

ABSTRACT

Migration of Legacy Web Application Using NoSQL Databases

by

Pouyan Ghasemi

April, 2013

Director of Thesis: Dr. Nasseh Tabrizi

Major Department: Computer Science

 The Migration of the legacy web application to Content Management Systems (CMS) is

inevitable because of the overload of managing the content. Traditionally, Content Management

Systems are built with RDBMSes and the migration of the legacy web application is performed

by transferring data from proprietary HTML pages to the corresponding database of the CMS.

The newly introduced NoSQL databases beg the question as to whether SQL is the right choice

for the migration. In this research, the performance of NoSQL was studied in a custom CMS

and NoSQL was used to show how it can assist in the data migration process from legacy

applications to the Content Management Systems. The performance and the storage requirements

of NoSQL using Simple CMS were first tested in order to investigate the potential drawbacks of

using NoSQL solutions. No negative effects on storage space and query performance were

discovered. Along with these findings, the approach in this research incorporates document-

oriented databases to enhance the process of data migration, and the result is that the dynamic

schema of document-oriented databases makes the migration process more agile and accurate.

Migration of Legacy Web Application Using NoSQL Databases

A Thesis

Presented To the Faculty of the Department of Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Pouyan Ghasemi

April, 2013

©Copyright 2013

Pouyan Ghasemi

Migration of Legacy Web Application Using NoSQL Databases

by

Pouyan Ghasemi

APPROVED BY:

DIRECTOR OF DISSERTATION/THESIS:

__

 M. H. Nassehzadeh Tabrizi, Phd

COMMITTEE MEMBER:

__

 Junhua Ding, Phd

COMMITTEE MEMBER:

__

 Sergiy Vilkomir, Phd

CHAIR OF THE DEPARTMENT OF COMPUTER SCIENCE:

__

 Karl Abrahamson, Phd

DEAN OF THE GRADUATE SCHOOL:

__

Paul J. Gemperline, Phd

ACKNOWLEDGMENT

Special Thanks to

Dr. Nasseh. Tabrizi

Without whom this thesis would not have been possible

Table of Contents

LIST OF FIGURES…………………………….…………………………………………………x

LIST OF TABLES……………………………………………………………………………….xii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: RELATED WORK AND BACKGROUND ... 6

2.1 Related Work.. 6

2.2 Background .. 7

2.2.1 Databases .. 7

2.2.2 NoSQL Databases ... 9

2.2.3 Key-value Store .. 9

2.2.4 BigTable .. 10

2.2.5 Document-oriented Databases .. 11

2.2.6 Graph Databases ... 11

2.3 MongoDB ... 12

2.3.1 MongoDB Features ... 13

2.3.2 MongoDB Use Cases .. 17

2.3.3 Cloud Providers Supporting MongoDB.. 19

2.3.4 Full Text Search .. 19

viii

2.4 MongoDB and MySQL Comparison ... 20

2.4.1 Data Modeling Comparison .. 21

2.4.2 Query Analysis.. 23

CHAPTER 3: CONTENT MANAMENET SYSTEMS ... 25

3.1 NoSQL CMSes ... 29

3.1.1 Traditional CMS Re-written in NoSQL .. 30

3.1.2 NoSQL as an Additional Entity .. 30

3.1.3 Reimagining CMSes by Incorporating NoSQL Features 30

3.2 Simple CMS ... 31

3.2.1 Flask Framework .. 31

3.2.2 Simple CMS Web Application ... 32

3.2.3 Simple CMS-MySQL ... 34

3.2.4 Simple CMS-Mongo ... 35

3.3 Data Migration to Simple CMS ... 35

CHAPTER 4: BENCHMARKS FOR SIMPLE CMS .. 36

4.1 Apache JMeter.. 36

4.2 Dataset Generation ... 36

4.3 JMeter Get Request .. 39

4.3.1 Get Query Benchmarks ... 39

4.3.2 Get Search Query .. 41

ix

CHAPTER 5: MIGRATION OF LEGACY WEB APPLICATION 43

5.1 Legacy Migration Workflow .. 43

5.1.1 Extracting Content .. 44

5.1.2 Importing Data to Database .. 48

5.2 MongoDB Migration .. 48

5.2.1 MongoDB’s Migration Concept ... 49

5.2.2 Data Aggregation .. 49

5.3 Comparison of Two Methods ... 50

CHAPTER 6: CONCLUSION ... 52

REFERENCES.…………………………………………………………………………….……54

LIST OF FIGURES

Figure 1 : BSON document [7] ... 14

Figure 2 : MongoDB embedded document [7] ... 14

Figure 3 : MongoDB sharding [8] .. 16

Figure 4 : Feature comparison [10] ... 21

Figure 5 : MongoDB data model .. 22

Figure 6 : WordPress CMS table relations ... 27

Figure 7 : SQL table relations ... 28

Figure 8 : MongoDB collection structure ... 28

Figure 9 : Simple CMS abstraction form databases.. 32

Figure 10 : MySQL index ... 37

Figure 11 : MongoDB index ... 37

Figure 12 : Ratio of MongoDB/MySQL indexes ... 39

Figure 13 : Page 90 get request on 3.D3 MySQL ... 40

Figure 14 : Page 90 get request on 3.D3 MongoDB ... 40

Figure 15 : Throughput for 2.T2 page requests .. 41

Figure 16 URL for Search Query.. 41

Figure 17 : MySQL’s search performance.. 42

Figure 18 : MongoDB’s search performance.. 42

Figure 19 : Data mapping activities .. 44

Figure 20 : Sample template pages from Legacy application ... 46

Figure 21 : HTTrack result for a sample webpage ... 47

Figure 22 : Extracted content .. 47

xi

Figure 23 : Traditional migration process ... 48

Figure 24 : MongoDB's migration steps ... 49

Figure 25 : Finding documents that have a specific field ... 50

Figure 26 : MongoDB's export to CMS steps ... 50

LIST OF TABLES

Table 1 : MongoDB and RDBMSES terminology ... 22

Table 2 : Creation of user data model ... 23

Table 3 : Find query .. 24

Table 4 : Simple CMS GET queries ... 33

Table 5 : Side by side comparision of queries .. 35

Table 6 : Dataset’s statistics .. 38

CHAPTER 1: INTRODUCTION

In the early days of the Internet, it was a collection of static HTML pages linked together

that created the Word Wide Web. First generation websites are those created by using static

HTML. Organizations started taking advantage of HTML and the Internet to share their

information assets by creating webpages and hosting them on webservers. Legacy web

applications used their software of choice to apply practices such as WYSIWYG
1
 and document

editing that ensured ease of use for webmasters. By incorporating cascading style sheets they

made web pages robust and visually compelling. Webservers hosted all of the files in the

Server’s File System and introduced routing mechanisms to map a particular URL to the path of

the desired file on the server machine. Maintenance was the main disadvantage of this

technology, as changes had to be applied one by one onto the web pages. Additionally, tracking

the data and files on the server was cumbersome. This generation of web became known as the

web 1.0 [1].

The above-mentioned paradigm has changed over the years. New tools and technologies

have been introduced into the world of web development which revolutionized web applications.

The main change has been the introduction of database layer within web applications. Databases

offer a persistent layer for the web applications. Databases kept track of user activities and

private data and separate the content and information from the logic behind the application. This

new form of web application is referred to as Rich Internet Application (RIA) or the web 2.0 [1].

Web developers have embraced LAMP
2
 [2] architecture as the dominant technology stack for

creating web applications ever since and SQL
3
 databases have been the primary choice of

1
 What you see is what you get

2
 Linux, Apache, MySQL, PHP/Perl/Python

3
 Structural Query Language

2

software developers. LAMP architecture has led to Content Management Systems. CMSes are

efficiently designed to improve the process of sharing content and maintaining web applications

[3].

The need for migration of the legacy web applications to an advanced system is

inevitable. Enterprises are spending a substantial amount of time and assets towards migrating

applications to their new platforms. In the case of static webpages, they are being migrated to

CMSes. Currently, most of the Content Management Systems are built on top of RDBMSes such

as MySQL or Oracle. Some examples of these are Joomla and Drupal. That is why SQL has been

the number one and primary choice for software engineers with respect to migrating legacy web

applications and websites to new Content Management Systems.

