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 Mobile application testing and testing over a cloud are two highly topical fields 

nowadays. Mobile testing presents specific test activities, including verification of an application 

against a variety of heterogeneous smartphone models and versions of operating systems (OS), 

build distribution and test team management, monitoring and user experience analytics of an 

application in production, etc. Cloud benefits are widely used to support all these activities. This 

study conducts in-depth analyses of existing cloud services for mobile testing and addresses their 

weaknesses regarding research purposes and testing needs of the critical and business-critical 

mobile applications. 

 During this study, a Cloud Testing of Mobile Systems (CTOMS) framework for effective 

research crowdsourcing in mobile testing was developed. The framework is presented as a 

lightweight and easily scalable distributed system that provides a cloud service to run tests on a 

variety of remote mobile devices. CTOMS provides implementation of two novel functionalities 

that are demanded by advanced investigations in mobile testing. First, it allows full 

multidirectional testing, which provides the opportunities to test an application on different 

devices and/or OS versions, and new device models or OS versions for their compatibility with 

the most popular applications in the market, or just legacy critical apps, etc. Second, CTOMS 

demonstrates the effective integration of the appropriate testing techniques for mobile 



development within such a service. In particular, it provides a user with suggestions about 

coverage of configurations to test on using combinatorial approaches like a base choice, 

pair-wise, and t-way. The current CTOMS version supports automated functional testing of 

Android applications and detection of defects in the user interface (UI). This has a great value 

because requirements for UI and user experience are high for any modern mobile application.  

 The fundamental analysis of possible test types and techniques using a system like 

CTOMS was conducted, and ways of possible enhancements and extensions of functionality for 

possible research are listed. The first case studies prove the work of implemented novel concepts, 

their usefulness, and their convenience for experiments in mobile testing. The overall work 

proves that a study of cloud mobile testing is feasible even with small research resources. 
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CHAPTER 1: INTRODUCTION AND PROBLEM FORMULATION 

This chapter provides an introduction to the main challenges in mobile testing, and then 

derives the concrete problem statement and objectives of this thesis. Finally, the novelties of the 

approach are described in corresponding separate subsections. 

1.1 Introduction to Mobile Testing 

Mobile development is characterized by a variety of applications with different quality 

requirements. Online application stores, like the Apple App Store [1] and Google Play [2], offer 

thousands of market-oriented apps—mobile games, utilities, navigators, social networks, and 

clients for web resources. At the same time, the interest in critical mobile applications is growing. 

For instance, online banking has evolved into mobile banking [3], mobile social alerts are widely 

used to report accidents [4] or warn about hurricanes [5], and special apps exist to monitor traffic 

[6] and help cardiac patients [7]. Augmented reality apps are used for complex navigation and 

involve a variety of sensors. A new trend is to use smartphones as components for mobile 

cyber-physical systems because the powerful hardware has a variety of sensors (White et al., 

2010). Mobile applications are even being considered to support processes at such critical 

facilities as nuclear power plants [8]. 

These trends require high levels of reliability and quality for mobile software systems. 

They affect testing, in particular, and the whole mobile development process in general. Too 

often, the mobile development process ends with the submission of a social application to an 

online store. The aim is to gain a wider audience of users in a shorter time, but this does not 

guarantee the quality of the product and non-critical bugs are usually accepted. Some surveys 

have confirmed that mobile developers usually deal with small apps and do not adhere to a 

formal development process [9]. In contrast, a totally different approach is required for critical or 
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business-critical mobile applications, including mobile clients for trustworthy enterprise systems 

and  solutions;;  for  example,  Facebook’s  iOS  app  is  crucial  for  maintaining  the  company’s  profile  

and reputation and thus was rebuilt to overcome the poor quality of the first version [10]. 

To guarantee these mobile applications’   reliability   and   security,   sufficient   testing   is  

required on a variety of heterogeneous devices as well as on different OS. Android development 

is the most representative example of how different applications should function amid a plethora 

of hardware-software combinations [11]. Adequately testing all of these platforms is too 

expensive—perhaps impossible—especially for small resource-constrained mobile development 

companies. 

Mobile development has a set of distinctive challenges and features. Mobile application 

testing has some similarities to website testing as both involve validation in many environments 

(smartphones and browsers, respectively). The general requirements for both types of testing are 

similar: applications should function correctly, efficiently, and be reliable and secure in all 

environments. However, mobile testing presents new activities and requires more effort because 

it includes web applications that work within mobile browsers or hybrid variants wrapped in 

native code [9]. This testing also involves a large number of possible combinations of mobile 

devices and OS [11]. Finally, mobile testing involves the use of actual hardware and so testers 

need additional knowledge and skills such as build installation and crash-log retrieving. 

Advanced mobile software processes typically work according to the Agile-based 

methodology [12, 13] and include usage of build distribution services to assist in testing, 

analytical services for maintenance during production, and services to obtain a wider range of 

mobile devices for testing. These services create a large set of testing-as-a-service (TaaS) 

resources, or supporting web-applications, that use cloud benefits to facilitate the testing of 

mobile applications and cover a large range of the specific mobile testing needs. These cloud 
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solutions make mobile testers more effective because they provide complex infrastructure and/or 

services that are not feasible within small developer companies. 

The dominant type of such  cloud  services  is  a  “device  cloud,”  i.e., a service that provides 

hosting of remote mobile devices and running of tests in the cloud. Existing commercial variants 

of such platforms became an inspiration for the current study. 

1.2 The Problem Statement and Objectives 

Mobile testing over a cloud is an extremely important activity that is very hard to 

research. As was described above, a lot of industrial cloud services exist that fulfill the initial 

testers’   needs,   but   investigations   to   increase   their   effectiveness   such   as   the application of 

additional testing methods are impossible apart (within separate research labs).   

The goal of this thesis is to develop a scalable platform for effective research 

crowdsourcing in mobile testing. It should serve as a research variant of commercial cloud 

services that provide access to remote smartphones for testing, and support the participation of 

geographically separated sites. Crowdsourcing [14] means that several universities or research 

labs can contribute mobile devices for the shared device cloud and each will have ability to use it 

for its own studies and investigations.  

Additionally, a support of two novel concepts—multidirectional testing and flexible 

integration of testing techniques—was stated as a main requirement to the platform. These 

features that can be useful for both industrial and research aims were observed to be absent in 

existing device clouds. Each concept is discussed in a separate section that follows. 

In the end, a Cloud Testing of Mobile Systems (CTOMS) framework was developed to 

serve as the platform to facilitate the testing mobile applications and mobile testing research. The 

cloud service provides the ability to run tests on a variety of remote mobile devices (i.e., 

smartphones). It is based on a heterogeneous networked system that connects operational 
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computers, mobile devices, and databases with applications. This framework is presented as a 

combination of hardware (smartphones) and software (applications) that allows for different 

testing directions. For instance, it is possible to test a new smartphone model for its compatibility 

with mobile applications and to test a new application on different smartphone models. 

The CTOMS platform is an integrated Testing-as-a-Service (TaaS) solution with scalable 

architecture. All core testing functionalities are jointly implemented in one platform over the 

cloud. This provides the possibility of different use cases and the ease of adding new 

functionalities, such as non-functional testing or test planning approaches. The implementation 

of this single system is less complicated than of separate systems for each testing activity. 

CTOMS can be used as an internal automation solution within development teams. 

The current study focuses on Android as a popular mobile platform with distinguished 

support by many heterogeneous devices. Thus CTOMS currently supports only Android, but has 

a universal architecture and solutions that can be applied to other mobile platforms. 

 This thesis serves as the initial research of cloud mobile testing and consequently a lot 

of additional functionality can be added to CTOMS. Thus, the applications of testing techniques, 

different testing types, formats, and scenarios are analyzed and possible solutions are described 

in the form of methodology to enhance the developed framework. All this should help in 

conducting further research using the CTOMS platform. 

1.3 The Novel Multidirectional Testing Concept 

This thesis aims to generalize the concept of a cloud service that provides mobile devices 

for testing. The developed CTOMS framework extends the typical functionality and provides the 

ability to test OS version updates and new hardware devices against the most popular or/and 

important applications. It is important to be confident that the legacy mobile applications will 

still work properly in a new environment. 
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Figure 1 illustrates the concept of multidirectional testing and shows the three main types 

of objects in the system: applications (apps), devices (hardware), and versions of OS. CTOMS 

provides the ability to test each side on/against others; in other words, it provides 

multidirectional testing from all possible perspectives. All use cases are in high demand. Simple 

lines show existing services. Dashed lines show partially new use cases (see [15] for an analogue 

of testing new devices against applications). Bold arrows show totally new functionality. 

Apps

Devices OS

 

Figure 1: Multidirectional Testing 

The current study considers cloud solutions for the following scenarios: 

1. Application developers can test a product on different devices and/or OS versions. 

2. OS developers can test new versions of an OS on a set of modern devices and the 

most popular apps to ensure compatibility. 

3. Hardware developers can test new device models for their compatibility with the 

newest OS versions and the most popular applications. 

The innovative aspect of this approach is that it provides testing of new OS version 

against the top popular applications (and test cases used for their development). The relevance of 

such functionality becomes obvious if we consider how rapidly new versions of iOS or Android 
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systems are released. The same acute situation applies to hardware, thus the device 

fragmentation testing matrix for Android development can have nearly 4,000 separate Android 

device models [11]. 

In general, the need to test OS or hardware against applications is driven by critical 

systems that contain mobile applications. In such systems, it is very important to guarantee the 

dependability of crucial applications with a newer version of the OS or a new device. Critical 

mobile applications must still work properly after OS updates and provide the same reliability, or 

else the resulting faults can be very expensive. The presence of all testing perspectives in the 

CTOMS framework provides the ability to comprehensively test mobile systems because the 

hardware components are also key ones for them. 

Android development is the most representative example of the problem of diverse 

configurations to be tested. The variety of heterogeneous devices, OS versions, screen 

resolutions, and other parameters is significant. The popularity of the Android OS necessarily 

makes the question of cloud testing extremely important. As such, the current research focuses 

on building a version (prototype) of the CTOMS that supports Android testing. At the same time, 

the offered architectural and implementation solutions are universal in the meaning that it would 

be easy to tailor the system for other mobile platforms. The proposed CTOMS framework also 

takes into consideration the possibility of support for different kinds of devices: from 

smartphones to mobile robots and from microcontroller-based embedded systems to 

field-programmable hardware [16]. 

1.4 The Novel Concept of Integrated Mobile Testing 

Another new aspect proposed in this thesis is to embed the test model, i.e., appropriate 

testing techniques for mobile development, within the cloud framework. Specifically, pair-wise 

testing [17] is considered for this purpose. The general idea to integrate test designs or test 
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generation functions within a cloud service is not something original by itself; this thesis 

considers the services for mobile testing, and state-of-the-art cloud-based mobile testing 

indicates the lack of test techniques’ integration (see section 2.3.3). 

From  a  user’s  point  of  view,   the  embedding  of  a   testing  model  operates  as   suggestions  

provided by CTOMS, namely, suggestions relating to what hardware-software configurations 

need to be tested, the testing criterion to choose, the minimal test coverage required, the risk 

statistics about particular device configurations, etc. As a result, a user can choose an appropriate 

testing model for a given situation in terms of desired budget, time, requirements, etc. 

A testing model must also provide the general organization of testing (i.e., launching tests, 

storing results, etc.). This provides an opportunity to collect statistics in the system, and for 

instance, to advise a user that a particular device caused the main part of defects during other 

similar applications testing. 

CTOMS can also be considered for providing reliability, performance, and security 

testing. In the context of security testing, the following variants of additional services are 

proposed: 

 Implementation of different kinds of static analysis. 

 Whitebox approaches based on decompiling Java classes [18]. 

 Model-driven approaches for security and language-based security analysis. 

 Automated stress security testing and fuzz testing. 

For performance testing, it is proposed to use frame rate counters similar to Windows 

phone Emulator [19]. For reliability testing, detailed usage of statistics is proposed in 

conjunction with the long-term performing of tests. 

A detailed design of the CTOMS framework aims to provide the ability to extend 

functionality with such kinds of testing in a way similar to plug-ins. The global goal is to create a 
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comprehensive testing environment. This environment should present a comprehensive view of 

the TaaS platform for mobile development. From this point onward, we will consider TaaS for 

mobile development as a cloud service that provides the following functionalities: 

 Testing on heterogeneous software-hardware configurations. 

 Embedded application of functional and non-functional testing techniques, 

including static analysis. 

 Usage of statistics as a possible basis for testing techniques and reliability 

evaluations. 

 Test planning and management facilities, including test team operation. 

 Multidirectional testing (i.e., testing under different roles: app developer, device, 

or OS producer). 

 Multitenancy and user management. 

 Possible inclusion in continuous integration processes or usage through 

Application Programming Interfaces (APIs). 

The last two requirements should ease the use of such systems in more popular ways, 

especially among mobile developers. Different scenarios may require automated usage, a private 

or public cloud, or automation with a build process and other requirements. 

The consideration of the different TaaS functionalities according to these requirements 

leads to the idea of a mutually beneficial integrated solution. Figure 2 shows that the proposed 

core functionality of such a solution will have three main components: a cloud of devices, a 

static analysis engine, and a statistics sub-system. The desired high-level testing services will use 

these components separately or jointly when performing their functions. For instance, the dashed 

line in Figure 2 shows a scenario in which, based on statistics, a particular set of devices is 

chosen to perform automated testing in the cloud. The cloud of devices can be used for 
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functional or manual testing after the application of some testing techniques to select the proper 

device coverage or can be used for non-functional testing such as the long-term stress testing of 

the app on selected devices. Testing techniques can use information provided by the statistics to 

calculate coverage or the statistics can be used to determine the duration of reliability testing. 

Static analysis can be applied at any time simultaneously. Finally, a cloud of devices with 

supporting databases (data storages) can be used to test in different directions using 

assumed-to-be correct results from previous testing on trustworthy models.  
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Figure 2: Structure of an Integrated TaaS Platform 

Figure 2 shows four groups of high-level testing services built onto a core infrastructure. 

Thus  “testing  techniques”  means  performing  functional  tests  on  a  set  of  remote  devices  such  as  

unit-tests or GUI-based test scripts [20] with or without the application of supporting testing 

techniques, e.g., combinatorial testing to calculate desired configurations coverage [21]. 

Non-functional testing is also taken into account and involves the application of performance 

testing on remote devices using frame rate counters [22], statistical testing, or security testing by 

conducting static analyses of source codes [18]. 
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“Test  management”  means  the  presence  of  supporting  services  such as build distribution 

[23], test plan creation, and testing team management. 

“User  management”  describes   the  need   to   separate   the  users  of   the  system  and  provide  

access rules. This includes general user management and global multitenancy requirements.  

“Testing   direction”   means   the   availability   of   different perspectives on testing. For 

instance, a user may utilize a service both as an app developer to test apps on devices and as a 

hardware or OS developer to test a new device (connected to the cloud on his/her side) or the OS 

on this device against available binaries and test artifacts. 

