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ABSTRACT 

Human T-cell Leukemia Virus Type 1 (HTLV-1) is the etiologic agent of devastating 

diseases, including adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated 

myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 relies heavily on cell-to-

cell transmission as free virions are poorly infectious. Although cell-to-cell transmission 

is critical for efficient spread of HTLV-1, much is unknown about the impact of 



   
 

 
 

extracellular proteins on viral transmission. Infection studies have been predominantly 

focused on HTLV-1 Transactivator protein (Tax), a viral protein with many roles in

infection. HTLV-1 basic leucine zipper factor (HBZ) has recently been implicated 

infection, but relatively little is known about the role of HBZ in HTLV-1 viral spread. In 

this study, we found that HBZ upregulates expression of neuropilin-1 (NRP1). 

Neuropilin-1 is a ubiquitously expressed transmembrane receptor and an HTLV-1 

receptor. HBZ is known to interact with a variety of cellular transcription factors, 

including AP-1 basic leucine zipper (bZIP) factors and cAMP response element binding 

protein (CBP)/p300 coactivator proteins. Our results indicate that HBZ interacts with 

certain AP-1 bZIP factors and CBP/p300 at a putative enhancer site downstream of 

NRP1. We propose a model in which HBZ upregulates NRP1 expression by forming an 

HBZ/AP-1 bZIP factor heterodimer, which interacts with the putative enhancer site with 

CBP/p300 coactivators and basal transcription machinery to upregulate expression of 

NRP1. Intriguingly, we discovered that NRP1 expression on HTLV-1-infected T-cells 

inhibits cell-to-cell transmission of HTLV-1. Furthermore, NRP1 expression does not 

alter virion release from infected cells, suggesting that NRP1 doesn’t inhibit 

transmission through virion retention. We also provide evidence that NRP1 is 

incorporated into viral particles, resulting in a reduction in virion infectivity. Together, 

these results indicate that HBZ upregulates expression of NRP1, which reduces 

infection efficiency.  
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CHAPTER 1 

An Introduction to Human T-cell Leukemia Virus 

Discovery.  

Human T-cell Leukemia Type 1 (HTLV-1) was first reported in 1980 following the 

isolation of this virus from T-cells collected from a patient with cutaneous T-cell 

lymphoma (CTCL) 1. The first pathogenic human retrovirus to be identified, HTLV-1 is 

now known to be one of the most potent human oncoviruses and remains the main 

focus of HTLV research 2. Since the isolation of HTLV-1, several other subtypes of 

HTLV have been discovered. HTLV-2 was isolated from a patient with hairy cell 

leukemia 3. HTLV-2 is associated with increased cancer mortality, however, the 

association between HTLV-2 and cancer development is not well understood 4. HTLV-2 

has also been implicated in the development of neurological symptoms, however, a 

clear link between HTLV-2 and a characterized neurological disorder has not yet been 

described 5. HTLV-3 and HTLV-4 were both identified in bushmeat hunters in Africa 6,7 

and, to date, have not been implicated in the development of disease.  

Epidemiology.  

It is estimated that 5-10 million people worldwide are infected with HTLV-18. 

Although HTLV-1 is widely distributed worldwide, it is considered endemic to certain 

regions including sub-Saharan Africa9, South America, the Caribbean basin, northern 

Iran10, Japan, and Central Australia11-13. The majority of HTLV-1-infected individuals 

remain asymptomatic for life but are still able to transmit the infection to others14. 

 



   
 

2 
 

 

Transmission.  

Interpersonal transmission of HTLV-1 can occur during transfusion of cellular 

blood products (through blood transfusion or IV drug use), sexual contact and during 

breastfeeding. Prolonged duration of breastfeeding and high maternal proviral load both 

contribute to likelihood of transmission from mother to infant during breastfeeding15,16. 

Breastfeeding remains a major route of transmission in certain populations with high 

infection rates due to a combination of factors, including limited access to HTLV-1 

testing and infant formula. Due to increased blood screening methods to detect anti-

HTLV-1 antibodies in blood donors, blood transfusions now pose a low risk of HTLV-1 

transmission14.   

HTLV-1-Associated Diseases.  

Approximately 3-5% of HTLV-1-infected individuals will develop an associated 

disease8. HTLV-1 is associated with a variety of pathologies, including leukemia, 

immune-mediated inflammatory diseases and increased susceptibility to certain 

bacterial pathogens. Disease outcomes associated with HTLV-1-infection are broad, 

which is thought to be due to differences in the host immune response, rather than 

HTLV-1 genotype differences17.  

HTLV-1 infection is associated with a number of immune-mediated inflammatory 

diseases, including HTLV-associated myelopathy/ tropical spastic paraparesis 

(HAM/TSP), uveitis18,19, polymyositis20, Sjogren’s syndrome21,22, sicca syndrome23,24 

and infective dermatitis25. Although HTLV-1 does not cause generalized immune 

suppression, as seen with HIV-1, HTLV-1 infection is associated with an increased 

susceptibility to certain bacterial pathogens including: Mycobacterium tuberculosis26,27, 
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Staphylococcus aureus (infective dermatitis)28, Strongyloides stercoralis29 and 

Sarcoptes scabiei30. Adult T-cell leukemia/lymphoma (ATL), an aggressive leukemia, 

and HAM/TSP, a progressive neurodegenerative disease are the most common HTLV-

1-associated pathologies. 

Adult T-cell Leukemia.  

HTLV-1 is described as one of the most potent oncoviruses with 3-5% of infected 

individuals developing Adult T-cell leukemia/lymphoma (ATL)2,8. Animal models have 

recapitulated the oncogenicity of two key HTLV-1 regulatory proteins, HTLV-1 basic 

leucine zipper factor (HBZ) and Transactivator-1 (Tax). HBZ and Tax will be discussed 

in greater detail in subsequent sections31,32. Shortly after the discovery of HTLV-1, it 

was determined that this retrovirus was the causative agent of ATL when T-cells 

isolated from an individual with ATL were found to contain the HTLV-1 genome33.  

ATL, a malignancy characterized by the aggressive proliferation of mature CD4+ 

T-cells, develops in 3-5% of HTLV-1-infected individuals34. ATL typically occurs in 

individuals who were infected as infants through breastfeeding. The development of 

ATL typically occurs decades after initial infection, but median age-at-onset varies 

geographically34. In Japan, ATL is often diagnosed in individuals who are 60-70 years 

old35. In the United States, Europe, South America and Central America, the median 

age at diagnosis is 40-55 years35-37. In Brazil, pediatric cases of ATL have been 

identified38.  

ATL was once thought to be a cancer of HTLV-1-infected regulatory T-cells, 

however, recent studies have shown that HTLV-1 induces features of regulatory T-cells 

in conventional T-cells39,40. The HTLV-1 protein HBZ induces FoxP3 expression through 
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Smad3-dependent TGF-β signaling32. Indeed, one study found that in approximately 

58% of ATL cases, FoxP3 expression was detectable in ATL cells41. 

The HTLV-1 genome has little sequence variability and the proviral sequence of 

asymptomatic individuals is not distinct from those of ATL or HAM/TSP patients, 

suggesting that the key determining factor(s) in the development of these diseases are 

due to differences in the hosts17. Chromosomal analysis identified chromosomal 

abnormalities in 96% of ATL patients tested42.  Analysis of genetic mutations in ATL 

cells identified high integration of genetic abnormalities in the T-cell receptor (TCR)/NF-

KB signaling pathway as the more predominant genetic mutation, seen in over 90% of 

cases43. T-cell receptor (TCR)/NF-KB signaling pathway related genetic mutations 

include: PLCG1, PRKCB, CARD11, VAV1, IRF4 and FYN43. Mutations in other 

signaling factors (STAT3, NOTCH1), transcription factors (IKZF2, TP53, GATA3, and 

IRF4), epigenetic factors (TET2 and EP300), chemokine receptors (CCR3 and CCR7) 

and structural variants (CD274) were also identified in ATL cells43,44.  

ATL typically involves the bone marrow, skin, brain, blood and lymphoid organs. 

Based on circulating lymphocyte count, solid organ involvement and symptom severity, 

ATL is categorized into four subtypes: smoldering, chronic, acute, and lymphomatous45  

(Table 1.1). Prognosis and response to therapy vary drastically between the different 

ATL subtypes. For indolent ATL (smoldering and chronic), combination therapy using 

zidovudine (AZT) and interferon-alpha (IFN-α) can prolong survival46. The prognosis for 

aggressive ATL (acute and lymphomatous) is particularly poor, with death often 

occurring within a year of diagnosis47,48. The poor prognosis associated with aggressive 

ATL is due to a large tumor burden associated with multiorgan failure, hypercalcemia, 
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and/or frequent infections as the result of profound T-cell immune deficiency. 

Furthermore, aggressive ATL is often intrinsically resistant to chemotherapeutics49. 

Currently, allogenic hematopoietic stem cell transplantation (aHSCT) is the best 

treatment option for aggressive ATL, with one third of individuals achieving long-term 

survival48,50. However, aHSCT is not a feasible treatment option for many individuals48. 

Although aHSCT has been reported to be curative for approximately 35% of patients 

with aggressive ATL based on 3-year overall survival rates, aHSCT is also associated 

with transplant-related mortality in up to 40% of cases48. Therefore, Japanese 

guidelines suggest that aHSCT should only be considered after a first line of therapy 

has failed48. The combination of arsenic trioxide and IFN- α treatment has been found to 

induce cell cycle arrest and apoptosis in ATL cells51 through proteasomal degradation of 

the HTLV-1 Tax protein and reversal of NF/kB activation52,53. More recent studies have 

found that arsenic trioxide in combination with low-dose AZT/ IFN-α may enhance long-

term disease control with moderate side effects54. More recently, CCR4, a highly 

expressed chemokine receptor on ATL cells, has been targeted using the anti-CCR4 

monoclonal antibody, mogamulizumab55-57. Mogamulizumab and lenalidomide, an 

immunomodulatory drug, have been approved for treatment of ATL in Japan58-60. 

HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis.  

HTLV-1 is also the etiologic agent of HTLV-1-associated myelopathy/tropical 

spastic paraparesis (HAM/TSP), a disease impacting 0.25-3.8% of HTLV-1-infected 

individuals61,62. First described in 1969, HAM/TSP is a chronic, progressive 

neurodegenerative disorder of the central nervous system (CNS), which produces 

symptoms similar to those of multiple sclerosis (MS). HAM/TSP symptoms can vary 
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greatly, but the following five symptoms are typically present: lower limb stiffness and/or 

weakness, lumbar back pain, bladder dysfunction, bowel dysfunction and sexual 

dysfunction63. Mild cognitive impairment can also occur in HAM/TSP patients64. 

Symptoms of HAM/TSP usually begin during the fourth or fifth decade of life and 50% of 

inflicted individuals will become wheelchair-dependent within twenty years of symptom 

onset65. Individuals who are older at age of onset typically experience a more rapid 

progression of motor dysfunction64,66.   
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 Table 1.1. Classic characteristics of ATL. 
 

 Acute Lymphoma Chronic Smoldering 
Circulating HTLV-1 

antibodies Yes Yes Yes Yes 

Circulating ATL cells Yes No Yes Yes 
Lymphocyte count Elevated Normal Elevated Normal 

Ca2+ level High High Normal Normal 
Rash Variable Variable Variable Variable 

Lymphadenopathy Variable Yes Variable No 
Organomegaly Variable Variable Mild No 

Skin and/or lung 
involvement Variable Variable Variable Variable 

Bone marrow and/or 
spleen involvement Variable Variable Variable No 

Bone, 
gastrointestinal 

and/or CNS 
involvement 

Variable Variable No No 

 

Table 1.1 modified from previous studies 67-69. Yes/No indicates whether or not a feature 
is characteristic of each subtype of ATL. Normal/Elevated/Low indicates the level of the 
indicated feature. Variable indicates that the presence/absence of a particular 
characteristic is not consistent between individuals with a particular ATL subtypes (i.e. 
variable between ATL cases of a particular subtype). 
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Individuals with HAM/TSP experience strong peripheral blood and CNS immune 

response to HTLV-170,71, with the proportion of HTLV-1-targeting cytotoxic T-

lymphocytes (CTL) being higher in the cerebrospinal fluid (CSF) than peripheral blood 

mononuclear cells (PBMC) in HAM/TSP patients71-74. The immune response in 

HAM/TSP patients is severely skewed towards T helper type 1 cells (Th1), with 

infiltrating cells producing pro-inflammatory cytokines such as interferon- Ɣ (IFN-Ɣ), 

tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)75-78. Furthermore, the 

infiltrating HTLV-1-infected T-cells express Th1 markers T-bet, INF-Ɣ and the C-X-C 

motif receptor 3 (CXCR3)79. Together, this has led to the proposed model for HAM/TSP 

development in which CXCR3-expressing HTLV-1-infected T-cells cross the blood brain 

barrier, where they secrete IFN-Ɣ. The secreted IFN-Ɣ induces astrocytes to produce 

CXCL10, which induces migration of CXCR3+ inflammatory cells. Further production of 

IFN-Ɣ by infiltrating cells continues the stimulation of astrocytes and continual infiltration 

of inflammatory cells into the CNS80. The resulting inflammatory response results in 

neuronal demyelination, known as “bystander damage”81,82. 

Other host immune factors, which are driven by genetics, are thought to impact 

the overall likelihood of HAM/TSP development. The specificity and efficiency of CD8+ 

T-cells to HTLV-1-infected cells is determined by the HLA class 1 genotype of HTLV-1-

infected individuals, which is turn determines how effectively the HTLV-1 proviral load is 

controlled. A significant reduction in proviral load and subsequent protective effects from 

HAM/TSP has been observed with the HLA class I genes, HLA-A*01 (in Southern 

regions of Japan and Brazil) and HLA-Cw*08 (in Southern regions of Japan)83-85. 

Intriguingly, stronger binding to an HBZ peptide was observed with HLA-A*01 and HLA-
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Cw*08, resulting in lower HTLV-1 proviral load and reduced HAM/TSP risk86. HLA 

alleles HLA-B*07 and HLA-B*5401 (HLA class I alleles) and HLA-DRB1*0101 (HLA 

class II allele) appear to be associated with increased susceptibility to HAM/TSP83,84,87. 

Furthermore, polymorphisms of various genes have been associated with altered risk of 

HAM/TSP development through analysis of single nucleotide polymorphisms (SNPs). 

Polymorphisms in the promoters of IL-10 (IL10-592A), stromal cell-derived factor 1 

(SDF-1: SDF1 + 801A) and IL-15 (IL-15 + 191C) appear to be protective against 

HAM/TSP development, while polymorphisms in the promoter of IL-6 (IL6-634C) and 

TNF (TNF-863A) are detected at higher frequency in HAM/TSP patients88-90.  

Treatment options for HAM/TSP are limited. Due to a lack of effective treatment 

targeting the disease pathology, treatment protocols are typically directed at controlling 

pain, muscle spasms and urinary incontinence. Corticosteroid therapy is the most 

widely accepted HAM/TSP treatment; however, the benefits of this treatment are 

questionable91. Antiviral treatments, including combination therapies of the reverse 

transcriptase inhibitors zidovudine and lamivudine, have also been tested. However, 

these therapies did not reduce proviral load or improve symptoms92,93. Mogamulizumab, 

an anti-CCR4 antibody, has shown promise in the treatment of HAM/TSP. CD4+CCR4+ 

T-cells represent the main reservoir of HTLV-194.  In in vitro studies, mogamulizumab 

eradicated HTLV-1-infected T-cells in peripheral blood from HAM/TSP patients79,95. 

Furthermore, mogamulizumab has been found to reduce proviral load and improve 

neurological symptoms in patients with HAM/TSP in a recent clinical trial96. An 

additional, controlled trial focusing on mogamulizumab is currently underway in Japan 

(UMIN000019942).  
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Virion Structure. 

