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ABSTRACT 

Wetlands provide valuable ecosystem functions including nutrient recycling, carbon storage, flood 

mitigation, and habitat in support of biodiversity. However, land use change and climate change 

continue to threaten wetland ecosystems. Climate change is predicted to increase rates of sea-level 

rise and increase frequency of storm surges. Therefore, we need to better understand how saltwater 

intrusion and flooding influence coastal wetlands. In a previous experiment, a soil mesocosm 

approach was used to examine how hydrology (wet, dry, interim) and plant presence (with or 

without plants) influenced wetland soils sampled from varying hydrologic histories (wet, dry, 

interim) in a restored, coastal wetland. After eight weeks of hydrologic manipulation, 16S rRNA 

amplicon sequencing and shotgun metagenomic sequencing were performed to characterize the 

microbial communities and greenhouse gas concentrations were measured to assess microbial 

function. Soil redox potential and soil physicochemical properties were also measured. Previous 

results showed that plant presence decreased greenhouse gas concentrations even in flooded 

conditions, and hydrology (history and contemporary treatment) altered wetland soil microbial 

community structure and the composition of carbohydrate metabolic genes. Genes involved in 



 

methanogenesis, and aerobic respiration, also differed in composition across hydrologic histories. 

In this study, we address the questions (1) how do hydrologic and plant related redox shifts relate 

to the composition of metabolic genes involved in sulfur/iron cycling and (2) how do patterns of 

iron-sulfur metabolic composition relate to carbon and nitrogen metabolic composition and 

greenhouse gas production? We hypothesize that the most reducing conditions (i.e., prolonged 

flooded, no plants) modify anaerobic metabolisms in similar ways. We predict that (i) in oxidizing 

conditions (dry and/or plant presence), functional gene composition of sulfate reduction will not 

correlate to the gene composition of iron reduction, and (ii) in reducing conditions (i.e., wet and/or 

plant absence), functional gene composition of sulfate reduction will correlate to patterns in iron 

reduction metabolic genes. In addition, iron and sulfur metabolic gene composition will contribute 

to carbon dioxide production while competing with methanogenesis. Results revealed that 

hydrologic treatment impacted assimilatory sulfate reduction gene composition, while hydrologic 

history impacted dissimilatory sulfate reduction composition. Hydrologic history significantly 

affected total iron active gene composition and iron reduction gene composition. We also 

identified correlations between sulfate reduction and iron reduction, and sulfate reduction and iron 

reduction compositions explained variation in carbon dioxide and methane. These results 

demonstrate the role of historical hydrology, saltwater exposure, and soil iron in shaping microbial 

community responses to future changes in hydrology and plant cover. Salinization events and 

changing precipitation patterns impact soil redox dynamics by altering sulfate and oxygen 

availability, and challenge estimates of biogenic greenhouse gas emissions. Therefore, a better 

understanding of microbial community responses to hydrologic manipulations, plant 

presence/absence, and soil physicochemistry will inform wetland greenhouse gas emissions 

predictions and management strategies (e.g., plant presence and hydrologic flows).  
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INTRODUCTION  

In coastal wetlands, saltwater inundation may impose flooded conditions and the influx of 

terminal electron acceptors (TEAs) such as sulfate (SO4
2-) (Herbert et al., 2015; Hopfensperger et 

al., 2014). Flooding alters the terminal electron acceptor pool, by decreasing soil oxygen levels 

(Kozlowski, 1984), and saltwater intrusion from marine sources introduces sulfate to the 

ecosystem (Ardón et al., 2013; Herbert et al., 2015; Schoepfer et al., 2014). The combined impacts 

of flooding and SO4
2- addition on wetland ecosystem function are poorly understood, in part 

because varying environmental characteristics, especially soil iron, could buffer the effects of 

SO4
2- intrusion (Schoepfer et al., 2014). With climate change predicted to increase rates of sea-

level rise and increase frequency of storm surges from more intense tropical storms, we need to 

better understand how the combined saltwater intrusion and flooding environmental stressors 

influence coastal wetlands (Pörtner et al., 2022). 

To harvest energy through respiration, microorganisms oxidize organic or inorganic 

substances, and transfer the electrons through electron transport chains, to ultimately reduce a TEA 

(Burgin et al., 2011). Oxygen (O2) is used as a TEA in aerobic respiration (reviewed in Glass et 

al., 2022). In the absence of O2, a variety of other TEAs may be used in anaerobic respiration, 

including nitrate (NO3
-), ferric iron (Fe(III)), SO4

2-, and carbon dioxide (CO2) (Wang et al., 2017). 

In common with these respiratory (i.e., dissimilatory) processes, assimilatory processes also 

involve oxidation-reduction (redox) reactions (Burgin et al., 2011). The availability of specific 

reductants (e.g., organic matter), and specific oxidants (e.g., TEAs like O2) modulate both 

dissimilatory and assimilatory processes (Burgin et al., 2011). The overall propensity of a soil 

environment to reduce or oxidize is called soil redox potential and integrates relative levels of 

reductants and oxidants within the soil (Burgin et al., 2011). In this study, we also refer to the 

overall oxidation-reduction propensity of the environment as “redox status”.  
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Soil redox potential influences microbial community structure and function (DeAngelis et 

al., 2010; Peralta et al., 2014). As soil microbes are major drivers of biogeochemical cycles, soil 

redox potential affects microbial metabolic capacity, ultimately influencing transformations of 

carbon (C), nitrogen (N), sulfur (S), and iron (Fe) at the ecosystem level (Crowther et al., 2019; 

Falkowski et al., 2008; Schlesinger et al., 2011; Wang et al., 2017). While the prediction of 

microbial metabolic diversity is inferred by taxonomic approaches, characterizing microbial 

metabolic diversity by examining genetic potential (e.g., shotgun metagenomics) provides a more 

direct evaluation of functional potential (Quince et al., 2017; Toole et al., 2021). To further 

improve prediction of microbial functions, it is critical to understand how changing environmental 

conditions directly affect soil redox conditions. 

Dynamic wetland hydrologic conditions modify soil redox status (Peralta et al., 2014). 

Flooding of soils fills pore space, thereby restricting access to atmospheric O2 (Pezeshki and 

DeLaune, 2012). This creates suboxic/anoxic conditions, requiring alternative TEAs to be used in 

anaerobic respiration (Patrick Jr. and Jugsujinda, 1992; RoyChowdhury et al., 2018). Based on the 

hydrologic regime of a wetland, soils therein may experience fluctuating wet/dry conditions, as 

well as prolonged inundation or dry down (DeAngelis et al., 2010; Peralta et al., 2014; 

RoyChowdhury et al., 2018). 

In addition to dynamic hydrology, human activities modify biogeochemical cycles. For 

example, watersheds accumulate N via human activities, and this N may be loaded in coastal 

wetlands via hydrologic flows and atmospheric deposition (Chilton et al., 2021; Conley et al., 

2009). The incoming N may be in the form of NO3
-
 or converted to NO3

- by internal microbial 

processing (e.g., nitrification, NH4
+ → NO3

-) (Kuypers et al., 2018). Since NO3
- is an efficient 

TEA, it is used in facultative anaerobic respiration, which is a common metabolism observed in 
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fluctuating oxic/anoxic conditions (Wallenstein et al., 2006). In addition, saltwater intrusion events 

can increase soil and porewater SO4
2- concentrations (Herbert et al., 2018). Then, SO4

2--reducing 

microorganisms (SRM) produce sulfide which binds with reduced Fe to form FeS (Schoepfer et 

al., 2014). This buffering of seawater SO4
2- is therefore dependent on the activity of SRM and Fe 

reducing microorganisms (FeRM), as well as the existing soil Fe concentrations (Schoepfer et al., 

2014).  

While human activities influence biogeochemical cycles, cross-kingdom interactions 

between plants and microorganisms also have important consequences for soil redox activity. 

Plants alter soil redox potential by delivering O2 to the rhizosphere, and transporting CO2 and 

methane (CH4) from the rhizosphere to the atmosphere (Colmer, 2003). Plant root O2 release can 

buffer the effects of flooding on soil aeration (Cook and Knight, 2003; Koop-Jakobsen and 

Wenzhöfer, 2015; Kozlowski, 1984). While hydrologic status can be variable over time, plants 

impose a more constant influence on soil redox conditions (Koop-Jakobsen and Wenzhöfer, 2015). 

The biogeochemical cycles of C, N, Fe, and S are not isolated, but instead, closely linked. 

For example, NO3
- reduction can be coupled to sulfide oxidation (Burgin and Hamilton, 2008). 

The oxidation of organic C is coupled to reductions of NO3
-, Fe(III), and SO4

2- (Burgin et al., 

2011). The microbial N cycle forms an interconnected network, with many reactions dependent 

on availability of C, Fe, and S (Kuypers et al., 2018). Therefore, to understand the cycling of any 

one element, it is essential to consider the relevant coupled cycles and environmental controls on 

the nutrient cycling network. 

Past work on saltwater intrusion and iron-sulfur buffering was conducted at the Timberlake 

Observatory for Wetland Restoration (TOWeR) (Schoepfer et al., 2014). The TOWeR site is prone 

to seasonal saltwater intrusion, which introduces SO4
2- to Fe-rich soils (Ardón et al., 2013; Lamers 
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et al., 2013; Schoepfer et al., 2014). Both the SO4
2- and Fe can be microbially reduced to sulfide 

and ferrous iron (Fe(II)), respectively (Lamers et al., 2013; Schoepfer et al., 2014; Weber et al., 

2006). The sulfide may be toxic to salinity-naïve ecosystems, but can readily bind Fe(II) to create 

FeS, which is non-toxic and relatively non-bioavailable (Lamers et al., 2013; Schoepfer et al., 

2014). Schoepfer and colleagues (2014) found that the pool of reduced Fe in TOWeR soils is 

sufficient to sequester sulfide from seasonal saltwater incursion into FeS, but as sea-level rise 

accelerates soil sulfidization, toxic sulfide levels may accumulate in the future. 

The extent to which future sulfidization (due to saltwater incursion) will modify wetland 

microbial community structure and function is unknown. Specifically, it is unclear how wetland 

microbes that participate in S cycling might respond to flooding/drought, and changes in plant 

cover. This study addressed the questions (1) how do soil Fe and S concentrations interact with 

altered redox states (hydrology and plants) and microbial community composition of SO4
2- 

reduction genes? and (2) how do these Fe-S metabolic dynamics relate to greenhouse gas (GHG) 

emissions, mediated by carbon/nitrogen metabolism? We hypothesize that the most reducing 

conditions (i.e., prolonged flooded, no plants) modify anaerobic metabolisms in similar ways and 

predict that (i) in oxidizing conditions (dry and/or plant presence) SO4
2- reduction and Fe reduction 

will not be linked/coupled. Coupled here means a significant correlation between Bray-Curtis 

distance matrices of SO4
2- reduction and Fe reduction, as determined by Mantel Test. We also 

predict that (ii) in reducing conditions (wet and/or plant absence) coupling between SO4
2- reduction 

and Fe reduction will be observed, and these processes will contribute to CO2 production (fit with 

CO2 concentrations using envfit) while competing with methanogenesis (observed as negative 

relationship with methanogenic functional genes and CH4 concentrations).



