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 This study examines the ecological effects of sea-level rise on shorezone in the Neuse 

River estuary and western Pamlico Sound, NC.  Shorezone is defined here in an 

ecohydrological context as the area of wetland that extends from an estuarine shoreline 

landward to where the hydrologic influence of sea level diminishes and terrestrial hydrology 

dominates. The thesis is structured into three chapters, each highlighting a particular scale of 

analysis (e.g., landscape, shorezone, and plant community).    

 At the landscape scale, the first chapter investigates geomorphology, hypsography, 

wetland types, and average landscape slope of successive interstream divide units that are 

submerging relative to rising sea level.  A geographic information system (GIS) was used to 

identify differences between units and translate them into a space-for-time framework 

consisting of four temporal stages of shorezone transgression: early – upstream migration, 

intermediate – non-migration, late – over-flat migration, and terminal – non-migration.  The 

framework is intended to provide a better understanding of processes that have led to the 

current position of shorezones and to anticipate where effects of rising sea level will be the 

greatest. 

 In the second chapter, species composition and abundance, soil properties and 

elevation were analyzed at a plant community scale.  Communities were arranged into a 

hierarchical classification according to hydrogeomorphic wetland type (landscape scale), 

followed by cover type (shorezone scale), and then community type (plant community scale).  

A detrended correspondence analysis ordination was performed to analyze samples across an 

apparent salinity gradient.  Analyses revealed a strong relationship between soil porewater 



salinity and the sequence and distance at which plant communities occur between the 

shoreline and the landward margin of shorezone.  The results suggest that these irregularly 

flooded shorezones simultaneously exhibit mosaic and zonal patterns of vegetation.   

 At the shorezone scale, changes in cover type over time were estimated for an 

interstream divide unit in the outer estuary.  Cover type classes were ranked to detect the 

extent, direction (e.g., landward vs. seaward migration), and magnitude (e.g., differences in 

rank) of vegetation change between 1958 and 1998.  Cover types were delineated by 

interpreting aerial photographs using the GIS.  Results show that seaward migration of cover 

types (517 ha) is more than twice that of landward migration (234 ha).  This occurs in spite 

of an estimated 249 ha landward expansion of shorezone (i.e., transgression) caused by an 

approximate 15 cm rise in local sea level over the 40 yr study period.  This information 

suggests that at shorter temporal scales, vegetation change dynamics do not necessarily align 

with landward migration of shorezone that results from sea-level rise. 
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Foreword: Rationale for a hierarchical study 

 Determining the appropriate scale of an ecological study is critical (Turner et al. 

2001).  What might be an appropriate scale for studying intraspecific competition among a 

species is not likely to be appropriate for studying the distribution of that species across a 

landscape.  Urban et al. (1987) stated that “the apparent complexity of landscapes can be 

partially resolved by decomposing them into a hierarchical framework.”   Therefore in this 

study, three hierarchical scales have been devised for which to conduct analyses: landscape 

(broad scale), plant community (fine scale), and shorezone (focal scale).  In Chapter 1, how 

shorezone systematically changes in position, wetland type, and extent along an estuarine 

gradient in response to rising sea level was investigated at the landscape scale and within a 

space-for-time framework (Delcourt and Delcourt 1988, Picket 1989).  In Chapter 2, patterns 

of shorezone vegetation were explored both locally and regionally at the plant community 

scale.  Here, plant communities were arranged into a hierarchical classification that reflects 

the scale of each chapter.  Finally in Chapter 3, cover types devised for the shorezone scale 

of the hierarchical classification were applied to map shorezone vegetation and its changes 

over a 40 year period.   



 

 

 

 

 

 

 

 

Chapter 1 

 

Effects of rising sea level on shorezone: application of a space-for-time framework at a 

landscape scale 

 



 

Introduction 

 A zone of hydrologic influence is often characterized by fringe wetlands delimited by 

a shoreline and a landward margin where the terrestrial landscape meets an estuary. While 

the shoreline is influenced by factors that control erosion and deposition (Riggs 2001), the 

landward margin is regulated by the interaction between sea level and the groundwater table 

(Gardner et al. 2002).  This zone may be regarded as the shorezone and is defined here in an 

ecohydrological context as the area of wetland that extends from an estuarine shoreline 

landward to where the hydrologic influence of sea level diminishes and terrestrial hydrology 

dominates.  

 The meaning of the term “shorezone,” however, is somewhat ambiguous and rarely 

defined in more than a cursory way.  In a Web of Science search for the term performed in 

February 2009, only 13 papers were returned, most of which use shorezone in a geologic 

context.  Only one of these papers (Ogburn-Matthews and Allen 1993) uses the term in an 

ecological context describing a nearshore aquatic portion of a tidal estuary in South Carolina.  

Howes et al. (1994) applied the concept to characterize intertidal and nearshore habitats in 

both ecologic and geologic contexts along Pacific Northwest coast of North America.    

 For the purpose of this study, shorezone refers to estuarine and perimarine wetlands. 

The concept of perimarine wetlands has not been fully developed in the US, but effectively 

refers to freshwater wetlands whose hydrology is directly influenced by sea level (Hageman 

1969, Plater and Kirby 2006).  Thus, the shorezone may extend a considerable distance 

landward where topography permits.  While a shorezone may be inundated entirely by fresh 

water from a terrestrial environment, as for freshwater tidal marshes (Odum 1988, Conner et 

 



 

al. 2007), sea level effectively acts as a dam to freshwater input and is ultimately responsible 

for maintaining water levels at or near the soil surface (Nuttle and Portnoy 1992).    

For most of the world’s shorelines that are experiencing a relative rise in sea level, 

shorezones are sustained by the vertical accretion of autochthonous or allochthonous material 

at a rate comparable to rising sea level (Cahoon et al. 2006).  Without this capability, the 

shorezone and its respective biological communities would drown.   

 Shorezones occupy a variety of geomorphic settings as sea level intersects land.  In 

low-lying coastal areas of North Carolina, USA, these inherited settings can be roughly 

grouped into river valleys and interstream divides, or flats (sensu Wells 1928, Daniels 1978, 

Phillips 1997), the latter dominating the region.  Shorezones are well developed on these 

settings because of their inherently low slope.  Three sequential stages of development have 

been identified in response to rising sea level (Brinson 1991a). Initially, the landward margin 

of shorezone begins by migrating up river valleys or floodplains, normally the flattest part of 

any landscape (i.e., upstream migration).  Once sea level inundates valleys, the landward 

margin of shorezone migrates over the more gently sloping interstream flats.  In the third and 

final stage, sea-level rises above the highest elevations. Landward margins of shorezones 

from opposing shorelines meet as there is no more land to migrate upon, and the result is a 

non-migrating island.  These three stages represent a sequence in time, which may be 

reflected in a spatial progression where the regional slope along an estuary sets up a gradient 

of decreasing exposure to a rising sea level.  This space-for-time approach can provide a 

framework for predicting how rising sea level interacts with a given landform (Pickett 1989, 

Michener et al. 1997, Desantis et al. 2007).   
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 The space-for-time framework is applied to the Neuse River estuary, North Carolina, 

to reveal a progression of shorezone development along an estuarine gradient.  Hypsographic 

profiles are used in concert with relative abundance and adjacency of hydrogeomorphic 

classes of wetland and average landscape slope to illustrate this progression.  In so doing, the 

approach is intended to provide a better understanding of processes that have led to the 

current position of shorezones and to anticipate where effects of rising sea level will be most 

influential. 
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Study Area 

The study area is situated in the lower coastal plain of North Carolina in the lower 

Neuse River watershed sub-basin, (Figure 1-1).  The Neuse River flows toward Pamlico 

Sound, a relatively shallow lagoonal estuary separated from the Atlantic Ocean by an 

extensive chain of barrier islands.  Astronomic tidal influence is significantly diminished in 

the estuary due to its few tidal inlets relative to the large volume of Pamlico Sound.  

Astronomical tidal amplitude ranges only 15 - 19 cm (Cahoon et al. 1995) and is not 

responsible for inundating the marsh platform (Brinson et al. 1991b).  Instead, inundation of 

shorezone is largely a response to wind direction and stress (Giese et al. 1985).  Relative sea-

level rise within this system has been estimated by Poulter (2005) at between 3.2 – 4.3 mm 

yr-1 (mean of 3.8 mm yr-1) using tide-gage data and by Horton et al. (2006) at 3.7 mm yr-1 

based on diatom assemblages from the past 150 years. 

The Atlantic coastal plain exhibits a succession of geomorphic terraces that are the 

result of several Pleistocene sea-level cycles (Strahler 1973).  The study area occupies 

portions of the Talbot and Pamlico terraces (Figure 1-1). The terraces are composed of 

sediments of shallow marine to estuarine origin (Mixon and Pilkey 1976).  The Talbot terrace 

is situated to the west and generally exhibits elevations greater than 6 m above sea level.   To 

the east, the Pamlico terrace is generally situated below 3 m elevation (NOAA 2005).  The 

two terraces are separated by the Suffolk Shoreline paleo-shoreline that formed during a late-

Pleistocene sea level high stand (Mixon and Pilkey 1976).  Over time, subaerial weathering 

and erosion has incised these terraces forming river valleys between a succession of 

relatively flat interstream divide areas (Wells 1928).   

 



Figure 1-1. Study area location, regional geomorphic features, DEM, interstream divide units 
and distribution of shorezone.  The position of the study area along the Atlantic Coast is 
depicted at top left.  Regional geomorphic features are depicted at top right. Interstream 
divide units and the areal extent of shorezone (in white) are superimposed on the DEM at 
bottom.   
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Two important subaerial late Pleistocene features interrupt the geomorphology of the 

terrace settings (Figure 1-1).  First, an abandoned paleo-braidplain is situated on the floor of 

the Neuse River valley.  This paleo-braidplain is exposed in the western portion of the study 

area along the Neuse River.  During the most recent glacial maximum (18 to 20 kyr BP), this 

braidplain presumably extended to the edge of the continental shelf.  It has since been 

reworked and inundated by Holocene sea-level rise, which in turn formed the present Neuse 

River estuary.  Second, two successive paleo-barrier islands are situated atop the Pamlico 

terrace in the southeastern-most portion of the study area (Mixon and Pilkey 1976).  These 

features exhibit the highest elevations east of the Suffolk Shoreline.     
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Methods 

 Using a digital elevation model (DEM) consisting of both topographic and 

bathymetric data, the study area was divided into 17 interstream divide units.  Units are 

labeled N1 through N9 on the north shore of the estuary and S1 through S8 on the south 

shore (Figure 1-1).  The units represent increments along multiple environmental gradients 

(e.g., salinity, elevation, slope, degree of inundation, etc.) that extend from the inner estuary 

(west) to the outer estuary (east).  Each unit was delineated according to the thalweg of major 

tributaries branching from the trunk estuary, the thalweg of the Neuse River, and the north 

and south basin divides (Figure 1-1).  Major tributaries included the widest and generally 

longest reaches that extended to within 1 km of the north and the south Neuse basin divides.  

The boundaries of unit S8 were somewhat arbitrarily defined due to limited bathymetric 

information in its vicinity, as well as the likelihood that Holocene sedimentation has affected 

the original bathymetry.  The boundaries of Unit S1 also stray from the criteria described 

above because the DEM did not cover it completely; it was truncated using the two largest 

tributaries within the confines of the DEM. 

 Environmental Systems Research Institute ArcGIS® 9.1/9.2 software (ERSI 2004) 

was used to perform geographic manipulations and analyses in this study unless otherwise 

noted.  All geographic data were projected to the North Carolina State Plane coordinate 

system (units in meters) cast to North American Datum 1983. 

 The DEM is a composite of NC Floodplain Mapping Program LIDAR topographic 

data and National Ocean Service bathymetric survey data of the North Carolina coast (Hess 

et al. 2004).  The DEM exhibits a resolution of 6 m (e.g., 36 m2/cell) with a horizontal 

accuracy of ± 2 m for the LIDAR data (i.e., positive values) and ± 30 m for the bathymetric 

 



 

sounding data (i.e., negative values) (Hess et al. 2004).  Vertical accuracy of the LIDAR data 

is estimated at ± 0.20 m while bathymetric data accuracy is estimated at ± 0.30 m (Hess et al. 

2004).  Both topographic and bathymetric values reference the North American Vertical 

Datum 1988 (NAVD 88); thus all elevation values reported in this chapter are relative to 

NAVD 88.  Local mean sea level (LMSL) of Pamlico Sound was assumed 0.00 m NAVD 88 

(Hess et al. 2004); however, Poulter and Halpin (2008) point out discrepancies of ±0.06 m 

between the NAVD 88 and the LMSL.  Topography and bathymetry data are separated at 0.0 

m in the DEM.   

 The GIS Wetland Type Map developed by the North Carolina Division of Coastal 

Management was also employed for this study (hereafter referred to as “the wetland map”).  

The wetland map is a composite of digitized US Fish and Wildlife Service National Wetland 

Inventory (NWI) maps, county soil survey maps, and land cover maps derived from 30 m 

Landsat TM satellite imagery.  Map attributes describe both habitat type and 

hydrogeomorphic (HGM) class (sensu Brinson 1993) of wetland (NCDENR 2003a). The 

wetland map achieves nearly 90% accuracy overall, but varies considerably by class. 

Estuarine and riverine HGM classes were mapped with the greatest accuracy (97% or 

higher), while headwater and flat classes were less accurate (between 65% and 75%) 

(NCDENR 2003b).  To improve this level of accuracy, adjustments were made to headwater 

and flat classes where erroneous class designations in the wetland map were obvious.  These 

edits accounted for less than 1% of the map area and were later verified in the field.  The 

specified minimum mapping unit for the dataset is 0.4 ha, well within the scale of this study. 

 Topographic differences between units were compared using hypsographic profiles 

(i.e., cumulative frequency distributions of elevation).  The hypsographic profiles include 
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areas above and below sea level so as to encompass the entire landform and capture as much 

of the sequence of rising sea level as practicable.  Hypsographic profiles differ from 

traditional hypsometric curves (sensu Strahler 1952, Oertel 2001, Brocklehurst and Whipple 

2004) in that only the areal data are normalized along the x axis while the elevation data 

remain absolute along the y axis.  Resulting plots are oriented so that the curve simulates a 

generalized profile of the unit to illustrate the vertical position of each unit relative to sea 

level.  To produce the hypsographic profiles, the DEM was reclassified into 1 m intervals and 

partitioned into the interstream divide units.  This generated 17 raster files each with attribute 

tables summarizing the number of cells (i.e., the area) between each 1 m contour interval.  

Attribute tables were then imported into MS Excel® where the data were plotted as 

hypsographic profiles. 

 All wetlands situated between 0-1 m elevations were designated as shorezone.  This 

range was determined by statistically sampling only the LIDAR portion of the DEM that 

corresponded with fresh or salt/brackish marsh habitat types in the wetland map.  The mean 

elevation of marsh adjacent to open estuarine water was estimated at 0.487 m.  Two standard 

deviations (s = 0.255 m) were added to the mean to arrive at an upper threshold, 0.997 m 

(rounded to 1 m).  This rationale was established under the assumption that fresh and 

salt/brackish marsh habitats adjacent to estuarine waters are hydrologically controlled by sea 

level in Pamlico Sound.  Morris et al. (2005) used a similar approach with LIDAR to 

calculate the median elevation of marsh at North Inlet, SC.  The Zonal Statistics function 

available through the ArcGIS® Spatial Analyst extension (ERSI 2004) was used to calculate 

the mean and standard deviation of shorezone elevation.   
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 To determine the areal extent of shorezone, cells containing values between 0 and 1 

m were masked from the DEM and intersected with the wetland map.  This shorezone 

wetland map was then intersected with interstream divide unit polygons. Wetland HGM 

classes (e.g. flat, headwater, riverine, and estuarine) within the shorezone were quantified 

and expressed as the relative proportion of the total area of shorezone for each unit.  

Adjacency of shorezone to HGM classes of non-shorezone wetland classes and upland areas 

situated beyond its landward margin were calculated to demonstrate the relative proportion of 

classes subject to overland migration at each unit.  The length of shoreline relative to HGM 

class of wetland or upland was also determined and expressed as the proportion of the total 

length of shoreline of each unit.  These data were derived using the extract raster edge 

function via Hawth’s Analysis Tools 3.27 extension after the vector shorezone wetland map 

was rasterized to the same resolution as the DEM.    

 Lastly, average rates of landward migration of shorezone were compared to average 

rates of shoreline erosion.  Landward migration of shorezone was estimated in two different 

directions, up-valley and laterally from the valley, for each unit.  Both rates of migration are 

controlled by the rate of sea-level rise and landward slope.  Up-valley slope of shorezone was 

measured between the 1 and 2 m contours along the sinuous length (i.e. run) of the valleys 

between two adjacent units.  The two distances were averaged for a single value to perform 

the calculation for slope, rise (1 m) over run. 

 Lateral slope of the shorezone for each interstream divide unit was therefore 

calculated as the rise (1 m) divided by the average width (distance) between the 0 and 1 m 

contour intervals.  Average width was determined by calculating the average length of the 

two contours and dividing by the respective area.  For units N9, S7, and S8, the majority of 
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land between 0 and 1 m elevations is a result of accreting peat, and thus has masked the 

original Pleistocene surface needed to accurately estimate landward migration. To overcome 

this problem, slopes between the 1 and 2 m elevations were used instead. With a value for the 

average distance between contour lines and a given rate of sea-level rise, an approximate rate 

for landward migration of shorezone is predicted.  The following equation was used to 

estimate the potential annual rate of horizontal migration, mi, for each unit: 

i

i
i r

Rw
m

*
=  

where wi is the average distance between contours, R is the rate of sea-level rise (assumed 3.8 

mm yr-1), and ri is the vertical rise (e.g., 1 m).  

 To determine a range of erosion rates at each interstream divide unit, two approaches 

were used.  The high range of erosion rates were derived from the data of Cowart (2009).  

These rates are considered high because only exposed shorelines of the of the Neuse River 

trunk estuary were studied. Each unit was assigned the corresponding high erosion value 

according to the Cowart classification (e.g., innermost, inner, outer, and outermost positions 

of the estuary).  Where unit polygons shared shorelines classified differently by Cowart, the 

two erosion rates were averaged.  To develop a lower estimate of erosion, ten locations were 

sampled in the inner-most portions of tributaries using the same georeferenced aerial 

photographs as Cowart et al. (in review).  Only erosion rates measured along wetland 

shorelines (i.e., shorezones) were used. 
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Results 

 The study area encompasses 2,548 km2 and spans 94 km along the length of the of the 

Neuse River estuary (Figure 1-1).  Vertical relief ranges 22 m, from -8 m at the mouth of the 

estuary in the east to roughly 14 m on the highest interstream divides of the Talbot terrace in 

the west (NOAA 2005).  This corresponds to an approximate slope of the study area, 

including bathymetry and topography, of 23 cm/km (0.02%).   

 Greater than half the area of the easternmost units N7 (50%), N8 (63%), N9 (66%), 

S7 (59%), and S8 (88%) is situated below sea level (0 m) (Table 1-1).  Units directly to the 

west, N6 and S6, are 21% and 30% submerged, respectively.  At the western extreme of the 

study area, only 10% of unit N1 and 7% of unit S1 are submerged.  By using area of water as 

a surrogate for time, this expected pattern illustrates that outer estuary units have been 

exposed to effects of rising sea level much longer than those of the inner estuary. 

 The hypsographic profiles provided insight into where sea level is positioned relative 

to the dominant geomorphic settings of each interstream divide.  Beginning with unit N1, sea 

level intersects the landward slope at the left side of the profile, very low relative to the rest 

the landform (Figure 1-2a); here, shorezone is restricted to Holocene floodplains and the 

lowest portions of the paleo-braidplain.  Interstream divide flats of the Talbot terrace are 

situated well above sea level.  Unit N1 therefore represents an early stage in the progression 

of exposure to rising sea level and the concomitant migration of shorezone over the 

landscape.  Toward the middle estuary, sea level intersects the steepest intervals of unit S4 

(Figure 1-2b), equivalent to the valley wall location on the N1 curve. Here, shorezone is also 

restricted to the valley although a greater proportion of the unit is inundated, reflecting a later 

stage in the progression.  With >60% of unit N8 embayed (Figure 1-2c), sea level is 

 



 

Table 1-1. Area and relative percent of water, land, and shorezone of interstream divide units. 
Percent of shorezone relative to land excludes area of water. 

Unit
Water                   

(below sea level)
Land                    

(above sea level)
Shorezone           

(relative to land)

hectares percent hectares percent hectares percent
N1 1,822 8 20,427 92 1,551 8
N2 811 6 13,013 94 651 5
N3 757 7 9,394 93 494 5
N4 466 5 9,555 95 237 2
N5 410 7 5,324 93 159 3
N6 403 10 3,602 90 147 4
N7 240 16 1,289 84 66 5
N8 1,605 32 3,466 68 313 9
N9 8,916 59 6,297 41 2,814 45

S1 1,611 13 10,647 87 1,106 10
S2 807 3 26,976 97 508 2
S3 249 4 6,737 96 118 2
S4 580 5 10,514 95 309 3
S5 1,039 10 9,136 90 491 5
S6 4,068 20 16,183 80 1,898 12
S7 24,708 58 18,089 42 9,083 50
S8 22,553 63 13,199 37 7,230 55  
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positioned just below the broad interstream flat, the flat portion of the hypsographic profile.  