Engineers rely on two methods when it comes to migrating legacy web applications:

 Ad-hoc migration: data will be migrated to the new system as a bulk migration.

Ad-hoc migration is planned in advance and requires a shorter amount of time.

This kind of migration needs direct access to all of the data from the server.

 Lazy migration: data will be migrated when user requests the data. The migration

process may take some time and occurs as a dynamic process. The advantage of

lazy migration is that only the most recently accessed data is migrated [4].

Using lazy migration for migrating data from a legacy website that contains valuable

information is not ideal. Lazy migration is usually reserved for migrating data between two

modern databases as occurs between MySQL and Oracle. Conversely, harvesting the servers to

extract webpages is typically a time consuming activity and it may be quite difficult to figure out

the puzzle pieces and maintain a code that is capable of handling exceptional cases. In case of the

3

some legacy web applications changes are applied to static web pages. Over the years they have

experienced many iterations of adding features to a number of the pages. Those functionalities

are usually introduced in terms of web scripts mostly on the server side (PHP, ASP). Overall,

software architects tend to rely on the data that is accessible to the client since it may be a great

reference for what data should be migrated versus what data should remain on the old server.

 In both cases of migration, flat HTML pages are being read by the migration software

and then after parsing the data, the proper information is written into the database. When using

SQL base data structures, a software architect needs to know the data model and its structure in

advance in order to define the proper tables for the RDBM of his/her choice. The process of

finding and categorizing different HTML pages and creating efficient tables within the database

for those data forms requires additional programming and design practice. If the migration

process confronts an unknown HTML form, the software is unable to determine where to import

the data considering the pool of available tables. This limit is being imposed by the fact that SQL

databases restrict data entry based upon their initial definition.

During the past couple of years there has been a shift from SQL database to a new

generation of databases called NoSQL. NoSQL stands for either “Not Only SQL” or “No SQL”

[5]. NoSQL questions the limits of the SQL databases and attempts to find answers to the

challenges and difficulties introduced as a result of using SQL family databases in the process of

software product development and maintenance of the applications.

NoSQL refers to a vast category of new databases that do not follow the relational

database paradigm. Even though relational databases or RDBMSes have been the number one

choice for secure banking and financial applications, they impose their limits to the application

4

developers in terms of defining the structure of the data in advance. With the rise of social media

and cloud computing, SQL databases have imposed their shortcomings of lack- of scalability and

poor performance when dealing with large tables of data. The NoSQL family of databases is

typically categorized by the following categories [6], which will be described briefly in chapter

2:

 Key-value store

 BigTable

 Document-oriented Databases

 Graph Databases

In this thesis the focus is on migration of legacy web applications to a tailored CMS using

document-oriented database. One of the main advantages of document-oriented databases is that

they do not impose a restrict schema on developers. MongoDB [7], a document-oriented

database developed by 10gen [8] has been selected as the database here. MongoDB is a one of

the most promising databases of the future offering such built-in features such as auto-sharding,

horizontal scalability, full index-support, and map/reduce. This thesis is organized as follows:

Chapter 1 will provide an introduction to the thesis. It will contain information about

legacy web applications, the migration of legacy web applications, and a brief introduction to

NoSQL databases.

Chapter 2 will provide the related work to the research introduced in Chapter 1 and will

deliver some background about NoSQL databases. It will also contain an introduction to

MongoDB, the document-oriented database chosen for this research. The new aspects and

5

functionalities of MongoDB will be studied; primarily, the features in comparison to their

counter parts in MySQL.

Chapter 3 will include a survey on different CMSs and their features. In this chapter,

Simple CMS, a light-weight CMS developed for this thesis, will be introduced, as it is

specifically tailored for benchmarking MySQL and MongoDB. This section has been included in

order to ensure the system’s performance was not compromised.

Chapter 4 will focus on benchmarking the databases using Apache JMeter. JMeter has

been used to run performance RESTfull queries against both databases in their CMS incarnation.

This chapter will also include information about the software used to run the benchmarks.

Chapter 5 will introduce a new migration practice in using MongoDB. MongoDB

features will be incorporated into a middle tier platform to enhance the current data migration

practices. Steps of migrating data between MySQL and MongoDB will be provided.

Chapter 6 is a conclusion and will summarize the research included in this thesis.

CHAPTER 2: RELATED WORK AND BACKGROUND

On the first part of this chapter we provide information about the related work to the

research. The second part is dedicated to the NoSQL databases and their use cases. On the third

section we introduce MongoDB which is the document-oriented databases being used for the

legacy web application migration in this research and finally we provide comparison between

MongoDB and MySQL.

2.1 Related Work

Because of the newness of NoSQL solutions there has been little effort in explaining and

exploring their potential. Ironically, the migration of web applications needs to be performed

with the latest technology though SQL is still being utilized to perform the migration activities.

Seth [3], in his master thesis explored the idea of migrating a legacy web application to Joomla

CMS. The effort would involve justifying the migration of the legacy applications, along with

proposing a tool to handle the migration process. MySQL has been used for RDBMS databases.

The author is restricted to design Joomla’s schema within the initial phase. It may be a daunting

challenge when the data within the legacy web application is not consistent or has no particular

structure. More research in this field is mentioned in Doug’s [9] work in reimagining library web

guides in Content Management Systems. The result of his work is satisfying but then again, in

that research, MySQL is used to perform the migration process. The work starts with the

assumption that every aspect of the legacy data is already known; however, the result of their

effort is rather complicated, as they create several tables and relationships between those tables.

This potentially may have a direct negative impact on the migration process.

Yunhua’s article published in 2011 [10] looks at the problem statement from the

perspective of a web crawler. In this work, MongoDB features were incorporated into the design

7

of a web crawling application. The application enabled them to store web crawled information

from web pages from the Internet and stored them in a NoSQL solution (MongoDB). No visible

effort of data migration has been seen from a legacy web application to a NoSQL solution. This

thesis research studies the migration process from legacy application in detail.

Along with the use cases studies of NoSQL solutions, there have been great strides in

studying the performance of NoSQL and in comparing it with SQL [11]. These results are

especially satisfying especially in cases where the data sets are large and horizontal scalability is

required or relations between data sets are beyond SQL’s ability [10]. In Chapter 4 of this thesis,

examples of benchmarking CMSes with NoSQL databases can be found; therefore, questions

about the performance of NoSQL solutions in the form of a CMS to ensure that there would be

no performance drawbacks for the migration.

2.2 Background

In this section it is assumed that the reader has basic knowledge of SQL databases which is

why only a brief introduction to the concept is provided along with more details about NoSQL

solutions, further cementing the reason why NoSQL solutions were studied to determine that it is

a better fit for the migration process.

2.2.1 Databases

As Chamberlin [12] mentions in his article “Early History of SQL,” the main challenge

during the early 70s was to find a system and language that could handle data persistency.

Relational Database Management Systems and Structural Query Language are the result of that

effort. In general, RDBMSes store the data in two dimensional arrays called tables. Databases

usually contain several tables and developers design relations between tables to achieve the

8

required functionality. Most RDBMSes ensure the ACID
4
 transaction which is a great fit in use

cases such as in financial and enterprise applications; yet, as is mentioned in Chapter 1,

RDBMSes no longer fit all of the requirements of the new generation of applications. With the

rise of cloud computing and social networks, application developers and innovators are searching

for new databases that fit their specific use cases. NoSQL database designers are attempting to

fill this gap by introducing databases that are more customized for the contemporary use cases.

SQL databases such as MySQL and Oracle convey two types of information: the data itself

that is stored in tables, and the relationship among these tables. Tables may be seen as flat files,

while rows in the flat files represent a collection of data values. The entire row is referred to as

tuples. Rows are capable of storing data of any type such as String, Integer. Schema in a SQL

database is the table with its attributes [6]. ACID transaction is the principle that RDBMSes are

based upon; ACID transaction ensures the following [13] [14]:

 Atomicity: refers to the atomic transaction which means that either all of the

changes or none will be applied.