  

 

METHODS 

Sampling and Mesocosm Experimental Design 

On April 1, 2016, soil samples were collected from the Timberlake Observatory for 

Wetland Restoration (TOWeR) located in the Albemarle Peninsula in Tyrell County, North 

Carolina, USA (35°54’22” N, 76°09’25” W). The site is connected to the Albemarle Sound via the 

Little Alligator River, with potential for saltwater incursion. Across the sampling area, the position 

of the water table creates a hydrologic gradient, with sites categorized as dry (upland), wet 

(saturated), and interim (transition dry/wet) (Hopfensperger et al., 2014).  

Soil blocks collected from the three sites within TOWeR (dry, wet, interim) were used to 

set up a mesocosm experiment. Soil history was determined by water table levels at the time of 

collection (dry = 20 cm, interim = 10 cm, and wet = 0 cm below surface level). Six intact soil 

blocks (25 cm x 25 cm x 20 cm) from each of the three hydrologic histories were contained in dark 

plastic containers of the same dimensions. Each block was then divided in half by a root screen 

(20 µm stainless steel mesh), and plants were allowed to grow on one side of the screen and 

removed (above- and belowground) on the other side of the screen to create “plant” and “no plant” 

treatments. Polyvinyl chloride (PVC) collars were installed in each mesocosm as a base for GHG 

sampling. 

Hydrologic treatments were started two weeks after beginning plant treatments and 

installing PVC collars. To manipulate hydrology within the mesocosm, vinyl tubing was inserted 

3 cm from the bottom of the mesocosm container on each side and connected to a 1 L water bottle. 

Water levels inside the mesocosm were maintained by filling the 1 L bottle to the desired height 

using rainwater collected from a cistern. Mesocosms exposed to wet conditions were flooded and 

maintained at maximum container height (18 cm). Mesocosms exposed to dry conditions were 
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maintained at a 5 cm water level. Interim hydrologic treatment fluctuated between flooded and dry 

conditions every two weeks, starting with a wet treatment, and ending with a dry treatment. 

Experimental treatment lasted eight weeks, with 36 mesocosms evenly representing three levels 

of hydrologic history (dry, wet, interim), two levels of plant treatment (plant, no plant), and three 

levels of hydrologic treatment (dry, wet, interim) in a factorial experimental design.  

Measuring Greenhouse Gases 

In situ GHG measurements began two weeks after hydrologic treatments were established, 

then measured every two weeks for a total of five sampling events. GHG concentrations were 

analyzed using a Shimazdu gas chromatograph (GC-2014) fitted with an electron capture detector 

to detect nitrous oxide (N2O) and flame ionization detector with methanizer to measure CH4 and 

CO2. Concentrations of GHGs after 30 minutes of collection (with chambers attached) were used 

in analyses. 

Amplicon and Shotgun Metagenomic Sequencing 

Based on amplicon sequencing, we identified a subset of samples representing the most 

distinct microbial communities for shotgun metagenomic sequencing. Briefly, we chose a set of 

baseline (before hydrologic/plant treatment) and post-flooding/drying treatment samples. We 

sourced mesocosm baseline conditions from relatively drier field locations (water level at about -

20 cm, n = 4) and relatively wetter plots (water level at about 0 cm, n = 4). At the end of the 8-

week experiment, we selected a subset of samples from the hydrologic treatments (prolonged 

drying or wetting only) and plant treatments (presence or absence of vegetation) (n = 16). After 

genomic DNA extraction using the Qiagen DNeasy PowerMax soil kit, samples were sent to the 

U.S. Department of Energy (DOE) Joint Genome Institute (JGI) for sequencing and analysis 

(GOLD study ID Gs0142547 and NCBI BioProject accession number PRJNA641216). Bin 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA641216
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methods in the IMG pipeline (MetaBAT version 2.12.1, CheckM v1.0.12, GTDB database release 

86, GTDB-tk version v0.2.2) were used to curate 14 medium- to high-quality bins from the 

metagenomes. Medium-quality bins have at least 50% completion, and less than 10% 

contamination. High quality bins have greater than 90% completion, less than 5% contamination, 

the presence of 23S, 16S, and 5S rRNA genes, and at least 18 tRNA genes (Bowers et al., 2017). 

Description of sample processing and metagenomic sequencing can be found in Peralta et al. 2020 

(Peralta et al., 2020). 

From the metagenomes, we curated functional gene sets using IMG/M’s integrated Kyoto 

Encyclopedia of Genes and Genomes (KEGG) module list (Chen et al., 2017). For statistical 

analyses, we focused on the following four functional gene sets associated with biogenic GHG 

concentrations of N2O, CH4, and CO2: (1) Denitrification (KEGG Module M00529), (2) 

Methanogen (M00617), (3) Central Carbohydrate Metabolism (M00001-M00011, M00307-

M00309, M00580, and M00633), and (4) Prokaryotic Cytochrome C Oxidase (CcO) (M00155). 

For S cycling, we analyzed the following KEGG modules: Assimilatory Sulfate Reduction 

(M00176), Dissimilatory Sulfate Reduction (M00596), Thiosulfate Oxidation by SOX Complex 

(M00595), and Sulfate-Sulfur Assimilation (M00616). We also analyzed KEGG module M00530: 

Dissimilatory Nitrate Reduction to Ammonia (DNRA).  

The IMG/M, and publicly available databases in general, have limited options for Fe gene 

analysis. From IMG/M’s integrated TIGRFAM tool, we analyzed two genes putatively involved 

in Fe reduction: decaheme c-type cytochrome, OmcA/MtrC family (TIGR03507) and decaheme-

associated outer membrane protein, MtrB/PioB family (TIGR03509). These two genes were 

analyzed together as one “module”, analogous to collections of KEGG Orthologs (KOs) within 

each KEGG Module. 



 8 

For further Fe gene analysis, we analyzed all metagenomes using FeGenie, a hidden 

Markov model (HMM) tool designed for the identification of Fe genes and Fe gene neighborhoods 

(Garber et al., 2020). Complete nucleotide assemblies (FNA files) for each metagenome were 

downloaded from IMG/MER, then searched using FeGenie’s custom HMM scripts. Bitscores 

greater than the bitscore cuttoff were counted as positive “hits” for a given Fe gene. Counts of 

gene hits were totaled within each of FeGenie’s gene categories:  

1. iron acquisition:  

a. iron transport 

b. heme transport 

c. heme oxygenase 

d. siderophore synthesis 

e. siderophore transport 

f. siderophore transport potential 

2. iron gene regulation 

3. iron oxidation 

4. possible iron oxidation and possible iron reduction 

5. probable iron reduction 

6. iron reduction 

7. iron storage 

8. magnetosome formation 

 Counts within each FeGenie category were then converted to relative abundance (relative 

to total Fe gene counts as determined by FeGenie), and relative abundance matrices were then 

converted to Bray-Curtis distance matrices. Functional gene counts within each respective KEGG 
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Module and TIGRfam “module”, followed a similar process: conversion of counts to relative 

abundance (relative to module total counts), and conversion of relative abundance matrices to 

Bray-Curtis matrices. 

Measuring Integrated Soil Redox Status 

We measured soil redox status at the beginning and end of the hydrologic experiment using 

Indicator of Reduction in Soils (IRIS) tubes (InMass Technologies; Jenkinson and Franzmeier, 

2006) (Fig. S1A). The IRIS tubes are constructed from 1/2” schedule 40 PVC pipe coated in iron 

oxide (Fe(III)) paint (Rabenhorst, 2008). When exposed to oxidative conditions, Fe(III) is visible 

as an orange-red paint; but when exposed to anoxic conditions, Fe(III) is reduced to Fe(II) which 

dissolves in solution and appears as a clearing (white) on the tube (Jenkinson and Franzmeier, 

2006; Rabenhorst, 2008). At the beginning of the experiment, two IRIS tubes (12 cm depth) were 

installed in each mesocosm: one on the plant side and one on the bare soil side. The IRIS tubes 

were incubated in mesocosm conditions for two weeks before removal and analysis. After we 

removed the IRIS tube, a non-coated PVC pipe was used to fill the hole. Two weeks prior to the 

end of the experiment, the non-coated PVC pipe was removed and replaced with a new IRIS tube 

to measure soil redox status at the end of the experiment.  

To measure redox status integrated over two weeks, we quantified the surface area of 

Fe(III) paint removed from IRIS tubes using ImageJ software (v1.48, (Schneider et al., 2012)). 

First, we imaged the entire tube by taking four pictures and then stitched the photo into a composite 

using GIMP2 (v2.8.14, https://gimp.org/) photo editing software. Next, we identified areas of 

artificial paint removal, that is scratches from installing or removing tubes, and manually filled 

these pixels. Then, using ImageJ software (v1.48, (Schneider et al., 2012)), we converted all 

colored pixels to black. We compared the number of white pixels to total pixels to determine the 
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percent of paint removed. Interpretation of redox status is based on the percent paint removed from 

a 10 cm section of tubing and summarized as follows: 0% not reducing, 1-5% probably not 

reducing, 5-10% possibly reducing, 10-25% and >25% definitely reducing (Rabenhorst, 2008). 

Measuring Soil Factors 

Soil proprieties were determined from soils collected during the destructive sampling of 

mesocosms at the end of the experiment. A sample of air-dried soil from each mesocosm was sent 

to Waters Agricultural Laboratories, Inc. (Warsaw, NC) and analyzed for pH, phosphorus, 

potassium, magnesium, sulfur, manganese, iron, and humic matter, using standard Mehlich III 

methods (Mehlich, 1984). 

Statistical Analyses 

All statistical analyses were performed in the R statistical environment (RStudio 

2023.03.1+446, Rv4.3.0) (R Core Team, 2023). We examined beta diversity by visualizing 

bacterial community responses to hydrologic history (field conditions), hydrologic treatment 

(contemporary dry/wet treatments), and plant presence/absence using principal coordinates 

analysis (PCoA) of bacterial community composition based on Bray-Curtis dissimilarity. We also 

used PCoA to visualize beta diversity of functional gene categories, separating points by 

hydrologic history, hydrologic treatment, plant presence/absence, and baseline (sampled before 

beginning hydrologic and plant treatments). We used permutational multivariate analysis of 

variance (PERMANOVA) to determine differences between bacterial communities among 

hydrologic history, hydrologic treatment, and plant presence. Hypothesis testing using 

PERMANOVA was performed using the vegan::adonis function (Oksanen et al., 2022). Finally, 

soil parameters and GHG concentrations were compared against bacterial community and 

functional patterns (based on Bray-Curtis dissimilarity) using the vegan::envfit function (Oksanen 
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et al., 2022). Soil parameters with P < 0.05 were represented on the PCoA plot of 16S rRNA 

community composition as vectors scaled by their correlation to microbial community patterns. 