This suggests that rising sea level will soon (i.e., in the next 300 yr or sooner) lead to a rapid 

expansion of shorezone across the flat.  At unit S8, nearly all of the interstream flat is 

embayed (Figure 1-2d); here, shorezones have buried the antecedent interstream flats, and all 

that remains above sea level are the paleo-barrier islands.  These shorezones have been 

maintained primarily through biogenic accretion to maintain themselves above sea level.  

This analysis demonstrates how hypsographic profiles may be used to interpret the 

relationship between sea level and landscape geomorphology, and thus various stages in 

shorezone development.   

 The percentage of shorezone occupying each unit increases substantially from the 

inner to the outer estuary (Table 1-1).  Shorezone comprises greater than half of the subaerial 

landmass of units N9, S7, and S8, but less than 15% of the remaining units.  The sharp 

decline in proportion of shorezone occurs at units N8 and S6.  The hypsographic profile of 

unit N8 reveals that sea level is at an inflection point where the steep slope would have  

limited the extent of shorezone in comparison with the flatter portion of the curve landward 

(Figure 1-2c).  

 Hypsographic profile analysis also helps to explain an ancillary pattern of wetland 

type (i.e., estuarine, riverine, headwater, and flat) that emerges from the inner to the outer 

estuary (Figure 1-3).  Toward the inner estuary, sea level is low relative to interstream divide 

topography; therefore, riverine wetlands dominate the shorezone (Figure 1-4).  In the outer 

estuary, broad expanses of estuarine wetlands are dominant followed by flat wetlands near 

the landward margin where sea level intersects the interstream flats.  Proportions of flat 

wetlands are high for inner estuary units N1, N2, and N3.  Here, flat wetlands have 
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Figure 1-4.  Hydrogeomorphic classes of wetland as the relative proportion of the total area 
of shorezone for each interstream divide unit. 
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developed on the abandoned paleo-braidplain.  East of unit N3, the proportion of flat 

wetlands declines due to submergence of the paleo-braidplain Figure 1-1. Flat wetlands 

increase in abundance again toward the outer estuary as interstream flats are intersected by 

sea level.  The increase in flat wetlands toward the inner estuary is not, however, repeated on 

the south shore because the Neuse River has incised the south side of the paleo-braidplain, a 

common characteristic of other lower coastal plain drainage systems of the region (Stanley 

Riggs, personal communication 2008).  Headwater wetlands account for only a small 

percentage of shorezone and appeared to be inconsistently mapped; therefore, they did not 

provide useful information in this analysis. 

 The relative adjacency of wetland and upland areas at the landward margin of 

shorezone can be used to infer the type and proportion of non-shorezone wetland or upland 

most likely to be affected by rising sea level (Figure 1-5). The increase in adjacency to 

riverine wetlands and the decrease in adjacency to flat wetlands toward the inner estuary are 

comparable to the patterns of riverine and flat wetlands in Figure 1-4.  From this pattern it 

can be inferred that shorezone is migrating primarily over riverine wetlands in the valleys of 

the inner estuary while migration is occurring primarily over flat wetlands in the outer 

estuary.  Adjacency of shorezone to upland peaked at just over 50% at unit N6 on the north 

shore of the middle estuary, but no strong pattern of upland adjacency was present among 

southern shore units.  High proportions of adjacency to upland areas imply steeper slopes, 

and thus little or no landward migration of shorezone. Consistent with this idea, the 

proportion of shoreline length occupied by shorezone wetland types is low in this region of 

the estuary because shorelines are eroding directly into steep scarps dominated by uplands 

rather than wetlands (Figure 1-6). 
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Figure 1-5.  Proportion of the total length of landward margin adjacent to non-shorezone 
wetlands types and upland for each interstream divide unit. The estuarine wetlands are not 
present beyond the landward margin. 
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Figure 1-6. Proportion of the total length of shoreline occupied by each wetland type and 
upland at each interstream divide unit. 
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 Lateral slope is least for outermost estuary units (Table 1-2).  This can be attributed to 

the close proximity of sea level to the elevation of the interstream flats. In contrast, similar 

patterns of low slopes toward the inner estuary reflect the abandoned paleo-braidplain and 

the broad floodplains.  Steepest slopes occur through the middle estuary particularly at and 

west of the Suffolk Shoreline (units N4, S3 and S2).  Unit S8 exhibits a relatively steep 

landward slope in spite of its outer estuary position and abundance of estuarine wetlands.  

This can be attributed to the paleo-barrier found there.   

 Up-valley slopes are considerably lower than lateral slopes.  Up-valley slopes are 

lowest in the inner estuary but increase through the middle estuary (units N4 through N7 and 

S4 through S6) (Table 1-3).  They decrease again in the outer estuary because valleys are 

largely submerged and interstream flats dominate the subaerial landscape. 

 Estimates for average rates of potential landward migration range from as low as 0.16 

m y-1 (unit S3) to as high as 3.26 m y-1 (unit S7) (Table 1-2).  These data were derived from 

the same measurements used to calculate average landscape slope, and thus follow the same 

pattern.  Average rates of overland migration are compared to an estimated range of erosion 

rates to help reveal whether a particular unit can be expected to gain or lose shorezone over 

time (Table 1-2).  Inner and outer units exhibit the greatest potential for shorezone to expand.  

Hence upstream and over-flat migration processes prevail in these areas.  Middle estuary 

units exhibit the least potential for shorezone expansion in the near future as the majority of 

valleys are embayed and interstream flats are positioned at elevations well above sea level.  

Provided that past rates of sea-level rise and erosion continue, the prognosis for inner and 

outer estuary shorezone wetland development appears strong.  Should the rate of relative sea-
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Table 1-2. Estimated average lateral slope, rate of overland migration, range of shoreline 
erosion, and range of potential shorezone loss or gain.  

Average Average rate of Range for rates of Range for lateral 
Unit lateral slope lateral  migration* shoreline erosion** shorezone loss / gain

(%) (m/yr)  (m/yr)  (m/yr)
N1 0.42 0.89 0.05 - 0.46 0.43 - 0.84
N2 0.44 0.86 0.05 - 0.46 0.40 - 0.81
N3 0.58 0.65 0.05 - 0.52 0.13 - 0.60
N4 1.51 0.25 0.05 - 0.54 -0.29 - 0.20
N5 1.44 0.26 0.05 - 0.50 -0.24 - 0.21
N6 1.32 0.28 0.05 - 0.54 -0.25 - 0.23
N7 0.91 0.41 0.05 - 0.57 -0.16 - 0.36
N8 0.50 0.75 0.05 - 0.57 0.18 - 0.70
N9 0.24 1.54 0.05 - 0.57 0.97 - 1.49

S1 0.50 0.75 0.05 - 0.46 0.29 - 0.70
S2 1.63 0.23 0.05 - 0.52 -0.29 - 0.18
S3 2.34 0.16 0.05 - 0.58 -0.42 - 0.11
S4 1.48 0.25 0.05 - 0.54 -0.29 - 0.20
S5 0.88 0.43 0.05 - 0.50 -0.07 - 0.38
S6 0.40 0.93 0.05 - 0.54 0.39 - 0.88
S7 0.11 3.26 0.05 - 0.57 2.69 - 3.21
S8 0.51 0.74 0.05 - 0.57 0.17 - 0.69  

* Based on 3.8 mm/yr relative rise in sea level (i.e. mid-point of range calculated by Poulter (2005)). 
** High shoreline erosion rates from Cowart et al. (in review).  Low rates derived from ten randomly selected 
locations along shorelines of tributaries throughout the study area.   

 

24



 

Table 1-3. Estimated average headward slope, rate of overland migration, rate of shoreline 
erosion, and estimated of shorezone gain. 

Average Avg. rate of Avg. rate of Est. headward 
Unit headward slope headward migration* headward erosion** shorezone gain

(%) (m/yr)  (m/yr)  (m/yr)
N1 0.06 6.59 0.50 7.09
N2 0.05 6.96 0.50 7.46
N3 0.07 5.27 0.50 5.77
N4 0.14 2.68 0.50 3.18
N5 0.19 2.00 0.50 2.50
N6 0.17 2.24 0.50 2.74
N7 0.11 3.37 0.50 3.87
N8 0.10 3.79 0.50 4.29
N9 0.05 7.63 0.50 8.13

S1 0.03 11.15 0.50 11.65
S2 0.04 10.28 0.50 10.78
S3 0.09 4.20 0.50 4.70
S4 0.14 2.76 0.50 3.26
S5 0.16 2.35 0.50 2.85
S6 0.16 2.35 0.50 2.85
S7 0.06 6.47 0.50 6.97
S8 0.03 11.072 0.50 11.57  

 

* Based on 3.8 mm/yr relative rise in sea level (i.e. mid-point of range calculated by Poulter (2005)). 
** Shoreline erosion rates derived from ten randomly selected locations along shorelines of tributaries 
throughout the study area.   
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level rise increase, however, it is questionable as to whether shorezones will be able to keep 

pace through biogenic accretion.   
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Discussion 

 The sequence of shorezone dynamism identified in this study reflects a range of 

positions and lengths of exposure to the influences of sea level along a continuum between 

inner estuary valley and outer estuary interstream flat settings (Figure 1-7).  Further, the 

space-for-time approach recognizes the large amount of variation (riverine, flat, etc.) that 

shorezone encompasses, but organizes them into a logical pattern based on their progressive 

development. 

 For any particular interstream divide unit, stream valleys are the first areas to be 

affected by rising sea level because of their low elevations. Therefore, upstream migration of 

shorezone is most prevalent in the inner estuary where it occurs initially over riverine 

wetlands of Holocene floodplains followed by flat wetlands of the abandoned paleo-

braidplain.  Units N1, N2, and S1 are characteristic of the upstream migration stage (Figure  

1-8a).  The hypsographic profile of unit N1 (Figure 1-2a) illustrates how sea level intersects 

only the lowest portions of the valley floor. The extent of estuarine wetlands, which are 

comprised of brackish marshes, is small in the inner estuary because low salinities allow 

swamp forest (riverine) to persist in spite of the hydrodyamics being generally controlled by 

sea level fluctuations (Brinson et al. 1985, Hackney et al. 2007).  Consequently, riverine 

wetlands dominate the shorezone of this inner region. 

 In middle portions of the estuary, an intermediate phase of non-migration (Figure  

1-7b) occurs as opportunities for overland migration of shorezone in valleys are restricted to 

the upstream direction due to steep lateral slopes.  Shorezone becomes sparse and stream 

valleys open up to subtidal habitat/estuarine waters where lateral rates of erosion exceed 

those of lateral migration (Table 1-2), indicating that shorezone migration at the unit level 
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has stalled against valley walls.  Consequently, only small fragments of shorezone cling to 

the embayed valley walls or are restricted to the upstream portions of smaller tributaries 

protected from excessive erosion (Figure 1-8b).  Shorezone is further reduced by greater 

headward slope that slows upstream migration (Table 1-3).  This pattern is apparent in the 

middle estuary where upland classified shorelines reach high proportions (Figure 1-6). The 

adjacency of shorezone with uplands would be expected to show this same pattern (Figure 1-

5); however, the pattern can not be detected because of discrepancies between the wetland 

map and the DEM at finer scales (e.g., in narrow tributary shorezones of middle estuary 

units). 

 Where rising sea level has reached the transition between valley and interstream flat 

(e.g., N8; Figure 1-2c), low lateral slopes provide the setting for landward migration to 

exceed shoreline erosion again.  Over-flat migration dominates in the outer estuary because 

the valleys are submerged and riverine wetlands transitioned to estuarine and eroded (Figure 

1-8c).  The large proportion of flat wetlands at the landward margin (Figure 1-5) is indicative 

of over-flat migration.  In this region, the low slopes allow the rates of migration to exceed 

those of erosion as illustrated by units N9, S7, and S8 (Table 1-2). Dominance of the 

shorezone by estuarine wetlands reaches its maximum toward the outer estuary as sea level 

and consistent exposure to salinity completes the shift to estuarine marshes (Figures 1-4 and 

1-8d) and as observed elsewhere (Williams et al. 2003, Poulter 2005).  If salinity was very 

low in this area, these wetlands would be forested flats as they are in the Albemarle Sound 

region (Moorhead and Brinson 1995).  

 Once the highest elevations of an interstream divide become hydrologically 

influenced by sea level, virtually no land remains for shorezone migration.  Rather, 
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shorezone persists through vertical accretion until their transition to subtidal habitats through 

erosion of the shoreline. While none of the units in this study is entirely exemplary of the 

terminal non-migration stage, portions of some units are.  For example, the northeastern 

portion of unit S7 and the central portion of unit S8 (Figure 1-8d) are characteristic of this 

stage, as there is no separation between opposing shorelines dominated by estuarine 

wetlands.  Further, were it not for the presence of the paleo-barrier islands (Figure 1-2d), unit 

S8 would be completely encompassed by shorezone and presumably there would be no 

upland areas present for overland migration to occur. This is equivalent to the non-migrating 

island stage of Brinson (1991a). 

 The space-for-time approach revealed that shorezones systematically change in 

position, wetland type, and extent along an estuarine gradient in response to rising sea level. 

In the first two stages - initial upstream migration and intermediate non-migration - 

shorezones are restricted mostly to valleys. In the final two stages - over-flat migration and 

terminal non-migration - shorezones are located mostly on interstream flats as valleys have 

long since submerged.  Hypsographic profiles, relative area, adjacency, and 

migration/erosion analyses collectively provide details of the space-for-time framework.    

 Most other models that have been designed to predict the response of wetlands to 

rising sea level do not incorporate the shorezone concept consisting of a migrating landward 

margin and an eroding shoreline edge (Kana et al. 1988, Park et al. 1989, Poulter and Halpin 

2008). Instead, they identify a future sea level elevation, and superimposed it on current 

topographic surfaces.  Because shorezone occupies only a narrow vertical range (usually <1 

m, McKee and Patrick 1988, Morris et al. 2002), projections of future shorelines skip over 

shorezones and establish a shoreline at a higher topographic contour (e.g., commonly 
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referred to as the “bath-tub” approach). In so doing, projected maps do not explicitly 

recognize shorezone.  Consequently, such studies are silent on the nature of future shorelines 

as to whether they border wetlands, beaches, eroding cliffs, or some other feature. As such, 

no assumptions are made regarding the state of future shorezones except to infer that they 

will likely be inundated and lost.  While it is acknowledged that accelerating rates of rising 

sea level may indeed drown existing shorezones (Cahoon et al. 2006), this is because they 

are unable to “keep pace” with rising sea level through vertical accretion, not because the 

shoreline has migrated landward to a higher elevation. 

 Assuming that shorezones “keep pace” with rising sea level, they will not be “lost,” 

but rather will migrate landward to the adjacent surface, whether the surface is upland or a 

wetland type not yet affected by sea level stand (i.e., non-shorezone wetland).  In much of the 

Pamlico Sound region, large areas of non-shorezone wetlands are positioned adjacent to the 

present shorezone.  Much of this land use is allocated to conservation and wildlife 

management (e.g., Alligator River, Pocosin Lakes, and Cedar Island National Wildlife 

Refuges; North Carolina gamelands).  Here, public lands are being converted, from upland 

and non-shorezone wetland to shorezone by rising sea level and secondly from shorezone to 

open water through erosion.  The focus in these areas is on the eroding shoreline margin as it 

converts to subtidal habitat, a process that is often perceived as losing land due to rising sea 

level. In fact, land loss for the past several hundred years has been primarily due to shoreline 

erosion, not rising sea level (Riggs and Ames 2003).  However, in other areas of the Atlantic 

and Gulf coasts of North America where rising sea level has outpaced vertical accretion of 

marshes, losses appear to occur mostly in the interior of marshes rather than at shorelines 
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(Kearney et al. 1988, DeLaune et al. 1994, Stevenson et al. 2002, Shirley and Battaglia 

2006).  

  Riverine wetlands and uplands tend to dominate the landward margin of inner and 

middle estuary shorezones of the Neuse River (Figure 1-5).  With emphasis on different 

controls and patterns along the estuarine gradient, inferences can be drawn from the space-

for-time approach that might not otherwise be apparent.  For example, public policy and 

management might be adapted toward strategically committing resources to respond to rising 

sea level (Poulter et al. 2009).  Where rates of shorezone migration are potentially rapid, 

policies oriented toward accommodating migration might be favored. Alternatively, 

protection of land would be favored where large historic and societal investments are 

embedded in municipalities and other valuable properties.  The role of the sediment source in 

shoreline processes should be evaluated where slope is too steep and erosion too great to 

accommodate shorezone.  The future of shorezone is particularly important in coastal North 

Carolina due to widespread occurrence of negligible landward slope and an abundance of 

freshwater forested wetlands that are hydrologically influenced by sea level (Brinson 1991a, 

Moorhead and Brinson 1995, Titus and Wang 2008).  The space-for-time approach provides 

a structure to classify shorezone according to geomorphic settings, to associate these settings 

with stages of development, and to infer controls on shorezone dynamics (Figure 1-7).  The 

approach is less useful at finer scales, such as that of individual property owners, given that 

the average estimates of migration and erosion apply to whole interstream divide units rather 

than ownership parcels.  While the high vertical resolution made available by LIDAR could 

be applied at the parcel scale, no attempt was made to do so in the interest of focusing on 

larger patterns and processes. 
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 The migration/erosion perspective emphasized in this paper is applicable only to 

shorezones that vertically accrete at a rate comparable to rising sea level.  Historically, 

coastal wetlands have persisted for several millennia as evidenced by the age of basal peat 

deposits, up to several meters deep (Redfield 1972, Orson et al. 1998, Young 1995).  The 

landward margin of shorezone is established as a function of sea level.  By focusing on this 

boundary, in addition to shoreline, estimates of landward migration necessarily encompass 

those processes responsible for vertical accretion, including adequate sediment deposition 

and organic matter accumulation.  Landscape models in the Mississippi Delta and elsewhere 

take this into account through conversion from uplands to wetlands and from wetlands to 

open water (Brinson et al. 1995, Reyes et al. 2000, Martin et al. 2002).  
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Chapter 2 

A hierarchical classification of irregularly flooded shorezone plant communities and 

associated patterns: a plant community scale analysis 



 

Introduction 

 Shorezones of North Carolina have been distinguished as either regularly flooded by 

astronomical tides or irregularly flooded generally by wind tides (Wilson 1962, Titus and 

Strange 2008).   Throughout the world, a typical pattern of plant community zonation has 

been found to occur between the shoreline and a landward margin of regularly flooded 

shorezones, particularly salt marshes (Adams 1963, Teal and Teal 1969, Mitsch and 

Gosselink 2000).  While much attention has been paid to the ecology and dynamism of tidal 

salt marshes over the past century, irregularly flooded nanotidal shorezones, such as those 

that dominate the Albemarle Pamlico (A-P) estuarine system in North Carolina, have been 

little studied.  That the A-P system is the second largest estuary in the United States 

underlines the importance of forming a stronger understanding of these ecosystems and 

particularly their fate with regard to rising sea level. 

Wells (1928) was one of the earliest studies to recognize vegetation patterns in salt 

marshes of North Carolina.  While he emphasized hydroperiod and geomorphic setting as 

factors controlling influencing plant community composition and abundance, he did not 

specify the hydrodynamics or the specific locations that he studied.   Works by Brown 

(1959), Burk (1962), and Cooper and Waits (1973) suggest that irregularly flooded marshes 

of the A-P system exhibit patchy matrices of vegetation rather than zones.  However, these 

studies were restricted to back-barrier island marshes of the Outer Banks and are not 

necessarily representative of interfluve or tributary shorezones.  Bellis and Gaither (1985) 

produced maps and measured biomass of six marsh communities of Jacks Creek, a tributary 

to South Creek stemming from the Pamlico River estuary.  While they offer no discussion of 

vegetation pattern, their map illustrates a mosaic of vegetation communities as well.  



 

Brinson (1991b), however, identified three zones of brackish marsh along an apparent 

salinity gradient occupying a relic interfluve setting at Cedar Island National Wildlife 

Refuge.  While Juncus roemerianus was the dominant plant in each zone, it decreased in 

abundance landward from the shoreline.  This trend was coupled by a decrease in 

hydroperiod and a slight increase in marsh surface elevation.  The seaward-most zone, Zone 

1, consisted primarily of an expansive, near monotypic J. roemerianus marsh with a low 

storm levee just landward of narrow fringe of Spartina alterniflora at the shoreline.  This 

zone remained inundated throughout much of the year.  Zone 2 consisted of vegetation 

patches dominated by Spartina patens amongst a matrix of mixed marsh dominated by J. 

roemerianus.  The landward-most zone, Zone 3, reflected more oligohaline conditions and 

thus consisted of a greater diversity of marsh vegetation.  It was ultimately defined by the 

presence of Morella cerifera though J. roemerianus and S. patens were most abundant.  

Similarly, Brinson et al. (1985) suggest that intermittent inundation by brackish water caused 

an apparent gradient in structure and biomass along forested shorezones of Jacobs Creek and 

Jacks Creek, again tributaries to South Creek of the Pamlico River estuary.  More recently, 

Poulter (2005) found that salinity and hydroperiod were inversely proportional to distance 

from shoreline in shorezones of the A-P system, which corresponded to zonation of 

vegetation.  As a result, he organized species into marsh, transition, and forest communities. 

In the Classification of Natural Communities of North Carolina, Third 

Approximation, Schafale and Weakley (1990) describe seven communities that are 

applicable to irregularly flooded shorezones: Brackish Marsh, Tidal Freshwater Marsh, 

Maritime Scrub Swamp, Maritime Scrub, Maritime Swamp Forest, Tidal Cypress-Gum 

Swamp, and Estuarine Fringe Loblolly Pine Forest.  Collectively, these communities 
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represent a continuum of vegetation types that may be found within the study area outlined in 

Chapter 1 (Figure 1-1).   