HTLV-1 is an enveloped delta-retrovirus with a positive sense, single-stranded 

RNA genome. The HTLV-1 virion (Figure 1.1) is approximately 100nm in diameter and 

is composed of an outer envelope, which contains viral envelope protein (Env). Env 

contains two subunits: a transmembrane subunit (TM; gp21) and a surface subunit (SU; 

gp46). Within the envelope layer lies a layer of matrix protein (MA; p19) and the viral 

core. The viral core is composed of capsid protein (CA; p24) and contains two copies of 

the nucleocapsid protein (NC; p15)- studded 9-kb (+) ssRNA HTLV-1 genome, protease 

(PR), polymerase (Pol) and reverse transcriptase (RT). 
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Figure 1.1. HTLV-1 virion structure. The HTLV-1 virion is composed of an envelope 
membrane, which contains viral envelope (Env) proteins. Env consists of a 
transmembrane component (TM) and surface subunit (SU). Beneath the envelope is a 
matrix (MA) layer and the viral core. The viral core is composed of capsid protein (CA), 
which contains two copies of the positive-sense (+) ssRNA viral genome, which is 
studded with nucleocapsid protein (NC), and the following viral enzymes: integrase (IN), 
reverse transcriptase (RT), and protease (PR). 
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HTLV-1 Cellular Tropism. HTLV-1 utilizes three receptors to infect cells: heparan 

sulfate proteoglycans (HSPG)97,98, neuropilin-1 (NRP1)99,100, and glucose transporter-1 

(GLUT1)101,102. Due to the ubiquitous nature of these receptors, many different cell 

types are able to become infected by HTLV-1, including: CD4+ T-cells, CD8+ T-cells, 

endothelial cells, dendritic cells (DCs), B-cells, monocytes and macrophages103-106. 

However, HTLV-1 preferentially infects CD4+/CCR4+ cells and CD4+ T-cells account 

for over 90% of proviral load in vivo107,108. Interestingly, while CD4+ T-cells and CD8+ T-

cells are similarly susceptible to HTLV-1, selective outgrowth of CD4+ T-cells, but not 

CD8+ T-cells, appears to contribute to the predominance of HTLV-1 infection of CD4+ 

T-cells109. 

The presence of an intragenic viral enhancer was recently discovered in the 

HTLV-1 provirus110. In vitro studies have demonstrated that this enhancer is important 

for chromatin openness, the induction of aberrant host gene transcription and regulation 

of viral gene transcription110. Studies using immortalized PBL cell lines established from 

HTLV-1 carrying the wild-type intragenic viral enhancer compared to a mutated 

intragenic viral enhancer have demonstrated that the wild-type form of this enhancer 

results in a T-cell population that is predominantly CD3+CD4+, rather than CD3+CD8+ as 

seen with cells infected by the virus containing the mutated enhancer, suggesting that 

this promoter contributes to the predominance of HTLV-1-infected CD4+ T-cell in vivo111. 

De novo Infection and Persistence. HTLV-1 virions are rarely detectable in the serum 

of infected individuals112 and only 1 in 105 viral particles produced by HTLV-1-infected 

lymphocytes are infectious113. There are multiple factors which appear to contribute to 

the negligible infectivity of cell-free HTLV-1 particles. Firstly, most viral particles 
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released into the supernatant of HTLV-1-infected cells have an incomplete capsid shell, 

indicating an issue with virion assembly114. Secondly, the infectious half-life of HTLV-1 

virions at 37°C is approximately 36 minutes, which is notably lower than the 8.5 hour 

half-life of bovine leukemia virus at the same temperature115. The relatively low half-life 

of HTLV-1 is the result of the labile disulfide bonds between the SU and TM 

components of gp46115.  

Although HTLV-1 spread primarily occurs through cell-to-cell transmission, 

HTLV-1-infected T-cells and DCs can generate free virions116,117. Cell-free HTLV-1 

virions can infect MDDCs and, to a lesser extent, T-cells, based on in vitro studies117,118 

(Figure 1.2). Dendritic cells can either become productively infected by virions and 

infect other cells (cis-infection), or they can capture virions and transfer them to target 

cells (trans-infection)119,120. Given the primary routes of interpersonal HTLV-1 

transmission in which epithelial barriers are exposed to HTLV-1, infection of dendritic 

cells has also been considered as an early step in infection. Although HTLV-1-infected 

T-cells are unable to cross the epithelial border or infect epithelial cells in vitro, epithelial 

cells are able to capture HTLV-1 virions from infected T-cells at their apical surface and 

release them at their basal surface through transcytosis121. Since free virions are rarely 

detected in vivo, this suggests that virions retained at the cell surface of T-cells may be 

moved across the epithelial layer through transcytosis, facilitating the infection of DCs, 

which are able to infect T-cells117,119,120. HTLV-1 infection may be spread from DCs to T-

cells in secondary lymphoid organs, where surveilling T-cells actively interact with 

antigen presenting DCs. CD4+ T-cells in secondary lymphoid tissues express higher 

levels of NRP1 than CD4+ T-cells in peripheral blood122. Infected T-cells are then able to 
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transmit HTLV-1 to other T-cells123. Therefore, DCs are thought to represent an 

important HTLV-1 reservoir, promoting dissemination of HTLV-1 through clonally 

expanded CD4+ T-cells119,124-126. 

Transmission of HTLV-1 primarily occurs via cell-to-cell transmission through 

three non-exclusive mechanisms: the formation of virological synapses (VS), cellular 

conduits and transfer of the viral biofilm127-130 (Figure 1.2). The VS is formed when 

intercellular adhesion molecule-1 (ICAM-1) on the surface of an infected cell interacts 

with lymphocyte function associated antigen-1 (LFA-1) on a target cell. This interaction 

initiates a signaling event that results in polarization of the microtubule organization 

center (MTOC) towards the point of cell-cell contact and accumulation of HTLV-1 core 

protein complexes and genome at the point of contact131,132. The VS is reminiscent of an 

immunological synapse (IS), however, MTOC polarization during the IS occurs within a 

T-cell following interactions of the T-cell receptor with the major histocompatibility 

complex of an antigen-presenting cell133. Cellular conduits are filopodium-like 

protrusions that allow for transmission of HTLV-1 over a greater distance129. The viral 

biofilm is carbohydrate-rich, extracellular assembly composed of extracellular matrix 

proteins and linker proteins, including agrin, collagen, galectin-3, CD4, CD150 (also 

known as signaling lymphocytic activation molecule 1 [SLAMF1]), CD25 (also known as 

interleukin-2 receptor alpha chain [IL2RA]), CD70, and CD80130,134. It has been 

proposed that virions are retained within these assemblies, which are rapidly transferred 

to target cells upon contact130. Type IV collagen (COL4) expression specifically has 

been found to be activated in HTLV-1-infected T-cells. COL4 expression enhances 

HTLV-1 transmission through enhanced transfer of HTLV-1 virions from effector to 
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target cell, suggesting a model in which COL4 is important for tethering HTLV-1 virions 

to the cell surface, promoting efficient cell-to-cell transmission135. HTLV-1 persists 

throughout the lifetime of the host primarily through clonal expansion of infected T-cells, 

also known as mitotic viral spread61,136. However, a recent study determined that 

infectious viral spread through de novo infection is ongoing during HTLV-1 infection137. 
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Figure 1.2. Mechanisms of HTLV-1 infectious spread. Infectious spread of HTLV-1 
primarily occurs through cell-to-cell transmission between T-cells (A-C) or cell-free 
transmission to DCs (D). (A) The virological synapse (VS) is characterized by the 
interaction between ICAM-1 on an infected cell with LFA-1 on the surface of a target 
cell, creating a point of close cell-cell contact. The interaction between these receptors 
triggers polarization of the MTOC in the infected cell towards the VS followed by 
budding and release of viral particles.  (B) Cellular conduits are filopodium-like 
projections that extend from an infected cell towards the target cell, allowing for 
transmission across a greater distance. (C) The carbohydrate-dense viral biofilm retains 
viral particles at the cell surface and potentially serves as a vehicle for viral particle 
transfer to target cells.  (D) Cell-free HTLV-1 viral particles can productively infect 
MDDCs. 
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Virion Assembly, Budding and Maturation.  

Given the limited research focusing on the generation of HTLV-1 virions, much of 

the current knowledge on retroviral assembly, budding and maturation is based on HIV-

1 studies. However, it is known that HTLV-1 Rex exports viral mRNAs out of the 

nucleus through nuclear pore complexes (NPCs) and into the cytoplasm138-141. 

Following nuclear export, the Env precursor is synthesized in the endoplasmic reticulum 

and directed to the plasma membrane by the Golgi apparatus. During transport to the 

plasma membrane, host furin-like proteases cleave the envelope polyprotein precursor 

into SU (gp46) and TM (gp21)- the functional forms of the envelope glycoproteins. 

Covalent interactions maintain the association between the SU and TM subunits, which 

will be incorporated into the cell membrane142.  

The remaining steps required for the development of infectious retroviral particles 

are as follows143:  

1) Assembly of Gag polyprotein at the plasma membrane, facilitating 

formation of the immature viral capsid. Interactions between Gag-retroviral 

RNA, Gag-Gag and Gag-membrane are essential for viral particle 

assembly and budding144. 

2) Budding of the immature capsid from the cell membrane, resulting in 

envelopment of the capsid. Unlike HIV-1, in which membrane binding of 

Gag is dependent upon phosphatidylinositol-(4,5)-bisphosphate 

[PI(4,5)P2], there is no preferential binding of HTLV-1 Gag to PI(4,5)P2 for 

targeting of virion budding sites145. 

3) Release of the immature viral particle from the cell surface 
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4) Maturation of the viral particle. During virus budding and shortly after virus 

release, the viral protease is responsible for cleavage of Gag and Pol 

proteins, which is essential for virion maturation and the development of 

infectious particles143,146,147. 

HTLV-1 Receptors. 

Three receptors are utilized by HTLV-1 to facilitate entry into target cells: 

heparan sulfate proteoglycans (HSPGs), neuropilin-1 (NRP1) and glucose transporter-1 

(GLUT1)148.  

Heparan Sulfate Proteoglycans. 
 

Heparan sulfate proteoglycans (HSPGs) are transmembrane proteins with negatively 

charged, long, linear heparan sulfate glycosaminoglycan chains covalently 

attached149,150. HSPGs have numerous capabilities, including functioning as: a receptor 

for proteases and protease inhibitors, a co-receptor for cell adhesion receptors and 

various tyrosine kinase-type growth factors and binding cytokines, chemokines, growth 

factors and morphogens to prevent proteolysis149. Interestingly, it has been 

demonstrated that HTLV-1 SU is able to bind to HSPGs, indicating that HSPGs function 

as a cellular attachment receptor for HTLV-197. More recently, HSPGs have been 

demonstrated to be important for binding and internalization of HTLV-1 viral particles 

into CD4+ T-cells98,151.  
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Figure 1.3. The HTLV-1 receptor complex.  The HTLV-1 receptor complex includes 
HSPGs, NRP1 and GLUT-1. HSPGs are cell surface receptors composed of a core 
domain and long heparin glycosaminoglycan chains. NRP1 is a transmembrane 
glycoprotein composed of 5 extracellular domains. GLUT-1 is a multi-pass 
transmembrane protein. 
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Neuropilin-1. 
 

The 120 kDa transmembrane glycoprotein, NRP1, is involved in a number of 

important cellular processes152,153. NRP1 is ubiquitously expressed in many cell types, 

particularly those within the central nervous system and vasculature systems154,155. 

Within the immune system, NRP1 expression is more restricted and tightly regulated 

and NRP1 is primarily expressed on DCs, monocytes, macrophages, natural killer cells 

and regulatory T-cells156-161. In regulatory T-cells (Tregs), which are important for 

maintaining immunological self-tolerance, NRP1 is involved in tolerance-mediated 

responses, transplantation acceptance, and driving tumor growth162-165. Overexpression 

of NRP1 on DCs and Tregs has been implicated in tumor development165-167. 

Structurally, NRP1 has five extracellular domains (a1, a2, b1, b2, and c), a 

transmembrane domain, and a short cytoplasmic domain152 (Figure 1.3). 

Independently, without the presence of a co-receptor, NRP1 is not known to possess 

intrinsic signaling capabilities, however, when functioning as a co-receptor, NRP1 is 

able to impart biological functions153. The most well studied NRP1 ligands are 

semaphorins and vascular endothelial growth factor (VEGF-A), which utilize plexin and 

VEGF receptor (VEGFR) as co-receptors, respectively168,169.  

NRP1 contains a short cytoplasmic domain which contains a conserved PDZ 

domain-binding (SEA) motif able to interact with PDZ containing proteins. Due to the 

small size of the NRP1 cytoplasmic domain, it was once thought that this domain was 

not involved in cell signaling170. However, it has since been indicated that the domain is 

important for signaling during two conditions in which NRP-1 functions as a co-receptor. 

Firstly, upon the interaction of the extracellular component of NRP1 with α5β1 integrin, 
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the NRP1 SEA motif is able to bind to synectin. Together, these interactions initiate a 

signaling event that results in the internalization of active α5β1 integrin in Ras analog in 

brain-5 (Rab5)-positive early endosomes171. Additionally, the interaction between the 

cytoplasmic domain of NRP1 and synectin also appear to be important for efficient 

complex formation between NRP1 and VEGFR-2172. 

The a1, a2 and b1 domains of NRP1 can interact with class II semaphorins 

(Sema3) and class IV semaphorins (Sema4)170.  NRP1/Sema3 interactions are 

important for axonal guidance173. Sema4A/NRP1 interactions are involved in the 

stability and function of regulatory T-cells163. NRP1 has also been implicated in other 

immune processes, including the formation of the immunological synapse (IS). 

Interestingly, treatment of T-cells or DCs with anti-NRP1 antibody reduces duration of T-

cell/DC contact, suggesting a role of homotypic NRP1 interactions between T-cells and 

DCs during the formation of the IS174. However, the specific NRP1 domain(s) involved in 

this process remains unknown174. 

Interactions between NRP1 and VEGF, mainly VEGF-A165, involve vascular 

endothelial growth factor receptor (VEGFR)153. VEGF-A165 is secreted, rather than being 

sequestered in the extracellular matrix, and contains 7 coding exons (1-5, 7 and 8)175.  

VEGF-A165 interacts with b1 and b2 domains of NRP1170. The association of VEGF165 

with NRP1 can occur in either a HSPG-dependent or HSPG-independent manner176-178. 

In the presence of HSPG, the exon 7 domain of VEGF-A165 can bridge HSPG to the b 

domain of NRP1178-180. In the absence of HSPG, the exon 8 domain of VEGF-A165 

facilitates binding of VEGF165 to the b domain of NRP1.  
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In addition to functions in normal physiological processes, NRP1 also serves as a 

receptor for multiple viruses, including SARS-CoV-2 and HTLV-1100,151,181,182. Binding of 

the SARS-CoV-2 viral spike protein to the b1 domain of NRP1 induced a conformational 

change in the spike protein, facilitating cleavage of the spike protein by a furin protease 

into two polypeptides: Spike-1 (S1) and Spike-2 (S2)183-185. This process yields an Arg-

Arg-Ala-Arg (RRAR) C-terminus sequence motif on S1 that conforms to the “C-end rule” 

(CendR)186. CendR facilitates internalization of particles displaying the C-terminal RRAR 

motif through NRP1-dependent endocytosis186,187. 

 During HTLV-1 viral entry, HTLV-1 SU binds to the b domain of NRP1 through 

molecular mimicry of VEGF165 exon 899. Specifically, residues 85-94 and 304-312 of 

HTLV-1 SU bind to the b1 domain of NRP1188. Interestingly, the SU/NRP1 interaction is 

enhanced by HSPGs99. Unlike SARS-CoV-2, which exploits the CendR for NRP1-

mediated endocytosis, HTLV-1 utilizes NRP1 as a binding factor and GLUT1 for 

internalization99,189. 

Glucose Transporter-1. 
 

