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1 Start Up Section

We begin the study of the inhomogeneous MADE

y′(t) − Ay(qt) = f(t), (1)

where A ∈ R\{0} and q > 1

by introducing the basic results and techniques upon which the study of (1) is based.

1.1 Key Functions

We will rely on the following two functions in this thesis. For q > 1 the function qCos(t)

and qSin(t) are defined as in [PRS3] as follows:

qCos(t) ≡ 1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk2
(2)

Cq ≡
∞∑

k=−∞

(−1)k

qk2
= θ(q2;−1/q) > 0 (3)

qSin(t) ≡ sign(t)
1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk(k−1)
. (4)

Here, in (3) the theta function is given by (31) below.

To check that

[qCos(t)]′ = −(qSin(t)), (5)



one has, for t ̸= 0, that

[qCos(t)]′ =

[
1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk2

]′
(6)

=
1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk2
(−qk)sign(t) (7)

= sign(t)
−1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk2−k
(8)

= −(qSin(t)). (9)

For t = 0, the result follows from the Mean Value Theorem.

To check that

[qSin(t)]′ = qqCos(qt) (10)

one has, for t ̸= 0, that

[qSin(t)]′ =

[
sign(t)

1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk(k−1)

]′
(11)

= sign(t)
1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk(k−1)
(−qk)sign(t) (12)

= −(sign(t))2
1

Cq

∞∑
k=−∞

(−1)ke−qk|t|

qk2−2k
(13)

= − 1

Cq

∞∑
k=−∞

(−1)(−1)k−1e−qk−1|qt|q

q(k−1)2
. (14)

Now making a substitution of m = k − 1 gives,

[qSin(t)]′ = − 1

Cq

∞∑
k=−∞

(−1)(−1)me−qm|qt|q

q(m)2
(15)

= qqCos(qt). (16)
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For t = 0, the result follows by an application of the Mean Value Theorem.

Relying on (5) and (10), we have that the following are true:

∫
qSin(t)dt = −(qCos(t)) + C (17)∫
qCos(t)dt = qSin

(
t

q

)
+ C. (18)

From (5) and (10) we can see that qCos(t) and qSin(t) solve some certain Multiplica-

tively Advanced Differential Equations (MADE’s). Specifically, y(t) = qCos(t) solves

the homogeneous MADE

y′′(t) + qy(qt) = 0

and y(t) = qSin(t) solves the homogeneous MADE

y′′(t) + q2y(qt) = 0.

The MADE that we will be studying in this thesis is

y′(t) − Ay(qt) = f(t), for f(t) ∈  L2(R). (19)

Notice that if f(t) in (19) has 0th moment vanishing, meaning

∫ ∞

−∞
f(t)dt = 0 (i.e., f(t)

is a basic wavelet), and we assume that our solution y(t) in (19) vanishes at plus minus

infinity then, we integrate (19) from negative infinity to positive infinity to give:

∫ ∞

−∞
y′(t)dt− A

∫ ∞

−∞
y(qt)dt =

∫ ∞

−∞
f(t)dt = 0. (20)
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If y(t) vanishes at plus minus infinity then the term

∫ ∞

−∞
y′(t)dt in (20) is 0 and thus,

−A

∫ ∞

−∞
y(qt)dt = 0. (21)

Then making a substitution of u = qt in (21) gives,

−A

q

∫ ∞

−∞
y(u)du = 0. (22)

From (22) we see that if A is invertible, then

∫ ∞

−∞
y(u)du = 0, meaning the solution y(t)

also has 0th moment vanishing and is a basic wavelet. This means that if we have a

forcing term f(t) that is a wavelet, and therefore has 0th moment vanishing, as well as

we assume that our solution y(t) vanishes at plus minus infinity, and A is invertible, then

it is a property of our MADE (19) that the solution y(t) will also have its 0th moment

vanishing.

Remark 1. We conjecture that if f(t) in (19), is a wavelet in the sense of Definition

4, then the solution y(t) of (19) is also a wavelet. We will work to prove this for the

solutions (103)-(104) of y′(t)−Ay(qt) = qCos(αt+β) and (105)-(106) of y′(t)−Ay(qt) =

qSin(αt + β) in section 3.

1.2 Wavelets

We first begin with the definition of  Lp(R).

Definition 1.  Lp(R) is the Banach space of measurable functions such that, f ∈  Lp(R)

if and only if ∫ ∞

−∞
|f(t)|p dt < ∞.

We have that  Lp(R) is a normed space with norm given by ||f || Lp =

(∫ ∞

−∞
|f(t)|p dt

) 1
p

.
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An important case of this is  L2(R) which is the Hilbert space of functions f(t) satisfying

f ∈  L2(R) if and only if

∫ ∞

−∞
|f(t)|2 dt < ∞, (23)

with the inner product in  L2(R) given by the following,

⟨f,Φ⟩ =

∫ ∞

−∞
f(x) · Φ(x)dx.

Next we define l2(Z).

Definition 2. Let l2(Z) be the Hilbert space of sequences, ⟨cn⟩ , such that
∑
n∈Z

|cn|2 < ∞.

Similar to  L2(R) we have that the norm of l2(Z) is given by the following,

||⟨cn⟩||l2 =

(∑
n∈Z

|cn|2
)1/2

, and inner product ⟨c, d⟩l2 =
∑
n

cndn.

Fourier series are able to represent periodic functions with a basis of sines and cosines.

So if f is a continuous periodic function on the interval [0, 2π] then we have that f is

recovered by the following,

f(x) =
∞∑
n=0

cnsin(nx) + bncos(nx), where cn =
1√
π

∫ 2π

0

f(x) · sin(nx)dx (24)

and

bn =


1√
π

∫ 2π

0

f(x) · cos(nx)dx for n > 0

1√
2π

∫ 2π

0

f(x)dx for n = 0

.

Then we have that {
sin(nx)√

π

}⋃{
cos(nx)√

π

}⋃{
1√
2π

}

forms an orthonormal basis, since

∫ 2π

0

cos(mx) · sin(nx)dx = 0 for all m and n,∫ 2π

0

sin(mx) · sin(nx)dx = 0 for m ̸= n,

∫ 2π

0

cos(mx) · cos(nx)dx = 0 for m ̸= n, and
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1

π

∫ 2π

0

cos2(mx)dx = 1 =
1

π

∫ 2π

0

sin2(mx)dx for m ̸= 0. This is also expressed in terms

of inner products as ⟨cos(nx), sin(mx)⟩ = 0, ∀ n,m ∈ Z and

⟨cos(mx), cos(nx)⟩ = ⟨sin(mx), sin(nx)⟩ = πδn,m, ∀ m ∈ Z, where δn,m is the Kro-

necker delta.

We next define the Fourier transform of a function.

Definition 3. For a function f(x) ∈  L2(R) such that

∫ ∞

−∞
|f(x)| dx < ∞, the Fourier

transform of f(x) is defined to be

f̂(t) =
1√
2π

∫ ∞

−∞
f(x) · e−itxdx = F [f(x)](t).

In order to recover the original function from the Fourier transform we have that the

inverse Fourier transform:

f(x) =
1√
2π

∫ ∞

−∞
f̂(t) · eitxdt = F−1[f(t)](x).

Also note that for f, g ∈  L2(R) one has that, ||f || = ||f̂ || and ⟨f, g⟩ = ⟨f̂ , ĝ⟩; this is known

as Plancherel’s theorem.

We will define a wavelet as in [Daubechies] and [Christensen].

Definition 4. A function f(t) is a wavelet if and only if the following three requirements

are met:

i) f(t) ∈  L1(R)
⋂

 L2(R)
⋂

 L∞(R) (25)

ii)

∫ ∞

−∞
f(t)dt = 0 (0th moment vanishes) (26)

iii)

∫ ∞

−∞

∣∣∣f̂(t)
∣∣∣2

|t|
dt < ∞ (Admissibility Condition). (27)

The concept of a mother wavelet will be introduced in section 1.4. Certain wavelets

will be able to recover any function f ∈  L2(R), similar to Fourier series recovery of f(t)
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in (24). The two such wavelets that we will be using are qCos(t) and qSin(t). It is shown

in [PRS3] that qCos(t) and qSin(t) are wavelets, meaning they satisfy, (25), (26), and

(27). In addition, in [PRS3] it is shown that

qĈos(x) = C̃q ·
1

θ(q2;x2)
(28)

and qŜin(x) = C̃q ·
−ix

θ(q2;x2)
. (29)

Here C̃q is the constant

C̃q =
2 (µq2)

3

Cq

√
2π

, (30)

with Cq as defined in (3).

θ(q, x) in (28) and (29), is the Jacobi theta function

θ(q, x) ≡
∞∑

n=−∞

xn

qn(n−1)/2
= µq

∞∏
n=0

(
1 +

x

qn

)(
1 +

1

xqn+1

)
, (31)

where q > 1, and µq, in (30) and (31), is the constant

µq ≡
∞∏
n=0

(
1 − 1

qn+1

)
. (32)

Essential properties of θ(q;x), upon which we rely, are

θ(q; qnx) = qn(n+1)/2xn θ(q;x) ∀n ∈ Z, and θ

(
q;

1

qx

)
= θ(q;x). (33)

1.3 Frames

We define the notion of a frame for  L2(R).

Definition 5. Let {ϕj}j∈J be a countable collection of functions in  L2(R), then {ϕj}j∈J
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is a frame if and only if there exists an A,B ∈ R with 0 < A ≤ B < ∞ such that

A||f ||2 ≤
∑
j∈J

|⟨f, ϕj⟩|2 ≤ B||f ||2,

for all f ∈  L2(R).

Let f ∈  L2(R) and {ϕj}j∈J be a frame for  L2(R) we define F :  L2(R) → l2(Z) depend-

ing on {ϕj}j∈J , where F is given by F (f) = {⟨f, ϕj⟩}j∈J . Also define F ∗ : l2(Z) →  L2(R)

by F ∗ ({cj}) =
∑
j∈J

cjϕj which converges in  L2(R). Then we have F ∗F :  L2(R) →  L2(R)

and F ∗F (f) = F ∗ (F (f)) = F ∗
(
{⟨f, ϕj⟩}j∈J

)
=
∑
j∈J

⟨f, ϕj⟩ϕj. If we let {ϕj}j∈J be an

orthonormal basis, then we may write f =
∑
k∈J

αkϕk. Then if we take

F ∗(F (f)) =
∑
j∈J

⟨f, ϕj⟩ϕj =
∑
j∈J

⟨
∑
k∈J

αkϕk, ϕj⟩ϕj =
∑
j∈J

∑
k∈J

αkδj,kϕj. Now since δj,k = 0

when j ̸= k and δj,k = 1 when j = k, we have that
∑
k∈J

αkδj,k = αj, thus

F ∗(F (f)) =
∑
j∈J

∑
k∈J

αkδj,kϕj =
∑
j∈J

αjϕj = f . However, for a general frame, unlike an

orthonormal basis, we do not necessarily recover f with
∑
j∈J

⟨f, ϕj⟩ϕj. In order to resolve

this issue we introduce the dual frame, as in [Daubechies] and [Christensen].

Definition 6. Let ϕ̃j = (F ∗F )−1 ϕj then
{
ϕ̃j

}
is called the dual frame to {ϕj}. This

gives us F̃ :  L2(R) → l2(Z) by F̃ (f) = ⟨f, ϕ̃j⟩j∈J and F̃ ∗ : l2(Z) →  L2(R) by

F̃ ∗
(
{cj}j∈J

)
=
∑
j∈J

cjϕ̃j.

Then, as shown in [Daubechies], [Christensen], and [David Edwards], for a frame

{ϕj} we can write any function f ∈  L2(R) as

f =
∑
j∈J

⟨f, ϕj⟩ ϕ̃j =
∑
j∈J

〈
f, ϕ̃j

〉
ϕj. (34)

From (34) one observes that a frame is a generating set for  L2(R) (also known as a
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spanning set for  L2(R)). The functions qCos(t) and qSin(t) have been shown in [PRS3]

to be in  L1(R)
⋂

 L2(R)
⋂

 L∞(R) and produce wavelet frames for generating  L2(R). For

qCos(t) and qSin(t), respectively, the frames are:

{
ΦN,M = q

N
2 qCos(qN t−Mb)

∣∣∣∣N,M ∈ Z
}

(35)

or

{
ΦN,M = q

N
2 qSin(qN t−Mb)

∣∣∣∣N,M ∈ Z
}
. (36)

1.4 Mother Wavelets

A mother wavelet Φ(t) is a wavelet in the sense of Definition 4 that can generate a

family of wavelets. We will denote mother wavelets as Φ(t) and take the set of functions

generated by Φ(t) to be ΦN,M(t) = a
N
2
0 Φ(aN0 t−Mb0) for N,M ∈ Z.

A wavelet f(t) is a mother wavelet for a frame generating  L2(R) of form

S(Φ; a0, b0) =

{
a
n/2
0 Φ(an0 t + mb0)/||Φ||

∣∣∣∣n,m ∈ Z
}

if S(Φ; a0, b0) generates  L2(R), where a0 > 1 is the scale factor, b0 > 0 is the translation

parameter, and ||Φ|| = ||Φ||2 is the norm of Φ in  L2(R). One defines the diagonal term

G0[Φ](x) by

G0[Φ](x) ≡ 1

||Φ||2
∞∑

n=−∞

∣∣∣Φ̂(an0x)
∣∣∣2

and the off-diagonal term G1[Φ](x) by

G1[Φ](x) ≡ 1

||Φ||2
∑
j∈Z

∑
k∈Z/{0}

∣∣∣Φ̂(aj0x) · Φ̂(aj0x + 2πk/b0)
∣∣∣ , (37)
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which together give the frame condition

0 < inf
1≤|x|≤a0

{G0[Φ](x) −G1[Φ](x)} (38)

≤ sup
1≤|x|≤a0

{G0[Φ](x) −G1[Φ](x)} < ∞ (39)

sufficient for S(Φ; a0, b0) to be a frame. It has been shown in [Christensen] that the

condition (38)-(39) is implied by the condition (40)-(41) immediately below:

0 < inf
1≤|x|≤a0

{G0[Φ](x)} and ∃ C > 0 (40)

with
∣∣∣Φ̂(x)

∣∣∣ ≤ C|x|
(1 + x2)3/2

. (41)

Remark 2. The functions qCos(t) and qSin(t) have been shown to be mother wavelets

generating a frame for  L2(R) in [PRS3]. Also for a mother wavelet Φ it has been shown

in [Christensen] that the set

S(Φ; a0, b0) ≡
{
an/2Φ(an0 t + mb0)/||Φ||

∣∣∣∣n,m ∈ Z
}
,

generates a frame for  L2(R), if the conditions (40)-(41) hold.
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2 Useful Estimates

Here we introduce known estimates that we will use in this thesis.