The GHG concentrations and soil parameters with envfit P < 0.05 were plotted as vectors, scaled 

by their correlation, on PCoA plots of functional gene composition. Distance-based partial least 

squares regression (DBPLSR) was used to measure relationships between Bray-Curtis distance 

matrices and GHG concentrations.  

We conducted a series of Mantel tests to measure correlations between Bray-Curtis 

distance matrices. We assessed the potential for NO3
--driven SO4

2- production by testing the 

distance matrix correlations between the composition of NO3
- reduction pathways (denitrification 

and DNRA) and the composition of thiosulfate oxidation by the SOX complex. We conducted a 

Mantel test for each respective NO3
- reduction pathway (denitrification and DNRA) correlated to 

thiosulfate oxidation by the SOX complex. We ran a series of Mantel tests for pairs of SO4
2- 

reduction and Fe reduction distance matrices: Fe reduction ~ SO4
2- reduction (assimilatory and 

dissimilatory), Fe reduction ~ assimilatory SO4
2- reduction, and Fe reduction ~ dissimilatory SO4

2- 

reduction. To investigate correlations between SO4
2- and Fe reduction under different hydrological 

conditions, the SO4
2 reduction (assimilatory and dissimilatory) and Fe reduction modules were 

subset by hydrologic history (wet or dry) and hydrologic treatment (wet or dry). We evaluated the 

strength of Mantel r correlations between pairs of SO4
2- reduction and Fe reduction distance 

matrices within each hydrologic condition (e.g., wet hydrologic history) and used a statistical 

cutoff of P < 0.05.  

Data Availability  
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All code and data used in this study are in a public GitHub repository 

(https://github.com/colfin/WetlandMesocosm_GHG_Timberlake), and metagenome sequence 

files can be found at NCBI SRA BioProject ID PRJNA641216.

https://github.com/colfin/WetlandMesocosm_GHG_Timberlake
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA641216


  

  

RESULTS 

Using an experimental wetland mesocosm approach, we tested the following hypotheses: 

(i) in oxidizing conditions (dry and/or plant presence) SO4
2- reduction and Fe reduction will not be 

linked/coupled, where coupled means a significant correlation between Bray-Curtis distance 

matrices of SO4
2- reduction and Fe reduction; and (ii) in reducing conditions (wet and/or plant 

absence) coupling between SO4
2- reduction and Fe reduction will be observed, and these processes 

will contribute to CO2 production (fit with CO2 concentrations using envfit) while competing with 

methanogenesis (observed as negative relationship with methanogenic functional genes and CH4 

concentrations). 

Sulfur Functional Genes 

We measured how hydrology and plant presence influenced metabolic composition of 

sulfur cycling genes. Hydrologic treatment strongly influenced the composition of SO4
2--S 

assimilation (PERMANOVA, F1, 23 = 3.917, R2 = 0.144, P = 0.008; Table S5) and assimilatory 

SO4
2- reduction functional genes (PERMANOVA, F1, 23 = 4.111, R2 = 0.156, P = 0.013; Table S5). 

The response of SO4
2--S assimilation (envfit, R2 = 0.285, P = 0.032, Figure 5B) and assimilatory 

SO4
2- reduction gene composition correlated to redox status measured as the percent paint removed 

from IRIS tubes (envfit, R2 = 0.301, P = 0.027, Figure 5A). Hydrologic history strongly influenced 

the compositions of dissimilatory SO4
2- reduction (PERMANOVA, F1, 23 = 10.397, R2 = 0.316, P 

= 0.001; Table S5) and thiosulfate oxidation by the SOX complex (PERMANOVA, F1, 23 = 6.547, 

R2 = 0.243, P = 0.009; Table S5). The combination of assimilatory and dissimilatory SO4
2- 

reduction differed in composition according to hydrologic history and treatment (PERMANOVA, 

history: F1, 23 = 2.830, R2 = 0.108, P = 0.030, treatment: F1, 23 = 2.906, R2 = 0.111, P = 0.026; Table 

S5). PCoA of SO4
2- reduction (assimilatory and dissimilatory) correlated significantly with percent 
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soil moisture (envfit, R2 = 0.298, P = 0.023; Figure 8C), supporting the importance of hydrology 

in SO4
2- reduction gene composition identified by PERMANOVA (Table S5). 

Nitrate-Driven Sulfate Production 

To evaluate linkages between NO3
- reduction and sulfide oxidation, we measured the extent 

to which metabolic composition of NO3
- reduction pathways (denitrification and DNRA) related 

to thiosulfate oxidation. Results showed that DNRA was significantly correlated to thiosulfate 

oxidation by SOX complex (R = 0.196, P = 0.0499; Table S1), but denitrification was not 

correlated to thiosulfate oxidation by SOX complex (R = 0.117, P = 0.170; Table S1).  

Iron Functional Genes 

The composition of all Fe-active genes, and the composition of Fe reduction genes, were 

used to evaluate the response of Fe cycling communities from different hydrologic histories to 

flooding/drying and plant presence/absence. Hydrologic history influenced the composition of all 

Fe genes identified by FeGenie (PERMANOVA: F1, 23 = 4.173, R2 = 0.185, P = 0.031; Table S5). 

The composition of the subset of Fe reduction genes identified by FeGenie also diverged according 

to history (PERMANOVA: F1, 23 = 3.358, R2 = 0.132, P = 0.004; Table S5), while the composition 

of Fe reduction genes based on TIGRFAMS mtrBC differed by plant presence/absence and 

treatment (PERMANOVA, plant: F2, 23 = 9.967, R2 = 0.335, P = 0.002, treatment: F1, 23 = 19.012, 

R2 = 0.319, P = 0.0002; Table S5). 

Sulfate Reduction and Iron Reduction 

The functional groups  SRM and FeRM produce sulfide and Fe(II) respectively, which can 

then form FeS and sequester toxic sulfide (Schoepfer et al., 2014). Previous work found a 

relationship between SO4
2- reduction and Fe reduction rates in TOWeR soil (Schoepfer et al., 

2014). In this study, we observed a significant correlation between the composition of functional 
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genes associated with Fe reduction and assimilatory SO4
2- reduction (Mantel r = 0.222, P = 0.008; 

Table S1). Similarly, results showed a significant correlation between functional gene composition 

of Fe reduction and dissimilatory SO4
2- reduction (Mantel r = 0.313, P = 0.006; Table S1). 

However, results showed no correlation when assimilatory and dissimilatory SO4
2- reduction were 

combined into a single module and compared to Fe reduction (Mantel r = 0.064, P = 0.249; Table 

S1).  

Then, we assessed correlations between SO4
2- and Fe reduction under different hydrologic 

conditions. In the wet history, dry history, and dry treatment, there were no significant correlations 

between SO4
2- reduction and Fe reduction (Table S2). In the wet treatment, there was a significant 

correlation between functional gene composition of SO4
2- reduction and Fe reduction (Mantel r = 

0.360, P = 0.010; Table S2). 

Results revealed linkages between SO4
2- and Fe reduction modules and carbon losses via 

GHG production. The composition of assimilatory SO4
2- reduction functional genes significantly 

correlated with mg CO2-C m-2 (envfit, R2 = 0.256, P = 0.042; Figure 5B), and percent paint 

removed from IRIS tubes (envfit, R2 = 0.301, P = 0.027; Figure 5B). The mg CO2-C m-2 envfit 

vectors pointed toward samples from dry treatments, and the percent paint removed vector pointed 

in the opposite direction, toward samples from wet treatments (Figure 5B). We further investigated 

the relationship between assimilatory SO4
2- reduction and CO2 concentrations. Based on DBPLSR 

analyses, the variation in assimilatory SO4
2- reduction gene composition explained 82.8% of 

variation in CO2 at start of the experiment (adjusted R2 for Components 1 and 2; Table S3). This 

relationship weakened by end of experiment, with assimilatory SO4
2- reduction gene composition 

only explaining 28.28% of CO2 variation (Components 1 and 2; Table S3). 
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At the end of the 8-week experiment, both dissimilatory SO4
2- reduction and Fe reduction 

significantly correlated with mg CH4-C m-2, identified by PCoA with envfit (Figure 6C, Figure 

8D). Based on DBPLSR, the percent of variation in mg CH4-C m-2 explained by dissimilatory 

SO4
2- reduction doubled from the Week 0 to Week 8 (adjusted R2

Week 0 = 30.60, adjusted R2
Week 8 

= 61.738, based on Components 1 and 2; Table S4). Similarly, the percent of variation in mg CH4-

C m-2 explained by Fe reduction also increased by 2-fold from Week 0 to Week 8 (adjusted R2
Week 

0 = 39.48, adjusted R2
Week 8 = 87.150, based on Components 1 and 2; Table S4). 

Metagenome Bins 

Bin methods in the IMG pipeline resulted in 14 medium- to high-quality metagenome bins 

(Table 2). Except for one bin attributed to an Archaeal lineage (Candidatus Nitrosotalea 

devanaterra), all other bins were identified as bacterial taxa (Table 2). The bins were sourced from 

varying hydrologic histories, hydrologic treatments, and plant presence/absence treatments. Due 

to relatively few resolved microbial taxa, we did not conduct further analyses.  

 



  

  

DISCUSSION 

Soil Fe availability, hydrologic conditions, and plant-microbe interactions mediate the 

impacts of sea-level rise on coastal freshwater wetlands (Ardón et al., 2013; Herbert et al., 2015; 

Schoepfer et al., 2014). In this study, we used an experimental mesocosm approach to examine the 

effects of hydrologic conditions and plant presence/absence on soils sourced from varying 

hydrologic histories (wet and dry). We found that hydrologic history (wet vs dry) influenced the 

composition of genes involved in dissimilatory SO4
2- reduction, thiosulfate oxidation, and Fe 

reduction. The 8-week hydrologic manipulation also modified the community composition of 

assimilatory SO4
2- reduction genes and resulted in correlated SO4

2- reduction and Fe reduction 

gene compositions in the wet hydrologic treatment. The S and Fe gene modules were linked with 

C and N cycling; specifically, DNRA and thiosulfate oxidation gene compositions correlated, and 

SO4
2- reduction and Fe reduction gene compositions explained variation in CO2 and CH4 

concentrations. These results indicate that historical conditions strongly influence the magnitude 

of soil microbial community responses to contemporary changes in hydrologic conditions and 

plant cover.   

