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ABSTRACT 

 

This thesis begins with a thorough review of research trends from 2015 to 2022, examining the 

challenges and issues related to biomarker discovery in multi-omics datasets. The review covers 

areas of application, proposed methodologies, and evaluation criteria used to assess 

performance, as well as limitations and drawbacks that require further investigation and 

improvement. This comprehensive overview serves to provide a deeper understanding of the 

current state of research in this field and the opportunities for future research. It will be 

particularly useful for those who are interested in this area of study and seeking to expand their 

knowledge. In the second part of this thesis, a novel methodology is proposed for the 

identification of significant biomarkers in a multi-omics colon cancer dataset. The integration of 

clinical features with biomarker discovery has the potential to facilitate the early identification 

of mortality risk and the development of personalized therapies for a range of diseases, including 

cancer and stroke. Despite extensive efforts towards discovering disease-associated 

biomolecules by analyzing data from various “omics” experiments, such as genomics, 

transcriptomics, and metabolomics, the poor integration of diverse forms of 'omics' data has 
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made the integrative analysis of multi-omics data a daunting task. Our research includes ANOVA 

simultaneous component analysis (ASCA) and Tucker3 modeling to analyze a multivariate dataset 

with an underlying experimental design. By comparing the spaces spanned by different model 

components we showed how the two methods can be used for confirmatory analysis and provide 

complementary information. We demonstrated the novel use of ASCA to analyze the residuals of 

Tucker3 models to find the optimum one. Increasing the model complexity to more factors 

removed the last remaining ASCA detectable structure in the residuals. Bootstrap analysis of the 

core matrix values of the Tucker3 models was used to check that additional triads of eigenvectors 

were needed to describe the remaining structure in the residuals. Also, we developed a new 

simple, novel strategy for aligning Tucker3 bootstrap models with the Tucker3 model of the 

original data so that eigenvectors of the three modes, the order of the values in the core matrix, 

and their algebraic signs match the original Tucker3 model without the need for complicated 

bookkeeping strategies or performing rotational transformations. Additionally, to avoid getting 

an overparameterized Tucker3 model, we used the bootstrap method to determine 95% 

confidence intervals of the loadings and core values. Also, important variables for classification 

were identified by inspection of loading confidence intervals. The experimental results obtained 

using the colon cancer dataset demonstrate that our proposed methodology is effective in 

improving the performance of biomarker discovery in a multi-omics cancer dataset. Overall, our 

study highlights the potential of integrating multi-omics data with machine learning methods to 

gain deeper insights into the complex biological mechanisms underlying cancer and other 

diseases.  
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Chapter 1 

 

Introduction 

 

Biomarker discovery has emerged as a crucial field in the battle against diseases like cancer. By 

exploring various biological indicators present in patients, researchers can identify specific 

molecules, genes, proteins, or characteristics that can serve as reliable biomarkers for early 

detection, prognosis, and personalized treatment strategies. These biomarkers not only aid in 

the early identification of cancer, enabling timely intervention and potentially improved 

outcomes, but they also contribute to a deeper understanding of the underlying mechanisms of 

the disease [1]. Through advanced technologies such as genomics, proteomics, and 

metabolomics, scientists can analyze large datasets and compare them to healthy controls, 

unveiling patterns and signatures that are unique to cancer. This invaluable information paves 

the way for the development of innovative diagnostic tests, targeted therapies, and more 

accurate patient monitoring. Biomarker discovery represents a transformative approach that 

holds tremendous promise for revolutionizing cancer care by enhancing detection sensitivity, 

reducing healthcare costs, and ultimately improving patient survival rates [2]. 

Recent advancements in integrated analysis have shown promising results in enhancing 

knowledge discovery by utilizing tensor decompositions on data sourced from multiple outlets. 

In the field of metabolomics, for instance, diverse analytical techniques are employed to study 

biological fluids like blood or urine, aiming to identify disease or metabolites. To address the 

challenge of data fusion, a joint factorization approach has been devised. This method allows 
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data from various sources to be represented as multiple matrices, which are subsequently 

evaluated collectively through tensor decomposition techniques [3]. 

In the past, researchers used single-omics investigations to uncover disease causes and aid in 

treatment selection or design. However, many diseases involve intricate molecular pathways 

where different biological layers interact. As a result, there is now a growing need for biomarker 

discovery in multi-omics investigations, which can integrate multiple layers of biological 

information and offer a more comprehensive understanding of a specific phenotype. This 

approach allows for a more holistic and detailed perspective, enabling researchers to gain a fuller 

picture of complex diseases and potentially improve diagnostic accuracy and treatment 

outcomes [28]. 

Integrating multi-omics datasets faces several challenges. Some obstacles, like missing values and 

class imbalance, are common in machine learning analysis. Class imbalance occurs when there is 

an unequal distribution of classes in the learning data, often seen in rare events. A classification 

dataset with skewed class proportions is called imbalanced. Classes that make up a large 

proportion of the dataset are called majority classes. Those that make up a smaller proportion 

are minority classes. Strategies such as sampling and cost-sensitive learning can address this issue 

[35, 36]. 'Omics' datasets, being biological in nature, are inherently noisy and complex, making it 

challenging to identify relevant patterns across multiple datasets. Limited availability of 

substantial biomedical data due to factors like financial constraints and rarity of the desired 

phenotype can result in high-dimensional datasets with more variables than samples, leading to 

overfitting and reduced generalizability [36]. Moreover, heterogeneity among 'omics' 

methodologies and varying dataset sizes pose integration and learning imbalances [37]. 
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Scalability is another technical concern when working with large and heterogeneous multi-omics 

datasets, requiring efficient methods for data processing and analysis. Scalability refers to the 

ability of a system, application, or infrastructure to handle and accommodate an increasing 

amount of work, data, or users while maintaining or improving its performance and efficiency. 

Overcoming these challenges is crucial for effective biomarker discovery in multi-omics datasets, 

with a need for comprehensive investigation into data heterogeneity [38-40]. 

As we will discuss later in Chapter 2, several studies try to deal with these challenges to detect 

biomarkers in complex diseases, however, none of them have used Tucker3 as a tensor 

decomposition method and ANOVA Simultaneous Component Analysis as a confirmatory analysis 

and provide complementary information for biomarker discovery in colon cancer multi-omics 

datasets. 

In this thesis, we report a comprehensive review of biomarker discovery in multi-omics datasets 

using tensor decompositions as the basis idea of our proposed model. We then perform a novel 

application of ASCA to analyze the residuals of Tucker3 models to find the optimum one. We use 

bootstrap analysis of the core matrix values of the Tucker3 models to indicate whether there is a 

need for additional sets of eigenvectors to describe the remaining structures in the residuals or 

not. Furthermore, we introduce a simple and innovative strategy to align the bootstrap models 

with the original Tucker3 model, ensuring the eigenvectors, the order of values in the core matrix, 

and their signs are matched without requiring complex bookkeeping or rotational 

transformations. To prevent an overly complex Tucker3 model, we employ the bootstrap method 

to determine 95% confidence intervals for the loadings and core values. Additionally, we identify 
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significant multi-omics features, biomarkers, for classification by examining the confidence 

intervals of the loadings. 

1.1 Research Contribution 

In this research work, we first report a comprehensive literature survey on biomarker discovery 

in multi-omics datasets using tensor decompositions as the basis of the proposed approach. In 

this literature review, we comprehensively review the trend of research conducted from 2015 to 

2022 in terms of challenges and problems regarding biomarker discovery in multi-omics datasets, 

areas of application, proposed methodologies, evaluation criteria used to assess the 

performance, limitations, and drawbacks that require investigation and improvements.  

The second and primary contribution of this thesis is developing a methodology that uses ASCA 

to analyze the residuals of Tucker3 models to find an optimum model. We then utilizing bootstrap 

analysis of the core matrix values of Tucker3 models to determine if additional sets of 

eigenvectors are necessary to explain the remaining structure in the residuals. To prevent an 

overly complex Tucker3 model, we apply the bootstrap method to establish 95% confidence 

intervals for the loadings and core values. Additionally, we identify significant multi-omics 

features or biomarkers for classification by examining the confidence intervals of the loadings. 

1.2 Thesis structure 

The thesis is structured as follows: Chapter 2 presents a comprehensive literature survey on 

biomarker discovery in multi-omics datasets using tensor decompositions. In this chapter, 

existing studies, methodologies, and findings related to biomarker discovery are discussed, with 
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a specific focus on the application of tensor decompositions in multi-omics datasets. Chapter 3 

provides the related Literature on multi-dimensional data analysis in cancer studies. 

Chapter 4 describes the proposed methodology in detail, explaining the rationale behind using 

tensor decompositions for biomarker discovery and providing a step-by-step approach for 

implementing the methodology. The methodology is then applied to a multi-dimensional 

dataset, the Blue Crab dataset, serving as a case study. Moving forward, Chapter 5 provides the 

performance analysis of the proposed method using one of the most extensive public datasets 

from the National Institutes of Health (NIH), specifically the colon cancer dataset. The obtained 

results are thoroughly analyzed, highlighting the significance of the identified biomarkers. Finally, 

in Chapter 6, the current research is concluded, summarizing the key findings of the thesis. 

Additionally, future research directions in biomarker discovery using tensor decompositions are 

discussed, outlining potential areas of exploration. 
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Chapter 2 

 

Comprehensive Literature Survey 

 

 

2.1 Introduction 

 

Biomarkers are biological molecules that are indicative of normal or abnormal processes, such as 

disease states or responses to treatments. These biological molecules may be found in any type 

of organism by sampling tissue and body fluids followed by biochemical analysis. The 

development of high throughput methods has facilitated an explosion of research in this field. 

When combined with clinical data, the resulting information can be used for earlier detection of 

diseases and the development of personalized therapies. Moreover, new developments in 

‘‘omics’’ technology provide researchers the chance to look for disease biomarkers at the system 

level [1]. A Tremendous amount of work has gone into discovering disease-associated 

biomolecules by analyzing data obtained from different ‘‘omics’’ experiments (genomics, 

transcriptomics, metabolomics). However, due to the complexity of biological systems and the 

poor integration of various forms of ‘‘omics’’ data, integrative analysis of multi-omics data is a 

difficult undertaking. Various feature selection procedures have been shown to provide different 

sets of biomarkers [2]. A classic approach to biomarker selection comprises statistical approaches 

such as the Student’s t-test and ANOVA, which find and choose biomolecules with a significant 

change in expression level between separate biological groups (normal vs. disease; untreated vs. 

treated). One clear disadvantage of these methods is that they ignore the fact that biomolecules 
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in a biological system are densely interconnected and interact with one another. Integrated 

analysis using tensor decompositions of data from many sources has recently demonstrated the 

ability to improve knowledge discovery. In metabolomics, for example, biological fluids such as 

blood or urine are examined using various analytical techniques to find molecules associated with 

specific diseases or diets [3]. A joint factorization problem has been developed for the topic of 

data fusion [3]. Data from many sources can be represented as several matrices, which can then 

be evaluated jointly using tensor decomposition methods. The tensor factorization has also been 

found to be effective in other domains, including social network analysis [4-8], signal processing 

[9,10], and bioinformatics [11-13]. Also, coupled tensor decomposition methods have been 

developed and employed in chemometrics [14], bioinformatics [11,12], signal processing 

[9,15,16], and data mining [17,18]. With the introduction of high throughput technology capable 

of extensive analysis of genes, transcripts, proteins, and other significant biological molecules, 

the identification of molecular markers of disease processes has become a reality on a scale never 

before seen. It has, however, made it more difficult to extract relevant molecular markers of 

biological processes from these complex datasets. The process of biomarker discovery and 

characterization allows for more sophisticated approaches to integrating purely statistical and 

expert knowledge-based approaches, and tensor decompositions provide a great opportunity to 

aid in the interpretation of such interactions and the identification of reliable biomarkers [19]. 

There are several review papers on biomarker discovery using tensor decompositions published 

in the last few years [20], [21]. 