1.5 The Thesis Summary 

This section provides a summary sheet of the current thesis, highlighting the most 

important points of the study and the work done.  

Problems addressed: improvements and extensions to modern cloud mobile testing and 

organization of the effective research crowdsourcing in mobile testing via a cloud platform. 

The relevance: widespread mobile applications, growing popularity of critical apps, 

weaknesses of typical mobile testing, and ample room for enhancements of supporting cloud 

services, and the need and complexity of the extensive research in the field. 

Objectives: development of the effective research crowdsourcing in mobile testing over a 

cloud by the creation of the easily scalable lightweight CTOMS framework that supports a 

convenient way of engaging participants and contributors.  

Novelties: (1) implementation in the framework of all possible testing directions (apps 

against device models or OS versions, devices or OS versions against top apps, OS versions 

against devices and vice versa) and (2) advanced integration of test techniques with a focus on 

the coverage calculations. 
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Methods: (1) leveraging the benefits of cloud computing, meaning the creation of the 

distributed cloud of real devices (smartphones, tablets, etc.) using the PaaS facilities, (2) 

GUI-based test automation for functional testing and detection of defects in the user interface, 

and (3) combinatorial strategies for coverage calculation. 

Technologies used:  

 Android (Android SDK, including Monkeyrunner tool for test automation) 

 Google App Engine (including Blobstore) 

 Java, the VAADIN 6.8 framework, RESTful web services 

 JPA, the Derby database, embedded Tomcat 7, Hazelcast lock 

 The integrated NIST ACTS tool 

Results and Contribution: (1) provided in depth analysis of the state-of-the-art 

cloud-based mobile testing, (2) created a methodology of test techniques application for mobile 

testing over a cloud, (3) developed the CTOMS framework, and (4) performed two 

demonstrative case studies. 

Tool: CTOMS provides a cloud service to run tests on a variety of remote Android 

devices using standard Monkeyrunner test scripts that are focused on taken and comparison of 

checkpoint screenshots. The platform consists of two parts: the master deployed at Google App 

Engine  cloud  and  a  slave  node  to  be  deployed  at  a  participant’s  site  (on  a  server  with  connected  

smartphones). 

Publications: Results of this thesis were reflected in the two papers accepted at the top 

international conferences in software engineering. They are the following: 

1. Oleksii Starov and Sergiy Vilkomir, “Integrated TaaS Platform for Mobile 

Development: Architecture Solutions,” Proceedings of the Eighth International 

Workshop on Automation of Software Test (AST 2013), San Francisco, USA, 
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May 18–19, 2013, in conjunction with the 35th International Conference on 

Software Engineering (ICSE 2013). 

2. Oleksii Starov, Sergiy Vilkomir and Vyacheslav Kharchenko, “Cloud Testing for 

Mobile Software Systems: Concept and Prototyping,” Proceedings of the Eighth 

International Conference on Software Engineering and Applications (ICSOFT-EA 

2013), Reykjavík, Iceland, July 29–31, 2013, as a part of the 8th International 

Joint Conference on Software Technologies (ICSOFT 2013). 

 

In conclusion to this chapter, we can summarize that the main goal of this thesis is to 

develop effective crowdsourcing in mobile testing over a cloud. The created CTOMS framework 

is supposed to be easily scalable and provide multidirectional testing and integration of testing 

techniques. 

The thesis is organized as follows. Chapter 2 provides state-of-the-art mobile testing over 

a cloud. Fundamental analysis of existing cloud services and a discussion of related work 

provide justification and refinement for the stated objectives and a background for used 

solutions. Chapter 3 provides detailed requirements and high-level design of CTOMS. It also 

describes methodology of test application and possible enhancements of the framework in 

section 3.5. Chapter 4 deals with implementation of CTOMS, describing non-trivial questions. 

Then Chapter 5 provides results of the first case studies with CTOMS. Finally, Chapter 6 

presents the overall conclusions. 
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CHAPTER 2: MOBILE TESTING OVER A CLOUD/RELATED WORK 

This chapter describes the state-of-the-art mobile testing over a cloud and provides an 

analysis and review of related works. First, general questions of cloud testing are discussed. 

Then existing cloud services to facilitate mobile testing are analyzed to justify the desired 

CTOMS functionality. Finally, research in mobile testing and specifically combinatorial testing 

techniques that are targeted to be implemented in CTOMS are described. 

2.1 General Cloud Testing 

Many research papers have stated that testing extensively migrates to the cloud nowadays 

[24–28]. Reviews and classifications of testing cloud services include solutions for web systems 

and mobile development [29, 30]. Cloud benefits are used not only to support performance, load, 

or reliability testing of websites, but also to assist with providing required hardware resources 

(i.e., remote smartphones) for different needs for mobile testing. Cloud-based mobile testing is a 

young but very topical issue [31]. 

The database at the Cyber Security and Information Systems Information Analysis Center 

provides a large list of cloud testing references [32]. Technical and research issues about testing 

over the cloud are analyzed in [33] and [34] respectively. 

This work uses   the   term   “cloud   service”   as   the   most   general   understanding of cloud 

computing [35], i.e., cloud service is a software tool or hardware resource that is delivered over 

the Internet. The definition means that we also take into account such web resources as build 

distribution   solutions   and  online   issue   tracking   systems.  The   term  “device   cloud”   (i.e.,  mobile  

device  cloud  or  cloud  of  devices)  will  also  be  used,  pointing  to  both  the  cloud  service’s  nature  

and the many geographically dispersed devices.  

Many specialized studies exist regarding the general architecture and construction of 

cloud and distributed systems [35, 36], including providing service through application 
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programming interfaces (APIs) [37]. Technical issues for the tests on the cloud are discussed in 

[34], including Hadoop usage for test distribution. Device clouds (services that provide hosting 

of smartphones and run tests on multiple remote real devices) require special algorithms for 

effective test distribution to make overall test execution time as minimal as possible. A 

comparison of general load balancing algorithms can be found at [38]. 

2.2 General Mobile Testing 

Mobile development has a set of distinctive features and the following specific challenges 

can be mentioned [9]: support of many hardware and software platforms, correct work with a 

variety   of   sensors,   interconnections   with   other   applications,   high   requirements   for   users’  

experiences and the quality of the user interface [39, 40], and the existence of web mobile and 

hybrid applications that incorporate all of these challenges to web development.  

Mobile applications are popular among startups and approaches for quick prototyping to 

evaluate the concept of an app [41] are now in high demand. All of these features contribute to 

the complexity and specifics of mobile testing [42, 11]. As for mobile testing in this work, I 

mean comprehensive testing of a mobile system that includes the testing of mobile apps as well 

as mobile operation systems (OS) and the related hardware. Different investigations have pointed 

to the required mobility of the apps in terms of their ability to function in different environments 

and configurations as the root challenge of testing [42].  

uTest published The Essential Guide to Mobile App Testing [11], a book that 

comprehensively and coherently describes challenges and techniques in mobile application 

testing. A lot of research exists about automation and facilitation of the testing process, including 

leveraging of cloud abilities [26, 43–48]. Companies that provide cloud services for mobile 

testing (cloud of devices) usually assist their customers with a set of guides [49, 50]. 
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 Examples of testing matrixes to cover all smartphone models or OS versions generate an 

enormous number of combinations [11]. The issue is significant for the Android platform 

because of its representatively large number of supported devices with different characteristics 

(e.g., screen resolution, size of memory, and set of sensors). The problem is compounded by the 

fact that a smartphone simulator or an emulator cannot fully substitute for the hardware [11]. At 

the same time, the development for different mobile platforms looks similar. Platforms have 

similar developer websites with necessary documentation, examples, and suggested patterns [51]. 

The principles of the application life cycle are similar, for instance, comparing Android to the 

Windows Phone 7 [52]. 

Many software development companies are interested in the mobile market and many 

mobile platforms now exist: Android, iOS, Windows Phone, Symbian, etc. New ones appear 

regularly like the recent Ubuntu Mobile OS [53]. According to Gartner, Android devices have 

most of the market [54] and Forbes says that the Android platform aims to meet enterprise 

requirements in the near future [55]. Previous research on the bug statistics for the Android OS 

[56] proved that the Android (with Symbian) has effectively organized an open-sourced 

bug-tracking system that deals with bugs and makes the platform better.  The number of 

applications in Google Play is now more than 600,000 and is increasing steadily [57]. The open 

source nature of Android makes it popular among the scientific community, and many examples 

of research studies targeted at the Android system can be found. 

2.3 Analysis of Mobile Testing Services 

To facilitate mobile testing, various cloud benefits are used and different TaaS, or 

supporting services, exist. Figure 3 provides references to them, along with mapping to 

correspondent testing stages. The presented types of testing were partially taken from a diagram 

on   Perfecto   Mobile’s   guide   that   shows   the   demanded   device   allocation   during   different  
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application lifecycle management (ALM) stages [49]. The diagram was extended by adding 

conceptualizations as a separate ALM activity, plus concept, security, and user experience (UX) 

testing, as well as highlighting test activities such as test planning, management, and issue 

tracking that are all specific to real-life mobile development.  

Test Planning & Generation
[55], [104], [106]

Concept Development QA Production

Test Management
[77], [78], [80-83]

Issue Tracking
[76], [79]

Unit Testing
[61-62]

Sanity Testing
[48], [52], [54], 
[56], [59], [62]

Regression Testing
[48], [51-52], [54-57], [59], [61-62], [66-68]

Compatibility / Interoperability Testing
[48], [51-52], [54-57], [59], [61-62], [66-68]

Concept Testing
[89-91]

UX Testing / Monitoring
[51-52], [85-88]

Performance Testing
[48], [51], [54-55], [96-97]

Stress Testing
[68], [97]

Security Testing
[99-101]
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Figure 3: Test Stages and Activities with References to Correspondent Cloud Services 

The set of cloud services for mobile testing can be divided into three types: device clouds 

(mobile cloud platforms), services to support ALM, and tools to provide processing according to 

some testing techniques. The following sub-sections describe each type separately. 

2.3.1 Device Clouds 

The   majority   of   cloud   services   for   mobile   testing   serves   as   a   “cloud   of   devices”   and  

provides remote access to smartphones in the cloud in order to accomplish testing, in other words, 

provides device hosting. Such services usually aid mobile developers in using remote 

smartphones as real devices for manual testing (interactive testing through a web interface), 

recording of scripts, and automatic running of tests on a range of models. For instance, Perfecto 
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Mobile service [58] provides all of this functionality representing different modern hardware and 

software mobile platforms (Android, iOS, Windows Phone, and Symbian) and can be integrated 

with HP UFT (QTP) [59] or MS Team Foundation Server [60]. Devices available in the system 

have different parameters, for example, testing different types of Internet connections is possible. 

The service works with two kinds of test scripts: QTP and the Perfecto Mobile Application. 

Perfecto Mobile is only a public service, but UFT Mobile [61] can also be deployed as a private 

cloud. UFT Mobile provides automated functional testing and special solutions for realistic 

mobile performance testing (e.g., LoadRunner and Performance Center).  

Keynote DeviceAnywhere [62] is a similar service that provides online manual and 

automated testing of a mobile app on a variety of devices. It can be integrated with existing ALM 

through HP QTP, IBM RQM [63] or special Java APIs. 

The SOASTA service [64] provides two advanced solutions: TouchTest test automation 

for multi-touch, gesture-based applications and CloudTest for scalable mobile application testing 

(performance or load-testing with millions of geographically distributed emulated users). 

TouchTest  scripts  can  be  recorded  and  performed  against  user’s  own  device.  Users  can  control  

test devices via IP addresses. 

The Cigniti device cloud [65] provides remote access to a variety of mobile devices via 

own proprietary mobile test automation framework, with test accelerators for test automation and 

performance testing. Cigniti is suitable for network carrier testing. 

SeeTest by Experitest [66] provides device cloud that can be deployed as a private 

platform within an organization. Test automation facilities include test script 

recording/performing on real devices or emulators and integration with HP UFT (QTP), 

TestComplete, C#, RFT, Java, Perl, Python. SeeTest also provides manual testing tools. 
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The CloudMonkey service [67] runs MonkeyTalk scripts across many Android emulators 

and iOS simulators. Screenshot reports are positioned as the base testing results. CloudMonkey 

test jobs can be integrated with continuous integration (CI) servers like Jenkins [68]. 

The Appium on Sauce service [69] covers two functionalities: iOS device hosting and 

easy CI. The latter means that it can be used as a build server and testers do not need to set up 

developer environment on local machines. Test automation is implemented with Selenium [70], 

and interactive testing is only possible for web mobile applications. Appium can be deployed 

privately. 

The TestDroid Cloud [71] is a device cloud service oriented towards Android apps 

testing  that  uses  the  TestDroid  AppCrawler  engine  to  verify  application  devices’  compatibility.  

TestDroid Recorder can be used to generate reusable Android JUnit test cases. Test results 

consist of screenshots and device logs. A tester can compare screenshots to check for GUI bugs. 

TestDroid can also be integrated with Jenkins or leveraged through REST APIs. 

The Scirocco Cloud [72] has all of the functionality of a device cloud, except of script 

recording. It supports only the Android platform and provides manual access to remote devices 

through its HTML5 web interface. Test automation is done by using one of three drivers: 

AndroidDriver, Monkeyrunner, or NativeDriver. Results are provided as a set of screenshots to 

compare. 

The LessPainfull device cloud [73] is oriented for Android and iOS apps testing. As a test 

automation engine, it uses Calabash for Cucumber [74] and accepts Cucumber-based test scripts. 

LessPainfull provides two options:  private cloud tailored for single customer and shared cloud 

with devices common for several customers. 

TestQuest [75] is a distributed framework for deployment within an organization. It is 

oriented towards Android application testing and can be integrated with MS Visual Studio. 
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The ZPX service provides device hosting and mobile test automation in the cloud [76] 

and is compatible with HP ALM products. 

Jamo [77] provides a set of tools to perform remote and scheduled testing on a device. 

For instance, Wanconnector in combination with Remote Device Screen provides access to a 

device within different geographical locations. The M-eux Test tool supports web application 

testing. 

Apkudo’s   device   analytics   [78] provide some elements of multidirectional testing by 

testing devices (e.g., new smartphone models) against the top 200 apps from the market [15]. 

Similar services are available for smartphone hardware testing, but these have no relation to 

mobile apps like Datum [79] that provides verification of calls, data quality, and video quality. 

Apkudo also offers free public and fully automated stress testing of the Android applications on 

the big range of models using the Monkey tool [80]. 

Table 1 summarizes the device clouds mentioned above and a comparison based on 

supported mobile platforms, types of testing, and delivery type of cloud solution. Manual testing 

means the remote operation of a device via a web interface, and automated testing incorporates 

functional and regression testing and different kinds of automation. All device clouds provide 

compatibility testing as intended. Public cloud means service with shared devices, while a 

private cloud means an infrastructure allocated to a single user or a system to be deployed on a 

user-developer’s  site. 