Past and Current Hydrologic Changes Influence Sulfur Functional Genes 

The influence of hydrologic conditions, both historical and during the 8-week hydrologic 

treatments, was evident in S-related gene modules. The community-level compositions of SO4
2--

S assimilation and assimilatory SO4
2- reduction genes both differed by hydrologic treatment, while 

the compositions of dissimilatory SO4
2- reduction and thiosulfate oxidation by the SOX complex 

both differed by hydrologic history (Table S5). The composition of SO4
2- reduction functional 

genes (assimilatory and dissimilatory) correlated with the percent soil moisture (Figure 8C). This 

relationship revealed the importance of hydrology in SO4
2- reduction gene composition (Table S5). 
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The influence of hydrologic history on S metabolism at this coastal wetland is potentially 

two-fold: the introduction of SO4
2- via saltwater intrusion, and the reducing conditions found in 

waterlogged soils (in wet history), compared to more oxidizing conditions likely found in drier 

conditions (at a greater elevation above the water table). Ardón and colleagues (2013) found 

evidence of saltwater incursion via surface water at TOWeR. There is potential for drought-

induced saltwater incursion at this site, where the surrounding estuary’s salinity increases during 

drought, and winds or tides transport the brackish water upstream to TOWeR (Ardón et al., 2013). 

Flooding during storm surges is another mechanism by which surface water can facilitate saltwater 

incursion (Klassen and Allen, 2017). Saltwater incursion via either mechanism, drought or storm 

surge, deposits SO4
2- in the soil (Ardón et al., 2013; Schoepfer et al., 2014). This SO4

2- influx could 

persist in the soil and be internally transformed to other S species (sulfite, thiosulfate, sulfide, S0) 

(Ghosh and Dam, 2009; Rückert, 2016; Schoepfer et al., 2014). 

Because the S from saltwater can persist in the soil, changes in soil O2 availability due to 

precipitation or dry down are important for structuring anaerobic and aerobic S metabolisms 

following the saltwater incursion event (Schoepfer et al., 2014). Assimilatory SO4
2- reduction is a 

highly conserved process, used by both aerobic and anaerobic organisms (Rückert, 2016). On the 

other hand, anaerobic microorganisms participate in dissimilatory SO4
2- reduction (Rückert, 2016). 

Both assimilatory and dissimilatory SO4
2- reduction produce hydrogen sulfide (H2S) (Rückert, 

2016). In assimilatory SO4
2- reduction, H2S is produced as an intermediate that is incorporated into 

biomolecules (Rückert, 2016). In contrast, dissimilatory SO4
2- reduction produces H2S as a waste 

product, in larger quantities than assimilatory SO4
2- reduction, and is therefore, a more important 

metabolism to consider during freshwater ecosystem sulfidization events (Hopfensperger et al., 

2014; Rückert, 2016; Schoepfer et al., 2014). 
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While SO4
2- reduction described above consumes SO4

2-, thiosulfate oxidation by the SOX 

complex produces SO4
2- (Ghosh and Dam, 2009; Rückert, 2016). Phototrophs, mixotrophs, and 

heterotrophs participate in thiosulfate oxidation via the SOX complex in a variety of assimilatory 

and dissimilatory and aerobic and anaerobic pathways (Ghosh and Dam, 2009). In the context of 

a microbial community, thiosulfate oxidation (and S oxidation pathways in general) is important 

for regenerating oxidized S species (i.e., SO4
2-) that can again be reduced by sulfate-reducing 

microorganism (Ghosh and Dam, 2009). In the current study, hydrologic history influenced the 

composition of thiosulfate oxidation by SOX complex genes, but it is not clear which historical 

conditions (i.e., wet or dry) differentiated thiosulfate oxidation (Table S4). 

A variety of electron acceptors can be used in the oxidation of thiosulfate (Ghosh and Dam, 

2009). In freshwater wetlands in Michigan, NO3
- reduction contributed to SO4

2- production via 

oxidation of sulfide (Burgin and Hamilton, 2008). Of the two major NO3
- reduction pathways, 

denitrification and DNRA, S-driven denitrification made up a greater fraction of NO3
- removal, 

but S-driven DNRA also contributed significantly to NO3
- removal (Burgin and Hamilton, 2008). 

To test for NO3
--driven SO4

2- production in our mesocosm experiment, we measured correlations 

between the Bray-Curtis distance matrices of denitrification genes and thiosulfate oxidation genes, 

and DNRA genes and thiosulfate oxidation genes. We found that DNRA was significantly 

correlated to thiosulfate oxidation by SOX complex (R = 0.196, P = 0.0499; Table S1), but 

denitrification was not correlated to thiosulfate oxidation by SOX complex (R = 0.117, P = 0.170; 

Table S1). It is difficult to predict the balance of denitrification and DNRA in a given system, but 

some evidence supports the importance of NO3
- loading and the oxidation state of S sources (Jia 

et al., 2020; Koop-Jakobsen and Giblin, 2010; Li et al., 2022). Interestingly, Li and colleagues 

found thiosulfate oxidation to be strongly coupled with denitrification, but not at all coupled with 
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DNRA (2022). It is possible that in the thiosulfate enrichment incubation experiment performed 

by Li and colleagues (2022), denitrifying microorganisms outcompeted DNRA bacteria by rapidly 

consuming added thiosulfate (Li et al., 2022). It is unclear whether these results showed an inability 

of DNRA bacteria to use thiosulfate as an electron donor, or if denitrifiers simply outcompeted 

DNRA bacteria for thiosulfate (Li et al., 2022). Further work is required to understand the 

connections between DNRA and thiosulfate oxidation in TOWeR sediments.  

Hydrologic History Influences Iron Functional Gene Composition 

Hydrologic history modified Fe functional gene composition. Specifically, hydrologic 

history altered the composition all Fe genes identified by FeGenie and the subset of Fe reduction 

genes identified by FeGenie (Table S5). Transformations of Fe vary based on the environmental 

redox status and pH of the environment (Weber et al., 2006). It follows that dry or wet, and oxic 

or anoxic historical conditions would structure different Fe cycling communities. In anoxic 

environments (with pH > 4), microbial Fe(III) reduction is a major electron sink for organic matter 

oxidation (Canfield et al., 1993; Weber et al., 2006). Therefore, greater genetic potential for Fe 

reduction may exist in historically wet soils with presumably lower O2 availability. But this 

inference is complicated by the ongoing microbial transformations of N alongside aerobic and 

anaerobic oxidations and reductions of Fe (reviewed in Weber et al., 2006). Our analysis of the 

composition of all Fe genes identified by FeGenie highlights the impact of hydrologic history on 

Fe cycling, and Fe reduction specifically. 

FeGenie was developed in response to a lack of Fe annotation tools (Garber et al., 2020). 

Prior to FeGenie, one of the few options for identifying Fe reduction genes was TIGRFAMS mtrB 

(TIGR03509) and mtrC (TIGR03507) (Garber et al., 2020). We also used the composition of 

TIGR03509 and TIGR03507 to analyze Fe reduction composition and found the composition to 
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differ by plant (presence/absence) and hydrologic treatment (Table S5). TIGR03509 and 

TIGR03507 are included in FeGenie, but FeGenie and IMG’s TIGRFAM annotation pipeline 

resulted in different counts of mtrB and mtrC. These different results from different annotation 

tools highlight the current uncertainties in Fe gene annotation and point towards a need for 

increased consensus in Fe gene annotation. 

Sulfate Reduction and Iron Reduction Correlate in Reducing Conditions and Influence 

Greenhouse Gas Concentrations 

We hypothesized that SO4
2- reduction and Fe reduction would be coupled (meaning 

significantly correlated) in reducing (i.e., flooded) conditions. We found that the functional gene 

composition of SO4
2- reduction and Fe reduction genes were significantly correlated in the wet 

treatment, but not in the wet history, or either of dry hydrologic treatment or history (Table S2). 

This indicates that the functional gene composition of both metabolisms responded similarly and 

strongly to eight weeks of flooding. Both SO4
2- reduction and Fe reduction are metabolisms 

commonly found in anoxic sediments (Flynn et al., 2021). The wet treatment appears to have 

imposed suboxic/anoxic conditions, characterized by a higher percent of paint removed from IRIS 

tubes (Figure 3C), and these reducing conditions were likely conducive to both SRM and FeRM. 

This supports previous findings of correlated SO4
2- and Fe reduction in TOWeR soils (Schoepfer 

et al., 2014). 

In addition to the iron-sulfur linkages described above, SO4
2- reduction and Fe reduction 

gene compositions showed linkages with production of CO2 and CH4. The functional gene 

composition of assimilatory SO4
2- reduction correlated with measured CO2 concentrations (Figure 

5B). The CO2 concentrations were greater in dry treatments than in wet treatments (Figure 4B). 
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This may indicate that CO2 production linked to assimilatory SO4
2- reduction was favored in dry, 

oxidizing conditions. 

Dissimilatory SO4
2- reduction gene composition and Fe reduction gene composition (Week 

8 only) were both significantly correlated with CH4 concentrations (Figure 6C, 8B). This 

compositional approach showed that variation in gene compositions corresponded with variations 

in CH4 concentrations but does not reveal linear relationships between gene abundance and CH4 

concentration. Therefore, relationships between SO4
2-/Fe reduction genes and CH4 could be 

positive (increased gene abundance with increased CH4 concentrations) or negative (increased 

gene abundance with decreased CH4 concentrations, or vice-versa). Explanations for both positive 

and negative relationships between SO4
2-/Fe reduction genes and CH4 concentrations are possible.  

Dissimilatory SO4
2- reduction, Fe reduction, and methanogenesis are all generally considered 

anaerobic metabolisms (Flynn et al., 2021; Lyu et al., 2018). Therefore, the reducing or oxidizing 

environment (e.g., wet vs. dry conditions) could have impacted all three metabolisms similarly, 

resulting in the observed correlations. Alternatively, the correlations between dissimilatory SO4
2- 

reduction and CH4 concentrations, and Fe reduction and CH4 concentrations, could be the result 

of competition between microbial taxa. Since Fe reduction and dissimilatory SO4
2- reduction are 

more thermodynamically favorable than methanogenesis (in standard conditions) (Wang et al., 

2017), it is conceivable that when FeRM and SRM are abundant (because Fe(III) and SO4
2- are 

available), these microbial communities outcompete the less abundant methanogens, resulting in 

a negative correlation. Similarly, methanogenic archaea may switch from methanogenesis to Fe 

reduction when resources allow (Sivan et al., 2016). But importantly, soil microbial communities 

do not exist in standard conditions, and thermodynamics are insufficient to explain community 

metabolic interactions (Bethke et al., 2011). In addition, soil pH may be more important for 
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structuring soil microbial communities than the thermodynamic favorability of metabolic 

processes. A known mutualism between SRM and methanogens exists, in which methanogens 

consume H2S produced by SRM, and thereby maintain the required pH for both SO4
2- reduction 

and methanogenesis to proceed (Bethke et al., 2011; Fierer and Jackson, 2006; Shi et al., 2020).