2.1 Bounds for qCos and qSin

The first estimate that we will use is proven in [PRS3] and are bounds for qCos and

qSin. They are the following:

|qCos(u)| ≤ 1 ∀ u ∈ R (42)

|qSin(u)| ≤ q1/2 ∀ u ∈ R. (43)

Furthermore in [PRS3] it is shown that for |u| ≥ 1 there is an upper decay bound on

qCos(u) of the form

|qCos(u)| ≤ Bq|u|−2/(2/e+ln(q))|u|− ln(|u|) ln(q)/(2/e+ln(q))2 . (44)

Similarly in [PRS3] it is shown that for |u| ≥ 1 there is an upper decay bound on qSin(u)

of the form

|qSin(u)| ≤ Bqe
−1|u|−1|u|− ln(|u|) ln(q)/(2+ln(q))2 , (45)

where Bq in both (44) and (45) is given by

Bq = (Cq)
−1

[
1 +

√
π

4 ln(q)

]
, (46)

and Cq is as defined in (3).



2.2 Bounds for a Gaussian

Another useful estimate is the following proposition that is used to to bound
∑
n∈Z

G(n)

for G a Gaussian.

Proposition 1. Let G(x) be a Gaussian of form G(x) = exp

[
−1

2

(
x− µ

σ

)2
]

. Then

the following bound holds

∑
n∈Z

G(n) =
∑
n∈Z

exp

[
−1

2
(n− µ)2

σ2

]
<
[
1 +

√
2π · σ

]
. (47)

Proof. The proof for this Proposition is completed in [PRS3]

2.3 Rudin’s Theorem

We will also employ the following Theorem (Rudin’s Theorem) that is used to rigorously

ensure the exchange of derivatives with infinite sums.

Theorem 1. (Rudin) Suppose {fn} is a sequence of functions, differentiable on [a, b],

such that {fn(x0)} converges for some point x0 on [a, b]. If {f ′
n} converges uniformly on

[a, b], then {fn} converges uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′
n(x) (a ≤ x ≤ b). (48)

Proof. This is THM 7.17 on pg 152-153 in [Rudin], and it is proven there.

2.4 Lebesgue Dominated Convergence Theorem

We will use the following Theorem to pass a limit through an integral.

Theorem 2. Let {fn} be a sequence of complex valued measurable functions on a mea-

sure space (S,Σ, µ). Suppose that the sequence converges point-wise to a function f and
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is dominated by some integrable function g in the sense that

|fn(x)| ≤ |g(x)|

for all numbers n in the index set of the sequence and all points x ∈ S. Then f is

integrable in the Lebesgue sense and

lim
n→∞

∫
S

|fn − f |dµ = 0

which also implies

lim
n→∞

∫
S

fndµ =

∫
S

f dµ.

2.5 Schwartz Spaces

Here is the definition of a Schwartz space along with some consequences of a function

being Schwartz.

Definition 7. Let N0 = N ∪ {0}. The Schwartz space or space of rapidly decreasing

functions on R is the function space

S(R,C) =

{
f ∈ C∞

∣∣∣∣∀α, β ∈ N0 , |f |α,β < ∞
}
, (49)

where C∞(R,C) is the function space of smooth functions from R into C, and

|f |α,β = sup
x∈R

∣∣xαf (β)(x)
∣∣, where α, β ∈ N0.

A necessary and sufficient condition for a function y(t) to be Schwartz is the following:

y(t) is Schwartz ⇐⇒ ∀ p, k ∈ N, ∃ Cp,k ∈ R s.t. 0 < |tpy(k)(t)| ≤ Cp,k < ∞. (50)
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Two properties of a function y(t) being Schwartz that we will use are the following:

if y(t) is Schwartz, then y(t) ∈  Lp(Rn), ∀ n ∈ N and 1 ≤ p ≤ ∞, (51)

if f(t) is Schwartz, then f̂(x) is also Schwartz. (52)
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3 The First Inhomogeneous Multiplicatively Advanced

Differential Equation

The main functional differential equation that we want to solve is:

y′(t) − Ay(qt) = f(t) (53)

for certain f(t) in  L2(R). To do this we first look at the case where the f(t) in (53) is

one of our qCos or qSin functions.

So first we want to solve the two functional differential equations:

y′(t) − Ay(qt) = qCos(αt + β) (54)

y′(t) − Ay(qt) = qSin(αt + β). (55)

So we want to solve y′(t)−Ay(qt) = f(t), where f(t) = qCos(α+β) or qSin(α+β).

Integrating (54) and (55) over (−∞, t] and assuming the solution y(t) vanishes at −∞

gives:

∫ t

−∞
y′(u)du− A

∫ t

−∞
y(qu)du = F (t), (56)

where, from (18) and (17),

F (t) =


∫ t

−∞
qCos(αt + β)dt =

(
1

α

)
qSin

(
αt + β

q

)
if f(t) = qCos(αt + β)∫ t

−∞
qSin(αt + β)dt =

(
−1

α

)
qCos(αt + β) if f(t) = qSin(αt + β) .

(57)



Now for the term

∫ t

−∞
y(qu)du in (56) we make a change of variables letting v = qu.

Then the term A

∫ t

−∞
y(qu)du in (56) becomes

A

q

∫ qt

−∞
y(v)dv = K̃[y(v)](t),

where the linear operator K̃ is defined by:

K̃[y(v)](t) =
A

q

∫ qt

−∞
y(v)dv. (58)

Then our integral equation (56) becomes:

y(t) − K̃[y(v)](t) = F (t)

Ĩ[y(t)] − K̃[y(v)](t) = F (t), (59)

where Ĩ is the identity operator. Assuming invertibility of
(
Ĩ − K̃

)
in (59) gives a

formal solution to (54) or (55), namely:

y(t) =
(
Ĩ − K̃

)−1

[F (u)](t)

y(t) =
∞∑
n=0

K̃n[F (u)](t). (60)

Now in order to calculate K̃n[F (u)](t) in (60), we first compute K̃[qCos(αu + β)](t).

K̃[qCos(αu + β)](t) =
A

q

∫ qt

−∞
qCos(αu + β)du

=
A

q

[
qSin

(
αu + β

q

)(
1

α

)]∣∣∣∣qt
−∞

=

(
A

qα

)
qSin

(
αqt + β

q

)
, (61)

where (18) was used to obtain the left side of (61).
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Next, to calculate K̃2[qCos(αu + β)](t)

K̃2[qCos(αu + β)](t) = K̃

[(
A

qα

)
qSin

(
αqt + β

q

)]
=

(
A2

q2α

)∫ qt

−∞
qSin

(
αqu + β

q

)
du

=

(
A2

q2α

)[
−qCos

(
αqu + β

q

)(
1

α

)]∣∣∣∣∣
qt

−∞

(62)

= (−1)

(
A2

q2α2

)
qCos

(
q2αt + β

q

)
,

where (17) was used to obtain (62).

Now we need to do this inductively for K̃n[qCos(αt+β)] and we will start by continuing

to take powers of K̃n to get a general formula.

For n = 3 we have:

K̃3[qCos(αt + β)] = K̃

[
(−1)

(
A2

q2α2

)
qCos

(
q2αu + β

q

)]
(t)

= (−1)

(
A3

q3α2

)∫ qt

−∞
qCos

(
q2αu + β

q

)
du

= (−1)

(
A3

q3α2

)[
qSin

(
q2αu + β

q2

)(
1

qα

)]∣∣∣∣qt
−∞

(63)

= (−1)

(
A3

q4α3

)
qSin

(
q3αt + β

q2

)
,

where (18) was used to obtain (63).
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Then for n = 4 we have:

K̃4[qCos(αu + β)](t) = K̃

[
(−1)

(
A3

q4α3

)
qSin

(
q3αu + β

q2

)]
(t)

= (−1)

(
A4

q5α3

)∫ qt

−∞
qSin

(
q3αu + β

q2

)
du

= (−1)

(
A4

q5α3

)[
−qCos

(
q3αu + β

q2

)(
1

qα

)]∣∣∣∣qt
−∞

(64)

= (−1)2
(

A4

q6α4

)(
qCos

(
q4αt + β

q2

))
,

where (17) was used to obtain (64).

To compute K̃n[qCos(αu + β](t) in general, we have the following Proposition.

Proposition 2. Applying powers of K̃ to qCos[αu+β](t) gives, for even and odd powers,

respectively,

K̃2n[qCos(αu + β](t) = (−1)n
(
A

α

)2n(
1

qn(n+1)

)
qCos

(
q2nαt + β

qn

)
(65)

K̃2n+1[qCos(αu + β)](t) = (−1)n
(
A

α

)2n+1(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)
. (66)

Proof. We will prove this Proposition with induction on n. Assume (65) as the inductive

hypothesis. We need to calculate K̃2(n+1)[qCos(αu + β)](t).
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First we calculate K̃2n+1[qCos(αu + β)](t).

K̃2n+1[qCos(αu + β)](t) = K̃[K̃2n[qCos(αu + β)](t)]

= (−1)n
(
A

α

)2n(
1

qn(n+1)

)
K̃

[
qCos

(
q2nαu + β

qn

)]
(t) (67)

= (−1)n
(
A

α

)2n(
1

qn(n+1)

)[
A

q

∫ qt

−∞
qCos

(
q2nαu + β

qn

)
du

]
= (−1)n

(
A

α

)2n(
1

qn(n+1)

)[
A

q

[
qSin

(
q2nαu + β

qn+1

)(
1

qnα

)]∣∣∣∣qt
−∞

]
(68)

= (−1)n
(
A

α

)2n(
1

qn(n+1)

)[(
A

qn+1α

)
qSin

(
q2n+1αt + β

qn+1

)]
= (−1)n

(
A

α

)2n+1(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)
. (69)

Here (67) follows from the inductive hypothesis (65), and (68) follows from (18). Then

from (69) we have that:

K̃2(n+1)[qCos(αu + β](t) = K̃
[
K̃2n+1[qCos(αx + β)](u)

]
(t)

= (−1)n
(
A

α

)2n+1(
1

q(n+1)2

)
K̃

[
qSin

(
q2n+1αt + β

qn+1

)]
= (−1)n

(
A

α

)2n+1(
1

q(n+1)2

) [
A

q

∫ qt

−∞
qSin

(
q2n+1αu + β

qn+1

)
du

]
= (−1)n

(
A

α

)2n+1(
1

q(n+1)2

) [
A

q

[
−qCos

(
q2n+1αu + β

qn+1

)](
1

qnα

)∣∣∣∣qt
−∞

]

= (−1)n+1

(
A

α

)2(n+1)(
1

q(n+1)(n+2)

)(
qCos

(
q2(n+1)αt + β

qn+1

))
. (70)

From (70), we have shown (65) holds by induction. Now that (65) is established for all

n ∈ N, from (69) we obtain that (66) holds for all n ∈ N. This proves Proposition 2.

Now in order to calculate K̃n[qSin(αu + β)](t) we start by finding the expression

K̃[qSin(αu + β)](t).
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K̃[qSin(αu + β)](t) =
A

q

∫ qt

−∞
qSin(αu + β)du

=
A

q

[
−qCos(αu + β)

(
1

α

)]∣∣∣∣qt
−∞

(71)

= (−1)

(
A

qα

)
qCos(αqt + β), (72)

where (17) was used to obtain (71).

Next we compute K̃2[qSin(αu + β)](t) using (72).

K̃2[qSin(αu + β)](t) = K̃

[
(−1)

(
A

qα

)
qCos(αqt + β)

]
= (−1)

(
A2

q2α

)∫ qt

−∞
qCos(αqu + β)du

= (−1)

(
A2

q2α

)[
qSin

(
αqu + β

q

)(
1

αq

)]∣∣∣∣qt
−∞

(73)

= (−1)

(
A2

α2q3

)
qSin

(
q2αt + β

q

)
, (74)

where (18) was used to obtain (73).

We need to do this inductively for K̃n[qSin(αu + β)](t). For n = 3 and relying on (74),

we have:

K̃3[qSin(αu + β)](t) = K̃

[
(−1)

(
A2

α2q3

)
qSin

(
q2αt + β

q

)]
=

A

q

∫ qt

−∞
(−1)

(
A2

q3α2

)(
qSin

(
q2αu + β

q

))
du

= (−1)

(
A3

q4α2

)[
−qCos

(
q2αu + β

q

)(
1

αq

)]∣∣∣∣qt
−∞

(75)

= (−1)2
(

A3

q5α3

)
qCos

(
q3αt + β

q

)
, (76)
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where (17) was used to obtain (75). Then for n = 4 and relying on (76), we have:

K̃4[qSin(αu + β)](t) = K̃

[
(−1)2

(
A3

q5α3

)
qCos

(
q3αt + β

q

)]
=

A

q

∫ qt

−∞
(−1)2

(
A3

q5α3

)(
qCos

(
q3αu + β

q

))
du

= (−1)2
(

A4

q6α3

)[
qSin

(
q3αu + β

q2

)(
1

q2α

)]∣∣∣∣qt
−∞

(77)

= (−1)2
(

A4

q8α4

)
qSin

(
q4αt + β

q2

)
, (78)

where (18) was used to obtain (77).

Now in order to compute K̃n[qSin(αu + β)](t) in general, we have the following

proposition.

Proposition 3. Applying powers of K̃ to qSin[αu+β](t) gives, for even and odd powers,

respectively,

K̃2n[qSin(αu + β](t) = (−1)n
(
A

α

)2n(
1

qn(n+2)

)
qSin

(
q2nαt + β

qn

)
(79)

K̃2n+1[qSin(αu + β)](t) = (−1)n+1

(
A

α

)2n+1(
1

qn2+3n+1

)
qCos

(
q2n+1αt + β

qn

)
.(80)

Proof. We will prove Proposition 3 with induction on n. Assume (79) as the inductive

hypothesis. In order to calculate K̃2(n+1)[qSin(αu + β)](t) we will first calculate

K̃2n+1[qSin(αu + β)](t).
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K̃2n+1[qSin(αu + β)](t) = K̃[K̃2n
q Sin(αu + β)](t)

= (−1)n
(
A

α

)2n(
1

qn(n+2)

)
K̃

[
qSin

(
q2nαu + β

qn

)]
(t) (81)

= (−1)n
(
A

α

)2n(
1

qn(n+2)

) [
A

q

∫ qt

−∞
qSin

(
q2nαu + β

qn

)
du

]
= (−1)n

(
A

α

)2n(
1

qn(n+2)

) [
A

q

[
−qCos

(
q2nαu + β

qn

)](
1

qnα

)∣∣∣∣qt
−∞

]
(82)

= (−1)n+1

(
A

α

)2n+1(
1

qn2+3n+1

)
qCos

(
q2n+1αt + β

qn

)
. (83)

Here (81) follows from the inductive hypothesis (79) and (82) follows from (17). Next

we calculate K̃2(n+1)[qSin(αu + β)](t). From (83), one has:

K̃2(n+1)[qSin(αu + β)](t) = K̃
[
K̃2n+1[qSin(αx + β)](u)

]
(t)

= (−1)n+1

(
A

α

)2n+1(
1

qn2+3n+1

)
K̃

[
qCos

(
q2n+1αu + β

qn

)]
(t)

= (−1)n+1

(
A

α

)2n+1(
1

qn2+3n+1

) [
A

q

∫ qt

−∞
qCos

(
q2n+1αu + β

qn

)
du

]
= (−1)n+1

(
A

α

)2n+1(
1

qn2+3n+1

)[
A

q
qSin

(
q2n+1αu + β

qn+1

)(
1

qn+1α

)∣∣∣∣qt
−∞

]

= (−1)n+1

(
A2n+2

α2n+2

)(
1

qn(n+2)q2n+3

)
qSin

(
q2n+2αt + β

qn+1

)
= (−1)n+1

(
A

α

)2(n+1)(
1

q(n+1)(n+3)

)
qSin

(
q2(n+1)αt + β

qn+1

)
. (84)

From (84) we have proven (79) by induction. Now that (79) holds for all n ∈ N, from

(83) we obtain that (80) holds for all n ∈ N. This proves Proposition 3.