Glucose transporter-1 (GLUT-1) is a class I facultative glucose transporter 

composed of 12 hydrophobic transmembrane α-helices involved in the transport of 

glucose, galactose, mannose, glucosamine and ascorbic acid190. GLUT-1 a ubiquitous 

transporter and is expressed at very low levels in quiescent T-cells191. However, 

expression of this transporter is induced following activation of T-cells191. GLUT-1 was 

the first HTLV-1 receptor to be identified and is required for HTLV-1 infection of CD4+ T-

cells102,189,192. Residues D106 and Y114 of SU have been demonstrated to be involved 

in GLUT-1 binding192. Based on retroviral studies, it’s thought that the interaction 
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between HTLV-1 Env and GLUT1 initiates a conformational change in the SU-TM 

complex and that activates a fusion domain within the TM subunit, facilitating fusion of 

the viral and cell membranes193-197.  
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Figure 1.4. NRP1 structure and binding partners. NRP1 has 5 extracellular domains 
(a1, a2, b1, b2 and c), a transmembrane domain and a small cytoplasmic domain. 
Domains a1, a2 and b1 are important for binding of semaphorins, an interaction which 
utilizes plexin as a co-receptors. Domains b1 and b2 are important for binding of VEGF, 
which involves VEGFR as a co-receptor. The b1 domain also serves as a binding site 
for HTLV-1 gp46 and SARS-CoV-2 S1. The c domain is important for receptor 
oligomerization. NRP1 also contains a transmembrane (TM) domain and a cytoplasmic 
(ctyo) domain, which can interact with PDZ domain-containing proteins.    
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Retroviral Genome Integration.  

After viral entry has occurred, the viral CA core, which contains two copies of the 

viral RNA genome, RT, IN, and PR is delivered to the cytoplasm where the positive 

sense ssRNA genome is reverse transcribed into a dsDNA intermediate by the viral 

reverse transcriptase and integrated into the host cell genome by the viral integrase198. 

Naturally infected T-cells typically contain one copy of the HTLV-1 provirus199. Viral 

integration was previously thought to occur at random sites within the host’s genome, 

however, it is now known that integration is directed toward a nonpalindromic DNA 

motif200 within transcriptionally active regions of the genome201. Furthermore, integration 

is more likely to occur near certain host genes, particularly STAT1, HDAC6 and 

TP53202. HTLV-1 genome integration into acrocentric chromosomes 13, 14 and 15 is 

associated with improved survival of infected cells based on the frequency in which 

these integration sites were identified in HTLV-1-infected cells199,203. 

Following integration of the HTLV-1 genome into a host-cell chromosome, the 

HTLV-1 provirus is flanked by the 5’ and 3’ long terminal repeats (LTR) which contain 

bidirectional promoters to facilitate viral gene transcription204-207 (Figure 1.5). Each LTR 

contains three regions: the unique 3’ (U3), the repeated (R), and the unique 5’ (U5)208-

210. The U3 region of the 5’ LTR contains a segment known as the Tax response 

element I (TRE-1)204. Although the TRE-1 contains three discontinuous base pair (bp) 

repeats, the middle TRE-1 repeat (TRE-1 II) is the most important for efficient 

transcription204. Each TRE-1 contains three conserved domains (A, B, and C)209,211-213. 

Of these conserved domains, the B domain is especially important for viral gene 

expression as it contains five of the eight base pairs that make up what is known as the 
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viral cAMP response element (vCRE), the location at which the HTLV-1 trans-activator 

protein (Tax) is able to initiate transcription from the viral promoter. Tax is able to utilize 

the B domain and either the A or C domain for transactivation214. 

Proviral Genome and Viral Proteins.  

HTLV-1 is a complex retrovirus, indicating that it contains genes common to all 

retroviruses (pro, pol, gag and env) and genes encoding regulatory and accessory 

proteins within the 9 kilo base (kb) genome215 (Figure 1.5). The pro and pol genes 

encode the viral protease and reverse transcriptase, respectively. The gag gene 

encodes capsid, matrix and nucleocapsid (structural proteins). The env gene encodes 

the two components of the viral envelope protein: the transmembrane protein and 

surface glycoprotein.  

Genes encoding regulatory and accessory proteins are located within the pX 

region, which has 6 open reading frames (ORF I-VI). p12, a protein which can be further 

processed to p8, is encoded in ORF-I216. p8 is important for infection as it has been 

observed to induce cellular conduit formation127,129. ORF-II encodes p13 and p30216,217.  

p8/12, p13 and p30 are expressed at low levels in vivo and have roles infectivity and 

persistence but are not essential for HTLV-1-infected cells218-223.  

Three alternatively spliced regulatory genes are located within the pX region: rex 

and tax on the plus-strand and hbz on the minus-strand224. ORF- III and ORF-IV encode 

Rex and Tax as the result of doubly spliced RNA225. hbz, the only viral gene in the 

antisense orientation, is transcribed from the 3’ LTR and encodes HBZ226-228.  
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HTLV-1 Trans-activator Protein.  

Tax-Mediated Gene Expression and Oncogenesis.  

Tax is a viral transcription factor that is indispensable for high-level expression of 

HTLV-1 genes229-232. Activation of the 5’ LTR by Tax involves recruitment of cAMP-

response element-binding protein (CREB) to the vCRE region of TRE-1. CREB can 

form homodimers or a CREB/ATF heterodimer through leucine zipper domain 

interactions209,233,234. Importantly, the phosphorylation of CREB at serine 133 enables its 

transcriptional activity235. The zinc-finger domain of Tax facilitates the formation of a Tax 

homodimer, which subsequently binds to the CREB dimer209,233,234. The Tax dimer 

associates with the G/C rich regions flanking the vCRE, stabilizing the complex, 

promoting enhanced binding specificity of CREB dimers and facilitating efficient proviral 

transcription from the 5’ LTR236-240. 

Efficient sense viral transcription is also highly dependent upon CBP or p300 

coactivator protein recruitment to the Tax/CREB complex241-244. CBP and p300 are 

paralogous proteins with several conserved domains, including: the SRC-interacting 

domain, two cysteine-histidine-rich domains (CH1 and CH3), and the KIX domain245,246. 

These domains serve as binding sites for a variety of cellular and viral transcription 

factors. Tax is able to interact with the CH1, the SRC-interacting and the KIX domains 

of CBP/p300 coactivators241,247-251. CBP/p300 coactivators are able to acetylate histone 

and non-histone substrates and promote chromatin remodeling to facilitate gene 

expression252-255. Nucleosome assembly protein 1 (NAP1), a histone chaperone 

molecule, has also been implicated in Tax-mediated chromatin remodeling254.  
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Tax contributes to the oncogenesis of infected cells through various 

mechanisms. Tax activates the non-canonical NF-kB pathway, which contributes to cell 

survival and oncogenesis255. In addition to activating the NF-kB pathway, Tax interacts 

with host signaling proteins to facilitate persistent activation of this pathway256-258. 

However, hyper-activation of NF-kB signaling leads to cellular senescence259,260. Tax 

can also drive senescence through interactions with the deubiquitinase USP10 and 

subsequent reactive oxygen species (ROS) induction261,262.  
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Figure 1.5. Schematic representation of the HTLV-1 provirus and mRNA 
transcripts. The integrated HTLV-1 genome is flanked by long terminal repeats (LTRs) 
at the 5’ and 3’ ends. The LTRs are the result of the integration process and contain 
untranslated regions (U3 and U5) and a repetitive region (R). Most viral genes, including 
tax, are expressed from the 5’ LTR. Spliced HBZ (sHBZ) and unspliced HBZ (usHBZ) 
are expressed from the 3’ LTR. 
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The Roles of Tax in Infectious Spread of HTLV-1. 

Tax is a potent activator of numerous transcription pathways, affecting many 

cellular functions and products248,263-270. Tax is capable of deregulating over one 

hundred genes and is of particular importance in HTLV-1 pathogenesis, including 

cellular transformation and infection271. Tax has various functions that support spread of 

HTLV-1 infection, including trans-activation of proviral transcription through the 5’ LTR 

promoter, which is required for virion production229. Tax also promotes infection by 

activating the signaling cascade that stimulates MTOC polarization during formation of 

the VS272. Cell-to-cell transmission of HTLV-1 through upregulation of components of 

the viral biofilm and other cellular factors would enhance infection, including: ICAM1, 

fascin, type IV collagen and gem (Table 1.2)  

Tax is highly immunogenic and promotes an anti-HTLV-1 cytotoxic T-cell 

response273-275. Consequently, Tax expression is tightly controlled, resulting in 

intermittent expression throughout infection276,277. Tax expression is downregulated 

through deletion of the 5’ LTR, methylation of the 5’ LTR and non-sense mutations278-

284. Interestingly, propagation of HTLV-1 continues throughout infection201,285, even 

when Tax is not expressed202, which may be supported by constitutive expression of 

HTLV-1 basic leucine zipper factor (HBZ)286. 
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Table 1.2. Tax enhances infection through upregulation of certain cellular genes. 

Cellular 
Gene Protein Product Proposed Role in Infection Reference 

CCL22 Chemokine ligand 22 Attraction of CCR4+ T-cells 107 

COL4A1 Collagen 4 alpha 1 Biofilm component 130,135,287 

COL4A2 Collagen 4 alpha 2 Biofilm component 130,135 

FSCN-1 Fascin Enhanced virion release and cell-to-cell 
transmission 

288,289 

LGALS3 Galectin-3 Biofilm component 130,290 

GEM GTP-binding mitogen-
induced T-cell protein Cytoskeleton remodeling 290,291 

ICAM-1 Intracellular adhesion 
molecule-1 

VS formation, MTOC polarization, and 
syncytium formation 

292,293 

TNFAIP2 M-sec Enhanced membrane protrusions and Gag 
clustering 

294 

VCAM-1 Vascular cell adhesion 
molecule-1 Syncytium formation 295,296 
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HTLV-1 Basic Leucine Zipper Factor. 

HBZ is constitutively expressed throughout HTLV-1 infection and impacts 

numerous cellular functions297. The hbz gene is transcribed from TATA-less 

bidirectional promoter in the 3’ LTR that contains transcription start sites dispersed 

throughout the U5 and R regions of the 3’ LTR205,297. Consistent with previous studies 

implicating specificity protein 1 (Sp1) in transcription from TATA-less promoters, Sp1 is 

important for hbz transcription298,299. Two isoforms of HBZ have been described: 

unspliced HBZ (usHBZ) and spliced HBZ (sHBZ) which are 209 and 206 amino acids 

(AA), respectively205,300. The AA sequences of the two HBZ isoforms only differ in a 

small region of the N-terminus and the domains involved in transcriptional regulation are 

highly conserved in both HBZ isoforms205,300,301. Spliced HBZ, the predominant isoform, 

has a longer half-life and more strongly suppresses Tax-mediated sense viral 

transcription205,228,297,300.  

HBZ protein contains an N-terminal activation domain (AD), two central basic 

regions, and a C-terminal basic leucine zipper domain (bZIP) (Figure 1.6)226,227. Based 

on the presence of nuclear localization signals within the basic regions of HBZ (two 

within the central domain and one within the bZIP domain) and the demonstrated 

presence of HBZ in the nucleus, HBZ is traditionally classified as a nuclear 

protein226,302,303. Due to the lack of a high-quality antibody targeting HBZ, HBZ 

localization has primarily been explored using cells transfected with tagged HBZ 

plasmids. Recent studies from one laboratory have indicated that HBZ is only present in 

the cytoplasm of asymptomatic carriers and HAM/TSP patients, while tumor cells from 

leukemic patients contain HBZ in the cytoplasm and the nucleus304. However, the HBZ 
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antibody generated and utilized by for the latter study has not been validated for 

immunofluorescence microscopy305. Furthermore, there is some discrepancy when 

comparing HBZ localization using GFP-tagged HBZ and the recently developed HBZ 

antibody (i.e. one study determined that HBZ is localized to the nucleus and the 

cytoplasm, while another study determined that HBZ is only localized to the nucleus)305. 

Given the complicating factor described above and the abundance of evidence 

supporting nuclear localization of HBZ, nuclear localization of HBZ is widely accepted.   

Roles of HBZ in Gene Expression. 

Viral Gene Expression. 

HBZ is able to downregulate sense proviral transcription through multiple 

mechanisms. The HBZ bZIP domain can interact with CREB to inhibit binding of CREB 

to vCREs226,306. The HBZ AD contains two LxxLL-like motifs, which interact directly with 

the kinase-inducible domain (KID) interacting domain (KIX) of CBP/p300307. 

Recruitment of CBP/p300 by HBZ through this interaction results in sequestration of 

these coactivators from Tax, ultimately down-regulating Tax-mediated proviral 

transcription (Figure 1.7)306-308. sHBZ represses Tax-mediated proviral transcription 

much more strongly than usHBZ205. sHBZ and Sp1, together, are able to have the 

opposite impact on the HBZ promoter, upregulating expression of HBZ (Figure 1.7)205. 

Furthermore, recent studies have demonstrated that HBZ RNA can also downregulate 

sense viral transcription by impacting the interaction of RNA polymerase II (RNAPII) 

with the 5’ LTR through displacement the basal transcription initiator, TATA box-binding 

protein (TBP)309. 
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Figure 1.6. Schematic representation of the structure of HBZ and select HBZ 
binding partners. HBZ is a 206 amino acid protein that can be divided into three 
distinct domains: the activation domain (AD), the central domain, and the bZIP domain. 
The AD can interact with the KIX domain of p300/CBP. The central domain contains two 
basic regions and is involved in nuclear localization. The bZIP domain can interact with 
the HAT domain of p300/CBP and members of the AP-1, ATF/CREB, and Maf families 
of transcription factors (indicated by green boxes).  
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Cellular Gene Expression. 

HBZ can also interact with CBP/p300 to alter cellular gene expression.  HBZ can 

bind to the HAT and C/H3 domains of CBP/p300, which results in a reduction in p53 

acetylation and activity310. It has also been demonstrated that HBZ, through its N-

terminal LxxLL-like motif, can form a ternary complex with p300 and SMAD family 

member 3 (SMAD3) to enhance activation of the TGF-β signaling, resulting in forkhead 

box P3 (Foxp3) expression39. Activation of TGF-β signaling and subsequent Foxp3 

expression is advantageous for HTLV-1-infected T-cells as it promotes the conversion 

to regulatory T-cells, thereby promoting viral persistence39.  

The bZIP domain of bZIP transcription factors contains a basic region involved in 

DNA binding and a ZIP region that facilitates dimerization through coiled-coil 

interactions with similar domains of other bZIP factors. The basic region of HBZ, 

however, is atypical and lacks consensus amino acid motifs present in most bZIP 

factors that facilitate efficient DNA binding and DNA binding only occurs in rare 

situations. Although unable to form homodimers, HBZ can form heterodimers with 

certain members of the Jun, Maf and activating transcription factor (ATF)/CREB families 

of cellular bZIP factors (Figure 1.6)311.. Interactions between c-Jun or JunB and 

unspliced HBZ often results in transcriptional repression through bZIP factor 

sequestration and proteosomal degradation, which effectively prevents c-Jun and JunB 

from activating transcription302,311,312. Recently, it was shown that HBZ splice variant 1 

actually stabilizes c-Jun and JunB expression313. HBZ can activate gene expression by 

stimulating JunD-dependent transcription from an AP-1 consensus site302. HBZ-JunD 

heterodimers have also been shown to activate transcription of hbz and hTERT through 
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interactions with the hbz and hTERT promoters, respectively. This mechanism occurs 

through binding of an HBZ/JunD heterodimer to the transcription factor SP-1 when SP-1 

is prebound to the DNA (Figure 1.7)314-316. HBZ can also heterodimerize with members 

of the Maf transcription factor family and ATF/CREB bZIP factors226,306,311,317-319. 

Although most of these interactions results in transcriptional repression, HBZ is able to 

activate transcription of certain genes. For example, HBZ can form dimers with small 

Mafs, which can bind MARE sequences within the HMOX1 upstream enhancer site, 

resulting in activation of gene expression317. HBZ can also stimulate expression of the 

bZIP transcriptional factor, activating transcription factor (ATF)-like 3 (BATF3), which 

results in upregulation of BATF3 and subsequent regulation of downstream targets of 

BATF3320. Post-transcriptionally, HBZ impacts gene expression by altering mRNA 

splicing events321,322. 

It has been demonstrated that both HBZ mRNA and HBZ protein, the only viral 

protein constitutively expressed in ATL cells, are able to alter normal cellular 

functions297. HBZ RNA and protein can both induce C-C motif chemokine receptor 4 

(CCR4), promoting T-cell migration and proliferation323. HBZ RNA and protein are also 

able to activate T-cell immunoreceptor with Ig and ITIM domains (TIGIT) expression, 

resulting in impaired anti-viral immunity324. However, the most well-known role of HBZ 

RNA and protein is in oncogenesis. HBZ RNA has been implicated in ATL as it 

promotes proliferation and inhibits apoptosis of T-cells325. Alternatively, HBZ protein 

increases apoptosis297. Further promoting oncogenesis, HBZ promotes genetic 

instability and interferes with normal DNA repair mechanisms326,327. Indeed, the bZIP 

domain of HBZ reduces non-homologous end joining repair of double-stranded DNA 
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breaks326. The oncogenic potential of HBZ has been further demonstrated using a 

mouse model, in which transgenic mice expressing HBZ in CD4+ T-cells developed T-

cell lymphoma and inflammation32.  

