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Research on the topic of converting natural language to machine-readable code has experi-

enced great interest over the last decade, however studies into converting machine-readable

code into natural language are sparse. The applications of translating spoken or written

languages into code are well-established, such as allowing a more novice or non-technical

user to interact with a program or database with ease. The benefits of such applications

are readily observable and are likely to grow as software systems continue to increase in

complexity and capability. Likewise, parsing code to natural language produces certain ben-

efits from which the potential gain in utility and knowledge has yet to be fully realized.

This thesis identifies opportunities for deploying solutions that provide a natural language

explanation of programming languages, specifically with Structured Query Language (SQL)

and database interfacing. A novel solution is proposed in the form of an application named

Query Purpose Extractor (QPE), which utilizes existing open-source libraries to aid in the

process of translating SQL statements into English sentences.
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Chapter 1

Introduction

1.1 Motivation

In the existing literature exploring the relationship between Structured Query Language

(SQL) statements and natural language, most research has been focused on the transforming

of natural language input into a SQL output. Little research has been conducted on the

opposite direction in this relationship: transforming a SQL statement into natural language.

It appears that there are two obvious motivators that have led to research being focused in

its current manner:

1. The value of parsing spoken or written input from a user into SQL statements, which

in turn leads to

2. Interfacing with a relational database becoming more approachable for non-technical

users.

At first glance, moving to study in the opposite direction may appear trivial; an individual

capable of constructing a SQL statement would inherently have some understanding of what

the statement accomplishes as well as the data with which it interacts. Therefore, if a tool

existed that could deconstruct a SQL statement into a natural language output, such a

technical individual would at face value have no need for it.

But what about the non-technical user? There exists a population of such individuals

who are exposed through their professions or recreationally to relational databases and who



could stand to benefit from the existence of such a tool [31]. These individuals are present

in many areas of academia and enterprise organizations–for example, a business analyst at a

large company may work on a daily basis with software developers and data scientists who

make use of SQL statements in their work. The business analyst may have limited firsthand

experience with the querying language and therefore may be unable to make sense of SQL

statements when they are presented. A solution developed to provide a mechanism to parse

meaning from SQL statements would prove useful in this situation, as a deep understanding

of SQL may be outside the scope of the business analyst’s position, but surely, he or she

would benefit from knowledge of the SQL statements to which they are exposed, and as a

result the business or organization would grow in cohesiveness. A similar benefit could be

observed for a solution that could also parse meaning from NoSQL statements into natural

language text. For the purpose of this study, ANSI SQL will be the language of focus,

but it is worth acknowledging that a similar solution could be beneficial in other querying

languages.
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1.2 Contribution

The research focuses on the following key objectives:

1. Analysis of existing literature concerning conversion between SQL and natural lan-

guage, specifically English.

2. Identification of current research and solutions for extracting and representing the

abstract syntax tree of a SQL statement.

3. Development of a proof-of-concept application which demonstrates the feasibility of

deconstructing SQL statements into natural language using parse trees.

In the existing research between SQL and natural language, a common theme is the

utilization of machine learning models and natural language processing to obtain an accurate,

repeatable and reliable output, be it into SQL or English. When the research focuses on

converting SQL to natural language, processing the SQL statement directly via machine

learning models is a common approach. The research in this thesis aims to propose a viable

method that does not involve the use of machine learning and highlights the tenability of

extracting a parse tree from which to derive a meaningful description. An application,

Query Purpose Extractor (QPE), has been developed in conjunction with this research to

demonstrate this approach as feasible. It is available for use and testing in the form of a web

application1.

1Currently accessible at https://query-pe.dev
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1.3 Thesis Outline

The thesis is organized into the following chapters: chapter 2 comprises a background of

the subject matter along with a review of current literature on the relationship between

natural language and SQL statements. Beginning in chapter 3 possible approaches to the

problem of this paper are discussed, and in chapter 4 the novel approach Query Purpose

Extractor (QPE), which utilizes available open-source libraries to create a parsing tool, is

reviewed. Chapter 5 covers a discussion of the strengths and weaknesses of the application,

and implications and future works are covered in chapter 6.
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Chapter 2

SQL Statements and Natural Language

A bidirectional relationship exists between SQL statements and natural language: it is pos-

sible to traverse from one state to the other in a method of translation. Traveling from

natural language to SQL statements typically requires the use of machine learning and natu-

ral language processing in order to convert the input, whether spoken or typed, into accurate

and effective SQL statements. Research with this focus typically aims to produce the most

accurate SQL statement representing the intentions of the end user which can then be used

to interact with a modern database management system. Traveling from SQL statements

to natural language can be done by several approaches. A robust, repeatable, and precise

method involves extracting the syntax tree from the SQL statement and assigning mean-

ingful identification or phrases to relevant data points in the tree. In either direction of the

travel between the two, the goal is to educate end users on better interacting with database

management systems and enabling them to become more familiar with SQL and querying.