Now we solve (54) in the case where f(t) = qCos(αt + β).
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As shown in (57) this means that F (t) =

(
1

α

)
qSin

(
αt + β

q

)
.

Then recall from (60) that:

y(t) =
∞∑
n=0

K̃n[F (u)](t)

=
∞∑
n=0

K̃n

[(
1

α

)
qSin

(
αu + β

q

)]
(t)

=
∞∑
n=0

K̃2n

[(
1

α

)
qSin

(
αu + β

q

)]
(t) (85)

+
∞∑
n=0

K̃2n+1

[(
1

α

)
qSin

(
αu + β

q

)]
(t). (86)

Using Proposition 3 and applying (79) to (85) and (80) to (86) gives the formal solution

to (54) as:

y(t) =
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
qSin

(
q2nαt + β

qn+1

)
(87)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)
qCos

(
q2n+1αt + β

qn+1

)
. (88)

Now we solve (55) in the case where f(t) = qSin(αt + β).

As shown in (57) this means that F (t) =

(
−1

α

)
qCos(αt + β).
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Then recall from (60) that a formal solution to (55) is given by:

y(t) =
∞∑
n=0

K̃n[F (u)](t)

=
∞∑
n=0

K̃n

[(
−1

α

)
qCos (αt + β)

]
(t)

=
∞∑
n=0

K̃2n

[(
−1

α

)
qCos (αt + β)

]
(t) (89)

+
∞∑
n=0

K̃2n+1

[(
−1

α

)
qCos (αt + β)

]
(t). (90)

Using Proposition 2 and applying (65) to (89) and (66) to (90) gives the formal solution

to (55) is of the form:

y(t) =
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)
qCos

(
q2nαt + β

qn

)
(91)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)
. (92)

Now to check our solutions:

First we check the solution (87)-(88); this is when f(t) = qCos(αt + β).

So we will formally check that it solves (54) or that in particular,

y′(t) = Ay(qt) + qCos(αt + β).

Recall from (87) and (88) that

y(t)

=
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
qSin

(
q2nαt + β

qn+1

)
(93)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)
qCos

(
q2n+1αt + β

qn+1

)
. (94)
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Then we calculate, under the assumption that differentiation can be exchanged with the

infinite sums in (93)-(94), that:

y′(t) =
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)[
qSin

(
q2nαt + β

qn+1

)]′
(95)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)[
qCos

(
q2n+1αt + β

qn+1

)]′
(96)

=
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
q qCos

(
q2n+1αt + qβ

qn+1

)(
qn−1α

)
+

∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)[
−qSin

(
q2n+1αt + β

qn+1

)]
(qnα)

= qCos(αt + β)

+
∞∑
n=1

(−1)n
(
A2n

α2n

)(
1

qn(n−1)

)
qCos

(
q2nαt + β

qn

)
(97)

+
∞∑
n=0

(−1)n
(
A2n+1

α2n+1

)(
1

qn2

)
qSin

(
q2n+1αt + β

qn+1

)
.

Now making a change of variables by letting n = m + 1 in (97) gives:

y′(t) = qCos(αt + β)

+
∞∑

m=0

(−1)m+1

(
A2(m+1)

α2(m+1)

)(
1

qm(m+1)

)
qCos

(
q2(m+1)αt + β

qm+1

)
+

∞∑
n=0

(−1)n
(
A2n+1

α2n+1

)(
1

qn2

)
qSin

(
q2n+1αt + β

qn+1

)
= qCos(αt + β)

+A
∞∑

m=0

(−1)m+1

(
A2m+1

α2m+2

)(
1

qm(m+1)

)
qCos

(
q2m+1α(qt) + β

qm+1

)
+A

∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
qSin

(
q2nα(qt) + β

qn+1

)
= qCos(αt + β) + Ay(qt).

This completes the check that (87)-(88) is a formal solution to (54).
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Now we will formally check that the solution (91)-(92), does indeed solve (55).

Namely, we will check that

y′(t) = Ay(qt) + qSin(αt + β).

Recall that from (91) and (92)

y(t)

=
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1

)
qCos

(
q2nαt + β

qn

)
(98)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)
. (99)

Then we calculate again under the assumption that we may pass the derivatives through

the infinite sums in (98)-(99).

y′(t)

=
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)[
qCos

(
q2nαt + β

qn

)]′
(100)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)[
qSin

(
q2n+1αt + β

qn+1

)]′
(101)

=
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)[
−qSin

(
q2nαt + β

qn

)]
(qnα)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)
q

[
qCos

(
q2n+2αt + qβ

qn+1

)]
(qnα)

= qSin(αt + β)

+
∞∑
n=1

(−1)n
(
A2n

α2n

)(
1

qn2

)[
qSin

(
q2nαt + β

qn

)]
(102)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+1

)(
1

qn(n+1)

)[
qCos

(
q2n+1αt + β

qn

)]
.
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Now making a change of variables in (102) by letting n = m + 1 gives:

y′(t) = qSin(αt + β)

+
∞∑

m=0

(−1)m+1

(
A2(m+1)

α2(m+1)

)(
1

q(m+1)2

)[
qSin

(
q2(m+1)αt + β

qm+1

)]
+

∞∑
n=0

(−1)n+1

(
A2n+1

α2n+1

)(
1

qn(n+1)

)[
qCos

(
q2n+1αt + β

qn

)]
= qSin(αt + β)

+A

∞∑
m=0

(−1)m+1

(
A2m+1

α2m+2

)(
1

q(m+1)2

)[
qSin

(
q2m+1α(qt) + β

qm+1

)]
+A

∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)[
qCos

(
q2nα(qt) + β

qn

)]
= qSin(αt + β) + Ay(qt).

This completes the formal check for both our results.

We have arrived at the following theorem.

Theorem 3. A solution to the MADE

y′(t) − Ay(qt) = f(t) , where f(t) = qCos(αt + β)

is of the form:

y(t) =
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
qSin

(
q2nαt + β

qn+1

)
(103)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)
qCos

(
q2n+1αt + β

qn+1

)
. (104)

Similarly a solution to the MADE

y′(t) − Ay(qt) = f(t) , where f(t) = qSin(αt + β)
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is of the form:

y(t) =
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)
qCos

(
q2nαt + β

qn

)
(105)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)
. (106)

Proof. We will prove that (103)-(104) and (105)-(106) both converge absolutely and

uniformly in order to show that our checks are correct in assuming the exchanging of

derivatives with infinite sums. We will bound them using a completion of squares to

obtain a Gaussian bound via (47) in Proposition 1. First from the solution (103)-(104)

we can see that |y(t)| is:

|y(t)| =

∣∣∣∣∣
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
qSin

(
q2nαt + β

qn+1

)
(107)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)
qCos

(
q2n+1αt + β

qn+1

)∣∣∣∣∣ . (108)

Now using the triangle inequality and the bounds (43) and (42) on (107) and (108)
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respectively gives:

|y(t)| ≤
∞∑
n=0

(
A2n

|α|2n+1

)(
1

qn2

) (
q1/2
)

+
∞∑
n=0

(
|A|2n+1

α2n+2

)(
1

qn(n+1)

)
=

q1/2

|α|

∞∑
n=0

(
|A|2n

α2n

)(
1

qn2

)
+

|A|
α2

∞∑
n=0

(
|A|2n

α2n

)(
1

qn(n+1)

)
=

q1/2

|α|

∞∑
n=0

(
|A|2

α2

)n(
1

qn2

)
+

|A|
α2

∞∑
n=0

(
|A|2

α2

)n(
1

qn2+n

)
=

q1/2

|α|

∞∑
n=0

exp
[
n ln(|A|2α−2)

]
exp

[
−n2 ln(q)

]
+

|A|
|α|2

∞∑
n=0

exp
[
n ln(|A|2α−2)

]
exp[−n ln(q)] exp[−n2 ln(q)]

=
q1/2

|α|

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

(
ln(|A|2α−2)

ln(q)

))]
(109)

+
|A|
α2

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

(
ln(|A|2α−2) − ln(q)

ln(q)

))]
. (110)

Now we will complete the square on n in (109) and (110). This gives that:
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|y(t)|

≤ q1/2

|α|

∞∑
n=0

exp

[
− ln(q)

(
n− ln(|A|2α−2)

2 ln(q)

)2
]

· exp

[
ln2(|A|2α−2)

4 ln(q)

]
+
|A|
α2

∞∑
n=0

exp

[
− ln(q)

(
n− ln(|A|2α−2) − ln(q)

2 ln(q)

)2
]

· exp

[
[ln(|A|2α−2) − ln(q)]

2

4 ln(q)

]

=
q1/2

|α|
· ek1

∞∑
n=0

exp

−
1
2

[
n−

(
ln(|A|2α−2)

2 ln(q)

)]2
(

1√
2 ln(q)

)2

 (111)

+
|A|
α2

· ek2
∞∑
n=0

exp

−
1
2

[
n−

(
ln(|A|2α−2)−ln(q)

2 ln(q)

)]2
(

1√
2 ln(q)

)2

 (112)

≤ q1/2

|α|
· ek1

[
1 +

√
2π

(
1√

2 ln(q)

)]
(113)

+
|A|
α2

· ek2
[

1 +
√

2π

(
1√

2 ln(q)

)]
(114)

=
q1/2

|α|
· ek1

[
1 +

√
π

ln(q)

]
+
|A|
α2

· ek2
[
1 +

√
π

ln(q)

]
< ∞

where in (113) and (114) we used Proposition 1 on the Gaussian’s in (111) and (112)

respectively, and the k1, introduced in (111) is equal to
ln2(|A|2α−2)

4 ln(q)
, and the k2, intro-

duced in (112), is equal to
[ln(|A|2α−2) − ln(q)]

2

4 ln(q)
. Now that we have shown y(t) converges

absolutely and uniformly for all t ∈ R, we look to similarly bound y′(t) so that we may

apply Theorem 1. Recall that y′(t) = Ay(qt) + f(t) and since we have just shown that
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y(t) is bounded, clearly Ay(qt) is bounded as well, with the summation converging uni-

formly and absolutely on all of R. For this solution recall that f(t) = qCos(αt + β),

which is a single finite term and thus it is clear from (42) that y′(t) is also bounded for

all t ∈ R. Then applying Theorem 1 tells us that we may exchange the derivatives with

the infinite sums in our check (95)-(96) of y(t). This makes our solution, (103)-(104)

rigorous.

We will apply the same techniques to the solution (105)-(106) to ensure that it

converges absolutely and uniformly. From (105)-(106) we can see that the absolute

value of our solution is:

|y(t)| =

∣∣∣∣∣
∞∑
n=0

(−1)n+1

(
A2n

α2n+1

)(
1

qn(n+1)

)
qCos

(
q2nαt + β

qn

)
(115)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

q(n+1)2

)
qSin

(
q2n+1αt + β

qn+1

)∣∣∣∣∣ . (116)

Now using the triangle inequality and the bounds (42) and (43) on (115) and (116)

respectively gives:

31



|y(t)| ≤
∞∑
n=0

(
|A|2n

|α|2n+1

)(
1

qn(n+1)

)
+

∞∑
n=0

(
|A|2n+1

α2n+2

)(
1

q(n+1)2

)
(q1/2)

=
1

|α|

∞∑
n=0

(
|A|2n

α2n

)(
1

qn(n+1)

)
+

|A|
α2

∞∑
n=0

(
|A|2n

α2n

)(
1

qn2+2n+1

)
(q1/2)

=
1

|α|

∞∑
n=0

(
|A|2

α2

)n(
1

qn2+n

)
+

|A|
q1/2α2

∞∑
n=0

(
|A|2

α2

)n(
1

qn2+2n

)
=

1

|α|

∞∑
n=0

exp
[
n ln(|A|2α−2)

]
exp[−n ln(q)] exp[−n2 ln(q)]

+
|A|

q1/2α2

∞∑
n=0

exp
[
n ln(|A|2α−2)

]
exp[−2n ln(q)] exp[−n2 ln(q)]

=
1

|α|

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

(
ln(|A|2α−2) − ln(q)

ln(q)

))]
(117)

+
|A|

q1/2α2

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

(
ln(|A|2α−2) − 2 ln(q)

ln(q)

))]
. (118)
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Now we will complete the square on n in (117) and (118). This gives that:

|y(t)|

≤ 1

|α|

∞∑
n=0

exp

[
− ln(q)

(
n− ln(|A|2α−2) − ln(q)

2 ln(q)

)2
]

· exp

[
[ln(|A|2α−2) − ln(q)]

2

4 ln(q)

]

+
|A|

q1/2α2

∞∑
n=0

exp

[
− ln(q)

(
n− ln(|A|2α−2) − 2 ln(q)

2 ln(q)

)2
]

· exp

[
[ln(|A|2α−2) − 2 ln(q)]

2

4 ln(q)

]

=
1

|α|
· ek3

∞∑
n=0

exp

−
1
2

[
n−

(
ln(|A|2α−2)−ln(q)

2 ln(q)

)]2
(

1√
2 ln(q)

)2

 (119)

+
|A|

q1/2α2
· ek4

∞∑
n=0

exp

−
1
2

[
n−

(
ln(|A|2α−2)−2 ln(q)

2 ln(q)

)]2
(

1√
2 ln(q)

)2

 (120)

≤ 1

|α|
· ek3

[
1 +

√
2π

(
1√

2 ln(q)

)]
(121)

+
|A|

q1/2α2
· ek4

[
1 +

√
2π

(
1√

2 ln(q)

)]
(122)

=
1

|α|
· ek3

[
1 +

√
π

ln(q)

]
+

|A|
q1/2α2

· ek4
[
1 +

√
π

ln(q)

]
< ∞

where in (121) and (122) we used Proposition 1 on the Gaussian’s in (119) and (120)

respectively, and the k3, introduced in (119) is equal to
[ln(|A|2α−2) − ln(q)]

2

4 ln(q)
, and the

k4, introduced in (120), is equal to
[ln(|A|2α−2) − 2 ln(q)]

2

4 ln(q)
. Now that we have shown

y(t) converges absolutely and uniformly for all t ∈ R, we look to similarly bound y′(t)

so that we may apply Theorem 1. Recall that y′(t) = Ay(qt) + f(t) and since we have
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just shown that y(t) is bounded and converges uniformly and absolutely on R, clearly

so does Ay(qt). For this solution recall that f(t) = qSin(αt+β), which is a single finite

term and is bounded by (43). Thus it is clear that y′(t) is also bounded and converges

uniformly and absolutely on R. Then applying Theorem 1 tells us that we may exchange

the derivatives with the infinite sums in our check (100)-(101) of y(t). This makes our

solution, (105)-(106) rigorous as well. This completes the proof of Theorem 1 as we

have shown both our solutions to converge uniformly and absolutely on the entire real

line.