The Roles of HBZ in Infectious Spread of HTLV-1. 

Interestingly, in vivo analyses exploring the role of HBZ in infection using HTLV-1 

molecular clones and rabbit model system identified a possible role of HBZ in 

infection328.  The ability of HTLV-1 producer cell lines encoding wildtype HBZ, a 

severely truncated HBZ mutant or a C-terminal leucine zipper mutant to infect rabbits 

was assessed. Infection with virus from either HBZ mutant resulted in a significantly 

lower proviral load compared to infection from virus produced by wildtype HBZ-

expressing cells. Furthermore, the similar trend exhibited from infection with virus from 

HBZ truncation mutant and leucine zipper mutant cells supports a potential role of the 

ZIP domain in HBZ-mediated enhancement of HTLV-1 infection328. A similar study was 

performed using rhesus macaques. Rhesus macaques were inoculated with HTLV-1 

molecular clone-derived virus expressing an HBZ knockout through two point mutations. 

Interestingly, spontaneous partial or full seroconversion to wildtype was identified 

following inoculation223. Together, results of these in vivo studies support a potential role 

of HBZ in cell-to-cell transmission of HTLV-1.  

Furthermore, our laboratory recently demonstrated in vitro that HBZ significantly 

enhances cell-to-cell transmission of HTLV-1329. We found that expression of HBZ in T-

cells increases cellular aggregation, a phenotype attributed to elevated levels of ICAM-1 

329. This is consistent with previous reports implicating ICAM-1 as an important 

adhesion molecule during formation of the virological synapse292.  Additionally, we also 
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found that HBZ upregulates transcription of the MYOF gene, which encodes for 

myoferlin, a protein involved in vesicles trafficking330. Upregulation of myoferlin inhibits 

HTLV-1 envelope degradation and increases adhesion. Other genes reported to be 

involved in infection, including NRP1, COL4A1 and GEM were also identified by our lab 

as potentially upregulated by HBZ. However, the possibility that NRP1 could potentially 

be upregulated by HBZ was particularly intriguing as NRP1 is known to be important for 

infection of target cells. Until now a role for NRP1 on HTLV-1-infected cells has not 

been demonstrated. Given this, the focus of our study was to determine the implications 

of NRP1 expression on HTLV-1-infected T-cells, specifically in terms of viral infectivity. 
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Figure 1.7. Schematic representation of HTLV-1 viral gene expression by Tax and 
HBZ. Tax forms complexes with CREC and p300/CBP, which can interact with the 5’ 
LTR to activate sense viral transcription. HBZ can form a complex with Sp1 and JunD to 
activate antisense viral transcription from the 3’ LTR. Tax mRNAs are exported from the 
nucleus by Rex. HBZ can down-regulate Tax-mediate proviral transcription by 
sequestering CREB, p300/CBP or Rex. 
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ABSTRACT 

Infection with human T-cell leukemia virus type 1 (HTLV-1) can produce a spectrum of 

pathological effects ranging from inflammatory disorders to leukemia. In vivo, HTLV-1 

predominantly infects CD4+ T-cells. Infectious spread within this population involves the 

transfer of HTLV-1 virus particles from infected cells to target cells only upon cell-to-cell 

contact. The viral protein, HBZ, was found to enhance HTLV-1 infection through 

transcriptional activation of ICAM1 and MYOF, two genes that facilitate viral infection. In 

this study, we found that HBZ upregulates transcription of COL4A1, GEM and NRP1. 

COL4A1 and GEM are genes involved in viral infection, while NRP1, which encodes 

neuropilin-1 (Nrp1) serves as an HTLV-1 receptor on target cells but has no reported 

function on HTLV-1-infected cells. With a focus on Nrp1, cumulative results from 

chromatin immunoprecipitation assays and analyses of HBZ mutants support a model in 

which HBZ upregulates NRP1 transcription by augmenting recruitment of Jun proteins 

to an enhancer downstream of the gene. Results from in vitro infection assays 

demonstrate that Nrp1 expressed on HTLV-1-infected cells inhibits viral infection. Nrp1 

was found to be incorporated into HTLV-1 virions, and deletion of its ectodomain 

removed the inhibitory effect. These results suggest that inhibition of HTLV-1 infection 

by Nrp1 is caused by the ectodomain of Nrp1 extended from virus particles, which may 

inhibit binding of virus particles to target cells. While HBZ has been found to enhance 

HTLV-1 infection using cell-based models, there may be certain circumstances in which 

activation of Nrp1 expression negatively impacts viral infection, which is discussed. 
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INTRODUCTION 

Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that 

primarily infects CD4+ T-cells in vivo. Worldwide, 5-10 million people are estimated to be 

infected with HTLV-1 of which 5-10% will experience pathological effects associated 

with the viral infection8,285. Specifically, HTLV-1 is the etiologic agent of an often fatal 

form of leukemia designated adult T-cell leukemia (ATL) and, separately, a progressive 

inflammatory neurodegenerative disease known as HTLV-1-associated 

myelopathy/tropical spastic paraparesis (HAM/TSP)80,331. HTLV-1 infection is 

additionally associated with other inflammatory maladies that include infective 

dermatitis, uveitis, polymyositis, and Sjogren’s syndrome81. 

 Infectious spread of HTLV-1 within the T-cell population requires direct contact 

between HTLV-1-infected and target T-cells. Once cell-to-cell contact is established, 

virions are transferred to target cells through a virological synapse or through cellular 

conduits or from virions contained in an extracellular biofilm-like matrix that is released 

from the surface of the infected cell127-130,289. These infection mechanisms are not 

believed to be mutually exclusive. Subsequently, HTLV-1 virions bind to the cell surface 

and fuse with the plasma membrane through interactions of the surface unit (SU) of the 

HTLV-1 envelope protein with three receptors: heparin sulfate proteoglycans (HSPGs), 

neuropilin 1 (Nrp1) and glucose transporter 1 (Glut1)97,100,189. These receptors are 

believed to act in concert as a tri-receptor complex with HSPGs mediating initial virion 

attachment that, through interactions between HSPG and Nrp1, deliver the virion to 

Nrp1 to establish high-affinity binding. At this stage a conformational change in SU is 

believed to promote Glut1 binding, which induces fusion and entry148. 
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 Nrp1 displays a diverse array of coreceptor functions. It interacts with plexins to 

mediate class 3 Semaphorin signaling, which is involved in repulsive axon 

guidance168,169. It also functions as a coreceptor for multiple growth factor receptors 

involved in angiogenesis, specifically augmenting signaling activated by vascular 

endothelial growth factor 165, platelet-derived growth factor-B, hepatocyte growth factor 

and fibroblast growth factor332-335.  In addition, Nrp1 enhances signaling through 

transforming growth factor β1 (TGF-β1)336, which is associated with maintaining 

regulatory T-cells and, through a non-canonical signaling pathway, has also been 

implicated in cancer progression362. The composition of the extracellular region of Nrp1 

is critical to the binding of this diverse set of signaling ligands. This region of the protein 

contains two tandem N-terminal CUB domains (a1 and a2) for Semaphorin binding 

followed by two tandem Factor V/VIII homology domains (b1 and b2) for growth factor 

binding followed by a membrane proximal MAM domain (c) that is proposed to position 

the other domains away from the membrane, allowing for an extended 

ectodomain337,338. 

 The HTLV-1 protein, HTLV-1 basic leucine zipper (bZIP) factor (HBZ), regulates 

transcription through its capacity to interact with an array of cellular transcriptional 

regulators. HBZ contains an N-terminal activation domain with two LxxLL motifs that 

mediate high-affinity binding to the paralogous cellular coactivators p300 and CBP 

(interchangeably denoted p300/CBP)307,308. Within its C-terminal region, HBZ contains a 

leucine zipper (ZIP) domain that forms heterodimers with certain cellular bZIP factors, 

including Jun proteins, members of the maf family and certain members of the 

ATF/CREB family226,302,306,311,317-319,339,340. In addition, HBZ has been reported to interact 
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with other transcriptional regulators341,342. One consequence of its transcriptional 

regulator function is to activate cellular genes important for HTLV-1 infection. 

Specifically, HBZ upregulates expression of ICAM-1329, which facilitates binding of 

infected cells to target cells and promotes formation of the virological synapse131,289. In 

addition, HBZ induces expression of myoferlin, which abrogates lysosomal-mediated 

degradation of the HTLV-1 envelope protein and promotes cell adhesion330. 

 In this study, we provide evidence that HBZ increases expression of two other 

genes that contribute to HTLV-1 infection, COL4A1 and GEM. Additionally, we found 

that HBZ increases expression of NRP1. While contributions of the former genes to viral 

infection have been investigated135,291, no role for Nrp1 expressed on HTLV-1-infected 

cells has been reported, which prompted us to investigate Nrp1 further. We identified an 

enhancer downstream of the NRP1 gene that was bound by HBZ, resulting in increased 

recruitment of Jun proteins and p300/CBP to this chromosomal region.  Analysis of HBZ 

mutants and results from ChIP assays support a primary role for HBZ in increasing 

binding of Jun proteins to the enhancer. Unexpectedly, mutations in the LxxLL motifs of 

HBZ did not reduce NRP1 transcription, indicating that HBZ is not directly involved in 

the recruitment of p300/CBP to this enhancer. In in vitro infection assays, Nrp1 inhibited 

infection, an effect that was associated with its incorporation into cell-free virions 

produced by HTLV-1-infected T-cell lines. Finally, using HEK293T cells, we found that 

inhibition of infection by Nrp1 was abolished by deletion of its extracellular domain, 

suggesting that the extended ectodomain of Nrp1 on HTLV-1 virions inhibits infection. 

Given the overall positive role of HBZ toward viral infection, we speculate that negative 

effects on infection caused by activation of Nrp1 might only arise during specific stages 
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of HTLV-1 pathogenesis, such as progression from an indolent to an aggressive form of 

ATL, which is discussed.   

 

RESULTS 

Genes involved in HTLV-1 infection are upregulated in HBZ-expressing cells. HBZ 

was shown to enhance HTLV-1 infection by activating transcription of ICAM1 and 

MYOF329,330. Analysis of previous gene expression microarray data using HeLa cell 

clones lacking or expressing HBZ343, revealed three additional genes potentially 

upregulated by HBZ that were previously reported to be involved in viral infection. 

These included COL4A1, GEM, and NRP1. COL4A1 along with COL4A2 encode 

collagen type IV alpha 1 and 2 chains, respectively, and are expressed in HTLV-1-

infected T-cells135. COL4A1 and COL4A2 likely form the collagen matrix of biofilm-like 

viral assemblies on HTLV-1-infected cells that transfer virions to target cells during cell 

contact130. Gem is a GTP-binding protein with roles in signal transduction344. In HTLV-1-

infected T-cells, Gem promotes formation of cell-to-cell conjugates, potentially 

increasing infection of target T-cells291. Lastly, NRP1 encodes neuropilin-1 (Nrp1), 

which is the cellular receptor that interacts with the HTLV-1 envelope protein to facilitate 

stable binding of virions to target cells99. Using quantitative reverse transcriptase PCR 

(qRT-PCR), expression of all three genes was confirmed to be elevated in the HBZ-

expressing cells (Figures 2.1A, 2.1C and 2.1D). Given that COL4A1 and COL4A2 are 

“head-to-head” genes, they are expected to share certain promoter elements, which led 

us to also analyze COL4A2 expression. Expression of this gene was also slightly 

elevated in HBZ-expressing cells (Figure 2.1B). It is important to note that COL4A1/A2 
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expression is high in HeLa cells, which might partially mask levels of activation by HBZ. 

Regulation of COL4A1 and GEM expression by HBZ was partly supported by in silico 

analysis of RNA-seq data from Nakagawa et al. who used CRISPR-Cas9 to disrupt the 

hbz gene in ATL cells320 (Supplemental Figure 1). Furthermore, analysis of ChIP-seq 

data from the same study revealed peaks of HBZ-enrichment associated with each 

gene320 (Supplemental Figure 1). The identification of upregulation of these genes is 

particularly interesting because HBZ generally downregulates expression of certain 

genes through sequestration of transcription factors226,306,311,317-319.  
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 Figure 2.1. HBZ upregulates genes involved in HTLV-1 infection. (A) Relative 
COL4A1 mRNA levels in HeLa clonal cell lines expressing wild-type HBZ (HBZ) or 
carrying an empty expression vector (pcDNA). The graph shows qRT-PCR results 
average from four independent experiments using one set of HeLa pcDNA and HeLa 
HBZ cells lines.  (B) Relative COL4A2 mRNA levels in HeLa cells transduced with 
lentiviral vectors to express wild-type HBZ (HBZ) or insert the empty expression vector 
(pQCXIP). The graph shows qRT-PCR results averaged from six independent 
transduction sets using one set of HeLa pcDNA and HeLa HBZ cells lines.  (C) Relative 
GEM mRNA levels in HeLa clonal cell lines expressing wild-type HBZ (HBZ) or carrying 
an empty expression vector (pcDNA). The graph shows qRT-PCR results average from 
eight independent experiments using one set of HeLa pcDNA and HeLa HBZ cells lines.    
(D) Relative NRP1 mRNA levels in HeLa clonal cell lines expressing wild-type HBZ 
(HBZ) or carrying an empty expression vector (pcDNA). The graph shows qRT-PCR 
results average from five independent experiments using one set of HeLa pcDNA and 
HeLa HBZ cells lines. For all graphs, HBZ values are normalized to that of the empty 
vector (set to 1), and error bars show standard deviations; *, p<0.05; **, p<0.01. (E) 
Nrp1 expression in empty vector (pcDNA) and HBZ-HeLa clones. Whole cell extracts 
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(40 μg for Nrp1 and β-actin, 75 μg for His) were analyzed by western blot using 
antibodies against Nrp1, HBZ (His) and β-actin. Credit: (A) (B) (C) (D) RNA, cDNA, 
qRT-PCR/data input - Kimson Hoang; Statistical analysis: Wesley Kendle; Graph 
creation: Wesley Kendle and Isabelle Lemasson. (B) Transduction: Nicholas 
Polakowski. (E) Western blot- Kimson Hoang. 
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Nrp1 expression is elevated in HTLV-1-infected T-cells lines and primary cells 

infected with HTLV-1. Roles for COL4A1, COL4A2 and Gem in HTLV-1 infection have 

been investigated. In contrast, in the context of expression by the infected cell, whether 

Nrp1 participates in viral infection is not known. This point led us to pursue further 

analyses of Nrp1. We first correlated higher mRNA levels with higher protein levels in 

HeLa cells expressing HBZ compared to cells carrying the empty vector (Figure 2.1E). 

HeLa cells, rather than HTLV-1-infected cells, were utilized to examine the relationship 

between HBZ and Nrp1 expression at the protein level because there currently isn’t a 

quality HBZ antibody available and the use of HeLa cells expressing His-tagged HBZ 

allowed for identification of HBZ based on the presence of the His tag. In addition to 

HBZ, the HTLV-1 Tax protein is a transcriptional regulator343. However, unlike HBZ, 

expression of Tax in HeLa cells did not lead to an increase in the level of Nrp1 

(Supplemental Figure 2).  In silico analysis of the microarray data from the HBZ 

knockout cells of the Nakagawa et al. study320 revealed reduced NRP1 mRNA levels by 

each of the two hbz-targeted guide RNAs used in the two ATL cell lines tested (Figure 

2.2A). Due to limitations of the data provided from the Nakagawa et al study320 (ie. only 

relative expression values provided), statistical analysis could not be performed. 

