the state, there is large projected growth around
the state’s major cities which aligns with recent trends; 6 of
the 15 fastest-growing large cities in the US between 2010
and 2019 are located in Texas (US Census Bureau, 2020b).

Figure 6. Predicted number of housing units in the study area using
the REACH20 model.

However, housing inventory is projected to generally remain
stagnant or decline in western Texas, which aligns with past
trends of the generally stagnant population and available jobs
in the region (Texas Comptroller, 2020).

A comparison of the housing rates of change in the past
20 years (1999–2019) vs. the next 20 years (2019–2039) al-
lows for an analysis of housing growth acceleration or de-
celeration (Fig. 8). The vast majority of counties (89.5 %)
in the study area are expected to experience greater housing
growth rates in the next 20 years (2019–2039) than in the past
20 years (1999–2039). These higher growth rates indicate
that most counties need to carefully manage the rapid new
home construction. Additionally, three out of four (75.4 %)
counties in the region are expected to experience at least a
10 % change in housing rates in the projected 20 years vs. the
past 20 years. Two out of five counties (38.2 %) in the region
are expected to experience at least a 20 % change in hous-
ing rates between the two periods. This means that a simple
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Figure 7. Projected 20-year (2019–2039) percent change in housing units using the REACH20 model. The blue color represents growth, and
red represents decline.

linear extrapolation from the past 20 years will likely not pro-
vide an accurate projection of housing units.

A change in housing units over time also implies a change
in housing density over time, often resulting in increased ur-
banization within a county (Fig. 9). Most counties (71.4 %)
are only expected to see a change of 10 housing units per
square kilometer or less in the next 20 years. However, one-
fifth of the counties (21.2 %) in the region are expected
to experience an increase of 10 to 50 housing units per
square kilometer, many of which are located along the At-
lantic coast. Notably, the vast majority of the counties along
Florida’s coastline (74.5 %) are expected to experience an in-
crease of 10 to 100 housing units per square kilometer. Of the
coastal counties, Harris County is expected to experience the
greatest increase in housing density, from 400 housing units
per square kilometer in 2019 to 510 housing units per square
kilometer in 2039. Areas of high density allow for the possi-
bility of more homes being affected by a single hurricane or
other hazard event.

To investigate the projected number of housing units in
more detail, a sample of 15 counties is identified (Figs. 7–
10). The 15 counties selected, which include 1 or 2 from each
state in the study area (excluding Washington, DC) and 10
on the coast in hurricane-prone areas, were selected to il-
lustrate some of the variability across counties. In five of
the sampled counties (Kent County, Texas; Harris County,
Texas; Flagler County, Texas; Brunswick County, North Car-
olina; and Loudoun County, Virginia), the future housing
trend (growing or shrinking) is expected to decelerate over
the next 20 years, compared to the last 20 years. The two
Louisiana parishes sampled (Fig. 10c), Cameron Parish and
Orleans Parish (Fig. 10d), however, are examples of excep-
tions that experienced significant shocks in the housing in-
ventory due to hurricane impacts.

6.4 Implications for hurricane impacts and losses

The dynamics of the housing inventory also causes changes
in a region’s level of risk for multiple hazards, includ-
ing hurricanes. Hurricane Harvey was a devastating Cate-
gory 4 hurricane that made landfall on the Texas coast on
25 August 2017, affecting many counties in southeastern
Texas. Coastal counties experienced 130 mph (209 km h−1)
winds, heavy rains, and large storm surges, while inland
counties, particularly in the Houston, Texas, area, experi-
enced massive amounts of rain over multiple days. Across
the 62 counties affected by Hurricane Harvey in Texas,
there was USD 2.4 billion in residential property losses and
USD 7.5 billion in flood insurance losses (Texas Department
of Insurance, 2019). Using the proposed REACH20 model,
if a hurricane of a magnitude similar to Harvey hit that same
Texas region 20 years from now, assuming the same 2017
distributed hazard and vulnerability profiles of newly built
homes, the residential property losses for the entire region
would be USD 3.2 billion, which is USD 792 million (or
33 %) greater than the damage caused by Hurricane Harvey
in 2017, assuming constant dollars. The total flood losses for
the region would be even larger, totaling to USD 10.4 billion,
which is approximately USD 3 billion (or 40 %) greater than
Hurricane Harvey losses.