While these studies combine to form a significant foundation of botanical and 

environmental knowledge of the region’s shorezones, they either focus at local scales (i.e., 

across shorezones) or at a very large regional scale in the case of Schafale and Weakley 

(1990).  None investigate different shorezones along a salinity gradient such as that of the 

Neuse River estuary.  Additionally, no literature specific to shorezone vegetation of the 

Neuse River estuary was found.  Natural area inventories for Carteret (Fussell et al. 1983) 

and Craven (McDonald 1981) Counties identify individual sites associated with shorezones 

and stress their importance to the region but do not reflect vegetation patterns.  In this 

chapter, shorezone plant communities of the Neuse River estuary and western Pamlico Sound 

are sampled at inner, middle, and outer estuary positions.   Field data were arranged into a 

hierarchical classification and analyzed for patterns, both locally and regionally.   
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Methods 

Three sampling areas representative of inner, middle, and outer estuary positions (i.e., 

interstream divide units N1, S4, and S8 from Chapter 1) were selected to compare plant 

species composition and abundance, soil, and elevation amongst shorezone communities 

(Figure 2-1).  The HGM wetland map (NCDENR 2003a) was used as a guide for establishing 

the number and location of transects.  Three transects were established at outer and middle 

estuary settings stemming from shorelines mapped estuarine (Table 2-1).  Six transects were 

established at the inner estuary setting, two stemming from shorelines mapped estuarine and 

four stemming from shorelines mapped riverine. Flat wetlands generally did not occupy 

shorelines; however they are noted in Table 2-1 where transects traversed more than one 

wetland type.  Each transect is labeled I, M, O respective of the inner, middle or outer estuary 

sampling area at which it was sampled followed by a number (Figure 2-1).  Specific transect 

locations within wetland types were determined by using aerial photographs and proximity to 

a public access road.   

Transects were aligned perpendicular to the shorezone extending from the shoreline 

to its landward margin. At the shoreline, a Trimble GeoExplorer 3 global positioning system 

(GPS) was used to record the starting point of each transect.  A sighting compass was then 

used to record the transect azimuth that was followed across the shorezone.  Heading 

landward from the shoreline, a belt transect was used to assess plant communities that would 

be sampled upon return to the shoreline.  Width of the belt transect was stratified by 

vegetation stratum: 1 m wide for the herbaceous stratum, 6 m wide for the shrub stratum, and 

12 m wide for the tree stratum (Figure 2-2).  The distance of community transitions (i.e., 



 

 
Figure 2-1.  Inner, middle, and outer estuary sampling areas and location of transects. 
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Table 2-1. List of transects, the wetland type analyzed, geographic coordinates, azimuth and 
length of transect from shoreline to landward margin. 

Wetland Azimuth Length
Type (°) (m)

I-1 riverine 35°08'36.13" -77°02'42.75" 30 98
I-2 riverine 35°08'44.63" -77°03'22.44" 68 138
I-3 riverine/flat 35°06'30.65" -76°56'10.60" 90 172
I-4 riverine 35°09'29.20" -77°04'28.12" 140 93
I-5 estuarine/flat 35°03'32.62" -76°57'59.12" 50 164
I-6 estuarine/flat 35°03'42.20" -76°57'47.62" 310 189

M-1 estuarine 34°55'06.34" -76°51'07.83" 180 19
M-2 estuarine 34°54'55.54" -76°50'55.60" 280 100
M-3 estuarine/riverine 34°52'15.26" -76°46'54.10" 170 101
O-1 estuarine/flat 34°55'17.65" -76°21'21.93" 210 1216
O-2 estuarine/flat 34°56'58.91" -76°16'42.41" 330 241
O-3 estuarine/flat 34°58'09.57" -76°19'40.28" 70 831

Transect Latitude Longitude
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Figure 2-2.  Belt transect and relevé sampling design.  The belt transect was stratified by 
vegetation stratum: 1 m wide for the herbaceous stratum, 6 m wide for the shrub stratum, and 
12 m wide for the tree stratum. Within each community, dominant species were noted within 
the 1, 6, and 12 m belts. Once the landward margin of shorezone (e.g., a noticeable change in 
elevation or prevalence of upland plant species) was reached, two relevés were used to 
sample each community segment on return to the shoreline. Relevés were placed 
approximately 1/3 and 2/3 the way through each community in line with the transect.  
Relevés consisted of three 1 m2 quadrates for the herbaceous stratum, one 6 m diameter plot 
for the shrub stratum, and for the tree stratum a measure of basal area and one 12 m dia. plot 
for stem density.  An estimate of cumulative percent cover of the shrub and tree strata were 
recorded so as to convert density and importance values of the respective strata to percent 
cover.
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boundaries) from the shoreline were measured using a hip chain.  Within each community, 

dominant species were noted within the 1, 6, and 12 m belts.   

Transects terminated at or just beyond the landward margin of shorezone (e.g., a 

noticeable change in elevation and/or prevalence of upland plant species).  On return to the 

shoreline, two relevés were sampled in each community.  Relevés were located 

approximately 1/3 and 2/3 the way through each community along the transect.   Relevés 

included three 1 m2 quadrats for the herbaceous stratum, a 6 m diameter plot for the shrub 

stratum, and a 12 m diameter plot for the tree stratum.  Where community segments were less 

than 24 m wide, one relevé was set at the mid-point of the community while the other was 

off-set perpendicular to the transect.   

Herbaceous stratum quadrats were evenly spaced along the transect within the 12 m 

plot.  Percent cover of herbaceous vegetation and woody plants <1 m tall were sampled using 

a modified Braun-Blanquet cover abundance scale.  Woody plants >1 m tall but <10 cm 

diameter at breast height (dbh) were tallied in the shrub stratum plot.  Relative density 

relative dominance were recorded for woody plants > 10 cm dbh (Muller-Dumbois and 

Ellenberg 1974).  Relative density was measured within the 12 m diameter plot while relative 

dominance was measured using a foresters’ basal area tree gage (10 factor, ft2/ac).  The two 

measures were added together to yield importance values for each species in the tree stratum.  

An estimate of total percent cover was recorded for both the shrub and tree strata separately.  

For each relevé the density of dead standing trees or shrubs (>1 m tall), stumps (<1 m tall), 

large and down woody debris (>10 cm diameter) were recorded. The presence of wrack and 

evidence of fire were noted within the 12 m plot. 

43



 

Soil profiles were collected and analyzed between 0-30 cm and 30-60 cm from the 

soil surface or to refusal using a Macaulay peat sampler.  Profiles were analyzed for peat 

texture (fibric, hemic, or sapric) or mineral content (clay, silt, or sand) by feel analysis (Thien 

1979).  Three samples were collected, two between 0-30 cm and one between 30-60 cm, and 

placed on ice until additional analyses could be performed in the laboratory.  Peat depth was 

determined at each relevé generally by a transition from predominantly black sandy muck to 

a gleyed matrix of clay, silt, or sand below.  The transition generally occurred a few 

centimeters above the point of refusal.   

Soil samples were analyzed in the laboratory for bulk density, organic matter content 

as loss on ignition, and soil porewater salinity.  Samples from 0-30 and 30-60 cm were oven 

dried at 85º C until constant weight for bulk density.  Each sample was then ground to a 

homogenous mixture using a mortar and pestle.  Subsamples of approximately 1-3 g were 

ashed in a muffle furnace at 500º C for 4 hr to yield loss on ignition.  The additional sample 

collected between 0-30 cm was used to measure soil porewater salinity.  That sample was 

homogenized and approximately a 50 mL subsample was placed into a centrifuge tube and 

centrifuged at 3000 rpm for 20 min. to extract pore water (Forbes and Dunton 2006).  A 

Lieca refractometer was used to measure salinity of the supernatant. 

 Relative elevation was recorded at the center point of relevés along each transect 

using a Total Station® transit and telescoping stadia rod.  Elevations are reported relative to 

the lowest elevation of each transect, generally at the shoreline.  Each transect has its own 

datum; therefore, precise elevations cannot be compared between transects.   
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Analysis 

 Field data were transferred to a spreadsheet and the following adjustments were 

made.  Percent cover of species for the three herbaceous stratum quadrats were averaged.  

Shrub stratum density counts and tree stratum importance values (Muller-Dumbois and 

Ellenberg 1974) were converted to percent cover of species for consistency with herb data.   

Conversion of the shrub and tree strata data to percent cover was calculated as the relative 

proportion of each species times the overall percent cover estimate of the respective stratum.   

 Paired relevés from each community segment along a transect were screened for 

similarity using the Ellenberg similarity index (Muller-Dumbois and Ellenberg 1974).  If 

paired relevés exhibited >25% similarity, their data were averaged to represent one sample 

from that particular community assemblage.  Where paired relevés demonstrated <25% 

similarity, a judgment was made as to whether low similarity was due to within segment 

heterogeneity or due to actual zonation that was overlooked in the field.  In total, 8 out of 86 

relevés were treated as individual community samples.  The spreadsheet was then broken 

down into partial, or transect tables so as to compare samples across shorezones, between 

transects, and between inner, middle, and outer estuary sampling areas.  Assumptions about 

the data were compared with the results of an unconstrained ordination procedure. 

Ordination 

 An unconstrained ordination was performed with a matrix consisting of 47 samples 

by 35 of the most important species reflecting abundance of species as percent cover.   

Important species were determined by multiplying the maximum percent cover of a species 

by its number of occurrences.  Species whose products’ were >30 were retained for the 

matrix.  Environmental data (e.g., distance from shoreline, soil porewater salinity, elevation, 



 

etc.) and various categorical data were arranged into a secondary ordination matrix.  A 

detrended correspondence analysis (DCA) (Hill and Gauch 1980) was performed with PC 

ORD® Version 5 (McCune and Mefford 2006) because it is most appropriate for exploring 

vegetation patterns along environmental gradients that exhibit high beta diversity (De’ath 

1999).  Parameters were set to rescale axes using a threshold of 0.0, number of segments was 

set to 26, and rare species were downweighted.  Results were plotted on a two dimensional 

graphs with samples identified by cover type to illustrate the inherent pattern of the data. 
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Results and Discussion 

 Table 2-2 lists all plant species identified during sampling and the inner, middle, and 

outer estuary sampling areas at which each was observed.  Morella cerifera was the most 

frequently encountered species of the shorezone occurring in 21 of 47 samples followed by 

Juncus roemerianus and Acer rubrum with approximately 17 and 15 occurrences, 

respectively.   

 In total, sixteen community types and five subtypes, were identified as follows: 

Spartina alterniflora fringe; S. alterniflora/Juncus marsh; Juncus marsh; Spartina 

cynosuroides/Juncus marsh; S. cynosuroides marsh; mixed marsh, subtypes levee and 

interior; Cladium marsh; Cladium scrub; Cladium/Taxodium scrub; Morella scrub, subtypes 

swamp, ghost forest, and margin; Persea forest; Mixed forest; Carex/Baccharis/Taxodium 

scrub; Taxodium/Nyssa swamp forest; Pinus serotina scrub; and Pinus taeda forest.  Each 

community type is described below and arranged according to its respective cover type: low 

brackish marsh, high brackish marsh, oligohaline marsh, oligohaline marsh/scrub-shrub, 

scrub-shrub, and forest.  Cover types are further arranged according to their respective 

hydrogeomorphic wetland classes: estuarine, riverine, flat or as wetlands of overlapping 

hydrogeomorphic constraints.  Figure 2-3 illustrates the multi-level hierarchical arrangement 

of wetland types, cover types, community types, and synonymy with the natural communities 

described by Schafale and Weakley (1990). 

Estuarine wetlands 

 Estuarine wetlands consist of low brackish marsh and high brackish marsh cover 

types.  The two groups appear to occur at different elevations, the former lower than the 



 

Table 2-2.  List of plants observed in shorezones of the study area in order of occurrence out 
of a total of 47 samples.  Plants observed within relevés denoted by X, plants observed 
outside of any relevés denoted by ‘p’. The species names follow the accepted nomenclature 
of the International Taxonomic Information System (ITIS) as of August 2008 unless 
otherwise noted.  Taxonomic manuals used to identify vegetation within the study area 
included Weakley (2008) and Godfrey and Wooten (1979). 

Total
Species Inner Middle Outer occurrences

Morella cerifera (L.) Small X X X 21
Juncus roemerianus Scheele X X X 17
Acer rubrum L. X X X 15
Persea  palustris  (Raf.) Sarg. X X X 13
Toxicodendron radicans   (L.) Kuntze X X X 12
Cladium mariscus  (L.) Pohl ssp. jamaicense  (Crantz) Kükenth. X X X 10
Juniperus virginiana L. X X X 10
Osmunda regalis L. X X X 10
Spartina cynosuroides  (L.) Roth X X 10
Baccharis halimifolia L. X X X 9
Polygonum spp. L. X X X 9
Solidago sempervirens L. X X X 9
Nyssa biflora Walt. X X X 8
Pinus taeda L. X X X 8
Rubus spp. L. X X
Spartina patens (Ait.) Muhl. X 8
Hibiscus moscheutos L. X X 7
Ipomoea sagittata Poir. X X X 7
Iva frutescens L. X X X 7
Mikania scandens (L.) Willd. X X X 7
Distichlis spicata (L.) Greene X 6
Liquidambar styraciflua L. X X X 6
Taxodium distichum (L.) L.C. Rich X X 6
Fimbristylis castanea  (Michx.) Vahl  X 5
Osmunda cinnamomea  L. X X
Panicum virgatum  L. X X X 5
Rosa  palustris  Marsh. X X
Alternanthera philoxeroides  (Mart.) Standl. X 4
Eupatorium serotinum Michx. X X 4
Fraxinus carolinana P. Mill. X X
Hydrocotyle spp. L. X X 4
Juncus  coriaceus  Mack. X X X 4
Kosteletzkya virginica (L.) K. Presl ex Gray X X
Polygonum  arifolium  L. X 4
Smilax rotundifolia L. X X X 4
Carex comosa Boott X 3

Sampling areas

8

5

5

4

4
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Table 2 (continued). 
Total

Species Inner Middle Outer occurrences
Cicuta maculata L. X X 3
Eleocharis spp. R. Br. X X
Hydrocotyle  umbellata  L. X X X 3
Lyonia  lucida  (Lam.) K. Koch X X
Nyssa aquatica  L. X X
Peltandra virginica (L.) Schott X 3
Pontederia cordata L. X 3
Ptilimnium  capillaceum  (Michx.) Raf. X X 3
Rumex spp. L. X X
Salix spp. L. X X
Smilax bona-nox L. X X 3
Spartina alterniflora Loisel. X 3
Typha latifolia L. X X
Amaranthus  cannabinus  (L.) Sauer X X 2
Ampelopsis arborea (L.) Koehne X X
Berchemia  scandens  (Hill) K. Koch                X X 2
Bignonia  capreolata  L. X 2
Boehmeria cylindrica (L.) Sw. X X
Borrichia frutescens (L.) DC. X 2
Carex spp. L. X 2
Chasmanthium  laxum  (L.) Yates X X 2
Erechtites hieracifolia (L.) Raf. ex DC. X X
Ilex coriacea  (Pursh) Chapman X 2
Ilex vomitoria Ait. X 2
Lonicera  japonica  Thunb. X 2
Packera glabella  (Poir) C. Jeffrey X 2
Pinus serotina Michx. X 2
Sagittaria latifolia Willd. X 2
Samolus valerandi L. X 2
Saururus  cernuus  L. X X 2
Sium  suave  Walter X 2
Smilax spp. L. X 2
Smilax laurifolia L. X X 2
Ulmus  americana  L.  X 2
Alnus Milspp. L. X 1
Apios americana Medik. X 1
Arundinaria  gigantea  (Walter) Muhl. X 1
Bacopa  monnieri  (L.) Pennell X 1
Carex  glaucescens  Elliot X 1
Carex  stricta  Lam.   X 1
Carya tomentosa (Lam.) Nutt.                                                                           X 1
Caryophyllaceae spp. X 1
Clethra  alnifolia  L. X 1

Sampling areas

3

3
3

3
3

3

2

2

2
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Table 2 (concluded). 
Total

Species Inner Middle Outer occurrences
Convolvulus spp. L. X 1
Cyrilla racemiflora  L. X 1
Fraxinus spp. L. X 1
Gaylussacia  spp. Kunth X 1
Gelsemium  sempervirens  (L.) W.T. Aiton X 1
Hamamelis virginiana  L. X 1
Ilex opaca Ait. X 1
Itea  virginica  L. X 1
Lemna minor L. X 1
Leucothoe  axillaris  (Lam.) D. Don X 1
Liriodendron  tulipifera  L. X 1
Lobelia  cardinalis  L. X 1
Lythrum lineare L. X 1
Parthenocissus quinquefolia  (L.) Planch. X 1
Phlox spp. L. X 1
Pluchea  odorata  (L.) Cass. X 1
Polygonum  sagittatum  L. X 1
Pteridium aquilinum (L.) Kuhn X 1
Quercus alba L. X 1
Quercus  laurifolia  Michx. X 1
Quercus nigra L. X 1
Ranunculus spp. L. X 1
Ruppia maritima L. X 1
Salicornia depressa Standl. X 1
Setaria parviflora (Poir.) Kerguélen X 1
Typha  angustifolia  L. X 1
Viburnum dentatum L. X 1
Vitis spp. L. X 1
Woodwardia  virginica  (L.) Sm.    X 1
Yucca filamentosa  L. X 1
Cuscuta gronovii Willd. ex J.A. Schultes p p
Schoenoplectus americanus (Pers.) Volk. ex Schinz & R. Keller p p
Schoenoplectus robustus (Pursh) M.T. Strong p p

Sampling areas
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latter, as reflected in their names.  The two cover types are often distinguishable on aerial 

photographs.   

Low Brackish marsh 

 Low brackish marsh included four different community types that are described as 

follows.  A Spartina alterniflora fringe community type commonly bordered the shoreline of 

the outer estuary (e.g., transects O-1 and O-2; Appendix A).  S. alterniflora was the only 

species present in this community that occupied a narrow area 1-3 m wide running parallel to 

the shoreline.  Its elevation was lower or level with adjacent communities while soil 

porewater salinity ranged between 24 and 33.  Soils were a silty muck with higher mineral 

content relative to interior shorezone communities.  Subsurface peat depth ranged 160-200 

cm below the marsh surface.   

 S. alterniflora/Juncus marsh was dominated by patches of S. alterniflora and Juncus 

roemerianus.  Percent cover for this community was low because the sampled area was 

disturbed by fire 4 months prior to sampling.  Soils consisted of fibric peat but were high in 

mineral content, primarily silt.  Soil porewater salinity measured 30 while depth of peat 

measured 113 cm.  This community was only observed in the outer estuary and adjacent to 

Core Sound, transect O-2.  A unique feature within this community was the occurrence of 

presumable relic tidal creeks that have since filled with sediment.   

 Juncus marsh was present at each sampling area (e.g., transects O-1, O-2, M-3, I-3, 

and I-5; Appendix A).  This community was dominated by J. roemerianus with negligible 

cover by a few other species, mainly Distichlis spicata and Kosteletzkya virginica.  Soils 

were relatively high in organic mater with fibric to hemic texture.  Porewater salinity ranged 
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between 6 and 20.  Depth of peat measured 80-110 cm.  Juncus marsh generally occupied the 

lowest elevations of the marsh and the soil surface was often inundated.   

 At middle and inner estuary sites, Spartina cynosuroides and J. roemerianus co-

dominated dense stands along shorelines and into the interior marsh constituting the S. 

cynosuroides/Juncus marsh community type (e.g., transects M-1, M-2, I-5, and I-6; 

Appendix A).  A unique vegetation structure was present in these communities in that S. 

cynosuroides formed a canopy about 2.5 m high with an understory of J. roemerianus below 

1.5 m height.  Soils were highly organic and of relatively low elevation, excluding storm 

levees that where higher in elevation and consisted of layers of stratified peat and sand.  Soil 

porewater salinity ranged between 6 and 13 and depth of peat measured 85-110 cm.  Along 

some transects (e.g., transects I-5 and I-6; Appendix A) this community extended over storm 

levees where soils exhibited higher mineral content, primarily sand.  I. frutescence was often 

present on the storm levees in this community but was not dominant.   

High brackish marshes 

 Mixed marsh was generally characterized by patches of Spartina patens, D. spicata, 

Iva frutescence, or Fimbristylis castanea and was observed only in the outer estuary.  This 

community exhibited two subtypes related to its position within the shorezone, levee mixed 

marsh and interior mixed marsh.  Levee mixed marsh occurred atop storm levees adjacent to 

the shoreline and was present at two transects (see transects O-2 and O-3; Appendix A).  It 

was characterized by a raised soil surface between 19 and 28 cm higher than adjacent marsh 

surfaces and consisted of stratified layers of sand and fibric peat.  Below the sandy surface 

layer, peat extended to depths of 170-230 cm.  Soil porewater salinity ranged between 7 and 

9.  Interior mixed marsh was present along all three transects of the outer estuary sampling 
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area, O-1, O-2 and O-3 (Appendix A).  Vegetation was similar to levee mixed marsh; 

however its position was generally landward of Juncus marsh at considerable distance from 

the shoreline.  Interior mixed marsh had greater species richness with Panicum virgatum, J. 

roemerianus, Morella cerifera, and Baccharis halimifolia also demonstrating notable cover.  

