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 Pulmonary alveolar proteinosis (PAP) is a lung disease characterized by 

surfactant accumulation in the alveolar spaces and alveolar macrophages.  

Although PAP is rare, surfactant abnormalities occur in many lung diseases 

including acute respiratory distress syndrome, sarcoidosis, and asthma.  Studies 

have shown that surfactant accumulation in PAP patients results from insufficient 

catabolism by alveolar macrophages.  Research in PAP patients and 

granulocyte-macrophage colony-stimulating factor knockout (GM-CSF KO) mice 

revealed deficiencies in the transcription factor peroxisome proliferator-activated 



receptor-gamma (PPARγ) and downstream cholesterol transporter ATP-binding 

cassette G1 (ABCG1).  PPARγ regulates lipid metabolism in macrophages and is 

a prominent target of research in the fields of atherosclerosis and diabetes.   

 This study tested the hypothesis that PPARγ promotes catabolism of 

surfactant in alveolar macrophages through the transcriptional regulation of 

ABCG1.  Alveolar macrophages from macrophage-specific PPARγ knockout 

(PPARγ KO) mice accumulate surfactant and exhibit reduced expression of 

ABCG1 and reduced ABCG1-mediated cholesterol efflux.  These results directly 

link PPARγ-deficiency to surfactant accumulation and demonstrate that PPARγ 

regulates cholesterol efflux in alveolar macrophages.  We next investigated the 

expression of genes involved in the uptake and biosynthesis of cholesterol in 

PPARγ KO alveolar macrophages.  Expression of key cholesterol biosynthesis 

genes was suppressed, and cholesterol influx genes (scavenger receptors) were 

up-regulated.  These results suggested PPARγ regulates cholesterol metabolism 

in alveolar macrophages.  

 We next investigated the up-regulation of PPARγ in the GM-CSF KO 

alveolar macrophages by instilling mice with a Lentivirus vector containing 

PPARγ (Lenti-PPARγ).  Reconstitution of PPARγ promoted ABCG1 expression 

and ABCG1-mediated cholesterol efflux in the alveolar macrophages of GM-CSF 

KO instilled with Lenti-PPARγ.   



 Taken together, these observations support the hypothesis that PPARγ-

mediated transcriptional regulation of ABCG1 is critical to cholesterol metabolism 

and the maintenance of surfactant homeostasis overall.  Understanding the role 

of PPARγ in normal surfactant homeostasis provides insight into the 

pathophysiology of PAP and identifies a potential therapeutic target.  
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CHAPTER 1 

 

INTRODUCTION 

 

Pulmonary alveolar proteinosis (PAP) is an autoimmune lung disease 

caused by neutralizing auto-antibodies to granulocyte-macrophage colony 

stimulating factor (GM-CSF) (1).  The functional loss of GM-CSF manifests 

disease only in the lung, resulting in the filling of the respiratory tract of PAP 

patients with the lipoproteinaceous material called surfactant (2).  Inhibition of 

GM-CSF signaling impairs catabolism of surfactant in alveolar macrophages (3).  

Although PAP is a rare lung disorder, surfactant abnormalities are problematic in 

many inflammatory lung diseases, including acute respiratory distress syndrome, 

sarcoidosis, and asthma (4). 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-

activated nuclear transcription factor and a key regulator of lipid metabolism 

[reviewed by Tontonoz and Spiegelman (5)].  PPARγ is up-regulated by GM-CSF 

(6,7) and constitutively expressed in the alveolar macrophages of healthy 

individuals (6).  Neutralization of GM-CSF by auto-GM-CSF antibodies results in 

significantly reduced levels of PPARγ in the alveolar macrophages of PAP 

patients (6).  Alveolar macrophages of PAP patients have decreased expression 

of the lipid transporter ATP-binding cassette G1 (ABCG1).  Although the role of 

PPARγ in maintaining surfactant homeostasis is unknown, this data suggest that 
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PPARγ controls surfactant catabolism in alveolar macrophages via regulation of 

ABCG1.   