This paper reviews research in this area from 2015 to 2022 to provide useful insights into the 

recent advances in biomarker discovery using tensor decompositions and suggests future 
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research directions. The challenges, drawbacks, and new opportunities that have arisen due to 

the availability of more multi-omics data and information have called for studies on developing 

tensor decomposition methods to detect biomarkers in recent years. Figure 2.1 shows the 

number of publications that use tensor decompositions for biomarker detection or deal with 

biomarker discovery challenges published between 2015 and early 2022. 

 

 

Fig.2.1: Number of papers from 2015 to 2022 
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The first step in this systematic review was to define the goals of the survey. These goals are 

described as follows.  

• Identifying the problems and challenges regarding biomarker discovery in multi-omics 

datasets by tensor decompositions. 

• Identifying algorithms and methodologies employed to solve these problems and their 

challenges. 

• Identifying areas of application for biomarker discovery in multi-omics datasets. 

• Identifying evaluation criteria used to evaluate developed TD-based methods. 

 

In this systematic review, we first searched the literature for publications using scientific search 

engines and collected databases of publications. The search query used was (“biomarker” AND 

“discovery”) AND (“multi-omics”) AND (“tensor” AND “decompositions”). This search query was 

used on several databases including IEEE Xplore, ACM Digital Library, Lynda.com, ScienceDirect, 

and SpringerLink. Then, the selected publications were studied, and the information was used to 

answer the main questions of this systematic review.  

 

2.4 Integrating Multi-Omics Datasets: Opportunities and Challenges 

 

Developing computational models to discover potential biomarker-disease connections in multi-

omics data, which could provide insight into disease pathophysiology and improve illness 

diagnostic and prognostic accuracy, is gaining popularity. The recent introduction of effective and 

low-cost screening technologies has resulted in massive amounts of biological data, paving the 
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door for a new era of treatments and customized medicine [22, 23]. Clinical information and 

‘‘omics’’ data can be acquired directly from databases or collected through screening 

technologies for disease [24], class prediction [25], biomarker identification [26], disease 

subtyping [24], better system biology understanding [27], drug repurposing, and other 

applications. Each ‘‘omics’’ data type is specific to a single "layer" of biological information, such 

as genomics, epigenomics, transcriptomics, proteomics, or metabolomics, and provides a 

complementary medical perspective of a biological system or an individual [22].  

1) Integration analysis of multi-omics datasets:  

Single-omics investigations were previously conducted to discover the causes of diseases to help 

design or pick a suitable treatment. Most diseases, on the other hand, involve complicated 

molecular pathways in which distinct biological layers interact with one another. Therefore, there 

is a greater demand for biomarker discovery in multi-omics investigations that can incorporate 

several layers and provide a fuller picture of a particular phenotype [28]. Faint patterns in gene 

expression data can be enhanced by several ‘‘omics’’ methods [29]. For example, complementary 

information can be exploited to better explain classification results [30], improve prediction 

performance [31, 32], or comprehend complex molecular pathways [33]. Multi-omics studies, on 

the other hand, comprise data of varying types, scales, and distributions, with thousands of 

variables and only a few samples. Furthermore, biological datasets are complicated and noisy, 

with the possibility of errors due to measurement errors or unique biological variances. Finding 

relevant information and incorporating ‘‘omics’’ data into a useful model is difficult, and several 

methods and tactics have been developed in recent years to address this difficulty [24, 34]. As a 

result, researchers are seeking approaches that, by adding additional ‘‘omics’’ data, result in an 
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increase in performance rather than simply increasing the complexity and processing time of the 

task. 

2) Challenges of multi-omics datasets: 

When integrating multi-omics datasets, several obstacles occur. Some of these, such as the 

existence of missing values or class imbalance, are general to machine learning analysis.  When 

working on rare events, such as an uncommon attribute in a population, class imbalance occurs 

when the distribution of classes in the learning data is biased. This problem can be solved using 

a variety of strategies, including sampling and cost-sensitive learning. Sampling tries to balance 

the dataset before the integration process, where either the majority class is randomly under-

sampled, or the minority class is oversampled by creating new artificial observations, or a 

combination of both methods. Cost-sensitive learning is directly integrated into the algorithm 

and balances the learning process by giving more weight to misclassified minority observations 

[35, 36]. Some are more specific and include the noisiness and complexity of ‘‘omics’’ datasets, 

which naturally occur in biological data. Relevant patterns can occasionally be obscure and 

involve a large number of molecules from various ‘‘omics’’ layers. Therefore, identifying those 

patterns across numerous datasets is a challenging endeavor. Furthermore, due to financial 

constraints, the rarity of the desired phenotype, or a lack of willing volunteers, etc., the collection 

of substantial volumes of biomedical data is frequently only possible on a small sample of 

patients when conducting ‘‘omics’’ or multi-omics investigations. This results in datasets with 

variables greatly exceeding the number of samples. Machine learning algorithms have a 

propensity to overfit these high-dimensional datasets, which reduces their generalizability to 

new data. This problem is known as the ‘‘curse of dimensionality’’ [36]. Another difficulty is their 
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heterogeneity, which must be handled properly because various ‘‘omics’’ methodologies may 

provide data with varying distributions of types (e.g., numerical, categorical, continuous, 

discrete, etc.). Furthermore, ‘‘omics’’ datasets can vary greatly in size (number of features), with 

a typical gene expression dataset having tens of thousands of variables and a metabolomics 

dataset having only a few thousand. Disparities between ‘‘omics’’ datasets might impede 

integration and create an imbalance in the learning process [37]. Scalability is an additional 

technical issue regarding multi-omics datasets. The scope of genomics research has been 

broadened from a narrow single-layer examination to a comprehensive multi-dimensional 

interpretation of biological data as a result of the accessibility of these massive multidimensional 

and heterogeneous datasets. To create rich, multi-scale characterizations of biological systems, 

the emphasis is on combining various forms of omics data from many layers of biological 

regulation. However, it necessitates systems that can scale across heterogeneous datasets while 

also centralizing data processing analysis, and interpretation inside a unified inference 

framework [38-40].  Therefore, developing a quick and effective method that can compute tensor 

decompositions of larger quantities of data would lead to more effective biomarker discovery in 

multi-omics datasets. Figure 2.2 shows the number of papers that deal with specific problems in 

biomarker discovery in multi-omics datasets: the curse of dimensionality, scalability, and 

noisiness problems. Typically, these papers describe the development of procedures that 

perform better. While these issues are still being researched to improve biomarker identification 

in multi-omics datasets, data heterogeneity necessitates a more thorough investigation. 
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Fig.2.2: Number of studies dealing with a specific problem in biomarker discovery in 
multi-omics dataset 
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arrays to focus on the aspects of interest and provide a clear illustration of the results. PARAFAC 

0

5

10

15

20

25

curse of dimensionality Scalability Heterogeneity Noisiness and complexity

Problem

No. of publications



 14 

is based on a mathematical model that depicts the interactions of the dimensions to be evaluated 

in the input data. The analysis dimensions must be defined before performing PARAFAC. Each 

input value can then be related to an index for each of the dimensions. Assuming N=3 

dimensions, for example, 𝑥ijk, identifies the measured value for index 𝑖 in the first dimension, 𝑗 in 

the second dimension, and 𝑘  in the third dimension. Equation 2.1 represents the PARAFAC 

model, where F denotes the number of so-called components and defined so-called loading 

matrices A, B, and C of dimensions 𝐼 × 𝐹, 𝐽 × 𝐹, and 𝐾 × 𝐹 and with elements 𝑎if, 𝑏jf, and 𝑐kf, 

respectively, and the model error, 𝜀ijk.  

			𝑥!"# = ∑𝑎!$ 𝑏"$𝑐#$ +	𝜀!"#                                                   (2.1) 

Reference [41] provides the generic model that PARAFAC uses to represent the input data. A 

graphical illustration of this model is given in Figure 2.3. The data is decomposed into triads or 

trilinear components, where each component comprises one score vector and two loading 

vectors rather than one score vector and one loading vector as in bilinear PCA. It is the standard 

three-way procedure to consider scores and loadings numerically similarly, without making any 

distinction between the two. A well-established advantage of the PARAFAC model is the 

mathematical uniqueness of the solution. Unique solutions can be expected if the loading vectors 

are linearly independent in two of the modes and the third mode, and if no two loading vectors 

are linearly dependent in the third mode. 

PARAFAC applications: 

Zhang et al defined ‘‘a temporal and spatial feature similarity measure to calculate the rate of 

change and velocity of each biomarker in MRI to form a vector that represents the morphological 
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change of the biomarker, then calculating the similarity of the changing trend between two 

biomarkers to encode the data in a third-order tensor to extract interpretable biomarker latent 

factors from the original data using PARAFAC decomposition.’’ [42].  

Jung et al proposed ‘‘a multi-omics analysis method called MONTI (Multi-omics Non-negative 

Tensor decomposition for Integrative analysis), that selects multi-omics features that can 

represent trait-specific characteristics.’’ They describe the usefulness of multi-omics integrated 

analysis for cancer subtyping. The multi-omics data were first merged in a biologically meaningful 

way to generate a three-dimensional tensor, which was then decomposed using the PARAFAC 

method. MONTI was then utilized to identify highly informative subtype-specific multi-omics 

features [43]. 

 

Figure2.3: A graphical illustration of the PARAFAC model. 

 

2.5.2 Tucker3 

Tucker3 is another tensor decomposition method that could be used in multi-omics datasets to 

detect biomarkers. The Tucker3 model name is taken from psychometrician Ledyard R. Tucker 

who in 1966 proposed the model. He also presented a method for calculating the model's 

parameters, and several changes to the algorithmic approach have subsequently been suggested. 
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The model has remained a powerful tool for analyzing three-way (and higher way) data arrays. 

The Tucker3 model is frequently used for decomposition, compression, and interpretation in 

many applications because of its generality and the way it treats the PARAFAC model as a 

particular instance. The Tucker3 model can be seen as an extension of the PARAFAC-

CANDECOMP model along the line of outer products. Kroonenberg provided ‘‘a full mathematical 

description of this model as well as advanced topics such as data preparation/scaling and core 

rotation. Different numbers of factors in each of the modes can be extracted using the Tucker3 

model [44].’’ Figure 2.4 is used to provide a simple explanation of the model. 

Tucker3 applications: 

Taguchi has focused on post-traumatic stress disorder (PTSD), a mental condition that can cause 

symptoms that do not appear to be immediately related to the central nervous system, which is 

thought to be directly affected by PTSD. PTSD-mediated heart disease is one such secondary 

disorder [45]. The spatial separation between the heart and the brain hindered researchers from 

clarifying the mechanisms that link the two disorders, despite the strong associations between 

PTSD and heart diseases. Their goal was to discover the genes that link cardiac problems with 

PTSD. To execute gene selection, they employed Tucker3 factorization as the tensor 

decomposition method to examine the gene expression profiles in diverse tissues, such as the 

heart and brain. The gene expression profiles were regarded as tensors. Gene expression profiles 

in diverse tissues were studied under various conditions such as stressful or unstressful, with 

varying periods of stress and rest time following the application of a stressor. Approximately 400 

potential genes were identified that may mediate heart problems related to PTSD based on the 
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obtained features. Additionally, before being applied to gene expression profiles, Tucker3 was 

applied to a synthetic data set to illustrate the utility of their technique [45,46]. 

 

Fig.2.4: A graphical illustration of the Tucker3 model. 

 

2.5.3 Hybrid and other techniques 

Feature extraction methods are a class of techniques that try to turn a set of input biomarkers 

into another set of variables that are linear or non-linear combinations of the original biomarkers. 

The goal is to extract features in such a way that the resulting new variables retain useful 

information while being less noisy and less redundant. Learning from a smaller set of features or 

biomarkers reduces complexity while increasing computational efficiency. The interpretability of 

a model may be compromised by feature extraction methods since the derived features are no 

longer biological measurements. Feature extraction methods are frequently employed 

experimentally to visualize data and uncover significant features. 

Principal Component Analysis (PCA) is the most extensively used feature extraction approach. 

