
 

 

 

ABSTRACT 

Metabolic Inflexibility in Skeletal Muscle with Obesity 

by 

Kristen E. Boyle 

June, 2009 

Chair: Joseph A. Houmard 

Major Department: Exercise & Sport Science 

The skeletal muscle of obese individuals has a reduced capacity to oxidize lipids.  

The hypothesis to be tested in this dissertation is that the ability to regulate lipid 

oxidation in response to lipid exposure is impaired in skeletal muscle of obese 

individuals.  An inability to appropriately respond to metabolic stimuli has been termed 

“metabolic inflexibility” and has been linked with obesity and insulin resistance.  To test 

this hypothesis, two models of lipid exposure were utilized: a 5 day high fat diet (HFD) 

and lipid incubation in primary myotubes cultured from lean and obese donors.  Trend 

analyses indicated that mRNA content of genes linked with fat oxidation were 

collectively up-regulated with the HFD in skeletal muscle of lean but not obese subjects, 

suggesting a global response that is indicative of skeletal muscle mitochondrial 

dysfunction in obesity.  Specifically, there was a 2-fold increase (P < 0.05) in fasted PDK4 

content following the HFD in leans, while the obese participants tended to have 



 

 

 

decreased PDK4 content; and UCP3 mRNA content decreased by almost half in the 

obese, but not lean participants.  In the second series of studies, a 24 h lipid incubation 

increased mitochondrial respiration by up to 2-fold in the presence of lipid and 

carbohydrate in myotubes from lean donors in both State 3 and uncoupled respiration 

(P < 0.05), though there was no change in cells cultured from the obese donors.  In 

addition, mitochondrial DNA content increased by 16% (P < 0.05) with lipid exposure in 

cells from lean subjects but tended to decrease in myotubes from obese subjects (13%; 

P = 0.06).  The presence of these defects in culture suggests a genetic or epigenetic 

origin with obesity.  Together, these data support the hypothesis that the skeletal 

muscle of obese individuals is metabolically inflexible and provides the novel 

information that this inflexibility extends to the ability to respond to lipid exposure in 

human skeletal muscle. 
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CHAPTER 1: REVIEW OF LITERATURE 

INTRODUCTION 

Obesity is a public health concern that creates a large strain on our health care 

system.  Skeletal muscle from obese individuals appears to have a lower capacity for 

lipid oxidation than their lean counterparts (Hulver et al., 2003), which may provide a 

potential mechanism for metabolic inflexibility, weight gain, and insulin resistance with 

obesity.  Interestingly, differentiated, cultured skeletal muscle cells (myotubes) from 

extremely obese individuals retain this defect in oxidation (Hulver et al., 2005), thus 

offering an intriguing and suitable model for hypothesis testing that cannot be 

performed in vivo.  The over-arching hypothesis to be tested in the work performed for 

this dissertation was that the defect in the ability to utilize lipid in the skeletal muscle of 

extremely obese individuals is linked with impairments in mitochondrial function, 

specifically the ability to upregulate factors linked with lipid oxidation in response to 

lipid exposure.  We tested this hypothesis by examining: 1) the responses of genes 

linked with lipid oxidation to a high fat diet in lean and obese individuals and 2) the 

response to lipid exposure in myotubes derived from lean and obese donors. 

It has been demonstrated  that lean and obese individuals respond differently to 

a metabolic challenge, such that lean humans increase carbohydrate oxidation in 

response to insulin stimulation whereas obese humans do not (Kelley et al., 1999).  In 

addition, a short-term high fat diet fails to upregulate lipid oxidation, as is observed in 
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lean individuals, in previously obese men and women (Astrup et al., 1994).  This inability 

to respond to substrate challenge may be an integral component of the metabolic 

anomalies present with obesity.  We hypothesized that a lipid challenge would increase 

the mRNA content of genes in skeletal muscle involved with lipid oxidation in lean 

individuals, but that obese obese subjects would not demonstrate a similar 

upregulation.  To further examine the skeletal muscle response to a substrate challenge 

in obesity, we measured mitochondrial respiration in the human cell culture model 

(primary skeletal muscle myotubes).  We hypothesized that permeabilized myotubes 

from obese and extremely obese individuals would exhibit lower respiration rates than 

cells from leans with lipid as the substrate.  Specifically, whereas cells from lean humans 

were hypothesized to have  increased respiration as a result of lipid exposure (i.e. 

metabolic flexibility), cells from obese donors would not respond to the lipid with a 

similar increase in respiration, indicating that the mitochondrial aberrations observed in 

human skeletal muscle tissue are preserved in this cell culture model. 

THE OBESITY EPIDEMIC 

Obesity in the Unites States is a growing epidemic, with rates reaching 34% in 

2006 (Centers for Disease Control, Prevalence of Obesity in the United States, NHANES 

2003-2004).  The incidence of obesity has doubled in adults and tripled in children and 

adolescents from 1980 to 2004 (Ogden et al., 2006).  Inherent with this elevation in 

prevalence is a concomitant rise in obesity-related health concerns that comprise the 
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metabolic syndrome, such as hypertension (Brown et al., 2000), hyperlipidemia (Gregg 

et al., 2004), and diabetes (Gregg et al., 2004; Gregg et al., 2005).  Obesity-related 

health concerns are responsible for approximately  $140 billion annually in direct and 

indirect medical costs and some estimate that, each year, approximately  400,000 

deaths are attributable to obesity and obesity-related diseases (Finkelstein et al., 2005).  

Given these trends, obesity will only continue to place greater financial strain on all 

branches of the healthcare system.  While the financial and social consequences of the 

obesity epidemic are daunting, little is known about the cellular processes that 

contribute to obesity and the mechanism by which further complications arise (i.e. 

insulin resistance). 

Body weight, BMI, and abdominal adiposity have all been correlated with insulin 

action  (Goodpaster et al., 1997) and rising rates of obesity are inextricably linked with 

rising rates of type 2 diabetes.  It is estimated that 40% of the adult population in the 

Unites States is hyperglycemic (> 100 mg/dL fasting glucose levels), while only 13% of 

the population has been diagnosed with diabetes (NHANES 2005-2006 (Cowie et al., 

2009)).  In 2004, 83% of type 2 diabetes diagnoses were made in those with BMIs 

greater than 35 kg/m2; and the rate of diabetes in this population has more than 

doubled in the past 20 years (Gregg et al., 2004).  The exact relationships between these 

two disease states (obesity and type 2 diabetes) remains elusive, although these groups 

remain phenotypically similar in that both are characterized by increased body fat 
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percentage, decreased ability to clear glucose from the circulation, and impairments in 

oxidative metabolism (Kelley et al., 1999; Kelley and Mandarino, 1990). 

Summary. Obesity is a health concern which will continue to strain our 

healthcare system.  It is important to investigate potential cellular mechanisms 

responsible for the underlying causes of obesity in order to design and implement 

effective treatment options. 

SKELETAL MUSCLE LIPID OXIDATION IN OBESITY 

Skeletal muscle comprises at least 40-50% of total body mass, representing a 

large proportion of total body fuel metabolism and, therefore, is an important player in 

the metabolic anomalies associated with obesity.  Studies show that intramyocellular 

lipids (IMCL) are more abundant in obese and type 2 diabetics than in sedentary lean 

individuals (Goodpaster et al., 2000) and data suggests that active lipid derivatives, such 

as ceramide and diacylglycerol, may be involved in the development of skeletal muscle 

insulin resistance (Hajduch et al., 2001; Montell et al., 2001; Shulman, 2000).  The 

accumulation of IMCL in obesity and insulin resistance indicates that the lipid balance in 

skeletal muscle cells favors a net accretion, either via increased cellular uptake or 

production of free fatty acids and/or decreased lipid oxidation.  Studies show that the 

ability to oxidize lipid in skeletal muscle is impaired with obesity.  Kelley et al. (1999) 

evaluated lipid metabolism using a single leg infusion and showed lower FFA oxidation 

rates in obese (BMI = 34 kg/m2) compared with lean individuals (BMI = 23 kg/m2).  The 
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authors also demonstrated that FFA uptake across the leg remains similar between lean 

and obese individuals in both the fasted and insulin-stimulated states, whereas lipid 

oxidation is markedly depressed with obesity  (Kelley et al., 1999), suggesting that 

impaired lipid oxidation is a more probable factor in the etiology of obesity than 

elevated FFA uptake. 

In more tissue-specific assessments, rectus abdominus homogenates from 

extremely obese women (BMI = 54 kg/m2) had reduced palmitate (long chain acyl-CoA) 

oxidation, when compared with their lean (BMI = 24 kg/m2) and obese (BMI = 30 kg/m2) 

counterparts (58% and 83% lower, respectively) (Hulver et al., 2003).  While others have 

observed no decrement in lipid oxidation in rectus abdominus strips from moderately 

obese individuals (BMI = 33 kg/m2) (Steinberg, 2002), this discrepancy is likely due to the 

extent of obesity in which this detriment was observed.  Indeed, palmitate oxidation 

was also impaired in vastus lateralis tissue of women with a greater degree of obesity 

(BMI = 38 kg/m2) (Kim et al., 2000). 

At the protein level, cross-sectional analyses demonstrate that obese individuals 

exhibit a reduction in skeletal muscle oxidative enzyme activity and content (Kelley et 

al., 2002; Simoneau et al., 1999).  In particular the authors observed diminished activity 

of NADH:O2 oxidoreductase, an index of electron transport chain capacity (Kelley et al., 

2002); CPT1, which regulates entry of long chain fatty acids into the mitochondria for 

oxidation; and COX, an overall indicator of mitochondrial oxidative capacity (Simoneau 
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et al., 1999).  This defect is diminished with exercise-induced weight loss (Menshikova et 

al., 2005) and could be responsible for reduced lipid oxidation with obesity. 

Summary.  Decrements in skeletal muscle lipid oxidation in obese individuals 

may be involved with the accumulation of excess IMCL, which has been implicated the 

development of skeletal muscle insulin resistance. 

SKELETAL MUSCLE SUBSTRATE SELECTION IN OBESITY 

Skeletal muscle lipid oxidation is normally elevated during the fasted and 

exercise conditions in order to preserve glucose and glycogen stores, whereas rates of 

lipid oxidation decline in the fed or insulin-stimulated states due to increased reliance 

on glucose as the metabolic substrate.  This capacity for rapid changes in substrate 

utilization in response to availability has been termed metabolic flexibility; an inability to 

respond appropriately to these stimuli has been observed with obesity and type 2 

diabetes  (for review, see Kelley and Mandarino (2000)).  In lean individuals, a high-fat 

diet  (3-4 days, 50-55% fat) increased whole body lipid oxidation at rest (Buemann et al., 

1998; Smith et al., 2000) and during exercise (Cameron-Smith et al., 2003), although 

obese individuals do not adapt similarly (Thomas et al., 1992).  Likewise, lipid and 

carbohydrate oxidation is not affected by 7 weeks of a high fat diet (41% fat) in 

overweight individuals (BMI = 28 kg/m2) (Landry et al., 2003).  Previously obese 

individuals or those with a family history of obesity also exhibit a blunted increase in 

lipid oxidation following high fat feeding when compared with their lean counterparts  
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(Astrup et al., 1994; Brown et al., 2000).  These studies all provide evidence that the 

lipid-induced metabolic flexibility observed at the whole body level may be impaired 

with obesity; it is not evident, however, if this metabolic inflexibility with obesity is 

linked with alterations in skeletal muscle. 

In relation to substrate utilization in human skeletal muscle, PDK4 activity, which 

phosphorylates and deactivates the PDH complex to decrease glucose metabolism, is 

elevated in the skeletal muscle of lean individuals following 2-3 days of high fat feeding 

(70-73% fat) (Arkinstall et al., 2004; Pehleman et al., 2005; Peters et al., 2001).  In 

addition, PDK4 mRNA content also increased (Arkinstall et al., 2004; Peters et al., 2001) 

suggesting that lipid exposure results in a rapid increase in content and/or activity of 

proteins regulating lipid oxidation in lean individuals.  Unfortunately, similar 

measurements have not been made in obese individuals; thus, a primary focus of this 

dissertation is to determine if the inability to respond to a substrate challenge, as 

observed in the insulin-stimulated state (Kelley et al., 1999), carries over to skeletal 

muscle lipid metabolism with obesity. 

Summary.  Induction of skeletal muscle lipid oxidation in response to lipid 

exposure may be impaired in obese individuals.  Although the exact cellular mechanisms 

remain unknown, it is possible that obese individuals do not upregulate the 

transcription of genes for proteins in skeletal muscle involved in lipid oxidation following 

lipid exposure 
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REGULATION OF SKELETAL MUSCLE LIPID OXIDATION 

PDK4 gene expression is induced by proteins of the PPAR family.  In particular, 

PPARα is most abundant in highly oxidative tissues such as skeletal muscle and its 

pharmacological activation has been shown to increase PDK4 mRNA content almost 12-

fold in primary human skeletal cell culture (Muoio et al., 2002).  PPARα is considered a 

primary mediator of lipid oxidation, specifically in the presence of lipids, such as with 

high fat feeding or fasting.  These lipids are the endogenous ligands of PPARα and, once 

activated, PPARα, in conjunction with several coactivators such as PGC-1α (Vega et al., 

2000), is capable of inducing gene transcription for PDK4 and UCP3, among others 

(Muoio et al., 2002). 