Furthermore, sufficient control data was not available for these data, limiting the ability 

to draw conclusions from the data. Western blot analysis confirmed that Nrp1 is present 

in HTLV-1-infected T-cell lines, with the highest levels of the protein found in ATL-2 and 

MT-2 cells (Figure 2.2B). Importantly, flow cytometric analysis confirmed the presence 

of Nrp1 on the surface of infected cells (Figure 2.2C). qRT-PCR analysis also indicated 

that Nrp1 is expressed in recently established HTLV-1-immortalized clones from human 
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peripheral blood lymphocytes111 (Figure 2.2D). Interestingly, some clones exhibited 

substantially higher levels of NRP1 mRNA than ATL-2 cells. This comparison of recently 

established HTLV-1-immortilized clones and long-term HTLV-1 cell lines suggests that 

Nrp1 may be activated early in the course of infection, however, additional studies with 

appropriate statistical analysis are needed to further support these findings. 
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Figure 2.2. HBZ upregulates NRP1 expression. (A) Deletion of HBZ in ST1 and KK1 
ATL-derived cells reduces NRP1 expression.  The graph was generated from published 
microarray data (GEO accession number GSE94409320 and shows the percent 
reduction in NRP1 transcript levels after inducing CRISPR/Cas9-mediated knockout of 
HBZ in the ATL-derived cell lines, ST1 and KK1, using two different guide RNAs 
(sgHBZ_1 and _2). Values are from day 8 post-induction except for sgHBZ_2 in KK1, 
which is the day 7 values (no day 8 data provided for this specimen). Data were 
obtained using GEO2R with calculations based on averaged values from the four array 
features probing for different regions of the NRP1 transcript; *p<0.05, **p<0.01. (B) 
Nrp1 expression in non-infected activated CD4+ T-lymphocytes (aCD4) and T-cell lines. 
Whole cell extracts (45 μg for Nrp1 and β-actin, 50 μg for Tax) were analyzed by 
western blot using antibodies against Nrp1, Tax and β-actin. (C) Nrp1 expression on the 
cell surface of T-cell lines. Jurkat and ATL-2 cells were labeled with an Nrp1 antibody, 
fixed and analyzed by flow cytometry. Histograms are representative of three 
independent experiments and show relative cell surface labeling as follows: unlabeled 
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cells (CT, light grey) and Nrp1 antibody (dark gray). (D) Relative NRP1 mRNA levels in 
HTLV-1-immortalized human T-cell clones recently established from peripheral blood 
lymphocytes (PBL). The graph shows qRT-PCR results averaged from three separate 
RNA extractions. Values were normalized to those for activated CD4+ T-cells (set to 1). 
Error bars represent standard deviations. Credit: (A) in situ analysis (data collection and 
compilation): Wesley Kendle; graph creation: Wesley Kendle, Isabelle Lemasson (B) 
Western blot: Wesley Kendle (Nrp1 and b-actin) and Kimson Hoang (Tax). (C) Flow 
cytometry, data analysis, figure creation: Kimson Hoang and Isabelle Lemasson; (D) 
Cell lines provided by Amanda Panfil; RNA, cDNA, qRT-PCR/data input: Kimson 
Hoang; data compilation, statistical analysis: Wesley Kendle; Graph creation: Wesley 
Kendle, Isabelle Lemasson.  
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HBZ activates NRP1 transcription from an enhancer downstream of the gene. To 

characterize the mechanism through which HBZ upregulates NRP1 transcription, we 

first analyzed ChIP-seq data from the Nakagawa et al. study320. In the two cell lines 

examined in this study, a peak of HBZ-enrichment was identified approximately 50 kb 

downstream of NRP1 (Figure 2.3A and data not shown). This site is also 176 kb 

upstream of ITGB1 (Supplemental Figure 3A); however, expression of this gene is not 

affected by HBZ according to microarray data (data not shown). To test for HBZ-

enrichment at this site in another HTLV-1-infected T-cell line, we performed ChIP 

assays using SLB-1 cells. SLB-1 cells were utilized as they express low levels of Nrp1 

in hopes that the induction of additional HBZ expression via transduction with His-

tagged HBZ would not induce Nrp1 expression to a toxic level in the cells. As antibodies 

against HBZ that are suitable for ChIP assays have not been developed, cells were 

transduced to express HBZ with a C-terminal 6xHis epitope tag for immunoprecipitation. 

Through this approach we observed significant enrichment of HBZ at the peak region 

identified in KK1 cells compared to a downstream off-target region (Figure 2.3B). These 

results support our analysis of data from the previous study, showing that HBZ is 

recruited to a chromosomal region downstream of the NRP1 gene. A general analysis of 

this region using the UCSC genome browser revealed that it is denoted as an enhancer 

independent of HBZ and HTLV-1 infection345,346. Specifically, it shows hypersensitivity to 

DNase I and is flanked by peaks of histone H3 lysine 27 (H3K27ac; Supplemental 

Figure 3). Although our data suggests that the identified region approximately 50kB 

downstream of NRP1 may serve as an NRP1 enhancer based on recruitment of certain 
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transcription factors, including HBZ, further studies are needed to confirm that this 

region truly functions as an enhancer.  
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Figure 2.3. HBZ increases c-Jun and JunB recruitment to an enhancer 
downstream of the NRP1 gene. (A) HBZ associates with a chromosomal site 
(enhancer peak) approximately 200kb downstream of the NRP1 transcription start site 
(indicated by the bent arrow). Peaks of enrichment for HBZ, H3K27ac and IgG (negative 
control) at the NRP1 locus in KK1 cells are shown in the IGV Browser. Genomic 
coordinates are based on the NCBI36/hg18 assembly. Data were obtained from 
published ChIP-Seq data sets (GEO accession number GSE94732320. (B) HBZ binds to 
the enhancer region in SLB-1 cells. The graph shows levels of HBZ enrichment at the 
off-target control site and the enhancer region averaged from four independent ChIP 
assays using SLB-1 cells transduced to express HBZ with a C-terminal 6xHis tag. (C) c-
Jun and JunB are enriched at the enhancer region in ATL-2 cells. The graph shows 
average levels of factor enrichment at the off-target control site, the enhancer region, 
and at the AP-1 site in the WEE1 promoter (WEE1-AP1). Data are from four (c-Jun) and 
three (JunB and MafG) independent ChIP assays. (D) Relative NRP1 mRNA levels in 
HeLa clonal cell lines expressing wild-type HBZ (HBZ-WT), the activation domain 
mutant (HBZ-MutAD), the leucine zipper domain mutant (HBZ-MutZIP), the 
translational-defective mutant (HBZ-ΔATG), or carrying the empty expression vector 
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(pcDNA). The graph shows qRT-PCR results average from five independent 
experiments, with values normalized to that for pcDNA (set to 1). (E) HBZ binds to the 
enhancer region in HeLa cells. The graph shows levels of HBZ enrichment at the off-
target control site and the enhancer region averaged from three independent ChIP 
assays using HeLa cells expressing HBZ or carrying the empty vector (pcDNA). (F) 
JunB binds to the enhancer region in HeLa cells. The graph shows levels of HBZ 
enrichment at the off-target control site and the enhancer region averaged from three 
independent ChIP assays using HeLa cells expressing HBZ or carrying the empty 
vector (pcDNA). For all graphs, error bars show standard deviations; *, p<0.05, **, 
p<0.01. Credit: (A) Analysis and figure creation: Wesley Kendle; (B) ChIP method 
development / optimization and transduction: Nicholas Polakowski; ChIP: Wesley 
Kendle / Nick Polakowski; : RT-PCR/data input Kimson Hoang; Statistical 
analysis/graph generation: Wesley Kendle and Isabelle Lemasson (C) ChIP: Wesley 
Kendle; qRT-PCR/data input: Kimson Hoang; Statistical analysis/graph generation: 
Wesley Kendle and Isabelle Lemasson (D) RNA, cDNA, qRT-PCR/data input: Kimson 
Hoang and Erica Korleski; Statistical analysis and graph generation: Wesley Kendle and 
Isabelle Lemasson. (E) ChIP: Wesley Kendle / Nick Polakowski; qRT-PCR/data input: 
Kimson Hoang; Statistical analysis/graph generation: Wesley Kendle (F) ChIP: Wesley 
Kendle; qRT-PCR/data input: Kimson Hoang; Statistical analysis and graph generation: 
Wesley Kendle. 

 

  



   
 

57 
 

Recent evidence indicates that, through dimerization with small Mafs and Jun proteins, 

HBZ can associate with the DNA311,317,330. We therefore analyzed enrichment of these 

proteins at the downstream enhancer. ChIP analysis of ATL-2 cells revealed significant 

enrichment of c-Jun and JunB at this site compared to the off-target region (Figure 

2.3C). Strikingly, the level of enrichment of these proteins at the enhancer matched that 

at the AP-1 site in the WEE1 promoter, which served as the positive control. Consistent 

with these results, the DNA sequence of the enhancer region contained two full 

consensus AP-1 binding sites as well as several partial sites (Supplemental Figure 3). 

No significant enrichment was detected for the small Maf, MafG, at the enhancer 

(Figure 2.3C). 

 We then used HeLa clonal cell lines to expand on these observations. First, we 

compared NRP1 mRNA levels in a clone expressing wild-type HBZ and two clones 

expressing mutant versions of the viral protein: HBZ-MutAD, which is defective for 

binding to p300/CBP, and HBZ-MutZIP, which is defective for binding to cellular bZIP 

factors307,317. In addition, we analyzed a start codon mutant (HBZΔATG) that is not 

translated into the viral protein306. Cell lines expressing either HBZ-MutZIP or 

HBZΔATG showed a significant reduction in NRP1 mRNA levels compared to cells 

expressing wild-type HBZ, while no significant change was observed with HBZ-MutAD 

(Figure 2.3D). Using ChIP assays, we verified that HBZ was enriched at the NRP1 

enhancer in the HeLa cells expressing wild-type HBZ (Figure 2.3E). Lastly, using ChIP 

assays to compare the HeLa clones expressing HBZ and carrying the empty expression 

vector, we observed enrichment of JunB at the enhancer in the presence of HBZ 
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(Figure 2.3F). Together, these results indicate that HBZ activates NRP1 transcription by 

forming heterodimers with Jun proteins on the enhancer. 

 Analysis of ChIP-seq data from the Nakagawa et al. study320 also revealed peaks 

of H3K27ac at and around the NRP1 enhancer (Figure 2.3A). This modification is 

generated by the KAT activity of p300 and CBP, suggesting the involvement of these 

coactivators in HBZ-mediated NRP1 transcription. In the HeLa clones, ChIP assay 

results revealed that both p300 and CBP were enriched at the enhancer compared to at 

the off-target region with substantially greater coactivator enrichment in the presence of 

HBZ (Figure 2.4A and 2.4B). Consistent with this observation, siRNA-mediated 

knockdown of both coactivators reduced NRP1 mRNA levels in both the HBZ-

expressing and empty vector clones (Figure 2.4C). Knockdown of p300 and CBP was 

confirmed by western blot (Figure 2.4D). In ATL-2 cells, treatment with the p300/CBP 

KAT-specific inhibitor, A485, significantly reduced NRP1 mRNA levels (Figure 2.4E). A 

similar effect of A485 was observed in a recently established HTLV-1-immortalized 

clone (Figure 2.4F). Together, these results indicate that HBZ upregulation of NRP1 

transcription is associated with enhanced recruitment of p300/CBP to the downstream 

enhancer. 
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Figure 2.4. p300/CBP is recruited to the NRP1 enhancer. p300 (A) and CBP (B) bind 
the NRP1 enhancer region. Graphs show average values from three independent ChIP 
assays using empty vector (pcDNA) and HBZ-expressing HeLa cells. (C) siRNA-
mediated depletion of p300 and CBP abrogates activation of NRP1 transcription by 
HBZ. HeLa clonal cell lines expressing wild-type HBZ (HBZ) or carrying an empty 
expression vector (pcDNA) were transfected with an siRNA pool targeting p300 and 
CBP or a non-targeting siRNA pool (Control). The graph shows qRT-PCR results 
averaged from four independent transfection experiments with values normalized to 
those for the empty-vector clone (pcDNA) transfected with the non-targeting siRNA pool 
(set to 1). (D) siRNA-mediated depletion of p300 and CBP. HeLa cells were transfected 
with an siRNA pool targeting p300 and CBP (p300/CBP) or a non-targeting siRNA pool 
(Control). Whole cell extracts (15 μg for p300, 40 μg for CBP and β-actin) were 
analyzed by western blot using antibodies against p300, CBP and β-actin. Inhibition of 
p300/CBP KAT activity reduces NRP1 transcription in (E) an HTLV-1-infected T-cell line 
(ATL-2) and (F) an HTLV-1-immortalized primary human T-cell clone (CJ4). Cells were 
treated with A485 (10 μM) or the carrier (DMSO) for 3h. Graphs show qRT-PCR results 
averaged from four (ATL-2 cells) and two (CJ4 cells) independent experiments with 
A485 values normalized to those for DMSO (set to 1). For all graphs, error bars show 
standard deviations; *, p<0.05; **, p<0.01. Credit: (A) ChIP: Nick Polakowski; qRT-
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PCR/data input: Kimson Hoang; Statistical analysis and graph generation: Wesley 
Kendle; (B) ChIP: Nick Polakowski; qRT-PCR/data input: Kimson Hoang; Statistical 
analysis/Graph Generation: Wesley Kendle; (C) Transfection/RNA: Isabelle Lemasson; 
cDNA, qRT-PCR/data input: Kimson Hoang; Statistical analyis/graph generation: 
Wesley Kendle; (D) Whole cell extract: Isabelle Lemasson; Western blots: Wesley 
Kendle; (E) Cell treatment: Isabelle Lemasson; RNA, cDNA, qRT-PCR/data input: 
Kimson Hoang; Statistical analysis/graph generation: Wesley Kendle; (F) Cell treatment: 
Isabelle Lemasson; qRT-PCR/data input: Kimson Hoang; Statistical analysis/graph 
generation: Wesley Kendle. 
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Nrp1 expression in HTLV-1-infected T-cells inhibits HTLV-1 infection. We were 

interested in establishing whether Nrp1 expressed by HTLV-1-infected T-cells 

influenced HTLV-1 infection. To test this possibility, we first analyzed how knocking 

down Nrp1 expression in these cells influenced their ability to infect target reporter cells. 

In these experiments, we used MT-2 and ATL-2 cells based on their higher Nrp1 

expression compared to SLB-1 cells. These two effector cell lines were transduced to 

express shRNA targeting the NRP1 transcript (shNRP1) or, as a negative control, GFP 

(shGFP) and then co-cultured with Jurkat-pminLUC-vCRE reporter cells (Figure 2.5A). 

Following HTLV-1 infection, cells express the viral protein, Tax, which trans-activates 

the promoter driving luciferase expression in the Jurkat-pminLUC-vCRE cells329. 

C8166/45 cells were used as negative control effector cells, as they do not produce 

HTLV-1 virus particles due to defects in their proviruses347. In MT-2 cells, knockdown of 

Nrp1 led to a significant increase in HTLV-1 infection over that of shGFP-transduced 

cells (Figure 2.5B). Western blot analysis showed that levels of the HTLV-1 structural 

protein, p19gag, and the HTLV-1 envelope surface unit (SU), gp46, were not affected by 

Nrp1 knockdown (Figure 2.5C). Furthermore, clarified culture supernatants contained 

similar levels of p19gag, indicating that Nrp1 knockdown does not affect the production of 

HTLV-1 virus particles (Figure 2.5D). However, it’s important to note that, while 

detecting p19 in the cell supernatant is widely accepted method to quantify viral 

particles, this method cannot differentiate between infectious and non-infectious virions. 

Furthermore, quantification of infectivity of cell-free virus from transduced HTLV-1-

infected T-cells using cell-free infection assays is challenging due to insufficient 
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amounts of cell-free virus produced by these cells. Comparable results were obtained 

using transduced ATL-2 cells (Figure 2.5E-5G).  