The work presented in this dissertation addresses the role of PPARγ in 

surfactant catabolism in alveolar macrophages.  We hypothesized that (1) PPARγ 

promotes surfactant catabolism by the regulation of the lipid transporter ABCG1; 

and (2) up-regulation of PPARγ will increase surfactant catabolism in PPARγ-

deficient alveolar macrophages and reduce the presence of lipid-engorged 

alveolar macrophages in the lung.  The following sections in this chapter will 

review the current literature on surfactant metabolism, alveolar macrophages, 

and the regulatory functions of PPARγ with a specific emphasis on lipid 

metabolism. 
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Lung Health and Immunity 

 

Air drawn into the human body travels through the nose and mouth, 

trachea, bronchi, and bronchioles terminating in the alveoli where exchange of 

oxygen and carbon dioxide occurs.  Alveoli require a lipid-rich material called 

surfactant to reduce surface tension and to stay open.  Type I epithelial cells 

occupy 90% of the alveolar surface area and are the primary site of gas 

exchange (8).  Type II epithelial cells are nearly equal in number to type I cells 

and are responsible for surfactant production.  Alveolar macrophages are also 

located in the alveolar space and regulate inflammation and the catabolism of 

surfactant.   

 The lungs contain many layers of defense including the mucociliary 

clearance system, innate immune system, and adaptive immune system to 

control inflammation and infection from continuous exposure to foreign debris, 

pathogens, and bacteria from the environment.  The mucociliary clearance 

system cleans the lining of the lung by the movement of the cilia in the 

respiratory epithelium pushing debris towards the pharynx and into the digestive 

system.  If a particular antigen or particle is not cleared by the mucociliary system 

and reaches the epithelial surface of the lung, the innate immune system 

responds through the activation of epithelial cells, neutrophils, dendritic cells, and 

monocytes and macrophages (9).  The adaptive immune system in the lung is 

complex and depends greatly on the targeted pathogen.  Three major players are 
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generally involved: dendritic cells, T cells, and B cells (10).  The adaptive 

immune system promotes clonal expansion of antigen-specific effector cells in 

response to a challenge. 

The term “macrophage” refers to cells differentiated from monocyte 

precursors arising from hematopoietic stems cells in the bone marrow.  

Macrophages are located throughout the body and are distributed in most 

tissues.  Alveolar macrophages are terminally differentiated macrophages 

located in the alveolar space and are continually replaced by circulating 

monocytes.  Because of their location, alveolar macrophages are among the first 

responders for foreign debris and pathogens.  Alveolar macrophages play a 

major role in the health and immunity of the lung classically through the 

clearance of debris and initiation of inflammatory cascades.  However, the 

emerging role of alveolar macrophages in the maintenance of lipid homeostasis 

in the lung through the clearance of surfactant is the focus of this investigation.   
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Function, Composition, and Metabolism of Surfactant 

 

Surfactant is a lipoproteinacious material found at the air-fluid interface in 

the alveoli that serves to reduce pulmonary surface tension to increase the 

efficiency of breathing.  It is a mixture of 80% phospholipid, up to 10% neutral 

lipid (predominantly cholesterol), 10% protein, and less than 1% carbohydrate 

(11). Phosphatidylcholine makes up the majority of the phospholipids in 

surfactant of which nearly half is dipalmitoylphosphatidylcholine (DPPC), the 

main surface-active lipid in surfactant.  Phosphatidylcholine is associated with 

four surfactant apoproteins.  Surfactant-associated proteins B (SP-B) and C (SP-

C) are small, extremely hydrophobic proteins that contribute to the surface 

tension-lowering properties of surfactant (12).  Surfactant-associated proteins A 

(SP-A) and D (SP-D) are involved in the innate immunity of the lung (13).  They 

are members of the collectin family and contain carbohydrate recognition 

domains that bind oligosaccharides on the surface of microorganisms (14). 

While the complex organization and structure of surfactant remains 

unclear, the use of genetically modified mice has greatly advanced our 

understanding of the roles of surfactant-associated proteins.  SP-A and SP-D 

deficient mice exhibit increased susceptibility to infections (15-17).  SP-B 

knockout mice develop lethal respiratory distress (18).  Additionally, these mice 

exhibit deficient mature forms of SP-C, confirming the importance of SP-B in 

surfactant (18,19).    
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Surfactant is continuously produced and degraded in healthy lungs 

through a highly regulated system.  Surfactant pool size is regulated by the net 

synthesis, uptake, recycling, and catabolism of surfactant.  Alveolar type II 

epithelial cells (pneumocytes) produce, partially assemble, and secrete 

surfactant [reviewed by Serrano and Pérez-Gil (20)].  Upon secretion, lipid and 

protein transfer to the interfacial surfactant film in response to surface tension.  