The PPAR coactivator PGC-1α has also been implicated in the regulation of lipid 

oxidation, particularly in the presence of elevated lipid levels.  In rodents, high fat 

feeding increased PGC-1α protein levels 2-fold (Hoeks et al., 2008).  PGC-1α 

overexpression has also been shown to increase mRNA content of PDK4, UCP3, MCAD, 

and CPT1 in L6 myotubes (Koves et al., 2005). 

Summary.  The PPAR family of proteins, including PPARα and PGC-1α are 

implicated in the regulation of lipid induced lipid oxidation via induction of gene 

transcription of molecules directly involved with lipid metabolism. 
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SKELETAL MUSCLE MITOCHONDRIA AND OBESITY 

The skeletal muscle of  obese individuals can exhibit reduced oxidative enzyme 

capacity, reduced and/or smaller mitochondria, and reduced electron transport function 

compared with tissue from lean individuals (Kelley et al., 2002; Ritov et al., 2005; 

Simoneau et al., 1999).  However, some would argue that these differences are largely, 

or entirely, based on differences in mitochondrial content. 

The reduction of fatty acid metabolism in obesity and insulin resistance is often  

associated with accumulated intramyocellular lipids (IMCL) (Goodpaster et al., 2000), 

and data suggests that active lipid derivatives, such as ceramide and DAG, may be 

involved in the development of skeletal muscle insulin resistance (Hajduch et al., 2001; 

Montell et al., 2001; Shulman, 2000).  Excess skeletal muscle lipid is prone to oxidation 

by reactive oxygen species (ROS), leading to accumulation of damaging lipid peroxides, 

which can reduce mitochondrial oxidative capacity in the obese and insulin resistant 

populations (Schrauwen, 2007).  Indeed, skeletal muscle of obese men has a higher 

basal H2O2 emission than that of leans, which indicates a more oxidized cellular redox 

state (Anderson et al., 2009), and, as discussed previously, skeletal muscle of obese 

individuals presents with reduced oxidative enzyme activity and content, including 

NADH:O2 oxidoreductase, CPT1, and COX (Kelley et al., 2002; Simoneau et al., 1999). 

It is also well established that skeletal muscle of obese individuals has 

considerably lower mitochondrial content than leans when determined by 



25 

 

 

 

mitochondrial DNA copy number (-34% (Ritov et al., 2005)), COX protein or activity (-15-

25% (Holloway et al., 2007; Simoneau et al., 1999)), or citrate synthase activity (-13% 

(Kim et al., 2000)).  Differences in mitochondrial content may be due to differences in 

physical activity levels of the tissue donors, given that physical activity increases 

mitochondrial content (Menshikova et al., 2007) and relative inactivity of obese 

individuals.  Many have identified reduced lipid oxidation in crude skeletal muscle 

homogenates of obese and insulin resistant individuals (Holloway et al., 2006; Hulver et 

al., 2003; Kim et al., 2000), although when normalized to total mitochondria, these 

differences are no longer observed (Holloway et al., 2006).  Using more sophisticated 

measures of mitochondrial respiration, some have found this same deficit in oxidation in 

permeabilized muscle fibers from obese type 2 diabetics, compared with overweight 

control subjects, but this was no longer present when normalized to either 

mitochondrial DNA copy number or citrate synthase activity (Boushel et al., 2007).  

However, others have observed reduced oxidation in the presence of pyruvate + malate 

or glutamate + succinate + malate in type 2 diabetics compared with BMI-matched 

control subjects (Mogensen et al., 2007; Phielix et al., 2008) whether normalized to 

citrate synthase activity (Mogensen et al., 2007; Phielix et al., 2008) or mitochondrial 

DNA copy number (Phielix et al., 2008). 

It remains to be seen whether the reduced lipid oxidation observed in the 

skeletal muscle of obese and type 2 diabetics is due to mitochondrial dysfunction per se, 
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or simply reduced mitochondrial content, or a combination of both.  Using a novel 

approach of mitochondrial respiration in intact myotubes from lean and obese donors, 

we will investigate the role on mitochondrial content on mitochondrial respiration rates 

and oxidative capacity in skeletal muscle of lean and obese humans.  Emerging evidence 

indicates that the ability to adapt to a substrate challenge, such as insulin stimulation or 

lipid exposure, may be an important aspect of the obese/diabetic phenotype (Astrup et 

al., 1994; Kelley et al., 1999).  In addition, studies suggest that lipid exposure may 

exacerbate these phenotypic differences (Costford et al., 2008; Koves et al., 2008).  In 

light of this we will examine oxidation rates under unstimulated and lipid stimulated 

conditions. 

To date, most assessments of lipid oxidation in skeletal muscle have been made 

using radiolabelled lipids and rudimentary homogenate procedures for isolating 

mitochondria (Holloway et al., 2006; Hulver et al., 2003; Kim et al., 2000).  The inherent 

flaw with these techniques is that the isolation procedure only recovers ~20% of total 

mitochondria (Holloway et al., 2007) and likely destroys a disproportionate amount of 

the weakest mitochondria where any inherent dysfunction exists.  In addition, the 

mitochondrial morphology is severely compromised using these techniques.  By 

permeabilizing the outer cell membrane with a gentle detergent and measuring oxygen 

consumption in a respiration chamber in the presence of various substrates, 

mitochondrial metabolism can be measured while avoiding all of these concerns. 



27 

 

 

 

Previously we have shown that impaired lipid oxidation observed in skeletal 

muscle of obese individuals, is retained in primary muscle cells cultures (Hulver et al., 

2005).  By isolating satellite cells from obese humans, we are able to examine skeletal 

muscle-specific responses to experimental manipulations and eliminate interference 

from other tissues or circulating factors that may be contributing to the etiology of 

obesity and impairments in skeletal muscle metabolism. 

By bringing these techniques together, we have developed a new model for 

assessing skeletal muscle mitochondrial metabolism.  We will measure mitochondrial 

respiration rates of permeabilized cultured myotubes from both lean and obese 

individuals in the presence of various substrates, including palmitoyl carnitine and 

pyruvate.  In addition we will determine mitochondrial content using various methods 

(mitochondrial DNA copy number, COX-IV protein content).  We hypothesize that any 

phenotypic differences between cells from lean and obese individuals would be 

exacerbated by the lipid pre-incubation, and that differences in mitochondrial content 

will not be solely responsible for these differences. 

Summary.  Controversy exists over whether the obese/type 2 diabetic 

phenotype is characterized by mitochondrial dysfunction, decreased mitochondrial 

content, or a combination of both.  Using a novel model of phenotypic skeletal muscle 

metabolism we will investigate these uncertainties. 
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CONCLUSION 

Understanding skeletal muscle substrate selection and the observed oxidation 

limitation in obese individuals is pertinent to the treatment of the obesity epidemic in 

the United States.  Data suggesting that obese individuals have an inability to alter 

substrate utilization in the face of a metabolic challenge, such as a carbohydrate load or 

insulin stimulation, leaves many unanswered questions as to how obese individuals 

would metabolize a lipid load.  In the first study performed in this dissertation,  we 

tested the hypothesis that, while the skeletal muscle of lean individuals will respond to a 

short-term, high fat diet with increased mRNA content of genes associated with lipid 

oxidation, the skeletal muscle of obese individuals will not upregulate these genes to a 

similar extent, indicating impaired mitochondrial function and metabolic inflexibility. 

In order to more closely examine potential metabolic anomalies in the skeletal 

muscle of obese individuals, the purpose of the second study of this dissertation was to 

assess mitochondrial content, activity, and cellular respiration of myotubes cultured 

from lean and obese individuals, both with and without a 24h lipid challenge.  Based on 

preliminary data, we hypothesized that permeabilized cells from obese individuals 

would exhibit lower respiration in all conditions.  Also, permeabilized cells from lean 

men will have greater respiration after palmitate incubation, though cells from obese 

individuals will not respond to this lipid challenge.  We hypothesized that lean 

individuals will respond to 24h lipid exposure by oxidizing less pyruvate, whereas cells 
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from obese will not exhibit this shift in metabolic fuel selection.  Any defects in cellular 

respiration observed in the cells from the obese individuals can either be explained by a 

lower total mitochondrial content or a lower oxidative enzyme activity that is preserved 

in satellite cells.  Finally, if metabolic inflexibility is observed is these cells cultures, it 

could be hypothesized that the nature of the defect is either of a genetic or epigenetic 

origin. 

CENTRAL HYPOTHESIS 

The ability to regulate lipid oxidation in response to lipid exposure (metabolic 

flexibility) is impaired in skeletal muscle of obese individuals (metabolic inflexibility) and 

is an important aspect of the mitochondrial dysfunction observed with obesity.  This 

hypothesis will be tested with the following specific aims. 

SPECIFIC AIM 
#
1 

Whole body lipid oxidation increases in response to high fat feeding in lean 

humans.  However, the ability to switch substrate utilization in response to this 

metabolic challenge may be impaired with obesity.  We determined if the mRNA 

content of genes involved with lipid oxidation was compromised in response to a high 

fat diet extremely obese compared to lean individuals. 

a. Are genes involved in lipid metabolism activated similarly in skeletal muscle from 

lean and extremely obese individuals following a high fat meal?  Muscle biopsies 
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were taken from lean and extremely obese individuals in the fasted state and 

following a high fat meal.  mRNA was extracted from muscle tissue and analyzed 

for genes involved in lipid metabolism (PDK4, CPT1, UCP3, PGC-1α, PPARα, 

PPARδ, and PPARγ). 

b. Are genes involved in lipid metabolism activated similarly in skeletal muscle from 

lean and extremely obese individuals following 5 days of a high fat diet?  Muscle 

biopsies were taken from lean and extremely obese individuals in the fasted 

state and before and after 5 days of a high fat diet.  mRNA was be extracted 

from muscle tissue and analyzed for genes involved in lipid metabolism (PDK4, 

CPT1, UCP3, PGC-1α, PPARα, PPARδ, and PPARγ).  The proposed experiment was 

designed to determine if a more prolonged exposure to lipid in vivo equally 

upregulates genes associated with lipid metabolism in lean and extremely obese 

individuals. 

SPECIFIC AIM 
#
2 

Lipid oxidation is impaired in skeletal muscle and cultured myotubes from lean 

and extremely obese individuals.  By permeabilizing cultured myotubes and using high 

resolution respirometry, we are able to assess respiration in response to different 

substrates, activators, and inhibitors in cells from lean and extremely obese donors in 

situ.  The purpose of these studies was to determine if mitochondrial respiration is 
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impaired in cells from extremely obese compared with lean individuals and whether this 

is affected by 24h lipid pre-incubation.  By utilizing various experimental conditions 

including respiration in the presence of palmitoyl carnitine, pyruvate and FCCP we 

attempted to determine if potential differences in respiration are associated with 

decreased mitochondrial content or simply impaired mitochondrial function.  It is our 

hypothesis that cells from extremely obese individuals exhibit lower respiration rate 

than cells from leans, and 24h lipid preincubation will increase respiration in the cells 

from lean donors.  This same effect will not be observed in the cells from the obese, 

indicating metabolic inflexibility. 

a. Is mitochondrial respiration impaired in cultured myotubes from lean and 

extremely obese individuals and is it affected by 24h of lipid preincubation?  

Muscle biopsies were taken from lean and extremely obese individuals in the 

fasted state and cultured into myotubes.  Upon differentiation, cells were 

incubated for 24h in either lipid or control media.  Cells were then made 

permeable to substrates and respiration  measured in the presence of different 

substrates, including palmitate and pyruvate. 

b. Is the impaired respiration observed in cultured myotubes from extremely obese 

individuals due to detriments in mitochondrial content?  Muscle biopsies were 

taken from lean and extremely obese individuals in the fasted state and satellite 

cells cultured into myotubes.  Upon differentiation, cells were incubated with 
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lipid for 24h and used to determine mitochondrial DNA copy number, citrate 

synthase and β-HAD activity, and COX-IV protein content. 
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CHAPTER 2: SKELETAL MUSCLE METABOLIC INFLEXIBILITY IS EVIDENT WITH HIGH FAT FEEDING IN OBESE 

HUMANS 

Boyle KE1,2,4, Canham JP1,2,4, Consitt LA1,2,4, Zheng D1,2,4, Koves TR5, Gavin TP1,2,3,4, Neufer 

PD1,2,3,4, Muoio DM5, and Houmard JA1,2,4. 

1Human Performance Labororatory, 2Department of Exercise and Sport Sciences, 

3Department of Physiology, and 4The Metabolic Institute for the Study of Diabetes and 

Obesity, East Carolina University, Greenville, NC and 5The Stedman Center, Duke 

University, Durham, NC. 