  



   
 

63 
 

 
Figure 2.5. NRP1 knock-down increases HTLV-1 infection. (A) The flow diagram 
shows the co-culture/infection assay procedure using HTLV-1-infected cells as donor 
cells and Jurkat-pminLUC-vCRE cells as target cells. (B) shRNA-mediated depletion of 
Nrp1 in MT-2 cells increases HTLV-1 infection. Jurkat-pminLUC-vCRE cells were co-
cultured with MT-2 cells under puromycin selection following transduction with 
expression vectors for a negative control shRNA (shGFP) or an shRNA targeting the 
NRP1 transcript (shNRP1), or co-cultured with non-infectious C8166/45 cells. The graph 
shows luciferase values averaged from three replicates of a single experiment and is 
representative of three independent experiments. (C) shRNA-mediated depletion of 
Nrp1 in MT-2 cells does not affect levels of gp46 (SU) and Gag p19. Whole cell extracts 
(50 μg for Nrp1 and β-actin; 15 μg for gp46 and Gag p19) were analyzed by western 
blot using antibodies against Nrp1, gp46, Gag p19 and β-actin. (D) shRNA-mediated 
depletion of Nrp1 in MT-2 cells does not affect levels of cell-free virus. Levels of Gag 
p19 in clarified culture media were measured by ELISA. The graph shows relative 
values averaged from two independent transduction experiments. (E) shRNA-mediated 
depletion of Nrp1 in ATL-2 cells increases HTLV-1 infection. Experiments were done as 
described in (B) above. The graph shows luciferase values averaged from three 
replicates of a single experiment and is representative of two independent experiments. 
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(F) shRNA-mediated depletion of Nrp1 in ATL-2 cells does not affect levels of gp46 
(SU) and Gag p19. Western blots were done as described in (C) above. (G) shRNA-
mediated depletion of Nrp1 in ATL-2 cells does not affect levels of cell-free virus. 
Experiments were done as described in (D) above. The graph shows values averaged 
from two independent transduction experiments. (H) The flow diagram shows the co-
culture/infection assay procedure using Jurkat cells as donor cells and CHO-LFA-1 cells 
as target cells. (I) shRNA-mediated depletion of Nrp1 in Jurkat donor cells increases 
HTLV-1 infection. Jurkat cells were co-transfected with pcDNA3.1, pCRU5HT1-inLuc 
and pSG-Tax (no infection, CT) or pCMVHT1, pCRU5HT1-inLuc, pSG-Tax and the 
shGFP or shNRP1 vector, and cocultured with CHO-LFA1 cells. The graph shows 
luciferase values averaged from replicates from three independent experiments. For all 
graphs, error bars show standard deviations; *, p<0.05, **, p<0.01. Credit: (A) Method 
development and optimization (B) (E) Cell expansion, transfection, transduction, 
antibiotic selection, infection assay, cell lysate collection, Bradford assay, luciferase 
assay, graph generation, statistical analysis: Wesley Kendle; Graph modification: 
Isabelle Lemasson. optimization (C) (F) Cell expansion, transfection, transduction, 
antibiotic selection, whole cell extracts, Western blots, figure generation: Wesley 
Kendle; (D) (G) Cell expansion, transfection, transduction, antibiotic selection, 
supernatant collection, ELISA, graph generation, statistical analysis: Wesley Kendle; 
Graph modification: Isabelle Lemasson. 
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Additionally, we analyzed Jurkat cells stably expressing HBZ (Jurkat-HBZ) as 

effector cells using a single-cycle, replication-dependent luciferase infection assay272. 

We used these cells based on the strong luciferase signal they generate in target 

cells329. For these assays, Jurkat-HBZ cells were co-transfected with an HTLV-1 

packaging vector (pCMVHT1M), the replication-dependent HTLV-1 reporter vector 

(pCRU5HT1-inLuc), and to increase infection efficiency, a Tax expression vector. To 

examine effects of Nrp1 in this system, cells were additionally co-transfected with the 

shRNA expression vectors targeting NRP1 or GFP transcripts. Transfected cells were 

co-cultured with adherent CHO-LFA-1 target cells and then removed, and luciferase 

activity was measured in the CHO-LFA-1 cells (Figure 2.5H). As target cells, CHO-LFA-

1 express lymphocyte function-associated antigen 1 (LFA-1), which binds ICAM-1 on 

effector cells to stabilize cell-cell contact and induces formation of a virological synapse 

from which infection occurs127. With this approach, we observed that Jurkat-HBZ cells 

co-transfected with the shRNA vector targeting NRP1 produced a higher level of 

infection than cells co-transfected with the shGFP control vector (Figure 2.5I). 

We performed reciprocal experiments using SLB-1 cells, which display low Nrp1 

expression compared to ATL-2 and MT-2 cells. Cells were transduced with an Nrp1 

expression vector or the empty expression vector and then co-cultured with Jurkat-

pminLUC-vCRE reporter cells (Figure 2.6A). Western blot results confirmed higher 

Nrp1 expression in the cells transduced with the Nrp1 expression vector compared to 

those transduced with the empty vector (Figure 2.6B). Consistent with the knockdown 

experiments, p19gag and gp46 were not affected by the variations in the level of Nrp1. 

However, higher Nrp1 expression was associated with a significant decrease in HTLV-1 
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infection (Figure 2.6C). These and the Nrp1 knockdown results indicate that Nrp1 

expressed by effector cells has an inhibitory role in HTLV-1 infection. 
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Figure 2.6. Overexpression of Nrp1 reduces infection. (A) The flow diagram shows 
the co-culture/infection assay procedure using HTLV-1-infected SLB-1 cells as donor 
cells and Jurkat-pminLUC-vCRE cells as target cells. SLB-1 cells were transduced with 
pLJM1-NRP1 (NRP1) or the pLJM1 empty vector (EV) and place under puromycin 
selection. (B) Nrp1 expression in transduced SLB-1 cells. Whole cell extracts (50 μg for 
Nrp1, Gag p19 and β-actin; 15 μg for gp46) were analyzed by western blot using 
antibodies against Nrp1, gp46, Gag p19 and β-actin. (C) Increased expression of Nrp1 
in SLB-1 cells decreases HTLV-1 infection. Jurkat-pminLUC-vCRE cells were co-
cultured with SLB-1 cells transduced with pLJM1-NRP1 (NRP1) or the pLJM1 empty 
vector (EV), or co-cultured with non-infectious C8166/45 cells. The graph shows 
luciferase values averaged from three replicates of each infection condition from a 
single experiment and is representative of three independent experiments. Error bars 
show standard deviations; *, p<0.05, ***, p<0.001). Credit: (A) Method development and 
optimization: Wesley Kendle; (B) Cell expansion, transfection, transduction, antibiotic 
selection, whole cell extracts, Western blots, figure generation: Wesley Kendle; (C) Cell 
expansion, transfection, transduction, antibiotic selection, infection assay, cell lysate 
collection, Bradford assay, luciferase assay, graph generation, statistical analysis: 
Wesley Kendle. 
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Nrp1 is incorporated into the viral particle. Consistent with our findings, a recent 

study demonstrated that, when expressed in effector cells, Nrp1 inhibits HIV infection348. 

This effect was found to be due to incorporation of Nrp1 into HIV virions, which led us to 

test whether Nrp1 is similarly incorporated into HTLV-1 virions. Western blot analysis 

revealed the possible presence of Nrp1 in cell-free HTLV-1 virions isolated by 

ultracentrifugation (Figure 2.7A). However, the ultracentrifugation method utilized 

cannot differentiate between protein associated with viral particles or exosomes. Given 

the extended extracellular structure of Nrp1 and its heavily glycosylated state, the 

authors of the previous study proposed that Nrp1 may sterically disrupt binding of HIV 

virions to target cells. To address this hypothesis in the context of HTLV-1, we analyzed 

an Nrp1 deletion mutant lacking most of its extracellular region (Figure 2.7B and E). 

HEK293T cells were transfected with the set of single-cycle, replication-dependent 

luciferase infection assay plasmids and co-transfected with an expression vector for full-

length Nrp1 or the deletion mutant (Figure 2.7C). Subsequent analysis of luciferase 

activity from the cultures revealed a significant decrease in infection in cultures with 

ectopic expression of full-length Nrp1, while cultures with the deletion mutant showed 

no change in infection (Figure 2.7D). These results show that the extracellular region of 

Nrp1 is important for impairing infection and may be due to occlusion of virion-target cell 

interactions. However, these experiments could be better optimized to mitigate any 

potential impacts based on differential protein expression levels between the wild-type 

Nr1 and the mutant Nrp1.  
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Figure 2.7. The ectodomain of Nrp1 is responsible for inhibition of HTLV-1 
infection. (A) Nrp1 is incorporated into HTLV-1 virus particles. Culture media from MT-
2, SLB-1 and ATL-2 cells were filtered, ultracentrifuged and analyzed by western blot 
using antibodies against Nrp1 and gp46. (B) The schematic shows full-length Nrp1 and 
the truncation mutant, Nrp1-Δabc. (C) The flow diagram shows the co-culture/infection 
assay procedure using HEK293T cells. (D) HTLV-1 infection is not inhibited by a Nrp1 
truncation mutant lacking the ectodomain. HEK293T cells were co-transfected with 
pCMVHT1M, pCRU5HT1-inLuc and pQCXIP (EV), pQCXIP-NRP1 or pQCXIP-NRP1-
Δabc. Luciferase assays were performed 48 h later. The graph shows luciferase values 
averaged from three independent experiments each performed in triplicate. Error bars 
show standard deviations; *, p<0.05; **, p<0.01. (E) Nrp1 expression in transfected 
HEK293T cells. Whole cell extracts (50 μg) were analyzed by western blot using 
antibodies against Nrp1 (Flag-tagged) and β-actin. Credit: (A) Method development and 
optimization: Wesley Kendle; Ultracentrifugation: Wesley Kendle (left), Kimson Hoang 
(right); Western blot: Wesley Kendle (left), Kimson Hoang (right). (B) (C) Figure 
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creation: Isabelle Lemasson, Kimson Hoang (D) Transfection, infection assay, graph 
creation: Isabelle Lemasson, Kimson Hoang; (E) Transfection, Western blot, figure 
creation: Isabelle Lemasson, Kimson Hoang.  

 

  



   
 

71 
 

DISCUSSION 

HBZ was previously shown to enhance HTLV-1 infection by activating the 

expression of ICAM1 and MYOF329,330, and in this study we found that HBZ upregulates 

two additional cellular genes involved in infection, COL4A1 and GEM135,291. 

Interestingly, apart from MYOF, these genes are also activated by the HTLV-1 encoded 

protein, Tax, which plays an essential role in HTLV-1 infection289. While the interplay 

between Tax and HBZ in infection has not been addressed, it is possible that both 

proteins act together to augment the expression of these genes. Alternatively, HBZ may 

play a supporting role to maintain some level of HTLV-1 infectivity when Tax expression 

switches to the off state. Indeed, in an HTLV-1-induced leukemic cell line, Tax 

expression was found to stochastically alternate between on and off states276. 

Moreover, when Tax is in the off state, virus particles may be retained on the surface of 

the cell in an extracellular matrix130 and poised for infection. Finally, while mitotic 

expansion appears to be the primary mode of viral replication once the adaptive 

immune response is activated and a proviral set point is established, some infectious 

spread persists at this state137,349,350. 

In addition to these genes, HBZ upregulated expression of Nrp1, which on target 

cells, serves as the high-affinity binding receptor for HTLV-1 virions148. While the 

significance of NRP1 expression by HTLV-1-infected T-cells has not been reported, 

NRP1 expression was found to be upregulated in mouse primary CD4+ T-cells 

transduced to express HBZ324. This observation prompted us to explore this gene 

further. We first analyzed how HBZ upregulates NRP1 transcription. A peak of HBZ-

enrichment was identified approximately 50 kb downstream of the gene. Interestingly, 
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independent of HBZ or HTLV-1 infection, cumulative data from multiple cell specimens 

show that this chromosomal region acts as an enhancer346. For example, it comprises a 

DNase I hypersensitive peak tightly flanked by peaks of histone H3 lysine 27 

acetylation. These features are indicative of a nucleosome-free region bound by 

transcriptional regulators including p300/CBP that acetylates H3K27. The presence of 

p300 has been found to be a common feature of enhancers351,352. 

We speculate that HBZ primarily serves to increase association of Jun members 

(i.e., c-Jun, JunB and JunD) with the enhancer. HBZ is known to form heterodimers with 

these factors through interactions between the leucine zipper (ZIP) domain of each 

protein302,311,339, and mutations in the ZIP domain of HBZ that disrupt Jun protein-

binding also abrogated NRP1 transcription. The enhancer contains two consensus AP-1 

binding sites as well as multiple partial sites. While heterodimers formed between HBZ 

and a Jun member may bind one or both consensus AP-1 sites, it is alternatively 

possible that such heterodimers target an AP-1 partial site. AP-1 transcription factors 

bind DNA through the basic region of the bZIP domain of each subunit353, and in HBZ, 

this region lacks the conserved amino acid motifs involved in binding the AP-1 

sequence. Therefore, in the context of an HBZ/Jun member heterodimer, the Jun 

member may contact an AP-1 half site while HBZ contacts an adjacent unrelated 

sequence. The observation that JunB is enriched at the enhancer in the absence of 

HBZ suggests that the cellular AP-1 factors are binding the consensus AP-1 sites. 

It is possible that a second mechanism also contributes to the increased 

association of Jun members with the enhancer that involves increased abundance of 

these proteins in the presence of HBZ. We reported that the splice 1 variant of HBZ 
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(HBZS1), which was used in this study, stabilizes c-Jun and JunB by inhibiting their 

proteosomal degradation initiated by the E3 ubiquitin ligase, constitutive 

photomorphogenesis protein 1313. Of note, HBZS1 is the most abundant variant in HTLV-

1-infected T-cells205,228,354,355.  

In contrast to mutations in the ZIP domain, mutations in the AD of HBZ did not 

significantly affect transcription. This observation diverges from some previous results in 

which the AD has been shown to be central to transcriptional activation by 

HBZ39,314,330,343. While the AD appeared to be dispensable for activating NRP1 

transcription, both p300 and CBP displayed higher levels of association with the 

enhancer in the presence of HBZ. This observation might suggest that the increased 

association of Jun members with the enhancer augments recruitment of p300/CBP. 

In addition to this proposed model, there are likely HBZ-independent 

mechanisms contributing to regulation of NRP1 transcription in HTLV-1-infected T-cells. 

Indeed, there was a wide range of NRP1 expression levels among the HTLV-1 T-cells 

lines and HTLV-1-immortalized clones we tested that did not necessarily reflect HBZ 

expression levels according to our previous results330,343,356. We cannot explain this 

variation in transcript and protein levels but suspect it may relate to genetic 

heterogeneity across the cell lines and clones. 

In this study, we approached Nrp1 expression in HTLV-1-infected T-cells based 

on its role as the viral receptor that forms a high affinity interaction with SU. The ability 

of HBZ to increase expression of one of the HTLV-1 receptors appears to oppose 

conventional replication strategies used by some avian retroviruses and HIV. 

Expression of the viral receptor on cells infected with these retroviruses promotes 
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reinfection, leading to the accumulation of unintegrated DNA, which is cytopathic357,358. 

Through multiple virus-mediated mechanisms, HIV has been shown to generally 

prevent reinfection by eliminating CD4 from the surface of the infected cell359. While 

fusion and virus entry for HIV requires the chemokine receptors CCR5 or CXCR4360, for 

HTLV-1 these processes are believed to require Glut1148. Interestingly, the HTLV-1 

protein, Tax, was shown to reduce Glut1 at the cell surface by binding sorting nexin 27 

(SNX27) and preventing SNX27 from trafficking Glut1 to the cell surface361. Therefore, 

HTLV-1 reinfection might be impaired by removal of Glut1 rather than Nrp1 from the 

plasma membrane. 

We found that expression of Nrp1 on HTLV-1-infected T-cells and HTLV-1 

producing cells was associated with decreased cell-to-cell viral infection without any 

significant effect on viral production. A similar observation was reported recently 

regarding HIV-infected cells of the monocyte lineage348. In this other study, Nrp-1 

expressed by macrophages and dendritic cells was found to be packaged into the HIV 

virions produced by these cells, leading to reduced binding of these virions to target 

cells. The authors of this study speculated that the extended ectodomain of Nrp1 along 

with its heavily glycosylated state sterically inhibits attachment of virions to target cells. 