Components are also assembled into tubular myelin and large and small 

aggregates in the alveolar space.  Surfactant synthesis is better defined than the 

clearance of surfactant for which two pathways have been described [reviewed 

by Hawgood and Poulain (21)].  Type II cells endocytose surfactant lipids and 

complexes and recycle them into new surfactant.  Alveolar macrophages 

phagocytose and degrade surfactant and are therefore identified as the primary 

site of surfactant catabolism.   
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Surfactant Abnormalities in Human Disease 

 

Although it is known that type II cells produce surfactant and alveolar 

macrophages catabolize surfactant, the complexities of surfactant metabolism 

and its role in human disease are not fully understood.  Surfactant abnormalities 

are problematic in many inflammatory lung diseases, including PAP, acute 

respiratory distress syndrome, sarcoidosis, and asthma (4).  Excesses or 

shortages in pulmonary surfactant disrupt normal lung function.  Conversely, the 

surfactant pool size and composition are affected by disease states (22-24).   

Infant respiratory distress syndrome (RDS) is a common example that 

emphasizes the importance of the surface tension-reducing properties of 

surfactant.  RDS occurs in premature infants whom have not yet produced 

surfactant.  Intra-alveolar surface tension is too great without surfactant and the 

alveolar airspace collapses.   

At the other end of the spectrum, patients with the lung disease PAP have 

a build-up of surfactant in the alveolar spaces and alveolar macrophages.  Given 

that PAP patients produce normal levels of surfactant and no type II cell 

abnormalities have been observed, the accumulation of surfactant has been 

linked to reduced surfactant clearance by the alveolar macrophages (25-28).  

Investigation of the GM-CSF knockout (GM-CSF KO) mouse, which provided the 

initial evidence for GM-CSF involvement in surfactant homeostasis, has greatly 

contributed to the understanding of PAP pathogenesis (29,30).  Although PAP is 
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a rare lung disease, it provides a unique opportunity to investigate the regulation 

of surfactant with regard specifically to surfactant catabolism.   
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Overview of PAP 

 

PAP is a lung disease characterized by the pathogenic accumulation of 

surfactant in the lungs.  There are three forms of PAP: congenital, secondary, 

and idiopathic.  Congenital PAP is a genetic disorder resulting from defects in 

either the SP-B or GM-CSF receptors (31,32).  Secondary PAP is typically a 

result of inflammatory systemic diseases or hematological cancers and is 

generally resolved upon treatment of the primary disease (33-35).  Idiopathic 

(acquired) PAP, the focus of this thesis, is the most common form of PAP, 

accounting for 90% of the documented cases (36-39).  It is an autoimmune 

disease in which the patients produce neutralizing auto-antibodies to GM-CSF 

(1) with an estimated prevalence of 3.7 cases per million (40).  Interruption of 

GM-CSF signaling results in insufficient surfactant catabolism characterized by 

the accumulation of surfactant aggregates, the formation of foamy alveolar 

macrophages, and ultimately diminished air space within the alveoli (3).  The loss 

of biologically active GM-CSF manifests disease only in the lung, as GM-CSF is 

required for terminal differentiation of alveolar macrophages but not other tissue 

macrophages (41).  The resulting accumulation of surfactant in the lungs is 

consistent with a direct role of GM-CSF in surfactant catabolism (26).   
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Pathophysiology of PAP 

 

Many reports following the initial description of the lungs of PAP patients 

(2) have detailed the biochemical composition of the material accumulating in the 

alveoli (27,42).  All authors reported increased levels of phospholipids and 

protein.  The SP-A to phospholipid ratio is significantly increased in the sera and 

bronchoalveolar lavage (BAL) fluid from patients (43,44).  SP-D is also found at 

elevated levels in sera and BAL fluid of patients and represents a possible 

biomarker for disease severity in PAP (45).  Total amounts of SP-B and SP-C are 

found at increased levels in the lungs of patients with PAP (46).  However, the 

gene expression of all four proteins is unchanged supporting an impairment in 

turnover and clearance in pathogenesis (29).  Cholesterol is a major lipid 

component in surfactant and has been found at significantly elevated levels in the 

lungs of PAP patients (47-49).   

Since the accumulation of surfactant in PAP patients and GM-CSF KO mice 

has been linked to reduced surfactant catabolism (25-28), the emphasis of 

research has been on the alveolar macrophage.  Alveolar macrophages from 

PAP patients and GM-CSF KO mice have an activated phenotype resembling 

foam cells and are engorged with neutral lipid (50,51).  Microarray studies, 

confirmed by real time RT-PCR and immunocytochemistry, from our laboratory 

revealed that the nuclear transcription factor PPARγ was highly expressed in the 

alveolar macrophages of healthy individuals but deficient in PAP patients (6).  
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The role of PPARγ in regulating inflammation and lipid metabolism combined with 

the fact that PPARγ is up-regulated by GM-CSF makes it a prime target in the 

investigation of disease pathogenesis in PAP (6,7).  
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Diagnosis and Treatment of PAP 

 

Excess surfactant in the lungs of PAP patients causes shortness of breath, 

fatigue, and overall reduced pulmonary fitness.  Diagnosis of PAP is commonly 

confirmed by open lung biopsy.  A growing number of non-invasive alternatives 

have emerged, notably a serum anti-GM-CSF titer (52).  Over 70% of PAP 

patient mortality is due to respiratory failure (37).  