Two known research attempts within universities to create and investigate test-bed cloud 

solutions for mobile development are SmartLab [81] and the Android Tactical Application 

Assessment and Knowledge (ATAACK) Cloud [82]. Both are distributed systems that connect a 

set of mobile devices under the Android OS for application investigation, development, and 

testing. 
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Table 1: List of Device Clouds 

Cloud Service 
Supported Platforms 

Types of Testing 
Delivery Type 

Android iOS Other Public Private 

Apkudo [78] +     Stress (automated), New device approval +   

Appium on Sauce [68]   +   Manual for web applications, Automated + + 

Cigniti [65] + + + Automated, Interoperability, Performance, Network +   

CloudMonkey [67] + +   Automated, UI-oriented + + 

DeviceAnywhere [62] + + + Manual, Automated, Monitoring, Coverage + + 

Jamo [77] + + + Automated   + 

Perfecto Mobile [58] + + + Manual, Automated, Performance, Monitoring +   

Scirocco Cloud [72] +     Manual, Automated +   

SeeTest [66] + + + Manual, Automated, On a new devices   + 

SOASTA [64] + + + Manual, Automated, Load, Performance, Gesture-based + + 

TestDroid Cloud [71] +     Automated, UI-oriented, On a new devices + + 

UFT Mobile [59] + + + Automated, Load, Performance, Monitoring   + 

Zap-Fix [76] + + + Automated   + 

 

The SmartLab is an experimental test-bed being developed at the University of Cyprus. It 

provides more than 40 connected Android smartphones plus emulated devices, but not many 

details are described or known. 

The ATAACK Cloud is new joint project for Virginia Tech, the University of Maryland, 

and Vanderbilt University, with the support and funding by Air Force Research Laboratories. Its 

goal is large-scale mobile application testing and investigations. 

These research studies consider device clouds with several smartphones connected to one 

computer (vertical) and several computers with connected smartphones (horizontal) scaling of 

devices, i.e., fully distributed systems, and how to provide access and testing. 
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Many studies regarding less-scaled test frameworks for distributed mobile testing [83] 

that are not cloud services and many tools for vertical-scaled test automation only [84] exist, but 

their reviews are beyond the scope of this chapter. 

All services mentioned in this section appear in Figure 3 with the following logistics: 

services   that   support   the   running   of   unit   tests   listed   under   “unit   testing,”   services   that   support  

online  manual  testing  listed  under  “sanity  testing,”  references  to  script  automation  techniques of 

these   services   listed   under   “regression   testing,”   all   cloud   devices   listed   under  

“interoperability/compatibility   testing,”   and   references   to   special   integrated   non-functional test 

approaches of these services as listed under correspondent types of testing (see section 2.3.3 for 

examples). 

2.3.2 Services to Support ALM 

The application lifecycle management of mobile applications has own specifications and 

many cloud services exist that support test-related activities within ALM. Several examples of 

these cloud services are listed below. 

1. Mobile developers, like all software developers, use issue tracking systems, e.g., with 

Agile-oriented plugins [85], more complex solutions like IBM Rational Quality Manager [86], or 

test management systems like TestRails [87]. Some of these are integrated with software 

configuration management and facilitate code reviews or code style checks [88]. A review of 

similar tools and solutions is not the goal of this work, so Figure 3 shows only several base 

examples. 

2. Mobile testing involves the use of actual hardware and so testers need additional 

knowledge and skills, such as build installation or crash-log retrieving. To facilitate beta build 

distribution activities, many cloud services exist [89–92]. Some of them provide functions for 

test team management [89] or build provisioning and deployment to the store (AirOnApp for iOS 
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[90]). TestFlight service [89] helps to deal with the iOS build management and distributes them 

via email between separated testers. It provides an easy application installation on a real device, 

i.e., by a tap on the link in an email opened on a smartphone.  A similar service for Android is 

Launchpad [91]. The HokeyApp [92] build distribution provides extended functionality to collect 

live crash reports, feedback from users, and analysis of resulting test coverage. Usage of these 

services for build distribution can be integrated along with the continuous integration process of 

the company [93] (e.g., via job scripts for the Jenkins build server [70]). 

3. User experience testing and monitoring of an app in production are required activities 

within mobile testing. Several analytics services gather usage statistics like [94] and these can be 

incorporated in a mobile app. Perfecto Mobile service also provides some solutions for 

monitoring performance [95]. 

The following two services incorporate user experience testing in the build distribution 

facilities. The UserTesting service [96] provides many real users who will examine an app and 

provide feedback about their experience with the app and thoughts about it. The Amazon A/B 

testing for Android [97] provides a service that distributes two builds that differ in some features 

between two unique groups of users. Then it provides measurements and results about which 

feature is more successful.  

4. Mobile development is very popular among startups and usually requires rapid 

prototyping for concept feasibility evaluation. Thus such services exist like [98] to easily create 

interactive prototypes, or [99] to share an app demo, or [100] to create realistic mockups. All of 

these are needed to test the concept and idea of the app (i.e., if it can hit the market) at a minimal 

expense. 
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2.3.3 Testing Techniques Provided 

This section discusses testing techniques on existing cloud services for mobile 

development. Device clouds described in section 2.1 provide different techniques for test 

automation (recording, distribution, and execution). This includes unit tests and GUI-based 

testing. Examples of approaches are standard Android SDK tools Monkeyrunner [101] and 

Monkey [80], special solutions like SOASTA TouchTest, and solutions based on object 

recognition (e.g., Eggplant automation based on VNC technology [102]).  

Test automation has its own weak sides, and according to experts in the field, cannot 

serve as a total substitution for manual testing [103]. The issue that was noticed during the 

analysis of cloud test automation was the delivery of the test input data to mobile sensors (GPS, 

accelerometer, camera, etc.). While solutions to send dummy GPS coordinates exist, situation 

with a photo camera is more complicated because it requires the simultaneous changing of a 

picture (preferable physically in front of a camera) while performing a script. A variety of mobile 

apps use a camera as a part of their key functionality (e.g., shopping apps and QR code readers 

[104]), and proper testing requires test cases with snapshots from different distances, angles, 

lights, etc. Other problematic aspects of automation are the sophisticated (approximate) 

screenshots comparisons, executions of direct device-to-device communication during the test, 

and others.  

Device clouds provide compatibility, interoperability, and regression testing. Many 

services provide embedded tools to support performance monitoring and load testing [58, 59, 64, 

65] or even automated stress testing on a variety of devices [78]. 

There are special cloud services that aid with mobile performance and load testing. For 

instance, SandStrom [105] can be used for load testing of web mobile applications and NeoLoad 

[106] focuses on load testing of back-end servers by emulating typical mobile devices working in 
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parallel and sending appropriate content to the server. There are also standalone solutions for test 

techniques applications like performance frame counters on Windows Phone Emulator [22] that 

theoretically can be leveraged in a cloud. 

Security testing is mainly presented by static check techniques. Checkmarks [107] 

provides scanning of source code and supports Android and iOS applications. Mobile App 

Security and Privacy Analysis by Veracode [108] scans and evaluates binary files for 

vulnerabilities and can be leveraged through APIs. Another type of services exists based on 

experts. For instance, uTest experts will assist with mobile security testing by manual penetration 

and using internal static and dynamic security testing solutions [109]. Other solutions to 

guarantee mobile security focus on proper development processes according to secured 

methodologies and approaches [110]. At the same time, research papers about novelty mobile 

security testing approaches exist (that potentially can be leveraged by some cloud services) [18], 

but these are not described in the present review. 

Concept testing, UX testing, and monitoring techniques were comprehensively described 

in section 2.3.2 as parts of services that support ALM. 

Mobile testing services should incorporate test planning and test generation techniques. 

This review indicates the lack of such functionality. Only Keynote DeviceAnywhere Test 

Planner [111] provides a coverage calculation for smartphone models to test that can be 

considered as application of combinatorial testing techniques, but it can be extended by using 

pairwise [21], t-way [112], or other approaches. HokeyApp only provides test coverage 

monitoring and analytics, i.e., the matrix of the devices and languages that were tested. Cigniti 

Test Advisory Services and TestRails provide more high-level test planning and control 

facilities. 
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The situation with cloud services for mobile testing is changing extremely rapidly: new 

ones appear and old ones get new functionalities. Thus, it is hard to guarantee that the provided 

list of tools and services is exhaustive, but it can serve as a useful baseline.  

2.4 Standalone Tools 

Any mobile platform has a correspondent software development kit (SDK) for app 

developers. Usually the producers of mobile platforms provide developers with a debugger, 

emulator or simulator, plugin for popular IDE, etc. The toolsets for Android, iOS, or Windows 

Phone development are very similar. Each platform also provides similar development support. 

For instance, web developer portals provide similar guidelines on how to use the available tools. 

In this section, we describe the most important standard tools (i.e., available from SDK) for 

Android app testing and several third-party extensions or analogues. 

The basic tool for working with Android devices is Android Debug Bridge (ADB) [113], 

which is a command-line utility to control Android devices. Device detection, debugging, 

execution of shell commands, and  access  to  a  device’s  file  system  is  possible  by  using ADB. A 

high-level development environment like Eclipse (with the Android Development Tools plugin 

installed) implicitly uses ADB to install and debug builds within a connected device. 

Android SDK provides two special tools for the GUI-based automated testing of 

applications. The first is UI/Application Exerciser Monkey [80] for GUI stress testing, which 

generates a set of pseudo-random user events and sends them to an Android device. Previously, 

the Apkudo service [78] was mentioned to provide a cloud of devices for long-term stress testing 

of an app using Monkey. It shows the statuses of the application being tested on each device, i.e., 

it either crashed after a sequence of random events or it is still running. Crash logs and other 

supporting information are provided. 
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A more advanced tool for automated testing provided by SDK is Monkeyrunner [101], 

which runs on test scripts written in Python with several special classes available to provide 

support of touch, press, type, drag events, shell commands, intent invocations, app installations, 

and removal. Functionality is sufficient for basic GUI-based automation. So the following two 

strategies of interaction with interface components can be used: (1) dynamic coordinates 

calculation (screen sizes can be dynamically retrieved) and (2) components enumeration through 

focus change. At the same time a tester who writes test scripts should remember to put in 

appropriate delays (or special workarounds) between long-term events or actions and the results 

check. Monkeyrunner is suitable for screenshot analysis, as it provides methods to take 

screenshots during test script checkpoints and compare them. Thread-safeness is not guaranteed, 

but test scripts can include efficient simultaneous launches on several connected devices (and 

thus screenshots can be taken from several smartphones at the same time). This feature is 

important for CTOMS implementation and will be referenced in the following chapters. 

An AndroidViewClient extension [114] exists for Monkeyrunner that enables more 

high-level test scripts, particularly to address UI components in a test script by name or text. But 

this library only supports “rooted”   devices   with   ViewServer   installed   [115] or newer devices 

with UIAutomator [116] (Android API 16 and greater). UIAutomator is part of the Android SDK 

revision 21 and up and comes with the UIAutomatorViewer tool that lists all the UI objects. 

The current version of the CTOMS framework uses the Monkeyrunner tool for test 

automation. Related implementation questions will be discussed later. This choice was made 

because the tool is provided by SDK producers and is simple enough for the first CTOMS 

implementation. This tool gives us the ability to focus more on novel cloud architecture and the 

services of the framework.  
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Robotium [117] is another popular engine for the automated testing of Android 

applications. It is an extension of the Android test framework (JUnit tests for Androip 

applications) used to write easy and powerful automatic black-box tests. Similarly, the 

Robolectric is based on JUnit 4 and runs Android tests directly on the JVM. Both of these tools 

point to another direction, i.e., the application of unit tests for mobile testing and even 

GUI-testing. 

Other test automation solutions exist. Previously, several cloud services that provide a 

run of tests on multiple real devices were mentioned as having their own solutions for test 

automation. For instance, LessPainful [73] accepts test scripts written in Cucumber using 

Calabash-Android [74]. 

All of the aforementioned test automation drivers can be used in CTOMS. One of 

considered enhancements is to provide users with a choice of test scripts to use. The principles of 

usage are similar to Monkeyrunner, so it does not require a lot of work to integrate another driver 

like Robotium. 

2.5 Research Works in Mobile Testing 

Previous sections provided a review of existing services and tools. To complete the 

state-of-the-art mobile testing, related research works should be analyzed. Table 2 summarizes 

the descriptions of related research papers and studies. Each of them concerns a testing aspect 

that can be used in the cloud. For instance, many of the research studies deal with test 

automation, and theoretically, any service like device clouds can use described approaches as the 

test automation driver. In the same way, such extensions like test generation or static analysis 

can serve as an additional functionality integrated within any cloud service to facilitate mobile 

testing.  
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Table 2 shows research areas and contributions for papers and highlights the year of 

release and the targeted mobile platforms. We can conclude that the popularity of mobile testing 

continues to grow and touches all possible aspects from effective test generation and design to 

execution and monitoring. At the same time, Android became the most popular platform under 

study. An open-source nature, prevalence in the market, support of an enormous number of 

devices, and ease of development (no provisions or jailbreaks are needed as in the case of 

iOS)—all make it the choice of researchers. 

These listed studies are potential directions for implementation in the integrated cloud 

service like CTOMS. They do not discuss cloud solutions for mobile testing, but instead present 

actual issues and techniques and describe possible supporting functionality. 

Table 2: Other Research Work in Mobile Testing  

Year Ref. Mobile  
Platform 

Research Area Contribution 

2012 [118] Multi (shown 
for J2ME) 

Automation of mobile app 
testing 

Framework that does not require a 
device under testing to be connected 
to a computer 

[18] Android Whitebox automated security 
testing of mobile apps 

Fuzz test generation approach/testbed 
for emulation in the cloud 

[119] Android Automatic categorization of 
mobile apps 

New method for categorizing Android 
applications through machine-learning 
techniques (while accepting malicious 
apps into the market) 

[120] Android GUI-based unit testing of 
mobile apps 

Framework to test applications from 
GUI 

[121] Android Testing mobile apps through 
symbolic execution 

Application of symbolic execution to 
generate test cases for mobile apps 

[122] Android Verification of touch screen 
devices 

Test environment and supporting 
Android app to test touch screens 

[123] Android Automated mobile app testing 
through GUI-ripping 

Technique and real-life case study of 
bug detection 

2011 [124] Android GUI crawling-based testing of Technique for rapid crash testing and 
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mobile apps regression testing 

[125] Multi Model-driven approach for 
automating mobile app testing 

Tool suite to apply Domain-Specific 
Modeling Language 

[126] Android Automation of mobile app 
testing 

Review of the Android 
Instrumentation and the Positron 
frameworks 

[20] Android Automation of mobile app 
testing 

Approach to use the Monkey tool in 
conjunction with JUnit 

[127] Android 
(Dalvik) 

Automated privacy testing of 
mobile apps 

Automated privacy validation system 
to analyze apps (while they are 
accepted into the market) 

[128] Multi (shown 
for Android) 

Automation of service-oriented 
mobile app testing 

Approach for decentralized testing 
automation and test distribution 

[129] Android Model-based GUI testing of 
mobile apps 

Extensive case study 

[130] Multi Automated test case design 
strategies for mobile apps 

Comprehensive review of challenges 
and correspondent techniques 

[131] Android Static analysis of mobile apps Extensions to Julia system to provide 
formally correct analysis of mobile 
apps 

[132] Android GUI unit-testing of mobile apps Techniques to assess the validity of 
the GUI code 

2010 [133] Multi (shown 
for Android) 

Adaptive random testing of 
mobile apps 

Test case generation technique 

2009 [134] Windows 
Mobile 

Automated GUI stress testing of 
mobile apps 

Review/automated GUI stress testing 
tool 

[135] J2ME Automation of mobile app 
testing 

Tool for testing mobile device 
applications 

[136] Multi Automation of mobile app 
testing 

SOA based framework for mobile app 
testing 

2007 [137] Symbian, 
Windows 
Mobile 

Automation of mobile app 
testing (black-box) 

Event-driven tool for test automation 

[138] Windows CE Remote evaluation of mobile 
apps 

Tool for remote usability evaluation 

2004 [139] Multi Simulation and execution of 
distributed mobile apps 

Proposed special uniform workbench 
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2.6 Combinatorial Testing 

Application of combinatorial approaches to mobile testing can aid in dealing with large 

amounts of different combinations of hardware and software parameters that should be covered 

by the tests. Coverage calculation is a crucial activity within mobile testing. According to [51], 

there are nine families of Android OS presented in the market (not counting lower sub-versions 

and correspondent builds without Google APIs), four types of screen resolutions (small, normal, 

large, and extra), and four levels of screen density. Other parameters like type of Internet 

connection (WiFi, 3G, or 4G), size of RAM,   vendor,   and   a   processor’s   characteristics   should  

also be taken into account to provide adequate coverage during testing.  