[47] PCA creates new variables called principal components, which are uncorrelated linear 
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combinations of the original features and optimize the description of variance in the dataset; 

however, PCA is sensitive to outliers and is unable to describe non-linear trends in the data. To 

address these issues, several extensions have been developed, such as Kernel PCA [48] and 

Bayesian PCA [49]. Other similar methods such as Principal Coordinates Analysis (PCoA) [50], 

Correspondence Analysis (CA) [51], and Independent Component Analysis (ICA) [52] may improve 

PCA in certain ways. The majority of feature extraction techniques have also been developed 

with sparsity constraints. Sparse feature extraction methods can be used for feature selection 

with methods such as Sparse PCA (sPCA) [53], Sparse Canonical Correlation Analysis (CCA) [54], 

Sparse Non-negative Matrix Factorization (Sparse NMF) [55], and Sparse CA [56]. These 

approaches, however, fail to examine multi-omics datasets since applying them to concatenated 

‘‘omics’’ typically yields unsatisfactory results. As a result, feature extraction methods are 

frequently used on each ‘‘omics’’ dataset for either block scaling or after concatenation of the 

extracted features or clustering, or other downstream analysis [38]. 

2.5.4 AI for biomarker discovery in multi-omics datasets 

Gene regulatory networks, which are critical for understanding complicated disease mechanisms, 

have become one of the most popular topics for biomarker identification in multi-omics datasets. 

Several large-scale projects have been done and significant amounts of ‘‘omics’’ data have been 

released to identify heterogeneous genetic networks that underlie complex human diseases. The 

gene networks scale is increasing, and methodologies for analyzing large-scale gene networks 

have been proposed. Park et al. proposed a novel AI technique for analyzing gene regulation 

networks in depth. The multilayer networks were decomposed using an AI technique based on 

deep learning to identify all-encompassing gene regulatory systems distinguished by patient 
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clinical features. They extracted global and unique mechanisms of gene regulatory systems from 

the vast multiple networks using an AI technique based on tensor decomposition. They 

developed a novel technique to do integrative analysis of multilayer gene networks, which is an 

essential tool for precision medicine. In their method, gene regulatory networks were built under 

varied sample conditions, and the multilayer networks were thoroughly examined using an AI 

algorithm. To construct a low-dimensional subspace of the multiway interaction between genes, 

a deep learning algorithm for tensor decomposition was applied to the gene network for a target 

sample. They were able to understand the constructed large-scale gene networks since 

prediction and interpretation were carried out on the constructed low-dimensional subspace. 

Their technique is divided into two stages: building sample-specific gene regulatory networks and 

globally analyzing large-scale multiple gene networks using AI technology [57,58]. 

2.6 Applications 

Discovering biomarkers has various uses in the healthcare system, such as early disease 

detection, disease prevention, identifying an individual's risk, monitoring disease, and drug 

development in the pharmaceutical sector. Therefore, biomarker discovery, specifically in multi-

omics datasets by tensor decompositions could help a lot to develop biomarker applications. In 

this section, we will cover some of the important applications of biomarkers in the literature.  

2.6.1 Early disease detection, prevention, and monitoring  

Measures for the early detection of various diseases such as different cancers and stroke offer 

the opportunity to help control rising healthcare costs. We can already see that alternative 

disease prevention strategies will be used in the future because these strategies can and should 

be tailored to each patient based on their unique risk profiles. Fortunately, biomarkers make it 



 20 

possible to detect diseases such as Alzheimer’s and certain cancers at a disease stage even when 

the patient shows no symptoms. The recent failures of potential medications that are tailored 

for various conditions may be an indication that the clinical trial participants are too far along to 

benefit clinically. Therefore, the development of new therapeutics will be greatly influenced by 

validated biomarkers for the early detection and precise diagnosis of diseases in their preclinical 

phases. When biomarkers are used synthetically, they may someday be able to identify patients 

in the initial stages of the disease, when therapeutic modification is most likely possible. Because 

whether medicine is likely to work can frequently be a genetic issue, biomarkers are also 

important in the development of individualized treatment. As a result, determining or excluding 

specific genetic variations can make a significant contribution to therapeutic management, not 

only reducing costs and side effects but also improving treatment quality. Biomarkers can also be 

used to track treatment response [42,59,60]. 

2.6.2 Risk assessment 

Biomarkers can be classified into susceptibility, effect, and exposure indicators. It is commonly 

expected that current developments in genomics, proteomics, and metabolomics will eventually 

translate into a constellation of advantages for human health. However, only a few biomarkers 

have been reported in the past ten years for risk assessment using "omics" technologies; 

however, there is a wide range of potential applications for "omics" technology. The lack of 

integrated bioinformatics techniques, statistical analysis, and predictive models frequently 

severely restricts the use of biomarker-based monitoring systems as a tool for environmental risk 

assessment. Therefore, identifying pertinent and reliable biomarkers that contribute to the 

assessment of environmental and health risks may be necessary [61,62]. 
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2.6.3 Drug discovery and development 

Biomarkers that are robust and verified are required to improve diagnosis, monitor drug activity, 

therapeutic response, and lead the development of safer and more tailored therapeutics for a 

variety of diseases. The development of specialized biomarkers for complicated chronic diseases 

can now be discovered and developed more quickly thanks to recent developments in multi-

omics techniques, bioinformatics, and biostatistics. Even though there are still many obstacles to 

overcome, current initiatives for the discovery and development of disease-related biomarkers 

will help with the best decision-making during the medication development process and further 

our comprehension of the disease processes. To the benefit of patients, healthcare professionals, 

and the biopharmaceutical industry, good preclinical biomarker translation into the clinic will 

pave the path for the effective execution of personalized therapies across a range of complex 

disease areas [63,64]. Figure 2.5 illustrates the distribution of studies focusing on each area of 

application. 
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Fig.2.5: Areas of application for biomarker discovery in multi-omics datasets 

 

2.7 Evaluation Criteria 

In terms of evaluation, there are several metrics available. These metrics include and are not 

limited to the residual sum of squares, precision, and f-scores. The residual sum of squares is the 

sum of the squares of residuals (deviation of predicted from actual empirical values of data). It 

serves as a gauge for the disparity between data and the estimated model. One measure of 

precision is the proportion of correctly selected biomarkers over the whole set of biomarkers. 

The recall rate is calculated as the ratio of the number of correctly selected biomarkers to the 

total number of test biomarkers. The f-score is obtained using a harmonic mean between recall 

and precision. Other metrics, which are introduced based on the nature of the problem and the 

proposed model, can be established and used to analyze the success of biomarker identification 
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approaches employing tensor decompositions in multi-omics datasets. We describe the criteria 

used in the surveyed papers as follows.  

• Root Mean Square Error (RMSE) can be formulated as shown in Equation (2.1), where 𝑡i is the 

test rating value and 𝑝i is the predicted rating value [38,65]. 

 

		𝑅𝑀𝑆𝐸 = 	8%
&
	∑ (𝑡! − 𝑝!)'&

!(%                                          (2.1) 

 

• Residuals Sum of Squares (RSS) is the measure of the discrepancy between the data and the 

estimated model. The important point in tensor decompositions is that the trilinear model is 

found to minimize the RSS. Equation 2.2 shows this metric, where 𝑦i is the ith value of the 

biomarker to be predicted, and 𝑓(𝑥i) is the predicted value of 𝑦i [43]. 

 

	𝑅𝑆𝑆 = 	∑ (𝑦! − 𝑓(𝑥!))'&
!(%                                        (2.2) 

 

• Precision (𝑝) is the proportion of the relevant features among all retrieved feature sets and 

assesses the predictive power of a method. Precision can be formulated as follows where 𝑡p 

is the true positive, and 𝑓p is the false-positive selected cases [43,66]. 

 

		𝑝 = 	 )*
)*+$*

                                                                 (2.3) 
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• Recall rate (𝑟) calculates the proportion of the selected features as part of the optimal feature 

set relative to all features and assesses the effectiveness of an algorithm in identifying the 

true positive features. Recall can be formulated as follows where 𝑡p is the true positive, and 

𝑓n is the false negative in selected cases [66]. 

 

𝑟 = )*
	)*+$-

                                                                (2.4) 

 

• The f-score which utilizes precision (𝑝) and recall (𝑟) can be defined as follows. Recall and 

precision are balanced in the f-score when the	𝛽 constant parameter is set to 1 and is in favor 

of precision when 𝛽 > 1 [43,66]. 

 

	𝑓 = ./!+%012
(/!1)	+2

                                                                     (2.5) 

 

• P-values are a commonly used criterion used for ranking biomarker candidates and 

determining the top set of markers considered for further development and validation. Thus, 

statistical P-values can play a fundamental role in the evaluation of biomarker discovery 

studies. In the case of control studies, the P-value associated with a statistic is defined as 

follows: [63,67] 

 

			𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐	 ≥ 	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑑𝑎𝑡𝑎	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐	|	𝑐𝑎𝑠𝑒𝑠	𝑠𝑎𝑚𝑒	𝑎𝑠	𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)				(2.6) 
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• Sensitivity and Specificity are two other measures that evaluate the diagnostic performance 

of a biomarker. Sensitivity is the ability to detect a disease in patients in whom the disease is 

truly present (i.e., a true positive), and specificity is the ability to rule out the diseases in 

patients in whom the disease is truly absent (i.e., a true negative) [66,68,69]. 

• Computation time and cost for biomarker detection in multi-omics datasets is an important 

evaluation criterion, especially where the problem requires a real-time application or there 

is a large amount of data for the computation [70].  

Figure 2.6 shows the distribution of evaluation criteria used in the reviewed papers. The top 2 

criteria are RSS and Precision. However, the majority of the papers used a combination of criteria 

to enhance their performance evaluation.  
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Fig.2.6: Evaluation Criteria 

 

2.8 Conclusion and Future Research Directions  
 

There are many directions for future research. Dealing with long computation times and the 

associated costs is one of the most significant issues. Depending on the application, a large 

quantity of data may need to be evaluated in order to design a Tensor Decomposition (TD)-based  

strategy for biomarker discovery. The majority of research in the literature focuses on the 

development of solutions for difficulties such as interpretability and scalability; however, they 

rarely focus on the efficiency of the models. Proposing and developing TD-based strategies for 

dealing with massive amounts of data from various ‘‘omics’’ types is a research area that has not 

been extensively investigated. Another issue is that the recommended solutions are often 

developed for a specific application area. Future research directions might find it interesting to 
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offer a framework that encompasses several application areas. Recently, some researchers have 

used neural networks and machine learning to find biomarkers in multi-omics datasets. On this 

subject, several machine learning and deep learning models may be developed, and their 

performance can be compared to that of conventional approaches [57,58]. Additionally, different 

machine learning and deep learning models in terms of chemometrics can be developed in 

biomarker discovery in multi-omics datasets by tensor decompositions. 

 

2.9 Chapter Conclusions 
 

Recent advancements in "omics" technology have opened up new avenues for researchers to 

explore disease biomarkers at a systemic level. Extensive efforts have been dedicated to 

uncovering disease-associated biomolecules by analyzing data from various "omics" 

experiments, such as genomics, transcriptomics, and metabolomics. In light of these 

developments since 2015, it was essential to conduct a comprehensive review of the existing 

research in this field. To achieve this, we established clear goals and research questions to guide 

our review of biomarker discovery in multi-omics datasets using tensor decompositions. 

Following a defined protocol, we systematically retrieved and refined relevant articles, carefully 

reviewing, and analyzing the information extracted from these papers. Our review began by 

highlighting the challenges and issues that motivate researchers to develop tensor 

decomposition-based models for biomarker discovery in multi-omics datasets. We delve into the 

methodologies and models employed by researchers to address these challenges, exploring their 

strengths and limitations. Additionally, we cover the diverse application fields in which biomarker 

discovery has been developed. By examining these areas, we gain valuable insights into the 



 28 

current state of research and the potential impact of biomarker discovery in various domains. 