Relative elevation of interior mixed marsh was higher than adjacent seaward marsh 

communities by 16 cm.  Soils ranged from highly fibric peat to sapric sandy peat.  Porewater 

salinity ranged 9-27.  Mixed marshes were included as high brackish marsh communities, 

rather than low brackish marsh communities because they consistently occurred at slightly 

higher elevations but were also dominated by vegetation known to inhabit high marsh areas 

of regularly flooded salt marshes.  

 The communities identified as either high brackish marsh or low brackish marsh 

above can be regarded as subtypes, or variants of Brackish Marsh described by Schafale and 

Weakly (1990) (Figure 2-3).  Some contradictions to their assessment lower and higher 

zones.  For example, Spartina patens was never observed in the lower elevations of sampling 

areas as they suggested, but rather on the higher elevations of levee and interior mixed 

marshes.  They also suggested that K. virginica and Hibiscus moscheutos were characteristic 

of higher elevations.  K. virginica, while rare during sampling, was almost always associated 

Juncus marsh, which occupied the lowest elevations.  The only areas where higher elevations 

correspond with differences in species composition of brackish marshes were at the outer 

estuary sampling areas.  Overall, these data concur with Schafale and Weakley (1990) that J. 

roemerianus is the most abundant species occupying irregularly flooded brackish marshes in 

this region.   

 

54



 

Wetlands of overlapping hydrogeomorphic settings 

 Whether the shorezone concept is considered locally or regionally, there is a 

continuum of vegetation that occurs between hydrogeomorphic settings.  Conditions that are 

normally attributed to estuarine wetlands overlap with those of riverine or flat wetlands 

somewhere between the two settings.  Oligohaline marsh, Oligohaline marsh/scrub-shrub, 

and some scrub-shrub and forest cover types exhibit overlapping characteristics.  

Oligohaline marsh 

 S. cynosuroides marsh occurred along one inner estuary transect, I-1 (Appendix A).  

It was dominated by S. cynosuroides with minimal cover by Typha latifolia and positioned 

adjacent to the shoreline of the Neuse River behind a relic stand of Taxodium distichum 

approximately 20-30 m off-shore.   Soils were highly organic and elevation was only slightly 

higher than landward Morella scrub communities.  Considerable hummock and hollow 

microtopography was present.  Depth of peat measured 265 cm below the surface.  Porewater 

salinity was low, between 0 and 1. 

 Cladium marsh was present at all three sampling areas (e.g., transects O-1, M-2, M-3, 

and I-3; Appendix A) but was not consistently present along all transects.   It generally 

consisted of dense, near monotypic stands of Cladium mariscus.   Hibiscus moscheutos and 

Ipomoea sagittata also exhibited significant, though inconsistent, cover in this community.  

Soils were highly organic with peat extending between 100 and 200 cm below the surface.  

Soil porewater salinity ranged between 2 and 10 and relative elevation was generally higher 

than seaward communities.  

 Cladium and S. cynosuroides marsh community types closely resemble Tidal 

Freshwater Marsh described by Schafale and Weakly (1990).  However, the term 
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“oligohaline” in lieu of “freshwater” seemed more appropriate as soil porewater salinity 

within these communities regularly exceeded 1.   

Oligohaline marsh/scrub-shrub 

 Woody vegetation regularly shared cover with C. mariscus toward the interior of 

shorezones.  The Cladium scrub community was dominated by either B. halimifolia or M. 

cerifera in the shrub stratum and by C. mariscus, and S. cynosuroides in the herbaceous 

stratum (e.g., transects I-3 and I-6; Appendix A).  The Cladium/Taxodium scrub community 

occurred along transect M-3 (Appendix A) where C. mariscus appears to have invaded the 

understory of a mature Taxodium distichum stand.  Soils in both communities were highly 

organic and depth of peat ranged 38-200 cm below the surface.  Soil porewater salinity 

ranged between 3 and 10 and relative elevation was higher than seaward communities.  

 Regardless of the ubiquity of C. mariscus between Oligohaline marsh and 

Oligohaline marsh/scrub-shrub, the two are distinguished here because they appear to 

illustrate a pattern of zonation in that the latter generally occurs landward of the former.  

However, Cladium marsh is very possibly an initial community stage that eventually 

succeeds to Cladium scrub and potentially into more landward forest communities.  Their 

different positions are presumably a result of varying salt stress and disturbance regimes.   

Schafale and Weakley (1990) avoided classifying such transitional plant communities but the 

oligohaline marsh/scrub-shrub communities are most likely related to their Tidal Freshwater 

Marsh description. 

Scrub-shrub 

 The Morella scrub community type was observed along 9 of the12 transects.  Because 

M. cerifera was rather ubiquitous throughout scrub-shrub and forest communities, soil, 
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elevation and the abundance of dead standing trees were used to help distinguish 3 subtypes: 

swamp, ghost forest, and margin.  Morella scrub swamp often included Persea palustris, 

Acer rubrum, B. halimifolia, Juniperus virginiana, Rosa palustris, and Osmunda regalis 

(e.g., transects O-1, I-1, I-2, I-3, I-5, and I-6; Appendix A).  Soils were highly organic, fibric 

to sapric in texture, and depth of peat measured 78-300 cm.  Footing was poor with 

hummock and hollow microtopography.  Soil porewater salinity ranged 0-6.  Elevations 

within the Morella scrub swamp subtypes were not completed due to interference by 

vegetation.  The ghost forest subtype is comparable to the swamp subtype but was 

distinguished because of its abundance of dead standing trees (e.g., O-1; Appendix A).  It 

was clear that a forest community had recently collapsed at this location.  Morella scrub 

margin was situated at the upland/wetland boundary or landward margin of shorezone along 

transects O-2 and M-1 (Appendix A).  While M. cerifera dominated, P. serotina and N. 

biflora were present but in low abundance.  Key distinguishing environmental features of this 

subtype were non-hydric mineral soil and its elevation 47 cm above the lowest point of the 

transect.  Soil porewater salinity was near zero for both occurrences.  Also of interest, the 

Morella scrub margin subtype along transect M-1 lacked litter and an organic soil horizon.  

Evidence of landward wrack lines suggested that fluctuating water levels in the estuary were 

responsible for scouring organic matter from the soil surface.  Successive wrack lines 

measured 1.16, 1.51, and 2.51 m above the M-1 datum along the steep landward slope.   

 Morella scrub margin appears synonymous with Maritime Scrub described by 

Schafale and Weakley (1990).  However, Morella scrub swamp and ghost forest lacked a 

specific match with any of the communities described by Schafale and Weakley (1990); 

though they bore resemblance to Persea forest (see description of Persea forest below).  The 
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persistence of Morella scrub swamp throughout shorezones of the estuary may be an 

indicator of repeated salt stress. 

 Carex/Baccharis/Taxodium scrub occurred along only one transect, I-2.  This 

community was separated from the shoreline by a 1 m tall x 3 m wide unvegetated storm 

levee.  Here, Carex comosa dominated the herbaceous stratum of a relatively open canopy of 

T. distichum.  B. halimifolia and Rosa palustris dominated the shrub stratum but did not form 

a dense thicket.  Soils were sapric near the surface.  Depth of peat measured 285 cm.  Soil 

porewater salinity measured 2.  Schafale and Weakley (1990) did not recognize a community 

synonymous with the Carex/Baccharis/Taxodium scrub.  The presence of mature T. 

distichum trees, which are tolerant of salinity levels up to 10 (Conner et al. 1997), combined 

with its inner estuary position along the Neuse River, suggests it is a relic of the 

Taxodium/Nyssa swamp forest described below.  It has likely resulted from repeated salt 

stress and disturbance (e.g., windthrow).  Signs of fire were not evident.     

Forest 

 Persea forest occurred along only one transect in the middle estuary sampling area, 

transect M-2 (Appendix A).  Persea palustris was the dominant tree species followed by 

Acer rubrum and Juniperus virginiana.  M. cerifera dominated the shrub stratum while O. 

regalis and Saururus cernuus were the most abundant species in the herb stratum.  Persea 

forest was situated in a narrow valley-like topographic feature partially filled with 

accumulated organic matter.  Soils were fibric near the surface and extended to a depth of 

300 cm.  In an adjacent similar geomorphic setting at the confluence of Hancock Creek and 

Cahooque Creek, depth of peat measured 635 cm.  Soil porewater salinity measured 2.  

Persea forest aligns with Maritime Scrub Swamp (Schafale and Weakley 1990), which is 
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known only to occur in interdune swales at Buxton Woods and Nags Head Woods on the 

Outer Banks.  Its presence here suggests a broader range extending to at least the middle 

estuary of the Neuse River.  Additionally, P. palustris was consistently present in either 

shrub or tree stratum of Morella scrub swamp though it never dominated.  This may suggest 

that Morella scrub swamp is an early successional stage of the Persea forest/Maritime Scrub 

Swamp community.   

Flat wetlands 

 Flat wetlands are those wetlands that occur where shorezone occupies either 

interstream flat or paleo-braidplain flat geomorphic settings.  They include scrub-shrub and 

forest cover types. 

Scrub-shrub 

 Pinus serotina scrub was observed only at the outer estuary setting at the landward 

margin of transect O-3 (Appendix A).  It was dominated by P. serotina, Persea palustris, and 

Liquidambar styraciflua.  Osmunda regalis, Carex spp. Eupatorium serotina, and S. patens 

dominated the herb stratum.  Soils were sandy with low organic matter while porewater 

salinity measured 3.   Relative elevation was >50 cm above the transect datum.  Its high 

elevation and species composition suggest the boundary between adjacent mixed marsh and 

itself represents the landward margin of shorezone.  P. serotina scrub did not bear 

resemblance to any of the applicable communities described by Schafale and Weakley 

(1990).   

Forest 

 Mixed forest typically occurred at or near the landward margin of shorezone (e.g., 

transects O-1, I-2, I-3, and I-6; Appendix A).  While relatively heterogeneous in species 
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composition, it was always dominated by two or more of the following: Nyssa biflora, 

Liquidambar styraciflua, Acer rubrum, and Pinus taeda.  A. rubrum and P. palustris were the 

only two constants of the tree stratum.  P. palustris and M. cerifera were constant in the 

shrub stratum although the latter was dominant.   Herbaceous vegetation was relatively 

inconsistent between transects.  Soils ranged from fibric peat to black mucky sand and 

porewater salinity ranged between 0 and 9.  Elevation data was incomplete for this 

community type because vegetation obstructed surveying.  The mixed forest community 

described here is comparable to Maritime Swamp Forest described by Schafale and Weakley 

(1990).  While they only report occurrences of the community along the Outer Banks, these 

data suggest a considerably larger range extending to the inner estuary. 

Riverine wetlands 

 Riverine wetlands occupy upstream migrating shorezones of antecedent floodplains 

now hydrologically influenced by sea level.  They are occupied by the forest cover type. 

Forest 

 Taxodium/Nyssa swamp was observed only at the middle and inner estuary sampling 

areas, (e.g., transect M-3 and I-4; Appendix A).  While T. distichum, Nyssa aquatica, N. 

biflora, Fraxinus carolinana, A. rubrum, Pinus taeda, and M. cerifera were inconsistently 

dominant in the tree stratum,   T. distichum and N. biflora were the two constants.  Shrub and 

herbaceous strata were relatively heterogeneous in terms of species composition.  Soils were 

fibric to sapric while porewater salinity ranged between 0 at the inner estuary transect to as 

high as 8 at the middle estuary transect.  Taxodium/Nyssa swamp is compositionally 

comparable to Tidal Cypress-Gum Swamp identified by Schafale and Weakley (1990). 
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Upland non-shorezone forest

 Pinus taeda forest occurred along one transect in the middle estuary (e.g., transect M-

1; Appendix A).  P. taeda was the dominant species with N. biflora and Liriodendron 

tulipifera contributing to the tree canopy as well.  Cyrilla racemiflora and M. cerifera 

dominated the shrub stratum.  The herbaceous stratum was relatively sparse with no real 

dominants.  Soils were non-hydric sandy loam with low organic matter content.  Pore water 

salinity measured 0.  P. taeda forest is not considered part of the shorezone due to its high 

elevation and steep landward slope.   

Ordination 

 The DCA ordination reflects a continuum of vegetation typical of Neuse River and 

western Pamlico Sound shorezones (Appendix B, Figure B-1).  However, a pattern of 

zonation is more apparent when samples are identified by their respective cover type (Figure 

2-4).  The high eigenvalue (0.945) determined for axis 1 reflects very high beta diversity 

between samples at opposite ends of the axis.   An after-the-fact evaluation of the quality of 

the data reduction suggests only 14% (r2 = 0.147) of the variation in the reduced space is 

represented by axis 1 (Appendix B, Table B-1).  Nonetheless, strong correlations were 

observed between environmental variables and the DCA axes.   Species richness 

demonstrated the strongest correlation with axis 1 (r = -0.813) (Appendix B, Figure B-4) 

followed by soil porewater salinity (r = 0.731) (Appendix B, Figure B-3).  Forest 

communities appear to the left of the diagram.  They exhibit the greatest species richness, 

least beta diversity between samples, and lowest soil porewater salinities.  Low brackish 

marshes appear to the right of the diagram.  In contrast, they exhibit the lowest species 

richness, greatest beta diversity, and highest soil porewater salinities.   
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Figure 2-4.  Detrended correspondence analysis ordination labeled according to cover type.  
Low brackish marsh samples are to the right.  From left to right, samples diverge along axis 2 
as they grade into high brackish marsh followed by oligohaline marsh, oligohaline 
marsh/scrub-shrub, scrub-shrub and forest along axis 1.  
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 Forest communities located at the left side of the diagram appear to diverge toward 

two extremes along axis 2 (eigenvalue = 0.601): riverine wetlands (i.e., Taxodium/Nyssa 

swamp) at the top and flat wetlands (i.e., mixed forests) toward the bottom (Figure 2-5).  

While the r2 value for Axis 2 is very low (-0.014) (Appendix B, Table B-1), which 

purportedly reflects a low percentage of the variance explained by the axis (McCune and 

Grace 2002), distance of community from shoreline (dist-n) exhibited a reasonably strong 

correlation with DCA axis 2 (r = -0.708) (Appendix B, Figure B-5).  This finding is 

consistent with that of Chapter 1 in that forested flat wetlands tended not to occupy the 

shoreline of outer estuary shorezones because of the high salinity brackish waters, whereas 

forested riverine wetlands were more prevalent at or near the shoreline of inner estuary 

shorezones because of the lower salinities there.  Axis 1 is therefore best explained by a 

salinity gradient while geomorphic settings appear to represent at least some of the variation 

along axis 2.  A species plot of the DCA ordination can be seen in Appendix B, Figure B-2.   

Local and regional patterns 

Various patterns of vegetation were observed at the plant community scale.  Studies 

of shorezones in the A-P system have suggested that its irregularly flooded marshes exhibit 

mosaic patterns rather than zonation.  However, this study, among others (Brinson 1991b, 

Poulter 2005), suggests that patterns of zonation are apparent across these shorezones at both 

local (e.g., from shoreline to landward margin) and regional (e.g., from inner to outer 

estuary) scales.  The most influential factors contributing to zonation are salinity and 

hydroperiod.  The mosaic pattern undeniably exists; however, it occurs among the zonation 

of communities and is generally the result of wrack deposition (Knowles 1989).  
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Figure 2-5.  Detrended correspondence analysis ordination biplot labeled according to 
hydrogeomorphic wetland type (NCDENR 2003a).  Length of arrows reflect the strength of 
the relationship with environmental variables, soil porewater salinity (pws), distance of 
community from shoreline (dist-n), species richness (richness), and depth of peat (depth).  
Samples are mostly estuarine toward the right of axis 1 but grade into either riverine (top) or 
flat (bottom) along axis 2 toward the left.   
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Local patterns 

Peat depth consistently decreased from the shoreline to the landward margin at each 

estuary position (Figure 2-6).  Communities adjacent to the shoreline exhibited lower soil 

organic matter content between 0-30 cm than did those of the interior (Figure 2-7).  

Subsurface sediments (30-60 cm) of communities adjacent to the shoreline were on average 

higher in organic matter (Table 2-3) suggesting that the mineral sediment above is 

allochthonous, and thus deposited during inundation (Craft 1993).  Percent organic matter 

generally increased toward the interior of shorezone but decreased again at or near the 

landward margin, and often abruptly (Figure 2-7).  Transect O-3 is the only example where 

mineral content increased gradually (field observation) through the high brackish marsh 

community approaching the landward margin.  It traverses an area where landward slope is 

negligible enough that shorezone is not vertically impeded.  This particular area therefore 

represents an excellent example of where shorezone is actively migrating over a flat.  

Transect O-1 and O-2 exhibit more abrupt transitions between organic and mineral soil 

because their landward margins coincide with paleo-shorelines (Mixon and Pilkey 1976), and 

thus are actually stalling in terms of landward migration.  The remainder of middle and inner 

estuary transects all exhibited relatively abrupt organic to mineral soil transitions because 

they traverse shorezones in river valleys.   

 Inner estuary shorezones -Twice as many transects were established at the inner 

estuary sampling area than at middle and outer estuary sampling areas because it was 

comprised of both estuarine and riverine wetland shorelines (NCDENR 2003a).  S. 

cynosuroides/Juncus marshes appeared to represent the estuarine wetlands and were 

restricted to the southeastern most portion of the inner estuary sampling area.   These 
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Figure 2-6. Depth of peat in centimeters of all samples.  Samples are sorted by normalized 
distance from shoreline and labeled according their respective community type and transect. 
Samples closet to the shoreline are at the top of the chart, while those closest to the landward 
margin are at the bottom.
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Figure 2-7.  Percent organic matter of surface soil (0-30 cm) of all samples.  Samples are 
sorted by normalized distance from shoreline and labeled according their respective 
community type and transect.  Samples closet to the shoreline are at the top of the chart, 
while those closest to the landward margin are at the bottom.  Organic matter was highest 
toward the interior of the shorezone. 
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Table 2-3.  Average percent organic matter measured as loss on ignition of surface (0-30 cm) 
and subsurface (30-60 cm) soil samples from the first 12 samples in order of normalized 
distance from shoreline.  

Distance
from

shoreline
(m)

Spartina alterniflora  fringe  O2 1 18.8 29.6
Spartina alterniflora  fringe  O1 1 16.5 18.8
Spartina cynosuroides/Juncus  marsh  I6 3 1.7 29.5
Spartina cynosuroides/Juncus  marsh  M1 3 25.4 6.1
Spartina cynosuroides/Juncus marsh  I5 4 3.5 21.7
Mixed marsh (levee)  O3 6 0.9 0.0
Spartina cynosuroides/Juncus marsh  M2 7 61.1 69.7
Mixed marsh (levee)  O2 7 18.8 29.6
Juncus  marsh  M3 11 39.9 19.1
Spartina cynosuroides/Juncus  marsh  I1 19 55.0 72.1
Taxodium/Nyssa  swamp  I4 21 32.5 48.2
Carex/Baccharis/Taxodium  scrub  I2 28 58.9 71.1

Avg. 27.7 34.6

Percent organic matter

Surface Subsurface
Community type Transect
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marshes tended to grade into mixed forest or Morella scrub communities that occupied the 

flat wetlands of the paleo-braidplain.  Cladium marsh or S. cynosuroides marshes were 

primarily associated with riverine wetland shorezones and occurred further upstream along 

either the Neuse River or Upper Broad Creek.  They tended to grade laterally from the 

shoreline into mixed forest or Morella scrub communities as well.  However, using 

communities occupying the shoreline of multiple transects (e.g., I-1, I-3, I-2, and I-4, in that 

respective order), it can be inferred that those marshes grade in an upstream direction into 

Carex/Baccharis/Taxodium scrub and on into Taxodium/Nyssa forest of the Neuse River and 

Upper Broad Creek floodplain shorezones. 

 Reasonably wide shorezones were observed at the inner estuary sampling area, 

ranging between 94 and 324 m wide.  Zonation of communities was least apparent here, 

limited mostly to vegetation structure (e.g., marsh, scrub-shrub, and forest).  Elevation did 

not appear to affect the distribution of S. cynosuroides/Juncus marsh as it occupied both 

storm levees and low brackish marsh settings of two transects at the southeastern most 

positions of the inner estuary.   However, in the one location where Juncus marsh prevailed 

(Transect I-6), it exhibited the lowest elevation along the transect and was inundated at the 

time of sampling. 

 C. mariscus and S. cynosuroides appear to have similar tolerances for salinity but, 

surprisingly, they rarely co-occurred or dominated community types of the same shorezones.  

S. cynosuroides appeared to be restricted to shorezones of the Neuse River, while C. 

mariscus dominated shorezones of Upper Broad Creak, a blackwater tributary.    This 

disparity may be attributable to water chemistry or wave energy as C. mariscus seemed to be 
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associated only with other blackwater tributaries and dominated only shorezones that were 

not exposed to considerable fetch.   

 Middle estuary shorezones - Presently, sea level does not intersect middle estuary 

geomorphic settings in a way that promotes extensive shorezones (see hypsographic profile, 

Chapter 1).  Here, shorezones are restricted only to valleys with steep lateral slopes deep 

inside tributaries to the Neuse River estuary.  As a result, shorezones were relatively narrow, 

ranging between 7 and 136 m wide.  Juncus marsh is considerably reduced, occupying the 

seaward most portion of only one transect.  S. cynosuroides/Juncus marsh occupied the 

shorelines of the remaining two transects.  Cladium marsh and Cladium/Taxodium scrub 

occupied intermediate positions between the aforementioned marshes and landward forests 

along two transects.  Morella scrub, Taxodium/Nyssa swamp forest and Persea forest 

occupied the remainder of shorezone to the landward margin.  The landward margin was 

always defined by an abrupt increase in landward slope.   All shorezones were mapped 

estuarine wetland (NCDENR 2003a) and restricted to the inner most portions of tributaries. 