Keywords:  Skeletal Muscle, PDK4, Metabolic Inflexibility 

Abstract:  In lean individuals, increased dietary lipid results in increased whole body lipid 

oxidation; however, this capacity to respond to substrate availability (i.e. metabolic 

flexibility) appears to be compromised with obesity.  The purpose of the present study 

was to determine if the responses of genes linked with lipid oxidation were altered with 

exposure to dietary lipid in the skeletal muscle of obese humans.  Lean (BMI = 22.1 ± 0.6 

kg/m2) and obese (BMI = 39.6 ± 1.7 kg/m2) individuals were studied before and after a 5 

d high fat diet (65% of total energy from fat).  Skeletal muscle biopsies (vastus lateralis) 

were obtained in the fasted and fed states before and after the intervention and mRNA 

content for genes involved in lipid oxidation determined.  Fasted PDK4 mRNA content 
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increased by 2-fold in the leans (P<0.05), but tended to decrease in the obese (-46%, P = 

0.07) following the HFD.  Fasting UCP3 content fell by half in the obese from Pre- to 

Post-HFD (P < 0.05), but did not change in the leans.  Multivariate analysis revealed a 

similar elevation in the leans and/or a decrease in the obese subjects for many genes 

that control lipid oxidation following the HFD (PDK4, UCP3, CPT1, PPARα, PPARγ, PPARδ, 

and PGC-1α).  As a functional measure, medium chain lipid species decreased from Pre- 

to Post-HFD in the lean participants (P < 0.05), but did not change in the obese 

individuals.  These data suggest an inability to respond to a lipid stimulus that can be 

extended to gene regulation in skeletal muscle tissue of obese humans which is 

indicative of a global aberration in lipid metabolism. 
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INTRODUCTION 

Obesity rates in the United States have recently doubled in adults and tripled in 

children (Ogden et al., 2006).  An important facet of this obesity epidemic is 

understanding skeletal muscle lipid metabolism, particularly in light of the elevated lipid 

content (Goodpaster et al., 2000) and impaired ability to oxidize lipids in the skeletal 

muscle of obese individuals (Hulver et al., 2003; Kim et al., 2000).  In healthy, lean 

individuals, skeletal muscle lipid oxidation increases in response to fasting and exercise, 

thereby preserving glucose and glycogen stores, whereas rates of lipid oxidation decline 

in the postprandial and insulin-stimulated states (Andres et al., 1956; Kelley et al., 1990).  

This ability to rapidly transition substrate utilization depending upon substrate 

availability and the hormonal milieu has been termed ‘metabolic flexibility’ and an 

inability to appropriately respond to these stimuli has been reported  with obesity and 

type 2 diabetes  (for review, see Kelley and Mandarino (2000)). 

In reference to metabolic flexibility in lean individuals, a high fat diet can 

increase whole body lipid oxidation at rest (Buemann et al., 1998; Smith et al., 2000) 

and during exercise (Cameron-Smith et al., 2003); however, overweight individuals do 

not display a similar adaptation  (Thomas et al., 1992).  In support of an inability to 

respond appropriately to lipid substrate, previously obese individuals and those with a 

family history of obesity exhibit a blunted increase in lipid oxidation following high fat 

feeding (Astrup et al., 1994; Brown et al., 2000).  These studies indicate  that the lipid-
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induced metabolic flexibility observed at the whole body level with lipid exposure in 

lean individuals may be impaired with obesity. 

High fat feeding-induced increases in lipid oxidation in lean individuals are 

accompanied by skeletal muscle-specific increases in PDK4 mRNA content and/or 

enzyme activity within several days (Arkinstall et al., 2004; Pehleman et al., 2005; Peters 

et al., 2001), suggesting that lipid exposure results in a rapid induction of genes 

regulating lipid oxidation in this tissue.  To our knowledge, skeletal muscle-specific 

responses to dietary lipid exposure and have not been investigated in obese humans.  

The hypothesis to be tested in the current investigation is that a lipid stressor (high fat 

diet) does not induce transcription of genes linked with lipid oxidation, such as PDK4 

and the PPAR family, in the skeletal muscle of obese individuals to the same extent as in 

muscle of lean participants. 

METHODS 

EXPERIMENTAL DESIGN AND SUBJECTS 

The effect of a single high fat meal and a 5d high fat diet (HFD) on skeletal 

muscle gene expression was compared between lean (n=12, 9 men and 3 women; BMI ≤ 

24.9 kg/m2) and obese (n=10, 8 men and 2 women; BMI ≥ 35 kg/m2) Caucasian men and 

women (ages 18-27 y).  Participants were free from disease, nonsmokers, and not taking 

medications known to alter carbohydrate or lipid metabolism; characteristics are 
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presented in Table 1.  Females participated during the follicular phase of the menstrual 

cycle (days 1-10).  All participants had maintained a constant body mass (± 2 kg) in the 6 

months prior to the experiment.  The protocol was approved by the East Carolina 

University Policy and Review Committee on Human Research, and informed consent 

was obtained. 

Participants underwent 5 consecutive days of a eucaloric, high-fat diet (HFD) 

with assessment of parameters in the fasted state and following a single high fat meal 

on day 1 and day 6.  On day 1 , participants reported to the laboratory between 0630h 

and 0800h following a 12 hour overnight fast.  Body mass was recorded, a venous blood 

sample was obtained, and a skeletal muscle biopsy was performed.  Plasma was 

separated for subsequent analyses of glucose (YSI 2300 STAT Plus Glucose and Lactate 

Analyzer, YSI Inc.; Yellow Springs, OH), insulin (Access Immunoassay System, Beckman 

Coulter; Fullerton, CA), and non-esterified fatty acids (NEFA; Wako Chemicals; 

Richmond, VA).  β-hydroxybutyrate (Pointe Scientific; Canton, MI) was determined from 

the fasting plasma samples as an index of participant adherence to the HFD.  A 

homeostasis model assessment (HOMA) value (fasting glucose (mg·dL-1) x 0.05551) x 

fasting insulin (μU·mL-1)/22.1) was calculated (Bonora et al., 1998).  Participants were 

then fed a high-fat meal and asked to return to the laboratory 4 hours later, at which 

time another venous blood sample and muscle biopsy were obtained.  Participants did 

not eat or drink anything except water during the 4 hours between biopsies.  
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Participants then consumed the provided HFD for 5 consecutive days.  Adherence was 

assessed by food diary and plasma ketone body analysis as well as communication with 

the subjects during the 5 day period.  On experimental day 6, participants reported to 

the laboratory and repeated the assessments of day 1. 

Plasma samples were also used to determine circulating acylcarnitine profiles as 

previously described (Koves et al., 2005; Koves et al., 2008). 

DIETARY INTERVENTION 

The HFD contained 65% of energy from fat, 15% of energy from protein, and 25% 

of energy from carbohydrate.  Daily caloric requirements were based on body size using 

the Harris-Benedict equation (Harris and Benedict, 1918).  The high-fat meal on days 1 

and 6 was designed to contain 65% of energy from fat and comprise 35% of each 

subject’s daily energy intake.  All meals consisted of pre-measured and prepared meals, 

which were provided to the participants.  Subjects were asked to adhere to the planned 

menu, to maintain their normal physical activity levels, and to refrain from alcohol 

consumption for the duration of the study.  All diet records, meals, and the high fat diets 

were analyzed using Nutritionist ProTM Nutrition Analysis Software (Axxya Systems LLC; 

Stafford, TX) to assure proper energy intake and macronutrient composition.  Subjects 

performed a 3-day dietary recall prior to performing the study to ensure that they were 

consuming a normal, mixed diet. 
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MUSCLE ANALYSES 

Skeletal muscle was obtained from the vastus lateralis and total RNA isolated 

from ~30 mg of frozen muscle using the RNeasy Mini Kit (Qiagen Inc., Valencia, CA) with 

on-column DNase digestion using the RNase-Free DNase Set (Qiagen Inc.; Valencia, CA) 

to remove residual DNA.  RNA was reverse transcribed into cDNA using the Superscript 

III Reverse Transcriptase protocol (Invitrogen Corp.; Carlsbad, CA) and quantified in 

triplicate with Quant-iT PicoGreen reagents (Invitrogen Corp.; Carlsbad, CA).  Real-time 

quantitative PCR (RTQ-PCR) was performed using the ABI PRISM 7400HT Sequence 

Detection System instrument and software with Taqman® Universal PCR Master Mix in 

accordance with manufacturer’s instructions (Applied Biosystems Inc. (ABI); Foster City, 

CA).  Relative gene expression levels were determined using the number of cycles 

necessary to reach threshold (Ct).  The Ct values from RTQ-PCR were compared with a 

standard curve consisting of a serially diluted pool from each of the samples.  All 

samples from each subject were run on the same plate and values normalized to total 

cDNA.  Endogenous control gene expression (18S) was measured and compared with 

each gene of interest to assure assay efficiency.  Primer and probe sequences are 

presented in Table 2.  These particular genes were measured because of their explicit 

roles in lipid metabolism and the PPAR/PGC-1α regulatory system. 

Approximately 20 mg of muscle tissue was processed for acylcarnitine profiling 

as an index of substrate utilization.  Samples were centrifuged and processed as 
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previously described (Koves et al., 2005). Acylcarnitines were measured by direct-

injection electrospray tandem mass spectrometry, using a Micromass Quattro MicroTM  

system equipped with a model 2777 autosampler, a model 1525 high pressure liquid 

chromatography solvent delivery system, and a data system running 4.0 MassLynx 

software (Waters; Milford, MA). 

STATISTICAL ANALYSES 

Repeated measures analyses of variance were used to compare the data.  

Significant interactions were examined using post-hoc contrast-contrast comparisons.  A 

multivariate analysis (body size x HFD) was used to compare changes among genes 

associated with lipid oxidation between lean and obese.  Although fold change data are 

presented in some figures for ease of visualization, statistical analyses were performed 

on raw data.  Statistical significance was denoted at the P < 0.05 level and all data are 

presented as the mean ± SEM. 

RESULTS 

DIET AND PLASMA ANALYSIS 

The HFD provided a similar macronutrient composition for each group (Lean: 

62.2% fat, 22.6% carbohydrate, 14.9% protein; Obese: 61.9% fat, 22.2% carbohydrate, 

15.1% protein); the HFD provided a significant increase in relative dietary fat intake over 
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normal consumption, as reported by a 3d diet record (Lean: 36% fat, Obese: 36% fat) 

with no change in energy intake.  Fasting β-hydroxybutyrate levels increased in both 

groups as a result of the dietary intervention (1.6 fold increase, P < 0.05) indicating 

adherence to the HFD.  Blood glucose levels were not different between the groups 

(Table 3).  NEFA values were not different between lean and obese subjects and were 

not affected by the diet intervention.  However, the obese group displayed elevated 

fasting insulin concentrations and HOMA compared to the leans (Table 3). 

MUSCLE ANALYSES 

In response to the high fat meal on day 1, there was a significant interaction 

between lean and obese individuals for PPARα, where gene expression was elevated in 

the Post-Meal state in the leans (3-fold increase, P < 0.05), but not in the obese (Figure 

1). 

Multivariate analysis revealed a significant body size x HFD interaction for many 

genes involved in lipid oxidation (PDK4, UCP3, CPT1, PPARα, PPARγ, PPARδ, and PGC-1α; 

P < 0.05, Figure 2), indicating disparate responses in gene regulation following the 5 d 

HFD in lean and obese humans.  Specifically, body size x HFD interactions were noted for 

PDK4, UCP3, PPARα, and PPARγ (P < 0.05), though only PDK4 and UCP3 had significant 

post-hoc comparisons.  Fasting PDK4 mRNA content increased (2-fold increase, P < 0.05) 

in the leans with the HFD but tended to decrease in the obese (-46%, P = 0.07) subjects, 
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resulting in lower PDK4 mRNA content in obese compared with leans after the HFD (P < 

0.05, Figure 3).  Fasting UCP3 mRNA content fell in the obese from Pre- to Post-HFD (-

46%, P < 0.05) but did not change in the leans (+15%, n.s., Figure 3). 

The Post-Meal tissue samples on days 1 and 6 of the HFD were used to assess 

differences in 37 skeletal muscle acylcarnitine species as an index of metabolic flux 

through lipid oxidation (Koves et al., 2008).  There was a significant body size x HFD 

interaction for all medium chain molecules combined (-42%, P < 0.05;  and +17%, n.s.; 

for lean and obese; respectively) as well as for several medium chain species (C4/Ci4, 

C6, C10:1, C10, C8:1DC, and C12:1; n = 6 lean, 6 obese) where the lipid intermediates 

C10:1, C10, C8:1DC, and C12:1 decreased in the lean participants and C8:1DC increased 

in the obese from Pre- to Post-HFD (P < 0.05, Figure 4).  Long chain species were not 

different between lean and obese and decreased in both groups after the HFD (-48% 

and -45% for lean and obese, respectively; P < 0.05).  Neither medium chain nor long 

chain species were significantly different between lean and obese at baseline. 