 Consistency: in a consistent transaction where each transaction ensures that the

data is in a consistent state after and before the transaction.

 Isolation: concurrent transactions appear to be serialized and two running

transactions will not interfere with one another.

 Durability: the effect of a transaction will be persistent and it will not be lost even

in case of the system failure.

4
 ACID (Atomicity, Consistency, Isolation, Durability)

9

Consistency of the SQL is guaranteed by supporting ACID transactions. In his article,

Leavitt [15] formulates relational database limitations by pointing to the fact that SQL is not

scalable; they can be quite complex when the data has no structure. In such a database, handling

large feature sets is a problematic task for developers.

2.2.2 NoSQL Databases

Some believe that NoSQL databases started with Berkeley DB which was developed

during late eighties and early nineties. Berkeley DB has now been acquired by Oracle but the

real movement of NoSQL databases started after 2008, and since then, it has been rigorously

advancing. There is not a single definition to cover all of the aspects of the NoSQL databases, as

they cover variety of features. However, one thing that they have in common is that they do not

follow the mainstream SQL convention [16]. Currently, there are a number of applications

written in databases other than SQL and that trend appears to be growing [5]. The main

categories of NoSQL databases are to follow.

2.2.3 Key-value Store

Amazon’s Dynamo and Berkeley DB fall into this category. Key-value store databases

act as dictionary, a familiar data structure for programmers. Data is retrieved using the key

associated with the value. As a result of that key-value store databases are highly scalable but

they lack the consistency enjoyed by other databases [17]. The database API is easy to learn and

intuitive in key-value concept since it provides a set of simple operations [15]. Key-value store is

ideal for holding both structured and unstructured data [15]. The following shows a simple set of

structures performed by Dynamo DB [17]:

 get(key): returns a list of objects.

10

 put(key, context, object): for adding the content

This simple set of operations is similar to Map API in Java and other programming

languages. Redis is the most famous open source key-value store database sponsored by

VMware [6]. Databases such as Redis are typically used to make databases faster by storing the

data in memory
5
.

2.2.4 BigTable

BigTable databases are sometimes referred to as “Column Family Store” [6] or as just

CF. Facebook’s Cassandra [18] and Google’s BigTable are great examples of these types of

databases. These databases tend to be scalable and highly available, and they store the data in a

column rather than a row. Also, they store structured data in a way that is linearly scalable.

Google’s BigTable does not support tables association but different flavor of these databases

have different features. Concurrency appears to be the winning factor for these databases. Each

column thread is being processed by one procedure that results in concurrent I/O [19]. The

Cassandra sample API set is displayed below [17]:

 “get(table, key, columnName)

 insert(table, key, rowMutation)

 delete(table, key, columnName)”

One thing that may be seen as a trend in NoSQL databases is that they have a tendency to

keep the database API as simple and as close to the mainstream programming languages such as

Java or JavaScript as possible.

5
 Memcached

11

2.2.5 Document-oriented Databases

Document-oriented databases are the main focus of this research. These databases store

data as a collection of documents. High performance read and write is not on top of their

priorities [19]. The fact that they follow a no-schema design with no restrictions makes them a

great fit for the development of web-applications [15]. They allow more complex data structures

than both Key-value store and BigTables. Apache’s CouchDB and 10gen’s MongoDB are two

well-known databases in this category. These two databases have the following aspects in

common:

 CouchDB uses JavaScript Object Notation (JSON) [17] as a format for

transferring data and MongoDB uses BSON which is a Binary JSON. BSON and

JSON both support embedded documents and arrays [20].

 Both databases support and provide REST
6
 API for accessing data.

 CouchDB and MongoDB are both schema-free and do not constrain developers to

design relations before using the database.

Because of the way CouchDB communicates with the application and file system, ACID

transactions can be applied to it. Even though MongoDB does not provide an ACID transaction it

provides some features like Atomic update that ensures some basic transaction capabilities [7].

More details on MongoDB and its features will follow in this chapter.

2.2.6 Graph Databases

In some cases researchers do not consider graph databases to be a separate category of

NoSQL databases [15] [17]. In other cases graph databases are considered to be a separate

6
 Representational State Transfer

12

category since they offer a rich set of features to manage and to store specific sets of data. As

may be gleaned from their names, graph databases are used to store and retrieve data that can be

represented as a graph. Social networks and the connections between people are a great example

of how they can be used. Researchers have used SQL databases to represent graph data in the

past, and that has had some negative effects on the performance of their algorithms, and it has

made the problem even more complicated.

In graph databases data is represented as a mathematical graph with the following

representation (), in which V is a set of nodes and E is a set of relations between nodes

of the graph [6] . Neo4j [6] is one of the promising graph databases that have been developed in

Java. Neo4j uses nodes and relations (edges of the graph) to hold the data in a graph structure.

Nodes and edges in Neo4j have sets of properties which add meaning to the data and distinguish

this database from that of a simple data structure. Queries such as “return all of the nodes that are

in relation with a specific node” are built-in queries in Neo4j and may be easily expressed by

developers. Applying the same query in MySQL usually requires joining tables and sometime

recursive function calls which is a time consuming process for the database.

2.3 MongoDB

Different categories of NoSQL databases were studied and in continuing to study

MongoDB in detail, some insights about this type of document-oriented database will be offered.

In addition, the differences between MongoDB and MySQL will be presented, and some query

examples in both databases will be provided at the end of this chapter.

13

2.3.1 MongoDB Features

MongoDB is an open source database written in C++ and supported by 10gen under

APGL
7
 license. Craigslist, Foursquare, and numerous other companies use MongoDB in

production [6] [7]. Each database in MongoDB has a set of collections. Collections in MongoDB

are similar to that of tables in MySQL. Each collection holds documents which are similar to that

of rows in MySQL. The main difference between MySQL and MongoDB is that while the way

in which documents inside a MongoDB collection are not required to follow a particular schema,

conversely, MySQL imposes this to the user. Documents inside the collection are stored as

BSON objects.

The following are some features of MongoDB:

 Rich queries:

Unlike RDBMSes, MongoDB uses JavaScript programming language to provide interface

with the database [7]. This decision has made MongoDB easy to use for web developers who are

already familiar with JavaScript syntax. MongoDB provides a rich set of operations for CRUD
8

applications which are the core for database driven application development [7].

 Document-oriented storage:

BSON which is the core unit of every MongoDB document is designed to be lightweight,

traversable, and efficient [20]. The following displays a sample document in MongoDB:

7
 Affero General Public License

8
 Create Read Update Delete

14

Figure 1 : BSON document [7]

Two documents within the same collection may have different fields. The only restriction

that MongoDB has is that the _id field is reserved as primary key. The _id is generated by

MongoDB unless it is replaced by a unique _id. As displayed in the next picture the documents

in MongoDB may have embedded documents.

Figure 2 : MongoDB embedded document [7]

In looking closely at the document it is clear that the “Awards” field displays a document of

awards that John has received. In order to store this information in a normalized manner in

MySQL developers have had to create a separate table for “Awards.” John may have as few as

zero to as many as several numbers of awards in MongoDB. The only restriction is that the

maximum document size in MongoDB is 16 megabytes, but that should be sufficient for storing

massive textual data. This criterion ensures that a single document does not require an excessive

15

amount of RAM or bandwidth. In order to store larger documents such as video files and pictures

MongoDB provides GridFS [8] [7].

 Replication:

Database replication in MongoDB is a built-in functionality that ensures database backup,

high-availability, and automatic failover. There are two replication mechanisms offered by

MongoDB: master/slave replication and replica sets. Replica sets are favored in MongoDB for

databases with less than 12 nodes [7]. Replica sets in MongoDB provide automatic failover. In

automatic failover an instance of the database may automatically choose another primary if one

fails. More information about replica sets is available on MongoDB’s website, as this aspect of

MongoDB is not the focus of this thesis.