For the purposes of this research, the issue of converting SQL into natural language will

be referred to as the SQL-to-NL problem.



2.1 Related Works

2.1.1 Translating Natural Language to SQL

The notion of interfacing with a database system using simple English (or other spoken or

written language) commands has existed for many years. In fact, the concept is not limited

solely to database interactions but is an area of interest for general-purpose programming

languages [8] [30]. Programming languages and their abstractions arose due to the precise

requirements a computer demands, creating a divide between the non-technical user and

granular computational control. Attempts to bridge this divide date back even to the same

decade as the creation of SQL [6]: in their 1979 study, Chang and Ke [7] described an exten-

sible query language (XQL) to handle “fuzzy” queries from users. Designed to allow a less

formal approach when extracting data from databases, the research outlined an “intelligent

coupler” tasked with manipulating the user’s requests into a format the database system

can execute. The authors highlighted their choice of the word “coupler” as intentional, as

it implies a connection between the user and the system. The language and the study are

early examples of a practical endeavor that is abundantly observed today.

Annamaa et al. [2] proposed a novel approach to validating SQL statement syntax prior

to execution in a Java environment. They identified the problem of writing embedded

SQL queries that could not be tested until the program had been executed and the query

executed, as until this point it is operating within the Java runtime as opposed to a database

management system. The proposed SQL syntax analyzer utilizes the Java Development Tools

from the Eclipse IDE1 to obtain abstract syntax trees from the source code and is equipped to

determine any issues prior to query execution. This study identifies validation as a valuable

outcome from observing and monitoring the abstract syntax trees of SQL statements.

Elgohary et al. [10] identified a potential shortcoming of semantic parsing systems con-

cerning the correction of interpretation when an utterance is incorrectly mapped to a value.

1https://www.eclipse.org/ide/

6



Their study intentionally provided an incorrect or inconclusive argument (speech or utterance

from a user) that initially is interpreted incorrectly and translated into a wrong SQL state-

ment. It is then corrected by additional speech in the form of feedback to the model, which

in turn generates the corrected SQL statement as a result. In this paper the authors identify

the usefulness of user interaction in the validation step of converting natural language to

SQL, in particular highlighting the benefit of explaining the SQL statements in a way users

can understand. Part of their study involved the step of deconstructing the model-generated

SQL statements into short paraphrases in English for explaining the generated output the

model created after interpreting the utterances of the user.

Kumar et al. [17] provide another example of an investigation into converting spoken

English into SQL for interfacing with a relational database management system. Utiliz-

ing acoustic and language models, their work encodes spoken commands into tokenizable

data using inspiration from the Hidden Markov Model concept. This concept assists in

accounting for imperfections in the phonetics observed from the raw input caused by the

natural variations among English speakers. In this paper the process taking spoken input

to machine-executable code is broken down into each individual step, providing a deeper

insight into the effort and complexity of such a task.

In a similar manner, Timbadia [24] devises a system that accepts the input natural

language in the format of a text (.txt) file. The operation of the proposed application is

similar in function to previously-described natural language to SQL solutions, but of note in

this study is the inclusion of a database scanning step. This step analyzes the tables, columns,

and keys present in the database to ensure the validity of translated SQL statements for the

purposes of the attached database.

Yaghmazadeh et al. [28] also sought to develop a tool for parsing natural language to

SQL, however their approach took both the user-created request as well as the underlying

database schema into consideration as input to ensure a more accurate and executable output

using a system named SQLizer.
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Guo and Gao [13] developed a similar approach to translating English to SQL using a

dataset called WikiSQL [32], which is described as “a dataset of 80,654 hand-annotated ex-

amples of questions and SQL queries distributed across 24,241 tables from Wikipedia.”2 This

dataset has been widely studied and used in various natural language processing initiatives,

and in this study, the authors generate a SQL statement from a given prompt or context to

accurately query a table that has been previously identified. A similar study also referencing

WikiSQL was conducted by Bai et al. [4] which utilized a compound point-wise reward to

provide better feedback to the learning model used for the purpose of generating SQL from

natural language. The current best-performing model using the WikiSQL dataset is TaPEx

(Table Pre-Training via Execution), a pre-training approach used to mimic executable SQL

query processes in order to develop a deep understanding of the database schema created by

Liu et al. [19].