  

  

CONCLUSION 

An oversimplified view of biogeochemistry might describe the biogeochemical cycles of 

C, N, Fe, and S in isolation, with transformations structured in communities according to 

thermodynamic favorability (Bethke et al., 2011; Schlesinger et al., 2011).  But it is increasingly 

clear that biogeochemical cycles are intertwined, and a “microbial energy economy” that relies on 

resource availability and biotic/abiotic interactions is closer to reality than a hierarchically 

structured thermodynamic ladder (Bethke et al., 2011; Burgin et al., 2011). The specific biotic and 

abiotic context in which communities are found will likely determine which linkages between 

cycles are relevant. In the TOWeR soil mesocosms in this study, Fe-rich soils and seasonal 

saltwater intrusion importing SO4
2- make Fe and S linkages with C and N metabolism particularly 

relevant. Considering linked biogeochemical and the historical context of an ecosystem will help 

improve predictions of the future impacts of sea-level rise on coastal biogeochemistry.
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APPENDIX: SUPPLEMENTAL RESULTS AND DISCUSSION 

Supplemental Results (presented in Bledsoe et al., 2023) 

Greenhouse Gas Concentrations 

Within no-plant treatments, wet (19.9 ± 42.0 mg CH4-C m-2, average ± SD) and interim 

(6.5 ± 25.4 mg CH4-C m-2) hydrologic treatments produced the highest CH4 concentrations and 

the greatest variability between samples compared to dry treatments (0.22 ± 0.93) (Figure 4A). 

Within no-plant treatments, dry (104.7 ± 37.4 mg CO2-C m-2), interim (58.1 ± 30.6 mg CO2-C m-

2), and wet (42.3 ± 18.5 mg CO2-C m-2) hydrologic treatments produced the highest CO2 

concentrations compared to treatments with plants (35.1 ± 19.2, 29.5 ± 15.0, 24.9 ± 0.6 mg CO2-

C m-2, respectively) (Figure 4B). The N2O concentrations were near zero in all hydrologic and 

plant treatments (range: 0.05-0.15 mg N2O-N m-2) (Figure 4C).  

Functional Genes 

The four functional gene categories (denitrification, methanogenesis, central carbohydrate 

metabolism, and cytochrome C oxidase (CcO)) showed varying responses to plant and hydrologic 

treatment but no response to interactions between plant and hydrologic treatments. Carbohydrate 

metabolic composition differed between hydrologic treatment (PERMANOVA, F1, 23 = 2.735, R2 

= 0.092, P = 0.012; Table S5), but was similar across plant presence and absence (PERMANOVA, 

F2, 23 = 0.998, R2 = 0.067, P = 0.423; Table S5). In contrast, the compositions of denitrification 

genes (PERMANOVA, plant: F2, 23 = 0.840, R2 = 0.086, P = 0.576, treatment: F1, 23 = 0.667, R2 = 

0.034, P = 0.622; Table S5), methanogenesis genes (PERMANOVA, plant: F2, 23 = 1.045, R2 = 

0.085, P = 0.406, treatment: F1, 23 = 1.184, R2 = 0.048, P = 0.314), and CcO genes (PERMANOVA, 

plant: F2, 23 = 1.211, R2 = 0.076, P = 0.316, treatment: F1, 23 = 0.977, R2 = 0.031, P = 0.418; Table 
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S5) were similar across plant presence and hydrologic treatments. Plant presence/absence had no 

significant impact on the composition of functional genes. 

Microbial Structure-Function Relationships 

Based on environmental fitting (vegan::envfit), functional gene composition correlated to 

carbon losses (CO2 and CH4 production) (Figure S1). Specifically, CO2 concentrations correlated 

to the PCoA ordinations of both denitrification (envfit, R2 = 0.25, P = 0.05) and carbohydrate 

metabolism (envfit, R2 = 0.23, P = 0.06), while the ordination of the methanogenesis genes had a 

marginally good fit with CH4 production (envfit, R2 = 0.20, P = 0.09) (Figure S1). We also 

evaluated relationships among variation in GHG concentrations and variation in functional gene 

composition at the beginning (‘Week 0’) and end of the experiment (‘Week 8’) using distance-

based partial least square regression. Denitrification gene composition explained 31.56% of 

variation in N2O production at the start of the experiment, and 74.50% of variation in N2O 

production at the end of the experiment.  Methanogenesis functional gene variation explained a 

higher proportion of CH4 production in ‘Week 0’ samples (49.87%) than ‘Week 8’ samples 

(17.65%). ‘Week 0’ compositions of carbohydrate metabolism, CcO, and denitrification genes, 

respectively, explained 72.26%, 40.85%, and 32.47% of variation in CO2. By the end of the 

experiment, CcO composition could only account for 6.78% of CO2 production, while 

carbohydrate metabolism and denitrification explained 40.12% and 50.75% of the variation in CO2 

production, respectively. 

Supplemental Discussion (presented in Bledsoe et al., 2023) 

Mismatch Between Bacterial Community Composition and Greenhouse Gas Function 

The DNA-based functional gene composition explained variation in GHG concentrations 

measured at the beginning of the experiment more than at the end of the experiment. Hydrologic 
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history influenced wetland soil microbial community composition more than contemporary 

treatments, which was emphasized in these results. The decrease in the strength of structure-

function associations could be due to the DNA-based molecular measurement giving insight to 

historical and integrated environmental conditions and not contemporary changes to redox 

conditions. Another explanation of decreased structure-function associations could be due to the 

differences in temporal resolution measured by DNA-based molecular methods compared to the 

in situ greenhouse gas measurements. 

Cytochrome C Oxidase 

To further examine microbial functional composition and measured GHGs, we evaluated 

the composition of prokaryotic CcO genes as an indicator of aerobic respiration in more oxidizing 

redox conditions. While hydrologic history significantly influenced CcO composition 

(PERMANOVA, F1, 23 = 7.224, R2=0.227, P=0.001, Table S5), CcO composition was unable to 

explain significant variations in GHG concentrations during the 8-week incubation (Figure S1). 

This lack of explanatory power is unsurprising, given the diversity of O2-reducing terminal 

oxidases, and the known presence of CcO genes in strict anaerobes (Esposti, 2020; Jabłońska and 

Tawfik, 2019). There is no single enzyme that can be used to distinguish between aerobic and 

anaerobic phenotypes because aerobic and anaerobic organisms do not exist as binary groups 

(Jabłońska and Tawfik, 2019). Instead, a spectrum of O2 usage phenotypes exists (Jabłońska and 

Tawfik, 2019). Evaluating the presence and number of a full suite of O2-utilizing enzymes may be 

a useful indicator of aerobic vs. anaerobic status (Jabłońska and Tawfik, 2019). Therefore, 

bioinformatic methods to facilitate this method ought to be further developed. 

Central Carbohydrate Metabolism 
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While CcO composition was unable to explain differences in CO2 production across 

treatments, the composition of central carbohydrate metabolism genes was strongly related to 

differences in hydrologic history, hydrologic treatment, and the production of CO2 (Figure S1, 

Tables S3 and S5). In a past study, results revealed a significant positive correlation between 

carbohydrate-active enzyme abundance and cumulative respiration in a tundra soil warming 

experiment (Johnston et al., 2019). Similarly, carbohydrate metabolism genes predicted 

differences in soil respiration between paddy and upland soils (Liu et al., 2020). While Johnston 

et al. also found a relationship between CcO relative abundance and reducing conditions, this was 

the only study we found that successfully used CcO genes as an indicator of redox conditions. 

Johnston et al. also found the total relative abundance of carbohydrate active enzyme genes was 

significantly positively related to cumulative ecosystem respiration (2019). Liu et al. found several 

carbohydrate metabolism genes to be significant predictors of respiration rates in upland versus 

paddy soils (2020). While there is no single gene or defined collection of genes that have been 

consistently used to explain microbial community respiration responses to redox changes, various 

collections of carbohydrate metabolism genes may reflect differences in soil redox status and 

respiration (Johnston et al., 2019; Liu et al., 2020). 

Denitrification 

When examining denitrifier community composition and greenhouse gas production, 

results showed that the composition of denitrification functional genes correlated to CO2 

concentrations but not N2O concentrations (Figure S1). The lack of association with N2O is 

unsurprising since denitrifier community composition included the suite of genes involved in the 

reduction of nitrate to dinitrogen gas. The association between denitrification and CO2 production 

is likely the result of organic denitrification, where organic matter is oxidized to CO2 with nitrate 
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as an electron acceptor (Dlamini et al., 2020; Schlesinger et al., 2011). Organic denitrification, a 

form of respiratory denitrification, is typically a facultative process, found in organisms with the 

ability to respire aerobically when oxygen is available, and use NO3
- to respire anaerobically when 

oxygen availability decreases (Tiedje et al., 1989). A community-level denitrification response to 

soil hydrologic history and experimental drying/wetting has also been observed in a previous 

incubation experiment (Peralta et al., 2013). 

Methanogenesis 

In the present study, we observed that hydrologic history (more than contemporary 

hydrologic treatment) influenced methanogenesis functional gene composition (Figures 4 and S1, 

Table S5). Methanogenesis has historically been described as a specialized metabolism, in which 

methanogens are obligate anaerobes and obligate methanogens (meaning they do not use 

fermentation or alternative electron acceptors to grow) (Lyu et al., 2018). While atypical 

methanogenic pathways have recently been discovered (e.g., aerobic bacterial methane synthesis) 

(Wang et al., 2021), classical anaerobic methanogenesis is still recognized as the primary source 

of biogenic methane production (Lyu et al., 2018). In the present study, our results showed a strong 

influence of hydrologic history on methanogen functional gene composition, which supports the 

classical view of methanogenesis: a specialized and strictly anaerobic metabolism was maintained 

in the historically wet (i.e., low O2) field conditions, and this history dictated mesocosms’ methane 

production capacity. The structure-function analysis (based on DBPLSR) provides another line of 

evidence that hydrologic history influenced methane production, where methanogen functional 

gene composition explained a greater proportion of variation in CH4 production at the start of the 

experiment, than at the end of the experiment (Table S3).