 Outer estuary shorezones - The low position of interstream divide flats in the outer 

estuary is responsible for the extensive shorezones (Chapter 1).  These shorezones measured 

between 219 and 1214 m wide, nearly an order of magnitude greater than middle estuary 

shorezones.  The majority of these shorezones are mapped estuarine wetland with flat 

wetlands toward the landward margin (NCDENR 2003a).   

 Zonation of plant communities was most apparent in outer estuary shorezones. The 

typical pattern began with S. alterniflora fringe or levee mixed marsh that paralleled the 

shoreline.  To the landward side of these communities, Juncus marsh dominated expansive 

areas of low elevation that were generally inundated.  Only toward shorelines of Core Sound 
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did J. roemerianus share dominance with S. alterniflora (e.g., transect O-2; Appendix A).  

Continuing landward, interior mixed marsh developed at a slightly higher elevation and 

shrubby vegetation became more prevalent, though not dominant.  Cladium marsh persisted 

only in the presence of an apparent ground water source (e.g., transect O-1; Appendix A).  

Morella scrub swamp or ghost forest occupied the area between Cladium marsh and the 

landward margin of shorezone.  The landward margin appeared to be elevated approximately 

40 to 50 cm above the lowest elevations of marsh.  Mixed forest and P. serotina scrub 

communities occurred above this elevation on flat wetlands not considered to be part of the 

shorezone.    

 Levee and interior mixed marsh communities occur at very different positions relative 

to the shoreline, yet exhibit similar species composition.  Additionally, both community 

subtypes exhibit different soils (i.e., sand vs. peat) and are subject to different disturbance 

regimes, particularly related to wave energy.  Related species composition may be a response 

to their higher elevations or lower soil porewater salinities relative to adjacent communities 

or a combination of the two.  This finding is contrary to the concept that vegetation zonation 

is a factor of distance from shoreline as discussed by Poulter (2005).  The two most prevalent 

species of mixed marsh are S. patens and D. spicata, both colonizers of areas disturbed by 

wrack deposition that opens the otherwise J. roemerianus canopy (Knowles 1989).   

 Spaur and Snyder (1999) found that S. patens generally occurred in areas where depth 

of peat measured approximately 40 cm.   This study found no relationship between peat 

depth and vegetation type nor does this author believe one exists.  The position of S. patens 

in the shorezone is more likely attributed to soil salinity, hydroperiod, or disturbance regime, 
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all of which may covary with distance from shoreline (Knowles 1989, Christian et al. 1990, 

Poulter 2005).    

 Transects O-2 and O-3 burned during the winter prior to sampling. At transect O-2, 

fire did not have a uniform impact because patches of J. roemerianus remained unburned.  

Where the fire had burned J. roemerianus marsh, it exhibited considerably less cover than 

unburned areas.  Additionally, the shrubs I. frutescence and M. cerifera exhibited fire 

resiliency.  While the aboveground biomass was charred and dead, both species were 

sprouting from bases of their stems. 

Regional patterns 

 Regional patterns in vegetation are best explained in Table 2-4 where community 

types are arranged by sampling area, and thus reflect the space-for-time framework outline in 

Chapter 1.  Juncus marsh communities are present throughout the estuary while S. 

alterniflora fringe, S. alterniflora/Juncus marsh, and interior and levee mixed marsh are 

restricted to the outer estuary (Table 2-4).  And while Juncus marsh was present at each 

position, it was most extensive in the outer estuary occupying zones >300 m wide.  These 

communities are therefore characteristic of the late over-flat migration stage and the terminal 

non-migration stage, both of which coincide with higher salinities in the outer estuary. 

 Toward the middle and inner estuary, J. roemerianus generally shared its distribution 

fairly evenly with S. cynosuroides wherever it occurred.   Marshes dominated entirely by S. 

cynosuroides appeared restricted to the very inner portions of the estuary primarily fringing 

shorezones of the Neuse River as opposed to its tributaries.  While S. cynosuroides was not 

observed during sampling in the outer estuary (Table 2-4), but is known to occur there 

(Brinson et al. 1991b).  Cladium marsh also occurred at all three positions of the estuary but 
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Table 2-4.  Comparison of community and cover types with spatio-temporal stages identified 
in Chapter 1.  Early, intermediate, and late stages are aligned with community types.  Field 
data from Brinson et al. (1991b) were used to apply community type designations to terminal 
– non migration stage. 
Cover type - early - - late -

Community type
upstream 
migration

over-flat       
migration

(inner estuary) (outer estuary)
Forest

Taxodium/Nyssa  swamp X X
Persea forest X
P. taeda forest X
Mixed forest X X
P. serotina scrub X

Scrub-shrub
Carex/Baccharis/Taxodium  scrub X
Morella  scrub (margin) X X
Morella  scrub (swamp/ghost forest) X X X X

Oligohaline marsh/scrub-shrub
Cladium/Taxodium scrub X X
Cladium scrub X X X X

Oligohaline marsh
S. cynosuroides marsh X
Cladium  marsh X X X

High brackish marsh
Mixed marsh (levee/interior) X X

Low brackish marsh
S. cynosuroides /Juncus  marsh X X
Juncus  marsh X X X
S. alterniflora  /Juncus  marsh X X
S. alterniflora fringe X X

- intermediate -    
non-migration  

(middle estuary)

- terminal -        
non-migration   
(outer estuary)
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it was only found landward of Juncus marsh, interior mixed marsh, and S. 

cynosuroides/Juncus marsh at the middle and outer estuary sampling areas (Table 2-4).  It 

was never present at the shoreline and only occupied large areas where there was an assumed 

fresh groundwater supply.  Toward the inner estuary, Cladium marsh occupied the shoreline 

and major portions of the shorezone of Upper Broad Creek, a tributary to the Neuse River 

(e.g., transect I-3; Appendix A).  S. cynosuroides and Cladium marshes are therefore 

representative of the trailing edge of shorezone where upstream migration is occurring. 

 Taxodium/Nyssa swamp is representative of early stage upstream migrating 

shorezones as illustrated by its inner and middle positions Table 2-4.  It did not occur in the 

outer estuary as its setting has succumbed to the effects of rising sea level, erosion and 

increased salinity.  Mixed forest was representative of the flat wetland type (NCDENR 

2003a), which occupied both outer estuary interstream divides and inner estuary paleo-

braidplain settings.  Therefore its presence reflects over-flat migration, as well as, upstream 

migration where shorezone is migrating upon paleo-braidplain setting. 

Similarly, the percentage of woody vegetation within the shorezone was greater 

toward the inner estuary (Table 2-5).  While Morella scrub swamp was clearly present in 

shorezones of the outer estuary, forests and other scrub-shrub cover types were restricted to 

the landward margin.  For example, it was determined that P. serotina (transect O-3), mixed 

forest (transect O-1), and Morella scrub margin (transect O-2) communities were situated 

beyond the hydrologic influence of sea level, and thus are not considered shorezone.   

Regional patterns in peat depth were subtle if they occurred at all (Table 2-6).  The 

deepest profile, 430 cm, was observed in a submerged valley of Hancock Creek, a tributary 

to the middle estuary.  Rather, peat depth appeared more related to geomorphic settings 
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Table 2-5.  Percent woody vegetation of shorezone according to sampling area. 

Inner Middle Outer
I-1 84 M-1 0 O-1 25
I-2 63 M-2 57 O-2 0
I-3 24 M-3 84 O-3 0
I-4 100
I-5 16
I-6 26

Mean 52 47 8
SD 35 43 15  

 
 
 
Table 2-6.  Greatest depths of peat in centimeters according to sampling area. 

Inner Middle Outer
I-1 265 M-1 30 O-1 160
I-2 285 M-2 430 O-2 200
I-3 180 M-3 200 O-3 170
I-4 385
I-5 160
I-6 85

Mean 227 220 177
SD 106 201 21  

 
 
 
Table 2-7.  Greatest depths of peat in centimeters according to hydrogeomorphic wetland 
type (NCDENR 2003a).  Transect M-1 is mapped as upland in the wetland map. 

Riverine Upland Flats
I-1 265 M-1 30 O-1 160
I-2 285 O-2 200
I-3 180 O-3 170
I-4 385 I-5 160

M-2 430 I-6 85
M-3 200

Mean 291 155
SD 99 42  

75



 

(Table 2-7).  Though not statistically significant, riverine transects exhibited greater peat 

depth than those of flats.  This pattern supports the space-for-time framework of Chapter 1 

using peat depth as a proxy for exposure to sea level.  Ages of basal peats >20 m deep 

extracted from drowned river valley settings of the A-P system have been estimated to have 

formed >10 kyr BP (Culver et al. 2008).  Basal peat 0.8 m deep extracted from the 

submerged interstream divide flat at the outer estuary sampling area measured approximately 

1.6 kyr BP (Young 1995).  
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Conclusion 

 This study developed a multi-level hierarchical classification that contributed a 

clearer understanding of patterns in irregularly flooded estuarine shorezones.  The 

classification consists of 16 community types arranged into 6 cover types that are further 

arranged into 4 wetland types.  Each level of the classification was intended to represent a 

particular ecological scale of analysis (sensu Urban et al. 1987).  For example, the first order 

of classification, hydrogeomorphic setting, relates to Chapter 1 in which patterns in wetland 

type were used to illustrate the ecological effects of rising sea level at a landscape scale.  

Here in Chapter 2, analyses performed at a plant community scale revealed both local and 

regional patterns of zonation.  In Chapter 3, the cover type level of classification was applied 

to map and quantify changes in vegetation at a shorezone scale that may be related to sea-

level rise.   

 This study also revealed that Persea forest (Maritime Scrub Swamp; Schafale and 

Weakley 1990), previously known only to occur in interdune swales of back barrier islands 

of the Outer Banks, may have a considerably broader range.  Further, the swamp and ghost 

forest subtypes of the Morella scrub community exhibited similar species composition to 

Persea forest suggesting that they may be an early precursor to the development of Persea 

forest.  Should this be the case, it would extend the potential range of Maritime Scrub Swamp 

described by Schafale and Weakley (1990) to the inner most portions of the Neuse River 

estuary.  How rising sea level will affect this seemingly rare ecological community, among 

others, requires further study. 

 Salinity and hydroperiod are ultimately responsible for the zonation of plant 

communities observed within shorezones wetlands of the Neuse River and western Pamlico 



 

Sound estuary.  The DCA ordination provided additional clarity in ordering cover types 

within the hierarchical classification relative to an apparent salinity gradient.  These data also 

suggest that zonation was more apparent at the outer estuary than in the inner estuary.  For 

example, transects at outer estuary sampling areas exhibited between 5 and 7 communities 

per transect where as transects at the inner estuary sampling area exhibited between 2 and 5 

community types.  While this study provides limited information about disturbance caused 

by wrack deposition, it has been found to affect shorezone community dynamics (Knowles 

1989, Tolley and Christian 1999, Miller et al. 2001, Poulter 2005).  The role of fire in 

influencing community composition was not clear. However, wrack deposition interrupts the 

pattern of zonation, thus producing the mosaic-like pattern described by earlier studies 

(Brown 1959, Burk 1962, Cooper and Waits 1973).  Therefore, this study suggests that 

irregularly flooded shorezones, particularly marshes, simultaneously exhibit both zonal and 

mosaic patterns of vegetation.  Furthermore, the lack of regular tidal inundation softens the 

zonation allowing the characteristic mosaic pattern to be more apparent than in tidal salt 

marshes.    
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Chapter 3 

Vegetation change dynamics and transgression of an outer estuary shorezone:  

a shorezone scale analysis 



Introduction 

Wind, astronomical tides, and storm surges cause fluctuations in estuarine water 

levels that prevent a geographically static separation between land and sea (Riggs and Ames 

2003).  Therefore where sea level and the terrestrial environment intersect, a continuum of 

vegetation types occur that can be arranged and classified as zones (Adams 1963, Bertness 

1991, Pennings and Callaway 1992, Pennings et al. 2005).  These zones are collectively 

referred to here as the shorezone.  As sea level rises, the terrestrial environment is inevitably 

submerged as the landward margin of shorezone migrates up the terrestrial slope.  

Shorezones will increase, decrease, or maintain area as they transgress depending upon rates 

of shoreline erosion, rates of vertical accretion, and landward slope (Chapter 1)   

As the shorezone transgresses over land, terrestrial plant communities are inevitably 

displaced by those better adapted to increased inundation and salinity.  While this process is 

often perceived as a function of sea-level rise, changes in shorezone vegetation tend to be the 

result of other external abiotic factors including wrack deposition and blow downs caused by 

storms, tree mortality in response to drought or fire, or ditching and clear cutting of forests 

caused by humans (Ross et al. 1994, Michener et al. 1997).  The disturbances they cause tend 

to be both spatially and temporally stochastic, thus triggering local to widespread 

environmental change (Clark 1986).  Such disturbances effectively create conditions that 

facilitate the landward migration of shorezone plant communities.  For example, hurricanes 

and nor’easters are capable of generating large surges that promote saltwater intrusion into 

previously freshwater systems, thus altering soil water chemistry and stressing vegetation 

(Chabreck and Palmisano 1973, Brinson et al. 1985).  Storms can also exacerbate the effects 

of erosion at the shoreline and topple trees and shrubs creating gaps in the forest canopy 



(Williams et al. 2003).  Forest fires may kill trees reducing evapotranspiration, temporarily 

raising the surface ground water table.  Fires may also burn the surface layers of organic soils 

lowering the soil surface elevation to or below the normal water table (Poulter 2005).   

While disturbances play a critical role creating conditions that may be conducive to 

landward migration of vegetation, plants within the shorezone may also exhibit biotic 

mechanisms to resist environmental change (Brinson et al. 1995).  Mature trees tend to be 

more resilient to salt stress caused by storm surge inundation than younger trees, tree 

seedlings, and herbaceous understory vegetation (Conner et al. 1994).  Maintenance of the 

forest canopy inhibits invasion by shade-intolerant marsh plants that might otherwise out 

compete tree seedlings (Brinson et al. 1995).  Additionally, forests exhibit a higher rate of 

evapotranspiration that may draw down the local water table to levels more conducive to 

forest species than to marsh species (Poulter 2005).  Conversely, fire may also promote 

resiliency.  More frequent but less severe fires may facilitate regeneration of shorezone 

forests by opening serotinous pine cones and dispersing seeds or by eliminating competing 

marsh vegetation (Poulter 2008c).  Frequent fires may also reduce accumulations of fuel and 

are less likely to damage the forest canopy.    

Anthropogenic disturbances may have significant effects on shorezone communities 

as well.  Shirley and Battaglia (2006) found that urbanization and hydrologic modifications 

impeded landward migration of shorezone vegetation at various locations along the north 

coast of the Gulf of Mexico.  Conversely, extensive ditching of freshwater shorezones of the 

Albemarle-Pamlico Peninsula in North Carolina has greatly increased the potential for 

landward expansion of brackish marshes (Pearsall and Poulter 2005).  
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  Studies have implied that landward migration of vegetation is permanent (Williams 

1999, Gaiser et al. 2002, Desantis et al. 2007).  However, this assertion neglects ecosystem 

resilience that may restore previous conditions and thus plant communities.  Therefore, while 

disturbances may initially alter environmental conditions and species composition, if 

conditions return to those prior to disturbance, the previous community may be restored 

through ecological succession (Clark 1969) rather than resulting in state change. 

In this chapter, historical aerial photographs were used to map changes in vegetation 

and shoreline over a 40 year period.  A DEM was also used to model displacement of the 

landward margin of shorezone as a factor of sea-level rise.  A series of ranked cover types 

(Chapter 2) were used to represent a generic sequence of vegetative cover between the 

shoreline and landward margin. Throughout the chapter, the terms landward migration, 

seaward migration, and transgression are used to describe differing dynamic processes.  

Landward migration describes alterations in plant community composition to species better 

adapted to the influences of estuarine waters, presumably caused by various disturbances or 

salt stress.  Seward migration is used to describe alterations in plant community composition 

to species better adapted to freshwater influences, presumably due to a lack of disturbance or 

salt stress.  Transgression describes the landward movement of shorezone and its landward 

margin. 
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Methods 

 Outer estuary interstream divide unit S8 was selected for mapping.  Only the area 

between the 1958 shoreline and the 1 m elevation contour (NAVD 88) were analyzed for 

change.  This area is hereafter referred to as potential shorezone (PSZ).  Areas above 1 m 

elevation, designated non-shorezone, and the Holocene barrier adjacent to Pamlico Sound 

(Figure 3-1) were excluded from analysis.  Areas above 1 m elevation were not mapped for 

change with the exception of those areas replaced by estuarine water, presumably through 

shoreline erosion. 

Aerial photographs and GIS 

Aerial photography from 1958 and 1998 was used in this analysis.  The 1958 aerial 

photography was flown by the US Department of Agriculture, Commodity Stabilization 

Service between fall 1958 and winter 1959.  It was digitized from 9 x 9 inch (1:20,000 scale) 

panchromatic analog prints acquired from the North Carolina Geologic Survey archives.  

Digitization was performed using a Microtek ScanMaker 9800XL® high resolution large 

format flatbed scanner equipped with a linear array charged coupled device digitizer.  Prints 

were scanned at a resolution of 600 pixels per inch (42.34 µm) as this appeared to be the 

maximum resolution of the prints themselves.  The corresponding ground resolution of these 

images, once georeferenced, was approximately 0.64 m2 per pixel.   

The 1998 aerial photographic dataset consisted of color infrared Digital Orthophoto 

Quarter Quadrangles (DOQQs) recorded during leaf-off in 1998 and 1999.  The DOQQs are 

part of a national data set of color infrared aerial photography that exhibits a ground 

resolution of 1.0 m2 per pixel.  They were employed as the base map upon which the 1958 

aerial photographs were georeferenced.  Comparable applications of this method are 



 
Figure 3-1. Location of shorezone vegetation maps within the context of the greater study 
area.   
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provided by Kastler and Wiberg (1996), Erwin et al. (2004), Higinbotham et al. (2004), and 

Poulter (2005).    

True-color DOQQs recorded leaf-on in 2006 were used to help verify interpretations.  

They were acquired from the US Department of Agriculture, National Agriculture Imagery 

Program.  These images were not employed for mapping as they were not acquired until late 

2007 and failed to co-register precisely to the 1998 DOQQs.   

Georeferencing, mapping and spatial analyses were performed using Environmental 

Systems Research Institute ArcGIS® 9.1/9.2 software.  All data were projected to the North 

Carolina State Plane coordinate system (units in meters) cast to North American Datum 

1988.  The georeferencing tool was used to co-register the 1958 aerial photographs to the 

1998 DOQQs using a second-order polynomial transformation.  Between 6 to 12 ground 

control points were attempted per photograph.   

Because the study area covered relatively unpopulated areas of marsh, forest, and 

open water, there were few fixed objects such as roadway intersections or other human 

structures for use as ground control.  Alternatively, ditch intersections, marsh potholes, 

narrow creek confluences, and narrow creek meanders, which appeared relatively stable 

between time steps, were used for ground control.  Similar methods have been employed by 

Erwin et al. (2004), Kastler and Wiberg (1996), and Poulter (2005).  These natural ground 

control points were actually preferred by the author as they exhibited greater consistency 

over time than did roadway intersections, which are prone to realignment.  Upon completion 

of georeferencing, each individual photograph was visually inspected for accurate co-

registration with the respective DOQQs regardless of the respective root mean squared error 

(RMSE) value derived from the polynomial transformation.   
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Cover types, rank, and interpretation 

A series of six vegetated cover types were established in Chapter 2.  Those classes 

were combined with three unvegetated classes and ranked 1 through 9.  Ranking was 

performed to reveal information as to the direction (landward vs. seaward) and magnitude 

(score) of changes.  Ranks were assigned as a model of each class’s position relative to the 

shoreline and the landward margin of shorezone (i.e., low ranks are closer to the shoreline 

while higher ranks are closer to the landward margin).  Cover types and their respective ranks 

are as follows: estuarine water (1), ponded water (2), non-vegetated surface (3), low brackish 

marsh (4), high brackish marsh (5), oligohaline marsh (6), oligohaline marsh/scrub-shrub (7), 

scrub-shrub (8), forest (9).  Two additional cover types, ditched brackish marsh and altered 

land, were not assigned ranks because they were related to anthropogenic disturbances.   

Transect locations recorded with a GPS in the field were uploaded to the GIS and 

used as training sites to verify interpretations of aerial photographs.  Community types were 

labeled according to their respective cover types and their boundaries were superimposed 

onto aerial photographs as they occurred along transects (Figures 3-2, 3-3, and 3-4).  Because 

the 1998 DOQQs were nearly a decade old at the time this study began, the 2006 DOQQs 

were implemented as a more current reference to aid with verifying interpretations.  Transect 

locations are reported in Table 2-1 and depicted in Figure 2-1 of Chapter 2.  Descriptions of 

cover types and how they were interpreted from the 1998 DOQQs (recorded in the color 

infrared spectrum) are described below. 

All area seaward of the shoreline was regarded as estuarine water and assigned the 

lowest rank (1).  Ponded water consisted of areas inundated by water but lacked significant 

vegetative cover.  Ponded water was typically surrounded by low brackish marsh and was 
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distinguishable from estuarine water by its interior position.  It was assigned the next rank (2) 

with the assumption that, if an area is unvegetated and inundated in a high salinity 

environment, it is unlikely to revegetate.  Unvegetated storm levees, mudflats, strand plains, 

and salt pannes were classified as non-vegetated.  These areas generally exhibited high 

reflectance and were relatively homogeneous.  They received a rank of 3 under the 

assumption that they were more suitable to support vegetation than areas classified as ponded 

water.   