Brunner and Stockinger [5] identify potential areas for improvement in natural language

to SQL (NL-to-SQL) research, primarily in providing detailed system architecture and source

code for the solution developed. This paper discussed the creation of the ValueNet system,

designed as an end-to-end architecture which implements a neural network to encode and

decode user input into abstract syntax trees for the purpose of interacting with a database.

Because the system is designed to be end-to-end, candidate queries are created using database

content to ensure better accuracy with each request. In a similar vein, Qin et al. [23] identify

the benefits of building a database query from the database to the request as opposed to

the traditional request to database direction. By starting with the knowledge base of all

relations in a given database, a candidate query graph is generated which provides greater

accuracy than attempting to parse meaning from the user’s request and then associate it

with expected table or column names.

Other studies have been conducted that extend the benefits of natural language to SQL

conversion into more complex applications. Liu et al. [18] contributed to addressing the

2Wikisql: Datasets at Hugging Face https://huggingface.co/datasets/wikisql

8



serious threat of SQL injection attacks by developing a tool named DeepSQLi. This tool

extends common SQL injection defenses such as automated testing of potential malicious

user inputs by implementing a natural language model that adjusts a training dataset into

novel test cases. These test cases are able to be fed back into the language model as needed to

continually create more sophisticated attacks in order to address database security concerns

before they are exploited by bad actors.

Cognitive computing is another application that research into this topic could positively

impact. In their study on implementing artificial intelligence to a relational database, Neves

and Bordawekar [20] examine the outcome of applying cognitive intelligence queries into a

traditional workflow of extracting data from a SQL-based database. Cognitive intelligence

queries are defined as complex queries that implement semantic matching and inductive

reasoning for the purposes of business analytics. The paper highlights another area of data

storage, retrieval, and management that could benefit from a multilateral approach to SQL

and natural language conversion.

2.1.2 Translating SQL to Natural Language

As aforementioned, research into the parsing of SQL statements into natural language text

is limited. Of the available studies, the one most similar in nature and function to this

research was conducted by Paira and Chandra in 2019 [22] in which a parser (SQL NL)

was developed to identify SQL syntax, tokenize keywords, and output natural language. A

primary difference between this study and this thesis research is the process by which the

SQL statement is deconstructed. SQL NL makes use of regular expressions (regex), whereas

the proposed system Query Purpose Extractor sources the natural language from the syntax

tree of a given SQL statement.

A study conducted by Xu et al. [27] in 2018 also approached the subject of translating

SQL to natural language by the use of a graph-to-sequence model [26]. As opposed to

isolating the abstract syntax tree for extraction of meaning and descriptions, a graphical

9



representation of the query was generated to preserve its components in logical groupings.

Using an approach utilizing the type of Recurrent Neural Network (RNN) Long-Short Term

Memory (LSTM), the authors applied natural language processing to predict the next token

given all previous words in the generated description. The researchers tested their model

on two datasets, one being the aforementioned WikiSQL set with the other a dataset from

the website StackOverflow. Results demonstrated the success of the novel approach which,

compounded with the work of this thesis and the study by Paira and Chandra, exemplifies

the validity of multiple approaches to decoding SQL statements. Unfortunately, only part

of the code was published publicly at the time of this writing3, and the model could not be

implemented as a demonstration to include with this research.

At a more fundamental level, Yellin and Mueckstein [29] investigated the notion that

conversion from one language into another language using a certain set of rules implies that

translating in the opposite direction is possible. The study identifies a method used to

invert attribute grammars and demonstrated its effectiveness on SQL queries, outputting

English paraphrases of what the query was seeking to accomplish. The authors note a

potential use-case for providing these paraphrases could be the feedback it provides to a

novice or occasional user of relational databases, allowing the user to examine the accuracy

and precision of the queries that have been created.

3Per this opened issue: https://github.com/IBM/SQL-to-Text/issues/5
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Chapter 3

SQL, Parse Trees, and Abstract Syntax Trees

The most common way to interact with a relational database management system (RDBMS)

is via SQL statements. SQL itself comes in many flavors in addition to its standardized ANSI1

and ISO2 forms, but in order for the written code to be executable by the RDBMS it must

first be converted into a meaningful format.

Specific to the popular RDBMS PostgreSQL, once a user enters the SQL statement and

executes it the database parser first determines if the syntax is valid. If it is valid, the parser

then returns the parse tree of the query which is used to complete the request3. This process,

the parse tree, and the abstract syntax tree will be explored in greater depth in the following

section.