  

  

FIGURES AND TABLES 

 

Figure 1 

Figure 1. Conceptual diagram depicting relative ranges of redox potentials associated with 

predicted microbial processes. On the left side of the diagram, indicator for reduction in soils 

(IRIS) tubes are used to measure soil redox status, where iron oxide paint in orange represents 

oxidized (Fe(III)) conditions, and white represents reduced (Fe(II)) conditions.   
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Figure 2 

 

 

 

 

 

 

 

 

 

 

Figure 2. Field site sampling and experimental design of wetland mesocosm. Wetland mesocosms 

sourced from the Timberlake Observatory for Wetland Restoration field site (image modified from 

Ardón et al., 2013) (A). Aerial view of wetland mesocosm experiment, where the left side of box 

represents plant treatment, and the right side represents the no plant treatment separated by a 

stainless mesh divider (B, top panel). The PVC collars were installed for measuring greenhouse 

gas concentrations, and a 1-liter bottle attached to each side of the mesocosm was used to maintain 

water levels (B, top panel). Example of a wet treatment mesocosm with IRIS tubes installed (B, 

middle panel). Example of mesocosm with chambers prepared for GHG sampling (B, bottom 

panel).
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Measuring redox status in wetland mesocosms. Wetland mesocosm example showing 

indicator of reduction in soils (IRIS) tubes and PVC collar used for greenhouse gas measurements 

(A). Example IRIS tubes used for ImageJ analysis post-incubation associated with hydrologic 

treatment (top label) and plant treatment, where plant icons represent plant treatment and crossed 

out plant symbol represents no plant treatment (B). Boxplots summarize percent paint removed 

from IRIS tubes at start (week 0) and finish (week 8) of experimental incubation (C). Individual 

samples are plotted as filled circles, and symbol color represents hydrologic treatment (C). The 

boxplot is a visual representation of five key summary statistics: the median, the 25% and 75% 

percentiles, and the whiskers which represent the feasible range of the data as determined by 1.5 

× the interquartile range. Symbols represent individual raw data points from four replicate samples. 

DRY WET WET

A

B

C
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Figure 4 

 

Figure 4. Boxplots of greenhouse gas concentrations. Methane (CH4) (A), carbon dioxide (CO2) 

(B), and nitrous oxide (N2O) (C) concentrations by hydrologic treatment (Treatment), are shown 

during four timepoints (Date). Samples from No Plant mesocosms are shown in the top panel, 

while samples from mesocosms with plants are shown in the bottom panel. The insets in the bottom 

panels of (A) and (C) represent zoomed in y-axis scale of the same data. The boxplot is a visual 

representation of five key summary statistics: the median, the 25% and 75% percentiles, and the 

whiskers which represent the feasible range of the data as determined by 1.5 × the interquartile 

range. Symbols represent individual raw data points from four replicate samples.
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Figure 5 

 

Figure 5. Ordination of sulfur functional gene modules. Ordinations are based on principal 

coordinates analysis (PCoA), depicting community composition of the sulfur functional gene 

modules Sulfate-Sulfur Assimilation (M00616) (A), Assimilatory Sulfate Reduction (M00176) 

(B), Dissimilatory Sulfate Reduction (M00596) (C), and Thiosulfate Oxidation by SOX Complex 

(M00595) (D). Percent variation explained by each axis is listed in parentheses. Colors refer to 

hydrologic treatments, where black = baseline, brown = dry, dark blue = wet. Shapes refer to 

hydrologic history of the sample, where square = dry, circle = wet. The shape fill represents plant 

treatment, where ‘x’ through symbol = baseline, open symbol = no plant, closed symbol = plant. 

Baseline samples were collected before the start of hydrologic and plant treatments and treatment 

samples were collected after eight weeks. Vectors represent significant (P < 0.05) correlation 

between greenhouse gas trends or soil redox status (as measured by percent paint removed from 

IRIS tubes) and functional gene composition, scaled by magnitude of correlation (using envfit). 
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Figure 6 

 

Figure 6. Ordination of sulfur functional gene modules after the 8-week experiment. Ordinations 

are based on principal coordinates analysis (PCoA), depicting community composition, at the end 

of the 8-week experiment, of the functional gene modules Sulfate-Sulfur Assimilation (M00616) 

(A), Assimilatory Sulfate Reduction (M00176) (B), Dissimilatory Sulfate Reduction (M00596) 

(C), and Thiosulfate Oxidation by SOX Complex (M00595) (D). Percent variation explained by 

each axis is listed in parentheses. Colors refer to hydrologic treatments, where brown = dry, dark 

blue = wet. Shapes refer to hydrologic history of the sample, where square = dry, circle = wet. The 

shape fill represents plant treatment, where open symbol = no plant, closed symbol = plant. Vectors 

represent significant (P < 0.05) correlation between greenhouse gas trends or soil physicochemical 

parameters, and functional gene composition, scaled by magnitude of correlation (using envfit).  
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Figure 7 

Figure 7. Ordination of iron 

functional gene composition. 

Ordinations are based on principal 

coordinates analysis (PCoA), 

depicting community composition 

of the functional gene modules: all 

Fe genes, as identified by FeGenie, 

at start and end of experiment (A), 

and all Fe genes envfit with 

greenhouse gases and soil 

physicochemical data from end of 

experiment (B). Percent variation 

explained by each axis is listed in 

parentheses. Colors refer to 

hydrologic treatments, where black 

= baseline, brown = dry, dark blue 

= wet. Shapes refer to hydrologic history of the sample, where square = dry, circle = wet. The 

shape fill represents plant treatment, where ‘x’ through symbol = baseline, open symbol = no plant, 

closed symbol = plant. Baseline samples were collected before the start of hydrologic and plant 

treatments and treatment samples collected after eight weeks. Vectors represent significant (P < 

0.05) correlation between greenhouse gas trends or soil physicochemical parameters, and 

functional gene composition, scaled by magnitude of correlation (using envfit).  
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Figure 8 

 

Figure 8. Ordination of iron reduction and sulfur reduction genes. Ordinations are based on  

principal coordinates analysis (PCoA), depicting community composition of the functional gene 

modules Fe reduction genes, identified by FeGenie, at Week 0 and Week 8 of the 8-week 

experiment (A), Fe reduction genes, identified by FeGenie, at end of 8-week experiment (B), 

sulfate reduction genes (both assimilatory and dissimilatory) at Week 0 and Week 8 of 8-week 

experiment (C), and sulfate reduction genes (both assimilatory and dissimilatory) at end of 8-week 

experiment (D). Percent variation explained by each axis is listed in parentheses. Colors refer to 

hydrologic treatments, where black = baseline, brown = dry, dark blue = wet. Shapes refer to 

hydrologic history of the sample, where square = dry, circle = wet. The shape fill represents plant 

treatment, where ‘x’ through symbol = baseline, open symbol = no plant, closed symbol = plant. 

Baseline samples were collected before the start of hydrologic and plant treatments and treatment 

samples were collected after eight weeks. Vectors represent significant (P < 0.05) correlation 
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between greenhouse gas trends or soil physicochemical parameters, and functional gene 

composition, scaled by magnitude of correlation (using envfit).  
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Table 1. Soil chemical and physical properties measured after eight weeks of hydrologic manipulation. Average (mean ± standard 

deviation) by hydrologic treatment and plant status reported. Abbreviations: MDL = Below detection limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

HISTORY DRY  INTERIM (DRY/WET) WET  
Plant No Plant Plant No Plant Plant No Plant  Plant 

Moisture (%) 39 ± 0.31 14 ± 0.03 19 ± 0.16 13 ± 0.02 29 ± 0.23 62 ± 0.07 

pH 5.31 ± 0.11 5.31 ± 0.09 5.4 ± 0.16 5.35 ± 0.1 5.55 ± 0.15 5.41 ± 0.17 

NH4
+ mg/L 0.39 ± 0.07 0.27 ± 0.04 0.26 ± 0.1 0.19 ± 0.02 0.77 ± 0.76 0.39 ± 0.42 

NO3
- mg/L 0.08 ± 0.07 MDL 0.25 ± 0.38 MDL 0.01 ± 0.0005 MDL 

Total C (%) 4.63 ± 0.78 4.63 ± 0.81 4.48 ± 0.32 4.37 ± 0.52 4.91 ± 0.92 4.68 ± 0.74 

Total N (%) 0.22 ± 0.03 0.22 ± 0.03 0.22 ± 0.01 0.21 ± 0.03 0.24 ± 0.04 0.23 ± 0.03 

P ppm 21.00 ± 4.14 20.41 ± 4.4 23.58 ± 8.87 22.83 ± 8.37 23.16 ± 5.98 23 ± 5.79 

K ppm 33.66 ± 5.97 30.25 ± 10.31 39.5 ± 11.44 26.75 ± 3.04 46.16 ± 16.02 34.25 ± 10.78 

Mg ppm 77.58 ± 6.46 74.66 ± 11.43 86 ± 22.33 78.66 ± 16.47 89.25 ± 16.85 79.41 ± 18.8 

S ppm 15.75 ± 1.94 15.33 ± 2.29 13.25 ± 1.25 12.16 ± 0.40 11.33 ± 1.21 11.5 ± 1.00 

Fe ppm 252.66 ± 14.45 243.66 ± 17.06 275.33 ± 27.07 251.16 ± 37.6 306.83 ± 22.52 280.66 ± 40.71 

Mn ppm 3.91 ± 1.15 3.41 ± 0.97 4.33 ± 1.16 4.58 ± 1.31 5.83 ± 1.32 5.58 ± 2.05 

Humic 

matter (%) 
2.35 ± 0.19 2.17 ± 0.14 2.04 ± 0.29 2.28 ± 0.22 1.98 ± 0.422 1.96 ± 0.43 
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Table 2. Summary of metagenome bins. Binning was performed using the IMG pipeline (MetaBAT, CheckM, GTDB, GTDB-tk). Bins 

are accessible at https://img.jgi.doe.gov/, under the Bin ID. 

 

Bin ID History Treatment 
Plant 

Presence/Absence 

Bin 

Quality 

 

Bin Lineage 

 

GTDBTK Lineage 

 

Bin 

Completeness 

 

Bin 

Contamination 

Total 

Number 

of Bases 

 

Gene 

Count 

 

Scaffold 

Count 

 

3300036865_5 Dry Baseline Baseline MQ 

Bacteria; 

Proteobacteria; 

Betaproteobacteria; 

Burkholderiales 

Bacteria; Proteobacteria; 

Gammaproteobacteria; 

Betaproteobacteriales; 

Burkholderiaceae; 

JOSHI-001 

88.02 6.17 4674782 4849 502 

3300036991_3 Dry Baseline Baseline HQ 

Bacteria; 

Proteobacteria; 

Gammaproteobacteria; 

Xanthomonadales; 

Rhodanobacteraceae; 

Dyella 

Bacteria; Proteobacteria; 

Gammaproteobacteria; 

Xanthomonadales; 

Rhodanobacteraceae; 

Dyella 

98.45 2.71 4930595 4528 168 

3300036991_4 Dry Baseline Baseline MQ 

Bacteria; 

Proteobacteria; 

Alphaproteobacteria; 

Hyphomicrobiales 

Bacteria; Proteobacteria; 

Alphaproteobacteria; 

Rhizobiales; 

Xanthobacteraceae 

54.51 1.92 2325436 2615 451 

3300036870_7 Dry Wet Plant MQ 

Archaea; 

Thaumarchaeota; 

unclassified; 

unclassified; 

unclassified; 

Candidatus 

Nitrosotalea; 

Candidatus 

Nitrosotalea 

devanaterra 

Archaea; Crenarchaeota; 

Nitrososphaeria; 

Nitrososphaerales; 

Nitrosopumilaceae; 

Nitrosotalea 

61 0.97 780222 1032 140 

3300036873_3 Dry Wet No Plant HQ Bacteria 
Bacteria; Bacteroidota; 