 Sharding:

Sharding is what makes MongoDB scalable. MongoDB provides sharding by making the

database horizontally scalable among several numbers of machine instances called nodes [17].

Automatic balancing and loads are performed by databases. Sharding distributes documents on

several machines based upon their shard key. The Shard key is a field in the MongoDB

collection that has been used to distribute data across clusters [7]. Sharding in MongoDB is

based upon collections. If a collection expands, MongoDB automatically shards that collection,

while other collections remain on a single machine as long as they do not require additional

space. The following displays an example of a MongoDB sharding cluster.

16

Figure 3 : MongoDB sharding [8]

 Full index support:

Indexes in MongoDB are like indexes in many SQL databases. They provide high

performance access to data especially when the size of a collection is bigger than RAM.

MongoDB supports indexes for both fields and sub-fields. Even though indexes do enhance

the query performance they often have a negative effect on the write performance since they

add overhead to the write operation [7]. In addition to text indexing, MongoDB provides

Geospatial indexing which is useful for querying geospatial data in applications such as GIS

or Maps.

 Map/reduce:

Aggregation framework was introduced in MongoDB 2.2. Prior to that Mongo users chose

map/reduce as a tool for aggregating content [7]. The Map/reduce mechanism in MongoDB is

17

similar to that of Google’s Map/Reduce paper [17]. Even though new aggregation key-words are

introduced into the database, Map/reduce is still a more powerful tool for handling complex

aggregation tasks.

 GridFS:

GridFS divides larger data files such as video or audio into several pieces called chunks.

Each chunk is stored in a separate document. MongoDB also uses two collections to store

GridFS data. One of the collections is used to store the metadata and the other to store chunks of

data. By dividing the chunks MongoDB enables developers to access a particular piece of a

video or an audio file and skip pieces as necessary [7] [17]. This feature is useful when

developing web applications that need to transfer or load large data files for the sole purpose

previewing parts of it to the user. Youtube and Vimeo are good examples of this feature.

2.3.2 MongoDB Use Cases

MongoDB has been widely used by web application developers who employ the agile

and iterative approach to application development. Start-ups are great fans of MongoDB since it

enables the developers to have fast iterations and add functionalities on the fly. Customers of

MongoDB may be categorized as following [8]:

 Big Data:

Auto-sharding is the feature in MongoDB which makes it a great fit for the cloud. Cloud

providers usually charge customers on a scale and MongoDB’s auto-sharding may dynamically

allocate resources. This leads to an efficient use of servers and databases provided by PaaS
9
 or

9
 Platform as a Service

18

IaaS
10

 services. Deployment of MongoDB in organizations such as Craigslist and Disney is the

successful evidence of Mongo being a great fit for handling big data operations [8].

 Content Management Delivery:

Web applications such as an online shop or a flash sale needs to deliver different types of

content and products to users. The data for these products is not always structured. A massive

amount of data that needs to be stored may be un-structured or hierarchal, or polymorphic [8],

which explains why MongoDB has been a successful replacement for MySQL in some content

management delivery systems. Integrated features such as GridFS and Full-text search reduce the

complexity of content management delivery systems that use MongoDB as their database [17]

[7].

 Mobile and Social Infrastructure:

MongoDB as a modern database supports Geospatial capabilities [17] that may be beneficial

for mobile application development and social network. Because of the small form factor of the

mobile displays and the noises in social media, companies are constantly looking for ways to add

insights to the data that is provided to the user. MongoDB’s map/reduce along with aggregation

framework offers rich sets of features than may be used for fast and agile data mining,

knowledge extraction, and deployment of recommendation systems [8].

 User Data Management:

MongoDB enables developers to store complex user data models in short development

cycles. One winning factor for MongoDB is the commercial support that is provided by 10gen.

Commercial support distinguishes MongoDB from its competitors. Organizations may start

10

 Infrastructure as a Service

19

small by using MongoDB as an open source project and continue to do so. Meanwhile they may

collaborate with 10gen if the database needs additional care and attention.

 Data Hub:

Scalability and low cost of ownership is what encourages most organizations to use

MongoDB as a central data hub that collects all of the data. Storing all of the data in one place

provides the benefit of applying rich business intelligence practices to obtain valuable insights on

the data. As previously mentioned, map/reduce is a first class concept in MongoDB which

reduces additional overhead by using Hadoop for data analysis among several shards of the

database [17] [8].

2.3.3 Cloud Providers Supporting MongoDB

Platform-as-a-Service cloud providers usually provide set of pre-configured databases for

their customers. Amazon EC2, dotCloud, Joynet Cloud, Red Hat Openshift and many other

cloud providers offer MongoDB as a choice of database. MongoDB features are designed to

perform efficiently and smoothly in a cloud environment. Auto-sharding enables companies such

as Openshift to provide pay-as-use payment system for the customers of MongoDB. If a single

database instance expands enough, the additional shard will be added to the system and data will

be distributed based upon the shad-key. After a while, if the database shrinks enough that it no

longer needs an additional shard, MongoDB will automatically shrink the data back to smaller

instances [17].

2.3.4 Full Text Search

Even though SQL databases such as MySQL and Oracle provide built-in text search

features, most application developers rely on third party tools for searching the content of their

20

applications. Open source tools such as Elasticsearch and Apache Solr are examples of third

party APIs that provide searching facilities. Even though it is strongly recommended to use a

mature searching API, sometimes adding additional code-base increases complexity and could

become a point of failure. In order to enable searches for databases the particular field needs to

be indexed which may reduce the write performance of the database. This is inevitable in both

databases.

Full text search is added to the MongoDB version 2.4, which was released on March 19,

2013. Prior to the release an alpha version was available for developers on Github. MongoDB

search matches on complete stemmed words similar to MySQL text search. The API offers sets

of options to customize the search result query [7]. MongoDB full text search currently supports

text search for texts written in European languages.

2.4 MongoDB and MySQL Comparison

Among NoSQL databases document-oriented databases are the ones that have the most

similarities with SQL databases. In this research MySQL was chosen as the sample SQL

database. In fact, MySQL is also an open-source database with an active developer community.

MySQL is used in numerous companies and has its own custom made tools for distributed

computing such as Hadoop. Feature comparison of different NoSQL databases with RDBMSes

is shown in picture below.

21

Figure 4 : Feature comparison [10]

 Some differences between MongoDB and MySQL will follow:

2.4.1 Data Modeling Comparison

The following table maps the terminology of database elements between MySQL and

MongoDB [21]. Most of the features within RDBMSes are offered in MongoDB databases. The

notion that an embedded document is a replacement for Join may be misleading. In fact, it all

depends upon the system architect’s approach on how to aggregate and model the data. Overall

“Joins” may be achieved by using embedded documents, aggregation framework, map/reduce,

and references to other collections.

RDBMSES MongoDB

Views and Tables Collection

Row Document

22

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

Table 1 : MongoDB and RDBMSES terminology

Figure 5 shows the data model of MongoDB [11]. It is different from the table structure

of a MySQL database. Consider a library application in MySQL. Database typically contains a

table for the books and another table for the users of the library. If information is needed about

which user has borrowed which book, an additional table is needed to store books that are

borrowed by the user.

Figure 5 : MongoDB data model

23

Modeling the same structure in MongoDB, all of the information about the books needs

to be stored in a separate collection but it is not necessary to have an additional collection for the

books borrowed by a student. Borrowed books for a specific user may be stored as an embedded

document. It is clear that finding books that are borrowed by a specific user may be faster in this

case. There are different data modeling approaches that mostly rely on embedded documents. It

is strongly advised to consider different methods and decide upon an optimized model that is

tailored for the application.

2.4.2 Query Analysis

Creating a collection in MongoDB is as simple as giving it a name. There is no need to

define a schema. The following is the initialization of a simple table of “users” in both

MongoDB and MySQL [7].