Many combinatorial testing materials can be found on the corresponding webpage of the 

National Institute of Standards and Technology (NIST) [140]. One of the simplest and easiest 

ways to implement combinatorial approaches is the Base Choice [141]. The idea is to create a 

base test case that represents the most important (common or popular) value for each parameter, 

and then create others by varying the value of only one parameter at a time. The base test case 

can be created using statistics, especially in case of mobile testing (i.e., what screen resolution is 

the most spread or what vendor shares the best part of the market). 

Pair-wise [142, 143] and t-wise (t-way) [144] testing are the most common and powerful 

combinatorial testing approaches [141]. According to the t-wise testing approach, for each subset 

of t input parameters of a system, every combination of valid values of these parameters should 

be covered by at least one test case. In pair-wise testing, which is a case of t-wise testing, t equals 

2. The idea behind the t-wise approach is that the faults in the software are more likely triggered 

by a small number of input parameters, with the benefits being that t-wise testing providing 

reasonable coverage of software input space while using a small number of test cases. For 

example, if there are 15 Boolean input variables, the total number of various input combinations 
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is 215 or 32,768. However, it takes only 10 input combinations (as pair-wise test cases) to cover 

all of the different values for each pair of input variables. 

 Some examples of combinatorial tests based on different configurations of Android 

application can be found in [21]. Other similar techniques, including t-wise testing [145], 

MC/DC [146], and RC/DC [147] testing criteria are also considered for integration with 

CTOMS. 

 The ACTS tool created by the NIST [148] provides an engine to calculate different 

combinatorial strategies. The developed CTOMS framework leverages this tool in a similar way 

to the Hexawise web resource [112], but provides a web interface tailored for mobile testing 

purposes. At the same time, other combinatorial testing tools exist [149] and can be leveraged in 

CTOMS, but ACTS was proved to be usually faster and produce less number of test cases [148]. 

 More details about the application of combinatorial strategies for mobile testing and their 

implementation in CTOMS will be discussed in Sections 3.5 and 4.1, respectively. 

 

In conclusion, we can summarize the two weak sides of existing cloud services for mobile 

testing. First, the lack of integrated testing techniques like combinatorial testing for coverage 

calculation, test generation services, and services for automate dynamic security testing were 

noted. Second, technical challenges in test automation within device clouds were mentioned, 

highlighting  the  issue  of  mobile  sensors’  control  during  test  execution.    

The current thesis is aimed at dealing with both of these issues by providing 

correspondent analysis and methodology of test techniques application and by development of 

the CTOMS framework that can be enhanced to support all desired types, formats, and 

techniques of testing. 
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CHAPTER 3: THE CTOMS FRAMEWORK/REQUIREMENTS AND DESIGN 

This chapter aims to provide detailed requirements for the CTOMS framework by 

focusing on desired use cases and possible user roles (from app developers to smartphone 

producers and vendors). All of these factors affect the high-level design and architecture of the 

platform.  

The architecture of a networked system such as CTOMS can vary significantly in levels 

of complexity. For example, the size of the desired distributed solution is a dependent factor. 

CTOMS can be architected as a single PC computer with connected smartphones or as a 

comprehensive cloud solution that operates hundreds of PC nodes. To achieve all of its goals, 

CTOMS should be implemented from a large-scale perspective and must correspond to all cloud 

computing features, such as service delivery, scaling, virtualization, elasticity, multi-tenancy, 

load balancing, universal access, etc. The cloud type can also differ from a public SaaS solution 

to a private Infrastructure as a Service (IaaS), with the ability to provide a low-level 

configuration. 

Selected architecture solutions are described in the current chapter after use cases and 

user roles are defined. Finally, an analysis of the test application is provided to evaluate the 

flexibility of the chosen architecture and present a methodology for future enhancements.  

3.1 Analysis of Use Cases and User Roles 

The conceptual structure of the CTOMS framework contains several layers of 

mechanisms and functionalities. Each should be analyzed, architected, and implemented in a 

final comprehensive system. Figure 4 illustrates these layers and their connections with possible 

use cases: 

1. The contributor of the device only invests in hardware by connecting it to the 

cloud system. 
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2. The application developer uploads the application under test (source codes or 

binary), specifies test cases (automated scripts or unit tests), gets results as 

pass/fail statistics or screenshots for checkpoints, manually accesses selected 

devices for debugging, etc. 

3. The device producers test new devices against the base of apps and OS software 

in CTOMS. Test scripts available in the system for chosen apps can be used. 

Producers can also specify their own test scenarios. 

4. The OS producer connects the devices with new OS versions to the cloud or 

uploads update packages to the database. Then the new OS versions are tested 

with apps/scripts/ devices in the system. OS producers can also specify their own 

test scenarios. 
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Figure 4: The CTOMS Structure, User Roles and Use Cases 

Figure 4 shows  that  each  user  can  provide  a  “testing  model”  while  using  the  framework.  

For application developers, this means specifying a test strategy, namely, what tests need to be 

performed on what devices and how. For example, they can specify their own test scripts; select 
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devices, OS versions, coverage, methods to check if a test is passed, etc. For other users, this 

means not only specification of test strategy or rules of testing (in case of contributor), but also 

how to perform the testing on connected devices. For example, the settings can be made for 

which or how many applications to test. The technical interface of the system for contributors, as 

well as OS and hardware producers, is almost the same. 

The innovative feature of CTOMS is its testing model that serves as an internal 

mechanism and additional service for users (layer inside cloud on the figure 4). This aspect and 

general testing techniques application are described in more details in the section 3.5.  

The databases in CTOMS store the software (applications and OS versions), the testing 

results, the statistical information about testing, and user information for granting privileges 

based on the billing and for providing multi-tenancy, etc. 

This work with devices requires the development of three additional layers: load 

balancing of tests execution, diagnostic facilities, and heterogeneous device connections. All of 

these layers (inside the cloud in figure 4) should be investigated in accordance with earlier 

specified new use cases, along with the creation of corresponding methodologies. Load 

balancing of tests execution system means algorithms to distribute test cases between connected 

smartphones in optimal ways with respect to time of operation and wait time of other users. 

Simultaneously, general scalability should also be taken into account. All these questions are 

discussed from the implementation point of view in the chapter 4. 

3.2 Choose of the High-level Cloud Architecture 

The high-level architecture of the current CTOMS implementation satisfies the 

requirements of desired integrated TaaS solution. From an architectural point of view, CTOMS 

is a distributed system that can be implemented in different ways. Architecture depends mainly 

on  the  organization  of  a  dominant  “cloud  of  devices”  core  feature. Other core sub-systems (e.g., 
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static analysis and statistics) are simpler web applications that do not require special load 

balancing or synchronization of data but, of course, can be deployed to some cloud 

infrastructures. The following list presents   the   variants   of   CTOMS’s   possible   implementation  

from a cloud-less to a cloud-full solution: 

1. Single server. This system consists of the one web application that operates 

connected devices and/or emulators, manages a local database, and provides 

extended web interface to end-users. Devices can be connected by TCP (e.g., 

Wi-Fi) or through USB. Of course, such a solution is not scalable and has crucial 

limitations on the number of operated devices. 

2. Several servers. This system represents master-slave architecture, i.e., one server 

serves as the master that provides a web interface to end-users. Others serve as 

slaves  or  leaf  nodes  that  operate  devices  (henceforth,  terminology  “node”  will  be  

used). Node computers perform a series of tests, gather statistics, and provide the 

results to the master. Such a solution does not use the power of cloud computing 

to increase efficiency of testing. For instance, it will be slow just in case many 

requests are made at the same time. 

3. Master application in the cloud. This solution is similar to a previous one, except 

the master application is deployed to some cloud (e.g. Platform-as-a-Service, 

PaaS). In this case, the system leverages the power of auto-balancing for master 

application and auto-replication for its data storage. Usage of adequate algorithms 

for test distribution should guarantee a satisfactory speed for the service. 

4. Cloud infrastructure. This distributed system is built from the infrastructure level 

with the aim of providing desired functionality. In other words, algorithms to 

distribute tests (i.e., load balancing of the test execution layer) are integrated into 
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the infrastructure. This is the highest level of cloud nature that should guarantee 

the highest efficiency of work. 

This thesis advocates the third variant because it has cloud nature with perceived 

adequate efficiency and is feasible for implementation by a small research team. The table 3 

presents detailed comparison and justification of the selection. Four parameters were considered 

for the four variants of architecture listed above: ease of scaling, cloud efficiency, complexity of 

implementation and economical issue, i.e. price of solution. Variants that satisfy certain feature 

within the current study have 1 in the correspondent column, otherwise 0 (weights of each 

parameter are approximately equivalent within the scope of the current study). In the result, the 

chosen variant 3 has the greatest overall value, 4. 

Table 3: Cloud Architecture Comparison and Selection for CTOMS 

Architecture Scalability Cloud efficiency Complexity Budget Overall 

Variant # 1 0 0 1 1 2 

Variant # 2 1 0 1 1 3 

Variant # 3 1 1 1 1 4 

Variant # 4 1 1 0 0 2 

 

Figure 5 illustrates the architecture of CTOMS according to the third level of distributed 

system implementation. This approach separates the presentation and the platform and the 

information logical layers of the cloud solution, which is similar to the notation used in [35]. 

The platform layer is represented by the master application, e.g., on Google App Engine 

(GAE) cloud [150], and optional Hadoop instances layer that leverages the MapReduce 

algorithm to distribute a test between nodes and the gather the results. Hadoop instances can be 
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organized on other clouds (e.g., Amazon EC2). The master application provides the presentation 

to the end-user and to slave node computers. 
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Figure 5: Architecture of CTOMS Platform as a Cloud System 

The information layer is represented by the cloud data storage. We use notion data 

storage instead of a database to highlight that a system also needs to efficiently keep files 

(binaries, source codes, test scripts, screenshots, etc.), so some cloud storage can be used. 
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Figure 6: A Variant of the CTOMS Architecture 
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Figure 6 illustrates the same three-level architecture highlighting the separate components. 

Communication between subsystems through the Internet (web services) provides a convenient 

scaling of layer 3. Slave node (leaf) computers with smartphones can be easily connected to a 

master application in the cloud. They could also operate emulators (virtual Android devices 

marked with a dashed line). The interface for working with emulators and devices is the same. 

The following two sections describe design of the CTOMS application that works on the 

node computers and the CTOMS master application that works in the cloud respectively. 

3.3 The CTOMS Node Architecture 

Node application serves as a slave server application. It is supposed to be installed on the 

contributor’s  site  to  operate  connected  devices.  The  main  responsibilities  of  a  node  are  managing  

devices, performing tests, and general settings of interconnections with the master. 

Figure 7 illustrates the current architecture of the CTOMS node application. The figure 

shows that the node provides two interfaces: a web interface to the local user and a web services 

tier to communicate with the master application. The first interface is used for settings, device 

information adjustments, and local application testing   to   check   the   system’s   serviceability.  

Corresponding sub-systems are discussed below. 

The device manager uses SDK through the device driver to retrieve information about 

connected devices. The present CTOMS version is targeted at Android testing only, so Android 

SDK [113] is used, but the architecture is universal and specific components can be substituted 

(e.g., to update the current structure for the Windows Phone platform, another SDK can be used 

during system implementation). The user (administrator of particular node computer) adjusts the 

device information (i.e., vendor, size of memory, type of Internet connection, etc.) to send to the 

master application. At the same time, the user can choose active devices for local test sessions. 

The device manager keeps all information in the internal (embedded) database. 
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The testing manager uses the testing driver to operate the testing tools, e.g., tools for GUI 

test automation using scripts [101]). The testing manager consists of two supporting components: 

test preparation utility and test queue. The first component is used to adjust the test scripts or test 

commands, (e.g., to parallelize them to run simultaneously on several connected devices; such an 

approach is implemented in the current CTOMS version for Monkeyrunner scripts [101]). The 

second component is used to establish the order of performed test sessions. The testing process 

uses a local file system to prepare test scripts and save temporary screenshots, etc. 

The settings manager operates with general settings: the path to SDK, the URL address of 

the master application, etc. 

Figure 7 shows that the architecture of a CTOMS node has a cross structure based on 

total reuse of the internal components. This means that the same functions can be performed 

during local testing by the user-administrator or by a request from the master application. 

Additional attention must be given to the web services tier. Two variants of the 

organization of the interconnections with the master application are possible: 

 Web services are exposed through a public IP address. This means that the node 

must be accessible through the Internet. 

 The logic of universal periodical calls from node application to master must be 

determined. 

Each of the variants has pros and cons. While the first one is usually complicated to 

establish, the second one increases Internet traffic and the load on the master application and 

decreases the service speed. The current CTOMS solution uses the first variant because of 

economic reasons. The GAE offers a free service within limited usage of the cloud that includes 

quotes on the number of http requests. Thus the second solution could be expensive in the case of 

multi-nodes and long-term usage. Supporting approaches such as localtunnel [151] and 
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forwardhq [152] are widely used during development to expose the local web server to the 

Internet 
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Figure 7: Architecture of the CTOMS Node 

3.4 The CTOMS Master Architecture 

The master application of the CTOMS system aims to organize the core functionality of 

the integrated TaaS solution. It collects information about the whole system, organizes the work 

of   nodes,   and   gathers   testing   results   from   them.   These   functionalities   represent   the   “cloud   of  

devices”   core   sub-system. In addition, the master application keeps statistics and artifacts in 

cloud data storage and can contain static analysis facilities. The architecture discussed in this 

section does not reflect static analysis because it requires another fundamental study, but instead 

shows the integration of functional testing techniques (i.e., one of the higher-level layers). Figure 
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8 shows the architecture of the current CTOMS master application. The architecture like the 

CTOMS node contains two interfaces (presentation layers): web interface to end-user and web 

services to communicate with slave nodes. The proposed minimal list of web services should 

contain the following groups: 

 Nodes info. Service that node application invokes to send information about 

available devices and general settings such as password for node. 