Furthermore, we critically discuss the limitations within the field of biomarker discovery in multi-

omics datasets using tensor decompositions. This assessment helps to identify areas that require 

further investigation and improvement. In light of these limitations, we outline future research 

directions and highlight opportunities that researchers should focus on. By elucidating these 

future directions, we aim to inspire and guide the scientific community in advancing the field of 

biomarker discovery, ultimately contributing to improved diagnostic and therapeutic 

approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Chapter 3 

 

Related Literature on multi-dimensional data analysis in cancer studies 

 

Multi-dimensional data refers to data sets that contain multiple attributes or features. Each 

attribute represents a different dimension or variable, and the combination of these dimensions 

creates a multi-dimensional space. This type of data is commonly encountered in various fields, 

including statistics, machine learning, data mining, and computer graphics [72]. Multi-

dimensional data presents challenges such as the curse of dimensionality, visualization 

difficulties, storage and computational complexity, dimensionality reduction needs, correlation 

and redundancy issues, noise and outliers, and interpretability concerns. Tensor decomposition 

is an approach that enhances the capability of multi-dimensional data analysis. It allows for the 

decomposition of a three-way tensor into lower-dimensional components, enabling 

dimensionality reduction, feature extraction, and pattern discovery [44]. By leveraging tensor 

decomposition, meaningful insights can be obtained from complex multi-dimensional data. 

There are several studies that aim to incorporate tensor decomposition into various applications 

and domains. These studies utilize Tensor decomposition to analyze and extract insights from 

multi-dimensional data in fields such as chemometrics [14], and bioinformatics [12].  

Tensor decomposition has been increasingly utilized in cancer research to analyze multi-

dimensional data. Several studies have employed tensor decomposition to integrate genomics, 

transcriptomics, proteomics, and other omics data types. By applying tensor decomposition, 

these studies aim to uncover underlying molecular mechanisms, identify biomarkers, and 
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enhance our understanding of cancer progression and treatment response. This approach 

enables the integration of diverse data sources and facilitates comprehensive analysis, leading to 

improved insights into cancer biology and potential advancements in personalized medicine. 

With the purpose of cancer study, research on the integration analysis of multi-dimensional 

datasets using tensor decompositions can be broadly classified into two major groups. The first 

group encompasses methods based on canonical polyadic decomposition (or PARAFAC). The 

second category comprises algorithms based on Tucker3 decomposition.  

Deng et al. [90] proposed a novel semi-symmetric PARAFAC decomposition method and 

introduced the concept of a correlation tensor, which captures spatial correlation. Their aim was 

to do a breast cancer study that uses images taken of different regions with varying photon 

wavelengths. Tumor-associated microvesicles (TMVs) are a strong indication of invasive tumors. 

Unlike other imaging studies, TMVs in breast cancer can appear randomly. To efficiently identify 

TMVs, the article proposes incorporating pixel correlation in multimodality image analysis. This 

method efficiently recovers correlation structures among pixels, allowing for the extraction of 

important features for disease diagnosis, even with limited modalities. 

In another paper, the authors of [91] focus on the challenges of analyzing multimodality breast 

cancer imaging data, specifically the random distribution and heterogeneous patterns of tumor-

associated micro-vesicles. To address these challenges, the researchers propose a novel 

multilayer tensor learning method that incorporates heterogeneity into a higher-order canonical 

polyadic decomposition. By utilizing subject-wise imaging features and multimodality 
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information, they develop an approach that efficiently captures the heterogeneous spatial 

features of signals and integrates multimodality information simultaneously. 

Diaz et.al [92] proposed CLIGEN, a computational pipeline for unsupervised subtyping of complex 

diseases using non-negative PARAFAC decomposition of a binary tensor that combines clinical 

and somatic mutation patient data. The evaluation of breast cancer subtypes discovered by 

CLIGEN shows promising results in refining known subtypes and revealing new characteristics, 

particularly for triple-negative breast cancer. CLIGEN demonstrates the potential for high-

throughput subtyping of complex diseases in precision medicine. Additionally, it is found that 

patient membership proportions in CLIGEN-discovered subtypes are better predictors of survival 

time compared to data-driven molecular and clinical phenotypes.  

In addition, Taguchi et al [45] proposed a tucker3-decomposition based unsupervised feature 

extraction approach for prostate cancer multi-omics datasets with a large number of features 

and a small number of samples. Their method outperforms other supervised and unsupervised 

feature selection methods when applied to synthetic and multi-omics datasets. The genes 

selected by tucker3-based unsupervised feature extraction are enriched with known tissue-

related genes and transcription factors.  

In the context of analyzing multi-dimensional image datasets, Lu et al. [93] introduced a new 

spatial-spectral classification framework based on Tucker3 modeling for hyperspectral imaging 

in the application of head and neck cancer detection. This method incorporates both spatial and 

spectral information of the hypercube and performs dimensionality reduction. With the 
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proposed classification framework, they were able to distinguish between tumor and normal 

tissue in animal experiments with different tumor sizes.  

The authors of [43] proposed a novel multi-omics analysis approach named MONTI (Multi-Omics 

Non-Negative Tensor decomposition for Integrative analysis). The primary objective of MONTI is 

to identify multi-omics features that accurately represent specific traits. Their research 

demonstrates the effectiveness of integrated analysis using multiple omics datasets, particularly 

in the context of cancer subtyping. To achieve this, they began by integrating diverse multi-omics 

data in a biologically meaningful manner, resulting in a three-dimensional tensor. This tensor is 

then subjected to a non-negative PARAFAC decomposition method. Through this process, MONTI 

effectively identifies subtype-specific multi-omics features that carry significant information. 

They applied the MONTI method to three case studies involving 597 breast cancer, 314 colon 

cancer, and 305 stomach cancer cohorts. Remarkably, in all these cases, the classification 

accuracy of cancer subtypes significantly improved when leveraging the entirety of available 

multi-omics data. 

The studies mentioned above did not utilize a combination of Tucker3 decompositions and ASCA+ 

[78] with bootstrapping to identify biomarkers in multi-omics datasets specifically for cancer 

subtyping. To the author's knowledge, this thesis describes the first study to extract multi-omics 

features, or biomarkers, from the colon cancer dataset to develop a model capable of accurately 

classifying the four primary subtypes of this cancer. In the next chapter, we introduce our novel 

approach, outlining how it addresses this research gap and presents a comprehensive 

methodology for the identification and classification of colon cancer subtypes. 
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Chapter 4 

Methodology- Tested on a published dataset (Blue Crab data) 

 

The complementary nature of ANOVA Simultaneous Component Analysis (ASCA) and Tucker3 

tensor decompositions is demonstrated on designed datasets. We show how ASCA can be used 

to (a) identify statistically sufficient Tucker3 models; (b) identify statistically important triads 

making their interpretation easier; and (c) eliminate non-significant triads making visualization 

and interpretation simpler.  For multivariate datasets with an experimental design of at least two 

factors, the data matrix can be folded into a multi-way tensor. ASCA can be used on the unfolded 

matrix and Tucker3 modeling can be used on the folded matrix (tensor). Two novel strategies are 

reported to determine the statistical significance of Tucker3 models using a previously published 

dataset. ASCA+ is used to determine the significance of experimental factors and their 

interactions and detect three outliers that were previously undiagnosed using the Mahalanobis 

Distance method of ASCA. ASCA+ with permutations was used to analyze Tucker3 residuals. A 

statistically sufficient Tucker 3 model was created by adding factors to the Tucker3 model in a 

step-wise manner until no ASCA detectable structure was observed in the residuals. The original 

Tucker3 model with 4×5×2	factors, was insufficient to account for all of the systematic variation 

in the dataset, whereas the new 3×7×3 Tucker3 model adequately explains the experimental 

factors A (disease state/region), B (tissue type), and their interaction, A×B. A bootstrap analysis 

of the Tucker3 model residuals was used to determine confidence intervals for the loadings and 

the individual elements of the core matrix and showed that 21 out of 63 core values of the 
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3×7×3 model were not significant at the 95% confidence level. Exploiting the mutual 

orthogonality of the 63 triads of the Tucker3 model, these 21 factors (triads) were removed for 

visualization and interpretation of the model. An ASCA backward elimination strategy is reported 

to further simplify the Tucker3 3×7×3 model to 36 core values and associated triads. ASCA was 

also used to identify individual factors (triads) with selective responses on experimental factors 

A, B, or interactions, A×B, for improved model visualization and interpretation. Figure 4.1 shows 

the graphical representation of a Tucker3 model of the blue crab dataset. 

 

Figure 4.1 A graphical representation of a Tucker3 model of the blue crab dataset. 

4.1 Introduction 

Tensor decompositions were invented by Hitchcock in 1927, and the multiway model was 

invented by Cattell in 1944. These ideas received little attention until Tucker's work in the 1960s 

and Carroll, Chang, and Harshman's work in 1970, which all appeared in the psychometrics 

literature. Tensor decompositions were reportedly used for the first time in the field of 

chemometrics by Appellof and Davidson in 1981, and have since then grown in popularity [71,72] 
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across various disciplines including signal processing, computer vision, data mining, graph 

analysis, neuroscience, and more. Additionally, there are numerous software packages that can 

be used to work with tensors [72]. Recently, bootstrap methods for obtaining uncertainty 

estimates in the form of confidence intervals for all parameters resulting from tensor 

decompositions (CANDECOM/PARAFAC or Tucker3) have been developed [73]. 

In designed experiments where a multivariate dataset is generated, the design of the experiment 

as well as the relationship between the different variables should be considered, as both are 

interesting and can help to understand the system under study and the underlying variation in 

the dataset. ANOVA simultaneous component analysis (ASCA) was introduced as an exploratory 

tool for the analysis of multivariate datasets with an underlying experimental design and to 

quantify the statistical significance of the experimental factors by determining p-values through 

the different permutations and bootstrap methods [74].  

High dimensional datasets with an underlying experimental design of at least two factors in 

multiple levels can be folded into a tensor form which can be analyzed by a Tucker3 tensor 

decomposition if at least one of the factors has common samples or subjects. Therefore, ASCA 

and Tucker3 are complementary to each other, as they can be used to analyze the same kind of 

datasets. We use this novel combination of ASCA and Tucker3 models to revisit the Tucker3 

analysis published in an original report [75] and also illustrate how this combination of ASCA and 

tensor decompositions can be used to gain insights into the statistical significance of various 

factors and loadings in the tensor decomposition. 
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4.2 Experimental Methods 

Eastern North Carolina's Pamlico River is a significant commercial source of blue crabs 

(Callinectes sapidus). In 1986, there was a cause for concern as the appearance of diseased crabs 

with lesions of 5 to 25 mm penetrating the carapace of the crabs was observed. Interestingly. 

diseased crabs were being caught in greater numbers near a phosphate strip mine [75]. A similar 

issue was discovered in the Saint Johns River near a phosphate strip mine in Florida [76]. At that 

time, the operator of the mine had a permit to discharge up to 20 ppm fluoride into the river, 

which was mixed with large quantities of groundwater pumped from the perimeter of the strip 

mine to depressurize the aquifer [76]. In a study by Gemperline et al., it was hypothesized that 

environmental stress due to this discharge weakened the organism so that its normal 

immunological response was unable to ward off opportunistic infection by chitinoclastic bacteria. 

Knowing that fluoride ions can form water-soluble complexes with many minerals that are 

insoluble at normal river pH, a study of trace elements in crab tissue samples was conducted [75].  

In October and November of 1989, gill, muscle, and hepatopancreas tissue samples were taken 

from 16 blue crabs in each of three groups: Albemarle, diseased Pamlico, and non-diseased 

Pamlico (48 crabs in total; equal samples for each group) to study whether trace element levels 

might be associated with the occurrence of the disease. Twenty-eight elements including Ag, Al, 

As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Se, Si, Sn, Ti, Tl, U, V, Y, and Zn were 

measured in the digested tissue samples by inductively coupled plasma atomic emission 

spectroscopy (ICP -AES) [75]. The dataset was arranged into a three-way array of 48 

individuals×25 elements×3 tissue samples. The elements, Tl, Be, and Y were excluded as the 

concentrations of these elements were at or below the detection limit. In the original paper, a 
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three-mode PCA analysis was used to construct a Tucker3 model of rank 4×5×2 orthogonal basis 

vectors and was used to visualize clusters of elements and crabs. In a subsequent paper, a three-

mode mixture method of clustering analysis was performed [77] and confirmed the existence of 

the clusters that were only ‘visually’ observed in the original report [75].  