MySQL MongoDB

CREATE TABLE users (

 id MEDIUMINT NOT NULL

 AUTO_INCREMENT,

 user_id Varchar(30),

 age Number,

 status char(1),

 PRIMARY KEY (id)

)

db.users.insert({

 user_id: "abc123",

 age: 55,

 status: "A"

})

Table 2 : Creation of user data model

 As is displayed, the “users” collection will be created on the fly by adding a document to

a collection by that name. Querying the data in MongoDB is quite similar to accessing object’s

24

attributes and methods in an object oriented programming language. The “Find” query in

MongoDB replaces the “Select” statement for MySQL [7].

MySQL MongoDB

SELECT *

FROM users

WHERE status = "A"

ORDER BY user_id ASC

db.users.find({ status:

"A" }).sort({ user_id: 1

})

SELECT *

FROM users

WHERE age < 25

db.users.find(

 { age: { $lt: 25 } }

)

Table 3 : Find query

 MongoDB uses both aggregation commands such as “sort” and aggregation operators

such as “$lt” (less than) to achieve the results. A full comparison table of the MongoDB and

MySQL may be found in the appendix.

CHAPTER 3: CONTENT MANAMENET SYSTEMS

Content Management Systems are a great replacement for static web html pages, since they

aggregate the data in an organized form and deliver the textual and graphical content to the users

in a maintainable manner. The purpose of Content Management Systems has been categorized by

Pirtle as: 1) Manage content; 2) Organize navigation; 3) Dynamic search; and 4) Self-service

management of content [22]. Most CMSes provide these basic functionalities for the users and

all of these four purposes rely heavily upon the choice of database. It is clear that CMS refers to

a wide range of applications that simplifies the process of managing and publishing web content.

Web content could be anything, ranging from a picture to textual content or document files such

as Pdfs or Xls. The features of a CMS are highly coupled to its architecture and also to the

technologies used by CMS. Additionally, the community that uses the CMS also has a great

influence on it.

Drupal and WordPress are examples of widely used Content Management Systems that are

open source. Drupal and WordPress are both written in PHP and use MySQL as their database to

store data. Different CMSes have different levels of abstractions. Some, such as WordPress, put

their focus on publishing textual or graphical content, while Drupal is a more generalized CMS

which may be customized to serve different use cases. Currently, Drupal serves several e-

commerce, web-forums, and even enterprise applications on the web [23].

CMSes, much as many software applications have several licensing categories. A

considerable number of CMSes are developed and maintained by the open source community,

which has contributed a lot of features to CMSes and as a result, Content Management Systems

have matured.

26

CMSes, from a user perspective, may be separated into two parts: The admin user interface,

which is the medium between the system and the webmaster or content managers, and the

presentation of content to the users of the system. The admin interface provides simple

functionalities for users to manage the content, and depending upon the type of content and the

design of the CMS, there might be a learning curve for the users on the system at this level. The

ideal goal for the admin user interface is to be simple enough for users to easily add or edit

content. The presentation interface process involves data-visualization and content delivery.

CMSes usually accomplish this by delivering the content in an HTML page format. The look and

feel of the HTML page may be customized by the webmasters of the CMS. Some CMSes enable

the users to interact with the databases as well. Features provided by some CMSes, such as

“commenting” on a post or “liking” a post, are used mostly in Web 2.0.

27

Figure 6 : WordPress CMS table relations

WordPress as a CMS is ideal for blogging and textual content, and focuses more on posts.

To better study the connection between CMSes and relational databases, the relationships among

tables of the WordPress CMS [24] is shown below in Figure 7. It shows that “wp-posts” table

has more attributes than other tables within the database. Additionally, it is clear that the

relationship between “wp-posts” and “wp-postmeta” identifies the additional table that

WordPress uses to store the metadata. This restriction is imposed by MySQL or any other

RDBMS. In a SQL database adding attributes to the “wp-posts” tables increases the complexity,

while it also decreases the performance of the database. Given this structure, developers need to

use SQL standard queries to retrieve metadata for specific posts, often creating problems in

28

applications that require intense querying of metadata. To make RDBMSes fit for this use case,

developers would de-normalize the data by adding a table that holds a joint view of both tables.

Pritle compares SQL and MongoDB’s databases’ schema for commenting and tagging an

article, and as is shown in the display, the MongoDB version uses hierarchical data storage to

simplify the collections. Querying the data in MongoDB will be managed by the use of either

aggregation framework or Map/reduce [22].

Figure 7 : SQL table relations

Figure 8 : MongoDB collection structure

29

 Figure 7 and 8 show a general representation of the content management in both

databases. These representations may be changed and optimized based upon the performance

requirements of the system. Still, it is important to note that they both represent a mainstream

design for MySQL and MongoDB and highlight the differences.

3.1 NoSQL CMSes

CMSes like many modern web applications are heavily reliant upon their communication

with the databases, as it is undoubtedly necessary for CMSes to optimize their architecture to

maximize their throughput. As a result, in most cases CMSes are tailored to serve a single

database of their choice. This decision optimizes the code base of the CMS. Users are forced to

install the database that the CMS imposes. Currently, RDBMSes hold the major responsibility in

the database backend in CMSes. Even though this trend is shifting, many well-known CMSes are

not built with the purpose of having a NoSQL database as backend. The efforts in moving to the

NoSQL structure for the Content Management Systems may be categorized by the following

groups:

1) Using the same traditional CMS structure of SQL and applying it to NoSQL;

2) Adding NoSQL as a separate entity to the current CMSes to support new

functionalities; and

3) Reimagining CMSes by designing a CMS that incorporates NoSQL features.

Each of these methods has its own advantages and disadvantages that may be different

based upon each use case. The decision to choose the right CMS among the massive pool of

current SQL and NoSQL CMSes is often challenging and requires substantial research.

30

3.1.1 Traditional CMS Re-written in NoSQL

The goal in this category is to design a CMS that offers the same functionalities as a

traditional CMS; yet uses a NoSQL database as opposed to SQL. These CMSes use almost the

identical code as is found in a traditional CMS. Since the web-applications have been used

through the years, their features have matured and systems have been proven to be reliable. The

decision to design these new CMSes is largely due to the scalability issues of MySQL and the

main challenge is to provide horizontal scalability. Lily and Daisy CMS are examples of such

systems.

3.1.2 NoSQL as an Additional Entity

In this case NoSQL database acts as an extra power provider that works alongside of the

SQL data storage units. The NoSQL module of the system is used for the development of new

features that are more suitable for NoSQL database. Even some CMSes use NoSQL database as

a replication system. An example of such work is an integration module that has been developed

for Drupal and uses MongoDB. The module stores data for several fields such as cache, lock, or

sessions in a MongoDB instance. MongoDB works and communicates with the application and

the SQL database to provide insights and improve the architecture. Efforts in this category are

proven to be reliable as they have the benefits of both systems. However, the negative effect is

the increase of the complexity that is being introduced by adding an additional database

abstraction layer. Teams who employ this method should have a good working knowledge of

both NoSQL and SQL products.

3.1.3 Reimagining CMSes by Incorporating NoSQL Features

The third category tries to benefit from new features of NoSQL databases and create a more

flexible and modern CMS. Prono and Locomotive are both open source CMSes that have pushed

31

some boundaries of Content Management Systems. Locomotive uses MongoDB’s document-

oriented concept and enables users to easily create custom content types and manage them.

Locomotive also provides cloud computing functionalities and scaling features for the CMS.

3.2 Simple CMS

The data migration process from a legacy web application to a Content Management

System may be different depending upon the type of Content Management System being used.

Most Content Management Systems provide API for the developer and users that enables them

to migrate the data to their systems. Unfortunately, as was previously mentioned, they are not

offering it for two different databases like MySQL and MongoDB. Even if it is available in some

cases the underlying architecture of the CMS will be optimized based upon the functionality of

one of the databases which creates bias within the benchmarking process.

In order to experience benchmarking in both MongoDB and MySQL, a Simple CMS was

developed. Simple CMS is a minimal CMS that only stores html pages. Simple CMS has been

developed on Python using Flask micro-framework, and because content delivery is the ultimate

goal of any CMS, Simple CMS has been designed to efficiently deliver content based upon a

REST API. Additionally, the application explores the full-text search feature that is built into the

two databases.