 Load check. Service that master application invokes from node to get information 

about test queue (i.e., load on the slave server). 

 Testing process. Set of services to send testing task (binary, test script, list of 

devices, etc.), to get test results and upload/download artifacts. 

 External APIs. These serve as interfaces to external tools (services), which 

provide calculations for some testing techniques. For instance, the current 

CTOMS implementation uses a NIST ACTS tool wrapped into APIs (but as an 

embedded library) to build the coverage of configurations. 

 

Figure 8: Architecture of the CTOMS master 
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As for the number of web services groups, four main components exist in the system: 

nodes manager, testing techniques provider, testing controller, and load balancing controller. 

Each of these uses cloud data storage (database), but mostly the testing controller because it 

manages many test artifacts. Users manager and roles manager layers are above the working 

components and provide service settings depending on the current user and his/her chosen role 

(perspective).  

The next issue is load balancing that is described in details along with implemented 

solution in the next chapter. 

3.5 Test Techniques Integration Methodology 

The CTOMS framework represents a core platform that can add many layers of 

additional functionality, i.e., with different ways and approaches of testing. For instance, 

different test automation drivers can be used, static analysis of applications can be integrated, or 

manual access to smartphones through a web interface can be provided, etc. The idea is that the 

CTOMS framework will be enhanced by crowdsourcing. Different researchers will add new 

functionalities, if required by the scope of their studies. 

This section provides an analysis of possible enhancements and a methodology of test 

applications using CTOMS. It attempts to cover all possible directions, including possible 

formats and scenarios of testing, requirements for the test environment, and types of testing. All 

of these topics are analyzed, given the needs of modern mobile testing, in the following sections. 

3.5.1 Scenarios and Formats of Testing 

Support for different scenarios of testing is covered by the implemented multidirectional 

testing concept. General mobile testing includes verification of each of its components: mobile 

applications, mobile OS, and mobile devices. The following list details the possible use cases: 
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 An application can be tested against a device or an OS version by using special 

test scripts provided by testers (or somehow generated). 

 A device model can be tested against an app or an OS version running test scripts 

that were used to test this app or an OS version on an approved model and then 

comparing the results. 

 An OS version can be tested against an app the same way as a device model, and 

it can be tested against a device, e.g., running scripts without a binary apk-file. 

Aforementioned use cases are implemented in the current CTOMS version (see section 

4.1 for details). For instance, a user can test his private device connected to the system against 

some public test scripts and available trustworthy correct results. This can be a new smartphone 

model or an older approved device with a new version of Android installed. At the same time, 

user can test just a functionality of OS uploading no Android app during test session.  

Automate test generation was not considered as a part of CTOMS, but some services to 

facilitate a tester’s   work   can   be   integrated.   For   now on, additional work was done to accept 

regular test scripts. The benefit is that users can upload to CTOMS test scripts that they use 

inside their companies (for local testing or within continuous integration process). Only small 

requirements to the structure of a test script remain, but the script parallelization (adjustment to 

run it simultaneously on specific devices in the system) is automatically done by CTOMS (see 

section 4.3.2 for details). 

The following formats of testing are summarized for the current study as follows: 

 Automated testing (with test scripts) 

 Manual testing (full access to a device) 

 Back-end server testing 
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Automated testing means usage of test scripts that will be run on manually selected 

smartphones or those selected according to some criteria. Different test scripts are possible, 

including GUI-based or unit-testing, key-driven or data-driven scripts, etc. Different frameworks 

can be leveraged like Monkeyrunner (current solution), Robotium, Calabash-Android, etc. At the 

same time, the service can be extended with script recording, assistance of script generation, or 

other supporting functions. Results can be delivered as screenshots, video recordings, crash-log 

reports, console dumps, pass/fail sheet (especially in case of unit tests), etc. 

Manual testing means accessing a smartphone or a tablet through a web interface 

(HTML5) with full screen broadcasting. Users can simulate touches and other interactions with a 

device using a local PC mouse and a keyboard. Several commercial services exist with similar 

functionality [58], but for the current research this complex implementation functionality was not 

interesting. 

Back-end server testing means focusing on testing interactions of client mobile apps with 

their servers. The best part of mobile applications in the market serves as a client and is powered 

with cloud servers and databases. Their communication (typically through web services like 

REST APIs or Protocol Buffers) should be thoroughly tested for reliability, performance of 

servers, correctness of data, security transactions, etc. In this case, full emulation, or usage of a 

real device, is not required, but emulation of real-life smartphone app behavior is demanded 

(plus possibly some static analysis or even model-checking of interactions). 

 Implementation of these scenarios and formats has specific requirements within the test 

environment. This aspect is analyzed in the next subsection.   
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3.5.2 Test Automation Environment 

This subsection attempts to describe the requirements for devices in the cloud like 

CTOMS and specifically the environment in which they are placed. By environment, I mean all 

facilities for performing tests whether automated execution or manual access. 

General (implied) requirements are powerful node-servers, an available Internet 

connection (WiFi or mobile Internet on some devices), devices connected through a USB (bud 

possible variant of access through TCP), and set to debug mode (including disabled screen auto 

lock), etc.  

Given all available functionalities of modern mobile applications (devices and OS), we 

present the following list of main features: leveraging of sensors, multimedia, interactions with 

other applications, and peer-to-peer device communication. Testing needs of each such aspect 

are analyzed separately. 

Leveraging of sensors like an accelerometer, gyroscope, GPS-location, and photo-camera 

are the most complex parts. Remote testing of such hardware and mobile applications that use 

this hardware is a big challenge that requires a cloud platform to provide all possible 

manipulations for a device. Solutions to send mock GPS-coordinates exist [113], but 

simultaneous changes of accelerometer parameters or pictures in front of the camera while 

processing a test script require a lot of additional functionality from the test environment. Here, 

we consider the following possible general directions towards a solution: 

 Location (GPS)—Mock locations can be enabled on an Android device (and easily on an 

emulator [113]), but should be synchronized with the processing of a test script. 

 Accelerometer/gyroscope—Mock source code classes require access to code or special 

hardware solutions should be provided. 

 Complex gestures and multitouch—Advanced test script recording is required. 
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 Camera—A special default camera app is required that shows specified images (not a full 

solution),   streaming   of   user’s   web   camera   (seems   infeasible   for   now),   and   hardware  

solutions. 

The current CTOMS version implements a variant to work with a camera like a 

demonstration of the concept. It provides the ability to specify in a test script the URLs of images 

that will be accessible from the default camera app in Android system (see section 4.1 for 

details). It enables testing the mobile applications like QR-code readers or social networks, along 

with the functionality to post images or upload profile photos, but only when using the default 

camera app. 

At the same time, this described approach that worked with a camera during testing does 

not take into account the real physical parameters of specific cameras. For applications with 

elements of object-recognition [104] or augmented reality, the whole process of taking a picture 

from a camera should be tested (different angle, distance, and lights). All of these factors, in 

combination with the requirements to fully control the device and its position and all six degrees 

of freedom and environment (especially panorama), leads to the idea of full 3D broadcasting of a 

device to a tester via a web interface (see Figure 9). Obviously, advanced hardware solutions are 

required, e.g., an electronic hand to physically rotate a smartphone. 

Tester

CTOMS

Real Device

Advanced Web Interface
Special Physical 

Environment  

Figure 9: Example of the Remote Full Control over a Device Position 
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Multimedia features should be tested with full recordings of video, music, and animations. 

This is a crucial part for games and mobile applications with advanced graphics. An exhaustive 

test report will provide the ability to detect all possible glitches, even during small effects, 

transitions, and actions. 

Interactions with other applications. Many Android apps have some dependencies on 

other systems, default applications, or components. Interactions with different versions and sets 

of system apps must be thoroughly tested. The following list summarizes possible enhancements 

to the functionality of CTOMS: 

 Requirements for a test device to contain preinstalled applications (like system 

Google Maps, Facebook or Twitter) 

 Ability to specify dependencies on preinstalled applications in a test script 

 Ability to specify several applications that should be tested at once 

The last aspect is that there are mobile applications that rely on peer-to-peer device 

communication, e.g., games through Bluetooth. Testing these interactions require that the test 

environment provides the ability of simultaneous tests of an app on several devices. Thus, test 

scripts should be more powerful in supporting the descriptions of such distributed tests. 

3.5.3 Types of Testing Applicability 

This subsection deals with the question of the coverage of possible demanded types of 

testing. Obviously, many different testing needs can be requested by a specific situation. Table 4 

summarizes possible solutions for the main kinds of testing that can be implemented in a cloud 

platform like CTOMS. 

Thus, the current CTOMS version implements functional and UI testing through 

GUI-based automation and provides compatibility, interoperability, and regression testing. More 

details will be described in Chapter 4. 
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Table 4: Application of Different Types of Testing 

Type of Testing How can this be represented in CTOMS? 

Functional & UI 
Any GUI-based automation, manual access, gathering, and analysis 
of UI metrics and UX statistics 

Performance, load, 
stress 

Performance monitoring on both mobile client (e.g., frame counters) 
and back-end server (e.g., response time) 

Security  
Static analysis and dynamic fuzz testing (for both mobile client and 
server back-end) 

Compatibility Means testing on a variety of devices 

Interoperability  Means usage of other applications and software components 

Regression Means ability to rerun tests and record test scripts 

 

3.5.4 Coverage Calculation 

As was stated in Section 2.6 mobile testing requires a sophisticated coverage calculation. 

The whole set supported by mobile application device models with heterogeneous technical 

characteristics and OS versions with different sets of features cannot be exhaustively tested. 

Instead, a systematic criterion is needed. The idea of this thesis is to integrate testing coverage 

techniques within a device cloud like CTOMS. The focus was made using combinatorial 

approaches. 

First, the base choice approach was implemented. The following three variants of base 

case formation were considered: 

 Settings provided by the administrator manually and taken from statistics of 

popularity. 

 Automate requests to public APIs with statistics about mobile smartphones and 

Android like AppBrain [57]. 
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 Base case derived from smartphones presented in the system. 

In the current CTOMS version, the first variant is activated. The administrator provides 

which value of each parameter is the most dominant, i.e., the most popular in the market. At the 

same time, other variants can be easily enabled.  

CTOMS currently considers the following device parameters: vendor (producer) of the 

hardware, OS version (Android API level), type of Internet connection, screen resolution, size of 

RAM, and processor. The smartphone model, as a parameter, is not used because it represents a 

one-to-one relation, i.e., a device identifier. CTOMS can have several similar models connected, 

but embedded algorithms will use the only one for testing that is less loaded at the moment (see 

Section 4.4.2). Obviously, more characteristics can be found, but these are admittedly the main 

ones that require verification. It was decided to omit localization (and just specify it for manual 

selection of the device to test on) because too many values are possible (EN, FR, RU, etc.) 

making it hard to manage with any combinatorial technique. Typically, localizations that must be 

supported by a mobile application can be tested locally and do not require a device cloud. 

The CTOMS platform was set up with the list of the most popular mobile device 

producers [49], all Android OS families [153], groups of popular screen resolutions [154], and 

examples of processors present in the market. The list of Internet connection types contains WiFi, 

3G, 4G, and none. The size of the RAM is an arbitrary parameter that should be specified by a 

node administrator. 

 Second, the T-way testing was integrated by embedding the NIST ACTS tool into 

CTOMS [148]. In this case, another strategy to provide users with the ability to select exact lists 

of parameters and correspondent values was chosen. Thus, users can select all parameters they 

are interested in covering (from a possible six), refine lists of correspondent values, and select 
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the value of t for calculation. More details and demonstrative screenshots will be provided in 

Chapters 4 and 5. 

  

In conclusion to this chapter, we can state that a number of particular testing needs can 

be added to the CTOMS platform, and with time, it can evolve into really large enterprise system 

with many blocks of functionality. This is an additional aim of crowdsourcing using 

CTOMS—not just to use the cloud for separate investigations, but also to enhance the 

framework.  

The analysis provided above and the listings of possible solutions, directions, and 

workarounds can be used as a small methodology on how to develop CTOMS for deeper mobile 

testing research studies. The following chapters will show the current implementation solutions 

and the first case studies using CTOMS. 
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CHAPTER 4: THE CTOMS FRAMEWORK/IMPLEMENTATION 

This chapter describes the concrete implementation solutions of the current CTOMS 

version. Starting with implemented functionality, it provides details of how key design and 

architectural questions were solved. Possible enhancements for next versions and further 

improvement directions that require separate investigations are also discussed. Finally, 

conclusions provide a summary of the empirical evaluation of the created cloud system. 

4.1 Implemented Functionality 

This section describes the functionality of the actual CTOMS implementation more 

comprehensively. The available version of CTOMS was developed as a feasibility study with the 

following goals: 

 To meet technical risks given the resource-constrained research team 

 To create a demonstrative version of the main concepts 

 To obtain a platform that suffices for the first case studies with the flexibility to 

be extended and/or modernized 

Figure 10 illustrates the created system and points out that the end-user can operate both 

the node application on the local computer and the master application deployed in the cloud. The 

node application provides use cases more typical to the contributors of the devices (i.e., the 

participants in the crowdsourcing). The master application provides the final desired 

functionality of the system for mobile app developers. The possible role of the device/OS 

developer is more complex and requires the user to connect the target device to a node and to 

organize its testing through the master.  

The following key variants of usage are implemented. Mobile apps automate testing 

using Monkeyrunner test scripts. Monkeyrunner is the standard tool of Android SDK that 

provides automated execution of GUI-based tests written in Python [101]. A user in the role of a 
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mobile developer uploads binary and test files, which results in a set of screenshots taken from 

different devices for comparison. Functionality is available on both master and node applications. 

Such an approach appears easy to implement and mainly targets functional and user interface 

bugs. Additionally, a default device camera app can be used during tests, instead of a real camera, 

viewing of a screen with a text field to enter the URL of the target image and a button to snap it. 

Such functionality demonstrates the leveraging of mobile sensors during testing (see Section 

3.5.2 for details). 

This CTOMS version implements the application of combinatorial testing techniques. 

The master application provides functionality to test mobile applications according to selected 

coverage of configurations criterion: base choice and t-way testing. Under these “configurations,” 

the system understands the possible combinations of parameters, such as device producer, 

version of Android OS, screen resolution, type of Internet connection, and memory size, etc. 