4.2.1 ANOVA simultaneous component analysis 

The dataset considered in this paper follows a three-factor nested design with subjects (crabs-

Factor C) nested in a disease state/region (Factor A).  Three tissue types, muscle, hepatopancreas 

and gill were sampled from each crab (Factor B).  In this paper we use a recently published ASCA+ 

method called ParGLM [78] (https://github.com/josecamachop/MEDA-Toolbox) that performs 

permutation analysis of unbalanced nested designs to determine the statistical significance of 

experimental factors and their interactions [79]. ASCA is a multivariate extension of the analysis 

of variance (ANOVA). It is particularly useful for determining the significance of one or more 

factors in designed experiments by separating the variance attributable to the effects of 

experimental factors, typically a treatment or an experimental condition, and their interactions 

[80].  In a typical nested ANOVA (also known as hierarchical ANOVA) the values of individuals (in 

our case blue crabs, Factor C) are found in combination with only one value of the higher-level 

factor (Factor A, disease state/region). The lower-level subgroupings must be treated as random 

effects variables, meaning they are random samples of a larger set of possible subgroups [81]. 

Summarizing the experimental design of this dataset gives the following: 

https://github.com/josecamachop/MEDA-Toolbox
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1. Factor A: Disease state/region, three levels (Diseased Pamlico, Healthy Pamlico, and 

Albemarle control); a fixed factor that measures the variance over different disease 

state/regions. 

2. Factor B: Tissue type, three levels (gill, hepatopancreas, and muscle); a fixed factor that 

measures the variance over different tissues 

3. Factor C: subject factor (crabs) nested in Factor A, disease state/region, noted in the 

remaining of the paper as C(A), a random factor that measures the inter-subject variance 

nested in Factor A.  

4. Interaction A×B: noted as AB, which the extent to which regions cause a differential 

evolution over the tissue between the Diseased Pamlico, Healthy Pamlico, and Albemarle 

control groups. 

In matrix notation, the n×m dataset X of measurements can be decomposed as follows using 

ASCA: 

X = 1mT + A + B + C(A) + AB + R                                            (4.1) 

where 1 is a vector of ones of suitable length, m represents the overall mean, and A, B, and C(A) 

represent the factor or effect matrices, AB the interaction matrix, and R the residual matrix. In 

this paper, we use the technique referred to as ASCA+[79] as implemented in ParGLM[78] to 

account for the study’s unbalanceness. In ASCA+, the original ASCA methodology is extended to 

unbalanced designs by using general linear models (GLM) to estimate the effect matrices, instead 

of the classical ANOVA estimators based on differences in means [78,79] 
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Simultaneous Component Analysis (SCA) was then performed on the individual effect matrices 

to model and visualize the variability of each effect. In SCA, the different samples are modeled 

using PCA. Each of the matrices resulting from the ANOVA partitioning is decomposed as: 

Xi = Ti Pi
T + Ri (4.2) 

 

where Ti and Pi
T are the scores and loadings for the ith partition, respectively, where a partition, 

I, represents an experimental factor or interaction, and Ri is the corresponding residual matrix. 

ASCA is a supervised method where external knowledge about the experimental design is used. 

Factor A and Factor B in this study have three levels each, so the dimensionality of the PCA 

visualizations of the effect matrices A and B is constrained to rank two.  Rank four PCA models 

were used to visualize the interaction matrix, AB.  Unconstrained permutations on the residuals 

of reduced ANOVA models was used, the most promising approximate test following Anderson 

and Braak [82] and implemented for nested designs in ParGLM[78].  

Permutation tests were performed by using 10,000 randomizations, where the p-value of the test 

is defined as the fraction of the permutations for which the employed metric was better than the 

unpermuted one. An effect is considered significant if its p-value is smaller than an appropriate 

significance threshold. In this work residuals and tensors with p-values less than 0.05 were 

considered to significant have ASCA detectable structure at the 95% confidence level. It is 

important to note that permutation tests are only exact for main effects, but approximate tests 

for interactions have nonetheless been proved to be useful [83,84]. 
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Outlier detection is important when dealing with problems such as hypothesis testing, 

goodness of fit tests, regression, or classification techniques. In this study, 95% confidence 

ellipsoids of the mean centered original data were calculated for each experimental factor in 

ASCA, according to [84]. Objects that lie outside of the 95% confidence interval using Hoteling’s 

T2 distribution were considered to be outliers.  Details are provided in the Results and Discussion 

section. 

4.2.2 ASCA+ of the Tucker3 residuals  

ASCA+ was used in a novel way to determine the significance of the Tucker3 models. The 

alternating least squares algorithm TuckerALS with orthogonality constraints was used to 

construct Tucker3 models [85], where three matrices of eigenvectors are computed 

(orthonormal loading vectors), one for each dimension in the original data table (see Figure 4.2). 

Equation 4.3 shows the Tucker3 model for a three-way array X, where xijk are the individual values 

of the tensor; I, J, and K represent the original dimension of the tensor (in this case 48×25×3); P, 

Q, and R represent the number of factors selected for eigenvectors G, H and E (in this case 3×7×3) 

and cpqr is an element of the core matrix, C, a 3×7×3 tensor. The sum of the squared core values 

are analogous to eigenvalues in two-way PCA, equal to the total variance explained by the model 

[85, 86]. 

xijk= @@@ cpqr (giphjqekr) + 𝜀ijk

R

r=1

Q

q=1

P

p=1

 

 

(4.3) 
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The total variance can be partitioned into two parts according to Equation 4.4. 

SStotal = SSfit+ SSresidual (4.4) 

where SSfit is the sum of squares explained by the three-mode model and SSresidual is the residual 

sum of squares. In the previous work [77], for Tucker3 analysis, four factors in the first mode (P 

= 4), five factors in the second mode (Q = 5), and two factors in the third mode were used (R = 

2). The original model selection was accomplished by comparing the variance explained by 

models of different complexity, preserving about 70.66% of the variance in the original dataset. 

However, to determine if this model adequately explains all the experimental factors and their 

interactions in this dataset, ASCA analysis was performed on the Tucker3 residuals. Surprisingly, 

the ASCA results showed that the main factors, A, B and the interactions, AB, were statistically 

significant in the 4×5×2 model residuals, indicating that an insufficient number of factors were 

selected. Details are discussed in the Results and Discussion section. 

 

Figure 4.2 Diagram of the Tucker3 model of the dataset. 
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4.2.3 Bootstrap analysis 

There are three major strategies for performing bootstrap analysis: the parametric bootstrap, 

resampling of residuals, and resampling cases or whole data points [87]. In this work we used the 

resampling of residuals approach. In this approach, the Tucker3 model is estimated using the 

original data, and then bootstrap samples are obtained by resampling the residuals with 

replacement and adding them back to the model estimated values. This strategy assumes that 

the model is correct, and the distribution of the residuals is consistent from individual to 

individual. This is different from the strategy of Kiers [73] which assumes that the entities in the 

first mode are a random sample from a population of such entities. Kiers uses resampling of cases 

(rows) from X with replacement to produce ‘pseudo populations’, Xb. In the case of the blue crab 

data, resampling rows of X would disrupt the experimental design, e.g., the original structure of 

the three different disease state/region populations represented in the designed dataset. 

Instead, in this work the Tucker3 residuals are resampled with replacement and added to the 

estimated Tucker3 model. By resampling the residuals, it is presumed that the Tucker3 model 

used is adequate and that the distribution of residuals from individual cases or objects is the 

same.  

4.3 Software 

ASCA analysis was done using MEDA toolbox (https://github.com/josecamachop/MEDA-

Toolbox) and Tucker3 modeling was computed with MATLAB software written at ECU. The 

Tucker3 code is available from the corresponding author upon request.  

https://github.com/josecamachop/MEDA-Toolbox
https://github.com/josecamachop/MEDA-Toolbox
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4.4 Results and discussion 

4.4.1 Outlier detection 

The Mahalanobis distance method was used to detect outlier samples based on ellipsoids at the 

95% confidence interval on the ASCA score plots for each main factor and the interactions [84]. 

The score plots of ASCA on the auto-scaled dataset with their 95% confidence intervals ellipsoids 

are shown in Figure 2. When the Mahalanobis distances and the sample probability densities 

based on Hoteling’s T2 were calculated, data rows 17, 36, and 128 appear to be outlier objects in 

both factor A and factor B based on visual inspection (see Figure 4.3). These results are 

summarized in Table 4.1, showing objects with a probability density of less than 0.05. only 

outliers common to both factor A and factor B were selected (see bold face entries in Table 4.1). 

 

Figure 4.3 Score plots of ASCA on the auto-scaled data. (a) Score plot for factor A (disease 
state/region), Xa, (b) Score plot for factor B (tissue), Xb. 

  



 44 

Table 4.1 Outliers detected using the Mahalanobis distance and probability density (only samples 
with a probability density < 0.05 are shown) on ASCA plots of factor A (disease state/region), and 
factor B (tissue). 
 

Factor A Factor B 

Sample 
number 

Mahalanobis 
distance 

Probability 
density 

Sample 
number 

Mahalanobis 
distance 

Probability 
density 

17 3.5541 0.0041 17 3.1955 0.0108 

36 3.7672 0.0023 31 2.7199 0.0346 

43 2.7484 0.0324 32 2.9414 0.0205 

80 3.8919 0.0016 36 4.3383 0.0004 

128 4.1756 0.0007 128 2.1696 0.0037 

135 2.7250 0.0342    

 

4.4.2 ANOVA-Simultaneous Component Analysis 

ASCA+ as described in the Methods section was used to assess the significance of the underlying 

factors and their interactions. Although the underlying experimental design was unbalanced due 

to outlier removal, ParGLM was able to accommodate the unbalanced design using general linear 

models (GLM) to estimate the effect matrices [78,79]. The amount of sum of squares, degrees of 

freedom, F ratios, and p-values for the different factors the blue crab dataset is reported in Table 

2. The total variance preserved was 81.85%. 
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Table 4.2 ASCA+ sum of squares, degrees of freedom, F ratios, and p-values (10,000 
permutations) for the different effects in the mean-centered and scaled blue crab dataset with 
outliers removed. 

Source SSQ df F-ratio p-value 

Disease state/Region, A 379 2 17.1 0.0001 

Tissue, B 1461 2 100.9 0.0001 

Individuals C(A) 466 42 1.5 1.0000 

Interaction A×B 456 4 15.7 0.0001 

Residuals 608 84   

Total 3350 135   

 

Inspection of the table shows that tissue (factor B) is the largest effect accounting for more than 

40 of the modeled variation, whereas the disease state/region (factor A) is a much smaller effect 

(about 11 of the modeled variance). Moreover, it is important to note that 18.15% of the total 

variance is not explained by the ASCA model and corresponds to the response differences among 

the different replicates. In general, the ASCA results reported in Table 4.2 indicate that all the 

factors and the interactions are large. To determine whether these differences were statistically 

significant, permutation tests with 10,000 randomizations were performed. As shown in Table 

4.2, both the main effects and their interaction are statistically significant (p < 0.05), indicating 

that the interaction is statistically significant, and the concentration of the trace elements in the 

various tissues is dependent on the population measured.  

4.4.3 ASCA analysis of the Tucker3 residuals  

Tucker3 models were constructed using the TuckerALS method as noted in the method section. 

The core matrix value associated with each triad of eigenvectors represents the total variance 
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explained by the corresponding triad (see Figure 4.1). For Tucker3 models, the total variance can 

be partitioned into two parts: the sum of squares explained by the three-mode model and the 

residual sum of squares. In the original paper, a 4×5×2	Tucker3 model was used to explain 70% 

of the variance in the dataset. When ASCA was performed on the residual matrix, it was 

determined that there was ASCA detectable structure in the residuals, i.e., the residuals still 

contained structure that could be associated with the main factors and their interactions 

indicating that the 4×5×2 model does not sufficiently explain the main factors and interactions. 