Kapabacteria 
96.98 1.64 3157872 2807 109 

3300036867_3 Wet Baseline Baseline MQ Bacteria; 

Proteobacteria; 

Bacteria; Proteobacteria; 

Gammaproteobacteria; 

Betaproteobacteriales; 

76.88 0.7 3880859 4065 463 

https://img.jgi.doe.gov/
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Betaproteobacteria; 

Burkholderiales 

Burkholderiaceae; 

JOSHI-001 

3300036989_2 Wet Baseline Baseline MQ 

Bacteria; 

Proteobacteria; 

Alphaproteobacteria; 

Hyphomicrobiales 

Bacteria; Proteobacteria; 

Alphaproteobacteria; 

Rhizobiales; 

Xanthobacteraceae; 

Pseudorhodoplanes 

62.92 8.67 3626868 4149 720 

3300036989_4 Wet Baseline Baseline MQ 

Bacteria; 

Actinobacteria; 

Thermoleophilia 

Bacteria; 

Actinobacteriota; 

Thermoleophilia; 

Solirubrobacterales; 70-9; 

70-9 

80.23 5.11 2422891 2808 415 

3300036990_3 Wet Baseline Baseline MQ Bacteria 

Bacteria; 

Verrucomicrobiota; 

Verrucomicrobiae; 

Chthoniobacterales; 

UBA10450; UBA10450 

61.4 0.72 2180017 2388 284 

3300036875_5 Wet Dry Plant MQ 

Bacteria; 

Actinobacteria; 

Actinomycetia 

Bacteria; 

Actinobacteriota; 

Actinobacteria; 

Streptosporangiales 

51.1 8.78 3331403 3616 726 

3300036898_4 Wet Dry Plant MQ 
Bacteria; Chloroflexi; 

Ktedonobacteria 

Bacteria; Chloroflexota; 

Ktedonobacteria; 

Ktedonobacterales; 

Ktedonobacteraceae; 

UBA11361 

85.26 1.98 4109904 4252 599 

3300036898_5 Wet Dry Plant MQ Bacteria 

Bacteria; 

Gemmatimonadota; 

Gemmatimonadetes; 

Gemmatimonadales; 

Gemmatimonadaceae 

64.48 6.41 3359397 3472 616 

3300036872_8 Wet Wet Plant MQ Bacteria 

Bacteria; Nitrospirota; 

Thermodesulfovibrionia; 

Thermodesulfovibrionales 

56.04 0.36 1448797 1708 290 

3300036993_3 Wet Wet No Plant MQ Bacteria 

Bacteria; 

Verrucomicrobiota; 

Verrucomicrobiae; 

Chthoniobacterales; 

UBA10450; UBA10450 

74.22 4.2 3077671 3555 534 

Abbreviations: MQ = medium quality, HQ = high quality



 

  

SUPPLEMENTAL FIGURES AND TABLES 

 

Figure S1 

 

 

Figure S1. Ordination of carbon and nitrogen functional gene modules. Ordinations are based on 

principal coordinates analysis (PCoA), depicting community composition of the functional gene 

modules Denitrification (KEGG Module M00529) (A), Methanogen (M00617) (B), Central 

Carbohydrate Metabolism (M00001-M00011, M00307-M00309, M00580, and M00633) (C), and 

Prokaryotic Cytochrome C Oxidase (M00155) (D). Percent variation explained by each axis is 

listed in parentheses. Colors refer to hydrologic treatments, where black = baseline, brown = dry, 

dark blue = wet. Shapes refer to hydrologic history of the sample, where square = dry, circle = 

wet. The shape fill represents plant treatment, where ‘x’ through symbol = baseline, open symbol 
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= no plant, closed symbol = plant. Baseline samples were collected before the start of hydrologic 

and plant treatments and treatment samples were collected after eight weeks. Vectors represent 

significant (P < 0.05) correlation between greenhouse gas trends or soil redox status (as measured 

by percent paint removed from IRIS tubes) and functional gene composition, scaled by magnitude 

of correlation (using envfit). Modified versions of these figures were presented in Bledsoe et al. 

2023 biorxiv. 
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Figure S2 

Figure S2. Ordination of carbon and nitrogen functional gene modules after the 8-week 

experiment. Ordinations are based on principal coordinates analysis (PCoA), depicting community 

composition of the functional gene modules, at the end of the 8-week experiment, of 

Denitrification (KEGG Module M00529) (A), Methanogen (M00617) (B), Central Carbohydrate 

Metabolism (M00001-M00011, M00307-M00309, M00580, and M00633) (C), and Prokaryotic 

Cytochrome C Oxidase (M00155) (D). Percent variation explained by each axis is listed in 

parentheses. Colors refer to hydrologic treatments, where brown = dry, dark blue = wet. Shapes 

refer to hydrologic history of the sample, where square = dry, circle = wet. The shape fill represents 

plant treatment, where open symbol = no plant, closed symbol = plant. Vectors represent 

significant (P < 0.05) correlation between greenhouse gas trends or soil physicochemical 

parameters, and functional gene composition, scaled by magnitude of correlation (using envfit). 
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Modified versions of these figures were presented in Bledsoe et al. 2023 biorxiv (Bledsoe et al., 

2023).
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Table S1. Mantel test for correlation among paired Bray-Curtis distance matrices of functional 

gene modules. The Mantel Statistic (R) is based on Pearson’s product-moment correlation. Bold 

text indicates significant correlations (P < 0.05). 

X Distance Matrix Y Distance Matrix Mantel Statistic R P-value 

Fe Reduction 

(FeGenie) 

SO4
2- Reduction 

(Assimilatory and 

Dissimilatory) 

0.064 0.249 

 

Fe Reduction 

(FeGenie) 

Assimilatory SO4
2- 

Reduction 

0.222 

 

0.008 

 

Fe Reduction 

(FeGenie) 

Dissimilatory SO4
2- 

Reduction 

0.313 0.006 

Denitrification Thiosulfate Oxidation 

by SOX Complex 

0.117 

 

0.170 

 

DNRA Thiosulfate 

Oxidation by SOX 

Complex 

0.196 

 

4.990e-2 

 

Abbreviations. SOX: thiosulfate oxidizing multienzyme complex, DNRA: dissimilatory nitrate 

reduction to ammonium 
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Table S2. Hydrology-specific Mantel test for correlation among paired Bray-Curtis distance 

matrices of functional gene modules. The Mantel Statistic (R) is based on Pearson’s product-

moment correlation. Distance matrices were subset according to wet history, dry history, wet 

treatment, and dry treatment. Mantel Tests were then performed on sulfate reduction and Fe 

reduction distance matrices in each respective hydrologic condition, e.g., wet history. Bold text 

indicates significant correlations (P < 0.05).

X Distance 

Matrix 

Y Distance 

Matrix 

Wet 

History 

Dry 

History 

Wet 

Treatment 

Dry 

Treatment 

Sulfate 

Reduction 

Iron 

Reduction 

R = 0.148,  

P = 0.214 

R = 0.010,  

P = 0.446 

R = 0.360,  

P = 0.010 

R = -0.166,  

P = 0.728 
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Table S3. Summary of distance-based partial least squares regression. The adjusted (adj) R2 

represents how much variation in GHG concentration is explained (%) by each component (Comp) 

derived from functional gene composition, 16S rRNA gene composition, or soil properties distance 

matrix. 

GHG ~ 

distance 

matrix 

Time 

point 

Comp Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 

N2O ~ 

Denitri-

fication 

Week 

0 

R2 41.3 72.9 87.5 92.9 98.8 99.9 

adj R2 31.6 62.0 78.2 83.4 95.7 99.5 

gvar 48.2 66.3 79.5 88.3 91.2 97.9 

crit 7.69e-5 4.84e-5 3.21e-5 2.86e-5 8.71e-6 1.43e-6 

N2O ~ 

Denitri-

fication 

Week 

8 

R2 76.2  79.1 82.9 86.6 91.0 94.1 

adj R2 74.5  75.9 78.6 81.8 86.5 90.1 

gvar 9.09 44.0 64.9 83.3 87.4 91.3 

crit 1.98e-3 1.99e-3 1.89e-3 1.73e-3 1.39e-3 1.10e-3 

CH4 ~ 

Methanogene

sis 

Week 

0 

R2 57.0   76.9 94.9 98.7 99.9 1.00e2 

adj R2 49.9   67.6   91.1 97.0 99.6 99.7 

gvar 44.7   71.4   80.4 89.6 93.3 97.4 

crit 69.0   50.6 16.0 6.26   0.969   0.720 

CH4 ~ 

Methanogene

sis 

Week 

8 

R2 23.1   37.8 70.7 78.2 93.6 96.7 

adj R2 17.7   28.3 63.4 70.2 90.4 94.6 

gvar 30.2   59.7 68.5 81.8 84.1 88.7 

crit 16.2   15.0 8.22 7.18 2.50 1.55 

CO2 ~ 

Central 

Carbohydrate 

Metabolism 

Week 

0 

R2 76.2  99.2 99.9 1.00e2 1.00e2 1.00e2 

adj R2 72.3  98.9 99.8 1.00e2 1.00e2 1.00e2 

gvar 44.6  60.6 66.7 76.6 81.8 90.9 

crit 9.24   0.418   0.0956   0.0180 2.47e-4 1.19e-5 

CO2 ~ 

Central 

Carbohydrate 

Metabolism 

Week 

8 

R2 44.1   80.1 85.5 92.0 98.1 99.6 

adj R2 40.1   77.0 81.9 89.1 97.1 99.3 

gvar 22.4   28.4 62.4 76.0 80.6 84.4 

crit 25.1 10.3 8.67 5.62 1.60 0.433 

CO2 ~ 

Cytochrome 

C Oxidase 

Week 

0 

R2 49.3  94.8 97.8 99.6 99.8 1.00e2 

adj R2 40.9  92.8 96.2 99.1 99.4 99.7 

gvar 75.1  87.9 96.6 97.4 98.8 99.4 
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crit 19.7   2.73 1.64 0.459 0.392 0.211 