A closer examination of the projected housing growth
rates across the subregions affected by Hurricane Harvey re-
veals that each subregion would experience a different mag-
nitude of losses. The subregions analyzed align with the four
areas identified by the Texas Department of Insurance (2019)
report, which documents insurance claims and losses from
Hurricane Harvey in the state of Texas. Using the recom-
mended REACH20 model, it is expected that the projected
20-year housing growth rates for each county in these areas
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Figure 8. Projected 20-year housing acceleration (projected percent change in housing units between 2019 and 2039, minus the percent
change of housing units between 1999 and 2019) using the REACH20 model. The green color represents an acceleration, and pink represents
a deceleration.

Figure 9. Projected 20-year change in housing unit density (2039 housing unit density minus 2019 housing unit density) using the REACH20
model (units per square kilometer).

will vary over the region (Fig. 11a), and the number of hous-
ing units will increase in each subregion (Fig. 11b).

The area identified as the Coastal Bend and Seacoast coun-
ties experienced the brunt of the wind force from Hurricane
Harvey and accounted for the largest residential property
losses (USD 1.4 billion). Residential property losses account
for the majority of damages due to high winds and include
claims from homeowner’s insurance, mobile homeowner’s
insurance, and residential dwelling insurance. The Coastal
Bend area is expected to have the lowest housing growth rate
of the region (31.0 % or approximately 100 000 more hous-

ing units), yet a similar-sized storm event hitting the same
area in 20 years would result in an estimated USD 431 mil-
lion more in losses than experienced in 2017, assuming con-
stant dollars (Fig. 12a).

The area identified as the Houston area and southeastern
Texas experienced a massive amount of rainfall from Hurri-
cane Harvey and accounted for the largest flood losses com-
pared to other subregions (USD 7.2 billion). The flood in-
surance losses reported are caused by rising water or flood
damages in residential or commercial structures and include
properties with both federal and private flood insurance. The
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Figure 10. Past and projected number of housing units for 15 counties using the REACH20 model (note the different scales).

Figure 11. (a) Projected 20-year (2019–2039) percent change in housing units in the Hurricane Harvey-affected region using the REACH20
model. (b) Projected housing units and housing growth rates for the Hurricane Harvey-affected region using the REACH20 model.

majority of flood insurance claims were for residential struc-
tures under the National Flood Insurance Program (NFIP).
The Houston area is expected to have a sizable housing
growth rate of 40.0 %, equating to 1.1 million more housing
units, over the next 20 years, which would cause a significant
increase in expected flood losses for a similar-sized hurricane
(USD 2.9 billion, Fig. 12b).

7 Future work and conclusions

7.1 Limitations and future work

The recommended REACH20 model provides a first-of-its
kind dataset of annual projected housing inventories for a
multi-state region over a 20-year period that can be used to
enhance hurricane risk models. Given the nature of the avail-
able data and complexity of the modeling method, there are
limitations to note. For periods when data were only available
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Figure 12. (a) Estimated residential property loss due to hurricane impact across the Hurricane Harvey-affected region over a 20-year
period, assuming constant dollars. (b) Estimated flood loss due to hurricane impact across the Hurricane Harvey-affected region over a 20-
year period, assuming constant dollars. These values are calculated by multiplying the loss values from Hurricane Harvey in each subregion
by the expected 20-year housing growth rate for each subregion.