As for multidirectional testing, in the master application, the user can specify him/herself 

as a device or OS developer and check one (or several) of privately connected devices (or the OS 

installed on this device) against chosen applications. In the results, the user receives screenshots 

for comparison with information collected during previous testing of these applications (i.e., with 

Oracle screenshots that are marked  as  “correct”  in  the  system). At the same time the user is not 

required to use an app for testing, only test scrip is required that can interacts with OS and test it. 

Cloud Infrastructure

Device / OS 
Producer

Node settings 
and local apps 

testing

Whole 
functionality of 
cloud system

Contributor Apps Developer

Node 
Application

Master 
Application

 

Figure 10: First CTOMS Platform Implementation 
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The following sections describe the CTOMS Node and CTOMS Master, respectively. 

The details are provided from UI to source code solutions. 

4.2 Notes on the Process of Development 

The CTOMS was developed according to the iterative process with SCRUM-like 

meetings with the thesis director in the role of a targeted user. The following main iterations 

were performed: 

1. A feasibility study was conducted on the utilities to work with Android SDK 

(ADB and Monkeyrunner) were developed. Other alternatives were analyzed. 

2. The CTOMS Node implementation includes the simplified interface of local 

testing, i.e., finished functionality. 

3. The CTOMS Master implementation involves mocked nodes and dummy data. 

4. Implementation of the Master-Node communication covers the whole web 

services tier. 

5. Testing, bug fixing, and demo case studies processing were performed. 

The following sections describe CTOMS deliverables according to the logic of the 

iterations listed above. We start from the CTOMS Node that provides the core functionality of 

test automation and interaction with devices. The CTOMS Master transforms the platform to the 

real distributed system by providing high-level cloud interface, scenarios, and algorithms. It 

leverages nodes with a special protocol and agreement of communication.  

To finish the brief description of the process used, it is worth mentioning the software 

engineering methods that were used: 

 Separation of UI, business logic, and work with data; elements of 

Model-View-Controller (MVC) pattern 
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 Several-steps code reviews and refactoring, application of the trustful Java 

patterns, and self-documented code 

 Verification on Mac OS and Windows platforms 

 Implementation of an extended logging within the Master application in the cloud 

 Adhering to all guidelines for GAE and VAADIN projects [155] 

 Usage of a simple Dropbox service [156] to keep project versions (full software 

configuration management and version control not required because of a single 

developer) 

 Final black-box testing covering all use-cases and different flows 

Usage of the more systematic approaches like unit testing (JUnit), usage of Git, and some 

issue-tracking system, JMetter and other testing tools will be required with the crowdsourcing 

evolution of the platform. 

To summarize, this subsection provides some brief metrics to describe the size of the 

CTOMS project and the efforts put into it. Four months were spent to finish all iterations by 

working periodically in the evenings. The overall estimation is considered to be one month of 

full-time labor (to create CTOMS with sufficient level of quality). 

In the results, the created CTOMS version has the following sizes: 

 CTOMS Node has more than 4,500 lines of code that cover more than 50 classes. 

 CTOMS Master has more than 9,500 lines of code and more than 100 classes. 

4.3 The CTOMS Node Implementation 

This subsection lists the technical notes on the actual CTOMS node implementation. The 

process of the CTOMS Node configuration is explained. Figure 11 shows the general settings 

that an administrator must provide for correct work: 
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1. Absolute paths to ADB and Monkeyrunner tools from Android SDK if they are 

not added to system PATH 

2. URL to chosen master server (e.g., the current http://ctoms-strg.appspot.com) 

3. General passphrase to use CTOMS system (you need to get one from support) 

4. Chosen node name and passphrase that will be used to restrict access for your 

private devices 

5. Public URL of your node (Figure 11 shows usage of such solutions like 

Forwardhq [152]) 

The next step of a node set-up is to configure a device and register the node in the system. 

Figure 12 shows a list of automatically detected devices connected to the node and the entered 

values. The CTOMS Node also provides a unique device token and guesses the model. The 

following information should be provided for each device: 

1. General flags if the device is active, shared, used for local testing, etc. 

2. Model parameters include the vendor (producer), Android API level, screen 

resolution, size of memory, and other including specifying localization (see 

Section 3.5.4). 

3. Flag if advanced AndroidViewClient tests are supported for a device; this is an 

extension for Monkeyrunner. Requirements can be found here [157], including 

the presence of AndroidViewClient library on a node. 

4. Flag if CTOMSFakeCam is installed as a default app on a device and can be used 

in test scripts. 

For the second item, it is suggested to use “Get possible values” button to retrieve official 

values (approved by CTOMS Master) for device descriptions and to select from them. Custom 

ones also can be provided, and the administrator of the CTOMS Master will have the opportunity 
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to approve them as new ones. This approach is necessary to mitigate the problem of different 

spellings for the same parameters.  

 

Figure 11: The CTOMS Node Screenshot for General Settings 

 

Figure 12: The CTOMS Node Screenshot for Configuration of Devices 

The last suggested configuration step is to make the CTOMSFakeCam Android app be a 

default camera app on each connected device. This gives the ability to specify images by URL as 

taken by the camera during testing. Instead of a usual camera tester creating a test script, users 
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should expect a screen with a text input field to enter URL of a certain image and a button to 

snap a photo, i.e., to use a provided image (see case study number 2). The implementation is 

similar to [158], but differs with substituting a photo by an image specified by the URL. 

Additionally, some Android devices support settings to show touches and screen 

coordinates for UI debugging. Those can be activated for all connected mobile devices. 

All CTOMS Node configurations can be updated remotely (through web access to the 

application on a node machine), that can be useful especially in case of device settings 

adjustments. The CTOMS Node also supports local testing to verify the set-up. The following 

two advices are given to the user of CTOMS about testing: 

1. Use a test script similar to that provided in Appendixes A and C of this thesis, i.e., 

simple Monkeyrunner scripts for a one device with the identical function to take a 

screenshot. This is needed to insure the correctness of the script update to support 

simultaneous execution on several devices. 

2. If the user needs to find a package and Main Activity of a third-party APK file to 

provide them in a test script (what to launch), different variants exist, e.g., the 

following command “aapt dump xmltree AndroidManifest.xml”   (aapt   is   another  

standard Android SDK tool). As a possible further extension to the framework, it 

is planned to fully automate via CTOMS interface the process of downloading 

and installation of an app from Google Play for research testing (user will just 

have to select which app he wants to test). 

The following subsections describe technical solutions of the key functionalities 

implementation, including general project structure and interactions with Android SDK. 
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4.3.1 Overall Structure and Deployment 

If a user wants to participate as a contributor or hardware/OS developer, he/she needs to 

download the CTOMS Node web application. It can be installed as any web java application or 

just by running   “java-jar   CTOMSNode.war.”   For   convenience,   it   was   packed   as   a  

self-executable war file with embedded light Tomcat 7 server (servlet container). 

Technical notes on the CTOMS Node implementation are as follows: 

 The VAADIN framework [159] was used to implement a whole user web 

interface because it provides the rapid development of modern web applications 

(not websites) as desktop ones. 

 Internal lightweight Derby database [160] was used to organize the embedded 

database. 

 Jersey JAX-RS reference implementation was used to expose RESTful web 

services [161].  

 The testing queue organizes the sequential execution of the different testing 

sessions within web server and is implemented using Hazelcast distributed lock 

[162]. 

 All test artifacts, including the results, are being stored in the file system with the 

special hierarchy of directories. 

The details of the project structure at the source code level are presented in the following 

three figures. Figure 13 provides a UML class diagram of the model entities and data access 

objects (DAO). Work with database is implemented through JPA technology, and special Java 

classes (mapped to correspondent tables in the database) were created to keep device 

configurations (DeviceEntity), general settings (SettingsEntity), information about local test 

sessions (TestsSessionEntity), and approved values for parameters received from master 
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(ValueHolder). The singleton DaoProvider represents a factory that provides service classes for 

each entity table. These services classes (like DeviceService or TestSessionService) provide 

methods to perform needed CRUD operations. 

 

Figure 13: The CTOMS Node Class Diagram for the Data Level 

 

Figure 14: The CTOMS Node Class Diagram for Working with Android SDK 
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 Figure 14 illustrates a set of utility classes to work with the environment, specifically, 

Android SDK. For instance, ADBUtil and AndroidOperationService provide an interface to 

retrieve a list of connected devices and their models (getApproximateModelForDevice method, 

approximate   because   this   approach   uses   parsing   of   a   device’s   properties   retrieved   from   the  

Android shell and the format of information is not strictly standardized). ScriptUtil processes the 

initial test script by replacing a code for one connected device with the code that operates 

selected devices (using their tokens). The same screenshots are being taken as is specified in the 

original script, but with updated script they are taken for each device, sorted by a timestamp, and 

put in separate dedicated folders. Further screenshots can be easily retrieved and shown in an 

organized way. More details about working with Android SDK are discussed in the next 

subsection. 

 

Figure 15: The CTOMS Node Class Diagram for Performing Tests 

Figure 15 shows the classes that perform the business logic of testing. 

TestSessionManager manages test sessions and required work with the file system. 

TestController starts the testing process by finally using ScriptManager (driver class to run 

Monkeyrunner scripts). StartTestEndpoint is a REST service that the master application invokes 
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to submit a test task. TestRunnable is presented to highlight how the waiting queue of a test 

session is organized just by locking threads (using a distributed lock that works across processes 

of a web server).  

All class diagrams were constructed using a reverse engineering technique to check the 

correctness of the implemented ideas. 

 The common approach used was the organization of the code like a set of singleton 

managers (implemented as a numeration in Java) powered by correspondent interfaces. This 

decision is justified by the fact that the provided functionality is greatly heterogeneous, and so 

keeping logic classes independent will increase the ability to reuse or change. Additionally, 

further extensions like new drivers will appear like new manager classes supporting similar 

interfaces and combined by a factory provider. 

4.3.2 Interactions with Android SDK 

The   current   version   of   the   node   application   uses   the   “adb” command line tool (ADB, 

Android Debug Bridge) from SDK to retrieve information about connected devices and the 

Monkeyrunner tool for testing. Test scripts are assumed to be real test scripts used by a 

development team on its own site, but aimed at screenshot-based testing. This means the script 

should use standard Monkeyrunner facilities to save screenshots for desired checkpoints and that 

the user-tester will have the ability to compare screenshots taken from different models. 

The stable and portable version of operating with ADB and Monkeyrunner required some 

non-trivial solutions and workarounds. First, problems occur with a single format of tools 

execution from Java that will work on both Windows and Linux-related systems (CTOMS Node 

was fully tested on Mac OS). The problem with Monkeyrunner was the most representative. It 

was caused by the fact that Monkeyrunner is an executable script program in Android SDK for 
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Mac OS, but is a bat-file on Windows that cannot be launched as an executable file. This forced 

us to use EnvironmentUtil (Figure 14) to detect the current OS. 

Second, the advanced engine to work with external tools was coded so that it (1) works 

with different paths, (2) handles output streams in a separate threads (to not miss or lock 

anything), (3) properly closes all streams in any case, (4) reliably handles exceptions, and (5) 

reads output to determine result of testing (success or some error message that should be shown 

as a status for a test session).  

All this code is rather self-documented and can be usefully reused if published as open 

source (or distributed in other way). 

4.4 The CTOMS Master Implementation 

The master application provides the user with the list of all devices connected to the 

system and organizes the testing of the same application on different nodes, if needed. An initial 

load balancing approach is used, i.e., the selection of the freest nodes that have the desired model 

connected (see next subsection). 

The master application adds additional functionality for mobile app developers to apply 

combinatorial techniques for testing. The user can chose a set of models to test on, not manually, 

but using, for instance, a pair-wise approach. An example of this application for different 

Android configurations can be found at [21]. To calculate the required test cases, CTOMS uses 

the ACTS tool provided by NIST and integrated as a library within the project. 

It   was   decided   that   two   possible   perspectives   (“For   App   Developers”   and   “For  

Device/OS  Developers”)  are  enough  to  cover  all  demanded  use  cases  and  additional  scenarios  of 

multidirectional testing. 

The For App Developers perspective is mainly focused on testing a new app (that is the 

most common use case). Additionally, a user can test an APK of an existing application, choose 
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a set of devices with fixed hardware or OS to perform investigations, and execute a test script 

without APK (testing of OS). All publicly available devices (from all nodes) are accessible 

through this perspective. 

 

Figure 16: The CTOMS Master Screenshot for Device Selection 

 

Figure 17: The CTOMS Master Screenshot for Testing Tab 
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The For Device/OS Developers perspective is mainly focused on testing a new device/OS. 

A user can test the own device connected to the cloud against those available in the system test 

logs of mobile apps (or just test scripts), and whether the device represents new hardware or 

contains an installed new OS version. Additionally, the user can choose a set of devices with 

fixed hardware or OS to perform investigations. All connected devices in the system can be 

found in the list. 

Figure 16 presents a screenshot of the perspective for app developers on the CTOMS 

Master, or more precisely, the screen for the manual exact selection of devices to test an app on. 

More screenshots, including explanations of the combinatorial techniques interface, can be found 

in Chapter 5. Figure 17 illustrates the testing tab. The screen contains a menu to start a new test 

session and upload correspondent artifacts. A series of screenshots are shown for the LinkedIn 

app testing on a pair of devices. 

4.4.1 Google App Engine Deployment 

The master is implemented as a Google App Engine Java web application. A user 

interface is also developed using the popular VAADIN framework, and the RESTful web 

services tier uses Jersey implementation. File storing is implemented through GAE Blobstore, 

and the usage of cloud data storage is considered as an alternative variant for future versions 

[150]. 

Most screens of the VAADIN interface are table-based (both for CTOMS Master and 

CTOMS Node). The inheritance of the BeanItemContainer is widely used. There are some 

acknowledged issues with VAADIN and Google App Engine compatibility, but all necessary 

guidelines were followed [155]. 
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The source code of the project consists of the following parts: entities and work with 

GAE database, general managers, test controls, RESTful web services, and test technique 

providers. 

The model is similar but much greater than in the CTOMS Node. Such entities like test 

session for device testing, test result record (per device), test settings, and approved values of 

device parameters are added. Test settings are used to immediately maintain entered settings by a 

user, so to not lose them during screen transition. At the same time, the CTOMS Master operates 

a lot with DevicePattern class that can be derived from DeviceEntity. 

Figure 18 shows examples of used managers to track the current user, to operate with 

information about connected nodes, to log errors, etc. It also shows the main classes for test 

launching. TestDistributor selects the nodes based on requested devices or patterns (parameter 

configurations) with respect to load balancing (see next subsection). NodeRestClient uses Jersey 

Client to invoke ping rest service (to start testing) on a node. 

 

Figure 18: The CTOMS Master Class Diagram for Managers and Test Controls 
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Figure 19: The CTOMS Master Class Diagram for Test Techniques Providers 

4.4.2 Load-balancing for Test Distribution 

In the current CTOMS architecture, load-balancing mechanisms for test distribution are 

fully implemented by the master. This thesis deals with a simplified version of the generally 

complex optimization problem. The CTOMS Master operates with the size of test queues per a 

single node, while in the full version it should consider the loading of a separate device. The 

justification for this approach is the fact that in this CTOMS version (using Monkeyrunner) test 

sessions on each node are being executed sequentially, i.e., one at a time, so there is no need to 

consider tests for different devices separately. 