Fasting insulin values were inversely correlated (P < 0.05) with changes in fasted 

mRNA content of PDK4 (r2 = 0.29), CPT1 (r2 = 0.28), UCP3 (r2 = 0.31), and PGC-1α (r2 = 

0.47).  BMI was only correlated with changes in PDK4 mRNA content (r2 = 0.27, P = 0.05). 
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DISCUSSION 

Whole body lipid oxidation increases in response to high fat feeding in lean 

humans (Astrup et al., 1994; Buemann et al., 1998; Cameron-Smith et al., 2003; Peters 

et al., 2001; Schrauwen et al., 2000; Smith et al., 2000).  However, other findings suggest 

that obese or previously obese individuals do not adapt to lipid exposure in similar 

manner (Astrup et al., 1994; Thomas et al., 1992).  Based on these reports the goal of 

the present study was to test the hypothesis that genes associated with lipid oxidation 

would increase in the skeletal muscle of lean individuals with a 5 day high fat diet 

(metabolic flexibility), but remain unaltered in obese individuals.  The data obtained 

support this hypothesis, as a multivariate analysis indicated skeletal muscle of lean and 

obese responded differently to dietary lipid exposure that was evident in genes involved 

with lipid oxidation (Figure 2).  The findings of the present study thus provide the novel 

information that the inability to appropriately respond to a nutritional stimulus 

(‘metabolic flexibility’) (Kelley et al., 1999; Kelley and Mandarino, 2000; Koves et al., 

2008) can be extended to gene regulation in the skeletal muscle of obese humans.  Such 

findings are indicative of a relatively global dis-regulation of lipid oxidation with obesity. 

The current study investigated the changes in mRNA content of the PPARs and 

PPAR-responsive genes as indicators of a global regulatory system involved in lipid 

metabolism.  In particular, PPARα and PGC-1α are provocative candidates for a ‘master 

regulator’ given their relative abundance in skeletal muscle and that these proteins are 
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targeted by lipids and lipid derivatives to induce transcription of genes involved in lipid 

oxidation such as PDK4, CPT1, and UCP3 (Koves et al., 2005; Muoio et al., 2002). 

PPARα increased with acute lipid intake after the high fat meal on day 1 in the 

lean but not obese participants (Figure 1), an interaction that was carried over to the 

fasted state on day 6 (Figure 2).  These data suggest that PPARα may have some 

regulatory role in lipid-inducible substrate selection in lean individuals but that this 

response is dampened or even eliminated in the skeletal muscle of obese subjects.  

However, after our 5 d HFD, distinct increases in fasting PPARα mRNA content in lean 

men were not observed, similar to previous reports (Chokkalingam et al., 2007; Helge et 

al., 2007).  Thus, the present findings indicate that PPARα may respond acutely to lipid 

oversupply in terms of upregulating gene expression but that a longer-term adapation is 

not evident.  In terms of PGC-1α, Sparks et al. (2005) found a 20% decrease in fasting 

PGC-1α mRNA content in lean men after a three day, 50% fat diet which is not 

consistent with our findings (Figure 2).  The authors suggest that HFD-induced insulin 

resistance may have reduced PGC-1α gene expression (Sparks et al., 2005); we did not 

observe changes in fasting insulin, glucose or HOMA throughout our protocol, which 

may explain why we did not observe a similar decrease in PGC-1α.  Although mRNA 

content was determined, both PGC-1α and PPARα activity are also governed by post-

transcriptional regulation (ligand, coactivator, and DNA binding) which could also be a 

factor accounting for the upregulation of genes linked with lipid oxidation in the lean 
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subjects (Figure 2) (Desvergne and Wahli, 1999; Puigserver et al., 1999).  Nevertheless, 

both PGC-1α and PPARα displayed a similar pattern of response to other genes involved 

in lipid oxidation in that there was increased expression in lean and/or decreased 

expression in the skeletal muscle of obese individuals. 

PDK4 was examined as potentially the most potent nutritional responder and 

target gene of the PPAR/PGC-1α regulatory system; in addition, PDK4 plays a critical role 

in the partitioning of substrate towards either lipid or carbohydrate oxidation (Sugden 

and Holness, 2006).  The lean participants exhibited a 2-fold increase in PDK4 mRNA 

content with the 5 days of the HFD in accordance with previous reports (Chokkalingam 

et al., 2007; Sparks et al., 2006) (Figure 3).  Consistent with the concept of metabolic 

inflexibility in obese individuals, we hypothesized that PDK4 mRNA content would 

remain unaltered with the intervention; however, we were surprised to find a trend 

toward decreased PDK4 mRNA content with the HFD (P = 0.07, Figure 2).  HFD-induced 

increases in PDK4 mRNA content in lean subjects are generally accompanied by 

corresponding increases in transcribed PDK4 protein (Cameron-Smith et al., 2003; 

Peters et al., 2001), decreases in PDH activation (Chokkalingam et al., 2007; Pehleman et 

al., 2005) and increased whole body lipid oxidation (Cameron-Smith et al., 2003; Peters 

et al., 2001).  Hence, changes in skeletal muscle PDK4 mRNA content with high fat 

feeding in lean subjects appear to have significant physiological effects that are 

consistent with changes in lipid oxidation observed in the whole body. 
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Among lean individuals, Smith and colleagues (2000) noted that those with the 

most robust HFD-induced increases in lipid oxidation also had the lowest fasting insulin 

levels.  Similarly, we noted that those with the lowest fasting insulin values exhibited the 

largest changes in PDK4 mRNA content (r2 = 0.29; P < 0.05).  Such findings suggest that 

perhaps the consistently elevated insulin values in our obese participants suppressed 

any potential lipid-induced increase in PDK4 gene expression.  However, we did not 

observe changes in fasting insulin concentration as a result of our intervention and PDK4 

mRNA values were not depressed in the obese subjects prior to the HFD despite 

elevated fasting insulin levels (Figure 2 and Table 3).  In addition, changes in PDK4 were 

also inversely correlated with BMI (r2 = 0.27; P < 0.05), so a clear distinction between 

these factors cannot be made. 

Physiological adaptation to a lipid challenge, as evidenced by fat balance 

(respiratory quotient/dietary lipid quotient), can occur within 6-7 days in lean humans 

(Peters et al., 2001; Schrauwen et al., 2000).  By day five of our HFD, changes in PDK4 

mRNA content in our lean participants were consistent with metabolic adaptation.  

However, obese individuals may take longer to adapt, or may not at all; which provides 

a mechanism for increased susceptibility to skeletal muscle lipid accumulation and 

dietary-induced obesity. 

To gain further insight into this dysregulation of fat oxidation in obesity, we 

evaluated a panel of 37 acylcarnitine species in the Post-Meal tissue samples.  An 



47 

 

 

 

accumulate of even chain acylcarnitine species ranging from C6-C22 indicate incomplete 

fatty acid oxidation, while a reduction reflects a higher rate of complete lipid oxidation 

(Koves et al., 2005).  In accordance with the mRNA data, the acylcarnitine findings 

(Figure 4) suggest improper lipid handling in the obese individuals which was largely 

unaltered with the high fat diet.  In contrast, the lean subjects appeared to increase the 

capacity for the complete oxidation of lipids with the HFD.  Medium chain skeletal 

muscle acylcarnitines decreased after the HFD in the leans, suggesting more efficient 

lipid handling, which is consistent with HFD-induced increases in whole body lipid 

oxidation in lean (Buemann et al., 1998; Cameron-Smith et al., 2003; Peters et al., 2001; 

Smith et al., 2000).  The observed increases in medium chain species in the obese 

individuals (Figure 4) suggests reduced TCA-cycle capacity, as has been previously 

described with obesity and high fat feeding (Koves et al., 2008).  Alternatively, medium, 

but not long, chain species accumulation could indicate reduced lipid oxidation though 

MCAD, which appears to be regulated via PGC-1α in conjunction with high fat feeding 

(Koves et al., 2005).  Indeed, elevated C8 acylcarnitine species, as observed in the obese 

individuals after the HFD (Figure 4), are indicative of MCAD deficiency which may be 

accompanied by elevated C6, C10, and C10:1 species (Rinaldo et al., 2008).  Either 

interpretation suggests a mechanism of lipid accumulation linked to mitochondrial 

overload and incomplete fatty acid oxidation which manifests as metabolic inflexibility 

with obesity (Koves et al., 2008). 
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Excess skeletal muscle lipids, particularly those in or near the mitochondria, are 

prone to oxidation by reactive oxygen species (ROS), leading to accumulation of 

damaging lipid peroxides, thus reducing mitochondrial oxidative capacity (Schrauwen, 

2007).  Likewise, we have recently reported that skeletal muscle fibers from obese men 

had higher basal H2O2 emission than leans, indicative of a more oxidized cellular 

environment (Anderson et al., 2009).  In the current study, the HFD decreased UCP3 

mRNA content by almost half in the obese participants (Figure 2).  This response may be 

critical to mitochondrial function, as UCP3 has been reported to aid in ameliorating 

lipid-induced mitochondrial damage by buffering lipid peroxide accumulation 

(Schrauwen, 2007) and decreasing H2O2 emission (Anderson et al., 2007).  The present 

findings thus suggest that obese individuals may not be able to induce this protective 

effect from UCP3 in the face of increased lipid intake, which may lead to mitochondrial 

damage and the reduced oxidative capacity observed in skeletal muscle of obese 

individuals (Kelley et al., 2002; Ritov et al., 2005; Simoneau et al., 1999). 

In conclusion, five days of high fat feeding coordinately upregulates genes 

involved in lipid oxidation in the skeletal muscle of lean individuals.  In contrast, obese 

individuals fail to respond and, in some instances, exhibit decreased mRNA content of 

these same genes.  These data suggest an inability to respond to a lipid stimulus that 

can be extended to gene regulation in skeletal muscle tissue of obese humans which is 

indicative of a global aberration in lipid metabolism.  
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TABLE 1.  PARTICIPANT CHARACTERISTICS. 

All data are presented as mean ± SEM.  *Indicates significant difference 

between the groups (P < 0.05). 
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 Lean (n=12) Obese (n=10) 

Age (y) 21.8 ± 0.7 22.0 ± 0.9 

Stature (cm) 174.1 ± 2.5 181.9 ± 2.3 

Mass (kg) 67.0 ± 2.7 130.8 ± 5.4* 

BMI (kg/m
2
) 22.1 ± 0.6 39.6 ± 1.7* 

Glucose (mmol/L) 4.92 ± 0.14 4.57 ± 0.19 

Insulin (μU/L) 5.9 ± 1.1 16.3 ± 1.6* 

HOMA 1.6 ± 0.3 3.6 ± 0.4* 

Cholesterol (mg/dL) 163.1 ± 8.3 163.8 ± 13.8 

Triglycerides (mg/dL) 113.1 ± 12.7 131.9 ± 26.5 
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TABLE 2.  PRIMER AND PROBE SEQUENCES. 

Primer and Probe sequences used to determine mRNA content analyses using 

RT-PCR, including PDK4, UCP3, CPT1, PGC-1α, PPARα, PPARδ, and PPARγ.  Sequences 

are listed in 5’ to 3’ orientation. 
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Forward Primer Reverse Primer Probe 

PDK4 
TCCACTGCACCAACGCCT TGGCAAGCCGTAACCAAAA ATAATTCCCGGAATGCTCCTTTGGCTG 

UCP3 
TGACTCCGTCAAGCAGGTGTAC CAAAATCCGGGTAGTGAGGCT CCCCCAAAGGCGCGGACAAC 

CPT1 
CTGCAGTGGGACATTCCAAA CAACGCCTTGGCCACCT ACTCTCGATGACCGCCTGGCACTG 

PGC-1α 
CAAGCCAAACCAACAACTTTATCTCT CACACTTAAGGTGCGTTCAATAGTC AGTCACCAAATGACCCCAAGGGTTCC 

PPARα 
GCAACCACCCGGACGATA GCCGGAGGTCTGCCATTT CTTTCTCTTCCCAAAACTTCTTCAA 

PPARδδδδ 
AGCATCCTCACCGGCAAA GTCTCGATGTCGTGGATCACA CCAGCCACACGGCGCCCT 

PPARγ 
GGCTTCATGACAAGGGAGTTTC AACTCAAACTTGGGCTCCATAAAG AAAGAGCCTGCGAAAGCCTTTTGGTG 
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TABLE 3.  PLASMA ANALYSIS. 