3.2.1 Flask Framework

Flask is a micro framework that is inspired by Ruby’s Sinatra. It is built on the

Werkzeug, which is a utility library for Python [25] which developers may use to develop their

own framework. Flask appears to keep the web application simple and flexible [26] and offers

additional functionality by allowing extensions. Flask, unlike many other web frameworks, does

32

not make the decision on which databases to use. In fact, Flask delegates the database abstraction

layer to the developers, allowing them to choose different libraries that already exist for

connecting to the database [26]. Flask’s mission is to be used as a foundation for all types of web

applications. NoSQL community has endorsed Flask because of its simplicity and because Flask

makes it easy for developers to use new databases in the applications. Companies such as

MemSQL use Flask to provide benchmarking to their customers [27]. Flask has been employed

in this study to create a CMS application that connects to both MySQL and MongoDB.

3.2.2 Simple CMS Web Application

The overall architecture of the Simple CMS shows the straightforwardness of the

application. Simple CMS delivers HTML documents and provides search functionality to users.

The best way to deliver HTML content to users is subject to different applications. In Simple

CMS a textual metadata referred to as “iamap” is employed to categorize the content. “iamap” is

a substitute for “Information Architecture” of a web application. HTML pages are stored within

the DB and users access that data using the “iamap” or the actual key of that object.

Figure 9 : Simple CMS abstraction form databases

33

Out of REST requests in any RESTfull CMS application, “Get” requests are the ones that

are most frequently used and may have intense effects on the performance of the CMS. Simple

CMS’s API provides five “Get” requests, and these requests have two main responsibilities: one

is to provide data to the client and the other is to render templates. These sets of “Get” requests

are identical in both MongoDB and MySQL versions of the CMS.

 Get Request Response

1 @app.route('/')

Renders the “Index” Page

2 @app.route('/map/<iamap>')

Returns the pages that have the same

“iamap” of the one in the URL

3 @app.route('/page/<int:pageid>')

Returns a page with its primary_key

which is the “pageid”

4 @app.route('/search')

Renders the “Search” Page

5 @app.route('/search_query')

Returns a JSON object of the search

query’s result.

Table 4 : Simple CMS GET queries

 Both CMSes are running on Virtualenv, which is an isolated environment, guarantees that

there will be no conflict between the installed packages within the system and also improves the

34

process of debugging by tracing back directly to the package [28]. In this study, “pip” is used to

install packages on Virtualenv and two CMSes are running on two separate, identical Virtualenv.

3.2.3 Simple CMS-MySQL

The MySQL version of the Simple CMS is similar to that of the MongoDB, with respect

to displaying the content. The difference, as expected is the communication between the

application and the database. The SQL based CMS uses MySQLDB which is a python library for

connecting to the MySQL database. In order to enable full-text search html pages sources are

stored and indexed in a MyISAM table. The following tables display a side by side comparison

of the queries for MySQL and MongoDB.

Corresponding Queries for the “Get” Requests

@app.route('/map/<iamap>')

MongoDB:

Articles.aggregate({"$group": {"_id" : "$iamap" }})

MySQL:

Articles.select().group_by(Articles.iamap)

@app.route('/page/<int:pageid>')

MongoDB:

Articles.objects(pageid = pageid)

MySQL:

Articles.select().where(Articles.pageid == pageid)

35

@app.route('/search_query')

MongoDB:

result = db.command('text', 'articles',

search = q , project = {

"webpage": False, "created": False, "_id" : False})

MySQL:

statement = " select pageid,title

from articles where match(title,webpage)

against ('+%s' IN BOOLEAN MODE) " % (q)

cursor.execute("" + statement + "")

result = cursor.fetchall()

Table 5 : Side by side comparision of queries

3.2.4 Simple CMS-Mongo

MongoEngine has been used as an object relation mapper for connecting to MongoDB and

developing the admin interface. Since full-text search was a new functionality in MongoDB at

the time this study was conducted. PyMongo had to be used to implement the text search query.

The comparison of the queries in Table 5 above shows that MongoDB ORMs are similar in

concept and syntax to the object oriented programming languages. This simplifies the process of

debugging an application. In order to enable full-text search html pages, the field is indexed,

which in turn affects the write performance of the databases.

3.3 Data Migration to Simple CMS

Data migration from the legacy application will be described in detail in Chapter 5. For the

purpose of benchmarking it was required to have two identical datasets in both applications. A

migration module is written to copy the data from MySQL to MongoDB. The module migrates

between MySQL and MongoDB, not from the legacy web application.

CHAPTER 4: BENCHMARKS FOR SIMPLE CMS

Speed is the ultimate user experience factor that distinguishes products amongst

competitors. Interestingly, speed may be seen as a pure technical challenge with respect to user

experience design. Over the years there has been an excessive huge increase in the speed of

RAM, CPU, and bandwidth; yet, the application’s communication with databases and file system

has remained an issue. Web application architects are faced with the challenge of optimizing

databases communications. In this chapter the benchmarking of the performance of both MySQL

and MongoDB in Simple CMS will be explored.

4.1 Apache JMeter

Apache JMeter was used to test and measure the performance of the Simple CMS

application. Apache JMeter is an open source project that is designed to test static and dynamic

resources and may be used to test different load tests and massive concurrent loads. In this case,

an environment was simulated with 1000 concurrent users sending the same “Get” request to the

Simple CMS. Apache JMeter was able to perform this huge load test on a single machine, and

the results of the performance test were displayed on graphs via the Apache’s user interface.

4.2 Dataset Generation

The dataset that was used for this benchmarking consisted of ten different legacy web

applications that were migrated to both versions of Simple CMS. These datasets were collections

of HTML webpages with titles associated with them. In order to experience full-text search

indexing in MySQL and MongoDB was ensured by using proper queries. The following table

displays the statistics of each website that was migrated.

37

ALTER TABLE articles ADD FULLTEXT(title, webpage)

Figure 10 : MySQL index

db.articles.ensureIndex({ title :’text’ , webpage : ‘text’})

Figure 11 : MongoDB index

Website

Index

Number

of

HTML

Pages

Size on MySQL Size on MongoDB

1.A1 958
Data 2602 Kb Data 2841 Kb

Index 1752 Kb Index 4702 Kb

2.T2 248
Data 804.1 Kb Data 891.9 Kb

Index 488 Kb Index 1245 Kb

3.D3 191
Data 534.1 Kb Data 580 Kb

Index 348 Kb Index 950.1 Kb

4.G4 371
Data 972 Kb Data 1061 Kb

Index 639 Kb Index 1152 Kb

5.M5 147
Data 406.2 Kb Data 449.3 Kb

Index 237 Kb Index 646.7 Kb

6.MS6 122
Data 256.1 Kb Data 283.1 Kb

Index 174 Kb Index 497 Kb

7.N7 365
Data 986.4 Kb Data 1075 Kb

Index 627 Kb Index 1692 Kb

8.P8 175
Data 528.8 Kb Data 577.3 Kb

Index 346 Kb Index 902.2 Kb

9.S9 185
Data 529.2 Kb Data 576.9 Kb

Index 348 Kb Index 950.4 Kb

10.V10 111
Data 326.5 Kb Data 357.6 Kb

Index 417 Kb Index 598.8 Kb

38

Table 6 : Dataset’s statistics

It is clear that MongoDB data requires slightly more space than MySQL with respect to

database storage, but in comparison, a MongoDB full-text index requires much more space than

MySQL. Clearly, MySQL exceeds MongoDB in full-index text searching which may be

problematic in some cases where full-text indexing is essential for the database. For instance, in

studying the 1.A1 (Table 6) dataset, it is clear that MongoDB indexes requires 4702 Kb as

compared to MySQL which requires 1702 Kb – nearly double the amount of space used for

Indexing in MongoDB. Interestingly, the amount of storage for the content is not that different,

as MongoDB requires 2841 Kb while MySQL requires 2602 Kb.

The number of indexes generated in MongoDB with MySQL was compared and the result

was that on average, MongoDB indexes are 2.48 times higher than those of MySQL.