Now we introduce a proposition for the Fourier transform of our solution y(t) (103)-

(104).

Proposition 4. The Fourier transform of y(t) in (103)-(104) is given by

ŷ(x) =

[
1

θ(q2;x2/α2)

][
−C̃qi

xα

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2−n

)
exp

[
iβ

q2nα

]
(123)

+
−C̃qA

α3

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2+n

)
exp

[
iβ

q2n+1α

]]
. (124)

Proof. We start by taking the Fourier transform of (103)-(104). Note that we may ex-

change the integration with the infinite sums in (103)-(104) by the Lebesgue Dominated

Convergence of y(m)(t) by gm(t), for m = 0, in (214) below.

ŷ(x)

=
∞∑
n=0

(−1)n
(

A2n

α2n+1

)(
1

qn2

)
1√
2π

∫ ∞

−∞
e−itx

qSin

(
q2nαt + β

qn+1

)
dt (125)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+2

)(
1

qn(n+1)

)
1√
2π

∫ ∞

−∞
e−itx

qCos

(
q2n+1αt + β

qn+1

)
dt (126)

Making a u substitution of u = qn−1αt + βq−n−1 in (125) and the u substitution of
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u = qnαt + βq−n−1 in (126) gives:

ŷ(x)

=
∞∑
n=0

(−1)n
(

A2n

α2n+2

)(
1

qn2+n−1

)
1√
2π

∫ ∞

−∞
e
−i

(
u−βq−n−1

qn−1α

)
x

qSin (u)du (127)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+3

)(
1

qn2+2n

)
1√
2π

∫ ∞

−∞
e
−i

(
u−βq−n−1

qnα

)
x

qCos (u)du . (128)

Now applying (29) and (28) to (127) and (128) respectively gives:

ŷ(x)

=
∞∑
n=0

(−1)n
(

A2n

α2n+2

)(
1

qn2+n−1

)
e

iβ

q2nα

C̃q · (−i)
(

x
qn−1α

)
θ
(
q2; x2

q2n−2α2

)
 (129)

+
∞∑
n=0

(−1)n+1

(
A2n+1

α2n+3

)(
1

qn2+2n

)
e

iβ

q2n+1α

 C̃q

θ
(
q2; x2

q2nα2

)
 . (130)
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Now using (33) on both (129) and (130) gives:

ŷ(x)

=
−C̃qixq

2

α3

∞∑
n=0

(−1)n
(
A2n

α2n

)(
1

qn2+2n

)
e

iβ

q2nα (131)

·

[
1

q(−n+1)(−n+2)
(
x2

α2

)−n+1

] [
1

θ (q2;x2/α2)

]
(132)

+
−C̃qA

α3

∞∑
n=0

(−1)n
(
A2n

α2n

)(
1

qn2+2n

)
e

iβ

q2n+1α (133)

·

[
1

q(−n)(−n+1)
(
x2

α2

)−n

][
1

θ (q2;x2/α2)

]
(134)

=
−C̃qi

xα

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2−n

)
e

iβ

q2nα

[
1

θ (q2;x2/α2)

]
(135)

+
−C̃qA

α3

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2+n

)
e

iβ

q2n+1α

[
1

θ (q2;x2/α2)

]
(136)

=

[
1

θ(q2;x2/α2)

][
−C̃qi

xα

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2−n

)
exp

[
iβ

q2nα

]

+
−C̃qA

α3

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2+n

)
exp

[
iβ

q2n+1α

]]
,

where (132) and (134) follow from (33). This gives (123)-(124) as needed.

Next we have a proposition for the 2k and 2k + 1 derivatives of the solution y (103)-

(104).
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Proposition 5. For even and odd order derivatives of y(t), respectively, we have that:

y(2k)(t)

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)α2k

qn2

)
qSin

(
qk
q2nαt + β

qn+1

)
(137)

+
∞∑
n=0

(−1)n+1+k

(
A2n+1

α2n+2

)(
q2knqk

2
α2k

qn(n+1)

)
qCos

(
qk
q2n+1αt + β

qn+1

)
(138)

y(2k+1)(t)

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)qn+kα2k+1

qn2

)
qCos

(
qk+1 q

2nαt + β

qn+1

)
(139)

+
∞∑
n=0

(−1)n+k

(
A2n+1

α2n+2

)(
q2knqk

2
qn+kα2k+1

qn(n+1)

)
qSin

(
qk
q2n+1αt + β

qn+1

)
. (140)

Proof. We will prove this proposition using induction on k. Also note that we may pass

the derivatives through these infinite sums since gk(t) dominates each y(k)(t)’s series

expansion in (214) below. First note that for the k = 0 case (137)-(138) holds from

(103)-(104). Assume (137)-(138) as the inductive hypothesis. Then in order to calculate

y(2(k+1))(t) = y(2k+2)(t) we first calculate y(2k+1)(t) using the inductive hypothesis.
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y(2k+1)(t) = [y(2k)(t)]′ =

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)α2k

qn2

) [
qSin

(
qk
q2nαt + β

qn+1

)]′
(141)

+
∞∑
n=0

(−1)n+1+k

(
A2n+1

α2n+2

)(
q2knqk

2
α2k

qn(n+1)

) [
qCos

(
qk
q2n+1αt + β

qn+1

)]′
(142)

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)α2k

qn2

)
·
[
q qCos

(
qk+1 q

2nαt + β

qn+1

)(
qn+k−1α

)]
+

∞∑
n=0

(−1)n+1+k

(
A2n+1

α2n+2

)(
q2knqk

2
α2k

qn(n+1)

)

·
[
− qSin

(
qk
q2n+1αt + β

qn+1

)(
qn+kα

)]
=

∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)qn+kα2k+1

qn2

)
qCos

(
qk+1 q

2nαt + β

qn+1

)
(143)

+
∞∑
n=0

(−1)n+k

(
A2n+1

α2n+2

)(
q2knqk

2
qn+kα2k+1

qn(n+1)

)
qSin

(
qk
q2n+1αt + β

qn+1

)
. (144)
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Next we calculate y(2(k+1))(t) = y(2k+2)(t) from y(2k+1)(t).

y(2(k+1))(t) = y(2k+2)(t) = [y(2k+1)(t)]′

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)qn+kα2k+1

qn2

)[
qCos

(
qk+1 q

2nαt + β

qn+1

)]′
(145)

+
∞∑
n=0

(−1)n+k

(
A2n+1

α2n+2

)(
q2knqk

2
qn+kα2k+1

qn(n+1)

)[
qSin

(
qk
q2n+1αt + β

qn+1

)]′
(146)

=
∞∑
n=0

(−1)n+k

(
A2n

α2n+1

)(
q2knqk(k−1)qn+kα2k+1

qn2

)
·
[
− qSin

(
qk+1 q

2nαt + β

qn+1

)(
qn+kα

)]
+

∞∑
n=0

(−1)n+k

(
A2n+1

α2n+2

)(
q2knqk

2
qn+kα2k+1

qn(n+1)

)

·
[
q qCos

(
qk+1 q

2n+1αt + β

qn+1

)(
qn+kα

)]
=

∞∑
n=0

(−1)n+k+1

(
A2n

α2n+1

)(
q2kn+2nqk(k+1)α2(k+1)

qn2

)
(147)

· qSin
(
qk+1 q

2nαt + β

qn+1

)
(148)

+
∞∑
n=0

(−1)n+1+k+1

(
A2n+1

α2n+2

)(
q2n(k+1)q(k+1)2α2(k+1)

qn(n+1)

)
(149)

· qCos

(
qk+1 q

2n+1αt + β

qn+1

)
. (150)

From (147)-(150), we have proven (137)-(138) by induction. Now that (137)-(138) is

established for all k ∈ N, from (143)-(144) we obtain that (139)-(140) holds for all

k ∈ N. Note that we are allowed to exchange the derivatives with the infinite sums in

(145)-(146) and (141)-(142) from (214) given below.
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Proposition 6. The solution in (103)-(104) and the solution (105)-(106) in Theorem

3 are Schwartz.

Proof. Recall from (50) that a necessary and sufficient condition for y(t) to be Schwartz

is that

∀ p, k ∈ N0 ∃ Cp,k ∈ R s.t. 0 < |tpy(k)(t)| ≤ Cp,k < ∞. (151)

In order to bound every |y(k)(t)|, we bound the even order derivatives, |y(2k)(t)|, and the

odd order derivatives, |y(2k+1)(t)|. Examine Proposition 5, apply the triangle inequality

to |y(2k)(t)| and |y(2k+1)(t)|, and factor out common factors to obtain:

|y(2k)(t)|

≤ qk(k−1)|α|2k−1

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn2

)∣∣∣∣qSin(qk q2nαt + β

qn+1

)∣∣∣∣ (152)

+Aqk
2|α|2k−2

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn(n+1)

)∣∣∣∣qCos

(
qk
q2n+1αt + β

qn+1

)∣∣∣∣ (153)

|y(2k+1)(t)|

≤ qk
2

α2k

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn2

)∣∣∣∣qCos

(
qk+1 q

2nαt + β

qn+1

)∣∣∣∣ (154)

+qk(k+1)|α|2k−1

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn(n+1)

)∣∣∣∣qSin(qk q2n+1αt + β

qn+1

)∣∣∣∣ (155)

Now we will apply the decay estimate, (44) for qCos(u) to (153) and (154), and the

decay estimate, (45) for qSin(u) to (152) and (155). Recall that in order to apply the

decay estimates (44) and (45) to qCos(u) and qSin(u) we must have |u| ≥ 1. So we look

at the argument of the qCos(t) and qSin(t) in (152), (153), (154), and (155), and work

to get a standard assumption on t sufficient for every argument to be greater than or

equal to 1 in absolute value. We will have four such arguments to handle.
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For the argument of qSin in (152), we assume

∣∣∣∣qk q2nαt + β

qn+1

∣∣∣∣ =
∣∣qn+k−1αt + βqk−n−1

∣∣ (156)

≥
∣∣qn+k−1αt

∣∣− ∣∣βqk−n−1
∣∣ (157)

≥
∣∣q−1αt

∣∣− ∣∣βqk∣∣ ≥ 1. (158)

Second, for the argument of qCos in (153), we assume

∣∣∣∣qk q2n+1αt + β

qn+1

∣∣∣∣ =
∣∣qn+kαt + βqk−n−1

∣∣ (159)

≥
∣∣qn+kαt

∣∣− ∣∣βqk−n−1
∣∣ (160)

≥ |αt| −
∣∣βqk∣∣ ≥ 1. (161)

Third, the argument of qCos in (154), we assume

∣∣∣∣qk+1 q
2nαt + β

qn+1

∣∣∣∣ =
∣∣qn+kαt + βqk−n−1

∣∣ (162)

≥
∣∣qn+kαt

∣∣− ∣∣βqk−n−1
∣∣ (163)

≥ |αt| −
∣∣βqk∣∣ ≥ 1. (164)

Fourth, the argument of qSin in (155), we assume

∣∣∣∣qk q2n+1αt + β

qn+1

∣∣∣∣ =
∣∣qn+kαt + βqk−n−1

∣∣ (165)

≥
∣∣qn+kαt

∣∣− ∣∣βqk−n−1
∣∣ (166)

≥ |αt| −
∣∣βqk∣∣ ≥ 1. (167)

Since |q−1αt| −
∣∣βqk∣∣ ≥ 1 implies that |αt| −

∣∣βqk∣∣ ≥ 1, we have that

∣∣q−1αt
∣∣− ∣∣βqk∣∣ ≥ 1 ⇐⇒ |t| ≥ 1 + |β|qk

q−1|α|
≡ C(α, β, q, k) (168)
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is the standard assumption that we will use when we apply our decay estimates. Here

C(α, β, q, k) is given by (168). Now using our assumption, |t| ≥ C(α, β, q, k), with the

decay estimate, (44) on (153) and (154), and the decay estimate (45) on (152) and (155)

we get that:

|y(2k)(t)|

≤ qk(k−1)|α|2k−1

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn2

)
Bqe

−1
∣∣|q−1αt| − |βqk|

∣∣−1
(169)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2+ln(q)]2

(170)

+Aqk
2

α2k−2

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn(n+1)

)
Bq

∣∣|q−1αt| − |βqk|
∣∣−2/[2e−1+ln(q)]

(171)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2e−1+ln(q)]2

(172)

and

|y(2k+1)(t)|

≤ qk
2

α2k

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn2

)
Bq

∣∣|q−1αt| − |βqk|
∣∣−2/[2e−1+ln(q)]

(173)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2e−1+ln(q)]2

(174)

+qk(k+1)|α|2k−1

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn(n+1)

)
Bqe

−1
∣∣|q−1αt| − |βqk|

∣∣−1
(175)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2+ln(q)]2

. (176)

Now we will bound the sums in (169), (171), (173), and (175) using a completion of

squares into a Gaussian Bound.
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First the sum in (169), namely

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn2

)
(177)

=
∞∑
n=0

(
A2q2k

α2

)n(
1

qn2

)
=

∞∑
n=0

exp
[
n ln(A2q2kα−2)

]
exp

[
−n2 ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(A2q2kα−2)

ln(q)

)]

=
∞∑
n=0

exp

[
−ln(q)

(
n2−n

ln(A2q2kα−2)

ln(q)
+

(
ln(A2q2kα−2)

2 ln(q)

)2
−
(

ln(A2q2kα−2)

2 ln(q)

)2
)]

= exp

[
ln2(A2q2kα−2)

4 ln(q)

] ∞∑
n=0

exp

[
− ln(q)

(
n− ln(A2q2kα−2)

2 ln(q)

)2
]

= exp

[
ln2(A2q2kα−2)

4 ln(q)

] ∞∑
n=0

exp

−
1
2

(
n− ln(A2q2kα−2)

2 ln(q)

)2
(

1√
2 ln(q)

)2

 (178)

≤ exp

[
ln2(A2q2kα−2)

4 ln(q)

][
1 +

√
2π

1√
2 ln(q)

]
(179)

= exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
. (180)

Here the bound (179) follows from using (47) on the Gaussian in (178).
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Now we will do the same for the sum in (171), namely

∞∑
n=0

(
A2n

α2n

)(
q2kn

qn2+n

)
(181)

=
∞∑
n=0

(
A2q2k−1

α2

)n(
1

qn2

)
=

∞∑
n=0

exp
[
n ln(A2q2k−1α−2)

]
exp

[
−n2 ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(A2q2k−1α−2)

ln(q)

)]

= exp

[
ln2(A2q2k−1α−2)

4 ln(q)

] ∞∑
n=0

exp

[
− ln(q)

(
n− ln(A2q2k−1α−2)

2 ln(q)

)2
]

= exp

[
ln2(A2q2k−1α−2)

4 ln(q)

] ∞∑
n=0

exp

−
1
2

(
n− ln(A2q2k−1α−2)

2 ln(q)

)2
(

1√
2 ln(q)

)2

 (182)

≤ exp

[
ln2(A2q2k−1α−2)

4 ln(q)

][
1 +

√
2π

1√
2 ln(q)

]
(183)

= exp

[
ln2(A2q2k−1α−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
. (184)

Here the bound (183) follows from applying (47) on the Gaussian in (182).
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Similarly we do the same for the sum in (173), namely

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn2

)
(185)

=
∞∑
n=0

(
A2q2k+1

α2

)n(
1

qn2

)
=

∞∑
n=0

exp
[
n ln(A2q2k+1α−2)

]
exp

[
−n2 ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(A2q2k+1α−2)

ln(q)

)]

= exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] ∞∑
n=0

exp

[
− ln(q)

(
n− ln(A2q2kα−2)

2 ln(q)

)2
]

= exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] ∞∑
n=0

exp

−
1
2

(
n− ln(A2q2k+1α−2)

2 ln(q)

)2
(

1√
2 ln(q)

)2

 (186)

≤ exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] [
1 +

√
2π

1√
2 ln(q)

]
(187)

= exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
. (188)

Here the bound (187) follows from applying (47) to the Gaussian in (186).