Figure 4.4 shows the resulting score plots obtained by ASCA on the Tucker3 residuals. This figure 

clearly shows that there is still a certain degree of separation between clusters of populations, a 

result that was not expected. 

 

Figure 4.4 Score plots of ASCA on the 4×5×2 Tucker3 model residuals. (a) Score plot for factor A 
(disease state/region), Xa, (b) Score plot for factor B (tissue), Xb. 

 

To find the Tucker3 model that on the one hand uses a sufficient number of factors in each mode 

to explain all the variation in the dataset, and on the other hand, is as parsimonious as possible, 
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a grid search strategy was employed for all possible combinations of Tucker3 models with 1 to 

10 factors for P, 1 to 10 factors for Q, and 1 to 3 factors for R. Models that did not meet the 

Kruskal rank criterion [88] for uniqueness were skipped. For each combination of factors, the 

resulting residual matrix was tested for significance using ASCA with 10,000 permutations. Using 

this approach, we concluded that the most parsimonious model that explained all the 

contributions of the experimental factors in the dataset was the 3×7×3 Tucker3 model with 

residual variance of 21.97%, compared to ASCA+, 18.15%. The results obtained by ASCA analysis 

of its residuals show that the p-value for factors A, B and A×B were larger than 0.01 (p = 0.883, p 

= 1, and p = 0.953, respectively), indicating there was not any ASCA detectable structure in the 

residuals. Figure 4.5 shows a plot of the residuals by element and by tissue type from the 3×7×3 

Tucker3 compared to 4×5×2. In the 3×7×3 Tucker3 model (bottom panel), the distribution of the 

residuals for each variable in all three tissue types is symmetrical with a mean of zero, whereas 

in the 4×5×2 Tucker3 model (top panel), the distribution of the residuals still has structure (some 

are non-symmetrical) and many of the means are not zero. 
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Figure 4.5 Distribution of the residuals for each variable in all three tissue types, top: 4×5×2 
Tucker3 model, bottom: 3×7×3 Tucker3 model.  

 

In summary, the 3×7×3 model explains 78.03% of the dataset’s variance and the ASCA+ model 

explains 81.85%. This difference is so small, that it is unlikely that there is any variation remaining 

in the ASCA residual matrix or the 3×7×3 model residuals that could be relevant for 

interpretation. 

4.4.4 Bootstrap analysis 
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A bootstrap analysis (10,000 randomizations) was performed to determine the significance of the 

Tucker3 core values. Our bootstrap method consisted of resampling the model residuals with 

replacement and adding them to the model estimated dataset. It is well-known that a sign 

ambiguity and ordering ambiguity exists in the core values and in corresponding triads of 

eigenvectors or loadings in Tucker3 models [71]. We also observed this ambiguity in the 

bootstrap analysis used in this study. To correct for the shuffling of core values and columns of 

eigenvectors in the bootstrap models and to speed up the calculations, we used the initial non-

bootstrapped solution as a reference model and the starting point for the TuckerALS algorithm. 

The resulting Tucker3 models of bootstrap samples were sorted to match the reference model 

according to the following procedures. First, correlation analysis was used to determine whether 

the loadings were in the same order as the reference loadings for each of the three modes, 

starting with G, followed by H, and then E. Simultaneously, the corresponding core values were 

reordered to match. Additionally, we maintained the sign parity of each combination of four 

values, cijk × gi × hj × ek, by systematically cycling through the full set of core values and flipping 

the sign cijk of the bootstrap model when necessary to match the reference model, followed by 

flipping the sign of gi. In this manner, we ensure that the original solution’s order and algebraic 

sign are matched in the model of the bootstrap sample, Xb, without having to implement an 

extensive bookkeeping strategy. As an example, Figure 4.6 shows the bootstrap distribution for 

core value c212 before and after correction. 
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Figure 4.6 The bootstrap distribution for core value c212 before (left panel) and after (right panel) 
sign flipping correction. Green areas indicate core element values within the 95% confidence 
interval, red areas indicate core element values outside the 95% confidence interval, and the 
solid line indicates the value of the core element of the original reference model (before 
bootstrapping). 

 

Confidence intervals of the resulting bootstrap loading matrices, G, H, E, and the core values were 

then computed. The 95% confidence interval was determined by sorting the bootstrap objects 

and identifying the upper 2.5% and lower 2.5% of the distribution. As an example, Figure 4.6 

shows the distribution of the core values of the first three factors. The green region of the 

histogram lies defines the 95% confidence interval, and the solid line represents the value of the 

core element in the reference model. Examination of the distributions shown in Figure 4.7 

represent c111 (left panel) and c211 (middle panel), reveal that these two core elements are 

statistically significant at the 95% confidence level, as the value of 0 is not included in the interval. 

On the other hand, the histogram of the distribution of c311 (right panel) clearly illustrates that 

the estimated value of the core matrix is not significantly different from zero, and therefore does 

not significantly contribute to the Tucker3 model. This analysis was systematically done for all 
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core values. Table 4.3 shows that 21 of the 63 core values are not statistically significant in the 

3×7×3 Tucker3 model.  

Table 4.3 Statistically insignificant core values determined by bootstrap analysis. H0: cijk = 0. The 
39 core values are sorted smallest to largest (out of 63) and are statistically not different from 0 
(95% confidence level). 

Core value 
(cijk) 

Explained 
variance (%) 

p = 1- 𝛼, 
reject H0:  

cijk = 0 

Core value 
(cijk) 

Explained 
variance (%) 

p = 1-	𝛼, 

reject H0: 

cijk = 0 

1, 3, 2 0.0348 0.06 1, 5, 1 0.0013 0.23 

3, 3, 2 0.0302 0.08 3, 1, 1 0.0007 0.06 

3, 7, 3 0.0226 0.09 2, 7, 1 0.0004 0.36 

2, 5, 3 0.0180 0.30 1, 7, 1 0.0003 0.40 

3, 6, 1 0.0123 0.26 2, 7, 3 0.0001 0.34 

2, 4, 2 0.0074 0.17 2, 3, 3 0.0000 0.44 

1, 6, 2 0.0071 0.28 1, 7, 3 0.0000 0.35 

3, 2, 3 0.0065 0.19 2, 6, 2 0.0000 0.39 

3, 6, 2 0.0050 0.40 3, 1, 2 0.0000 0.48 

1, 5, 1 0.0039 0.22 3, 7, 1 0.0013 0.49 

3, 1, 1 0.0026 0.15    

 

Wanting to create a more parsimonious Tucker3 model, we sought to constrain small, non-

significant core values to zero, however, applying this strategy, we observed that constraining 

even the smallest core value to zero completely changes the model. This can be explained 

because the TuckerALS algorithm uses orthogonality constraints, and thus the core matrix must 

be three-way orthogonal. This guarantees a mathematically unique tensor decomposition, 

analogous to 2-way PCA. When we constrain one of those values to zero, the orthogonality 
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constraints must be relaxed such that the core matrix is no longer orthogonal. This changes the 

model’s eigenvectors and their interpretation. However, noting that each of the 63 individual 

tensors obtained from the 63 combinations of triads are mutually orthogonal, we are justified 

in excluding the 21 non-significant core values and their associated triads (factors) from 

visualization and interpretation, giving a more parsimonious or simpler model containing only 

42 triads out of 63 of the 3×7×3 model.  These removed core values account for only 0.13% of 

the dataset variance, thus the variance modeled by the 3x7x3 model is decreased from 78.03% 

to 77.90%. 

 

Figure 4.7 Distribution histograms (frequency vs core element value) for the null hypothesis 
obtained by bootstrap analysis of selected core values. The green region is inside the 95% 
confidence interval, the red region is outside the 95% confidence interval. The solid line shows 
the core value of the reference model. 

4.4.5 Interpretation of the model loadings 

When comparing the 3×7×3 Tucker3 model with 4×5×2 model, the bootstrap confidence intervals 

for h1 are narrower with the 3×7×3 model. This is because the residuals for the 3×7×3 model are 

smaller with no ASCA detectable structure is left in them, and thus it is to be expected that the 

4×5×2 residuals give larger confidence intervals compared to the 3×7×3 residuals (Figure 4.8). 

Eigenvectors associated with small core values are computed with greater uncertainty in the 

4×5×2 model, as can be seen in the confidence intervals.  The shape of the first loading vector for 
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the 4×5×2 model compared to the 3×7×3 model is slightly different, although the differences do 

not seem to be very large except for two of the elements, Mg and Mo. Observing g1in the two 

models (Figure 4.9), again the 4×5×2 bootstrap confidence intervals are much wider, and 

interestingly the mean bootstrap value is different than the original vector from the reference 

model, which indicates that the distribution of the bootstrap residuals is skewed in the 4×5×2 

model, whereas it is nearly symmetrical in the 3×7×3 model. This suggests that the bootstrap 

confidence interval is approximately normally distributed in the 3×7×3 model whereas it is not in 

the 4×5×2 model. Looking at the plots of the loadings for g3 (Figure 4.10), the pattern in the 

loadings for the 3×7×3 model gives a much cleaner separation of Healthy Pamlico from Diseased 

Pamlico and Albemarle crabs whereas it is more ambiguous for the 4×5×2 model. Looking at the 

values of e1 for both models (Figure 4.11) shows that the values are similar in magnitude and 

shape, but the confidence interval is much narrower for the 3×7×3 model, and the mean 

bootstrap value is different than the original vector from the reference model, which indicates 

that the distribution of the bootstrap residuals is skewed in the 4×5×2 model, whereas it is nearly 

symmetrical in the 3×7×3 model. 
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Figure 4.8 Bootstrap confidence intervals for eigenvector h1, left: 4×5×2 Tucker3 model, bottom: 

3×7×3 Tucker3 model 

 

 

 

 

 

 

Figure 4.9 Bootstrap confidence intervals for eigenvector g1, top: 4×5×2 Tucker3 model, bottom: 

3×7×3 Tucker3 model 
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Figure 4.10 Bootstrap confidence intervals for eigenvector g3, top: 4×5×2 Tucker3 model, 

bottom: 3×7×3 Tucker3 model 
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Figure 4.11 Bootstrap confidence intervals for eigenvector e1, top: 4×5×2 Tucker3 model, bottom: 

3×7×3 Tucker3 model 

4.4.6 Backwards triad elimination procedure 

As described above, bootstrap analysis was used to identify statistically (in)significant core values 

in the 3×7×3 model. We next describe an ASCA backward elimination procedure to further reduce 

the complexity of Tucker3 models. In this procedure, triads are sequentially removed from the 

full model plus residuals, starting with the largest one first. The reduced model is then tested 

using ASCA with permutations to see if there is still detectable structure or variance due to factors 

A, B or A×B in the reduced model. The result is shown in Table 4.4 Core values of the 3×7×3 model 

are shown, ordered from largest variance explained along with ASCA p-values for the reduced 

models using 10,000 permutations. When the core value c111 and its triad of eigenvectors is 

removed, the reduced 3×7×3 model still has highly significant variance on factors A, B and A×B. 

Going down the list sequentially, when the 36th core value and its triad is removed we still observe 

ASCA detectable structure (see Table 4.4). When we remove the 37th core element we no longer 

observe ASCA detectable structure on factors A,	B and the interaction A×B in the reduced model. 

Continuing in this fashion we find that 36 core values and their associated triads are sufficient to 
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model effects of factors A, B and	A×B. We conclude after backwards elimination that the number 

of core values can be further reduced from 39 to 36. All removed core values account for 0.38% 

of the dataset variance, thus the variance modeled by the fully reduced 3x7x3 model with 36 

core values retained is decreased from 78.03% to 77.65%. 

Table 4.4 ASCA backward elimination procedure. The 63 core values of the 3×7×3 model are 

ordered from largest variance explained to smallest with ASCA p-values shown using 10,000 

permutations. The largest 37 are shown. 