1A summary of ANSI standards for SQL can be found at: https://blog.ansi.org/2018/10/sql-

standard-iso-iec-9075-2016-ansi-x3-135/
2Published ISO standards for SQL can be found here (relevant links begin with “ISO/IEC 9075”):

https://www.iso.org/committee/45342/x/catalogue/p/1/u/0/w/0/d/0
3https://www.postgresql.org/docs/current/parser-stage.html



3.1 Background

3.1.1 Syntax Trees

An abstract syntax tree, also simply called a syntax tree, is a data structure comprising

a tree representation of syntactic details and information of code or text. Because it is

abstract, not all details of the code are included in the data structure, and as it is a tree it

can be traversed and manipulated. A concrete syntax tree, also known as a parse tree, is

the implementation of the abstract syntax tree and represents the actual input used in code

execution [12]. The parse tree is a more complex rendering of the given data that includes

details regarding the position and purpose of each term or expression. Because of this, the

abstract syntax tree can be thought of as a minimalist implementation of the parse tree

that is not concerned with the specific grammar of the given programming language [25].

Abstract and concrete syntax trees are used in a variety of programming languages, including

SQL, and are important structures used by the compiler as an intermediate representation of

data [1] [3] [11]. A compiler first tokenizes input source code which is then used to generate

the parse tree. This in turn is sent through to be consumed by the remaining compilation

steps as the compiler executes the source code [15].

Figure 3.1: A simplified depiction of the initial stages of compilation, including generation of the
parse tree.

12



Because the abstract syntax tree can vary considerably based on the source code provided,

it offers a flexible and durable way to represent the underlying meaning behind the code.

Figure 3.2 represents an example abstract syntax tree, while Figure 3.3 represents a parse

tree. Both trees in these figures are generated from the below simple expression: 1 × 2 + 3.

+

×

1 2

3

Figure 3.2: An abstract syntax tree example.

EXPR

TERM

FACTOR

1

× FACTOR

2

+ TERM

FACTOR

3

Figure 3.3: A concrete syntax tree (parse tree) example.

13



Slight variations in the input can cause greater changes in the parse tree generated. To

demonstrate using the previous example, the expression is modified slightly to change the

calculation order via addition of parentheses: 1 × (2 + 3). The new abstract and concrete

syntax trees can be observed in Figures 3.4 and 3.5, respectively.

×

1 +

2 3

Figure 3.4: The updated abstract syntax tree.

EXPR

TERM

FACTOR

1

× TERM

FACTOR

( EXPR

TERM

FACTOR

2

+ TERM

FACTOR

3

)

Figure 3.5: The updated concrete syntax tree (parse tree).
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3.1.2 Further Considerations with Relational Algebra

The SQL language is intended for interactions with relational databases, and therefore

queries written in SQL are also able to be expressed using relational algebra. Tools ex-

ist that are able to demonstrate this conversion and can help users understand the relations

between the points of contact within a query4.

Understanding this underpinning concept for SQL is essential for addressing the SQL-to-

NL problem and developing a meaningful solution, as the relational algebraic representation

of the query should be expressed identically in both the original SQL and the parsed output.

An example of a simple SQL query represented using relational algebra can be seen in

Figure 3.6 for the below query:

SELECT e.name, e.title, c.salary

FROM employees e

INNER JOIN compensation c

ON c.employee_id = e.employee_id

Π e.name, e.title, c.salary(ρeemployees ./ e.employee id = c.employee id ρccompensation)

Figure 3.6: Relational algebraic representation of a SQL query.

4An example SQL to relational algebra converter can be found at
http://www.grammaticalframework.org/qconv/qconv-a.html

15



Solving the SQL-to-NL problem requires retention of the underlying logic of the relational

algebra for a SQL statement. This can be conveyed accurately with the usage of the abstract

syntax tree, because this relational data is exposed to the compiler or interpreter in a detailed

medium.

SQL is by its very nature highly relational [9], making it a prime language for translating

to English or another natural language. The tight coupling of data it references and the

declarative nature of the querying language support its candidacy for being the subject

of a system designed to logically derive meaning with little subjectivity. No additional

context is required with SQL aside from the query at hand in order to accurately produce

understandable explanations for a non-technical user to comprehend.

16



3.2 Methodology

3.2.1 Outline of Requirements

A systematic approach to deconstructing the syntax of the statement is required to consis-

tently achieve the result of a parsed English translation from a SQL statement. The approach

to solving the SQL-to-NL problem should have the following characteristics:

1. Repeatable: the solution should be query-agnostic and able to algorithmically derive

meaning from a varied assortment of queries.