We will proceed similarly for the sum in (175), namely

∞∑
n=0

(
A2n

α2n

)(
q2knqn

qn(n+1)

)
(189)

=
∞∑
n=0

(
A2n

α2n

)(
q2kn

qn2

)
(190)

≤ exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(191)

The sum in (175) is equal to (190) which is exact same as the sum in (177) so the bound

(191) is the same as the bound for (177), namely (180).
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Now that all of the sums in (169), (171), (173), and (175) are bounded by (180),

(184), (188), and (191) respectively, we look back to (169)-(176) and say that:

|y(2k)(t)|

≤ qk(k−1)|α|2k−1 exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(192)

·Bqe
−1
∣∣|q−1αt| − |βqk|

∣∣−1
(193)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2+ln(q)]2

(194)

+Aqk
2

α2k−2 exp

[
ln2(A2q2k−1α−2)

4 ln(q)

] [
1+

√
π

ln(q)

]
(195)

·Bq

∣∣|q−1αt| − |βqk|
∣∣−2/[2e−1+ln(q)]

(196)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2e−1+ln(q)]2

(197)

≡ T2k(t) for |t| ≥ C(α, β, q, k) (198)

|y(2k+1)(t)|

≤ qk
2

α2k exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(199)

·Bq

∣∣|q−1αt| − |βqk|
∣∣−2/[2e−1+ln(q)]

(200)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2e−1+ln(q)]2

(201)

+qk(k+1)|α|2k−1 exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(202)

·Bqe
−1
∣∣|q−1αt| − |βqk|

∣∣−1
(203)

·
∣∣|q−1αt| − |βqk|

∣∣− ln(||q−1αt|−|βqk||)·ln(q)/[2+ln(q)]2

(204)

≡ T2k+1(t) for |t| ≥ C(α, β, q, k), (205)

where Bq is given in (46).
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We defined the function T2k(t) in (198) by (192)-(197), and the function T2k+1(t)

in (205) by (199)-(204). Recall that the bounds above are for |t| ≥ C(α, β, q, k), where

C(α, β, q, k) is given by (168). For the case where |t| < C(α, β, q, k), we use the bounds

(42) and (43) on (152)-(155) to obtain the bounds

|y(2k)(t)|

≤ q1/2qk(k−1)|α|2k−1 exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(206)

+Aqk
2|α|2k−2 exp

[
ln2(A2q2k−1α−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(207)

≡ M2k for |t| < C(α, β, q, k) (208)

and

|y(2k+1)(t)|

≤ qk
2

α2k exp

[
ln2(A2q2k+1α−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(209)

+q1/2qk(k+1)|α|2k−1 exp

[
ln2(A2q2kα−2)

4 ln(q)

] [
1 +

√
π

ln(q)

]
(210)

≡ M2k+1 for |t| < C(α, β, q, k). (211)

We defined the constant M2k in (208) by (206)-(207) and the constant M2k+1 in (211)

by (209)-(210).

Now we will define two functions g2k(t) and g2k+1(t) as follows:

g2k(t) =

 T2k(t) , if |t| ≥ C(α, β, q, k)

M2k , if |t| < C(α, β, q, k)
(212)

and

g2k+1(t) =

 T2k+1(t) , if |t| ≥ C(α, β, q, k)

M2k+1 , if |t| < C(α, β, q, k),
(213)
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where C(α, β, q, k) is given by (168).

Then by construction we have for m = 2k or m = 2k + 1 that

|y(m)(t)| ≤ |gm(t)| < ∞, ∀ m ∈ N and ∀ t ∈ R (214)

and gm(t) is integrable on R since it is a constant on the interval

(−C(α, β, q, ⌊m/2⌋), C(α, β, q, ⌊m/2⌋)) and it is both continuous and decaying to 0

rapidly as |t| → ∞ (see below) on the intervals (−∞,−C(α, β, q, ⌊m/2⌋)] and

[C(α, β, q, ⌊m/2⌋),∞). Note that although gm(t) need not be continuous at the points

C(α, β, q, ⌊m/2⌋) or −C(α, β, q, ⌊m/2⌋) this is a set of measure 0, and we may still apply

Theorem 2 (Lebesgue Dominated Convergence).

Now notice that the Schwartz bound, (50), on |tpy(m)(t)| clearly holds for

−C(α, β, q, ⌊m/2⌋) < t < C(α, β, q, ⌊m/2⌋) since if

t ∈ (−C(α, β, q, ⌊m/2⌋), C(α, β, q, ⌊m/2⌋)), then |tp| ≤ |C(α, β, q, ⌊m/2⌋)|p , ∀ p ∈ N.

Then recall from (214) we have that |y(m)(t)| ≤ |gm(t)|, and therefore

|tpy(m)(t)| < |C(α, β, q, ⌊m/2⌋)pMm| < ∞ holds for

−C(α, β, q, ⌊m/2⌋) < t < C(α, β, q, ⌊m/2⌋).

To get the desired result, namely that |tpy(m)(t)| is bounded, when

t ≥ C(α, β, q, ⌊m/2⌋) or t ≤ −C(α, β, q, ⌊m/2⌋), we rely on the fact that ∀ A > 0 and

B ∈ R

lim
|t|→∞

ln |At−B|
ln |t|

= 1. (215)
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From (215) we may write that,

∀ 1 > ϵ > 0 , ∃ t0 > 1 s.t. ∀ |t| > t0 (216)

s.t. Cϵ = 1 − ϵ <
ln |At−B|

ln |t|
< 1 + ϵ = Bϵ (217)

=⇒ Cϵ ln |t| < ln |At−B| < Bϵ ln |t| (218)

=⇒ C2
ϵ ln2 |t| < ln2 |At−B| < B2

ϵ ln2 |t| (219)

=⇒ Ke−C1 ln |At−B|−C2 ln
2 |At−B| < Ke−C1Cϵ ln |t|−C2C2

ϵ ln2 |t| (220)

=⇒ |t|pKe−C1 ln |At−B|−C2 ln
2 |At−B| < Ke[p−C1Cϵ−C2C2

ϵ ln |t|] ln |t| (221)

for p ∈ N ∪ {0} fixed, and for all C1,C2 > 0.

Then, recall from (214) that

|y(m)(t)| ≤ |gm(t)|. (222)

Now setting K,C1, C2, A,B to be as needed to match (221) with (192)-(205), then ap-

plying this to (222) we obtain that for |t| ≥ C(α, β, q, ⌊m/2⌋)

|tpy(m)(t)| < Ke[p−C1Cϵ−C2C2
ϵ ln |t|] ln |t| (223)

=⇒ lim
|t|→±∞

|tpy(m)(t)| < lim
|t|→±∞

Ke[p−C1Cϵ−C2C2
ϵ ln |t|] ln |t| = 0 (224)

=⇒ lim
|t|→±∞

|tpy(m)(t)| = 0 (225)

Now that it is established that lim
|t|→±∞

|tpy(m)(t)| = 0, we note that it is clear that

|tpy(m)(t)| is continuous on the intervals (226)

[C(α, β, q, ⌊m/2⌋),∞) and (−∞,−C(α, β, q, ⌊m/2⌋),∞)], (227)

since |tp| and |y(m)(t)| are continuous on both of the intervals [C(α, β, q, ⌊m/2⌋),∞) and
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(−∞,−C(α, β, q, ⌊m/2⌋),∞)]. Then using (225) and (226) we obtain that |tpy(n)(t)| is

bounded on the intervals (−∞, C(α, β, q, ⌊m/2⌋)] and [C(α, β, q, ⌊m/2⌋),∞), which is

equivalent to the statement

∃ B(α, β, q, ⌊m/2⌋)

s.t. on the intervals [C(α, β, q, ⌊m/2⌋),∞) and (−∞,−C(α, β, q, ⌊m/2⌋)]

|tpy(m)(t)| < B(α, β, q, ⌊m/2⌋) < ∞. (228)

This completes all cases of bounding |tpy(m)(t)| and gives that since |tpy(m)(t)| is bounded

on the entire real line, we can conclude that y(t) is Schwartz, as desired. A similar proof

shows that the solution (105)-(106) is also Schwartz.
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Next we have another theorem.

Theorem 4. The solution (103)-(104) in Theorem 3 is a Schwartz wavelet with all

moments vanishing.

Proof. We have already shown that y(t), (103)-(104), is Schwartz from Proposition 6.

Now we must show that it satisfies the three conditions to be a wavelet, namely (25),

(26), and (27) in Definition 4. Since y(t) is Schwartz, as shown in Proposition 6, then

from (51) this means that y(t) ∈  L1(R)
⋂

 L2(R)
⋂

 L∞(R). This is (25) confirmed. For

(26), recall from (19), (20), (21), and (22) that if f(t), in our main MADE y′(t) −

Ay(qt) = f(t), is a wavelet, and we assume that the solution y(t) vanishes at plus

minus infinity, then it is a property of our main MADE that the solution y(t) will have

its 0th moment vanishing. For our solution, y(t) recall that f(t) = qCos(αt + β),

which is clearly a wavelet as stated earlier and proven in [PRS3]. Since we have shown

that y(t) is Schwartz, it must vanish at plus minus infinity, meaning that our solution,

y(t), (103)-(104), must have its 0th moment vanishing. This is (26) confirmed. To

prove (27), we need to show that

∫ ∞

−∞

|ŷ(x)|2

|x|
dx < ∞. Recall from (214) that we have

|y(m)(t)| ≤ |gm(t)| < ∞, ∀ m ∈ N and ∀ t ∈ R, where gk(t) is an integrable function as

it constant on (−C(α, β, q, ⌊m/2⌋), C(α, β, q, ⌊m/2⌋)) and it is continuous and rapidly

decaying on (−∞,−C(α, β, q, ⌊m/2⌋)] and [C(α, β, q, ⌊m/2⌋),∞). Thus by Theorem 2,

we may pass integrals through our infinite sums in the solution y(t), (103)-(104). This

makes the computation of ŷ(x) in Proposition 4 rigorous. Then, since y(t) has been

established to be Schwartz, from (52) we get that ŷ(x) is also Schwartz. Now that ŷ(x)

is Schwartz it is clear that

∫ −1

−∞

|ŷ(x)|2

|x|
dx < ∞ and

∫ ∞

1

|ŷ(x)|2

|x|
dx < ∞, however we

need to make sure that

∫ 0

−1

|ŷ(x)|2

|x|
dx and

∫ 1

0

|ŷ(x)|2

|x|
dx are finite. To do this first

51



recall, from Proposition 4, that

ŷ(x)

=

[
1

θ(q2;x2/α2)

][
−C̃qi

xα

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2−n

)
exp

[
iβ

q2nα

]
(229)

+
−C̃qA

α3

∞∑
n=0

(−1)n
(
A2n

α4n

)(
x2n

q2n2+n

)
exp

[
iβ

q2n+1α

]]
. (230)

Taking the absolute value of (229)-(230) and using the triangle equality we obtain that:

|ŷ(x)|

≤ 1

θ(q2;x2/α2)

[
|C̃q|
|xα|

∞∑
n=0

(
A2n

α4n

)(
x2n

q2n2−n

)
+

|C̃qA|
|α|3

∞∑
n=0

(
A2n

α4n

)(
x2n

q2n2+n

)]
(231)

Denote P1(x) =
∞∑
n=0

(
A2n

α4n

)(
x2n

q2n2−n

)
and P2(x) =

∞∑
n=0

(
A2n

α4n

)(
x2n

q2n2+n

)
so that, from

(231), we may write

|ŷ(x)| ≤ |C̃q|
θ(q2;x2/α2)

[
1

|xα|
P1(x) +

|A|
|α|3

P2(x)

]
(232)

Then squaring both sides of (232) we obtain that:

|ŷ(x)|2 ≤ |C̃q|2

θ2(q2;x2/α2)

[
P 2
1 (x)

x2α2
+

2|A|P1(x)P2(x)

|x|α4
+

A2P 2
2 (x)

α6

]
. (233)

Now let us study θ2(q2;x2/α2). Recall from (31) that, θ(q;x) =
∞∑

n=−∞

xn

qn(n−1)/2
and there-

fore θ(q2;x2/α2) =
∞∑

n=−∞

(x2/α2)n

(q2)n(n−1)/2
=

∞∑
n=−∞

x2n

α2nqn(n−1)
. Now notice that every term in

θ(q2;x2/α2) > 0 and therefore we can isolate one term, say n = −2, and get that

θ(q2;x2/α2) ≥ x2·(−2)

α2·(−2)q−2(−2−1)
=

α4

x4q6
. (234)
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Since everything in (234) is non-negative, when we square both sides we preserve the

inequality; so from (234) we obtain that

θ2(q2;x2/α2) ≥ α8

x8q12
. (235)

Now taking the reciprocal of (235) gives:

1

θ2(q2;x2/α2)
≤ x8q12

α8
(236)

Looking back to (233) and using (236) to bound the
1

θ2(q2;x2/α2)
term and multiplying

by a
1

|x|
we get that:

|ŷ(x)|2

|x|
≤ |C̃q|2x8q12

|x|α8

[
P 2
1 (x)

x2α2
+

2|A|P1(x)P2(x)

|x|α4
+

A2P 2
2 (x)

α6

]
(237)

=
|C̃q|2q12

α8

[
|x5|P 2

1 (x)

α2
+

2|A|x6P1(x)P2(x)

α4
+

|x7|A2P 2
2 (x)

α6

]
. (238)

Now it is clear that since lim
x→0

|ŷ(x)|2

|x|
= 0 the integrals

∫ 0

−1

|ŷ(x)|2

|x|
dx and

∫ 1

0

|ŷ(x)|2

|x|
dx

converge. Thus we have that

∫ ∞

−∞

|ŷ(x)|2

|x|
dx < ∞, and that confirms (27), the third

and last condition for y(t) to be a wavelet. Therefore our solution y(t), (103)-(104), is a

Schwartz wavelet as desired. In order to show that y(t) has all moments vanishing notice

that from (5), (10) with (18), (17) one sees analogous to (137)-(138) and (139)-(140)

that a (2k)th anti-derivative of y(t) is given by

y(−2k)(t)

=
(−1)kqk(k+1)

α2k+1

∞∑
n=0

(−1)n
A2n

α2nq2kn
1

qn2 qSin

(
q−k q

2nαt + β

qn+1

)
(239)

+
(−1)k+1Aqk

2

α2k+2

∞∑
n=0

(−1)n
A2n

α2nq2kn
1

qn(n+1) qCos

(
q−k q

2n+1αt + β

qn+1

)
(240)
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and a (2k + 1)st anti-derivative of y(t) is given by

y(−[2k+1])(t)

=
(−1)kq(k+1)2

α2k+2

∞∑
n=0

(−1)n
A2n

α2nq2kn
1

qn(n+1) qCos

(
q−k q

2nαt + β

qn+1

)
(241)

+
(−1)k+1Aqk(k+1)

α2k+3

∞∑
n=0

(−1)n
A2n

α2nq2kn
1

qn(n+2) qSin

(
q−k−1 q

2nαt + β

qn+1

)
(242)

Now from (239)-(240) and (241)-(242) we see, via an argument entirely analogous to

that given in Proposition 6, that each of the anti-derivatives y(−n)(t) is Schwartz. Thus

for y(t) our solution to y′(t) − Ay(qt) = qCos(αt + β), we have for each m ∈ N ∪ {0}

∫ ∞

−∞
xmy(t)dt

= xmy(−1)(t)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
mxm−1y(−1)(t)dt

= 0 −mxm−1y(−2)(t)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
m(m− 1)xm−2y(−2)(t)dt

...