Order 
Core 

element 

Pct. 
variance 

of triad 

Factor A 

(Disease state/region) 

ASCA p-values 

Factor B 

(Tissue) 
ASCA p-values 

Interaction 

(A×B) 

ASCA p-values 

1 c111 32.37 0.0001 0.0001 0.0001 

2 c122 13.55 0.0001 0.0001 0.0001 

3 c231 6.62 0.0001 0.0001 0.0001 

4 c213 4.68 0.0001 0.0001 0.0001 

… … … … … … 

28 c363 0.11 0.0490 0.0017 0.0008 

29 c333 0.10 0.2046 0.0012 0.0012 

30 c141 0.10 0.1673 0.0129 0.0006 

31 c163 0.09 0.3825 0.0304 0.0016 

32 c172 0.07 0.3730 0.1542 0.0029 

33 c372 0.07 0.3930 0.1493 0.0068 

34 c321 0.06 0.4606 0.1283 0.0110 

35 c232 0.06 0.4525 0.4202 0.0063 

36 c261 0.05 0.2744 0.2771 0.0089 

37 c322 0.05 0.2706 0.2657 0.0742 
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4.4.7 Interpretation of triads (factors) 

Interpreting the most important triad (factor) c111×g1×h1×e1, (largest amount of variance 

explained), ASCA analysis of this unfolded tensor shows it has significant structure with respect 

to factor A (disease state/region), but not factor B (tissue). Interpretation of the individual vectors 

of triads are aided by this knowledge. In this triad, the vector g1 shows some discriminating power 

between Albemarle crabs which have low values whereases the Diseased and Healthy Pamlico 

crabs tend to have high values (see Figure 4.12 left panel). In vector h1, nine elements, Cr, V, Ti, 

Al, Sn, Fe, Co, Si, and Mn have high values and narrow confidence intervals, indicating they are 

highly significant in this triad. Dividing the value of each element in h1 by the bootstrap range and 

sorting them allows one to rank them in order of decreasing significance (see Figure 4.12, inset 

table of middle panel). Looking at the plot of e1 (see Figure 4.12, right panel), it can be seen that 

the value for gill tissue is very large and the confidence interval is narrow, indicating it is highly 

significant, whereas the loadings for hepatopancreas is not significant. This is consistent with 

ASCA results which indicate that the triad (factor) c111 does not have statistically significant 

structure for explaining differences in tissues, Factor B (tissue). In summary, this triad models the 

response for elements listed above which are strongly correlated in gill tissue of Pamlico crabs. 

These elements are known to be present in the naturally occurring minerals and clay of this 

region and are insoluble at normal river pH; however, being “hard” metal ions, they tend to form 

soluble complexes with fluoride ions. The model indicates their response is significant in gill 

tissue, but less so in muscle and not in hepatopancreas tissue. 
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Figure 4.12:Bootstrap confidence interval for the most important triad (factor) c111×g1×h1×e1, 

For the second most important triad, c122, h2, potassium, K, is highly significant and negatively 

correlated with Ca, P, Se, and Mo; (see Figure 4.13 middle panel) whereas Zn is positively 

correlated with K. The individual loadings in e2 for hepatopancreas and muscle are large in 

magnitude, negatively correlated, and the confidence intervals are narrow, indicating they are 

highly significant; whereas, the coefficient for gill tissue is much smaller and not as significant in 

this triad. The response for these physiologically important elements is an important 

discriminating factor between the control group (Albemarle crabs) and Pamlico crabs (diseased 

and healthy).  
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Figure 4.13 Bootstrap confidence interval for the second important triad (factor) c122×g1×h2×e2 

The third most important triad, c231, is the first instance (largest amount of variance explained) 

that shows significant ASCA structure for tissue (results not shown), whereas the previous two 

triads (largest core values) did not. There are eight Diseased Pamlico crabs that stand out, as they 

have much larger coefficients when normalized by their confidence intervals. In vector h3, 

elements Cu and Na are strongly correlated, and their response is large. This is gratifying because 

blue crabs achieve osmoregulation in response to varying salinity levels by adjusting copper in 

the hemolymph (cyanoglobin) [79]. We also observe that Al is negatively correlated and Pb is 

slightly positively correlated, and e1 shows responses for these elements are important in gill 

tissue. For this triad, ASCA shows significant structure for factors A, B, and interaction, A×B. We 

note that various complexes of aluminum with fluoride will increase its overall solubility in 
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aqueous systems at normal river pH. The fourth core value in order of decreasing size is c213. ASCA 

shows that this is the first triad that has significant structure for tissue but not for region. Trends 

observed in the coefficients of h1 and g2 were previously noted above. Here, the response of 

these elements for the 8 Diseased Pamlico crabs are important in hepatopancreas and muscle as 

observed in e2. 

This same analysis can be performed for all remaining triads as well but will not be further 

showcased in this study. However, it is important to note that the combination of using Tucker3 

triads (which are all orthogonal with respect to each other and can therefore be analyzed in an 

independent way) and ASCA (which tells us something about the significance of the respective 

factors) is a powerful combination of tools that can help in the interpretation of the model and 

results, and to recognize important variables for the factors included in the experimental design. 

4.5 Chapter conclusion 

Analysis of Tucker3 residuals with ASCA+ allows us to identify and avoid Tucker models that do 

not fully model the structure in an experimental design. It is possible for ASCA to miss variation 

due to effects not used as factors in the design, for example, male vs. female crabs; whereas, a 

Tucker3 model would likely capture this variation. This might cause our ASCA procedure to select 

an overly simplistic Tucker3 model, a potential limitation of this approach. We note, however, in 

ANOVA types of analyses, missed factor effects are usually confounded in the studied effects 

which would help guard against selecting overly simplistic Tucker3 models in our ASCA 

procedure. This is born out in the present study, where the ASCA residual variance and the Tucker 

3×7×3 residual variance were similar; 21.97% compared to 18.15%, respectively. 
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In conclusion, we showed the complementary nature of Tucker3 and ANOVA simultaneous 

component analysis (ASCA) models for the investigation of designed multivariate experiments 

with multiple factors and levels. Despite the fact that Tucker3 models do not separate the 

variation between each factor in the way ASCA does, we have showed that (a) ASCA can be used 

to identify statistically sufficient Tucker3 models; (b) ASCA can be used to identify statistically 

important triads and assigning them to specific factors, making their interpretation easier; and 

(c) ASCA can be used to eliminate non-significant triads making visualization and interpretation 

simpler.  We have also shown (d) how this approach can be combined with bootstrapping to 

identify statistically meaningful core values and loading values, making visualization and 

interpretation easier.  

The power of combining these methods is clearly born out when assessing the statistical 

sufficiency of Tucker3 models. Compared to the original 4×5×2 model [5], which used 4 factors 

in G, ASCA analysis indicated only 3 factors were needed for G, indicating that the eigenvector 

matrix, G, was overdetermined and included an unnecessary factor. ASCA also showed that H 

was underdetermined in the original paper where only 5 factors were selected whereas 7 were 

needed to generate a statistically sufficient model. Interpretation of the original 4×5×2 was 

therefore incomplete, with important relationships between the different element contributions 

left out.  The 3×7×3 combination was then used throughout the paper as it was the model with 

the lowest complexity for which this statement was valid.  

Finally, when an experimental design is known about a dataset, this strategy of using ASCA on 

model residuals is not limited to just Tucker3 analysis, but it can also be used in other 
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decomposition methods (e.g., MCR-ALS, PARAFAC, etc.) to give a robust estimation in 

determining a sufficient number of model components, given that the model residuals are 

assumed to be normally distributed. 
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Chapter 5 

Experimental Results  

 

5.1 Dataset 

In this research, we use the Cancer Genome Atlas (TCGA) [https://www.cancer.gov/tcga] which 

is a comprehensive and publicly available resource that aims to understand the molecular basis 

of cancer through the analysis of various genomic, epigenomic, transcriptomic, and proteomic 

data across multiple cancer types. TCGA provides a wealth of information that has greatly 

contributed to our understanding of cancer biology. Regarding colon cancer, TCGA has generated 

multi-omics data for colon adenocarcinoma, which is the most common type of colon cancer. 

This data encompasses several molecular levels, including genomics, transcriptomics, DNA 

methylation, and proteomics. Here is an overview of the different types of data available in TCGA 

for colon cancer:  

1. Genomics: TCGA has performed whole-exome sequencing (WES) on colon cancer samples, 

providing information about the coding regions of genes and detecting mutations. This data 

allows researchers to identify genetic alterations, such as somatic mutations, copy number 

variations (CNVs), and structural variations, which may contribute to colon cancer 

development and progression. 

2. Transcriptomics: TCGA has generated RNA sequencing (RNA-seq) data, which provides 

information about gene expression levels in colon cancer samples. This data helps identify 

differentially expressed genes between cancerous and normal tissue, as well as molecular 

 

https://www.cancer.gov/tcga
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subtypes of colon cancer. It can also reveal potential therapeutic targets and molecular 

pathways involved in the disease.  

3. DNA Methylation: TCGA has also performed DNA methylation profiling using array-based 

technologies, such as the Illumina Infinium platform. DNA methylation is an epigenetic 

modification that can regulate gene expression. Methylation data from TCGA allows 

researchers to identify differentially methylated regions associated with colon cancer, 

providing insights into the epigenetic alterations involved in the disease. 

4. Proteomics: TCGA has generated proteomic data using mass spectrometry techniques to 

measure protein expression levels in colon cancer samples. This data complements the 

transcriptomic data and can provide additional insights into the functional consequences of 

gene expression changes. 

In this study, we conducted a comprehensive analysis of three distinct omics datasets obtained 

from 315 patients diagnosed with colon cancer. The datasets utilized include gene expression, 

miRNA expression, and DNA methylation profiles. Each dataset contains patient IDs for easy 

identification and integration of the data. Among the colon cancer patients in our study, we 

identified four main cancer subtypes, each exhibiting distinct molecular characteristics. The first 

subtype, CMS1, consisted of 43 patients, while the second subtype, CMS2, comprised 125 

patients. The third subtype, CMS3, included 48 patients, and the fourth subtype, CMS4, 

comprised 99 patients [43]. 
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Based on the previous study [43], only primary tumor samples that had complete matching omics 

datasets were chosen for the analysis. The gene and miRNA expression values from TCGA, which 

were already pre-quantified, were directly utilized. Subtype information was obtained from the 

original studies [43]. Our main objective was to uncover gene regulatory multi-omics features, so 

each omics dataset was individually processed to create a gene-centric two-dimensional sample 

(patient)-gene matrix. For this, values within each omics matrix were computed and associated 

with their respective genes. To ensure a uniform tensor structure, all slices needed to have the 

same size. Therefore, although each omics matrix underwent separate processing, they shared 

the same set of genes and samples [43]. The gene expression values were prepared for analysis 

using TCGA level 3 gene expression data, and a log2 quantile normalization process was applied 

across the samples. As for miRNA data, they were organized into bundles based on target genes, 

aligning the number of bundles with the number of genes. The geometric mean of miRNA 

expression within each bundle was then assigned to its corresponding gene. The miRNA 

expression values were also log2 quantile normalized. Regarding methylation data, probes 

located within the transcription start site and 2 Kb upstream of gene promoter regions were 

grouped together per gene. The average methylation level per gene was subsequently quantile 

normalized. Since tensor decomposition requires consistency in the range of omics values, each 

matrix was scaled within a common range. This step was essential to prevent an imbalance where 

omics matrices with significantly larger values, like gene expression, could overpower other 

matrices with comparatively lower values. To achieve this, all normalized matrices were further 

scaled to a range of 0 to 1. In the final step, the processed omics matrices were combined along 

an orthogonal axis, creating a three-dimensional tensor structure [43]. 
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Figure 5.1 displays a surface plot representing a subset of the entire dataset containing 500 

randomly selected genes (variables) after undergoing preprocessing.  

Figure 5.1 A surface plot of a subset of 500 randomly selected genes from the whole dataset. 