We similarly found that Nrp1 is incorporated into HTLV-1 virions, and consistent with the 

hypothesis of steric inhibition, an Nrp1 mutant lacking most of the ectodomain did not 

reduce viral infection. Therefore, Nrp1 might also reduce binding of HTLV-1 virions to 

target cells, however further investigation would be required to draw conclusions about 

the potential the impact of virion-incorporated Nrp1 on HTLV-1 infection. 
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The negative effect of Nrp1 on HTLV-1 infection appears to be outweighed by 

positive contributions from other HBZ-regulated genes, at least in the cell culture 

models we have tested329,330. It is possible that in some HTLV-1 carriers host genetic 

factors participate with HBZ to increase Nrp1 expression. Indeed, we found variability in 

NRP1 transcript levels in the different HTLV-1-immortalized clones (from different 

donors) and, through analysis of GEO datasets, in CD4+ T-cells/PBMC from different 

HTLV-1 carriers (data not shown). Perhaps, Nrp1 might impact infection in cases where 

it is more highly expressed.  

Finally, it is possible that Nrp1 contributes to other aspects of HTLV-1 biology not 

addressed in this study. One example involves the role of Nrp1 as a coreceptor for 

TGF-β receptor signaling336,362, which is interesting considering that HBZ activates 

transcription through the downstream signaling effector, Smad339. In addition, Nrp1 is 

capable of converting the latent form of TGF-β into the active form336. Therefore, 

increasing Nrp1 expression might represent a second mechanism by which HBZ 

enhances TGF-β signaling. This signaling pathway is implicated in establishing the 

regulatory T-cell-like phenotype documented for most HTLV-1 infected cells363. It would 

be interesting to investigate this, and other potential effects of Nrp-1 related to HTLV-1 

infection and pathogenesis. 
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MATERIALS AND METHODS 

Plasmids. pSG-Tax, pSG-Tax-His, pQC-HBZ-IP, pCMVHT1, pCRU5HT1-inLuc and 

pHCMV-G have been described272,329,364-366.  pLJM1 was a gift from Joshua Mendell 

(Addgene plasmid # 91980)367. pUMVC was a gift from Bob Weinberg (Addgene 

plasmid # 8449)368. Nrp1 expression vectors were generated by cloning DYK-tagged 

NRP1 from pcDNA3.1-C-(k)-NRP1-DYK (GenScript) into pQCXIP (Clontech) and 

pLJM1 at the BamH1 and EcoRI sites, respectively, using a Gibson Assembly Cloning 

Kit (New England Biolabs). shRNA vectors shGFP (SHC202) and shNRP1 

[TRCN0000300917 (MT-2 transductions), TRCN0000322980 (Jurkat transfections and 

ATL-2 transductions)] were purchased from MilliporeSigma. pQCXIP-NRP1-TM was 

constructed by PCR-amplification of the transmembrane/cytoplasmic domain sequence, 

which was inserted into the PacI and EcoRI sites. pQCXIP-NRP1-Δabc was constructed 

by amplification of the signal peptide sequence, which was inserted into the BglII and 

MluI sites of pQCXIP-NRP1-TM (an MluI site had been added to the forward primer 

used to amplify the NRP-1-TM sequence).  

 

Cell culture. Jurkat, CEM, C8166/45, MT-2, SLB-1 and ATL-2 cells were cultured in 

Isocove’s modified Dulbecco medium (IMDM). Primary CD4+ lymphocytes, TL-Om1, 

and HTLV-1-immortalized lymphocyte clones111 were cultured in Roswell Park Memorial 

Institute (RPMI) medium. HeLa and HeLa-HBZ clonal cell lines343, CHO-LFA-1 

clones329, and HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM). All cells were supplemented with 10% FBS or 10% FetalPlex (GeminiBio) and 

2 mM L-glutamine, 100 U/mL penicillin, and 50 μg/mL streptomycin. Jurkat pminLuc-
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viral CRE cells329 and Jurkat-HBZ cells329 were supplemented with 1.5 mg/mL of G418. 

HeLa and CHO clones were supplemented with 0.5 mg/mL of G418. Primary 

lymphocytes and lymphocyte clones were cultured with IL-2. Primary lymphocytes were 

activated in culture wells coated with anti-CD3 and anti-CD28 antibodies. Where 

indicated, cells were treated with 10 μM A-485 (MedChem Express) or DMSO for 3h. 

Table 2.1 Cell lines used in this study. 

  

Cell 

Line(s) 

Transfected or 

Transduced 
Vectors used: Stable or Transient Details 

HeLa Transfected HBZ wild-type or mutant HBZ Stable 

Single, stable cell line used 

per HBZ condition  (wild-type 

or mutant) 

Jurkat Transfected 
shGFP (SHC202) or shNRP1 

(TRCN0000322980) 
Transient Independent transfections 

MT-2 Transduced 
shGFP (SHC202) or shNRP1 

(TRCN0000300917) 

Transient (with short-term 

antibiotic selection) 
Independent transductions 

ATL-2 Transduced 
shGFP (SHC202) or shNRP1 

(TRCN0000322980) 

Transient (with short-term 

antibiotic selection) 
Independent transductions 

SLB-1 Transduced 
pLJM1- Empty or pLJM1-

NRP1 

Transient (with short-term 

antibiotic selection) 
Independent transductions 

 

 

RNA extraction, cDNA synthesis, and quantitative real-time PCR. RNA was isolated 

from cells using TRIzol Reagent (Invitrogen), and cDNA was synthesized with random 

hexamers using the iScript cDNA Synthesis Kit (Bio-Rad) or the Revert Aid kit (Thermo 

Fisher Scientific) as described by the manufacturers. Primer sequences are as follows: 
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UBE2D2, 5’- TGCCTGAGATTGCTCGGATCTACA- 3’ and 5’- 

ACTTCTGAGTCCATTCCCGAGCTA -3’; COL4A1, 5’- TCTGGCTGTGGCAAATGT-3’ 

and 5’- GGTAGTCCTGGTTCTCCAGTAT-3’; COL4A2, 5’- GCTTCTGGAAGGGCCAAT 

-3’ and 5’- CACGGCACATCAAACTTCTTC -3’; GEM, 5’- 

AATGAATGGCTCCATGACCACTGC -3’ and 5’- CTTGCAGTCAAACACCACTGCACA -

3’; and NRP1c 5’- CAGAGCGCTCCCGCCTGAAC-3’ and 5’- 

AAATGGCGCCCTGTGTCCCG-3’.  Real-time PCR was performed using iTaq 

Universal Supermix (Bio-Rad) and a CFX Connect Real-Time PCR Detection System 

(Bio-Rad), and relative mRNA levels were determined as described343. Serial dilutions 

of an appropriate experimental sample were used to generate standard curves for all 

primer sets included on a PCR plate. From the compilation of all the standard curves for 

all primers and all PCR plates (analyses), including ChIP PCR plates, the amplification 

efficiencies ranged from 63.1-129% with correlation coefficients ranging from 0.935-

0.999.  

 

Western blot analysis. Cells were normalized to 5 x 105 cells/mL, cultured overnight, 

and harvested. Whole cell extracts were prepared, and western blotting was done as 

described249. Antibodies used were as follows: anti-His (ab9108), anti-Nrp1 (ab81321) 

and anti-MafG (ab154318) were purchased from Abcam; anti-β-actin clone C4 

(MAB1501) was purchased EMD Millipore; anti-CBP (sc-1211), anti-p300 (sc 57865), 

anti-gp46 (sc 57865) and anti-p19 (sc 57870) was purchased from Santa Cruz; and 

anti-Tax (hybridoma 168B17-46-92) was obtained from NIH AIDS Research and 

Reagent Program. Blots were developed using Pierce ECL Plus (Thermo Fisher 
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Scientific) and scanned with a Typhoon RGB imager (Cytiva). Images were analyzed 

using ImageQuant TL v8.1 (GE Healthcare Lifesciences). 

 

Flow cytometry. A total of 106 cells/labelling reaction was collected by centrifugation at 

800 x g for 3 min at 4ºC, washed once in 2 mL of cold PBS/0.2% BSA (FACS buffer), 

and suspended in 50 μL of cold FACS buffer, to which 1 μg of anti-Nrp1 Alexa Fluor 647 

(R&D Systems, FAB3870R) was added. Cells were labeled on ice for 1 h and then 

washed with 2 mL of FACS buffer. Cells were fixed with PBS/2% paraformaldehyde at 

4°C for at least 30 m, suspended in 500 μL FACS buffer, and analyzed using a Cytek 

Aurora flow cytometer (Cytek Biosciences). Data were analyzed using FlowLogic 

Software.   

Chromatin immunoprecipitation (ChIP) assays. ChIP assays were performed using 

the ZymoSpin ChIP Kit (Zymo Research) according to the manufacturer’s instructions 

with minor modifications. For p300 and CBP immunoprecipitations, chromatin was 

crosslinked using 10 mM disuccinimidyl glutarate (Thermo Scientific) for 45m and then 

crosslinked with formaldehyde; for all other immunoprecipitations, only formaldehyde 

was used. Crosslinked chromatin was sonicated using a Misonix Sonicator 4000 (20s 

pulse on, 30s pulse off, amplitude 40, 5m processing time). Each immunoprecipitation 

reaction contained 5 μg of antibody and 200 μg of crosslinked, sonicated chromatin. 

Antibodies used were as follows: anti-p300 (C-20, sc-585) from Santa Cruz 

Biotechnology; anti-CBP (D6C5, #7389), anti-JunB (C37F9, #3753) and anti-c-Jun 

(60A8, #9165) from Cell Signaling Technology; anti-MafG (ab154318) from Abcam. 
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HBZ was immunoprecipitated through its C-terminal 6xHis tag using an anti-6xHis 

antibody (Abcam, ab9108). Purified ChIP DNA was amplified in iTaq Universal 

Supermix (Bio-Rad) using a CFX Connect Real-Time PCR Detection System (Bio-Rad). 

Primer sequences are as follows: NRP1 HBZ peak 5’-GCCAGTTCAGTACCCAGTAATA 

-3’ and 5’- CTGGAAATTAAGGTGGCTGTTT -3’; NRP1 off-target 5’- 

CTGAGACTTCTGGAGGCTAAAT-3’ and 5’-GGTATCCCAAATTCCCAGAGT-3’; 

WEE1AP1 5’- CCAATCGGCTTATCGGCTTAT-3’ and 5’- 

ACAGGAGCGTGTTTAGGTATTG -3’. Standard curves were generated for primer sets 

using 10-fold serial dilutions of each input DNA from the ChIP procedure and were 

included on each experimental plate. Enrichment values were quantified relative to the 

input as described369,370. 

Small RNA interference. The siGENOME SMART pool M-003486-04-0005 and M-

003477-02-0005 were used to knock-down p300 and CBP respectively, while the 

siGENOME Non-Targeting siRNA pool#1 D-001206-13-05 was used as a control 

(Dharmacon). Cells were seeded to reach ~50% confluence on the day of transfection. 

Cells were transfected with 25 nM of siRNA using DharmaFECT 1 siRNA transfection 

reagent (Dharmacon) according to the manufacturer's instructions. The medium was 

changed 24 h after transfection, and cells were cultured for an additional 48 h prior to 

harvesting the cells. 

 

Transfection and single-cycle, replication-dependent infection assays. Single-

cycle, replication-dependent luciferase assays were performed using Jurkat-HBZ or 
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HEK293T cells as effector cells. Jurkat-HBZ cells (3 x 106) were electroporated with 4.5 

μg of pCMVHT1272 or pcDNA3.1 and 8 μg of pCRU5HT1-inLuc272, 1.25 μg of pSG-

Tax365 and 1.25 μg of shRNA expression vector in 300 μL of RPMI/10 mM 

dextrose/0.1 mM dithiothreitol per 0.4 cm electroporation cuvette. Cells were exposed to 

a single exponential decay pulse of 200V/950µF. Forty-eight hours after electroporation, 

5 x 105 transfected Jurkat-HBZ cells were co-cultured with 8 x 104 CHO-LFA-1 cells for 

3h. Jurkat-HBZ cells were then removed, and the CHO-LFA-1 cells were washed four 

times with PBS. CHO-LFA-1 cells were cultured for an additional 48 hours, washed with 

PBS and lysed with Passive Lysis Buffer (Promega). HEK293T cells were plated at 2.4 

x 105 cells/well in 24-well plates the day before transfection. Cells were transfected with 

1.12 μg of pCMVHT1, 1.68 μg of pCRU5HT1-inLuc, and 1.2 μg of pQCXIP, pQCXIP-

NRP1 or pQCXIP-NRP1-Δabc using TurboFect (ThermoFisher) as described by the 

manufacturer. The cells were washed with PBS and lysed with Passive Lysis Buffer 

(Promega) 48 hours later. Luciferase activity was measured using the luciferase assay 

system (Promega) and a GloMax 20/20 luminometer (Promega). Luminescence values 

were normalized to protein concentrations. HeLa cells were plated at 2.4 x 104 cells/well 

in a 6-well plate and cultured overnight. Cells were then transfected with 4 μg of pSG5 

or pSG-Tax-His using TurboFect (ThermoFisher) as described by the manufacturer.  

 

Retrovirus and Lentiviral transduction. For retroviral transfections, 2.5 x 106 

HEK293T cells/10 cm dish were cultured overnight and then transfected with 8.4 μg 

pHCMV-G, 31.1 μg pUMVC and 50.5 μg pQCXIP or pQC-HBZ-IP using calcium 

phosphate. The medium was replaced with 9 mL/dish fresh medium 18h later. One day 
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later, the culture medium was passed through a 0.4 μm polyethersulfone (PES) filter 

and used to transduce HeLa cells in 6-well plates (1.5 mL viral supernatant/well); HeLa 

cells had been plated at 2.4 x 105 cells/well the previous day. Cells were placed under 2 

μg/mL puromycin selection 48h later. Lentivirus transductions were done as 

described330 but with the following modification: Media of transfected HEK293T cells 

were replaced with 10 mL IMDM supplement with 5% FBS to concentrate virus from 

viral supernatants using LentiX Concentrator (Takara). Cells were placed under 

puromycin selection (MT-2, 2μg/ml; SLB-1, 6μg/mL; ATL-2, 0.5μg/mL) three days later. 

Cells were processed for co-culture/infections, western blotting and/or ELISA following 

three to four days of antibiotic selection. Co-culture/infection assays were done as 

described330. 