2. Accurate: the solution should accurately represent the purpose behind a given query

using readily understandable paraphrases.

3. Robust: the solution should withstand varying degrees of complexity with the presented

queries and responsively produce meaningful output.

For these reasons, it was determined that for this study that the best method by which

to extract meaning from SQL statements involved using the parse tree of the query. This

object provides the necessary data and flags for procuring meaningful results for the user.

Additionally, it allows a representation of the relational algebra underpinning each SQL

statement as closely as possible.

3.2.2 Demonstration of Approach

The abstract syntax tree allows for a parser to express the intentions of a SQL query in an

appropriate grammar for consumption by the database optimizer. In open-source relational

database management systems such as PostgreSQL, it is possible for the abstract syntax tree

to be extracted from a query and represented in various data formats. Certain open-source

libraries have been created to aid in this process, and will be of use for the purposes of

this paper. Of particular note for is pg query5, a library developed by the pganalyze6 team.

5https://github.com/pganalyze/pg_query
6https://pganalyze.com/

17



pg query was developed as a Ruby gem7 and allows analysis of how PostgreSQL analyzes a

SQL statement for execution.

For the application developed for this study, a derivative library pglast8 was used. pglast is

built from pg query, but designed for use with the Python programming language. Through

the use of pglast, it is possible to extract an parse tree for a given SQL statement with

the results output in JavaScript Object Notation (JSON)9 format. This allows for easier

consumption by the solution built for this research, and because of the structure of the

parse tree, it allows for the reliable execution and consistent deconstruction required by such

a task. Examples of SQL input and JSON output for the purposes of this study can be

observed in Figures 3.7 and 3.8.

In the simple query in Figure 3.7, it can be observed that several flags have been specified.

The targetList field identifies the target results of the query, namely what is present in the

SELECT clause. As this query simply selects the integer 1, no other values are present in

the targetList field.

The query used for Figure 3.7 is simply SELECT 1.

7https://guides.rubygems.org/what-is-a-gem/
8https://github.com/lelit/pglast
9https://www.json.org/json-en.html
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”stmt” : {
” Se lectStmt ” : {

” t a r g e t L i s t ” : [
{

”ResTarget” : {
” va l ” : {

”A Const” : {
” va l ” : {

” In t e g e r ” : {
” i v a l ” : 1

}
} ,
” l o c a t i o n ” : 7

}
} ,
” l o c a t i o n ” : 7

}
}

] ,
” l imi tOpt ion ” : ”LIMIT OPTION DEFAULT” ,
”op” : ”SETOP NONE”

}
}

Figure 3.7: JSON representation of the parse tree of a simple SQL query.
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A more involved query is provided in Figure 3.8 for demonstrating the relative quickness

with which the output JSON parse tree grows in complexity. Even for a query only using

SELECT, FROM, and WHERE clauses, the output can easily become difficult to navigate.

The query used for Figure 3.8 is:

SELECT b.book

FROM books b

WHERE b.year > 2000

To address the need for consistently extracting data as queries change, the solution builds

around the expected key and value pairings to meaningfully describe the data sought by the

SQL query as well as the tables, columns, and values traversed as part of this data retrieval.
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”stmt” : {
” SelectStmt ” : {

” t a r g e tL i s t ” : [
{

”ResTarget” : {
” va l ” : {

”ColumnRef” : {
” f i e l d s ” : [

{
” St r ing ” : {

” s t r ” : ”b”
}

} ,
{

” St r ing ” : {
” s t r ” : ”book”

}
}

] ,
” l o c a t i on ” : 7

}
} ,
” l o c a t i o n ” : 7

}
}

] ,
” fromClause ” : [

{
”RangeVar” : {

” relname” : ”books ” ,
” inh ” : true ,
” r e l p e r s i s t e n c e ” : ”p” ,
” a l i a s ” : {

” al iasname ” : ”b”
} ,
” l o c a t i o n ” : 19

}
}

] ,
”whereClause ” : {

”A Expr” : {
”kind” : ”AEXPR OP” ,
”name” : [

{
” St r ing ” : {

” s t r ” : ”>”
}

}
] ,
” l expr ” : {

”ColumnRef” : {
” f i e l d s ” : [

{
” St r ing ” : {

” s t r ” : ”b”
}

} ,
{

” St r ing ” : {
” s t r ” : ” year ”