Surprisingly, in 10.V10 the number of indexes is quite large in MySQL as compared to other

datasets which shows that indexes are highly dependent upon the nature of the textual data.

39

Figure 12 : Ratio of MongoDB/MySQL indexes

 In studying the data it is clear that on average, the same data that is stored in MongoDB is

nine percent higher than that of MySQL.

4.3 JMeter Get Request

In this section JMeter was used to simulate 1000 concurrent users sending requests to the

Simple CMS. Two of the most frequently used requests were studied: “Get page” and “Search

Query” which were explained in Table 4. JMeter’s output is visualized in a diagram that has six

parameters: The Black line shows the latest sample from the experience, which is actually the

maximum amount of time it required for the client to retrieve data from the CMS. The Blue line

shows the average time of requests and the Green line represents the throughput of the system.

4.3.1 Get Query Benchmarks

In this experiment a get page request is sent to the 3.D3 (Table 6) dataset on both CMSes.

MongoDB displays a better performance on the read query (See Figures 13 and 14).

0

0.5

1

1.5

2

2.5

3

1.A1 2.T2 3.D3 4.G4 5.M5 6.MS6 7.N7 8.P8 9.S9 10.V10

40

Figure 13 : Page 90 get request on 3.D3 MySQL

Figure 14 : Page 90 get request on 3.D3 MongoDB

In order to support the idea the same query was run for several pages in the 2.T2 (Table

6) dataset with the results shown below in Figure 15. MongoDB exceeded in the read

performance from MySQL and had better throughput.

41

Figure 15 : Throughput for 2.T2 page requests

4.3.2 Get Search Query

To complete the experience a text search was explored in both databases. Searching the

word “engineer” (Figure 16) in MySQL yielded three pages of results, while MongoDB retrieved

thirteen pages for this search query. This clearly indicates a different approach to text searching

in both databases. The performance of this query is displayed in Figures 17 and 18.

search_query/?query=engineer

Figure 16 URL for Search Query

0

50

100

150

200

250

300

350

242 36 92 228 113 110 90 145 234

Throughput Mongo

Throughput MySQL

42

Figure 17 : MySQL’s search performance

Figure 18 : MongoDB’s search performance

CHAPTER 5: MIGRATION OF LEGACY WEB APPLICATION

In this chapter the migration of legacy web applications to a Content Management System

will be studied. In order to have a successful migration, the legacy data needs to be studied and

proper data extraction methods that suit that data need to be incorporated. The process of

importing data to CMS relies heavily upon the mapping decision of the data. Current migration

processes utilize the capabilities of the business teams to achieve the proper mapping of data

from the legacy application to the Content Management System. To understand this concept, an

explanation follows about current migration processes, followed by the introduction of NoSQL

into the process.

5.1 Legacy Migration Workflow

Migration of any legacy web application starts with identifying and categorizing legacy data

and finding the proper representation of the data in its new incarnation. The migration team

needs to study different HTML pages within the legacy web application and decide upon a

destination for each HTML page or piece of data in the CMS. These activities may be broken

down into the following steps (Figure 19).

44

Figure 19 : Data mapping activities

As shown in Figure 19, the migration team, which includes both business and engineering

team, needs to study the legacy data and decide which data should be migrated and where to

import the migrated data. This activity has several risks associated with it, such as what if there

is a type of content that is not being considered and is left behind or how should CMS

architectural changes be incorporated into the migration process? In this method, once the CMS

architecture has been finalized, applying changes to the CMS requires a migration within itself,

doubling the amount of effort for the team.

5.1.1 Extracting Content

In order to obtain the latest data, HTTrack [28] was used. HTTrack is web crawler designed

to extract the very latest data from the legacy website, and that data will then be stored on the

local file system of a machine. Since the legacy application maintains content in plain HTML,

the extraction and mining of data is often quite challenging. Researchers have devoted their

efforts on using intelligent and dynamic methods in order to extract the useful information from

web pages [1]. Finding and querying information from web pages are useful not only for web

45

applications migration, but also for the collection of search engine data, data mining, and web

scraping.

Different methodologies have been proposed to maximize the results of data extraction from

HTML pages. Introduced methods generally are heuristic and many rely upon time consuming

machine learning algorithms. A simpler form of data extraction occurs when the user is familiar

with the structure of the HTML page and tagging that has been incorporated. Developers may

extract data by parsing HTML code and facilitate HTML tags to obtain the necessary

information [29]. During the migration of legacy web applications, it is vital to be certain that all

of the data is captured and that none of that data is lost; therefore, it is more beneficial to rely

upon on HTML parsing methods as opposed to heuristic models. In order to achieve a fast and

clean parsing method, some unnecessary information was removed from the web pages.

Web pages that are created by proprietary software, such as Front Page, have different

templates. Those pages usually contain collections of HTML tags with inline styling. It is clear

that some of the abstract templates encountered during the process of migration have been

displayed in Figure 20 below. Since the migration goal is to extract the content of the pages,

unnecessary tags from the HTML were stripped with the use of a parser Java library named

jsoup, which also was used for the removal of inline style tags. This had a direct impact upon the

performance of specific tag selection of an HTML.

46

Figure 20 : Sample template pages from legacy application

In order to access a specific attribute from an HTML page, XPath or any other selector

may be used. Initally, XPath was designed to access parts of an XML document [30]. XPath may

be used to traverse through an HTML or XML document and to retrieve information from those

documents. Google chrome or any other HTML editor tool may be used to extract XPath of a

specific tag. Other available selectors are CSS selectors [31].

In this example, as shown in Figure 21, the content extraction practice for a sample web

page is applied. A specific web page from a website is downloaded using HTTrack.

47

Figure 21 : HTTrack result for a sample webpage

 In order to extract the content from this webpage, the HTML page was parsed and the

“id” of the article was used to extract the content (Figure 22).

Figure 22 : Extracted content

 This simple method may be applied to different pages with different methods.

48

5.1.2 Importing Data to Database

In order to perform migration on an entire website, the output of HTTrack will be imported

to the database using a script which is referred to as “migration script.” MySQL forces the

migration process to design databases with predefined tables. Figure 23 shows the process of

migration after deciding on page destinations. In an abstract model, it is clear that applying

changes to the data model is almost inevitable, especially in migrations with huge amount of

data.

Figure 23 : Traditional migration process

5.2 MongoDB Migration

MongoDB’s migration practice is an iterative approach to migrating data, and it will break

the migration into two main steps: 1) Importing data to a MongoDB collection and storing it into

a single collection; and 2) Querying the mentioned collection to categorize data and to apply

abstraction data layers.

49

5.2.1 MongoDB’s Migration Concept

Since there is no data modeling practice for MongoDB, developers are able store several

attributes and metadata per specific pages within the database. In these process actual keys of the

data, which are the same as those attributed to the data in the MySQL are stored with their

values. In a collection of data in MongoDB, it is possible to store several pages with both the

same or different Key, making the migration process dynamic and agile.

Figure 24 : MongoDB's migration steps

 The result of this migration is a dynamic database that has all of the content necessary to

be migrated within a single collection (Figure 24). The fact that database documents are different

than one another can be seen as a performance challenge for the CMS. Some CMSes are able to

work with unstructured content, but in order to complete the migration and export this data and

import it into a SQL CMS, the aggregation process must be introduced.

5.2.2 Data Aggregation

As was explained in the previous section, data is stored in a MongoDB collection. In order

to group similar documents and import them to their documents or tables the following feature of

MongoDB was used, enabling the access to specific attributes and the ability to mine the data.

50

Syntax: { field: { $exists: <boolean> } }

Figure 25 : Finding documents that have a specific field

Figure 26 : MongoDB's export to CMS steps

 Exporting to CMS and categorizing data is enabled by using MongoDB’s “$exist”

syntax. This syntax retrieves specific data from a collection (Figures 25 and 26).

5.3 Comparison of Two Methods

In order to compare both methods, complexity equations for both solutions were introduced.