5.2 TUSCA (Tucker3+ASCA), and Bootstrap analysis results  

ASCA+ was employed to evaluate the significance of the underlying factors and their interactions. 

Despite the experimental design being unbalanced due to varying patient numbers in each 

subtype, ParGLM managed to handle the unbalanced nature using general linear models (GLM) 

for effect matrix estimation [78,79]. Table 5.1 presents the sum of squares and p-values for the 

various factors in the blue crab dataset. 
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Table 5.1 Sum of Squares and their p-values (10,000 permutations) by the different effects in 
ASCA. 

Source SumSq p-value 

Mean 

A: Disease state/subtype 

82123 

434.04 

- 

9.999e-05 

B: Omics 22002 9.999e-05 

Interaction A×B 820.41 9.999e-05 

 Residuals 7925.2 - 

 

Inspection of the table shows that omics (factor B) is the largest effect, whereas the disease 

state/subtype (factor A) is a much smaller effect. In general, the ASCA results reported in Table 

5.1 indicate that all the factors and the interactions are large. To determine whether these 

differences were statistically significant, permutation tests with 10,000 randomizations were 

performed. As shown in Table 5.1, both the main effects and their interaction are statistically 

significant (p < 0.05), indicating that the interaction is statistically significant, and the expression 

level of each gene in the various omics is dependent on the population measured.  

The TUSCA (Tucker3+ASCA) method (described in chapter 4) was implemented to find the 

optimum Tucker3 model that on the one hand uses a sufficient number of factors in each mode 

to explain all the variation in the dataset, and on the other hand, is as parsimonious as possible, 

a grid search strategy was employed for all possible combinations of Tucker3 models with 1 to 

15 factors for P, 1 to 25 factors for Q, and 1 to 3 factors for R. For each combination of factors, 

the resulting residual matrix was tested for significance using ASCA with 10,000 permutations. 
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Using this approach, we concluded that the most parsimonious model that explained all the 

contributions of the experimental factors in the dataset was the 12×20×3 Tucker3 model with 

explained variance of 52.19%.  Bootstrap analysis (10,000 randomizations) was performed to 

determine the significance of the Tucker3 core values.  

In our study, the 12×20×3 Tucker3 model has a total of 720 core values, out of which 367 core 

values were found to be statistically significant at a significance level of p < 0.05. Table 5.2 

presents the ten most important triads (factors) ranked by the amount of variance they explain. 

In the upcoming section, we focus on the interpretation of the two largest factors;, the triad 

c111×g1×h1×e1, which accounts for the largest amount of variance explained and the second 

significant factor, c322×g3×h2×e2. 

Table 5.2 Statistically insignificant core values determined by bootstrap analysis (99% 
confidence level). 

Core value (cijk) Explained variance (%) p-value 

1,1,1 

3,2,2 

22.778 

3.470 

0 

0 

4,3,3 2.082 0 

2,4,2 0.837 0 

 2,5,3 

7,6,3 

2,2,2 

4,4,3 

3,1,2 

2,3,3 

0.754 

0.708 

0.668 

0.531 

0.482 

0.454 

0 

0 

0 

0 

0 

0 
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5.3 Interpretation of triads (factors) 

Interpreting the most important triad (factor) c111×g1×h1×e1, (largest amount of variance 

explained), ASCA analysis of this unfolded tensor shows it has significant structure with respect 

to factor A (disease state/subtype), but not factor B (omics). Interpretation of the individual 

vectors of triads are aided by this knowledge. This triad is of particular interest due to the vector 

g1, which exhibits some discriminative properties among different subtypes. Notably, CMS3 

patients demonstrate high values in this triad, as illustrated in Figure 5.2. However, it should be 

noted that there is a large offset in the whole dataset because of the q-norm preprocessing 

method which is captured in this tria, thus the interpretation of this loading is not helpful. 

Figure 5.2 Bootstrap confidence intervals for eigenvector g1 

In vector h1, we see (Figure 5.3) a large offset which is necessary to account for offsets 

introduced by q-norm scaling whereas autoscaling as seen in the blue crab data does not 

introduce offsets. For this reason, it is difficult to interpret the h1 loading.  
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Figure 5.3 Bootstrap confidence intervals for eigenvector h1 

Looking at the plot of e1 (see Figure 5.4) it can be seen that the value for miRNA omic is very 

large and the confidence interval is narrow, indicating it is highly significant, whereas the value 

of the loading for methylation is not significant. This is consistent with the ASCA results which 

indicates that the triad (factor) c111 does not have statistically significant structure for explaining 

differences in omics, Factor B. 

 

Figure 5.4 Bootstrap confidence intervals for eigenvector e1 
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For the second most important triad, c322, g3 shows some CMS4 patients demonstrate high values 

in this triad, as illustrated in Figure 5.5. In this vector, the top 10 patients with high values and 

narrow confidence intervals are identified, indicating they are highly significant in this triad. 

Dividing the value of each patient in g3 by the range of the 95% confidence level of the bootstrap 

range (range = xupper – xlower) and sorting them allows one to rank them in order of decreasing 

significance (see Figure 5.5, inset table).  

 

Figure 5.5 Bootstrap confidence intervals for eigenvector g3 

In vector h2, we have identified 10 highly significant genes, as highlighted in Figure 5.6. These 

findings underscore the potential importance of vector h2 in our analysis. In the literature, gene 

AC156455.1 has been identified as a potential biomarker for diagnosis and prognosis in colorectal 

cancer and was upregulated in colon cancer tissues compared with adjacent normal tissues [94]. 

Also, another point is that the other detected significant genes in this triad have low cancer 
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specificity which means these biomarkers are less exclusive to cancer cells and may also be 

present in non-cancerous conditions or healthy tissues [https://www.cancer.gov/tcga] 

Figure 5.6 Bootstrap confidence intervals for eigenvector h2 

Looking at the plot of e2 (see Figure 5.7) it can be seen that the value for methylation is very large 

and the confidence interval is narrow, indicating it is highly significant, whereas the values for 

mRNA and miRNA are not significant. Again, this is consistent with the ASCA results, which 

indicates that the triad (factor) c322 does not have statistically significant structure for explaining 

differences in omics, Factor B. 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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Figure 5.7 Bootstrap confidence intervals for eigenvector e2 

In summary, this triad models the response for genes listed above, which exhibit strong 

correlations in methylation sites among the top 10 patients and additional patients with large 

absolute value scores and narrow bootstrap range not listed here.  

For the third most important triad, c433, g4 shows some CMS1 and CMS4 patients demonstrate 

high values in this triad, as illustrated in Figure 5.8. In this vector, the top 10 patients with high 

values and narrow confidence intervals are listed, indicating they are highly significant in this 

triad (see Figure 5.7, inset table).  None of the top 10 patients in g4 are common to the top 10 in 

g1, g2, or g3. 
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Figure 5.8 Bootstrap confidence intervals for eigenvector g4 

In vector h3, we again have identified 10 highly significant genes, as highlighted in Figure 5.9. 

Figure 5.9 Bootstrap confidence intervals for eigenvector h3 



 76 

Looking at the plot of e3 (see Figure 5.10) it can be seen that the value for mRNA is very large and 

the confidence interval is narrow (normed value 498.95), indicating it is highly significant, 

whereas the normed value for methylation on this loading is not significant at the 95% CL. 

Although miRNA value is negatively correlated with mRNA (-8.0 normed value), it is much less 

significant, thus the top 10 genes identified in h3 (see below) have significant correlated 

responses with miRNA but not gene methylation and only slight correlation with gene expression 

(mRNA).  

Figure 5.10 Bootstrap confidence intervals for eigenvector e3 

It is interesting to look at the fourth most important triad as well, c242, where g2 shows a different 

pattern for each subtype (see Figure 5.11).  Also, in g2, patients in subtypes CMS2 and CMS4 

demonstrate high values in this triad, as illustrated Figure 5.7, inset table. 
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Figure 5.11 Bootstrap confidence intervals for eigenvector g2 

In vector h4, we also have identified 10 highly significant genes, as highlighted in Figure 5.12. 

Interestingly, gene AC024560.2 has been identified as a potential biomarker and may provide 

broader perspective for combating cervical cancer metastasis [95].   
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Figure 5.12 Bootstrap confidence intervals for eigenvector h4 

Again, in this triad, by looking at the plot of e2 (see Figure 5.7) it can be seen that the value for 

methylation is very large and the confidence interval is narrow, indicating it is highly significant, 

whereas the normed values for mRNA and miRNA on this loading are not significant.  

The analysis can be extended to all the remaining triads, but those results are not presented in 

this study. Nevertheless, it is worth emphasizing the strength of using Tucker3 triads, which are 

orthogonal and can be independently analyzed in conjunction with ASCA. This combination of 

tools is powerful and aids in interpreting the model and results. It helps identify crucial multi-

omics features (biomarkers) associated with the factors considered in the experimental design. 

Also, our analysis shows that the three omics types in this data set, mRNA, methylation, and 

miRNA have a natural tendency to be mutually orthogonal.  Considering that this analysis was a 

random sample of about 3% of more than 14,000 genes, analysis of the full data set may reveal 



 79 

some correlations between omics types that were not represented in the 500 genes selected for 

this study. 
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Chapter 6 

Future Work and Conclusion 

 

Biomarker discovery has become pivotal in the fight against illnesses such as cancer. Scientists 

can examine different biological cues in patients to pinpoint distinct molecules, genes, proteins, 

or attributes that function as dependable biomarkers for detecting diseases early, forecasting 

outcomes, and tailoring personalized treatment approaches. In this thesis, we first systematically 

defined goals and questions for reviewing the research studies conducted regarding biomarker 

discovery in multi-omics datasets using tensor decompositions. We followed a defined protocol 

to retrieve and refine articles, and reviewed and analyzed the information extracted from the 

papers. We also introduced challenges and problems that motivate researchers to develop tensor 

decomposition-based methods for biomarker discovery in multi-omics data. Additionally, we 

presented the methodologies and models they employ to tackle these challenges. The 

application fields for biomarker discovery have been covered in this thesis. Last but not least, we 

discussed the limitations in the field of biomarker discovery using tensor decompositions and 

describe future research directions and opportunities that require researchers' focus. 

Additionally, we proposed a novel approach to demonstrate the complementary nature of ASCA 

and Tucker3 tensor decompositions on design datasets. We introduced ASCA+ to achieve three 

main objectives: (a) identifying statistically sufficient Tucker3 models, (b) pinpointing important 

triads for easier interpretation, and (c) eliminating non-significant triads to facilitate visualization 

and interpretation. To perform this analysis, we applied ASCA+ to the unfolded matrix in datasets 

with at least two factors, while employing Tucker3 modeling on the folded tensor. We introduced 
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innovative strategies for evaluating the statistical significance of Tucker3 models, utilizing a 

published dataset. To further enhance our analysis, we conducted a bootstrap analysis of the 

Tucker3 model residuals, enabling us to determine confidence intervals for the loadings and 

individual elements of the core matrix. Finally, we applied the entire procedure to a large cancer 

dataset, successfully identifying multi-omics features (biomarkers) with significant potential for 

cancer research. In conclusion, our proposed method showcases the synergy between ASCA and 

Tucker3 tensor decompositions, and its successful application on a substantial cancer dataset 

holds promise for future biomarker discovery endeavors.  

As we move towards future research, our focus will be on applying the proposed strategy to the 

complete dataset. The analysis conducted so far was based on a random sample of approximately 

3% of over 14,000 genes. Analyzing the full dataset may unveil correlations between different 

omics types that were not represented in the 500 genes selected for this study. Furthermore, the 

computational time for this small subset was significant, taking approximately 30 hours. To 

address this challenge and expedite our modeling process, we aim to optimize our code using a 

"parfor" loop, a parallel for loop construct designed for parallel computing in MATLAB. 

Leveraging the "parfor" loop offers the potential to significantly reduce execution time, 

particularly when dealing with large datasets or repetitive computations. This optimization will 

allow us to achieve faster and more efficient results in our analysis.  
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