}
}

] ,
” l o c a t i o n ” : 33

}
} ,
” rexpr ” : {

”A Const” : {
” va l ” : {

” In t ege r ” : {
” i v a l ” : 2000

}
} ,
” l o c a t i on ” : 42

}
} ,
” l o c a t i o n ” : 40

}
} ,
” l imitOpt ion ” : ”LIMIT OPTION DEFAULT” ,
”op” : ”SETOP NONE”

}
}

Figure 3.8: The parse tree of a slightly more complex SQL query represented in JSON.
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Chapter 4

Query Purpose Extractor (QPE)

A novel approach to completing the translation from SQL to natural language has been

developed as part of this research. The system is called Query Purpose Extractor (QPE)

and makes use of the pglast library previously described in chapter 3 to parse the abstract

syntax tree from a query for further analysis. Source code and documentation for QPE can

be found on GitHub1.

The structure of QPE can be observed in Figure 4.1. The process of SQL-to-NL can be

defined as having five primary steps:

1. A SQL statement is provided as the input.

2. The SQL statement is validated.

3. Parsing of the abstract syntax tree from SQL is conducted.

4. Data is extracted from the parse tree and the output is paraphrased into English.

5. The paraphrased result is returned as the output.

1https://github.com/cdbullard/query-pe



Figure 4.1: The process of QPE.

23



4.1 QPE Overview

QPE is a web application developed primarily using React and Python. A user, upon

navigating to the application, is greeted with a prompt seen in Figure 4.2. The prompt

contains an area for inputting SQL statements along with a toggle switch to retrieve either

the parsed English meaning from the statement or the JSON representation of the parse

tree. The output of the JSON representation is generated from the pglast library similar

to Figures 3.7 and 3.8. An example of the ‘Generate Parsed Results’ output in English

paraphrases can be seen in Figure 4.3.

Figure 4.2: The main interface for QPE.

Figure 4.3: Sample results using the query in Figure 3.8.
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Figure 4.4: Graph depicting the output of the given sample query.

As an additional feature to more clearly demonstrate the relationship between the various

clauses in the SQL statement, a graph is generated dynamically using the Mermaid.js library2

when a query is entered that contains a table reference with linked values in the SELECT

clause. Join conditions are also detected and represented by the graph, and in Figure 4.4 an

example can be seen for the SQL query below:

SELECT b.book, a.fname, a.lname

FROM books b

INNER JOIN authors a

ON a.id = b.id

This graphical feature functions as an additional tool to help users understand the rela-

tionships between selected data points and any joins that may constrain them. It is designed

to be a simplified version of the query’s parse tree, serving as a dynamic visual aid in the

process of extracting meaning from SQL statements.

2https://mermaid.js.org/
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{
” d i c t ” : {

” D i s t i n c t ” : f a l s e ,
”From” : {

” j o i nva l u e ” : [
[

”=” ,
”a” ,
” id ” ,
”b” ,
” id ” ,
”JOIN INNER”

]
] ,
” relname” : [

[
”b” ,
”books”

] ,
[

”a” ,
” authors ”

]
]

} ,
”Group” : {

” groups ” : [ ]
} ,
”Having” : {

” cond i t i on s ” : [ ]
} ,
”Limit ” : ”Unlimited r e s u l t s ” ,
” S e l e c t ” : {

” t a r g e t s ” : [
[

”b” ,
”book”

] ,
[

”a” ,
”fname”

] ,
[

”a” ,
” lname”

]
]

} ,
”Where” : {

” cond i t i on s ” : [ ]
}

} ,
” output” : ”A t o t a l o f 2 t ab l e s were used in t h i s query .\n\nFrom the tab l e ’ books ’ , the

f o l l ow ing column was returned in the r e s u l t s e t : book .\nFrom the tab l e ’ authors ’ , the
f o l l ow ing columns were returned in the r e s u l t s e t : fname , lname .\n\nThe tab l e ’ authors ’
was j o ined with ’ books ’ where ’ id ’ from both t ab l e s are equal .\n\nThe number o f returned
r e s u l t s was unl imited . ”

}

Figure 4.5: Sample API result for the query “SELECT b.book, a.fname, a.lname FROM books b
INNER JOIN authors a ON a.id = b.id” using the paraphrased English output.
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Figure 4.5 shows a sample result body in JSON format for the API endpoint3 in QPE

responsible for parsing the given input. The API will always return two objects: the sim-

plified dictionary (“dict”) containing the extracted, relevant details from the parse tree, and

the chosen response (“output”), be it the parse tree itself or the paraphrased English results.