Let’s  define  the  actual  problem  of  test  distribution.  After  a  user  manually  selects  a  list  of  

concrete device models to test on or a list of device patterns (set of parameters) is generated 

according to some combinatorial coverage, the system analyzes all connected smartphones and 

generates  the  list  of  device  baskets.  Each  basket  contains  “equal”  devices  for  the  current  session  

(i.e., identical models in the case of manual selections or devices that correspond to certain 

patterns  of  parameters).  To  fulfill  the  user’s  request,  the  CTOMS  Master  should  then  select  one  

device from each basket on which to perform the testing. This selection must be made in optimal 

way to provide the fastest testing. Figure 20 illustrates the process. The simple lines show 
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possible selections, the bold lines show selected concrete devices, and the dashed line show 

scenario if we consider load per a device. 

...

Device Baskets

Node 1 Node 2 Node 3  

Figure 20: The Test Distribution Process 

To make the selection of concrete devices effective, the CTOMS Master should consider 

the current load (i.e., number of test sessions in the queue) of each node. In the current study, we 

do not consider time costs for task sending, so there is not much benefit if we try to minimize the 

number of nodes. At the same time, the results are uploaded to the master per each device. So the 

following summarizes the problem and general simplified solution that can be implemented. 

Input: list of sets of devices connected to the system 

Output: list of nodes and for each node a set of devices to launch a test case on 

Solution: The algorithm should select such a list of nodes l, that max(load(li)) will be 

minimal (they will work in parallel), where load() can return size of the current test queue on a 

certain node. 

The implementation of this algorithm requires the CTOMS Node to report its current load 

when  sending  node  info  to  the  master  (0  during  the  “registration”  and  changed  value  after  “ping”  

and finish of testing). 
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The current version of CTOMS does not implement the aforementioned approach. The 

reason is that, given the current small sizes of the platform usage, the current efficiency is 

enough. It will be sensible to spend time and effort on advanced test distribution implementation 

with start of crowdsourcing process. Currently, a greedy algorithm is used that goes through the 

list of device baskets, takes an arbitrary node that contains a representative of the basket, saves it 

to results, and figures out what other baskets can be covered by this node and be removed from 

the list and further consideration. The greedy approach can be instantly improved by choosing 

not an arbitrary node, but a node that covers the bigger number of baskets (it can be gained by 

sorting the lists of possible nodes for each basket).   

4.5 Master-Node Communication 

This section explains the format and process of communication between master and node 

applications. As was mentioned previously, the constraint was imposed to minimize the number 

of calls because free usage of Google App Engine has a quote on the number of requests. At the 

same time, the system should still be easily scalable and convenient in use. All these resulted in 

the rejection of the interaction pattern with periodical calls for information updates and in 

extensive  use  of  updates  per  demand  (refresh  buttons  in  UI,  update  of  a  node’s  info  only  in  case  

of testing request, etc.). However, the architecture of web services was developed with the 

respect to possible further enabling of automatic data updates. Figure 21 illustrates the main 

requests and scenario of call sequence. The main points are summarized in the following list: 

1. One service and format of the message  is  used  to  provide  registration  and  a  node’s  

information update (node name, list of devices, passphrase to use private devices, 

etc.). The registration of a node is secured with a token that should be received 

from the CTOMS administrator. 
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2. The master  uses  a  ping  service  to  update  a  node’s  information  by  demand  (or  just  

to check if it is still online). At the same time, the ping is used to invoke a test 

session. The node immediately answers with the current status and resumes 

testing in asynchronous mode. The waiting queue to process test session 

sequentially is organized implicitly by using Hazelcast distributed lock [162].  

3. As a consequence to the previous item, CTOMS Node should be accessible by 

HTTP from the master (public IP, ssh tunneling like [151] and [152], etc.). This is 

the main disadvantage of absence of periodical requests. Otherwise, a node could 

sent ping requests to the master by timer with small interval and quickly receive 

actions in the response. 

4. The CTOMS Node downloads test artifacts (APK binary file and Python test 

script) not via the direct call to the GAE Data Store (files are not publicly 

exposed), but through the request to master. It gives an opportunity to provide 

access secured by a password to the files (actually, every call can be secured this 

way, and HTTPS is also possible on GAE). No caching of test artifacts on a 

node’s  site  is  currently  implemented. 

5. Uploading of the results is done per device (to minimize the size of the package). 

The series of screenshots is sent in the form of multipart data. Another benefit is 

that user can view partial results before all are uploaded (of course, by pressing a 

refresh button, because automatic UI updates are disabled for the current reason 

with the goal of economy). 

6. The Figure 21 doesn’t   show   the   calls   to   get   the   list   of   possible   parameters   and  

values of a device approved in the master. It is a simple service that just returns 

the whole array of data. 
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7. Figure 21 does not show the calls to Data Base, and CTOMS Master uses it each 

time the data update is requested. 

CTOMS Node CTOMS Master Data Store

Registration (Node Info)

Status, Assigned Token

Ping (Start Testing / Empty)

User Launches 
a Test Session

Administrator
Sets Up a Node

Download Test Artifacts Retrieves APK and Test Script

Returns Requested Files

Rorwards Requested Files

Upload Test Results Per Device 1

Testing with Monkeyrunnr

Upload Test Results Per Device N

...

Update (Node Info)

Save Screenshots

Save ScreenshotsUser can view 
partial and then full 
results

In case of 
Start Testing

...

Update (Node Info)

Process Test Session Async

 Figure 21: UML Sequence Diagram of Master-Node Interactions 

Jersey library [161] was used to implement RESTful web services. The following are 

examples of JSON messages for node registration and start testing ping, respectively. JSON 

format was used because of its efficiency and popularity among mobile developers. Furthermore, 

the CTOMS platform can be extended with correspondent documented APIs. The possible 

efficiency enhancement is the leveraging of Protocol Buffers [163]. 

An example of the message to register a node: 
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{ 
  "nodeInfo": { 
    "devices": [ 
      { 
        "active": "true", 
        "id": "1", 
        "internet": "WiFi", 
        "locale": "en", 
        "model": "U8665", 
        "name": "Alex's Fusion", 
        "openPublicly": "true", 
        "oslevel": "Gingerbread 10 (2.3.3-2.3.7)", 
        "processor": "Cortex < 1GHz", 
        "ram": "256", 
        "resolution": "320x480", 
        "selected": "true", 
        "supportAVC": "false", 
        "token": "8853D4FDBA9C", 
        "vendor": "Huawei" 
      }, 
      { 
        "active": "true", 
        "id": "4", 
        "internet": "WiFi", 
        "locale": "EN", 
        "model": "GT-P3113", 
        "name": "Alex's Tab", 
        "openPublicly": "true", 
        "oslevel": "Jelly Bean 16 (4.1)", 
        "processor": "Other", 
        "ram": "1024", 
        "resolution": "1024x600", 
        "selected": "false", 
        "supportAVC": "false", 
        "token": "c080841b21ddd21", 
        "vendor": "Samsung" 
      } 
    ], 
    "name": "AlexNode", 
    "nodeUrl": "https:\/\/ecuctoms.fwd.wf\/CTOMSNode", 
    "passphrase": "456", 
    "queue": "0", 
    "token": "63001" 
  } 
} 

 

An example of the ping message from CTOMS Master: 

{ 
  "againstApp": "false", 
  "apkName": "com.blackboard.android.central.ecu-1.apk", 
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  "apkUrl": "download\/securedBlobDownloader?blob-key=some_key", 
  "deviceTokens": [ 
    "8853D4FDBA9C", 
    "c080841b21ddd21" 
  ], 
  "nodeToken": "70001", 
  "scriptUrl": "download\/securedBlobDownloader?blob-key=some_key", 
  "sessionToken": "63002" 
} 

 

The current minimalistic web services tier is light and powerful enough to support all 

scaling needs. Other testing directions like a device against app does not require additional 

services because of the abstraction—the same testing is performed on a selected new device, and 

then the CTOMS Master compares the screenshots with available nominal ones. 

4.6 Notes on Scalability and Universality 

It was previously mentioned several times that CTOMS has a scalable and universal 

architecture. This short section explains what this means and how it is implemented. 

Scalability means that we easily can add nodes to the platform. It does not require a lot of 

efforts from a contributor and configuration of the CTOMS Node is quick. Lightweight services 

provide enough functionality to connect the whole system, and the CTOMS Master supports the 

work with multiple nodes. The only current limitation is the requirement that the node must be 

accessible through HTTP calls from the master, but it is explained by economic reasons, and a 

solution of continuous periodical status requests from node is proposed for further versions. 

Correct administration of connected Android devices is fully the task of  the  participant’s  

site in the current version. Some automatic approaches to analyze connected devices and retrieve 

all needed settings can be added later. The same situation with restrictions to uploaded test 

scripts and their check. 

Universal architecture in this CTOMS version means possible reuse of implemented 

solutions and design for the following purposes: 
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 To support other tests automation drivers [117, 74] 

 To support other mobile platforms [19] 

 To integrate and add other testing techniques or additional services 

As the third item was comprehensively discussed above, the first two address the 

similarities of working with different test automation tools or the similarities of mobile platforms 

(like SDK tools, debugging of smartphones, etc.).  

Of course, reuse is currently possible still on the code level, i.e., some changes are needed, 

but minimal ones. For instance, to support other test automation tools like Robotium [117], the 

implementation of a special driver class is needed, and some extensions to the user interface 

(ability to select a test script type), but the main architecture of the system will remain. Moreover, 

this main architecture can be used to implement a CTOMS addition for Windows Phone or 

another mobile platform. The process of interactions with correspondent SDK, retrieving a list of 

connected devices, sending test scripts, launching testing—will be similar. Of course, some 

differences exist and special workarounds will be needed, but key ideas will still remain. Such 

issues can occur with   different   platforms’   restrictions,   but   in   the   case   of   open-source mobile 

systems, it should not be a problem because a solution (at least a complicated one) will always 

exist. 

 

In the conclusion to this chapter, it is sensible to define the limitations of the current 

CTOMS  implementations  and  its  solutions  described  above.  From  the  expert’s  point  of  view and 

based on the conducted case studies discussed in the next chapter, the platform will work with 

satisfactory performance and convenience in case of the following: 

 Each node provides approximately up to 10 connected devices. 
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 Test scripts satisfy a simple pattern (see case studies in Chapter 4) and are aimed 

at taking 10–20 screenshots (per device). This means, usage of medium test cases, 

i.e., check of a one functionality per scrip, is preferable. 

 Support of more complicated test scripts (that use some extensions) may require 

improvements of the script parallelization logic. The issue can be mitigated in 

further versions by using more advanced test automation tools. 

 This CTOMS version is limited to provide testing through screenshot comparison 

(both UI and functional) that can be enhanced with pass/fail reports and device 

(crash) logs. 

 The platform can contain dozens of nodes (i.e. crowdsourcing participants and 

contributors), but launching a test on more than 10 devices can be lengthy by time. 

Ability to view partial results (for some devices) helps, but during long tests the 

probability of a connection lost from a node grows. 

 The CTOMS Node was tested on its compatibility with Mac OS and Windows. 

 Periodical problems with VAADIN and GAE compatibility (like session 

management) can occur. 

 Test script adjustments and re-testing are periodically needed because of such 

things like different Internet speeds on different devices, etc. Obviously, following 

up manual testing is also necessary. 

 The combinatorial coverage calculations implemented in CTOMS and generally 

testing on a range of devices are useful in case of a rather stable build of a mobile 

application or for experiments with an app from production. During initial stages 

of the development, remote access to any one smartphone is typically enough. 
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The list above provides empirical evaluation of CTOMS, but with the growth of a 

crowdsourcing system (i.e., involving participants), and hence a real geographically distributed 

system, more systematic analysis and assessment will be needed. 

There is a room for technical improvements and enhancements of CTOMS. There is an 

idea to make the code open source, i.e., to leverage crowdsourcing benefits for implementation 

improvements and bug fixing as well. It also will open the ability to reuse used architecture and 

solutions, or even to use CTOMS as an internal test automation system, i.e., privately deployed 

cloud within mobile development companies. 
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CHAPTER 5: CASE STUDY 

This chapter describes the two first-case studies of using the CTOMS. They serve as a 

demonstration of demanded functionality and novel use-cases and provide a summary of the 

framework’s  testing.  All  case  studies  described  below  were  conducted  using  two  nodes  (Mac  and  

Windows laptops) with connections to three different devices. Proper test distribution and 

convenient enough efficiency were simultaneously checked. The test scripts were prepared 

manually beforehand based on the aimed functionality to be verified. During the development of 

CTOMS, the specially implemented separate small Android application was used for testing and 

debugging. 

5.1 Testing ECU Mobile for Android 

The first mobile application tested was the ECU Mobile app for Android. It was chosen 

as an example of the application created by a rather small development team. This case study had 

the following aims: 

 To demonstrate mobile app testing using CTOMS 

 To demonstrate the selection of devices according to a provided coverage 

 To evaluate bug detectability of the framework 

 To test a hybrid mobile application (native and a web mobile part) 

The version of the ECU Mobile under the test was installed from Google Play on March 

28, 2013. The APK-file was simply copied from the file system of a mobile device. The name of 

the package and a start activity (screen) to be launched from the test script were retrieved from 
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the  binary  using  the  following  command:  “aapt dump xmltree AndroidManifest.xml”  (aapt   is  a  

standard Android SDK tool). 

The original Monkeyrunner test script using during case study is provided in Appendix A. 

The complete screenshot report according to the steps of testing can be examined in using 

Appendix B. 

5.1.1 Main Native App Testing 

Though ECU Mobile was tested using the one test script, we can split it into two parts: 

interactions with a native part of the application and testing of the Inner Pirate Network web app 

(launched from ECU Mobile and running in the mobile browser). 

The following checkpoints (i.e., screenshots to be taken) are described in the test script 

for the native part: 

1. Check appearance of a splash screen. 

2. Check appearance of a main screen. 

3. Slide to the second screen. 

4. Launch Inner Pirate Network by pressing a button. 

 



 78 

Figure 22: The Screenshot of T-way Coverage 

 

Testing was conducted on a Samsung Galaxy Tab 2 7.0 and an HTC Wildfire S (each on 

a separate node, Mac one and Windows one, respectively). They were selected from the results 

of t-way coverage calculation. Figure 22 demonstrates a list of configurations according to the 

chosen combinatorial technique and available models. 

 

       

Figure 23: The ECU Mobile Revealed Bugs 
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Such a small but heterogeneous variety of models gave the user the ability to detect 

several problems with GUI (generally minor ones, but highly noticeable). Figure 23 summarizes 

the all revealed defects, while the entire list of screenshots representing a test report can be found 

at Appendix B. 