* indicates a significant difference between lean and obese.  a indicates a 

significant difference between Fasted and Post-Meal values in both lean and obese 

combined.  b indicates a significant difference between Fasted and Post-Meal values in 

the obese group.  All data are presented as mean ± SEM. 
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 Lean (n=12) Obese (n=10) 

Glucose (mmol/L)   

Pre HFD Fasted 4.74 ± 0.12 4.78 ± 0.17 

Pre HFD Post-Meal 4.54 ± 0.13a 4.33 ± 0.14a 

Post HFD Fasted 4.46 ± 0.18 4.80 ± 0.09 

Post HFD Post-Meal 4.50 ± 0.10 4.10 ± 0.69 

Insulin (μU/L)   

Pre HFD Fasted 4.63 ± 0.52 14.7 ± 2.9* 

Pre HFD Post-Meal 4.97 ± 0.54 14.1± 3.8* 

Post HFD Fasted 4.81 ± 0.66 11.5 ± 1.6* 

Post Diet HFD Post-Meal 5.49 ± 0.85 14.5 ± 3.0*b 

NEFA (mEq/L)   

Pre HFD Fasted 0.66 ± 0.13 0.49 ± 0.07 

Pre HFD Post-Meal 0.50 ± 0.03 0.71 ± 0.15 

Post HFD Fasted 0.71 ± 0.08 0.56 ± 0.10 

Post Diet HFD Post-Meal 0.56 ± 0.05 0.60 ± 0.16 
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FIGURE 1.  MEAL RESPONSE OF PPARαααα MRNA CONTENT. 

Data are PPARα mRNA contents of lean (open bars) and obese (filled bars) 

individuals in the Fasted and Post-Meal states in the Pre-HFD condition.  Data are 

expressed as arbitrary units.  All values are expressed as mean ± SEM.  * Indicates 

significant difference from fasted value.  Significance is indicated at P < 0.05. 
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FIGURE 2.  EFFECT OF HFD ON MRNA CONTENT IN THE FASTED STATE. 

Change in mRNA content with the 5-day HFD diet in the skeletal muscle of lean 

(open bars) and obese (filled bars) individuals.  Values are expressed as the fold change 

from the Pre- to Post-HFD conditions where the Pre-HFD; no change with the HFD would 

then be indicated by a value of 1 which is presented by the dashed line.  Values are 

mean ± SEM.  The overall interaction for all genes in the Pre- and Post-HFD conditions 

by body size was significant as determined by multivariate analysis, indicating a 

differential response between the lean and obese subjects. 
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FIGURE 3.  RESPONSE OF PDK4 AND UCP3 MRNA CONTENT TO 5-DAY HFD. 

PDK4 (Panel A) and UCP3 (Panel B) mRNA contents of lean (open bars) and obese 

(filled bars) individuals in the Fasted state in the Pre- and Post-HFD condition.  Data are 

expressed as arbitrary units.  All values are expressed as mean ± SEM.  * Indicates 

significant difference from Pre-HFD condition.  # Indicates significant difference from 

lean in the Post-HFD condition.  Significance is indicated at P < 0.05. 
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FIGURE 4.  EFFECT OF HFD ON MUSCLE ACYLCARNITINES IN THE POST-MEAL STATE. 

Data are medium chain muscle acylcarnitines showing a significant body size x 

HFD interaction (Panel A) in lean (open bars) and obese (filled bars) individuals in the 

Post-Meal state in the Pre- and Post-HFD condition.  Fold change in medium and long 

chain acylcarnitine species in lean and obese are presented in Panel B, no change with 

the HFD would then be indicated by a value of 1 which is presented by the dashed line.     

A value > 1.0 indicates net accumulation of a acylcarnitine species while a value < 1 

indicates more fewer incompletely oxidized lipids.  All values are expressed as mean ± 

SEM.  # Indicates significant difference from Pre-HFD value.  Significance is indicated at P 

< 0.05. 

 



62 

 

 

C
4/

C
i4 C
6

C
10

:1

C
10

C
8:

1-
D

C

C
12

:1

0

1

2

3

# #

#

# #

Lean
Obese

F
ol

d 
C

ha
ng

e
M

us
cl

e 
A

cy
lc

ar
ni

ti
ne

s

Medium Chain Long Chain
0.0

0.5

1.0

1.5

##
#

Fo
ld

 C
ha

ng
e

M
us

cl
e 

A
cy

lc
ar

ni
ti

ne
s

A B

 



63 

 

 

 

CHAPTER 3: MITOCHONDRIAL FUNCTION IS IMPAIRED IN CULTURED MYOTUBES FROM OBESE HUMANS 

Boyle KE1,2,5, Zheng D1,2,5, Anderson ET3, Neufer PD1,2,3,5, and Houmard JA1,2,5. 

1The Human Performance Laboratory, 2Department of Exercise and Sport 

Sciences, 3Department of Physiology, 4The Heart Institute, and 5The Metabolic 

Institute for the Study of Diabetes and Obesity, East Carolina University, 

Greenville, NC. 

Keywords: Skeletal Muscle, Metabolic Inflexibility 

Abstract: 

The skeletal muscle of obese humans is characterized by reduced oxidative 

capacity and an inability to appropriately respond to a metabolic stimulus.  The purpose 

of the current study was to determine if this metabolic inflexibility is evident in intact 

skeletal muscle cells (myotubes) derived from lean and obese donors and to identify 

possible mechanisms involved.  Respiration was determined in permeabilized cultured 

myotubes from lean and obese individuals before and after a 24 h lipid incubation.  

Indicative of metabolic inflexibility with obesity, state 3 and uncoupled respiration rates 

with lipid (palmitoyl carnitine) and carbohydrate (pyruvate) substrate increased by up to 

2-fold after the 24 h lipid incubation in myotubes from lean, but not obese, donors.  The 

24 h lipid incubation increased mitochondrial DNA (mtDNA) content in myotubes from 
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lean subjects by 16% (P < 0.05), conversely, mtDNA content tended to decrease by 13% 

in myotubes from obese individuals (P < 0.06).  Elevated respiration in the cells from 

lean individuals after 24 h lipid incubation was still evident when data were normalized 

to mitochondrial content, suggesting that factors other than mitochondrial proliferation 

were involved.  In summary, these data suggest that the skeletal muscle of obese 

individuals is metabolically inflexible in terms of increasing substrate oxidation in 

response to lipid exposure.  This decrement is evident in primary cell culture and may 

involve, at least in part, an inability to induce mitochondrial proliferation. 
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INTRODUCTION 

Skeletal muscle lipid oxidation is reduced in obese and insulin resistant 

populations as determined in single leg perfusions (Kelley et al., 1999), tissue 

homogenates (Hulver et al., 2003; Kim et al., 2000), and primary muscle cell culture 

(Hulver et al., 2005).  Likewise, the skeletal muscle of obese humans is characterized by 

accumulated lipids (Goodpaster et al., 2000) and reduced oxidative capacity (Kelley et 

al., 1999; Kelley et al., 2002; Menshikova et al., 2005; Ritov et al., 2005).  While some 

suggest that the reduced oxidative capacity in obesity is based largely on differences in 

mitochondrial content (Boushel et al., 2007; Holloway et al., 2009; Holloway et al., 

2007), others argue that the existing mitochondria are unable to effectively oxidize 

lipids (Kelley et al., 2002; Koves et al., 2008). 

Emerging evidence indicates that the ability to adapt to a substrate challenge, 

such as insulin stimulation or lipid exposure, may be an important aspect of the 

oxidative impairment in the obese/diabetic phenotype (metabolic flexibility) (Astrup et 

al., 1994; Kelley et al., 1999).  Moreover, studies suggest that lipid exposure may 

exacerbate these phenotypic differences (Costford et al., 2008; Koves et al., 2008).  We 

have previously reported the retention of reduced lipid oxidation in primary human 

muscle cell cultures (myotubes) from obese individuals (Hulver et al., 2005).  In addition, 

Wensaas et al. (2009) have noted a less robust increase in palmitate oxidation in 

cultured myotubes from type 2 diabetics following 4 days of lipid incubation, suggesting 
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metabolic inflexibility in these cells.  However, in these previous studies, lipid oxidation 

has only been measured in the basal, non-ADP-stimulated state (Hulver et al., 2005; 

Wensaas et al., 2009) which do not reflect differences in mitochondrial capacity.  By 

permeabilizing the outer cell membrane and measuring mitochondrial respiration in 

ADP-stimulated and chemically uncoupled states, we are able to determine the maximal 

oxidative capacity of these cultured myotubes which would provide valuable insight into 

the etiology of the mitochondrial dysfunction in skeletal muscle of obese individuals. 

The purpose of the present study was to determine if metabolic inflexibility is 

evident in skeletal muscle cells derived from obese donors and, if so, the nature of this 

defect.  Maximal and sub-maximal mitochondrial respiration rates of permeabilized 

cultured myotubes from both lean and obese individuals were determined after a 24 h 

lipid pre-incubation in the presence of either lipid (palmitoyl carnitine) or carbohydrate 

(pyruvate).  We hypothesized that any phenotypic differences between cells from lean 

and obese individuals would be exacerbated by a lipid pre-incubation.  Data were 

normalized to both total cell count and mitochondrial DNA copy number to gain insight 

into the role of mitochondrial content in the phenotypic differences in skeletal muscle 

oxidative capacity. 
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METHODS 

DESIGN 

Mitochondrial respiration was measured in cultured myotubes from lean and 

obese donors both with and without a 24 h lipid pre-incubation.  Respiration was 

measured in permeabilized cells in the presence of palmitoyl carnitine and pyruvate as 

indicators of overall lipid (palmitoyl carnitine) and carbohydrate (pyruvate) flux through 

Complex I of the mitochondria (Table 5).  Succinate was then added to determine 

oxygen flux through Complex II of the mitochondria. 

MATERIALS 

All chemical reagents and substrates were purchased from Sigma (St. Louis, MO), 

unless otherwise stated.  Fetal bovine serum (FBS), Heat-inactivated horse serum, 

gentamicin, 0.05% trypsin EDTA, and Hank’s balanced salt solution were from Invitrogen 

(Carlsbad, CA).  Growth media (GM) and differentiation media (DM) consisted of low 

glucose (5 mmol/L) Dulbecco’s modified Eagles medium (DMEM) from Invitrogen.  

Biocoat tissue culture plates were from Becton Dickinson (Franklin Lakes, NJ).  PCR 

reagents were from Applied Biosystems (Foster City, CA). 
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HUMAN SUBJECTS 

Skeletal muscle biopsies were performed in 7 lean (BMI < 25 kg/m2) and 8 obese 

(BMI > 35 kg/m2) Caucasian males (ages 18-27 y). Participants were free from disease, 

nonsmoking, and none were taking medications known to alter metabolism.  All 

participants had maintained a constant body mass (± 2 kg) in the 6 months prior to the 

biopsy.  The protocol was approved by the East Carolina University Policy and Review 

Committee on Human Research, and informed consent was obtained.  Subject 

characteristics are presented in Table 4. 

PRIMARY HUMAN SKELETAL MUSCLE CELL CULTURE 

Muscle samples weighing 50–100 mg, which were obtained from vastus lateralis 

by needle biopsy under local anesthesia (0.1% lidocaine) and were immediately 

transferred to ice-cold low glucose DMEM and cleaned free of adipose and connective 

tissues.  Satellite cells were isolated with 0.25% trypsin collagenase digestion, pre-plated 

1-3 h in 3 mL GM on an uncoated T-25 tissue culture flask to remove fibroblasts, and 

then transferred to a type I collagen-coated T-25 flask for attachment.  Cells were 

cultured at 37°C in a humidified atmosphere of 5% CO2 in GM supplemented with 

human skeletal muscle SingleQuot contents, minus insulin (Lonza, Switzerland).  After 

reaching ~70% confluence, myoblasts were transferred to a type I collagen-coated T-75 

flask.  At ~70% confluence, cells were frozen in aliquots of ~0.5 x 106 in 0.5% DMSO for 

later use.  For experiments, cells were thawed and cultured to ~70% confluence in 1 T-
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75, then sub-cultured into 2 T-75s.  When cells reached 80–90% confluence, 

differentiation was induced by changing to low-serum DM consisting of 2% heat-

inactivated horse-serum, 0.3 % BSA, 0.05 % fetuin, and 50 μg/ml gentamicin.  Media was 

changed every 2–3 days.  After 6 days of differentiation, cells were incubated for 24 

hours in DM supplemented with either 0.01% BSA (control) or 100 μM oleate:palmitate 

(1:1 ratio) bound to 0.01% BSA plus 2 mM carnitine (lipid incubated).  Respirometry 

experiments were performed on day 7 of differentiation.  Separate cell aliquots of the 

same passage number were grown and harvested for analysis for protein content, 

enzyme activity, and mitochondrial DNA copy number. 

RESPIROMETRY EXPERIMENTS 

Mature human myotubes were lifted from T-75 culture plates with 0.05% trypsin 

EDTA, spun for 10 minutes at 1000 rpm, and resuspended in warmed in DMEM (5 

mmol/L glucose).  An aliquot of cells plus DMEM was reserved for permeabilization 

reference and data normalization to viable cell count using trypan blue (95-100% 

viable).  No difference in cell number or cell viability was observed between lean and 

obese or due to the lipid incubation.  Myotubes were then spun for an additional 5 

minutes at 500 rpm, the supernatant was discarded and cells were resuspended in room 

temperature respiration buffer (130 mM sucrose, 60 mM potassium gluconate, 3 mM 

magnesium chloride, 10 mM potassium phosphate, 20 mM HEPES, 0.1% BS; pH 7.4) 

supplemented with fresh EGTA (1 mM, pH 7.4) and digitonin (7-10 μg/106 cells), then 
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immediately transferred to the respiration chamber (~1-1.5 x 106 cells/2 mL).  Once 

oxygen concentration flux stabilized, substrates were added as described (Table 5), 

allowing for flux stabilization between each addition.  Side-by-side experiments of 

control and lipid incubated cells were performed for each subject.  Addition of 10 μM 

cytochrome C assured that the mitochondrial membrane remained intact.  The most 

stable portion of the oxygen concentration slope was assessed for each condition was 

normalized to viable cell count. 