Detection of virion and Gag p19 enzyme-linked immunosorbent assay (ELISA) in 

the culture medium. HTLV-1-infected T-cells, ATL-2, MT-2 and SLB-1, were cultured 

at 1 x 106 cells/mL overnight at 37°C. Supernatants were collected by centrifugation at 

1300 RPM for 3 min at room temperature and filtered through a 0.2 µm PES filter to 

ensure complete removal of cells. Supernatants were centrifugated in a SW-40 Ti rotor 

(Beckman Coulter) at 20,000 RPM for 2 h at 4ºC. Concentrated virus was collected in 

2x sodium dodecyl sulfate dye for western blot analysis. For ELISA detection, cells were 

equalized and cultured for 24h-48h. Supernatants were collected, filtered through 

0.45µm PES filters, and virus was inactivated at 55ºC for 30 min. HTLV p19 Antigen 

ELISA (ZeptoMetrix) kit was used as described by the manufacturer. Absorbances were 

detected with an accuSkan FC (Fisher Scientific).  
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In silico analysis and statistical analysis. Microarray data sets used in this study are 

available at NCBI Gene Expression Omnibus (GEO): GSE94409320. For each sample, 

probes corresponding to the COL4A1, COL4A2, GEM and NRP1 transcripts in KK1 and 

ST1 cells infected with Ctrl, HBZ_1 or HBZ_2 sgRNAs were identified and GEO2R was 

used to obtain expression values. ChIP-Seq data sets from GEO accession number 

GSE94732320 were analyzed using the Human Mar. 2006 (NCBI36/hg18) assembly with 

the IGV Browser371. Two-tailed Student’s t-tests were used for two-group comparisons 

and significance was established at p < 0.05. For analysis of the ELISA data, average 

relative p19 values from multiple independent experiments were utilized to generate the 

figures.  
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SUPPLEMENTAL FIGURES 

 

 

Supplemental Figure 1. HBZ activates COL4A1, COL4A2 and GEM expression in 
ATL-derived cell lines. HBZ associates with chromosomal sites near the (A) 
COL4A1/COL4A2 and (B) GEM transcription start sites (indicated by the arrows). ChIP-
seq tracks for HBZ, H3K27ac, and negative control IgG are shown across the NRP1 
locus in KK1 cells using the IGV Browser. Genomic coordinates are based on the 
NCBI36/hg18 assembly. Data were obtained from published Data sets (GEO accession 
number GSE94732)320. Changes in (C) COL4A1, (D) COL4A2 and (E) GEM expression 
following deletion of HBZ in ST1 and KK1 ATL-derived cell lines. Graphs were 
generated from published microarray data (GEO accession number GSE94409)320 and 
show transcript levels after inducing CRISPR/Cas9-mediated knockout of HBZ, using 
two different guide RNAs (sgHBZ_1 and _2). Data are from day 8 post-induction except 
for sgHBZ_2 in KK1, which is the day 7 values (no day 8 data provided for this 
specimen). Values were obtained using GEO2R with calculations based on averaged 
values from the two array features for COL4A1 and the single features for COL4A2 and 
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GEM. Credit: (A) (B) Analysis and figure creation: Wesley Kendle; (C) Data compilation, 
data analysis and graph creation: Wesley Kendle; Graph update: Isabelle Lemasson.   
(D) (E) Data compilation, data analysis and graph creation- Wesley Kendle. 
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Supplemental Figure 2: Nrp1 expression in Tax transfected HeLa cells. HeLa cells 
were transfected with 4 μg of empty vector (EV) (pSG5) or pSG-Tax-6His (Tax) for 48h. 
Whole cell extracts (50 μg) were analyzed by western blot using antibodies against 
Nrp1, HBZ (6xHis epitope) and β-actin. Credit: Transfection, Western blot and figure 
creation: Isabelle Lemasson and Kimson Hoang.  
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Supplemental Figure 3. The site of the HBZ peak of enrichment (A) The site of the 
HBZ peak of enrichment, denoted in red and labeled HBZ enhancer, and neighboring 
genes (ITGB1 and NRP1) are shown using the NCBI Genome Data Viewer 
(https://www.ncbi.nlm.nih.gov/genome/gdv/?org=homo-sapiens). (B) The chromosomal 
features in and around the peak of HBZ-enrichment were derived from ENCODE data346 
and are shown using the UCSC Genome Browser345,372. The vertical hatched lines show 
the boundaries of the peak of HBZ enrichment. AP-1 binding site predictions are shown 
as peaks in the density graph373. (C) The DNA sequence corresponding to the HBZ 
peak encompasses bp 33,134,089-33,134,518 of chromosome 10 (GRCh38.p14 
Primary Assembly). The bold sequences correspond to consensus AP-1 binding sites 
shown as the two peaks in panel B. Partial AP-1 binding sites are underlined. Credit: 
(A)(B) Analysis: Nicholas Polakowski; (C) Analysis: Wesley Kendle.  

 

 

 



   
 

 
 

 

 

 

CHAPTER 3 

 

 

 

New Understanding of the Role of HBZ and NRP1 in Cell-to-Cell Transmission of 
HTLV-1 

 

 

 

 Although the viral protein Tax has long since been considered the main viral 

protein involved in cell-to-cell transmission of HTLV-1, recent insights into the roles of 

HBZ during infection have expanded our understanding of the complex retrovirus HTLV-

1 infection process. The goal of this research was to identify cellular genes upregulated 

by HBZ which impact viral transmission and to understand subsequent impacts on cell-

to-cell transmission of HTLV-1. 

HBZ alters expression of cell surface proteins involved in infection: 

Regarding regulation of gene expression, HBZ often downregulates gene expression 

through sequestration of cellular bZIP factors226,302,312. However, a growing pool of 

knowledge about the ability of this intriguing viral protein to upregulate expression of 

certain cellular genes, accentuates how much is left to uncover about this bZIP factor. 

Indeed, HBZ is able to activate gene expression through dimerization with cellular AP-1 

transcription factors, as is the case with the transcriptional activation of the human 
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telomerase gene, hTERT. Activation of hTERT gene expression by HBZ occurs through 

the formation of HBZ/JunD heterodimer and recruitment of this heterodimer to SP-1, a 

protein that binds directly to the DNA314.  

 We have found that ICAM-1, an integral component of the virological synapse, 

expression is also enhanced in the presence of HBZ329. Enhanced ICAM-1 expression 

increases the efficiency of HTLV-1 cell-to-cell transmission, which we attributed to 

enhanced homotypic aggregation329. This is consistent with the cell-to-cell contact 

dependent nature of HTLV-1 transmission. Intriguingly, we have also found that HBZ 

upregulates COL4A1 and COL4A2 expression (Figure 2.1), two proteins which 

associate to form a heterotrimer in the extracellular matrix and enhance cell-to-cell 

transmission of HTLV-1. In this work, we found that HBZ upregulates expression of 

another cell surface receptor: NRP1.  

HBZ regulates NRP1 expression during HTLV-1 infection: We found that 

NRP1 expression is enhanced in the presence of HBZ. Since HBZ can interact with 

certain members of AP-1 family of transcription factors302,311,312,314,339,374, we specifically 

assessed enrichment of HBZ and AP-1 bZIP factors at a downstream NRP1 enhancer. 

HBZ, c-Jun and JunB were found to be enriched at a putative enhancer downstream of 

NRP1 (Figure 2.5). Due to an atypical basic region, HBZ is generally unable to bind 

directly to DNA, however, it was recently discovered that HBZ/small Maf dimers are able 

to bind directly to DNA at MARE sites311,317. Based on our findings, we hypothesize that 

HBZ heterodimerizes with c-Jun or JunB and this heterodimer binds to the identified 

downstream NRP1 enhancer site, either at one or both of the two identified AP-1 

sequences or to the sequence flanking one of these AP-1 sites. It is also possible that 
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the HBZ heterodimer can bind to an AP-1 half site with a sequence similar to that of a 

complete AP-1 site. Due to an atypical basic region, it is possible that rather than bind 

perfectly to the AP-1 site, HBZ may bind in a unique way to the identified region. Further 

experimentation is needed to confirm the binding of an HBZ/AP-1 heterodimer to the 

identified sequence and to identify the specific nucleotides required for this binding. 

HBZ is also known to interact with p300/CBP coactivators proteins to alter normal 

cellular gene expression39,307,308. Interestingly, we also found that p300/CBP 

coactivators are enriched at the putative enhancer downstream of NRP1 (Figure 2.5). 

Our results support a model where recruitment of an HBZ/AP-1 heterodimer (HBZ/JunB 

or HBZ/c-Jun) to the identified downstream promoter sequence, followed by recruitment 

of CBP/p300 coactivators and subsequent recruitment of basal transcription machinery, 

including RNA Pol II, to the NRP1 transcription start site through a looping mechanism 

(Figure 3.1). Based on this model, looping of the DNA occurs between transcription 

factors bound to the downstream NRP1 enhancer and to the NRP1 promoter. This 

mechanism brings the enhancer and promoter elements into close proximity, allowing 

the enhancer element to promote transcriptional activation. Alternatively, HBZ may also 

be contributing to upregulation of NRP1 through de-repression of NRP1 transcription at 

the NRP1 promoter. The NRP1 promoter contains an SP1 binding site375. The hTERT 

promoter also contains an SP1 site which is important for transcriptional regulation314. In 

the absence of HBZ, the hTERT SP1 site is occupied by Sp1 in a complex with JunD 

and the transcriptional repressor menin316. In the presence of HBZ, Sp1/JunD/HBZ 

complexes activate transcription at the hTERT promoter, which also contains an Sp1 

binding site314. Based on these data, it is possible that HBZ facilitates the upregulation 
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of NRP1 through a similar mechanism, by relieving menin-mediated repression of gene 

expression. It is important to note that not all HBZ-expressing cells overexpress NRP1 

and this may be for a number of reasons. It is possible that differential NRP1 expression 

in HTLV-1-infected cells is due to genomic differences, including differences in host cell 

genome and viral integration sites, both of which can alter expression of cellular and 

viral genes and potentially lead to downstream impacts on NRP1 expression in the 

HTLV-1-infected T-cell.  

NRP1 and HTLV-1 infection: As an HTLV-1 receptor, NRP1 has been the focus of 

numerous studies, primarily focusing on NRP1 expression on target cells. Indeed, 

human primary MDDCs are more susceptible to HTLV-1 infection than primary 

lymphocytes, which has been attributed to the higher NRP1 expression level on MDDCs 

than T- cells117. Furthermore, blocking of NRP1 on target cells with VEGF165 reduces 

the susceptibility of cells to HTLV-1 infection99.   

Elevated NRP1 expression during HTLV-1 infection is unexpected because viral 

receptors are often downregulated during retroviral infection to prevent 

superinfection376,377. For example, Tax reduces GLUT1 expression during HTLV-1 

infection361. Furthermore, during human immunodeficiency virus type 1 (HIV-1) infection 

CD4, CXCR4 and CCR-5 expression are downregulated376,378-380. Upregulation of NRP1 

in infected T-cells suggests a beneficial role for this protein during HTLV-1 infection. 
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Figure 3.1. Proposed model of activation of NRP1 expression by HBZ and 
subsequent impact on HTLV-1 transmission. (A) An HBZ/JunB or HBZ/c-Jun 
heterodimer binds to the identified NRP1 enhancer. CBP/p300 coactivator is recruited 
and interacts with HBZ. CBP/p300 recruits RNA Pol II, which activates transcription of 
NRP1. (B-C) Proposed model of the impact of NRP1 expression on HTLV-1-infected T-
cells on the efficiency of cell-to-cell transmission of HTLV-1. Figure for illustrative 
purposes and is not to scale. (B) In HTLV-1-infected T-cells in which NRP1 expression 
is intermediately upregulated (NRP1intermediate), ICAM-1 on the surface of the infected cell 
can successfully interact with LFA-1 on the surface of the target cell, resulting in the 
formation of the virological synapse and transfer of viral particles from the infected cell 
to the target CD4+ T-cell. (C) In HTLV-1-infected T-cells in which NRP1 expression is 
highly upregulated (NRP1high), ICAM-1 on the surface of the infected cell can not 
successfully interact with LFA-1 on the surface of the target cell, reducing the likelihood 
of successful formation of the virological synapse and viral particle transfer from the 
infected cell to the target CD4+ T-cell. (D-E) Proposed alternative model of the impact of 
NRP1 expression on HTLV-1 transmission through altered interactions of the virion with 
the target cell. Figure for illustrative purposes and is not to scale. (D) HTLV-1 with low 
levels of NRP1 (NRP1low) are able to more efficiently interact with target T-cells, 
resulting in increased likelihood of infection of target cells. (E) Higher levels of NRP1 



   
 

94 
 

 

(NRP1high) on HTLV-1 inhibits the ability of the virion to successfully infect target T-cells, 
possibly due to the glycosylation of NRP1. 
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Upon discovering that NRP1 is actually upregulated during HTLV-1 infection, we 

initially hypothesized that NRP1 would enhance infection through retention of virions at 

the cell surface or improved cell-to-cell adhesion. Indeed, NRP1-mediated homotypic 

aggregation between T-cells and DCs during the formation of the immunological 

synapse enhances the duration of this interaction174. However, our studies found that 

NRP1 on effector cells reduces cell-to-cell transmission of HTLV-1 (Figure 2.7), without 

impacting virion release from the cell surface (Figure 2.8). Also, our data indicates that 

the extracellular portion of NRP1 is important for hindering infection (Figure 2.7). Based 

on these findings, we propose a model in which the relatively large size of NRP1, 

combined with the expression level, inhibits cell-to-cell transmission of HTLV-1 by 

reducing the ability of ICAM-1 on the surface of the HTLV-1 infected cell and LFA-1 on 

the surface of the target cell to successfully interact and form the virological synapse, 

thereby blocking effective cell-to-cell contact, resulting in a reduction in infection when 

NRP1 is more highly expressed (Figure 3.1. B-C). Interestingly, NRP1 has also been 

found to reduce the infection efficiency of HIV-1348. Indeed, NRP1 expression in MDDCs 

and DCs, both of which express high levels of NRP1 compared to many cell types, 

inhibits infectivity of the progeny virions348. NRP1 is incorporated into HIV-1 viral 

particles and inhibits the ability of the viral particles to attach to target CD4+ T-cells348. 

Wang et al. (2022) hypothesized that the inhibitory impact of NRP1 is because NRP1 is 

heavily glycosylated. As an alternative model, we hypothesize that virion-incorporated 

NRP1 hinders the ability of HTLV-1 to efficiently infect target cells (Figure 3.1. D-E). 

Based on these findings, it is reasonable to hypothesize that relatively high NRP1 

expression on DCs may hinder HTLV-1 transmission to target CD4+ T-cells. Another 
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potential explanation for the reduction in infection with elevated NRP1 expression is that 

elevated cellular expression of NRP1 potentially leads to an increase in NRP1 in HTLV-

1 progeny viruses which may hinder binding of HTLV-1 virions to target cells. 

Furthermore, NRP1 mediated inhibition of infection could potentially be the result of the 

large molecular size of NRP1 or the glycosylation of NRP1.  

Additional potential roles for NRP1 during HTLV-1 infection: Our data indicates that 

elevated NRP1 expression in T-cells during HTLV-1 infection inhibits HTLV-1 infectivity. 

This is surprising given that HBZ has been shown to upregulate certain genes involved 

in infection329,330.  However, it is possible that NRP1 has another role during HTLV-1 

infection. One possibility is that upregulation of Nrp1 serves as an additional mechanism 

to prevent superinfection of the HTLV-1-infected cell. Indeed, HTLV-1 is known to 

downregulation GLUT1 expression likely to prevent superinfection361. NRP1 is known to 

be involved in angiogenesis, cell survival, cell migration and invasion362. NRP1 is often 

upregulated in tumor cells and NRP1 expression in cancer cells is correlated with 

likelihood of metastasis381-384. Based on this, it is possible that elevated NRP1 levels in 

HTLV-1-infected T-cells promote dissemination of ATL cells. This hypothesis could be 

tested using a xenograft mouse model in which xenograft mice are injected with ATL 

cells (from a single cell line) manipulated to express either relatively low or high 

amounts of NRP1385. Subsequent comparison of the organ and tissue infiltration of the 

ATL cells based on NRP1 expression levels would provide valuable insight into a 

potential novel role of NRP1 during HTLV-1 infection. If high NRP1 levels promote 

dissemination, xenograft mice infected with NRP1high ATL cells would experience more 

widespread dissemination of ATL cells. It is also possible that restriction of HTLV-1 
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infection is advantageous in vivo to restrict the number of infected cells synthesizing 

immunogenic proteins, limiting the immune response against HTLV-1.  

Like NRP1, HBZ is also involved in cell migration and cell survival through the 

inhibition of apoptosis. HBZ attenuates FoxO3a function and alter its cellular 

localization, resulting in a suppression of apoptosis386. HBZ also induces CCR4 to 

promote T-cell migration323. Both of these functions of HBZ occur independently of 

NRP1. Therefore, because NRP1 also promotes cell migration and cell survival 

independently of the mechanisms driven directly by HBZ and HBZ drives NRP1 

expression, it is possible that HBZ is able to promote cell survival and migration directly 

and indirectly.  

 In conclusion, the work presented here describes novel roles of HBZ and NRP1 

in the HTLV-1 infection process. Our findings offer new insights into the differential roles 

of NRP1 during various stages of HTLV-1 infection. While NRP1 on a target cell 

enhances the likelihood of a cell becoming infected with HTLV-1, our study shows that 

NRP1 expression on the HTLV-1-infected T-cell hinders the cell-to-cell transmission of 

HTLV-199,100. These findings illuminate the differing impacts of NRP1 at different points 

in the HTLV-1 infection process, an important distinction in the development of anti- 

HTLV-1 therapeutics. Indeed, since NRP1 on a target cell promotes infection, the 

development of prophylactic anti- HTLV-1 drugs involving a mechanism of action in 

which NRP1 is temporarily blocked or downregulated could be advantageous. 

Alternatively, for therapeutic anti-HTLV-1 drug development targeted at reducing viral 

spread, enhancing NRP1 expression in HTLV-1-infected cells could be advantageous. 
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ATTRIBUTIONS 

 

Chapters 1-3 contain an adaptation of or reference results published in Upregulation of 

Neuropilin-1 inhibits HTLV-1 infection by Kendle et al. Pathogens 2023, 12(6), 831; 

https://doi.org/10.3390/pathogens12060831, which is under a CC BY 4.0 license. 

Changes include rewriting of some of the sections and adjustments to certain figures. 
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