First, defects with the sizes of the graphics were noticed. The pirate logo looks correct on 

the high-dimension screen of the Galaxy Tab, but is cut on smaller resolutions. At the same time, 

there are layout problems with the logo on the main screen (it is not fully visible and merges in 

color with button labels in the case of small screens). All these point to inaccurate work with the 

graphics and screen design during development (e.g., the developer has to provide several 

variants of the same image with different sizes for different families of screen resolution). 

Second, the Wildfire S set up for Russian language helped to reveal bugs with 

localization. Titles of some buttons were translated, but others were not. Such half-support of 

different languages points to the low quality of the project organization (localization should be 

provided fully for selected languages or just disabled for English). 

5.1.2 Web Mobile App Testing 

The launched in the test script Inner Pirate Network (IPN) web application was tested on 

a proper work of the beautiful popup menu. This popup menu occurs only in case of a small 

screen resolution (i.e. IPN on the Galaxy Tab looks different). So the test script is dynamic, it 

performs different actions with the menu based on retrieved actual sizes of the screen (see 

Appendix A). 

The test case included a re-tap of the menu without selecting any options, while taking 

screenshots to check the correct drawing. Overall, the screenshots were specified in the test script 

for three checkpoints. Surprisingly, a rather moderate bug was noticed: the popup menu resists 

showing up after a re-tap (only a top line is visible, see Figure 23). The follow-up manual check 
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(that is always required in case of any automate testing) proved the defect and explained that it 

occurs only if the user does not select a menu item. The first tap shows the menu, the second 

hides it, and the third fails. 

5.2 Testing LinkedIn for Android 

The second case study was conducted under a more popular and widespread Android 

application like LinkedIn. It was also assumed to be of a greater quality (to the respect of the size 

of the development company and long history of versions) and to have more complicated GUI 

(e.g., animations). The version under testing was also downloaded on March 28, 2013. The 

following devices were used: Samsung Galaxy Tab 2 7.0, HTC Wildfire S, and Huawei AT&T 

Fusion 2. This case study had the following aims: 

 To demonstrate interactions with mobile peripherals like a photo camera 

 To demonstrate multidirectional testing (fixed device against nominal results) 

The following subsections explain the steps taken. The test script used for verification 

can be found in Appendix C and the complete screenshot log is provided in Appendix D. 

5.2.1 Interactions with Photo Camera 

The first testing of the LinkedIn mobile application was conducted for two of the three 

devices (Galaxy Tab and Fusion on the same Mac node). The devices for testing were chosen via 

a manual (concrete) selection in the correspondent tab of the CTOMS Master. Overall, the test 

script for LinkedIn specified 10 screenshots to taken for correspondent checkpoints. The main 

functionality under testing was the change of a profile photo, but the test scenario started from 

the initial login screen (see Appendix C). 

To change a profile picture, all devices were properly configured, i.e., a developed 

CTOMSFakeCam Android application was installed and set up as a default camera app on each 

of   them.   It   provided   the   ability   to   test   the   “take   photo”   functionality  while   changing   a   profile  
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picture. The script anticipates that instead of a typical camera screen, a screen is used with a 

textbox to enter the image URL  (under  the  focus)  and  a  button  “snap”  to  use  this  image.  After  

clicking to snap, the activity downloads and returns to the app the specified image as if it was 

taken from real camera. 

Obviously such an approach will not help in the case of advanced applications that use 

camera API internally (without calls to the default camera app component in the system), e.g., 

advanced QR-code readers. At the same time, it is useful in case of social networks with profiles, 

posting of pictures, etc. 

Figure 24 shows some of the resulting screenshots. This picture was specified in the test 

script to be used instead of actually taken photo. 

 

Figure 24: The Interaction with Photo Camera during Testing 
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 Thus the current case study demonstrates the implementation of initial ideas regarding 

extended control of mobile sensors and peripherals, as well as the general test environment 

CTOMS smartphones should be placed in. 

5.2.2 Multidirectional Testing Demo 

Another aspect of this case study was to test multidirectional testing functionality. None 

of the screenshots taken from Galaxy Tab and Huawei was marked as failed, so the system 

obtained nominal screenshots. Test sessions of LinkeIn were shared (marked public), and from 

the  “For  Device/OS  Developers”  perspective,   the  Wildfire  S (marked as a hypothetical private 

new device) was tested against these test sessions. Wildfire S was connected to a separate node 

under Windows OS. Figure 25 illustrates comparison of newly taken screenshots and previous 

nominal ones. 

 

 Figure 25: The Screenshot of a Private (New) Device Testing 
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5.3 Future Research Using CTOMS 

The two main directions of future work with CTOMS are possible: (1) technical 

improvements and a variety of extensions and (2) conducting research and experiments. 

A variety of technical enhancements are possible. For instance, support of other test 

automation drivers, support of other mobile platforms, support of other testing techniques and 

test types (integrated statistics, security fuzz testing, static analysis, etc.), support of other mobile 

sensors, and ability to compare regression screenshots (taken from different builds of the same 

app) that are currently inactive. Crowdsourcing can be used to intensify CTOMS development as 

well. 

A variety of investigations are possible. Researchers can fix any component of the system 

(app, device, and OS) or parameter of a smartphone model and investigate mobile testing (e.g., 

effectiveness of testing) targeted at functional and UI defects. At the same time, different 

techniques or forms of testing can be applied. 

This thesis promotes as the next step more fundamental experiments of the correlation 

between OS updates and bugs that appeared in the popular and important widely used apps. The 

inspiration for this direction is provided by experience when a lot of tailoring is needed to an app 

under development after a new OS version is released, especially in the case of complicated 

applications with calls to low-level APIs or generally that do not use common approaches. 

 

In the conclusion to this chapter, we can state that the conducted case studies show the 

applicability of targeted concepts, desired functionality, and chosen design solutions. 

Additionally, the ability to test interactions with OS was also tested (i.e., uploading of a test 

script without any application). The CTOMS approach is compatible with most Android devices, 

but some occasional problems can occur in case of highly tailored and restricted models. For 
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instance, even with Huawei AT&T Fusion 2, we encountered a problem of a periodic resistance 

to taking a screenshot using standard Monkeyrunner. The problem is natural, as full control over 

a device requires root access that is entirely available on development devices but not on 

production ones. No critical problems were encountered with the efficiency, but they are 

anticipated with the growth of CTOMS and future enhancements were described previously. 

Finally, directions for future work were listed covering both technical enhancements and 

empirical research. 
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CHAPTER 6: CONCLUSION 

The work described in this thesis is aimed at improving cloud-based mobile testing and 

research cloud crowdsourcing in mobile testing. The author hopes that the results provided and 

contributions will be usefully applied and effectively leveraged for real purposes. 

The achievements include (1) an in-depth analysis of the state-of-the-art cloud-based 

mobile testing, (2) the creation of a methodology of test techniques application for mobile testing 

over a cloud, (3) the development of the CTOMS framework, and (4) the performance of two 

demonstrative case studies. 

The developed CTOMS platform provides a cloud service to run tests on a variety of 

remote Android devices using standard Monkeyrunner test scripts that focus on taken 

screenshots and a comparison of checkpoint screenshots. The platform consists of two parts: the 

master  deployed  at  Google  App  Engine  cloud  and  a  slave  node  to  be  deployed  at  a  participant’s  

site (on a server with connected smartphones). CTOMS provides the implementation for two 

demanded   novel   functionalities:   multidirectional   testing   and   orientation   test   techniques’  

integration. CTOMS provides a user with suggestions about coverage of configurations to test on 

using combinatorial approaches: base choice, pair-wise, and t-way (using NIST ACTS tool for 

calculations). The current CTOMS version supports automate functional testing of Android 

applications and detection of defects in user interfaces (that is highly demanded by modern 

mobile development). 

CTOMS provides ample room for technical extensions and conducted research 

experiments. Topical directions were analyzed and listed. 

Results of this thesis were already reflected in the two papers accepted at the top 

international conferences in software engineering [164, 165]. 
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APPENDIX A: TEST SCRIPT FOR ECU MOBILE 

import sys 
# Imports the monkeyrunner modules used by this program 
from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice 
 
# REQUIRED: Function to get and save screenshots is used 
def takeScreenshot(device, file): 
 MonkeyRunner.sleep(1.0) 
 result = device.takeSnapshot() 
 MonkeyRunner.sleep(1.0) 
 result.writeToFile(file, 'png') 
 MonkeyRunner.sleep(1.0)  
 
# REQUIRED: Test script connects only to the one current device 
device = MonkeyRunner.waitForConnection() 
 
# Installs the Android package 
device.installPackage('com.blackboard.android.central.ecu-1.apk') 
 
# Installation can take a time 
MonkeyRunner.sleep(5) 
 
# Runs the start activity 
package = 'com.blackboard.android.central.ecu' 
activity = 'com.blackboard.android.central.activity.SpringboardActivity' 
device.startActivity(component = package + '/' + activity) 
 
# Launching can take a time 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Splash screen 
takeScreenshot(device, 'ecu_test1_s0.png') 
 
MonkeyRunner.sleep(2) 
 
# Get device properties 
# REQUIRED: height and width are predefined names of variables 
# that will be duplicated for each device 
height = int(device.getProperty('display.height')) 
width = int(device.getProperty('display.width')) 
 
# CHECKPOINT: Main screen 1 
takeScreenshot(device, 'ecu_test1_s1.png') 
 
# Scrolling right 
device.drag((width - width / 10, 3 * height / 4), (width / 10, 3 * height / 4), 
1, 1) 
MonkeyRunner.sleep(2) 
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# CHECKPOINT: Main screen 2 
takeScreenshot(device, 'ecu_test1_s2.png') 
 
# Because after scrolling 
device.touch(60, 120, MonkeyDevice.DOWN_AND_UP) 
 
# Browser needs time 
MonkeyRunner.sleep(10) 
 
# CHECKPOINT: Inner Pirate Network 
takeScreenshot(device, 'ecu_test1_s3.png') 
 
# Only small screens will have the menu popup! 
device.touch(width - 20, height / 20, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Menu - 1 
takeScreenshot(device, 'ecu_test1_s4.png') 
 
# Should hide on second tap 
device.touch(width - 20, height / 20, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Menu - 2 
takeScreenshot(device, 'ecu_test1_s5.png') 
 
# Should appear again 
device.touch(width - 20, height / 20, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Menu - 3 
takeScreenshot(device, 'ecu_test1_s6.png') 
 
# REQUIRED: Presses the Home button 
device.press('KEYCODE_HOME', MonkeyDevice.DOWN_AND_UP) 
 
MonkeyRunner.sleep(2) 
 
# REQUIRED: Removes the app 
device.removePackage('com.blackboard.android.central.ecu') 
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APPENDIX B: SCREENSHOTS OF ECU MOBILE TESTING 

  

1) Shows the whole list of shared devices in the system. 

 

  

2) Shows possibility to use base choice combinatorial approach. 
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3) Shows usage of pair-wise coverage calculation. 

 

 

4) Shows selection of all available devices according to provided coverage. 
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5) Shows test session in progress (results from two devices are expected). 

 

  

6) Shows finished test session (and a problem with a splash screen). 
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7) Shows next two screenshots from the test report (problems with logo and localization). 

 

8) Shows next four screenshots from the test report (popup menu is present only in case of small 

screen resolution, i.e., dynamic web interface). 
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9) Shows original-sized screenshots, highlighting the bug with a popup menu (failed). 
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APPENDIX C: TEST SCRIPT FOR LINKEDIN 

import sys 
# Imports the monkeyrunner modules used by this program 
from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice 
 
# REQUIRED: Function to get and save screenshots is used 
def takeScreenshot(device, file): 
 MonkeyRunner.sleep(1.0) 
 result = device.takeSnapshot() 
 MonkeyRunner.sleep(1.0) 
 result.writeToFile(file, 'png') 
 MonkeyRunner.sleep(1.0)  
 
# REQUIRED: Test script connects only to the one current device 
device = MonkeyRunner.waitForConnection() 
 
# Installs the Android package 
device.installPackage('com.linkedin.android-1.apk') 
 
# Installation can take a time 
MonkeyRunner.sleep(5) 
 
# Runs the start activity 
package = 'com.linkedin.android' 
activity = '.authenticator.LaunchActivity' 
device.startActivity(component = package + '/' + activity) 
 
# Launching can take a time 
MonkeyRunner.sleep(5) 
 
# Get device properties 
# REQUIRED: height and width are predefined names of variables 
# that will be duplicated for each device 
height = int(device.getProperty('display.height')) 
width = int(device.getProperty('display.width')) 
 
# CHECKPOINT: Login screen - 1 
takeScreenshot(device, 'linkedin_test1_s1.png') 
 
# Types login 
device.type('a_starov@hotmail.com') 
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
# Types password 
device.type('qazxsw') 
device.press ('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Login screen - 2 
takeScreenshot(device, 'linkedin_test1_s2.png') 
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# Presses login button 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Sync dialog 
takeScreenshot(device, 'linkedin_test1_s3.png') 
 
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Calendar dialog 
takeScreenshot(device, 'linkedin_test1_s4.png') 
 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Main screen 
takeScreenshot(device, 'linkedin_test1_s5.png') 
 
# Goes to menu 
device.touch(20, 50, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Menu (settings) 
takeScreenshot(device, 'linkedin_test1_s6.png') 
 
# Goes to edit profile 
device.touch(width / 2 + width / 4, height / 2 - height / 4, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CHECKPOINT: Edit profile screen 
takeScreenshot(device, 'linkedin_test1_s7.png') 
 
# Goes to edit profile 
device.touch(90, 185, MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(2) 
 
# CAMERA: Types URL for image to use 
device.type('https://sphotos-b.xx.fbcdn.net/hphotos-ash3/551679_3197285081089
55_933925559_n.jpg') 
 
# CHECKPOINT: Taken photo 
takeScreenshot(device, 'linkedin_test1_s8.png') 
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device.press('KEYCODE_DPAD_DOWN', MonkeyDevice.DOWN_AND_UP) 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Back to profile 
takeScreenshot(device, 'linkedin_test1_s9.png') 
 
# Accepts photo 
device.press("DPAD_CENTER", MonkeyDevice.DOWN_AND_UP) 
MonkeyRunner.sleep(5) 
 
# CHECKPOINT: Back to profile 
takeScreenshot(device, 'linkedin_test1_s10.png') 
 
MonkeyRunner.sleep(2) 
 
# REQUIRED: Presses the Home button 
device.press('KEYCODE_HOME', MonkeyDevice.DOWN_AND_UP) 
 
MonkeyRunner.sleep(2) 
 
# REQUIRED: Removes the app 
device.removePackage('com.linkedin.android') 
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APPENDIX D: SCREENSHOTS OF LINKEDIN TESTING 

 

1) Shows device selection to test LinkedIn on. 

 

 

2) Shows completed test session. 
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3) Shows screenshot results for login. 

 

4) Shows screenshot results for profile picture change. 
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5) Shows how test session was made public. 
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6) Shows  selection  of  the  private  HTC  device  from  device  developer’s  perspective. 

 

 

 

7) Shows selection of the test session to test against its results (nominal screenshots). 
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8) Shows completed test session of device against app testing. 

 

 

9) Shows more results. 

 

 

 

 

 