The “dict” object in the API response body displays the intermediary information nec-

essary for QPE to complete its task. This object is produced from traversing the extracted

parse tree of the SQL query and provides a much simpler structure to be further exam-

ined in the next step of the process. It is a collection of the values associated with various

SQL clauses and demonstrates the approach of QPE to map data from the SQL query in a

logically-sound manner.

In the example “output” object given in Figure 4.5, the newline character “\n” can be

seen in several instances. This is purely for formatting purposes when the result is displayed

on the front-end of the web application.

3https://qpe.onrender.com/parse
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4.2 QPE Structure

The primary purpose of QPE is to extract meaningful data from presented SQL statements

and return this data to the user. The output returned is either the JSON-formatted parse

tree or the natural language paraphrases and is determined by the user at the time the

request is made.

When the user requests the JSON-formatted parse tree, the output generated by the

QPE is sourced directly from the pglast library, specifically from the parse sql json method4.

Because a form of the parse tree may be of some use to more technical users, the option to

return this data was retained in the application.

When the user requests the English paraphrased results, the output is similar to the

example seen in Figure 4.3. The process by which the paraphrased sentences are generated

can be observed in Algorithms 4.1 and 4.2.

Using the parsed collection of clause dictionaries returned from Algorithm 4.1, the user

interface renders the graph as demonstrated in Figure 4.4 and is designed to visualize the

relational algebra comprising the query. Because the graph uses this collection of clause

dictionaries, on each request the graph dynamically updates to reflect the structure of the

new query according to three levels (from bottom to top): the relations involved, the joining

conditions, and the projected columns.

4Documentation for this method located at https://pglast.readthedocs.io/en/v4/parser.html#

pglast.parser.parse_sql_json
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Algorithm 4.1 Process of extracting data from the parse tree

1: function ExtractClauseData(PT ) . Input: JSON Parse Tree
2: For all clauses (SELECT, FROM, WHERE, etc.) generate a dictionary
3: for each clause in PT do
4: Filter out unnecessary values (e.g. location, persistence, etc.)
5: Extract appropriate data points . Will vary by clause
6: Assign value to appropriate clause dictionary
7: end for
8: Combine all clause dictionaries into a containing object
9: return The containing object of dictionaries (Collection of Clauses)

10: end function

Algorithm 4.2 Process of ascribing meaningful paraphrases to parsed data

1: function phraseGenerator(Collection of Clauses)
2: Identify all relations (tables) present
3: Identify all columns or values used
4: for each clauseDict in Collection of Clauses do
5: Identify relations referenced and conditions applied
6: Use a preset phrase for the appropriate type and incorporate data
7: Append new paraphrase to an output string
8: end for
9: return The completed output string

10: end function
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Chapter 5

Discussion

5.1 Outcome

QPE successfully addresses the problem identified in chapter 3.2: it provides a repeatable

and accurate translation of SQL statements and serves as a proof-of-concept for the feasibility

of solving the SQL-to-NL problem. The application is robust in handling complex queries,

lightweight in resource management, and capitalizes on existing libraries to expose the parse

tree of a SQL statement and visualize its significance in an easy-to-understand manner.

Additionally, the system is extensible and can be improved over time by contributions from

a global community.

A noteworthy feature unique to QPE in the studies conducted on the conversion between

SQL and natural language is that this system does not utilize machine learning or natural

language processing to develop its results. The functionality of QPE is established through an

algorithmic approach to parsing meaning from the parse tree of SQL statements. Because

of this, no training is required for extracting meaning. Because the parse tree is utilized

the results are more specified than an approach using regex filtering on the original SQL

statement might produce.



5.2 Limitations

Certain limitations are present at the time of writing with QPE that should be identified. It

is currently possible to reliably parse and extract meaning from SQL queries containing SE-

LECT, FROM, WHERE, GROUP BY, HAVING, and LIMIT clauses, however no method

exists presently for extracting meaning from data definition language (DDL) statements.

Additionally, there exists a limitation on queries using UNION or similar qualifiers. Devel-

opment is ongoing and the system serves as a proof of concept for solving the SQL-to-NL

problem. One additional complexity introduced is the requirement of aliases for the extrac-

tion of English paraphrases to be computed correctly. Due to the fact that this application

is not linked to any existing database and does not store queries entered by the user, it has

no method by which to determine which columns specified in the SELECT clause relate to

a given table in the FROM clause.