= (−1)km(m− 1) . . . (m− [k − 1])

∫ ∞

−∞
xm−ky(−k)(t)dt

...

= (−1)mm!

∫ ∞

−∞
y(−m)(t)dt

= (−1)mm! y(−m−1)(t)

∣∣∣∣∞
−∞

= 0

This is the definition of having all moments vanishing and therefore completes the proof

that y(t), (103)-(104) is a Schwartz wavelet with all moments vanishing. A similar

argument showing the solution y(t), (105)-(106), is a Schwartz wavelet with all moments

vanishing holds.
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Now we provide some pictures of our solution in the case of y′(t) − Ay(qt) =

qSin(αt + β), where A = 2, α = 1, β = 0, and q takes on several values that get

closer to 1.

In Figure 1 - Figure 4 below the red curve is the forcing f(t) = qSin(t) with q taking

on the value given in the figure’s caption.

The green curve is a normal sin(t).

The light blue curve is the classical solution to the non-advanced differential equation,

y′(t) − 2y(t) = sin(t).

The dark blue curve is our y(t) solution to the MADE, y′(t) − 2y(qt) = qSin(t), with q

taking on the value given in the figure’s caption.

As seen in Figure 1 - Figure 4 below, as q → 1 it appears that our solution is confluencing

towards the classical, non-advanced solution to the differential equation y′(t) −Ay(t) =

sin(αt + β) for A = 2, α = 1, and β = 0.

Figure 1: qSin forcing solution with q = 1.5
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Figure 2: qSin forcing solution with q = 1.4

Figure 3: qSin forcing solution with q = 1.3

Figure 4: qSin forcing solution with q = 1.2
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4 Applying our results to Wavelet frames to get a

solution for a general forcing term in  L2

Now we apply the above results to wavelets expansions so that we may solve (53) for a

larger class of functions f(t). We will do this by expressing our forcing term, f(t), with

frames. We rely on two frames, one using qCos(t) and the other using qSin(t) as the

mother wavelets. Specifically our two choices of frames ΦN,M are:

{
ΦN,M = q

N
2 qCos(qN t−Mb)

∣∣∣∣N,M ∈ Z
}

(243)

or

{
ΦN,M = q

N
2 qSin(qN t−Mb)

∣∣∣∣N,M ∈ Z
}
. (244)

Now from [PRS3] we have that for any function f(t) ∈  L2(R), we may write f(t) as:

f(t) =
∑
N

∑
M

cN,MΦN,M . (245)

Then from (53), our MADE becomes

y′(t) − Ay(qt) = f(t) (246)

=
∑
N

∑
M

cN,MΦN,M . (247)

Now using the (243) expansion of ΦN,M , (246)-(247) gives that:

y′(t) − Ay(qt) = f(t) (248)

=
∑
N

∑
M

cN,Mq
N
2 qCos(qN t−Mb). (249)



Now integrating (248)-(249) from −∞ to t and relying on the same K̃ operator as defined

in (58) and assuming the exchange of the integral in K̃ with
∑
N

∑
M

yields:

y(t) − K̃[y](t) =
∑
N

∑
M

cN,M q
N
2

∫ t

−∞
qCos(qN t−Mb)

=
∑
N

∑
M

cN,M
q

N
2

qN
qSin

(
qN t−Mb

q

)
, (250)

where (18) was used to obtain (250).

Now applying (60) to (250) and assuming the exchange of
∞∑
n=0

K̃n with
∑
N

∑
M

gives

that:

y(t) =
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃n

[
qSin

(
qNu−Mb

q

)]
(t)

=
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃2n

[
qSin

(
qNu−Mb

q

)]
(t) (251)

+
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃2n+1

[
qSin

(
qNu−Mb

q

)]
(t). (252)

Now using Proposition 3, and applying (79) to (251) and (80) to (252) we get a formal

solution to (248)-(249) of the form:

y(t)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
qSin

(
q2nqN t−Mb

qn+1

)
(253)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
qCos

(
q2nqN+1t−Mb

qn+1

)
.(254)

Next we choose (244) as our frame. Then (246)-(247) becomes:

y′(t) − Ay(qt) = f(t) (255)

=
∑
N

∑
M

cN,Mq
N
2 qSin(qN t−Mb). (256)

58



Now integrating (255)-(256) from −∞ to t and relying on the same K̃ operator as

defined in (58) and assuming the exchange of the integral in K̃ with
∑
N

∑
M

yields:

y(t) − K̃[y](t) =
∑
N

∑
M

cN,M q
N
2

∫ t

−∞
qSin(qN t−Mb)

=
∑
N

∑
M

cN,M
q

N
2

qN
[
−qCos(qN t−Mb)

]
, (257)

where (17) was used to obtain (257).

Now using (60) and assuming the exchange of
∞∑
n=0

K̃n with
∑
N

∑
M

we have that:

y(t) =
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃n
[
−qCos(qNu−Mb)

]
(t)

=
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃2n
[
−qCos(qNu−Mb)

]
(t) (258)

+
∑
N

∑
M

cN,M
q

N
2

qN

∞∑
n=0

K̃2n+1
[
−qCos(qNu−Mb)

]
(259)

Now using Proposition 2, specifically applying (65) to (258) and (66) to (259) we get

that a formal solution to (255)-(256) is of the form:

y(t)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn(n+1)

)
qCos

(
q2nqN t−Mb

qn

)
(260)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n+1)2

)
qSin

(
q2nqN+1t−Mb

qn+1

)
.(261)

We will now check that our solution y(t), in (260)-(261), does formally solve (53) by

differentiating y(t). Specifically we will check that y′(t) = Ay(qt)+f(t). So we compute

y′(t) formally from (260)-(261) assuming that we may pass the derivatives through the
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infinite sums. We have:

y′(t)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn(n+1)

)
(262)

·
[
qCos

(
q2nqN t−Mb

qn

)]′
(263)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n+1)2

)
(264)

·
[
qSin

(
q2nqN+1t−Mb

qn+1

)]′
(265)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn(n+1)

)
(266)

·
[
−qSin

(
q2nqN t−Mb

qn

)(
qnqN

)]
(267)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n+1)2

)
·
[
(q)qCos

(
q2nqN+1t−Mb

qn

)(
qnqN

)]
=

∑
N

∑
M

cN,Mq
N
2 qSin(qN t−Mb) (268)

+
∑
N

∑
M

∞∑
n=1

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
(qN) (269)

·
[
qSin

(
q2nqN t−Mb

qn

)]
(270)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
(qN)

·
[
qCos

(
q2nqN+1t−Mb

qn

)]
.

Here we have separated the sum over n in (266)-(267) into the n = 0 and n ≥ 1 cases

in (268) and (269)-(270) respectively. Now note that (268) is exactly f(t) and then in

(269)-(270) making a change of variables letting n = m + 1 gives:
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y′(t)

= f(t)

+
∑
N

∑
M

∞∑
m=0

cN,M
q

N
2

qN
(−1)m+1

(
A

qN

)2(m+1)(
1

q(m+1)2

)
(qN)

·
[
qSin

(
q2(m+1)qN t−Mb

qm+1

)]
+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n(n+1)

)
(qN)

·
[
qCos

(
q2nqN+1t−Mb

qn

)]
= f(t)

+A
∑
N

∑
M

∞∑
m=0

cN,M
q

N
2

qN
(−1)m+1

(
A

qN

)2m+1(
1

q(m+1)2

)
·
[
qSin

(
q2mqN+1(qt) −Mb

qm+1

)]
+A

∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

q(n(n+1)

)
·
[
qCos

(
q2nqN(qt) −Mb

qn

)]
= f(t) + Ay(qt)

as desired.

Now to check that (253)-(254) is a formal solution to (53) we will again compute

y′(t) formally from (253)-(254). We will assume that we are allowed to exchange the

derivatives with the infinite sums in (253)-(254) while we compute y′(t) formally from
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(253)-(254). We have:

y′(t)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
(271)

·
[
qSin

(
q2nqN t−Mb

qn+1

)]′
(272)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
(273)

·
[
qCos

(
q2nqN+1t−Mb

qn+1

)]′
(274)

=
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
(275)

·
[
qqCos

(
q2nqN t−Mb

qn

)(
qn−1qN

)]
(276)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
·
[
−qSin

(
q2nqN+1t−Mb

qn+1

)(
qnqN

)]
=

∑
N

∑
M

cN,Mq
N
2 qCos(qN t−Mb) (277)

+
∑
N

∑
M

∞∑
n=1

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn(n−1)

)
(qN) (278)

·
[
qCos

(
q2nqN t−Mb

qn

)]
(279)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n+1(
1

qn2

)
(qN)

·
[
qSin

(
q2nqN+1t−Mb

qn+1

)]
.

Here we have separated the sum over n in (275)-(276) into the n = 0 and n ≥ 1 cases

in (277) and (278)-(279) respectively. Now note that (277) is exactly f(t) and then in

(278)-(279) making a change of variables letting n = m + 1 gives:
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y′(t)

= f(t)

+
∑
N

∑
M

∞∑
m=0

cN,M
q

N
2

qN
(−1)m+1

(
A

qN

)2(m+1)(
1

qm(m+1)

)
(qN)

·
[
qCos

(
q2(m+1)qN t−Mb

qm+1

)]
+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n+1(
1

qn2

)
(qN)

·
[
qSin

(
q2nqN+1t−Mb

qn+1

)]
= f(t)

+A
∑
N

∑
M

∞∑
m=0

cN,M
q

N
2

qN
(−1)m+1

(
A

qN

)2m+1(
1

qm(m+1)

)
·
[
qCos

(
q2mqN+1(qt) −Mb

qm+1

)]
+A

∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn2

)
·
[
qSin

(
q2nqN(qt) −Mb

qn+1

)]
= f(t) + Ay(qt)

as desired.

This completes both of the checks that (260)-(261) and (253)-(254) are both formal

solutions to (53).
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Now we will introduce some restrictions on the coefficients of the cN,M to ensure that

all of our sums have absolute and uniform convergence, thus ensuring that the deriva-

tives can pass through the sums in (262)-(265) and (271)-(274).

Now to ensure that our solution y(t) absolutely and uniformly converges, we will

start to bound |y(t)|, via bounding the sum of the absolute values of the summands

in the formal solutions (253)-(254) and (260)-(261). This will imply both absolute and

uniform converge of both (253)-(254) and (260)-(261). First we look at the solution

(260)-(261) which is from the case where ϕN,M = qN/2
qSin(qN t−Mb).

From (260)-(261) we can see that the absolute value of our solution is:

|y(t)|

=

∣∣∣∣∣∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn(n+1)

)
qCos

(
q2nqN t−Mb

qn

)
(280)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n+1)2

)
qSin

(
q2nqN+1t−Mb

qn+1

)∣∣∣∣∣ (281)

Then applying the triangle inequality and the bounds (42) and (43) respectively to

(280)-(281) gives that,

|y(t)|

≤
∑
N

∑
M

∞∑
n=0

|cN,M |
qN/2

(
|A|2n

q2Nn

)(
1

qn(n+1)

)
+

∑
N

∑
M

∞∑
n=0

|cN,M |
qN/2

(
|A|
qN

)(
|A|2n

q2Nn

)(
1

qn2+2n+1

)
(q1/2).

=
∑
N

∑
M

|cN,M |
qN/2

∞∑
n=0

|A|2n

q2Nn+n

(
1

qn2

)
(282)

+
|A|
q1/2

∑
N

∑
M

|cN,M |
q3N/2

∞∑
n=0

|A|2n

q2Nn+2n

(
1

qn2

)
. (283)

Now we take each sum only over n in (282)-(283) and work to bound it using a completion
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of squares in (285)-(286) below. First the sum in (282):

∞∑
n=0

|A|2n

q2Nn+n

(
1

qn2

)
(284)

=
∞∑
n=0

exp

[
n · ln

(
|A|2

q2N+1

)]
exp

[
−n2 · ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(q)
· ln

[
|A|2

q2N+1

])]

=
∞∑
n=0

exp

− ln(q)

n2 − n

ln(q)
· ln

[
|A|2

q2N+1

]
+

(
ln
(
|A|2q−2N−1

)
2 ln(q)

)2
 (285)

· exp

ln(q)

(
ln
(
|A|2q−2N−1

)
2 ln(q)

)2
 (286)

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp

− ln(q)

[n−
ln
(
|A|2q−2N−1

)
2 ln(q)

]2

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp


−
(
n− ln(|A|2q−2N−1)

2 ln(q)

)2

(
1

ln(q)

)


= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp


−1

2

(
n− ln(|A|2q−2N−1)

2 ln(q)

)2

(
1√

2 ln(q)

)2

 (287)

≤ exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

][
1 +

√
2π

(
1√

2 ln(q)

)]
(288)

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

] [
1 +

√
π

ln(q)

]
. (289)

Note that the expression (287) is a Gaussian with mean
ln(|A|2q−2N−1)

2 ln(q)
and standard

deviation
1√

2 ln(q)
. Furthermore the bound in (288) follows from Proposition 1. Note

that the mixed term q2Nn in (284) has been handled via the completion of squares in

(285)-(286) and the resulting Gaussian bound in (288). Also notice that the dependence

on n is gone in (289).
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Now we will do the same for the sum over n in (283), again using a completion of

squares in (291)-(292) below.