at a decadal scale for certain variables, linear interpolations
were made to produce an annualized dataset which could
have introduced errors to the projection of housing units. Ad-
ditionally, the data during the Great Recession (2008–2010)
were removed because the model can neither predict nor ac-
count for large, unexpected exogenous shocks to the residen-
tial housing market. Additionally, the projected changes in
housing units ultimately assume that past housing develop-
ment behavior will carry into the future. However, housing
demands have changed since the start of the COVID-19 pan-
demic, and it is unclear how these changes are likely to af-
fect future housing development trends. Climate change may
also drive new behaviors in housing development patterns as
risks due to sea level rise, intense storm events, wildfires,
and excessive heat continue to increase. This study also had
counties included in both the training and testing set because
the model is only intended to be used for the designated study
area. If the model were to be applied outside the study area, a
review of holdout validation errors would be required. Lastly,
neural network methods require a certain level of expertise
and significant effort to gather and standardize large quanti-
ties of data. Therefore, for applications only requiring quick
estimates for changes in housing units, a simpler linear trend
or ARIMA model may be adequate.

There is an opportunity to extend the housing unit pro-
jection work and estimate the likely distribution of housing
unit types (e.g., single-family, multi-family, or manufactured
homes) in each county in the future. Researchers can also
extend this work by estimating the likely location of the pro-
jected housing units within a given county, which would al-
low for a more granular estimate of hurricane impacts in a
region. Additionally, researchers can evaluate potential pol-
icy mechanisms that can minimize the hurricane risk for a
region while also incorporating the ever-changing housing
growth over time. Lastly, the provided housing unit projec-

tions can be applied to a variety of applications, including
hurricane evacuation planning, hurricane risk mitigation, or
general regional planning activities.

7.2 Conclusions

The recommended REACH20 model advances the field of
hurricane risk modeling by producing the first known dataset
of county-level annual housing inventory projections over a
multi-decade period and multi-state region. It allows a dy-
namic building inventory to be included in hurricane risk
models rather than using the conventional assumption of a
static building inventory, thereby producing more realistic
regional loss estimates. Additionally, the REACH20 model
uses publicly available housing and demographic data and
can therefore be easily applied to other regions of interest
(see Sect. S2.3 for source code).

LSTM models outperformed linear trend and ARIMA
models on all metrics; and the multivariate LSTM models
outperformed the univariate LSTM models, although when
the inclusion of additional feature variables meant fewer
years of available data, they did not lead to improved model
performance. Applying spatial weighting by averaging a
county’s feature values with adjacent counties did not im-
prove model results either. The REACH20 model includes
11 years of input data, 20 years of output data, 13 feature
variables, and a single target variable for 1000 counties in
the southeastern US over 46 years of available data, result-
ing in 16 000 samples available to train and test the LSTM
model. Using an 80/20 split of training to testing, the 64 000
predicted data points in the testing set (3200 samples in the
testing set (16000 · 0.2) and 20 predicted years), almost all
(97.3 %) had absolute percent relative errors of less than
1 % (|Hitk|< 1.0), meaning the estimated number of housing
units was no more than 1 % different than the actual num-
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ber, which are errors that are acceptable for most practical
purposes. The H remained less than 0.5 % for all 20 pre-
dicted time steps, and errors were distributed evenly across
the study region.

The REACH20 model suggests there will be significant
increases in the housing inventories of the southeastern US,
thus increased expected hurricane losses. Of the 1000 coun-
ties in the study area, 974 are expected to experience a growth
in their housing inventory, and 895 counties are expected
to have greater housing growth in the next 20 years com-
pared to the past 20 years. Translating this to potential hurri-
cane losses, if a Hurricane Harvey type event hit southeast-
ern Texas in 20 years, losses could increase by approximately
40 %, compared to the losses caused by Hurricane Harvey in
2017. Recognizing the great expected hurricane losses, plan-
ners should prioritize mitigation and adaptation measures in
the areas with high expected housing growth, thereby de-
creasing future societal impacts and financial losses.
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