Low brackish marsh (4) was identified by its heterogeneous mosaic of dark maroon 

and light blue patches (Figures 3-2, 3-3, and 3-4, 1998 DOQQs).  Juncus marsh is the major 

constituent of this cover type while S. alterniflora/Juncus marsh, S. alterniflora fringe, and 

mixed marsh levee were typically less prevalent along shorelines (see Chapter 2).  The darker 

hues of low brackish marsh may be attributed to inundation.  High brackish marsh (5) 

exhibits comparable colors and patterns to low brackish marsh; however, it was generally 

lighter in color (Figure 3-4, 1998 DOQQ).  Field observations suggest that these areas exhibit 

the mixed marsh interior community type.  High brackish marsh tends to occur landward of 

low brackish marsh.  Oligohaline marsh (6) was identified by a relatively consistent fine 

texture pattern of light pink to beige hues (Figure 3-2, 1998 DOQQ).  The Cladium marsh 

community type is the primary constituent of oligohaline marsh in the outer estuary.  

Oligohaline marsh/scrub-shrub (7) exhibited a matrix similar to Oligohaline marsh although 

it was mottled with patches of red, indicative of evergreen shrubs and/or trees (Figure 3-2, 

1998 DOQQ).  While the Cladium scrub community type was not observed in the outer 

estuary during sampling, it is believed representative of the Oligohaline marsh/scrub-shrub 

cover type.   Scrub-shrub (8) was identifiable by a fine textured red pattern mottled by 
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Figure 3-2.  Transect O-1 training site. Community types observed along the transect are 
labeled according to their respective cover type rank (see legend) superimposed above the 
2006 DOQQ.  1998 DOQQ base map from which the 1998 vegetation map was derived is 
provided for reference.  Disagreements between field observations and the map designation 
are identified on the 1998 vegetation map.  Those highlighted in red are attributed to error; 
those highlighted in orange are attributed to change.    
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Figure 3-3.  Transect O-2 training site. Community types observed along the transect are 
labeled according to their respective cover type rank (see legend) superimposed above the 
2006 DOQQ.  1998 DOQQ base map from which the 1998 vegetation map was derived is 
provided for reference.  Disagreements between field observations and the map designation 
are identified on the 1998 vegetation map.  Those highlighted in red are attributed to error; 
those highlighted in orange are attributed to change.  Note that the shoreline and adjacent 
communities have migrated landward since 1998. 
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Figure 3-4.  Transect O-3 training site.  Community types observed along the transect are 
labeled according to their respective cover type rank (see legend) superimposed above the 
2006 DOQQ.  1998 DOQQ base map from which the 1998 vegetation map was derived is 
provided for reference.  Disagreements between field observations and the map designation 
are identified on the 1998 vegetation map.  Those highlighted in red are attributed to error; 
those highlighted in orange are attributed to change.  
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shadows of shrubs.  Morella scrub margin and Morella scrub swamp are the two community 

types associated with the scrub-shrub cover type (Figures 3-2 and 3-3, 1998 DOQQs).  Forest 

cover (9) was distinguishable from scrub-shrub by a coarser textured pattern (red if 

evergreen, brown to blue-gray if deciduous) in addition to the longer shadows of tree trunks 

and canopy (Figures 3-2 and 3-4).  Mixed forest and P. serotina scrub are two community 

types observed in the field.  Forest cover received the highest rank (9) as it represents the 

terrestrial end member of the vegetation continuum across the shorezone (i.e., forest exhibit 

limited if any halophytic vegetation).  Altered land primarily reflects areas that had been 

cleared for agricultural, residential, or commercial purposes.  Ditching of low brackish 

marshes occurred sometime after 1958, purportedly for mosquito control.     

Cover types were delineated as vector-based polygon maps over the digital aerial 

photographs.  Delineation was performed heads-up (i.e., on screen) between 1:500 to 1:3000 

scales.  A minimum mapping unit of approximately 100 m2 was specified.  Interpretation of 

cover types from aerial photographs was performed manually.  Automated image 

classification methods were not possible because the two datasets were recorded using 

different spectra and exhibited markedly different reflectance among individual photographs 

(Jensen 2005).   

The DEM was used to estimate change in the position of the landward margin (i.e. the 

extent of sea level’s hydrologic influence) because it is not possible to detect this change 

through the interpretation of aerial photographs.  To accomplish this, the estimated rate of 

sea-level rise (3.8 ±0.6 mm/yr; Chapter 1) was multiplied by 40 years.  The result was an 

estimated rise of approximately 0.15 m between 1958 and 1998.  Using the DEM, the area of 

land situated between the 1 m contour and the 0.85 m contour was mapped and excluded 
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from the 1958 PSZ map.  This area was thereafter treated as the increase in PSZ as a result of 

sea-level rise. 

Accounting for and reducing error 

A variety of sources of error arise from using aerial photographs to map vegetation.  

These complications stem from georeferencing aerial photographs, delineating boundaries 

between communities, subjectivity of interpretation, erroneously labeled polygons, and 

overlapping polygons and gaps (Green and Hartley 2000).  In this study, multiple strategies 

were employed to minimize mapping error.  The first involved employing a retrospective 

approach in which present conditions are related to the past (Kaykho and Skanes 2006).  This 

was accomplished by duplicating the 1998 vegetation map, overlying it on the 1958 aerial 

photographs, and editing only areas that appeared to have changed.  Most importantly, this 

procedure minimized false changes related to the subjectivity of interpretation.  Secondly, it 

helped to minimized erroneous sliver polygons that result from digitizing identical vegetation 

boundaries (i.e., they have not changed) independently in both maps.  Sliver polygons 

ultimately reflect false change and can amount to significant error over large study areas such 

as here (Green and Hartley 2000).     

Error originating from multi-interpreter subjectivity was eliminated by using a single 

interpreter.  Day to day subjectivity was minimized through an iterative process of reviewing 

interpretations for consistency across the entire map at least three times.  Labeling errors 

were minimized by designing a map legend consisting of colors and patterns and visually 

inspecting each map for conflicts.  These inspections were performed heads-up between the 

same scales specified for digitization.  Following inspections, topologies were built to 

remove gaps and correct overlapping polygons. 
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Upon completion, the two maps were joined into a single file with the union 

geoprocessing tool.  This process combined cover type and rank from both dates into a single 

geodatabase feature class, and thus attribute table.  Attribute values from the 1958 rank 

column were then subtracted from 1998 rank column using the field calculator.  Outcomes 

produced both positive and negative scores that were used to identify both the direction and 

magnitude of any changes that had occurred.  Areas that did not change class received a 

score of zero.  Negative values reflected changes in a landward direction whereas positive 

values reflected change in a seaward direction.  For example, if an area was low brackish 

marsh (rank = 4) in 1958 and was replaced by estuarine water (rank = 1) in 1998, that 

polygon received a score of -3 (i.e., the area shifted three classes in a landward direction and 

is now inundated by estuarine water).  Conversely, if an area was scrub/shrub (rank = 8) in 

1958 and replaced by forest (rank = 9) in 1998, the polygon received a score of +1 (i.e., such 

an area may have suffered a disturbance prior to 1958 but has since regenerated, shifting only 

one class in a seaward direction). 

A standardized accuracy assessment to determine ground truth was not feasible as the 

1998 DOQQ’s were nearly 8 years old at the time mapping began.  Therefore, disagreements 

between map data and ground truthed field data were likely to reflect vegetation change, 

rather than error.  Nonetheless, once mapping was complete, the 1998 vegetation map was 

compared with the training sites.  Aerial photographs from 2006 helped to recognize whether 

disagreements were the result of error or vegetation change.  Cover type rank was also 

compared with the results of the DCA vegetation ordination of Chapter 2.   
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Results and Discussion 

Accuracy assessment 

Co-registration of 1958 aerial photographs to the 1998 DOQQs was highly accurate.  

Mean root mean square error (RMSE) of 26 georeferenced aerial photographs amounted to 

1.68 m; therefore, any particular point on a 1958 photograph can be expected to fall within 

1.68 ± 0.31 m of its respective position on the 1998 DOQQ base map (Table 3-1).   

 Ground truth for the 1998 map is estimated at 92 % accuracy (Table 3-2).  The 

majority of disagreement in classification was associated with high brackish marsh (rank = 

5).  This was to be expected as distinct boundaries between high brackish marsh and low 

brackish marsh were sometimes difficult to distinguish, particularly in the vicinity of transect 

O-1.  When in doubt, low brackish marsh was generally designated in lieu of high brackish 

marsh (Figure 3-2).  Other disagreements associated with high brackish marsh can be 

attributed to its occasionally narrow areal extent, particularly adjacent to shorelines atop 

storm levees (Figure 3-3).  Recent disturbances by fire and confusion between high brackish 

marsh (field) and oligohaline marsh/scrub-shrub (map) along transect O-3 (Figure 3-4) 

suggests change as opposed to misrepresentation.  Likewise, scrub-shrub and forest cover 

types toward the landward margin of transect O-1 have clearly diminished since 1998. 

Cover type rank exhibited a strong correlation with axis 1 of the detrended 

correspondence analysis performed in Chapter 2 (tau = 0.799), thus validating the use of rank 

as measure of a cover types adaptation to the influence of sea level (Figure 3-5).  Kendall’s 

Tau, a non-parametric correlation coefficient, is employed because rank not a continuous 

variable. 

 



Table 3-1.  List of georeferenced aerial photograph used to create 1958 vegetation map, the 
associated route mean square error (RMSE) and number of ground control points (GCPs) 
located for each photograph.  A statistical summary is located below.  

Frame RMSE GCPs

bus_1w_15 0.59 12
bus_1w_16 3.00 14
bus_1w_17 1.99 15
bus_1w_29 2.42 20
bus_1w_30 2.74 13
bus_1w_31 1.96 13
bus_1w_32 2.85 16
bus_1w_33 2.24 16
bus_1w_35 0.60 9
bus_1w_4 0.51 9
bus_1w_41 1.02 9
bus_1w_41 1.02 9
bus_1w_42 2.79 13
bus_1w_43 1.77 13
bus_1w_44 1.93 13
bus_1w_46 0.92 12
bus_1w_47 2.02 13
bus_1w_48 1.20 8
bus_1w_5 0.47 10
bus_1w_50 1.56 12
bus_2w_10 1.96 12
bus_2w_14 1.78 10
bus_2w_15 1.83 12
bus_2w_7 0.64 11
bus_2w_8 1.99 10
bus_2w_9 1.85 14

Summary statistics (n  = 26 aerial photographs)
Minimum 0.47 8
Mean 1.68 12
Maximum 3.00 20
Standard deveation 0.77 3
Standard error 0.31  
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Table 3-2. Estimated accuracy of 1998 vegetation map. Key to cover type rank as follows:  
4 – low brackish marsh, 5 – high brackish marsh, 6 – oligohaline marsh, 7 – oligohaline 
marsh/scrub-shrub, 8 – scrub-shrub, 9 – forest.  Disagreements between field data and the 
map may be errors or the result of vegetation change that has occurred since 1998.  “Not 
represented” identifies disagreements where a particular cover type was not represented 
because of the inherent difficulty of disinviting a boundary between it and other cover types.  
“Mislabeled” identifies areas that were labeled incorrectly on the map.   

Cover type rank Percent of transect
field map accurate error

Transect: O-1
4 4 0
4 4 29
5 4 not represented 15
6 8 change 25
8 9 change 9
8 8 14
9 9 8

Sub-total 85 15
Transect: O-2

4 3 mislabeled 1
5 3 mislabeled 2
4 4 87
5 4 not represented 6
8 8 4

Sub-total 91 9
Transect: O-3

5 5 5
4 4 72
5 5 11
5 7 change 9
9 9 4

Sub-total 100 0
Mean 92 8

Disagreement
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 Figure 3-5.  Correlation between cover type rank and axis scores of the detrended 
correspondence analysis performed in Chapter 2.  The strong correlation between rank and 
axis 1 (tau = -0.799) validates the assumed sequence of cover type positions relative to the 
shoreline and the landward margin of shorezone (plotted below ordination diagram).  In 
Chapter 2, axis 1 was determined to represent a salinity gradient between the shoreline to the 
landward margin of shorezone.  Correlation between axis 2 and rank is insignificant (plotted 
to the left of the ordination diagram).  Key to cover type rank is as follows: 4 – low brackish 
marsh, 5 – high brackish marsh, 6 – oligohaline marsh, 7 – oligohaline marsh/scrub-shrub,  
8 – scrub-shrub, 9 – forest.  
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Composition of potential shorezone 

 Cover types were delineated over 7,422 ha of PSZ that existed between both 1958 

and 1998.  The remaining area, non-shorezone, amounted to 3,942 ha of land situated above 

1 m elevation and was excluded from analysis with the exception of those areas replaced by 

estuarine water.  Low brackish marsh dominated PSZ in both years accounting for 69.0 % 

(4,986.5 ha) of its area on average, followed by forest at 12.7 % (919.1 ha), scrub-shrub at 

4.5% (325.5 ha), and altered land at 4.4 % (320.3 ha) (Tables 3-3a and 3-3b).  Vegetation 

maps of 1958 and 1998 are presented in Figure 3-6.  Differences in vegetation maps are 

subtle at this scale.  Therefore, Figure 3-7 was developed to illustrate where changes have 

occurred as well as the landward/seaward direction and magnitude of those changes.  Lastly, 

Figure 3-8 depicts changes at the shoreline (e.g., PSZ lost to estuarine water due to shoreline 

erosion) and the landward margin of PSZ (e.g., estimated increase in PSZ area due to sea 

level rise).  The cumulative loss of PSZ at the shoreline and gain at the landward margin 

translates to the net transgression of PSZ as a whole.   

Change in potential shorezone  

 In total, 80.3% (5,734.8 ha) of 1958 PSZ remained stable while 19.7% (1,410.9 ha) 

appeared to exhibit some form of change (Table 3-4).  Low brackish marsh appears to have 

been most stable over the study period losing only 0.2% (11.4 ha) of its area (Tables 3-3a and 

3-3b).  High brackish marsh, oligohaline marsh, and oligohaline marsh/scrub-shrub appear to 

have suffered the greatest losses, -17.1% (-51.1 ha), -67.7% (-260.1 ha), and -70.6% (-107.0 

ha) of their 1958 area, respectively.  Non-vegetated areas decreased by -49.3% (-23.5 ha); 

however, confusion of this cover type with high marsh in 1958 may be responsible for its 

large decrease (see Table 3-2).  Scrub-shrub and forest cover types appear to have expanded 
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Table 3-3a.  Percent of area, percent differences, and average percent of area of potential 
shorezone (PSZ). 

Percent of PSZ Gross increase/decrease Average
Cover type

1958 1998 percent of    
cover type

percent of    
1958 PSZ

percent of    
PSZ

Ponded water 0.2 0.2 17.2 0.0 0.2
Non-vegetated 0.7 0.3 -49.3 -0.3 0.5
Low brackish marsh* 69.8 68.2 -0.2 -0.1 69.0
High brackish marsh 4.2 3.4 -17.1 -0.7 3.8
Oligohaline marsh 5.4 1.7 -67.7 -3.6 3.5
Oligohaline marsh/scrub-shrub 2.1 0.6 -70.6 -1.5 1.4
Scrub/shrub 3.4 5.6 71.3 2.4 4.5
Forest 10.4 15.0 48.4 5.0 12.7
Altered Land 3.9 4.9 27.8 1.1 4.4
* Includes ditched low brackish marsh cover type  
 
Table 3-3b.  Area, difference, and average area of cover types of potential shorezone.  Units 
in hectares. 

Cover type Total cover 
1958

Total cover 
1998

Gross 
increase/  
decrease

Avg.        
area

Ponded water 11.4 13.3 2.0 12.4
Non-vegetated 47.6 24.1 -23.5 35.8
Low brackish marsh* 4,991.0 4,982.0 -8.9 4,986.5
High brackish marsh 298.4 247.3 -51.1 272.8
Oligohaline marsh 384.5 124.3 -260.1 254.4
Oligohaline marsh/scrub-shrub 151.7 44.7 -107.0 98.2
Scrub/shrub 240.0 411.1 171.1 325.5
Forest 740.1 1,098.0 358.0 919.1
Altered Land 281.2 359.4 78.2 320.3
Total potential shorezone 7,145.7 7,304.3 158.6 7,225.0
Estuarine water 17.4 118.2 100.8 N/A
Non-shorezone 4,201.5 3,942.2 -259.4 N/A
Total area of study 11,364.6 11,364.6 0.0 11,364.6
* Includes ditched low brackish marsh cover type  
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Table 3-4. Summary of potential shorezone (PSZ) change.  Percents based on area of 1958 
PSZ. 

 

Area of change

(ha) (%)
Seaward vegetation change 517.9 7.2
Landward vegetation change 234.8 3.3
PSZ loss to estuarine water 102.1 1.4
PSZ gain via overland migration* 249.7 3.5
Ditched low brackish marsh 123.7 1.7
Converted to altered land 119.0 1.7
Reverted to natural cover 63.6 0.9

1,410.9 19.7
5,734.8 80.3

9.7 --
e DEM.

Nature of change

Total area of change
No change

Non-shorezone to estuarine water
* Modeled as a factor of sea-level rise using th  
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the greatest with 71.3% (171.7 ha) and 48.4% (358.0 ha) increases to their original extents, 

respectively (Tables 3-3a and 3-3b).  While ponded water occupied less than half of a percent 

of PSZ, its increase of 17.2% (2.0 ha) may be an important finding.  Altered land increased 

by 27.8% (78.2 ha) of its original area. 

 Ninety three percent of all changes were replaced by cover types within 3 ranks of the 

original cover type (e.g., scores >-3 to <3), 75% within 2 ranks and 39% within 1 rank 

(Figure 3-7, lower right inset).  Landward changes appear near evenly distributed across 

scores -1 through -3.  Seaward changes appear concentrated between scores of +1 and +2 and 

gradually taper off toward higher scores.   

 PSZ appears to have transgressed over the study period by losing 1.4% (102.1 ha) at 

the shoreline and gaining an estimated 3.5% (249.7 ha) at the landward margin (Table 3-4).  

Figure 3-8 illustrates these changes.  However, despite transgression of PSZ itself, seaward 

migration of plant communities (7.2%, 517.9 ha) was twice that attributed to landward 

migration (3.3%, 234.8 ha) (Table 3-4).  From these data, it does not appear that PSZ 

vegetation change is aligned with relative sea-level rise, at least not at the short temporal 

scale of this study.  These data also suggest that scrub-shrub and forest in particular may be 

resisting environmental change through their resiliency to disturbances (sensu Brinson et al. 

1995).   

 Table 3-5 is a change matrix that illustrates how much of each cover type changed to 

any other particular cover type.  Nearly half of all changes attributed to landward migration 

(116.9 ha) are associated with changes to and from low brackish marsh (Table 3-6), which is 

not surprising given its dominance of PSZ.  Additionally, 75.5 ha of low brackish marsh were 

replaced by estuarine water, while 63.5 ha of oligohaline marsh and 31.9 ha of high brackish 
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Table 3-6.  Summary of landward changes associated with low brackish marsh. 

Score Cover type Hectares
Low brackish marsh replaced by:

-2 Ponded water 2.3
-1 Non-vegetated 5.1

Replaced by low brackish marsh:
-1 High brackish marsh 31.9
-2 Oligohaline marsh 63.5
-3 Oligohaline marsh/scrub-shrub 6.5
-4 Scrub/shrub 5.9
-5 Forest 1.7

Total landward change associated with low brackish marsh 116.9
117.9Total landward changes not associated with low brackish marsh
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marsh were replaced by low brackish marsh (Table 3-5).  Other notable landward changes 

included 11.5 ha of scrub-shrub replaced by high brackish marsh and 32.9 ha of oligohaline 

marsh/scrub-shrub replaced by oligohaline marsh.  

The majority of vegetation changes attributed to seaward migration were related to 

increases in scrub-shrub and forest cover types, 254.8 and 182.8 ha, respectively (i.e., 

excluding increases attributed to overland migration).   The greatest amount of change of any 

combination occurred as 131.9 ha of oligohaline marsh were replaced by scrub-shrub, 

followed by 103.8 ha of scrub-shrub replaced by forest and 67.5 ha of oligohaline marsh/ 

scrub-shrub replaced by scrub-shrub. 

The greatest individual changes occurred in the southwest corner of the study area 

(Figure 3-7).  Although this area was undeveloped in 1998, it is evident that an attempt to 

convert the area to agricultural use was made.  Though it appears that this attempt failed, 

considerable hydrologic alterations (e.g., ditching and diking) were made and possibly 

contributed to the high degree of dynamism there.  The majority of vegetation changes, 

regardless of direction, occurred closer to the landward margin than to the shoreline (Figure 

3-7).  This seemingly dynamic zone of change may draw attention to where the absolute 

landward margin of shorezone may be versus the potential landward margin that is depicted 

in the map.  For example, at the plant community scale (Chapter 2), the landward margin of 

shorezone appeared to occur at elevations between 0.4 and 0.5 m above the lowest elevations 

of marsh.  At transect O-2 in particular, the landward margin of shorezone (e.g., Mixed 

marsh / Morella scrub margin boundary) measured approximately 0.46 m NAVD88 (tied to 

benchmark CAR98).  This suggests that PSZ may be exaggerated by nearly 0.5 m in the 

vegetation map. Therefore, because the majority of change occurred near, but not at, the 
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landward margin of PSZ, the areas of greater dynamics may be a consequence of the 

interface between sea level and terrestrial hydrology considerably below 1 m elevation.    