∞∑
n=0

|A|2n

q2Nn+2n

(
1

qn2

)
(290)

=
∞∑
n=0

exp

[
n · ln

(
|A|2

q2N+2

)]
exp

[
−n2 · ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(q)
· ln

[
|A|2

q2N+2

])]

=
∞∑
n=0

exp

− ln(q)

n2 − n

ln(q)
· ln

[
|A|2

q2N+2

]
+

(
ln
(
|A|2q−2N−2

)
2 ln(q)

)2
 (291)

· exp

ln(q)

(
ln
(
|A|2q−2N−2

)
2 ln(q)

)2
 (292)

= exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
∞∑
n=0

exp

− ln(q)

[n−
ln
(
|A|2q−2N−2

)
2 ln(q)

]2

= exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
∞∑
n=0

exp


−
(
n− ln(|A|2q−2N−2)

2 ln(q)

)2

(
1

ln(q)

)


= exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
∞∑
n=0

exp


−1

2

(
n− ln(|A|2q−2N−2)

2 ln(q)

)2

(
1√

2 ln(q)

)2

 (293)

≤ exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

][
1 +

√
2π

(
1√

2 ln(q)

)]
(294)

= exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

] [
1 +

√
π

ln(q)

]
. (295)

Again notice that the expression in (293) is a Gaussian with mean
ln(|A|2q−2N−2)

2 ln(q)
and

standard deviation
1√

2 ln(q)
. Then the bound in (294) follows from Proposition 1. Once

more the dependence on n is gone in (295) and the mixed term q2Nn in (290) has been

absorbed by the Gaussian bound (294). Now that we have bounded these terms we can
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look back to (282)-(283) and say that:

|y(t)|

≤
[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
(296)

+
|A|
q1/2

[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
. (297)

Now we will apply the same completion of squares process on the summations over

the N’s in (296)-(297). This will allow us to obtain conditions on our cN,M ’s that will

be sufficient for (296)-(297) to converge absolutely and uniformly.

Starting with the sums in (296) we have:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
=
∑
N

∑
M

|cN,M |

· exp

[
−N

2
· ln(q)

]
exp

[
[−2N ln(q) + ln(|A|2q−1)]

2

4 ln(q)

]
=
∑
N

∑
M

|cN,M |

· exp

[
4N2 ln2(q)−4N ln(|A|2q−1) ln(q) + ln2(|A|2q−1)−2N ln2(q)

4 ln(q)

]
=
∑
N

∑
M

|cN,M | (298)

· exp

[
N2 ln(q) − N ln(|A|2q−1) ln(q)

ln(q)
+

ln2(|A|2q−1)

4 ln(q)
− N ln(q)

2

]
. (299)

At this point we see that |cN,M | must decay in N faster than the exponential exp
[
N2 ln(q)

]
to gain convergence. We will make the assumption that:

|cN,M | ≤ exp[−δ(N − µ)2] · g(M) ,where δ > ln(q) (300)

and
∑
M

|g(M)| = B < ∞. (301)
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Then continuing from (298)-(299) and utilizing our new conditions for |cN,M | in (300) ,

we get that:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
≤

∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
(302)

· exp

[
N2 ln(q) − N ln(|A|2q−1) ln(q)

ln(q)
+

ln2(|A|2q−1)

4 ln(q)
− N ln(q)

2

]
(303)

Now using the bound B from (301), and combining like powers of N in (302)-(303) gives:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

≤ B
∑
N

exp

[
N2[ln(q) − δ]−N

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q) + ln2(q)

2 ln(q)

)]
(304)

· exp

[
ln2(|A|2q−1) − 4δµ2 ln(q)

4 ln(q)

]
(305)

=B ·eC1

∑
N

exp

[
[ln(q) − δ]

(
N2 −N

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+ln2(q)

2 ln(q)[ln(q) − δ]

))]
(306)

Where in (306) C1 =
ln2(|A|2q−1) − 4δµ2 ln(q)

4 ln(q)
. Now to complete the square on N from

(306) gives:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
≤ B ·eC1

·
∑
N

exp

[
[ln(q) − δ]

([
N−
(
−4δµ ln(q) + 2 ln(|A|2q−1) ln(q) + ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]
(307)

· exp

[
−
[
−4δµ ln(q) + 2 ln(|A|2q−1) ln(q) + ln2(q)

]2
16 ln2(q)[ln(q) − δ]

]
(308)

= B ·eC1eC2 (309)

·
∑
N

exp

[
[ln(q) − δ]

([
N−
(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]
, (310)
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where in (309) C2 =
−
[
−4δµ ln(q) + 2 ln(|A|2q−1) ln(q) + ln2(q)

]2
16 ln2(q)[ln(q) − δ]

. Then continuing from

(309)-(310) and denoting C3 = C1 + C2 we write that

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

≤ B · eC3

∑
N

exp

−
1
2

[
N −

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+ln2(q)

4 ln(q)[ln(q)−δ]

)]2
(

1√
2δ−2 ln(q)

)2

 (311)

≤ BeC3

[
1 +

√
2π

(
1√

2δ − 2 ln(q)

)]
(312)

= BeC3

[
1 +

√
π

δ − ln(q)

]
< ∞ (313)

Now that we have bounded (296) by (313) which is finite, we will do the same for (297)

in order to completely bound |y(t)| and show absolute and uniform convergence of all

the sums in y(t) under the assumption of (300) and (301).

Recall the sums in (297) are of the form:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]

=
∑
N

∑
M

|cN,M | exp

[
−3N

2
· ln(q)

]
exp

[
[−2N ln(q) + ln(|A|2q−2)]

2

4 ln(q)

]
=

∑
N

∑
M

|cN,M |

· exp

[
4N2 ln2(q)−4N ln(|A|2q−2) ln(q)+ln2(|A|2q−2)−6N ln2(q)

4 ln(q)

]
=
∑
N

∑
M

|cN,M | (314)

· exp

[
N2 ln(q) − N ln(|A|2q−2) ln(q)

ln(q)
+

ln2(|A|2q−2)

4 ln(q)
− 3N ln(q)

2

]
(315)
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Again we see that |cN,M | must decay in N faster that an exponential with a leading

coefficient of N2 ln(q) so we will make the same assumption on the cN,M as in (300)-

(301), namely that:

|cN,M | ≤ exp[−δ(N − µ)2] · g(M) ,where δ > ln(q) (316)

and
∑
M

|g(M)| = B < ∞. (317)

Then continuing from (314)-(315) and utilizing our condition for |cN,M | in (316), we get:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
(318)

≤
∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
(319)

· exp

[
N2 ln(q) − N ln(|A|2q−2) ln(q)

ln(q)
+

ln2(|A|2q−2)

4 ln(q)
− 3N ln(q)

2

]
(320)

Now using the bound (317) and combining like powers of N in (319)-(320) gives:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]

≤ B
∑
N

exp

[
N2[ln(q) − δ]−N

(
−4δµ ln(q)+2 ln(|A|2q−2) ln(q)+3 ln2(q)

2 ln(q)

)]
(321)

· exp

[
ln2(|A|2q−2) − 4δµ2 ln(q)

4 ln(q)

]
(322)

= B ·eC4

∑
N

exp

[
[ln(q)−δ]

(
N2−N

(
−4δµ ln(q)+2 ln(|A|2q−2) ln(q)+3 ln2(q)

2 ln(q)[ln(q) − δ]

))]
(323)

Where in (323) C4 =
ln2(|A|2q−2) − 4δµ2 ln(q)

4 ln(q)
. Now to complete the square on N in
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(323) gives,

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]
≤ B · eC4

·
∑
N

exp

[
[ln(q) − δ]

([
N −

(
−4δµ ln(q)+2 ln(|A|2q−2) ln(q)+3 ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]

· exp

[
−[ln(q) − δ]

(
−4δµ ln(q) + 2 ln(|A|2q−2) ln(q) + 3 ln2(q)

4 ln(q)[ln(q) − δ]

)2
]

=B ·eC4eC5 (324)

·
∑
N

exp

[
[ln(q) − δ]

[
N−
(
−4δµ ln(q)+2 ln(|A|2q−2) ln(q)+3 ln2(q)

4 ln(q)[ln(q) − δ]

)]2]
(325)

Where in (324) C5 =
−
[
−4δµ ln(q) + 2 ln(|A|2q−2) ln(q) + 3 ln2(q)

]2
16 ln2(q)[ln(q) − δ]

. Then continuing

from (324) and denoting C6 = C4 + C5 we get that,

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]

≤ B · eC6

∑
N

exp

−
1
2

[
N−

(
−4δµ ln(q)+2 ln(|A|2q−2) ln(q)+3 ln2(q)

4 ln(q)[ln(q)−δ]

)]2
(

1√
2δ−2 ln(q)

)2

 (326)

≤ BeC6

[
1 +

√
2π

(
1√

2δ − 2 ln(q)

)]
(327)

= BeC6

[
1 +

√
π

δ − ln(q)

]
< ∞ (328)

Where (327) was obtain by using Proposition 1 on the Gaussian in (326).

Now that we have bounded the sums in (297) by (328) we can look back to (296)
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and (297) and using the bounds (313) and (328) respectively we obtain the bound:

|y(t)|

≤
[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

+
|A|
q1/2

[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]

≤ BeC3

(
1 +

√
π

δ − ln(q)

)(
1 +

√
π

ln(q)

)
(329)

+
|A|BeC6

q1/2

(
1 +

√
π

δ − ln(q)

)(
1 +

√
π

ln(q)

)
< ∞. (330)

Now that we have bounded y(t) we need to bound the y′(t) expression in order to

use Theorem 1. Recall from (246)-(247) that,

y′(t) = Ay(qt) + f(t) (331)

= Ay(qt) +
∑
N

∑
M

cN,MΦN,M (332)

Clearly since we have already shown in (329)-(330) that |y(t)| < ∞ and converges

uniformly and absolutely, it follows that |Ay(qt)| < ∞, with the series Ay(qt) converging

absolutely and uniformly as well. So we will focus on bounding the f(t) term in (331)-

(332), namely
∑
N

∑
M

cN,MΦN,M .

Recall that for this version of y(t) that (244) was our choice of ΦN,M and then using

72



(316) for our condition on cN,M we can rely on (43) to obtain:

∣∣∣∣∣∑
N

∑
M

cN,MΦN,M

∣∣∣∣∣ (333)

≤
∑
N

∑
M

exp
[
−δ(N − µ)2

]
· |g(M)|q

N
2

∣∣
qSin(qN t−Mb)

∣∣
≤ q

1
2

∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
exp

[
N

2
ln(q)

]
≤ Bq

1
2

∑
N

exp

[
−δ

(
N2 −N

(
4δµ + ln(q)

2δ

)
+ µ2

)]

= Bq
1
2

∑
N

exp

[
−δ

[(
N − 4δµ + ln(q)

4δ

)2

−
(

4δµ + ln(q)

4δ

)2

+ µ2

]]

= Bq
1
2 · eC7

∑
N

exp

−1
2

(
N − 4δµ+ln(q)

4δ

)2
(

1√
2δ

)2
 (334)

≤ Bq
1
2 · eC7

[
1 +

√
2π

(
1√
2δ

)]
(335)

= Bq
1
2 · eC7

[
1 +

√
π

δ

]
< ∞. (336)

Here B is given in (317) and C7 =
[4δµ + ln(q)]2

16δ
− δµ2, and Proposition 1 was used

to obtain (335). Thus we can now say from using (333)-(336) in (331)-(332) that

|y′(t)| < ∞. Specifically that, y′(t) converges absolutely and uniformly on the whole

real line. Thus we have shown that y(t) also converges at each point on the real line.

Then by Theorem 1 we are allowed to pass the derivatives through the infinite sums

as we did in (262)-(265). This means that the solution for y(t), (260)-(261), converges

absolutely and uniformly on the entire real line as needed. This rigorously allows the

exchange of derivatives with infinite sums and allows us to conclude that our solution

(260)-(261) does indeed satisfy the MADE (53).
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The above solution (260)-(261), y(t), was for the case when (244) was chosen as the

frame. We will now show that the solution in (253)-(254), y(t), when the frame is

ΦN,M = q
N
2 qCos(qN t−Mb), also converges absolutely and uniformly on the whole real

line. We will start this by bounding |y(t)|. From (253)-(254) we can see that the absolute

value of y(t) is:

|y(t)|

=

∣∣∣∣∣∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
qSin

(
q2nqN t−Mb

qn+1

)
(337)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
qCos

(
q2nqN+1t−Mb

qn+1

)∣∣∣∣∣ .(338)

Then applying the triangle inequality and the bounds (43) and (42) respectively to

(337)-(338) gives that,

|y(t)|

≤
∑
N

∑
M

∞∑
n=0

|cN,M |
qN/2

(
|A|2n

q2Nn

)(
1

qn2

)
(q1/2)

+
∑
N

∑
M

∞∑
n=0

|cN,M |
qN/2

(
|A|
qN

)(
|A|2n

q2Nn

)(
1

qn2+n

)
.

= (q1/2)
∑
N

∑
M

|cN,M |
qN/2

∞∑
n=0

|A|2n

q2Nn

(
1

qn2

)
(339)

+ |A|
∑
N

∑
M

|cN,M |
q3N/2

∞∑
n=0

|A|2n

q2Nn+n

(
1

qn2

)
. (340)

Now we take each sum only over n in (339)-(340) and work to bound it using a completion
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of squares in (341)-(342) below. First the sum in (339):

∞∑
n=0

|A|2n

q2Nn

(
1

qn2

)
=

∞∑
n=0

exp

[
n · ln

(
|A|2

q2N

)]
exp

[
−n2 · ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(q)
· ln

[
|A|2

q2N

])]

=
∞∑
n=0

exp

− ln(q)

n2 − n

ln(q)
· ln

[
|A|2

q2N

]
+

(
ln
(
|A|2q−2N

)
2 ln(q)

)2
 (341)

· exp

ln(q)

(
ln
(
|A|2q−2N

)
2 ln(q)

)2
 (342)

= exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
∞∑
n=0

exp

− ln(q)

[n−
ln
(
|A|2q−2N

)
2 ln(q)

]2

= exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
∞∑
n=0

exp


−
(
n− ln(|A|2q−2N)

2 ln(q)

)2

(
1

ln(q)

)


= exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
∞∑
n=0

exp


−1

2

(
n− ln(|A|2q−2N)

2 ln(q)

)2

(
1√

2 ln(q)

)2

 (343)

≤ exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

][
1 +

√
2π

(
1√

2 ln(q)

)]
(344)

= exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

][
1 +

√
π

ln(q)

]
. (345)

Note that the expression (343) is a Gaussian with mean
ln(|A|2q−2N)

2 ln(q)
and standard

deviation
1√

2 ln(q)
. Furthermore the bound in (344) follows from Proposition 1. Note

that the dependence on n is gone in (345).

Now we will do the same for the sum over n in (340), again using a completion of
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squares in (346)-(347) below.