It is assumed that there are numbers of HTML pages that need to be migrated from the legacy

web application. “ ” was specified as the pool of unknown page types. Members of may be

seen as tables in MySQL or collections in MongoDB. All of the pages from the legacy web

application will map to one and only one category inside S. () shows the probability of

knowing the data type and metadata for the page “ ” within the legacy application. “ ” is

the process for making the migration tables. “ ” refers to the effort of changing or creating one

table or collection.

51

The amount of effort to migrate each page is shown as “ .” The migration effort with “ ”

which is a parameter that determines the complexity of the migration is shown. For traditional

migrations the complexity is:

 ∑(((())))

The reason that low “ ()” has a negative effect is when there are pages in which their

metadata or a table for them to map to has not yet been created; the tables that have not been

created before have to be created or if they have been created they will need to be changed.

Now the complexity for the approach to the migration needs to be studied. With document-

oriented databases, not knowing the structure of the data will not have any negative effect on the

migration. As previously mentioned and shown in the equation, the migration starts by migrating

pages to the databases (the first part of the equation) and then concludes with aggregating data on

separate tables or collections.

 ∑()

Comparing these equations, it is clear that even if every detail is known about the legacy

data using document-oriented databases, it will not add any additional benefit to the migration.

On the other hand, if the structure of the data is not known, then it is strongly advised that the

new migration method to be used for the migration.

CHAPTER 6: CONCLUSION

The establishment of MySQL and other RDBMSes as the database backend relies heavily

upon the use cases of financial and enterprise applications. The requirements of RDBMSes are

tailored for ACID transaction and the support of a defined schema. The limits imposed by

RDBMSes cause them to be an inferior technology for the data migration practice, especially

from proprietary applications. In this research study, a new approach was proposed for migrating

data from legacy web applications to Content Management Systems (CMSes).

Through the creation of two similar CMSes, the performance characteristics of MySQL and

MongoDB were explored. MongoDB displayed an ideal performance for querying the data but

still had some shortcomings in the indexing. Another important factor in the consideration of a

NoSQL database is the ease of use. MongoDB’s syntax is intuitive in comparison to the

structured query language employed by MySQL. In addition, MongoDB in a CMS space stores

content in a format similar to that of JSON. JSON appears to be the new industry standard and is

being used in most modern web applications. Applications that employ MySQL require the

conversion of the MySQL’s results to the JSON format by using additional libraries.

 Both MongoDB and MySQL have a great community of supporters that provide third

party ORMs for the databases. Yet, since MongoDB is a new database some of the features and

third party tools may not be as mature as their MySQL counterparts. In this study we faced with

the issue of, MongoDB’s full-text search was not being supported in MongoEngine.

Additionally, it is time consuming for developers to implement the new native features of the

databases, but this is not a huge issue with MongoDB as its command control interface is written

in JavaScript.

53

From the migration’s perspective, current migration methods require that a business team

and developers are to be knowledgeable about the details of the legacy web application, which is

unfeasible as legacy web applications have undergone several iterations over the years with

numerous developers and are unstructured. This premature assumption about the structure of

data leads to a less accurate migration and loss of information.

In this study, a new approach to the migration of legacy web applications was introduced

through the exploration and questioning of the various restrictions imposed by RDBMSes. In this

proposed migration process, one collection of data was used to import the HTML content for the

web pages with their proper “fields.” Therefore, if an HTML page consists of news, a MongoDB

document with the Key called “news” may be created, along with other pages with different

Keys. Then, those Keys are aggregated and their proper structures are determined. Another

advantage in using MongoDB is that it enables developers to add metadata to a specific

document if necessary. In comparing both migrations, it was discovered that document-oriented

databases are significantly a better fit for migrating HTML pages with no specific structure.

REFERENCES

[1] J. C. P. C. R Rodrigue-Echeverria, "Modernization of Legacy Web Applications into Rich

Internet Applications," 7th Model-Driven Web Engineering Workshop (MDWE'2011), 2011.

[2] S. A. Walberg, "Tuning LAMP systems, Part 1: Understanding the LAMP architecture,"

2007. [Online]. Available: http://www.ibm.com/developerworks/linux/library/l-tune-lamp-

1/.

[3] H.M.Sheth, Scraper- a program to instantly convert a static website to a dynamic website,

MI, 2010.

[4] C. Saathoff, "Lazy Migration in MongoDB with Scala Salat," 18 March 2013. [Online].

Available: http://kodemaniak.de/2013/03/lazy-migrations-in-mongodb-with-scala-salat/.

[5] S. A. A. S. C. Tauro, "Comparative study of the new generation, agile, scalable, high

performance NoSQL databases," International Journal of Computer Arpplications (0975-

888), vol. 48, no. 20, 2012.

[6] P. Nasholm, "Extracting data from NoSQL databases," University of Gothenburg,

Gothunburg, 2012.

[7] 10gen, "MongoDB," 10gen, 1 March 2013. [Online]. Available: www.mongodb.org.

[8] 10gen, "10gen," 1 March 2013. [Online]. Available: ww.10gen.com.

[9] D. Goans and G. Leach, "Developing and re-imagining library web," November 2005.

[Online].

[10] G. Yunhua, S. Shu and Z. Guansheng, "Application of NoSQL Databases in Web

Crawling," International Journal of Digital Content Technology and its Applications, vol. 5,

no. 6, 2011.

[11] Z. Wei-ping, L. Ming-xin and C. Haun, "Using MongoDB to Implement Textbook

Management System instead of MySQL," IEEE, 2011.

[12] D. Chamberlin, "Early History of SQL," Annals of History of Computing, vol. 34, no. 4, pp.

78-82, 2012.

[13] IBM, "CICS Transaction Server for z/OS," [Online]. Available:

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp?topic=%2Fcom.ibm.cics.ts.p

roductoverview.doc%2Fconcepts%2Facid.html. [Accessed 1 March 2013].

[14] S. N. R. Elmasri, Foundamentals of Database Systems, Addison-Wesley , 2011.

[15] N. Leavitt, "Will NoSQL databases Live up to Their Promise?," IEEE, pp. 12-14, 2010.

[16] J. Scholz, "Coping with Dynamic, Unstructured Data Sets – NoSQL a Buzzword or a

Savior?," REAL CORP, pp. 27-29, 2011.

[17] C. Strauch, "NoSQL Databases," Ultra-Large Scale Sites.

[18] Apache, "Cassandra," [Online]. Available: http://cassandra.apache.org/. [Accessed 1 March

2013].

[19] J. Han, H. Haihong, G. Le and J. Du, "Survey on NoSQL Databases," IEEE, pp. 363-366,

2011.

[20] "BSON," [Online]. Available: http://bsonspec.org/. [Accessed 1 March 2013].

[21] T. Rueckstiess, "Building Your First App with MongoDB," 10gen, 2013.

[22] M. Pirtle, "Content Management Systems and MongoDB," 2010.

[23] "Drupal," [Online]. Available: www.drupal.org. [Accessed 3 2013].

[24] "Codex," [Online]. Available: http://codex.wordpress.org/File:WP_27_dbsERD.png#file.

[Accessed 15 3 2013].

[25] "Werkzeug," [Online]. Available: http://werkzeug.pocoo.org/. [Accessed 20 3 2013].

[26] "Flask," [Online]. Available: http://flask.pocoo.org/docs/foreword/#what-does-micro-mean.

[Accessed 20 3 2013].

[27] "MemSQL Workload," [Online]. Available: https://github.com/memsql/workload-

simulator. [Accessed 14 3 2013].

[28] "Virtualenv," [Online]. Available: http://jontourage.com/2011/02/09/virtualenv-pip-basics/.

[Accessed 20 3 2013].

[29] "Jsoup," [Online]. Available: http://jsoup.org/. [Accessed 5 2 2013].

[30] "W3C-XPath," [Online]. Available: http://www.w3.org/TR/xpath/. [Accessed 12 3 2013].

[31] "CSS Selector," [Online]. Available: http://www.w3.org/TR/css3-selectors/. [Accessed 10 3

2013].

[32] "HTTrack," [Online]. Available: http://www.httrack.com/. [Accessed 4 3 2013].