 It is important to note that the changes described above and in Table 3-5 represent 

gross changes; that is, they are not reduced by the changes in the opposite direction between 

the same cover types.  Gross and net changes of individual cover type combinations may 

reflect within-combination dynamism.  Of the 79 change combinations that occurred, 29 of 

these combinations were unidirectional, while 50 combinations exhibited changes in both 

directions.  Table 3-7 illustrates the net area increase in any particular cover type while Table 

3-8 illustrates the percent net increase of any particular change combination (i.e., change in 

opposite direction not noted).  The percentages in Table 3-8 may be used as a scale to reflect 

the within-combination degree of dynamism (100 = unidirectional change, 0 = opposing 

gross changes cancel each other).  Thus, high values reflect less dynamism while lower 

values reflect greater dynamism.  For example, where 32.9 ha of oligohaline marsh/scrub-

shrub were replaced by oligohaline marsh in the landward direction (i.e., loss of evergreen 

woody vegetation), 26.6 ha of oligohaline marsh were replaced by oligohaline marsh/scrub-

shrub in a seaward direction (i.e., increased evergreen woody vegetation) (Table 3-5).  

Therefore oligohaline marsh experienced a net gain of only 6.3 ha from oligohaline 

marsh/scrub-shrub (Table 3-7), which accounts for only 11% of the total change between the 

two cover types (Table 3-8).  A simple conceptual diagram of this is presented in Figure 3-9. 

 Ponded water increased by 17% (2.6 ha) between 1958 and 1998.  The majority of 

that increase involved conversion from low brackish marsh and was concentrated in one 

particular area southeast of NC Highway 12 (Figure 3-10, also see Figure 3-7 map inset).  
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32.9 ha
26.6 ha

Oligohaline marsh

Oligohaline marsh/scrub‐shrub

seawardlandward

 
    Figure 3-9.  Conceptual diagram of opposing potential shorezone vegetation changes.      
    Gross landward change of (32.9 ha) is reduced by gross seaward changes (26.6 ha)  
    resulting in a within combination net landward gain of only 6.3 ha overall.  Not to scale. 
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This conversion produced 10 irregularly shaped ponds situated in an interior portion of 

marsh.  

Upon review of available remote sensing data prior to mapping, it became apparent 

that marshes southeast of NC Highway 12 were consistently darker than those west of the 

highway.  NC Highway 12, constructed sometime prior to 1958, created a ~1 m high berm 

through Cedar Island marsh with the potential of altering its hydrology.  The consistently 

darker reflectance of the eastern marsh may suggest lower density of plants (e.g., exposed 

sediment resulting from reduce vegetative cover) and/or greater inundation.  Using the DEM, 

mean elevations were calculated for 11 of the largest tracts of low brackish marsh (Figure 3-

10).  Results suggest that the two largest tracts east of NC Highway 12 exhibit the two lowest 

mean elevations (e.g., 0.18 and 0.27 m NAVD 88).  The size and density of ponds is also 

noticeably greater in these tracts than in others (Figure 3-7, inset).  These observations may 

suggest that marshes southeast of NC Highway 12 are not vertically accreting at a pace 

comparable to rising sea-level.   
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Conclusion 

 This study builds the case for the press and pulse dynamics model (Bender et al. 

1994).  Here, sea-level rise is acting as a press on the shorezone and its landward margin, 

resulting in a relatively slow and gradual increase in inundation with collateral effects due to 

salinity.  Storms, wild fires, clear cutting, or ditching cause abrupt biotic and abiotic changes, 

or pulses that drive rapid ecosystem change.  Without the sustained press of rising sea level 

over time, areas subject to pulse-like disturbances would return to previous environmental 

conditions, and thus ecological communities, repeatedly.  But because sea level is constantly 

rising, areas subject to these acute disturbances eventually reach a threshold at which point 

environmental conditions become so altered that the previous communities are lost or forced 

to migrate landward with shorezone being established at a new position (Poulter 2005). 

This research demonstrates that over the past 40 years, shorezone vegetation has not 

migrated landward in concert with the transgression of PSZ itself.  In fact, just the opposite 

appears to have occurred in the outer estuary.  Despite the press of rising sea level, plant 

communities have either been restored to those prior to disturbance or have remained 

relatively stable. Areas that exhibited seaward change were presumably disturbed prior to 

1958.  Therefore, those earlier disturbances did not result in permanent vegetation change.  In 

addition, seaward changes were primarily replaced by scrub-shrub and forest; both cover 

types are more closely associated with terrestrial conditions than the lower ranked cover 

types.  These changes may be exemplary of ecosystem resiliency or resistance to 

environmental change (Brinson et al. 1995).  However, they may also be exemplary of areas 

where environmental conditions were altered but returned to previous conditions, facilitating 

seaward migration and thus reestablishment of the original cover type.   Likewise, landward 



migration of cover types observed here may not be permanent, particularly those mapped as 

scrub-shrub or forest in 1958.  The plant communities present at that time may simply have 

been a consequence of short-term pulses in the preceding years or decades.  The most likely 

factors are salt stress from storm surge flooding or fires, both of which can reduce dominance 

of woody plants.  Future mapping of this study area is therefore required to capture changes 

that have occurred since 1998 and to form a stronger understanding of both the permanence 

and dynamism of shorezone vegetation change.   
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Synthesis 

 As sea level rises, the extent of shorezone is governed by the rate of migration at its 

landward margin, or leading edge, and the rate of erosion at its shoreline, or trailing edge, 

provided that the shorezone vertically accretes at a rate comparable to rising sea level.  From 

a whole-estuary perspective (i.e., a coarse scale analysis), shorezone wetland types 

systematically change according to their position along the estuarine gradient. Changes in 

landscape geomorphology and salinity are the basis for this pattern.  Therefore, shorezone 

extent and type can be organized into a space-for-time framework of four temporal stages, 

each representing a few thousand years of landward migration of shorezone caused by rising 

sea level.  

 At the shorezone scale (i.e., an intermediate scale analysis), cover types 

distinguishable in aerial photographs over decadal time scales were used to delineate 

vegetation patterns in an outer estuary shorezone.  Changes in cover types did not conform to 

an overall tendency for landward migration, but rather demonstrated a dynamism unrelated to 

rising sea level. 

 At the plant community scale of analysis (i.e., a fine scale), a hierarchical 

classification was constructed to encompass the two larger scales.  Field-collected data 

identified plant communities that make up the coarser cover/wetland types illustrating a 

pattern of zonation that exists between the shoreline and the landward margin as well as 

between the outer and inner portions of the estuary.  Plant community zonation can be 

explained principally by the salinity gradient, which itself is a component of the space-for-

time framework.   



 These observations were made for the Neuse River estuary, a microtidal region with a 

geomorphic axis that runs along the larger sea-land gradient.  It is not known whether this 

space-for-time framework is applicable to rising sea level and wetlands in other geomorphic 

settings. 
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Appendix A 
 

Transect Tables 
 

Tables include plant communities, their distance from the shoreline and their width as 
observed along transects (indicated across top of table) and a complete list of plant species 
observed (along left margin of table).  Species abundances are reported as percent cover of 
stratum below the community in which it was observed. Fire and wrack are indicated by 'p' 
for present.  Elevation, microtopography, soil texture, soil porewater salinity, soil bulk-
density, soil loss on ignition, and depth of peat are reported at the end of tables. Tables are 
arranged by transect, consisting of two pages each. 
 

Sequence of tables and page numbers
Transect I-1………………………………………………………………………………133 
Transect I-2………………………………………………………………………………135 
Transect I-3………………………………………………………………………………137 
Transect I-4………………………………………………………………………………139 
Transect I-5………………………………………………………………………………141 
Transect I-6………………………………………………………………………………143 
Transect M-1……………………………………………………………………………..145 
Transect M-2……………………………………………………………………………..147 
Transect M-3……………………………………………………………………………..149
Transect O-1……………………………………………………………………………...151 
Transect O-2……………………………………………………………………………...153
Transect O-3……………………………………………………………………………...155 

 



 

Transect: I-1 
Shorezone Communities

S. cyno. 
marsh

Morella   
scrub    

swamp

Morella   
scrub    

swamp
dist. from shoreline (m) 0 53 104
width (m) 53 51 221

Herbaceous Stratum
Spartina cynosuroides 81.7 0.4
Typha latifolia 2.9 0.8
Polygonum arifolium 0.8 0.4
Alternanthera philoxeroides 0.5 31.3
Sium suave 0.4 5.5
Hibiscus moscheutos 0.4 0.4
Ptilimnium capillaceum 0.3 0.2
Carex comosa 12.5
Osmunda regalis 8.8 25.4
Toxicodendron radicans 2.9
Polygonum spp. 2.5
Sagittaria latifolia 2.5
Packera glabella 0.4
Pontederia cordata 0.4
Rumex spp. 0.4
unidentified Poaceae spp. 0.1
Rubus spp. 12.5
Cicuta maculata 2.5
Lyonia lucida 2.5
Morella cerifera 0.5
Hydrocotyle spp. 0.4
Juniperus virginiana 0.4
Lonicera japonica 0.4
Persea palustris 0.4
unidentified forb 0.4

Shrub Stratum
Morella cerifera 38.6 69.2
Rosa palustris 3.8
Toxicodendron radicans 3.8
Acer rubrum 2.6 1.8
Berchemia scandens 1.3
Vitis spp. 1.8
Persea palustris 0.9  
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Transect: I-1 (concluded)
Shorezone Communities

S. cyno. 
marsh

Morella   
scrub    

swamp

Morella   
scrub    

swamp
dist. from shoreline (m) 0 53 104
width (m) 53 51 221

Tree Stratum
Juniperus virginiana 3.8
Acer rubrum 2.8
Fraxinus carolinana 1.9
Persea palustris 0.3

Strata Summary
herbaceous 87.0 69.5 45.5
shrub 50.0 73.8
tree 8.8

Evidence of disturbance
fire
wrack p
snags / ha 89 89
stumps / ha 44
large down wood / ha 89 221

Soil
relative surface elevation (cm) 9 5 --
height of hummocks (cm)
Description  0-30 cm fibric peat fibric peat sapric peat
  pore water salinity 1 1 0
  bulk density (g/cm3) 0.088 0.092 0.075
  % organics 55.0 80.2 88.6
Description  30-60 cm hemic peat hemic peat fibric peat

  bulk density (g/cm3) 0.094 0.094 0.098
  % organics 72.1 87.5 86.8
Depth to mineral soil (cm) 265 230 200  
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Transect: I-2
Shorezone Communities

Carex/ 
Baccharis/ 
Taxodium  

scrub

Morella 
scrub    

swamp

Mixed 
forest 

dist. from shoreline (m) 0 58 110
width (m) 58 52 45

Herbaceous Stratum
Carex comosa 81.7
Rubus spp. 2.9
Osmunda cinnamomea 0.8
Ipomoea sagittata 0.1
Alternanthera philoxeroides 53.0
Hydrocotyle spp. 1.1
Polygonum spp. 0.9
unidentified forb 0.8
Pontederia cordata 0.5
Hibiscus moscheutos 0.4
unidentified Caryophyllaceae spp. 0.1
Convolvulus spp. 0.1
Packera glabella 0.1
Ranunculus spp. 0.1
Rosa palustris 0.1
Rumex spp. 0.1
Sagittaria latifolia 0.1
Arundinaria gigantea 5.0
Toxicodendron radicans 1.3
Lonicera japonica 0.7
Morella cerifera 0.4
Nyssa biflora 0.1
Peltandra virginica 0.1
Smilax rotundifolia 0.1

Shrub Stratum
Morella cerifera 4.2 15.7 52.9
Toxicodendron radicans 1.5 12.3
Baccharis halimifolia 1.3 3.7
Acer rubrum 1.0 1.9 1.4
Ampelopsis arborea 0.8
Rosa palustris 2.2
Juniperus virginiana 1.7
Persea palustris 0.8 1.2
Ulmus americana 0.4
Smilax rotundifolia 3.5
Lonicera japonica 2.3
Nyssa biflora 1.4
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Transect: I-2 (concluded)
Shorezone Communities

Carex/ 
Baccharis/ 
Taxodium  

scrub

Morella 
scrub    

swamp

Mixed 
forest 

dist. from shoreline (m) 0 58 110
width (m) 58 52 45

Tree Stratum
Taxodium distichum 6.3
Acer rubrum 1.3 29.7
Salix spp. 1.3
Nyssa biflora 22.4
Persea palustris 4.4
Morella cerifera 3.0
Pinus taeda 3.0

Strata Summary
herbaceous 85.5 57.3 7.7
shrub 8.8 26.3 75.0
tree 7.5 1.3 62.5

Evidence of disturbance
fire
wrack
snags / ha 266 89 89
stumps / ha 44 44 89
large down wood / ha 133 44 575

Soil
relative surface elevation (cm) 8 3 --
height of hummocks (cm)
Description  0-30 cm sapric hemic black sand
  pore water salinity 2 1 0
  bulk density (g/cm3) 0.074 0.095 0.321
  % organics 58.9 69.5 44.8
Description  30-60 cm sapric hemic sapric

  bulk density (g/cm3) 0.121 0.114 0.276
  % organics 71.1 78.9 34.1
Depth to mineral soil (cm) 285 183 29
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Transect: I-3
Shorezone Communities

Cladium 
marsh

Juncus 
marsh

Cladium  
scrub

Morella 
scrub   

swamp

Mixed 
forest 

dist. from shoreline (m) 0 28 46 71 86
width (m) 28 18 25 15 8

Herbaceous Stratum 0 0
Cladium mariscus 99.2 66.7
Mikania scandens 1.3
Juncus roemerianus 84.2
Osmunda cinnamomea 0.4 0.8
Rosa palustris 0.8
Polygonum spp. 34.2
Hydrocotyle umbellata 2.2
Morella cerifera 0.8 0.6
Osmunda regalis 0.8
Ilex coriacea 2.5
Peltandra virginica 0.5
Juniperus virginiana 0.4
Pteridium aquilinum 0.1

Shrub Stratum
Baccharis halimifolia 15.0 5.4
Morella cerifera 26.8 67.0
Persea palustris 2.7 8.9
Juniperus virginiana 2.7
Smilax spp. 5.4
Ilex coriacea 2.9
Toxicodendron radicans 2.3
Acer rubrum 1.0

Tree Stratum
Nyssa biflora 51.5
Pinus taeda 15.2
Persea palustris 9.2
Acer rubrum 7.2
Liquidambar styraciflua 1.9

Strata Summary
herbaceous 100.4 84.6 67.5 38.8 4.1
shrub 15.0 37.5 87.5
tree 85.0
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Transect: I-3 (concluded)
Shorezone Communities

Cladium 
marsh

Juncus 
marsh

Cladium  
scrub

Morella 
scrub   

swamp

Mixed 
forest 

dist. from shoreline (m) 0 28 46 71 86
width (m) 28 18 25 15 8

Evidence of disturbance
fire
wrack
snags / ha 44
stumps / ha 44
large down wood / ha 44

Soil
relative surface elevation (cm) 21 22 30 36 47
height of hummocks (cm) 14 11 12 16 --
Description  0-30 cm fibric peat fibric peat fibric peat fibric peat silty muck
  pore water salinity 5 6 3 3 1
  bulk density (g/cm3) 0.102 0.093 0.076 0.060 0.068
  % organics 56.5 68.0 66.5 80.9 87.5
Description  30-60 cm fibric peat fibric peat fibric peat fibric peat silty muck

  bulk density (g/cm3) 0.184 0.156 0.106 0.090 0.068
  % organics 49.8 60.5 78.2 81.6 87.2
Depth to mineral soil (cm) 125 130 180 140 120
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Transect: I-4
Shorezone Communities
Taxodium/ 

Nyssa     
swamp   

(shoreline)

Taxodium/ 
Nyssa     
swamp     

(interior)
dist. from shoreline (m) 0 23
width (m) 23 --

Herbaceous Stratum
Polygonum arifolium 42.1 5.8
Pontederia cordata 21.7
Alternanthera philoxeroides 14.3
Polygonum spp. 11.0
Phlox spp. 6.3
Amaranthus cannabinus 0.4
Polygonum sagittatum 0.4
Osmunda regalis 17.1
Peltandra virginica 9.6
Saururus cernuus 9.2
Carex stricta 6.8
Cicuta maculata 2.9
Carex comosa 2.5
Itea virginica 2.5
Lobelia cardinalis 1.3
Boehmeria cylindrica 0.4
unidentified forb 0.4
Fraxinus carolinana 0.1
Mikania scandens 0.1

Shrub Stratum
Fraxinus carolinana 7.5 29.8
Ulmus americana 0.3
Morella cerifera 9.4
Itea virginica 5.6
Nyssa aquatica 4.3
Toxicodendron radicans 4.3
Ilex coriacea 4.0
Alnus spp. 1.3
Clethra alnifolia 1.3
Viburnum dentatum 1.3
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Transect: I-4 (concluded)
Shorezone Communities
Taxodium/ 

Nyssa     
swamp   

(shoreline)

Taxodium/ 
Nyssa     
swamp     

(interior)
dist. from shoreline (m) 0 23
width (m) 23 --

Tree Stratum
Nyssa aquatica 23.1 13.1
Taxodium distichum 22.9 7.8
Nyssa biflora 4.1 15.7
Morella cerifera 13.3
Acer rubrum 13.0
Fraxinus carolinana 10.8

Strata Summary
herbaceous 96.1 58.6
shrub 7.8 61.3
tree 50.0 73.8

Evidence of disturbance
fire
wrack
snags / ha 89
stumps / ha 89 44
large down wood / ha 89

Soil
relative surface elevation (cm) 4 14
height of hummocks (cm) 11
Description  0-30 cm fibric peat sapric
  pore water salinity 0 0
  bulk density (g/cm3) 0.269 0.151
  % organics 32.5 52.5
Description  30-60 cm fibric peat hemic

  bulk density (g/cm3) 0.141 0.126
  % organics 48.2 62.1
Depth to mineral soil (cm) 280 385
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Transect: I-5
Shorezone Communities

S. cyno./ 
Juncus 
marsh    
(levee)

S. cyno./ 
Juncus 
marsh

Juncus 
marsh

Morella 
scrub 

swamp

dist. from shoreline (m) 0 6 69 125
width (m) 6 63 62 --

Herbaceous Stratum
Juncus roemerianus 57.1 61.7 100.0 10.4
Spartina cynosuroides 49.6 67.5 14.2
Polygonum spp. 1.7
Iva frutescens 0.8
Mikania scandens 0.4
Erechtites hieracifolia 0.1
Kosteletzkya virginica 0.8 0.8
Ipomoea sagittata 0.2
Typha angustifolia 7.1
Eleocharis spp. 2.5
Morella cerifera 0.8
Hydrocotyle spp. 0.4
Juncus coriaceus 0.4
Juniperus virginiana 0.4
Smilax rotundifolia 0.4
unidentified Poaceae spp. 0.4

Shrub Stratum
Iva frutescens 15.0
Morella cerifera 27.2
Persea palustris 6.6
Baccharis halimifolia 3.8

Tree Stratum
Acer rubrum 14.1
Persea palustris 4.7
Juniperus virginiana 1.3

Strata Summary
herbaceous 109.7 130.2 100.8 37.1
shrub 15.0 37.5
tree 20.0
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Transect: I-5 (concluded)
Shorezone Communities

S. cyno./ 
Juncus 
marsh    
(levee)

S. cyno./ 
Juncus 
marsh

Juncus 
marsh

Morella 
scrub 

swamp

dist. from shoreline (m) 0 6 69 125
width (m) 6 63 62 --

Evidence of disturbance
fire
wrack
snags / ha
stumps / ha 44
large down wood / ha 266

Soil
relative surface elevation (cm) 12 4 1 9
height of hummocks (cm)
Description  0-30 cm black sand fibric peat fibric peatpric black sand
  pore water salinity 9 7 10 6
  bulk density (g/cm3) 0.868 0.054 0.119 0.309
  % organics 3.5 66.7 56.6 20.9
Description  30-60 cm hemic fibric peat fibric peat refusal

  bulk density (g/cm3) 0.231 0.203 0.278 --
  % organics 21.7 22.5 25.1 --
Depth to mineral soil (cm) 160 110 80 25
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Transect: I-6
Shorezone Communities

S.cyno./ 
Juncus 
marsh    
(levee)

S.cyno./ 
Juncus 
marsh

Cladium 
scrub 

Mixed 
forest 

dist. from shoreline (m) 0 9 107 132
width (m) 9 98 25 --

Herbaceous Stratum
Cladium mariscus 49.2 55.0
Juncus roemerianus 31.3 50.0
Spartina cynosuroides 17.1 56.3 10.4
Panicum virgatum 0.4
Polygonum spp. 14.6
Smilax spp. 0.4
Solidago sempervirens 0.4
Morella cerifera 0.1 2.9
Persea palustris 1.3
Acer rubrum 0.2
unidentified Poaceae spp. 0.1

Shrub Stratum
Iva frutescens 7.5
Morella cerifera 53.6 5.4
Baccharis halimifolia 4.5
Rosa palustris 4.5
Ilex opaca 8.0
Persea palustris 3.1
Juniperus virginiana 2.7
Liquidambar styraciflua 0.4
Pinus taeda 0.4