∞∑
n=0

|A|2n

q2Nn+n

(
1

qn2

)
=

∞∑
n=0

exp

[
n · ln

(
|A|2

q2N+1

)]
exp

[
−n2 · ln(q)

]
=

∞∑
n=0

exp

[
− ln(q)

(
n2 − n

ln(q)
· ln

[
|A|2

q2N+1

])]

=
∞∑
n=0

exp

− ln(q)

n2 − n

ln(q)
· ln

[
|A|2

q2N+1

]
+

(
ln
(
|A|2q−2N−1

)
2 ln(q)

)2
 (346)

· exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
(347)

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp

− ln(q)

[n−
ln
(
|A|2q−2N−1

)
2 ln(q)

]2

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp


−
(
n− ln(|A|2q−2N−1)

2 ln(q)

)2

(
1

ln(q)

)


= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
∞∑
n=0

exp


−1

2

(
n− ln(|A|2q−2N−1)

2 ln(q)

)2

(
1√

2 ln(q)

)2

 (348)

≤ exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

][
1 +

√
2π

(
1√

2 ln(q)

)]
(349)

= exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

] [
1 +

√
π

ln(q)

]
. (350)

Again notice that the expression in (348) is a Gaussian with mean
ln(|A|2q−2N−1)

2 ln(q)
and

standard deviation
1√

2 ln(q)
. Then the bound in (349) follows from Proposition 1. Once

more the dependence on n is gone in (350). Now that we have bounded these terms we
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can look back to (339)-(340) and say that,

|y(t)|

≤ (q1/2)

[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
(351)

+ |A|
[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
(352)

Now we will apply the same completion of squares process on the summations over

the N’s in (351)-(352). This will allow us to obtain conditions on our cN,M ’s that will

be sufficient for (351)-(352) to converge absolutely and uniformly.

Starting with the sums in (351) we have:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
=
∑
N

∑
M

|cN,M |

· exp

[
−N

2
· ln(q)

]
exp

[
[−2N ln(q) + ln(|A|2)]2

4 ln(q)

]
=
∑
N

∑
M

|cN,M |

· exp

[
4N2 ln2(q)−4N ln(|A|2) ln(q) + ln2(|A|2)−2N ln2(q)

4 ln(q)

]
=
∑
N

∑
M

|cN,M | (353)

· exp

[
N2 ln(q) − N ln(|A|2) ln(q)

ln(q)
+

ln2(|A|2)
4 ln(q)

− N ln(q)

2

]
(354)

At this point we see that |cN,M | must decay in N faster than the exponential exp
[
N2 ln(q)

]
to gain convergence. We will make the assumption that:

|cN,M | ≤ exp[−δ(N − µ)2] · g(M) ,where δ > ln(q) (355)

and
∑
M

|g(M)| = B < ∞. (356)
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Then continuing from (353)-(354) and utilizing our new conditions for |cN,M | in (355) ,

we get that:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
≤

∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
(357)

· exp

[
N2 ln(q) − N ln(|A|2) ln(q)

ln(q)
+

ln2(|A|2)
4 ln(q)

− N ln(q)

2

]
(358)

Now using the bound B from (356), and combining like powers of N in (357)-(358) gives:

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]

≤ B
∑
N

exp

[
N2[ln(q) − δ]−N

(
−4δµ ln(q)+2 ln(|A|2) ln(q) + ln2(q)

2 ln(q)

)]
(359)

· exp

[
ln2(|A|2) − 4δµ2 ln(q)

4 ln(q)

]
(360)

=B ·eC8

∑
N

exp

[
[ln(q) − δ]

(
N2 −N

(
−4δµ ln(q)+2 ln(|A|2) ln(q)+ln2(q)

2 ln(q)[ln(q) − δ]

))]
(361)

Where in (361) C8 =
ln2(|A|2) − 4δµ2 ln(q)

4 ln(q)
. Now to complete the square on N from (361)

gives,

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]
≤ B ·eC8

·
∑
N

exp

[
[ln(q) − δ]

([
N−
(
−4δµ ln(q) + 2 ln(|A|2) ln(q) + ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]
(362)

· exp

[
−
[
−4δµ ln(q) + 2 ln(|A|2) ln(q) + ln2(q)

]2
16 ln2(q)[ln(q) − δ]

]
(363)

= B ·eC8eC9 (364)

·
∑
N

exp

[
[ln(q) − δ]

([
N−
(
−4δµ ln(q)+2 ln(|A|2) ln(q)+ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]
(365)
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Where in (364) C9 =
−
[
−4δµ ln(q) + 2 ln(|A|2) ln(q) + ln2(q)

]2
16 ln2(q)[ln(q) − δ]

. Then continuing from

(364)-(365) and denoting C10 = C8 + C9 we write that

∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N

)
4 ln(q)

]

≤ B · eC10

∑
N

exp

−
1
2

[
N −

(
−4δµ ln(q)+2 ln(|A|2) ln(q)+ln2(q)

4 ln(q)[ln(q)−δ]

)]2
(

1√
2δ−2 ln(q)

)2

 (366)

≤ BeC10

[
1 +

√
2π

(
1√

2δ − 2 ln(q)

)]
(367)

= BeC10

[
1 +

√
π

δ − ln(q)

]
< ∞. (368)

Now that we have bounded (351) by (368) which is finite. We will do the same for (352)

in order to completely bound |y(t)| and show absolute and uniform convergence of all

the sums in y(t) under the assumption of (355) and (356).

Recall the sums in (352) are of the form:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

=
∑
N

∑
M

|cN,M | exp

[
−3N

2
· ln(q)

]
exp

[
[−2N ln(q) + ln(|A|2q−1)]

2

4 ln(q)

]
=

∑
N

∑
M

|cN,M |

· exp

[
4N2 ln2(q)−4N ln(|A|2q−1) ln(q)+ln2(|A|2q−1)−6N ln2(q)

4 ln(q)

]
=
∑
N

∑
M

|cN,M | (369)

· exp

[
N2 ln(q) − N ln(|A|2q−1) ln(q)

ln(q)
+

ln2(|A|2q−1)

4 ln(q)
− 3N ln(q)

2

]
(370)
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Again to gain convergence we see that |cN,M | must decay in N faster than an exponential

with a leading coefficient of N2 ln(q) so we will make the same assumption on the cN,M

as in (355)-(356), namely that:

|cN,M | ≤ exp[−δ(N − µ)2] · g(M) ,where δ > ln(q) (371)

and
∑
M

|g(M)| = B < ∞. (372)

Then continuing from (369)-(370) and utilizing our condition for |cN,M | in (371), we get:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
(373)

≤
∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
(374)

· exp

[
N2 ln(q) − N ln(|A|2q−1) ln(q)

ln(q)
+

ln2(|A|2q−1)

4 ln(q)
− 3N ln(q)

2

]
(375)

Now using the bound (372) and combining like powers of N in (374)-(375) gives:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
(376)

≤ B
∑
N

exp

[
N2[ln(q) − δ]−N

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+3 ln2(q)

2 ln(q)

)]
(377)

· exp

[
ln2(|A|2q−1) − 4δµ2 ln(q)

4 ln(q)

]
(378)

= B ·eC11

∑
N

exp

[
[ln(q)−δ]

(
N2−N

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+3 ln2(q)

2 ln(q)[ln(q) − δ]

))]
(379)

where in (379) C11 =
ln2(|A|2q−1) − 4δµ2 ln(q)

4 ln(q)
. Now completing the square on N in (379)
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gives:

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]
≤ B · eC11

·
∑
N

exp

[
[ln(q) − δ]

([
N −

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+3 ln2(q)

4 ln(q)[ln(q) − δ]

)]2)]

· exp

[
−[ln(q) − δ]

(
−4δµ ln(q) + 2 ln(|A|2q−1) ln(q) + 3 ln2(q)

4 ln(q)[ln(q) − δ]

)2
]

=B ·eC11eC12 (380)

·
∑
N

exp

[
[ln(q) − δ]

[
N−
(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+3 ln2(q)

4 ln(q)[ln(q) − δ]

)]2]
, (381)

where in (380) C12 =
−
[
−4δµ ln(q) + 2 ln(|A|2q−1) ln(q) + 3 ln2(q)

]2
16 ln2(q)[ln(q) − δ]

. Then continuing

from (380) and denoting C13 = C11 + C12 we get that

∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

≤ B · eC13

∑
N

exp

−
1
2

[
N−

(
−4δµ ln(q)+2 ln(|A|2q−1) ln(q)+3 ln2(q)

4 ln(q)[ln(q)−δ]

)]2
(

1√
2δ−2 ln(q)

)2

 (382)

≤ BeC13

[
1 +

√
2π

(
1√

2δ − 2 ln(q)

)]
(383)

= BeC13

[
1 +

√
π

δ − ln(q)

]
< ∞, (384)

where (383) was obtain by using Proposition 1 on the Gaussian in (382).

Now that we have bounded the sums in (352) by (384) we can look back to (351)
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and (352) and using the bounds (368) and (384) respectively we obtain the bound:

|y(t)|

≤ (q1/2)

[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
qN/2

exp

[
ln2
(
|A|2q−2N−1

)
4 ln(q)

]

+|A|
[
1 +

√
π

ln(q)

]∑
N

∑
M

|cN,M |
q3N/2

exp

[
ln2
(
|A|2q−2N−2

)
4 ln(q)

]

≤ BeC10(q1/2)

(
1 +

√
π

δ − ln(q)

)(
1 +

√
π

ln(q)

)
(385)

+|A|BeC13

(
1 +

√
π

δ − ln(q)

)(
1 +

√
π

ln(q)

)
< ∞ (386)

Now that we have bounded y(t) we need to bound the expression for y′(t) in order

to use Theorem 1. Recall from (246)-(247) that,

y′(t) = Ay(qt) + f(t) (387)

= Ay(qt) +
∑
N

∑
M

cN,MΦN,M (388)

Clearly since we have already shown in (329)-(330) that |y(t)| < ∞ with y(t) converging

uniformly and absolutely on all of R, it follows that |Ay(qt)| < ∞, with the series Ay(qt)

converging absolutely and uniformly as well. So we will focus on bounding the f(t) term

in (387), namely
∑
N

∑
M

cN,MΦN,M .

Recall in this case (243) is our choice of ΦN,M and then using (371) for our condition on
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cN,M we can rely on (42) to obtain:

∣∣∣∣∣∑
N

∑
M

cN,MΦN,M

∣∣∣∣∣ (389)

≤
∑
N

∑
M

exp
[
−δ(N − µ)2

]
· |g(M)|q

N
2

∣∣
qCos(qN t−Mb)

∣∣ (390)

≤
∑
M

|g(M)|
∑
N

exp
[
−δN2 + 2δNµ− δµ2

]
exp

[
N

2
ln(q)

]
(391)

= B
∑
N

exp

[
−δ

(
N2 −N

(
4δµ + ln(q)

2δ

)
+ µ2

)]
(392)

= B
∑
N

exp

[
−δ

[(
N − 4δµ + ln(q)

4δ

)2

−
(

4δµ + ln(q)

4δ

)2

+ µ2

]]
(393)

= B · eC14

∑
N

exp

−1
2

(
N − 4δµ+ln(q)

4δ

)2
(

1√
2δ

)2
 (394)

≤ B · eC14

[
1 +

√
2π

(
1√
2δ

)]
(395)

= B · eC14

[
1 +

√
π

δ

]
< ∞, (396)

where C14 =
[4δµ + ln(q)]2

16δ
− δµ2 and Proposition 1 was used to obtain (395). Thus

we can now say from using (389)-(396) in (387)-(388) that |y′(t)| < ∞. Specifically

that, since y′(t) converges absolutely and uniformly on the whole real line, and we have

shown that y(t) also converges at each point on the real line. Then by Theorem 1 we

are allowed to pass the derivatives through the infinite sums as we did in (271)-(274).

This means that our solution y(t), (253)-(254), converges absolutely and uniformly on

the entire real line as needed. This rigorously allows the exchange of derivatives with

infinite sums in (271)-(274) and allows us to conclude that our solution (253)-(254) does

satisfy the MADE (53).



We have reached the main Theorem of this thesis.

Theorem 5. Let f(t) ∈  L2(R) , with

f(t) =
∑
N

∑
M

cN,MΦN,M

where for N,M ∈ Z

ΦN,M = qN/2
qCos(qN t−Mb) (397)

or ΦN,M = qN/2
qSin(qN t−Mb). (398)

Let |cN,M | ≤ exp
[
−δ(N − µ)2

]
· g(M) , with δ > ln(q) and

∑
M

|g(M)| = B < ∞.

A solution of

y′(t) − Ay(qt) = f(t)

when f(t) is expanded in the (397) expansion is given by:

y(t) =
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n

(
A

qN

)2n(
1

qn2

)
qSin

(
q2nqN t−Mb

qn+1

)
(399)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

qn(n+1)

)
qCos

(
q2nqN+1t−Mb

qn+1

)
(400)

and a solution of

y′(t) − Ay(qt) = f(t)

when f(t) is expanded with the (398) expansion is given by:
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y(t) =
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n(
1

qn(n+1)

)
qCos

(
q2nqN t−Mb

qn

)
(401)

+
∑
N

∑
M

∞∑
n=0

cN,M
q

N
2

qN
(−1)n+1

(
A

qN

)2n+1(
1

q(n+1)2

)
qSin

(
q2nqN+1t−Mb

qn+1

)
. (402)

Proof. We have shown that (399)-(400) converge absolutely and uniformly on R via the

work (337)-(338) up through (385)-(386). Then we showed that y′(t) also converges

uniformly and absolutely on R via (389)-(396). We have shown (401)-(402) to converge

absolutely and uniformly via the work (280)-(281) up through (329)-(330). Then we

showed that y′(t) also converges uniformly and absolutely via (333)-(336). After apply-

ing Theorem 1 in both cases we got that under the decay conditions for |cN,M |, given

in (371)-(372), one can pass the derivatives through the infinite sums in both (262)-

(265) and (271)-(274). This provides a rigorous proof that y(t) is a valid solution to

y′(t) − Ay(qt) = f(t).
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Now we provide, pictures for a a picture of the main MADE, (53), using the frame

expansion (397), with b = 1, and the condition on the cN,M ’s from (371)-(372), letting

δ =
1

2
, µ = 0, and G(M) =

1

M6 + 1
. So |cN,M | < exp

[
−1

2
N2

]
1

M6 + 1
, and note that

since δ = .5 the condition of δ > ln(q) holds for the three figures below, since

1

2
> ln(1.3) > ln(1.2) > ln(1.15). Also note that

∑
M

|g(M)| =
∑
M

∣∣∣∣ 1

M6 + 1

∣∣∣∣ < ∞

so (372) holds.

In Figure 5 - Figure 7 below the dashed line is the forcing term

f(t) =
∑
N

∑
M

cN,MqN/2
qCos(qN t−M),

where q’s value is given in the figure’s caption and cN,M = exp

[
−1

2
N2

]
1

M6 + 1
.

The solid line is the solution (399)-(400) of the MADE

y′(t) − 2y(qt) = f(t),

for the f(t) given above and q’s value given in the figure’s caption.
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Figure 5: A general forcing solution with q = 1.3

Figure 6: A general forcing solution with q = 1.2

Figure 7: A general forcing solution with q = 1.15
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