Specific substrate additions allowed for measurement of state 4 (substrate only, 

no ADP added), state 3 (substrate + ADP), state 2 (+ oligomycin) and chemically 

uncoupled (FCCP-stimulated) respiration rates.  In addition, various substrates allowed 

for measurement of lipid or carbohydrate oxidation through Complex I (palmitoyl 

carnitine + malate {PCM} or pyruvate + malate {PM}) or Complex II (succinate) of the 

mitochondria.  A representative tracing for both control and lipid incubated experiments 

in cells from a lean donor is shown in Figure 5. 

Substrate concentrations were chosen to produce maximal substrate-specific 

stimulus for both lean and obese.  In preliminary experiments we determined that 5 μM 

palmitoyl carnitine was sufficient to induce maximal increases in respiration and 

titrations up to 25 μM did not induce additional oxygen consumption.  Substrates were 

prepared at pH 7.4, where necessary, and frozen at -20⁰C in single use aliquots, except 

for pyruvate, which was prepared fresh for each experiment day. 
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PROTEIN ANALYSIS 

Cells were lysed and harvested from control and lipid treated flasks using a 4% 

SDS solution containing protease and phosphatase inhibitors (Sigma; St. Louis, MO).  

Total protein concentrations were determined by bicinchoninic acid (BCA) protein assay 

(Pierce; Rockford, IL).  Total protein (20 μg) prepared from cell lysates was separated by 

7.5% or 12.5% SDS-PAGE, transferred to PVDF membranes (Biorad; Hercules, CA), and 

then incubated with antibodies diluted in 5% BSA in Tris-buffered saline.  Proteins were 

visualized by horseradish peroxidase conjugated immunoglobulin G.  COX-IV and PGC-

1α antibodies were purchased from Cell Signaling (Danvers, MA).  NRF-1 antibodies 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

ENZYME ACTIVITY ANALYSIS 

Cells were harvested from control and lipid treated flasks using a 100 mM 

potassium phosphate solution containing 0.05% BSA.  Cells were briefly sonicated and 

incubated in respective enzyme activity solutions while reading at respective 

wavelengths in the spectrophotometer.  Once a steady rate of enzyme activity was 

reached, the slope of each sample normalized for a blank control, measurement 

duration, sample dilution, and appropriate molar extinction coefficients and protein 

content (BCA protein assay (Pierce; Rockford, IL)).  For citrate synthase activity, 20 μL of 

each sample (approximately 10-15 μg protein) was added to 200 μL of a freshly-
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prepared enzyme activity solution (72.5mM Tris, 110 μM DTNB, 1.75 mM oxaloacetate, 

and 79.5 μM Acetyl CoA; pH 8.3) and read at 412 nm every 50 seconds for ten cycles.  

Data were normalized to molar DTNB extinction coefficient [((SAMPLE nm/s-CONTROL 

nm/s)220 μL)/(20 μL*13.6)].  For β-HAD activity, 40 μL of each sample (approximately 

20-30 μg protein) and 2 μL 10% Triton were added to 200 μL of a freshly-prepared 

enzyme activity solution (62.5 μM Tris, 312.5 μM β-nicotinamide adenine, 67.5 μM 

acetoacetyl CoA, and 2.5 mM EDTA; pH 7.0) and read at 355 nm every 50 seconds for 

ten cycles.  Data were normalized to molar β-NADH extinction coefficient [((SAMPLE 

nm/s-CONTROL nm/s)240 μL)/(40 μL*6.22)]. 

MITOCHONDRIAL DNA ANALYSIS 

Cells were harvested from control and lipid treated flasks using a 10% SDS 

solution (pH 8.0) containing proteinase K (Qiagen Inc.; Valencia, CA).  Samples were 

rocked overnight at 50°C to digest all protein.  DNA was then isolated using a 

phenol/chloroform extraction with ethanol precipitation, and resuspended in a 10 mM 

Tris, 0.1 mM EDTA solution.  Total DNA content was determined using Quant-iT 

PicoGreen reagents (Invitrogen Corp.; Carlsbad, CA).  Real-time quantitative PCR (RTQ-

PCR) was performed using the ABI PRISM 7400HT Sequence Detection System 

instrument and software with Taqman® Universal PCR Master Mix in accordance with 

manufacturer’s instructions (Applied Biosystems, Inc. (ABI); Foster City, CA).  Relative 

mitochondrial DNA content (Cyt b) was determined using the number of cycles 
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necessary to reach threshold (Ct).  All samples were run on the same plate and values 

normalized to genomic DNA (β-globin).  A standard curve consisting of a serially diluted 

pool of aliquots from each of the samples was also analyzed to assure assay efficiency.  

Primer and probe sequences are listed in Table 6. 

STATISTICAL ANALYSES 

T-tests were used to compare control and lipid incubated conditions and 

differences between cells from lean and obese donors.  Statistical significance was 

denoted at P <  0.05 level and data are presented as the mean ± SEM. 

RESULTS 

PARTICIPANT CHARACTERISTICS 

Participant characteristics are listed in Table 4.  By design, the obese participants 

were heavier and had greater BMIs than the leans.  Blood glucose and triglyceride 

values were not different between the groups, although insulin levels and HOMA values 

were higher in the obese. 

MARKERS OF MITOCHONDRIAL CONTENT/ACTIVITY 

Mitochondrial DNA copy number was not different between cells from lean and 

obese at baseline (513 ± 17 and 489 ± 75 AU in lean and obese, respectively; lean n =7, 

obese n=5).  The 24 hour lipid incubation increased relative mitochondrial DNA copy 
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number in the cells from lean donors and tended to decrease copy number in the cells 

from obese donors (+16%, P < 0.05, and -13%, P = 0.06, in lean and obese, respectively; 

Figure 9).  Corroborating these data was a body size x lipid incubation interaction for 

COX-IV protein content (P < 0.05; lean n=6, obese n=6), where the change from control 

to lipid incubation tended to be difference between cells from lean and obese donors.  P 

= 0.07; Figure 9).  Citrate synthase activity was not different between cells from lean and 

obese at baseline, nor was there any effect of lipid incubation (lean n=7, obese n=5).  β-

HAD activity was not different between lean and obese at baseline, but decreased 

following lipid incubation when both lean and obese were combined (0.23 ± 0.03 and 

0.18 ± 0.02 μM•μg protein-1•min-1 for control and lipid incubated, respectively; P < 0.05; 

lean + obese n=12). 

PGC-1α and NRF-1 protein content were not different between cells from lean 

and obese donors and were unchanged as a result of lipid incubation (Figure 10), 

indicating no observable difference in mitochondrial biogenesis. 

RESPIROMETRY 

Respiration was not different between cells cultured from lean and obese donors 

in any respiration state (basal state 4, ADP-stimulated state 3, state 3 through 

mitochondrial complex II, or oligomycin or FCCP supported respiration) in the presence 

of either palmitoyl carnitine + malate (PCM) or pyruvate + malate (PM) in either control 
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or lipid-incubated cells.  However, ADP-stimulated respiration tended to be higher in 

cells cultured from lean donors in the presence of PCM (P = 0.07; Figure 6) 

Following the 24 h lipid incubation, myotubes from lean, but not obese donors 

exhibited increased state 3 mitochondrial respiration relative to the control cells in the 

presence of both PCM and PM (+95% and +39% for PCM and PM, respectively; P < 0.05, 

Figure 6).  ADP-stimulated respiration through Complex II (+ succinate + glutamate) was 

elevated in the leans following the 24 h lipid incubation in the presence of PM (+23%; P 

< 0.05) but not  PCM (+ 7%; n.s., Figure 7) experiments.  Uncoupled respiration was also 

increased in the leans following lipid incubation (+29% and +26% for PCM and PM, 

respectively; P < 0.05) but unchanged in the obese (+7% and +9% for PCM and PM, 

respectively; n.s., Figure 7).  State 2 respiration remained unchanged with lipid 

incubation and was similar between groups. 

To account for differences in mitochondrial content, respiration data were also 

normalized to mitochondrial DNA copy number.  When normalized to mitochondrial 

DNA, state 3 respiration rates were elevated following lipid incubation in cells from lean 

donors both in the presence of PCM and PM (+28% and +25% for PCM and PM, 

respectively; P < 0.05, Figure 8), as was observed when the data were normalized to cell 

count.  Similar results were observed for uncoupled respiration rates, normalized to 

mitochondrial DNA copy number (+17% and +15% for PCM and PM, respectively; P < 

0.05, Figure 8).  However, the 24 h lipid incubation did not affect respiration rates in the 
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cells from obese donors in the presence of either PCM or PM (Figure 8), similar to the 

when data normalized to cell count.  These data indicate that changes in mitochondrial 

DNA copy number were not solely responsible for lipid incubation-induced changes in 

mitochondrial oxidation that were observed in the cells from lean donors. 

DISCUSSION 

Skeletal muscle oxidative capacity is impaired in obese and insulin resistant 

populations, though it is unclear whether this is attributable to impaired mitochondrial 

function (Kelley et al., 2002; Mogensen et al., 2007; Phielix et al., 2008; Ritov et al., 

2005), reduced mitochondrial content (Boushel et al., 2007; Holloway et al., 2006; 

Holloway et al., 2007), or both (for review, see (Holloway et al., 2009)).  Using a unique 

method of measuring mitochondrial respiration in cultured myotubes from lean and 

obese human donors, we have identified an obesity related mitochondrial dysfunction 

that is evident as an inability to upregulate metabolism (metabolic inflexibility) in 

response to a lipid challenge (24 h lipid incubation).  While cells cultured from our lean 

donors exhibited large increases in state 3 and uncoupled mitochondrial respiration 

following a 24-hour mixed lipid incubation (Figure 7), we did not observe a similar 

response in the cells from obese donors.  These findings suggest that phenotypic 

skeletal muscle metabolic inflexibility evident in obese humans is preserved in this cell 

culture model. 
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Metabolic inflexibility in obese and type 2 diabetics has been described as an 

impaired ability to suppress lipid oxidation in response to insulin-stimulation (for review, 

see (Kelley et al., 1999)).  Lean individuals also respond to excess dietary fat by 

increasing whole body lipid oxidation (Cameron-Smith et al., 2003; Chokkalingam et al., 

2007; Pehleman et al., 2005; Peters et al., 2001), though obese and previously obese 

individuals do not (Astrup et al., 1994; Thomas et al., 1992).  A novel finding of the 

present study is that this same inability to respond to a lipid challenge is retained in 

primary cell cultures from obese donors (Figure 6).  This observation not only implies an 

innate characteristic preserved in skeletal muscle satellite cells, but also establishes a 

new model in which to study the respiratory defects observed in obese humans.  By 

using a culture model one can strictly control the extracellular environment to examine 

skeletal muscle metabolism without interference from alternate organs and the 

circulating hormonal and metabolic milieu. 

Myotubes from lean donors exhibited elevated State 3 and uncoupled 

respiration following lipid exposure in the presence of both palmitate (PCM) and 

pyruvate (PM) through Complex I and Complex II (+ succinate).  Because these effects 

were present regardless of substrate or respiration state, it can be hypothesized that 

there were increases in total mitochondrial capacity, as a result of the 24 h lipid 

incubation, rather than one specific enzyme or pathway.  In support, we observed 

elevated mitochondrial DNA copy number in the lean subjects with the 24 h lipid 
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incubation (Figure 9).  In contrast, myotubes from obese donors did not exhibit similar 

increases in mitochondrial respiration (metabolic inflexibility) regardless of decreases in 

mitochondrial DNA content.  These data indicate that specific mitochondrial dysfunction 

is evident in obesity, particularly in the inability of skeletal muscle to respond to a lipid 

substrate challenge. 

In a previous report, 20 hours of lipid incubation (8mM oleate), induced PGC-1α 

gene expression and increased mitochondrial activity in culture myotubes from human 

donors (Staiger et al., 2005).  Therefore, despite our much lower oleate incubation (50 

μM), we were not surprised to observe slight, though significant increases in 

mitochondrial content in cells cultured from our lean donors.  However, a novel finding 

of the present study was mitochondrial content decreased in cells from obese donors 

(Figure 9).  In the current investigation, changes in PGC-1α or NRF-1 protein content did 

not account for changes in mitochondrial content, though these data do not negate 

potential differences in post-translational modifications and activation that could 

contribute to differences in mitochondrial biogenesis.  Further investigations into 

potential defects in lipid-induced mitochondrial biogenesis and/or mitoptosis in skeletal 

muscle of obese individuals are warranted. 