Tree Stratum
Liquidambar styraciflua 0.6 35.6
Pinus taeda 0.6 31.3
Acer rubrum 5.6
Persea palustris 1.3

Strata Summary
herbaceous 97.9 106.3 80.9 4.4
shrub 7.5 62.5 20.0
tree 1.3 73.8  
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Transect: I-6 (concluded)
Shorezone Communities

S.cyno./ 
Juncus 
marsh    
(levee)

S.cyno./ 
Juncus 
marsh

Cladium 
scrub 

Mixed 
forest 

dist. from shoreline (m) 0 9 107 132
width (m) 9 98 25 --

Evidence of disturbance
fire
wrack
snags / ha
stumps / ha
large down wood / ha

Soil
relative surface elevation (cm) 23 6 9 28
height of hummocks (cm)
Description  0-30 cm black sand hemic fibric peat black sand
  pore water salinity 8 13 10 9
  bulk density (g/cm3) 1.008 0.070 0.426 0.928
  % organics 1.7 67.6 41.1 5.5
Description  30-60 cm fibric peat fibric peat black sand refusal

  bulk density (g/cm3) 0.249 0.119 0.976 --
  % organics 29.5 68.3 6.2 --
Depth to mineral soil (cm) 85 85 38 10  
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Transect: M-1
Shorezone Communities

S. cyno./ 
Juncus 
marsh

Morella 
scrub 

margin

P. taeda 
forest

dist. from shoreline (m) 0 7 9
width (m) 7 2 --

Herbaceous Stratum
Spartina cynosuroides 40.0
Juncus roemerianus 16.7
Iva frutescens 10.8
Ruppia maritima 10.4
Panicum virgatum 6.7 5.3 0.1
Cladium mariscus 5.0
Lythrum lineare 2.5
Juncus coriaceus 6.3
Chasmanthium laxum 3.5 0.5
Solidago sempervirens 0.4
Eupatorium serotinum 0.2 0.8
Smilax bona-nox 0.2 0.1
Nyssa biflora 0.2
unidentified forb 0.1 2.5
Bignonia capreolata 0.1 0.1
Ilex opaca 6.3
Gaylussacia spp. 5.0
Cyrilla racemiflora 3.1
Carya tomentosa 2.5
Quercus alba 2.5
Smilax rotundifolia 0.5
unidentified Poaceae spp. 0.5
Hamamelis virginiana 0.4
Yucca filamentosa 0.4
Liquidambar styraciflua 0.1
Smilax laurifolia 0.1

Shrub Stratum
Iva frutescens 8.8
Morella cerifera 74.0 12.0
Nyssa biflora 9.9 7.0
Cyrilla racemiflora 1.1 11.7
Acer rubrum 7.2
Liquidambar styraciflua 7.2
Alnus spp. 2.4
Carya tomentosa 2.4
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Transect: M-1 (concluded)
Shorezone Communities

S. cyno./ 
Juncus 
marsh

Morella 
scrub 

margin

P. taeda 
forest

dist. from shoreline (m) 0 7 9
width (m) 7 2 --

Tree Stratum
Liquidambar styraciflua 1.3
Pinus taeda 33.9
Nyssa biflora 8.7
Liriodendron tulipifera 7.4

Strata Summary
herbaceous 92.1 16.1 25.4
shrub 8.8 85.0 50.0
tree 1.3 50.0

Evidence of disturbance
fire
wrack
snags / ha
stumps / ha 44 44
large down wood / ha 133

Soil
relative surface elevation (cm) 34 91 184
height of hummocks (cm)
Description  0-30 cm sandy  peat cay sand sand loam
  pore water salinity 11 0 0
  bulk density (g/cm3) 0.178 1.180 1.046
  % organics 25.4 1.9 2.8
Description  30-60 cm sand refusal refusal

  bulk density (g/cm3) 0.678 -- --
  % organics 6.1 -- --
Depth to mineral soil (cm) 30 0 0
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Transect: M-2
Shorezone Communities

S. cyno./ 
Juncus 
marsh

Cladium 
marsh

Persea 
forest

dist. from shoreline (m) 0 11 47
width (m) 11 25 47

Herbaceous Stratum
Juncus roemerianus 61.7
Samolus valerandi 15.0 2.5
Spartina cynosuroides 14.2
unidentified forb 5.3
Hibiscus moscheutos 5.0 17.5
Cladium mariscus 89.2
Osmunda regalis 0.8 6.3
Saururus cernuus 6.3
Ptilimnium capillaceum 2.5
Hydrocotyle umbellata 0.5
Baccharis halimifolia 0.4
Cicuta maculata 0.4
Hydrocotyle spp. 0.4
Juniperus virginiana 0.4
Mikania scandens 0.4
Morella cerifera 0.4
Woodwardia virginica 0.4
Berchemia scandens 0.1
Polygonum spp. 0.1
Toxicodendron radicans 0.1

Shrub Stratum
Morella cerifera 34.2
Berchemia scandens 11.6
Juniperus virginiana 9.7
Persea palustris 5.8

Tree Stratum
Persea palustris 40.3
Acer rubrum 9.7
Juniperus virginiana 8.9
Morella cerifera 2.3

Strata Summary
herbaceous 101.2 110.0 18.7
shrub 61.3
tree 61.3
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Transect: M-2 (concluded)
Shorezone Communities

S. cyno./ 
Juncus 
marsh

Cladium 
marsh

Persea 
forest

dist. from shoreline (m) 0 11 47
width (m) 11 25 47

Evidence of disturbance
fire
wrack
snags / ha 44
stumps / ha 44
large down wood / ha 398

Soil
relative surface elevation (cm) 5 4 26
height of hummocks (cm)
Description  0-30 cm fibric peat fibric peat fibric peat
  pore water salinity 6 2 2
  bulk density (g/cm3) 0.108 0.077 0.100
  % organics 61.1 52.2 84.5
Description  30-60 cm fibric peat fibric peat fibric peat

  bulk density (g/cm3) 0.111 0.109 0.127
  % organics 69.7 78.6 83.9
Depth to mineral soil (cm) 430 390 300
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Transect: M-3
Shorezone Communities

Juncus 
marsh

Cladium/ 
Taxodium 

marsh

Taxodium/ 
Nyssa     
swamp

dist. from shoreline (m) 0 22 29
width (m) 22 7 107

Herbaceous Stratum
Juncus roemerianus 79.2 0.5
Amaranthus cannabinus 6.3
Hibiscus moscheutos 5.0 6.3
Solidago sempervirens 0.1 2.5
Cladium mariscus 61.3
Ipomoea sagittata 27.1
Panicum virgatum 6.3
Osmunda regalis 7.9
Juncus coriaceus 6.3
unidentified forb 2.5
Morella cerifera 0.9
Juniperus virginiana 0.4
Persea palustris 0.1
Polygonum spp. 0.1
Smilax laurifolia 0.1
Smilax rotundifolia 0.1

Shrub Stratum
Toxicodendron radicans 1.3 2.1
Taxodium distichum 0.4
Morella cerifera 31.9
Juniperus virginiana 24.8
Persea palustris 14.2
Acer rubrum 7.1
Bignonia capreolata 3.5
Pinus taeda 3.5

Tree Stratum
Taxodium distichum 1.3 34.4 39.6
Juniperus virginiana 3.1
Pinus taeda 12.2
Ulmus americana 6.2
Nyssa biflora 6.0
Persea palustris 5.3
Acer rubrum 4.4
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Transect: M-3 (concluded)
Shorezone Communities

Juncus 
marsh

Cladium/ 
Taxodium 

marsh

Taxodium/ 
Nyssa     
swamp

dist. from shoreline (m) 0 22 29
width (m) 22 7 107

Strata Summary
herbaceous 90.5 101.3 20.8
shrub 1.3 2.5 85.0
tree 1.3 37.5 73.8

Evidence of disturbance
fire
wrack p
snags / ha 133 44 89
stumps / ha 44 177
large down wood / ha 44 89 133

Soil
relative surface elevation (cm) 19 18 25
height of hummocks (cm) 21
Description  0-30 cm fibric peat fibric peat k brown(dark)
  pore water salinity 12 10 8
  bulk density (g/cm3) 0.200 0.139 0.080
  % organics 39.9 60.4 61.9
Description  30-60 cm hemic brown fibric peat k brown(dark)

  bulk density (g/cm3) 0.235 0.183 0.144
  % organics 19.1 45.1 56.8
Depth to mineral soil (cm) 140 200 130
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Transect: O-1
Shorezone Communities

S.  alt. 
fringe

Juncus 
marsh

Interior    
mixed   
marsh

Cladium 
marsh

Morella 
scrub/ 
Ghost 
forest 

Morella 
scrub  

swamp

Mixed 
forest 

dist. from shoreline (m) 0 1 381 578 906 1024 1214
width (m) 1 380 197 328 118 190 --

Herbaceous Stratum
Spartina alterniflora 81.7
Juncus roemerianus 93.3 7.9
Spartina patens 2.9 64.2
Borrichia frutescens 0.4
Kosteletzkya virginica 0.2
Distichlis spicata 22.9
Iva frutescens 2.9
Fimbristylis castanea 0.4
Cladium mariscus 100.0 2.5 2.5
Rubus spp. 0.2 20.0 0.1
Apios americana 0.2
Boehmeria cylindrica 0.1
Ipomoea sagittata 0.1
Osmunda cinnamomea 20.4 5.4
Osmunda regalis 3.4 0.4
Toxicodendron radicans 3.0 0.1
Morella cerifera 2.9 0.4 2.6
Erechtites hieracifolia 2.5
Mikania scandens 0.5 0.1
Ilex vomitoria 0.4
Acer rubrum 0.1 0.3
Lemna minor 10.8
Typha latifolia 9.2
Lyonia lucida 6.3 0.4
Hydrocotyle umbellata 0.5
Polygonum spp. 0.5
Bacopa monnieri 0.1
Rosa palustris 0.1
Salix spp. 0.1
Solidago sempervirens 0.1
Carex spp. 10.4
Leucothoe axillaris 6.3
Persea palustris 2.9
Gelsemium sempervirens 0.8
Eupatorium serotinum 0.4
Smilax laurifolia 0.4
Pinus taeda 0.3
Fraxinus spp. 0.1
Smilax bona-nox 0.1
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Transect: O-1 (concluded)
Shorezone Communities

S.  alt. 
fringe

Juncus 
marsh

Interior    
mixed   
marsh

Cladium 
marsh

Morella 
scrub/ 
Ghost 
forest 

Morella 
scrub  

swamp

Mixed 
forest 

dist. from shoreline (m) 0 1 381 578 906 1024 1214
width (m) 1 380 197 328 118 190 --

Shrub Stratum
Baccharis halimifolia 0.2
Acer rubrum 0.2 4.8 2.7
Morella cerifera 0.1 17.5 36.1 9.2
Toxicodendron radicans 0.1
Pinus taeda 16.5 22.2
Persea palustris 7.7 1.3
Lyonia lucida 5.1 0.5
Juniperus virginiana 2.6
Gaylussacia spp. 0.8
Fraxinus carolinana 0.5

Tree Stratum
Pinus taeda 5.5 4.5 14.5
Morella cerifera 4.5 2.8
Nyssa biflora 3.4 10.6
Nyssa aquatica 2.7
Persea palustris 2.0 1.5 2.1
Acer rubrum 1.9 21.7
Liquidambar styraciflua 24.7
Quercus nigra 6.7
Liriodendron tulipifera 4.7

Strata Summary
herbaceous 81.7 96.8 98.3 100.5 55.8 30.8 30.8
shrub 0.5 38.8 73.8 15.0
tree 20.0 8.8 85.0

Evidence of disturbance
fire p
wrack p p
snags / ha 133 221 44
stumps / ha 89 89 44
large down wood / ha 310 44 177

Soil
relative surface elevation (cm) -- -- -- -- -- -- --
height of hummocks (cm) 18 23
Description  0-30 cm silty muck fibric peat fibric peat fibric peat fibric peat fibric peat black sand
  pore water salinity 24 22 16 4 0 3 1
  bulk density (g/cm3) 0.435 0.140 0.125 0.085 0.050 0.140 0.760
  % organics 16.5 43.1 66.3 86.3 81.5 50.7 6.5
Description  30-60 cm silty muck hemic hemic fibric peat fibric peat sapric muck refusal

  bulk density (g/cm3) 0.385 0.170 0.115 0.120 0.110 0.240 --
  % organics 18.8 32.9 54.3 69.9 64.5 20.0 --
Depth to mineral soil (cm) 160 115 80 92 79 58 0  
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Transect: O-2
Shorezone Communities

S. alt.  
fringe

Levee   
mixed 
marsh

S. alt./ 
Juncus 
marsh

Interior    
mixed   
marsh

Morella 
scrub 

margin
dist. from shoreline (m) 0 2 7 206 219
width (m) 2 5 199 13 9

Herbaceous Stratum
Spartina alterniflora 62.5 32.8
Spartina patens 31.9 1.7 23.3
Borrichia frutescens 5.6
Iva frutescens 4.4 3.3
Solidago sempervirens 1.3 0.4
Juncus roemerianus 13.1 0.4
Salicornia depressa 2.0
Distichlis spicata 0.6 6.3
Fimbristylis castanea 29.2
Eleocharis spp. 17.5 10.4
Ipomoea sagittata 14.2 8.8
Kosteletzkya virginica 0.5
Parthenocissus quinquefolia 9.3
Mikania scandens 6.3
Rubus spp. 5.4
Smilax bona-nox 3.0
Juncus coriaceus 2.5
unidentified Poaceae spp. 2.5
Toxicodendron radicans 0.5
Eupatorium serotinum 0.4
Ampelopsis arborea 0.1
Rumex spp. 0.1

Shrub Stratum
Morella cerifera 73.5
Pinus serotina 9.2
Smilax bona-nox 1.1
Smilax rotundifolia 1.1

Tree Stratum
Salix spp. 5.6
Ulmus americana 1.9
Pinus serotina 1.3

Strata Summary
herbaceous 62.5 43.2 50.1 95.1 49.3
shrub 85.0
tree 8.8
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Transect: O-2 (concluded)
Shorezone Communities

S. alt.  
fringe

Levee   
mixed 
marsh

S. alt./ 
Juncus 
marsh

Interior    
mixed   
marsh

Morella 
scrub 

margin
dist. from shoreline (m) 0 2 7 206 219
width (m) 2 5 199 13 9

Evidence of disturbance
fire Area disturbed by fire four months prior
wrack
snags / ha 44
stumps / ha
large down wood / ha 575

Soil
relative surface elevation (cm) 11 41 13 30 78
height of hummocks (cm)
Description  0-30 cm fibric peat sand fibric peat black sand refusal
  pore water salinity 33 7 30 10 1
  bulk density (g/cm3) 0.415 0.415 0.274 0.594 --
  % organics 18.8 18.8 27.7 10.5 --
Description  30-60 cm silty muck silty muck fibric peat gray sand refusal

  bulk density (g/cm3) 0.337 0.337 0.586 1.287 --
  % organics 29.6 29.6 19.8 1.3 --
Depth to mineral soil (cm) 200 230 113 21 0
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Transect: O-3
Shorezone Communities

Levee  
mixed 
marsh

Juncus 
marsh

Interior  
mixed   
marsh   
(herb)

Interior  
mixed   
marsh   
(shrub)

P. serotina 
scrub 

dist. from shoreline (m) 0 29 472 538 592
width (m) 29 443 66 54 --

Herbaceous Stratum
Spartina patens 41.7 37.5 10.8
Iva frutescens 22.1
Fimbristylis castanea 18.8 10.8 0.8
Distichlis spicata 12.5 0.1 45.8
Solidago sempervirens 0.4 6.7
unidentified liana 0.4
Juncus roemerianus 37.5 18.3
Panicum virgatum 17.5
Morella cerifera 5.0 6.3
Pluchea odorata 5.0
Ipomoea sagittata 1.7
Rubus spp. 0.8 10.4
Baccharis halimifolia 0.8
Setaria parviflora 0.8
Osmunda regalis 34.6
Carex spp. 12.5
Carex glaucescens 6.7
Eupatorium serotinum 5.4
Chasmanthium laxum 0.4
Pinus serotina 0.4
unidentified forb 0.4

Shrub Stratum
Iva frutescens 38.8
Morella cerifera 1.9
Baccharis halimifolia 0.6
Persea palustris 16.5
Pinus serotina 13.8
Liquidambar styraciflua 13.4
Acer rubrum 3.1
Ilex vomitoria 3.1
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Transect: O-3 (concluded)
Shorezone Communities

Levee  
mixed 
marsh

Juncus 
marsh

Interior  
mixed   
marsh   
(herb)

Interior  
mixed   
marsh   
(shrub)

P. serotina 
scrub 

dist. from shoreline (m) 0 29 472 538 592
width (m) 29 443 66 54 --

Strata Summary
herbaceous 95.8 37.6 75.0 76.7 87.9
shrub 38.8 2.5 50.0
tree 26.3

Evidence of disturbance
fire Area disturbed by fire six months prior
wrack
snags / ha 89 44
stumps / ha 443 133
large down wood / ha 266 133

Soil
relative surface elevation (cm) 21 3 19 32 61
height of hummocks (cm)
Description  0-30 cm brown sand fibric peatbric black sandbric black sand black sand
  pore water salinity 5 22 27 9 3
  bulk density (g/cm3) 1.200 0.093 0.409 0.601 0.760
  % organics 0.9 57.1 17.4 17.5 10.9
Description  30-60 cm refusal hemic black sand refusal refusal

  bulk density (g/cm3) -- 0.319 0.901 -- --
  % organics -- 38.2 -- -- --
Depth to mineral soil (cm) 170 80 25 10 8  
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Appendix B 
 

Additional ordination results 

 



 

Table B-1. DCA ordination data summary and “after-the-fact” test. 
 
Total variance ("inertia") in the species data:   8.3095 
 
Eigenvalues 
Axis 1: 0.945 
Axis 2: 0.601 
Axis 3: 0.486 
 
 
“After-the-fact” test 
PC-ORD 5.10 
1/26/2009, 5:54 PM 
 
Coefficients of determination for the correlations between 
ordination 
distances and distances in the original n-dimensional space: 
 
            R Squared 
Axis   Increment   Cumulative 
 1       .147        .147 
 2      -.014        .132 
 3      -.005        .127 
 
Increment and cumulative R-squared were adjusted for any lack 
of orthogonality of axes. 
 
Axis pair     r     Orthogonality,% = 100(1-r^2) 
  1 vs 2     0.480     77.0 
  1 vs 3    -0.040     99.8 
  2 vs 3    -0.101     99.0 
 
Number of entities = 47 
Number of entity pairs used in correlation = 1081 
Distance measure for ORIGINAL distance: Euclidean 
(Pythagorean) 
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Figure B-1. DCA ordination labeled according to community type.  Numbers correspond to 
the community types described below. 
 
   Key 

1 - Spartina alterniflora fringe 
2 - Spartina alterniflora/Juncus marsh 
3 - Juncus marsh 
4 - Spartina cynosuroides/Juncus marsh 
5 - Mixed marsh (levee/interior) 
6 - Spartina cynosuroides marsh 
7 - Cladium marsh 
8 - Cladium scrub 
9 - Cladium/Taxodium scrub 

10 - Morella scrub (swamp/ghost forest/margin) 
11 - Persea forest 
12 - Mixed forest  
13 - Carex/Baccharis/Taxodium scrub 
14 - Taxodium/Nyssa swamp 
15 - Pinus serotina scrub 
16 - Pinus taeda forest 
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Figure B-2.  DCA ordination species plot.  Species are labeled according to the first two 
letters of the genus and species names.  See key to codes below. 

 
Key

ACRU Acer rubrum NYAQ Nyssa aquatica
ALPH Alternanthera philoxeroides NYBI Nyssa biflora
BAHA Baccharis halimifolia OSCI Osmunda cinnamome
CACO Carex comosa OSRE Osmunda regalis
CIRA Cicuta maculata PAVI Panicum virgatum
CLJA Clethra alnifolia PEPA Persea palustris
DISP Distichlis spicata PEVI Peltandra virginica
FICA Eupatorium serotinum PISE Pinus serotina
FRCA Fraxinus carolinana PITA Pinus taeda
HIMO Hibiscus moscheutos POAR Polygonum arifolium
IPSA Ipomoea sagittata POCO Pontederia cordata
IVFR Iva frutescens RUBUS Rosa palustris
JURO Juncus roemerianus SPAL Spartina alterniflora
JUVI Juniperus virginiana SPCY Spartina cynosuroide
LIST Liquidambar styraciflua SPPA Spartina patens
LYLU Lyonia lucida TADI Taxodium distichum
MISC Mikania scandens TORA Toxicodendron radica
MOCE Morella cerifera
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Figure B-3.  Correlations of ordination axis scores with soil porewater salinity (pws) 
measurements.  The strong positive correlation (r = 0.728) between soil pore water salinity 
and axis 1 scores likely explain zonation of shorezone vegetation.   
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Figure B-4.  Species richness correlation with axis 1. Correlations of ordination axis scores 
with species richness of samples, a passive variable.  The strong negative correlation  
(r =-0.813) between species richness and axis 1 scores is likely a result of soil porewater 
salinity. 
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Figure B-5.  Correlations of ordination axis scores with normalized distance from shoreline 
(dist-n).  The negative correlation (r =-0.708) between distance from shoreline and axis 2 
scores is consistent with the findings of Chapter 1 in that flat wetlands, toward the bottom of 
axis 2, were not present at the shoreline.  
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Photo of David surveying a Morella  scrub community along transect O-1 in November of 2006.  Photo 
by M. Brinson. 
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