CO2 ~ 

Cytochrome 

C Oxidase 

Week 

8 

R2 13.0   17.1 28.8 41.9 54.6 60.6 

adj R2 6.78 4.39 11.0 20.8 31.9 34.3 

gvar 28.3 76.5 84.7 89.2   93.5   98.1 

crit 39.1 42.8 42.6   40.8   40.0 39.9 

N2O ~ 16S 

rRNA gene 

Week 

8 

R2 27.4 41.6 71.3 87.8 92.9 97.0 

adj R2 25.2 38.0 68.6 86.2 91.7 96.3 

gvar 10.1 36.8 49.4 56.9 66.4 71.2 

crit 1.58e-3 1.35e-3 7.04e-4 3.19e-4 1.98e-4 9.05e-5 

CH4 ~ 16S 

rRNA gene 

Week 

8 

R2 22.6  54.0 82.2 94.1 96.8 99.4 

adj R2 20.4 51.2 80.6 93.4 96.3 99.3 

gvar 28.3  44.3 52.3 57.8 65.9 69.1 

crit 3.10   1.96 0.802 0.281 0.163 0.0326 

CO2 ~ 16S 

rRNA gene 

Week 

8 

R2 19.5   38.3 59.2 86.0 93.8 96.6 

adj R2 17.1   34.6 55.4 84.2 92.8 95.9 

gvar 29.0  45.6 53.8 58.7 66.0 72.2 

crit 14.4   11.7 8.20 3.00 1.40 0.832 

N2O ~ soil 

parameters 

Week 

8 

R2 12.2  22.6 28.6 42.7 54.0 65.5 

adj R2 9.60  17.9 21.9 35.3 46.3 58.3 

gvar 37.0  63.8 73.4 77.2 81.6 84.5 

crit 1.92e-3 1.79e-3 1.75e-3 1.50e-3 1.28e-3 1.03e-3 

CH4 ~ soil 

parameters 

Week 

8 

R2 13.3  34.0 64.2 76.7 92.8 96.5 

adj R2 10.8  30.0 60.8 73.7 91.6 95.7 

gvar 49.6  65.4 70.6 76.5 78.8 81.4 

crit 3.48   2.81 1.62 1.12 0.369 0.194 

CO2 ~ soil 

parameters 

Week 

8 

R2 12.5   35.5 45.5 51.6 58.2 66.5 

adj R2 9.97  31.6 40.4 45.4 51.2 59.5 

gvar 52.6   60.1 64.5 72.1 80.5 84.8 

crit 15.6   12.2 11.0 10.4 9.53 8.16 

Abbreviations are GHG, greenhouse gas; adj, adjusted; gvar, total weighted geometric 

variability; crit, value of criterion defined in method.
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Table S4. Summary of select iron and sulfur gene modules related to greenhouse gases, using 

distance-based partial least squares regression. The adjusted (adj) R2 represents how much 

variation in GHG concentration is explained (%) by each component (Comp) derived from 

functional gene composition. Selected pairings of gene modules and GHGs is based on significant 

(P < 0.05) relationships identified between PCoAs of gene modules and GHGs, using envfit.  

GHG ~ Gene Module Timepoint Total 

Components 

(n – 1) 

Component Comp 1 Comp 2 

CO2 ~ Assimilatory SO4
2- 

Reduction 

Week 0 7 R2 60.74 87.752 

adj R2 54.19 82.853 

gvar 43.75 69.768 

crit 15.26 6.478 

CO2 ~ Assimilatory SO4
2- 

Reduction 

Week 8 15 R2 28.58 37.84 

adj R2 23.47 28.28 

gvar 58.13 77.50 

crit 32.13 32.10 

CH4 ~ Dissimilatory SO4
2- 

Reduction 

Week 0 7 R2 28.40 50.43 

adj R2 16.47 30.60 

gvar 67.30 81.84 

crit 115.05 108.43 

CH4 ~ Dissimilatory SO4
2- 

Reduction 

Week 8 15 R2 51.26 66.840 

adj R2 47.78 61.738 

gvar 49.51 85.747 

crit 10.27 8.022 

CH4 ~ Fe Reduction Week 0 7 R2 12.423 56.77 

adj R2 -2.173 39.48 

gvar 61.198 69.80 

crit 140.729 94.55 

CH4 ~ Fe Reduction Week 8 15 R2 74.439 88.863 

adj R2 72.613 87.150 

gvar 41.809 54.740 

crit 5.386 2.694 

Abbreviations are GHG, greenhouse gas; adj, adjusted; gvar, total weighted geometric 

variability; crit, value of criterion defined in method; comp, component. 
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Table S5. Summary of permutational multivariate analysis of variance. The models include 

baseline samples and compare microbial functional composition due to main effects (plant, 

hydrologic history, hydrologic treatment) and interaction between plant × history and plant × 

treatment. Bold text indicates significant differences (P < 0.05). 

Functional Gene 

Module 

Main Effect  DF SumSq R2 F P-value 

Denitrification Plant 2 0.010 0.086 0.840 0.576 

History 1 2.6e-5 2.4e-4 -0.005 0.991 

Treatment 1 0.004 0.034 0.667 0.623 

Plant × History 2 0.004 0.040 0.386 0.934 

Plant × Treatment 1 0.002 0.016 0.309 0.887 

Methanogenesis Plant 2 0.006 0.085 1.045 0.402 

History 1 0.011 0.154 3.795 0.007 

Treatment 1 0.004 0.048 1.184 0.315 

Plant × History 2 0.003 0.042 0.515 0.870 

Plant × Treatment 1 0.002 0.024 0.586 0.697 

Central 

Carbohydrate 

Metabolism 

Plant 2 0.002 0.067 0.998 0.423 

History 1 0.006 0.211 6.262 9.999e-5 

Treatment 1 0.003 0.092 2.735 0.012 

Plant × History 2 0.002 0.054 0.803 0.693 

Plant × Treatment 1 0.001 0.036 1.065 0.360 

Cytochrome C 

Oxidase 

Plant 2 0.001 0.076 1.211 0.316 

History 1 0.002 0.227 7.224 0.001 

Treatment 1 3.070e-4 0.031 0.977 0.418 

Plant × History 2 0.001 0.087 1.388 0.250 

Plant × Treatment 1 0.001 0.078 2.491 0.081 

Plant 2 0.006  0.066 0.891 0.527 
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Sulfate-Sulfur 

Assimilation 

History 1 0.005  0.061 1.654 0.153 

Treatment  1 0.013  0.144 3.917 0.008 

Plant × History 2 0.008  0.090 1.228 0.276 

Plant × Treatment 1 0.004  0.051 1.389 0.222 

Assimilatory 

Sulfate 

Reduction 

Plant 2 0.006  0.066 0.872 0.514 

History 1 0.004  0.046 1.221 0.288 

Treatment 1 0.015  0.156 4.111 0.013 

Plant × History 2 0.009  0.091 1.193 0.307 

Plant × Treatment 1 0.003 0.031 0.817 0.497 

Dissimilatory 

Sulfate 

Reduction 

Plant 2 0.012  0.113 1.859 0.132 

History 1 0.032  0.316 10.397 0.001 

Treatment 1 0.003  0.029 0.947 0.388 

Plant × History 2 0.005 0.046   0.755 0.577 

Plant × Treatment 1 0.001 0.010 0.3171 0.784 

Thiosulfate 

Oxidation by 

SOX Complex 

Plant 2 0.004  0.045 0.608 0.637 

History 1 0.022  0.243 6.547 0.009 

Treatment 1 0.007 0.078 2.095 0.135 

Plant × History 2 0.002  0.017 0.234 0.939 

Plant × Treatment 1 0.002  0.024 0.656 0.501 

Sulfate 

Reduction 

(combined 

assimilatory and 

dissimilatory) 

Plant 2 0.007 0.060 0.786 0.619 

History 1 0.012  0.108 2.830 0.030 

Treatment 1 0.013  0.111 2.906 0.026 

Plant × History 2 0.009 0.077 1.016 0.418 

Plant × Treatment 1 0.004 0.034 0.879 0.476 

Fe Genes (all) Plant 2 0.001 0.028 0.315 0.880 

History 1 0.006  0.185 4.173 0.031 

Treatment 1 0.001  0.044 0.994 0.354 

Plant × History 2 0.001 0.028 0.318 0.872 

Plant × Treatment 1 2.01e-4  0.006 0.139 0.909 
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Fe Reduction 

(FeGenie) 

Plant 2 0.157  0.094 1.189 0.280 

History 1 0.221  0.132 3.358 0.004 

Treatment 1 0.010  0.060 1.513 0.161 

Plant × History 2 0.102  0.061 0.772 0.700 

Plant × Treatment 1 0.038  0.023 0.580 0.787 

Fe Reduction 

(TIGRFAMS 

mtrBC) 

Plant 2 0.032  0.335  9.967 0.002 

History 1 0.004 0.037 2.187 0.162 

Treatment 1 0.031  0.319 19.012 0.0002 

Plant × History 2 0.003  0.036  1.058 0.367 

Plant × Treatment 1 4.66e-4  0.005  0.288 0.598 

Dissimilatory 

Nitrate 

Reduction to 

Ammonium 

(DNRA) 

Plant 2 0.014 0.115 1.282 0.270 

History 1 0.004  0.035 0.773 0.529 

Treatment 1 0.006 0.049 1.090 0.355 

Plant × History 2 0.009  0.079 0.881 0.518 

Plant × Treatment 1 0.001  0.007 0.156 0.951 

Abbreviations are DF: degrees of freedom, SumSq: sum of squares 
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Table S6. Soil redox conditions and greenhouse gas concentrations linear regression. Bold text 

indicates significant differences (P < 0.05). 

Greenhouse 

Gas 

Formula  Residual 

Standard 

Error 

Degrees 

of 

Freedom 

Multiple 

R2 

Adjusted 

R2 

P-value 

CH4 log(CH4) ~ 

redox status 

0.905 34 0.282 0.261 8.594e-4 

CH4 log(CH4, 

minus outlier) 

~ redox status 

0.321 33 0.465 0.448 6.572e-6 

CO2 log(CO2) ~ 

redox status 

22.55 34 0.210 0.187 0.005 

N2O log(N2O) ~ 

redox status 

0.275 34 0.038 0.009 0.254 
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Figure S3.  

A. 

 

B. 

 

C. 

 

D. 

 

Figure S3. Indicator of Reduction in Soils (IRIS) tubes. Representative IRIS tubes collected from 

the dry hydrologic treatment without plants (A.) and with plants (B), wet treatment without plants 

(C), in wet treatment with plants (D). 
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Figure S4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Soil redox status (IRIS percent) and greenhouse gas concentrations. IRIS (indicator of 

reduction in soils) percent is the percent of paint removed from IRIS tubes, an indicator of soil 

redox status. Concentrations of greenhouse gases: CH4 (A), CO2 (B), N2O (C). Colors refer to 

vegetation treatment: grey = no plant, green = plant. 
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Figure S5. 

 

Figure S5. Ordination based on principal coordinates analysis (PCoA) depicting community 

composition of bacteria and archaea, based on the 16S rRNA gene. Percent variation explained by 

each axis is listed in parentheses. Colors refer to hydrologic treatments: brown = dry, light blue = 

interim, dark blue = wet. Shapes refer to hydrologic history of the sample: square = dry, triangle 

= interim, circle = wet. Open shapes refer to samples from mesocosms without plants, while closed 

shapes refer to samples from mesocosms with plants. Labelled vectors represent relationships 

among soil physiochemical variables and the microbial community ordination with P ≤ 0.05, 

scaled by their correlation (using envfit). This figure was presented in Bledsoe et al. 2023. 

  



 

  

 

 