A lower State 3 respiration has been reported in permeabilized skeletal muscle 

fibers of type 2 diabetics compared with non-diabetic, weight-matched controls in the 

presence of PM (Mogensen et al., 2007) and malate + glutamate + succinate (Phielix et 
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al., 2008), but not PCM (Mogensen et al., 2007; Phielix et al., 2008), even when 

normalized to mitochondrial content.  However, Boushel et al. (2007) reported that 

differences in State 3 (glutamate + malate) respiration in type 2 diabetics and weight-

matched cohorts were eliminated when respiration was normalized to mitochondrial 

DNA copy number.  In the control condition, we did not observed differences in state 3 

respiration between cells from lean and obese (Figure 6), nor differences in 

mitochondrial content in the non-lipid incubated cells (Figure 9).  The present 

investigation agrees that in an unstimulated condition (control cells) mitochondrial 

content may be a good indicator of respiration rates.  However, once stimulated with 

the 24 h lipid incubation there is evidence of reduced oxidative capacity in cells from 

obese donors that is not explained by mitochondrial content, indicating metabolic 

inflexibility. 

One prior investigation has reported that myotubes cultured from type 2 

diabetics are metabolically flexible in response to acute glucose and palmitate oxidation, 

where there is evidence of Reverse Randle-Cycle activity (Gaster, 2007).  This appears to 

be at least partially regulated through CPT1, given that etomoxir reduced glucose-

dependent inhibition of palmitate oxidation (Gaster, 2007).  However, these 

experiments (Gaster, 2007) only investigated the acute regulation of palmitate oxidation 

and do not address more prolonged exposure to lipids that can lead to lipid 

accumulation within the cell (Aas et al., 2006; Wensaas et al., 2009) and potentially 
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regulate (or dis-regulate) metabolism.  Elevated dietary lipid intake increases skeletal 

muscle lipid content in both humans (Schrauwen-Hinderling et al., 2005) and rodents 

(Koves et al., 2008) and is reported to exacerbate phenotypic differences in lipid 

metabolism between lean and obese cohorts (Koves et al., 2008).  With longer lipid 

incubations (4 days), myotubes cultured from type 2 diabetics exhibited a less robust 

increase in 14CO2 production from labeled palmitate incubation, than was observed in 

cells from weight-matched counterparts (20% lower).  However, these measurements 

were performed in the non-ADP stimulated state, so it is unclear if this lipid exposure 

affected mitochondrial oxidative capacity.  The present investigation identifies these 

phenotypic differences in cultured myotubes from lean and obese humans in the 

disparate responses to controlled lipid incubation in both state 3 and chemically 

uncoupled respiration and recognizes a distinct mitochondrial dysfunction not entirely 

explained by differences in mitochondrial content. 

In conclusion, we show here that metabolic inflexibility is preserved in cultured 

myotubes from obese human donors and that this impairment is evident at the level of 

mitochondrial respiration.  In addition, it appears that the inability to respond to lipid 

incubation is not entirely accounted for by diminished mitochondrial content.  The 

skeletal muscle of obese individuals exhibits an impaired ability to respond to a 

metabolic challenge, namely, excess lipid.  This is the first report of such findings and 
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introduces a novel model for measuring mitochondrial dysfunction in skeletal muscle 

with obesity. 
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TABLE 4.  PARTICIPANT CHARACTERISTICS. 

Data presented for age, stature, body mass, BMI, plasma glucose, plasma 

insulin, HOMA, serum cholesterol, and serum triglycerides in lean and obese 

participants.  All data are presented as mean ± SEM.  *Indicates significant 

difference between the groups (P < 0.05). 
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Lean (n=7) Obese (n=7) 

Age (y) 22.3 ± 0.9 21.8 ± 1.1 

Stature (cm) 181.6 ± 2.8 182.8 ± 2.0 

Mass (kg) 71.7 ± 3.1 130.2 ± 7.9* 

BMI (kg/m
2
) 21.7 ± 0.8 39.0 ± 2.0* 

Glucose (mmol/L) 4.93 ± 0.21 4.96 ± 0.15 

Insulin (μIU/L) 5.3 ± 1.1 15.9 ± 1.4* 

HOMA 1.2 ± 0.3 3.6 ± 0.3* 

Cholesterol (mg/dL) 176.7 ± 9.0 168.5 ± 18.6 

Triglycerides (mg/dL) 147.9 ± 36.8 137.2 ± 35.8 
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TABLE 5.  RESPIROMETRY PROTOCOL FOR HSMC. 

Substrate additions for respirometry experiments are described below.  

Two experiments were performed for each set of cells (control and 24 hour lipid 

incubated) including respiration in the presence of PCM or PM. 
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 Substrate Concentration 

In Suspension Digitonin Dig 7-10 μg/106 cells 

1 

Pyruvate 
PM 

2 mM Pyruvate 

Malate 1 mM Malate 

OR 

1 

Palmitoyl Carnitine 
PCM 

5 μM Palmitoyl Carnitine 

Malate 1 mM Malate 

2 ADP D 2 mM 

3 Cytochrome C CytC 10 μM 

4 Succinate S 3 mM 

5 Glutamate G 2 mM 

6 Oligomycin O 2.5 μg/mL 

7 FCCP F 2 μM 
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TABLE 6.  PRIMER AND PROBE SEQUENCES. 

Primer and Probe sequences used to determine mitochondrial DNA copy number 

analyses using RT-PCR for and β-globin (genomic DNA) and Cyt b (mitochondrial DNA).  

Sequences are listed in 5’ to 3’ orientation. 
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Forward Primer Reverse Primer Probe 

β-Globin TGAAGGCTCATGGCAAGAAA AAAGGTGCCCTTGAGGTTGTC CCAGGCCATCACTAAAGGCACCGA 

Cytb GACGCCTCAACCGCCTTT GCGGATGATTCAGCCATAATTTA CATCAATCGCCCACATCACTCGAGAC 
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FIGURE 5.  REPRESENTATIVE OXYGRAPH TRACING OF HSMC FROM ONE LEAN DONOR. 

Respiration of permeabilized HSMC in the presence of various substrates 

as listed in Table 5 following incubation with either BSA alone (control, Panel A) 

or BSA + 100 μM oleate:palmitate [1:1] (O:P, Panel B).  The blue line represents 

the oxygen concentration within the respiration chamber, while the red line 

represents the oxygen flux (JO2), or the slope of the blue line. 
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FIGURE 6.  MITOCHONDRIAL RESPIRATION IN MYOTUBES FROM LEAN AND OBESE DONORS. 

State 4 and State 3 respiration rates in cultured myotubes from lean 

(open bars) and obese (filled bars) donors in the presence of PCM (Panel A) and 

PM (Panel B) with and without 24 hour lipid incubation.  Data are presented as 

the mean ± SEM of the oxygen flux per second in 2 mL chamber volume, 

normalized to total cell count.  * Indicates significant response to the lipid 

incubation. 
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FIGURE 7.  UNCOUPLED RESPIRATION IN MYOTUBES FROM LEAN AND OBESE DONORS. 

State 3 (+ glutamate + succinate) and uncoupled respiration (+ FCCP) 

rates in cultured myotubes from lean (open bars) and obese (filled bars) donors 

in the presence of PCM (Panel A) and PM (Panel B) with and without 24 hour 

lipid incubation.  Data are presented as the mean ± SEM of the oxygen flux per 

second in 2 mL chamber volume, normalized to total cell count.  * Indicates 

significant response to the lipid incubation. 
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FIGURE 8.  MITOCHONDRIAL RESPIRATION IN CONTROL AND LIPID INCUBATED HSMC. 

State 3 and uncoupled respiration in control and lipid-incubated 

myotubes cultured from lean (open bars) and obese (filled bars) donors in the 

presence of PCM (Panel A) and PM (Panel B).  Data are presented as the mean ± 

SEM of the oxygen flux per second in 2 mL chamber volume, normalized to 

mitochondrial DNA copy number and total cell count.  * Indicates significant 

response to the lipid incubation. 
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FIGURE 9.  MARKERS OF MITOCHONDRIAL CONTENT WITH LIPID EXPOSURE IN HSMC. 

Mitochondrial DNA copy number (Panel A) and COX-IV protein (Panel B) 

with and without 24 hour lipid incubation in cultured myotubes from lean (open 

bars) and obese (filled bars) donors.  All values are expressed as mean ± SEM.  * 

Indicates significant response to the lipid incubation.  # indicates significant 

differences from lean.  Significance is indicated at P < 0.05. 
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FIGURE 10.  PGC-1αααα AND NRF-1 PROTEIN CONTENT WITH LIPID EXPOSURE IN HSMC. 

PGC-1α (Panel A) and NRF-1 protein (Panel B) with and without a 24 hour 

lipid incubation in cultured myotubes from lean (open bars) and obese (filled 

bars) donors.  Value means are expressed arbitrary units ± SEM. 
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CHAPTER 4: INTEGRATED DISCUSSION 

Skeletal muscle of obese individuals has a reduced capacity to oxidize lipids and 

some data suggests an inability to respond to a metabolic stimulus is present in these 

individuals, particularly in relation to increased carbohydrate oxidation in face of insulin 

stimulation (Kelley et al., 1999).  Some data also suggests a similar ‘metabolic 

inflexibility’ with respect to lipid oxidation in response to lipid exposure obese 

individuals (Astrup et al., 1994).  This inability to respond to a metabolic stimulus has 

been linked with both obesity and insulin resistance and the nature of this phenomenon 

may provide valuable insight into these co-morbidities.  The ability to regulate lipid 

oxidation in response to lipid exposure is impaired in the skeletal muscle of obese 

individuals, and is evident with both 5 days of high fat feeding in obese humans, as well 

as with 24 hours of lipid incubation in cultured myotubes from obese human donors. 

Chapter 2 focused on the effects of lipid exposure on skeletal muscle mRNA 

content in the form of a 5 day, 65% fat diet in lean and obese humans.  Whereas skeletal 

muscle from lean individuals exhibited increased mRNA content of many genes 

associated with lipid oxidation, skeletal muscle from obese individuals did not.  Likewise, 

whereas skeletal muscle from lean individuals showed reduced long and medium chain 

lipid species from Pre- to Post-HFD, the skeletal muscle from the lean participants only 

displayed reduced content of long chain lipid species, with no change in medium chain 

lipids, and even increased lipid content in some cases.  These data suggest that there 
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may be an impairment in lipid oxidation downstream of MCAD in skeletal muscle of 

obese individuals in response to high fat feeding, or perhaps there is reduced TCA cycle 

activity, as has been presented in other previously in other models of obesity (Koves et 

al., 2008).  In retrospect, measuring explicit skeletal muscle lipid oxidation may have 

presented a more physiologically relevant outcome variable, though limitations in tissue 

collection precluded these measurements consistently.  Nonetheless, many have 

previously shown that changes in skeletal muscle PDK4 mRNA content and activity are 

associated with concomitant increases in lipid oxidation, particularly with regard to high 

fat feeding in lean humans (Cameron-Smith et al., 2003; Peters et al., 2001), and our 

most robust responses were with PDK4 mRNA content, lending more physiological 

significance to our mRNA data. 

In order to better determine the nature of this ‘metabolic inflexibility’ in skeletal 

muscle of obese humans, Chapter 3 examines the effect of lipid exposure on skeletal 

muscle mitochondrial function in a unique model of permeabilized cultured myotubes 

harvested from lean and obese human donors.  This method allowed for explicit 

measurement of various aspects of mitochondrial respiration in a model of skeletal 

muscle that is not influenced by other organs or the physiologic metabolic milieu.  In 

doing so, we observed similar ‘metabolic inflexibility’ in response to lipid exposure in 

these myotubes cultured from obese humans as was observed in the skeletal muscle on 

obese humans in response to high fat feeding.  This inflexibility was observed at many 
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levels of mitochondrial respiration, as well as in the ability to induce mitochondrial 

biogenesis.  These data indicate that this ‘metabolic inflexibility’ is present in overall 

mitochondrial function.  Because mitochondrial biogenesis appears to be an important 

aspect of this metabolic inflexibility and many of the metabolic regulators for lipid 

oxidation are also regulators for mitochondrial biogenesis (i.e PGC-1α), perhaps further 

research in the control of this adaptation may be warranted. 