SELECT author, name, publisher

FROM authors

INNER JOIN books

ON books.id = author.id

The system is unable to reliably determine on its own which columns belong to each

table. Therefore, an alias requirement exists in order to correctly represent the parse tree

using both the English paraphrase generation as well as the graphical representation of the

query. A possible solution to this particular issue would be to join this application with an

existing database, allowing table schema to be verified during query analysis. However, this

is outside the scope of this current research and has not been attempted presently. Despite

these limitations, it is noteworthy that such a solution to the SQL-to-NL problem has not

been previously identified in literature with an open-source solution akin to QPE.

Similar shortcomings exist in solutions designed for the opposite problem of NL-to-SQL.

It is common that a system designed to translate a natural language command into SQL

would require some details regarding the database schema, such as table and column names.
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This is in part due to the ambiguity that exists when an end user requests to generate SQL

without knowing the exact table or column names, as the system has no method by which

to deduce this on its own. Therefore, in both SQL-to-NL and NL-to-SQL problems, certain

requirements are necessary for setting up the solution to ensure an accurate output.

Testing the results of QPE proved to be a challenge. Due to the limited existing research

into NL-to-SQL and the even more limited available software or code designed to solve

this problem, comparing QPE to similar applications proved to be outside the scope of

this research. Attempts were made to demonstrate the readability and accuracy of the

natural language paraphrases generated by QPE by using this output as input into a system

designed to convert natural language to SQL. The possible usefulness of such validation

would demonstrate that the paraphrased output of QPE could then be used to recreate the

original SQL accurately, thus indicating a retention of the query’s purpose. Due in part to a

similar issue with limited available code but also with certain available solutions found online

requiring paid subscriptions, this validation was unable to be carried out. It is expected by

virtue of the algebraic approach to generating the paraphrased values that such validation

would prove QPE’s ability to parse and retain meaningful data about the presented SQL

statements.
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Chapter 6

Conclusion

This research has demonstrated a new approach to the topic of deconstructing SQL state-

ments into natural language paraphrases by taking advantage of readily available open-source

libraries and contributing a novel application named QPE. A significant contribution of this

paper is in providing a foundational, open-source system to parse meaning out of SQL state-

ments for the educational benefit of any potential users.

Due to the nature of most solutions to the SQL-to-NL problem either involving closed-

source or otherwise publicly unavailable code, QPE offers future extensibility to any inter-

ested individuals or organizations seeking to contribute to solving this problem.



6.1 Future Work

Additional work is planned for completing QPE and extending its current functionality to

provide support for parsing of more sophisticated SQL queries. Future work in this topic may

involve approaching the SQL-to-NL problem from different algorithmic perspectives, perhaps

by utilizing the abstract syntax tree of a SQL statement in a different way, or by devising

another reproducible and reliable method of extracting meaning from the SQL statements.

As discussed in chapter 2, related studies have identified the benefit of integrating another

layer to database access which can assist with the translation of natural language to SQL

statements with higher degrees of accuracy. A possible future topic of study could involve

a similar investigation in developing a SQL-to-NL solution that can learn from successful

queries about the selected database and generate a model of potentially similar domains

or data that could be related for providing a more holistic understanding of the database’s

domain, or of suggestions for future architectural optimizations that could be considered.

Such a solution could enhance existing data or SQL scripts to provide extensibility and

validation. One additional application that could be explored in future studies is the poten-

tial for increased analytic insights into frequently queried topics or groupings in a database

given the converted meanings of SQL statements. By having another tool for examining

how their databases are accessed, database administrators could consider restructuring ta-

bles or views for better querying performance, or to help group related data points into more

closely-related entities.

Of particular interest for potential future work on the SQL-to-NL problem involves the

recent captivating advances in natural language processing through GPT-4 [21], particularly

with ChatGPT1. The technology has demonstrated enormous capabilities in providing mean-

ingful, fluent output that coherently conveys information. Despite the astonishing results

produced by the seemingly exponential growth in ability of large language models, its lim-

itations are important to consider, specifically regarding the hallucinations that generative

1https://chat.openai.com
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artificial intelligence is prone to experiencing [14] [16]. One possibility for future directions

of the research presented in this thesis includes collaboration with GPT models to provide

a grounding in truth. The output from QPE is currently rudimentary but does have logical

ties to the parsed SQL queries which lends to its credibility–this could be a benefit to large

language models, which often struggle with maintaining a foundation in truth. Extrapolat-

ing data from the parse tree could be used in conjunction with a natural language processing

approach to extracting meaning from queries to improve accurate output from such models.

Additional research into SQL-to-NL solutions and use cases will likely continue the dis-

cussion on the overall relationship between programming languages and natural languages.

It is hoped that this research will lead to a more welcoming experience for non-technical users

of software as their professional positions become ever more closely linked with technology.
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