In obese humans, metabolic control of lipid oxidation in skeletal muscle is 

impaired at the level of mRNA content, and is evident for many genes involved in this 

mechanism.  In addition, in myotubes from obese donors, overall mitochondrial function 

was impaired in response to lipid exposure, at many levels of mitochondrial respiration, 

as well as mitochondrial biogenesis.  Taken together, these data suggest that there is a 

global inability to respond to lipid exposure in skeletal muscle of obese individuals.  In 

addition, the fact that this inability to respond to lipid exposure was observed in satellite 

cells cultured from human donors, suggests a genetic or epigenetic component.  Further 

research into the mechanism of this global impairment in the ability to respond to a 

metabolic stimulus may provide valuable insight into potential treatment options for 

obesity, or perhaps a mechanism whereby obesity is exacerbated by repeated metabolic 

overloads to which the skeletal muscle is unable to respond. 
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APPENDIX A: DETAILED METHODS 

CONTROLLED HIGH-FAT DIET 

Subjects consumed their normal standard mixed diet (55% carbohydrate, 

15% protein, 30% fat) diet prior to the experiment.  The HFD was designed 

individuals for each participant and contained 60-65% of energy from fat, 15% of 

energy from protein, and 20-25% of energy from carbohydrate.  Daily caloric 

requirements were based on body size using the Harris-Benedict equation (1928) 

with ideal body weight (IBW) adjustments made for obese participants (Males: 

48.2 kg + 2.7 kg every inch over 5 ft. of stature, Females: 45.5 kg + 2.3 kg every 

inch over 5 ft. of stature); American Dietetic Association Nutrition Care Manual).  

The high-fat meal on days 1 and 6 was also designed to contain 60-65% of energy 

from fat and will comprise 35% of each subject’s daily energy intake.  All meals 

consisted of pre-measured snack foods and prepared frozen meals, which were 

provided to the participants.  Subjects were asked to adhere to the planned 

menu, to maintain their normal physical activity levels, and to refrain from 

alcohol consumption for the duration of the study.  All diet records, meals, and 

the high fat diets were analyzed using Nutritionist ProTM Nutrition Analysis 

Software (Axxya Systems) to assure proper energy intake and macronutrient 

composition.  Food diaries were maintained by the subjects during the HFD as an 
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indicator of compliance.  A timeline of dietary intervention, muscle biopsy, and 

blood samplings is presented in Figure 11. 

RNA EXTRACTION/QUANTIFICATION 

Skeletal muscle were obtained from the vastus lateralis at 4 time points 

throughout the experiment for the analysis of mRNA and protein content.  Total 

RNA was isolated from ~30 mg of frozen muscle using either the RNeasy Mini Kit 

(Qiagen Inc., Valencia, CA) with on-column DNase digestion using the RNase-Free 

DNase Set (QIAGEN, Inc.) to remove residual DNA or a guanidine thiocyanate 

digestion (100mM guanidine thiocyanate, 20mM sodium acetate, 0.5% n-lauryl-

sarcosine) with phenol extraction method and an additional lithium chloride 

(4M) step to solubolize residual DNA.  RNA was extracted using the same 

method for all samples of each subject.  Total RNA was reverse transcribed into 

cDNA using the Superscript III Reverse Transcriptase protocol (Invitrogen Corp., 

Carlsbad, CA) and was quantified in triplicate with Quant-iT PicoGreen reagents 

(Invitrogen Corp., Carlsbad, CA). 

DNA EXTRACTION/MITOCHONDRIAL DNA QUANTIFICATION 

Differentiated cultured muscle cells from lean and obese individuals with 

or without 24h 100 μM oleate:palmitate (1:1 ratio) incubation were harvested 

for the analysis of mitochondrial copy number per total nuclear DNA content.  
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Total DNA was isolated from cells following overnight digestion at 50°C in buffer 

containing Proteinase K (100mM NaCl, 10mM Tris, 25mM EDTA, 0.25% SDS, 0.1 

mg/mL proteinase K; pH 8) using a phenol/chloroform extraction method.  Total 

DNA and mtDNA was measured using quantitative RT-PCR with β-globin and 

cytochrome b (Cytb) primer/probe sets, respectively (Table 6). 

QUANTITATIVE RT-PCR 

Real-time quantitative PCR (RTQ-PCR) was performed using the ABI 

PRISM 7400HT Sequence Detection System instrument and software with 

Taqman® Universal PCR Master Mix in accordance with manufacturer’s 

instructions (Applied Biosystems, Inc. (ABI), Foster City, CA).  Relative gene 

expression levels were determined using the number of cycles necessary to 

reach threshold (Ct).  The Ct values from RTQ-PCR will then be compared with a 

standard curve consisting of a serially diluted pool from each of the samples.  All 

samples were run on the same plate and values normalized to the amount of 

cDNA that was originally added to each reaction well.  Primer and probe 

sequences for all genes assessed are presented in Table 2.  Endogenous control 

gene expression (18S) were also measured and compared with each gene of 

interest to assure assay efficiency. 
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PROTEIN EXTRACTION 

Total protein was extracted from either muscle tissue or harvested cell 

culture using a standard lysis buffer (20mM Tris-HCL, 10mM sodium fluoride, 

1mM EDTA, 4% SDS, 20% glycerol; pH 6.8) containing phosphatase and protease 

inhibitors.  Samples with be homogenized or sonicated, respectively.  In the case 

of muscle homogenate, particulates were spun down and protein content in the 

remaining suspension was measured using the standard BCA assay protocol 

(Pierce; Rockford, IL). 

WESTERN BLOT 

Proteins from total cell or tissue lysates were separated out by 10% SDS-

PAGE, then transferred to PVDF membranes and blocked with diluted, 

reconstituted dry-milk-powder (5%).  Membranes were then incubated with 

antibodies for proteins of interest followed by horseradish peroxidase 

conjugated antibodies with species specific recognition of primary antibodies.  

Proteins were then visualized using a chemiluminescence assay. 

SKELETAL MUSCLE HOMOGENATE PALMITATE OXIDATION 

Muscle palmitate oxidation was measured as previously described (Kim 

et al., 2000). Approximately 50–60 mg of tissue was collected in 200 μL of a 

modified sucrose-EDTA medium containing 250 mM sucrose, 1 mM EDTA, 2mM 
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ATP and 10 mM Tris·HCl, pH 7.4.  Samples were minced thoroughly with scissors 

and then diluted 20-fold with additional sucrose-EDTA buffer. Tissue was placed 

on ice and homogenized with a Teflon pestle on glass for 30 s. Muscle 

homogenate (40 μL) was added to incubation wells in a sealed, modified, 48-well 

plate with a channel cut between the adjacent trap wells, which contained 200 

μL of 1 N sodium hydroxide for the collection of liberated 14CO2. Incubation 

buffer {final concentrations: 0.2 mM palmitate ([1-14C]palmitate at 0.5 μCi/mL), 

62.5 mM sucrose, 10 mM Tris·HCl, 12.5 mM potassium phosphate, 100 mM 

potassium chloride, 0.1 mM malate, 2 mM ATP, 1 mM dithiothreitol, 0.1 mM β-

NAD, 1 mM L-carnitine, 0.05 mM coenzyme A, and 0.5% fatty acid-free bovine 

serum albumin, 160 μL, pH 7.4} was added to the wells to initiate the reaction.  

Following 30 min of incubation at 37°C, 100 μL of 70% perchloric acid was added 

to terminate the reaction. The trap wells were sampled for label incorporation 

into 14CO2, which was determined by scintillation counting using 4 mL of Uniscint 

BD (National Diagnostics, Atlanta, GA). In addition to complete oxidative 

products (14CO2), incomplete oxidative products [acid-soluble metabolites (ASM)] 

were also measured as described previously (Kim et al., 2000). The ratio of 

incomplete (ASM) to complete (14CO2) radiolabeled products was determined to 

provide an index of incomplete to complete FAO.  Results are presented in Figure 

15. 
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PRIMARY CULTURE OF HUMAN SKELETAL MUSCLE CELLS 

Muscle samples weight 50-100 mg from vastus lateralis needle biopsy 

was used for cell culture.  Tissue was immediately transferred to ice-cold DMEM 

and cleaned free from adipose and connective tissues in Hank’s balanced salt 

solution.  Tissue was incubated with trypsin cocktail (0.25% trypsin, 0.1% type IV 

collagenase, 0.1% BSA) for 30 minutes in shaker bath at 37°C to isolate satellite 

cells.  Cells were re-suspended in growth media (low glucose DMEM containing 

10% FBS) and pre-plated onto uncoated T-25 tissue culture flasks for 1-3 hours in 

order to remove fibroblasts.  Cells were then transferred to Type I collagen-

coated T-25 flask for attachment and growth.  Cells were cultured at 37°C in a 

humidified incubator with 5% CO2.  When cells (myoblasts) reached 70% 

confluence, they were transferred to Type I collagen-coated T-75 culture flasks.  

When cells reached 80-90% confluence, differentiation was induced using 

differentiation media (low glucose DMEM containing 2% heat-inactivated horse-

serum).  Cell culture experiments were carried out on mature myotubes on day 7 

of differentiation. 

WHOLE CELL RESPIROMETRY 

On day 6 of differentiation, cultured myotubes from lean and obese 

humans were incubated in differentiation media supplemented with either 0.1% 

BSA or 50μM oleate + 50μM palmitate + 0.1% BSA + 200 mM carnitnine for 24h.  
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Immediately prior to the experiments (day 7) cells were lifted from the culture 

flasks with a 0.05% trypsin EDTA solution and resuspended in low glucose 

DMEM.  Cell count and viability were measured from these samples, using 

trypan blue to assess cell viability.  For permeabilization, cells were spun down 

and resuspended in 2 mL of an room temperature sucrose-based respiration 

buffer containing 7-10 μg of digitonin per million cells.  Permeabilized cells and 

buffer were transferred to the respiration chamber and oxygen flux was 

measured using Oroboros ® DatLab Software. 

For whole cell respiration, aliquots were reserved for normalization to 

protein content and remaining cells were transferred to the respiration chamber 

and oxygen consumption was measured in the presence of 5 μg/mL of 

oligomycin followed by titrated amounts of FCCP up to 24 μM.  Baseline 

respiration measurements are presented in Figure 17. 

CONFOCAL MICROSCOPY 

Cultured human myoblasts from lean and obese humans will be plated 

and differentiated into collagen coated, glass bottom petri-dishes.  On day 5 of 

differentiation cells will be incubated in low glucose DMEM containing either 

0.5% BSA or 500μM oleate + 0.5% BSA for 24h.  Thirty minutes prior to the 

experiments (day 6), 100 μM MitoTracker Red® (Invitrogen Corp.) was added to 
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the dishes.  After 30 minutes, cells will be washed in PBS and mitochondria 

content and morphology will be visualized using confocal technology Figure 16. 
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FIGURE 11.  CONTROLLED HIGH FAT DIET PROTOCOL 

The HFD feeding and sampling protocol.  Before (day 1) and after (day 6) of the 5 

day HFD, biopsies and blood draws were performed in the Fasted and 4h Post Meal 

conditions. 
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APPENDIX B: ADDITIONAL RESULTS – CHAPTER 2 

FIGURE 12.  FASTING PLASMA Β-HYDROXYBUTYRATE PRE- AND POST-HFD. 

Data are fasting plasma β-hydroxybutyrate levels in the Pre- and Post-

HFD conditions in lean and obese individuals.  All values are expressed as mean ± 

SEM.  * Indicates a significant increase in β-hydroxybutyrate in both groups 

combined (P < 0.05). 
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FIGURE 13.  EFFECT OF HFD ON PDK4 MRNA CONTENT AND PDH PHOSPHORYLATION. 

Value means are expressed as the fold change from the Pre- to Post-HFD 

conditions where the Pre-HFD condition is set at 1 (indicated by the dashed line).  

Changes in PDK4 mRNA content exhibited significant overall interaction for HFD 

between lean and obese (Panel A), though changes in PDH phosphorylation were 

not significant (Panel B).  All values are expressed as mean ± SEM.  ― indicates 

significant body size x diet interaction.  * Indicates significant response to the 

diet.  # Indicates significant difference from lean.  Significance is indicated at P < 

0.05. 
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FIGURE 14.  BMI AND FASTED INSULIN & CHANGE IN FASTED PDK4 MRNA CONTENT. 

Relationships between BMI and change in fasted PDK4 mRNA content (r2 

= 0.273, P < 0.05; panel A) and fasted insulin and change in fasted PDK4 mRNA 

content (r2 = 0.285, P < 0.05; panel B) in lean (ο) and obese (•) participants. 
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FIGURE 15.  SKELETAL MUSCLE PALMITATE OXIDATION PRE- AND POST-HFD. 

Pre- and Post-HFD CO2 production from 14C Palmitate, representing total lipid 

oxidation, infasted tissue samples from lean (open bars) and obese (closed bars) 

humans. 
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APPENDIX C: ADDITIONAL RESULTS – CHAPTER 3 

FIGURE 16.  CONFOCAL MICROSCOPY IMAGE. 

Human skeletal muscle myotubes from one obese donor, stained for 

mitochondria, visualized using confocoal microscopy. 

 



133 

 

 

 

 

 



134 

 

 

 

FIGURE 17.  BASAL AND UNCOUPLED RESPIRATION IN HSMC FROM LEAN AND OBESE DONORS. 

Oxygen flux in whole cell preparations of cultured myotubes from lean (open 

squares) and obese (closed triangles) human donors.  Data are presented during basal 

conditions (oligomycin) and titrations to maximally uncoupled respiration (FCCP).  Data 

are presented as mean ± SEM. 
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APPENDIX D: IRB APPROVAL LETTER 

 