Standard therapy for PAP patients is a bilateral whole-lung lavage which 

removes excess surfactant but it does not to treat the underlying cause of 

pathogenesis and involves the risk of general anesthesia.  Treatment with 

exogenous GM-CSF targets the cause of the PAP and is currently in clinical 

trials.  The results of GM-CSF therapy are varied with resolution of disease in 

approximately 50% of the patients (53).  Non-responding patients have very high 

titers of neutralizing auto-antibodies to GM-CSF—perhaps too high for the 

exogenous GM-CSF treatments to overcome (54).  Depletion of B cells using 

monoclonal antibodies is being explored as a treatment for PAP.  Understanding 

the mechanisms involved in surfactant metabolism may lead to improved therapy 

for PAP and many other pulmonary diseases.  
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Overview of PPARγγγγ    

 

The PPARs are a family of lipid-binding nuclear transcription factors that 

regulate inflammation, adipocyte differentiation, and glucose and lipid 

metabolism. Three isotypes of PPAR (alpha, delta/beta, and gamma) vary in 

tissue distribution and ligand affinity.  PPARγ is constitutively expressed at high 

levels in activated macrophages, adipose tissue, and the intestines [reviewed by 

Tontonoz and Spiegelman (5)].  The remaining discussion will be focused on the 

expression of PPARγ specifically in macrophages.   

Three isoforms of PPARγ (γ1, γ2, and γ3) are produced by alternative 

splicing events, PPARγ2 differing in length by an additional 30 amino acids at the 

5’ end. While PPARγ2 is less abundant overall than PPARγ1 (55), it is found at 

higher levels in macrophages and foam cells (56).  

Prostaglandin 15-d-PGJ2 and fatty acids are the major natural ligands for 

PPARγ (57,58).  Rosiglitazone, a thiazolidinedione, is a synthetic PPARγ agonist.  

Upon ligand binding, PPARγ heterodimerizes with retinoid X receptor (RXR) in 

the nucleus, forming a complex with co-activators which then bind to PPAR 

response elements (PPRE) in the DNA to promote transcription of downstream 

genes involved in lipid metabolism.   

PPARγ has also been shown to negatively regulate inflammation.  

Although the mechanisms are not fully understood, PPARγ exerts anti-
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inflammatory responses by antagonizing pro-inflammatory factors such as NF-κB 

and activator protein-1 (AP-1) [reviewed by Ricote and Glass (59)].  PPARγ 

reduces the DNA binding of NF-κB through three major mechanisms of 

transrepression including competitive binding of NF-κB co-activator complexes, 

direct binding of the p65 subunit of NF-κB, and promotion of Inhibitor of κBα 

(IκBα) (Figure 1.1).  PPARγ also transrepresses the pro-inflammatory actions of 

AP-1 by inhibiting mitogen-activated protein kinase (MAPK) activity.  Several 

models have suggested that the transrepression by PPARγ is gene and cell type-

specific.  More studies are needed to fully clarify the mechanisms of PPARγ 

transrepression. 

PPARγ is expressed in a variety of macrophages, such as thioglycollate-

elicited peritoneal macrophages, foam cells in atherosclerotic lesions, and 

alveolar macrophages from healthy individuals (6,60,61).  The data available on 

PPARγ is primarily focused on lipid and glucose metabolism and the promotion of 

foam cell formation in atherosclerotic lesions (7,62).  PPARγ is considered a 

potential therapeutic target for both diabetes and atherosclerosis due to its role in 

regulating lipid influx and efflux in macrophages (63).   
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Figure 1.1  Mechanisms of PPARγγγγ-mediated transrepression of NF-κκκκB.  
PPARγ antagonizes NF-κB transcriptional activity by (A) competitively binding 
NF-κB co-activator complexes, (B) direct binding of the p65 subunit of NF-κB, 
and (C) promotion of IκBα.  Image was adapted from Ricote and Glass (59). 
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Cholesterol Biosynthesis, Uptake, and Efflux in Macrophages 

 

 Cholesterol is essential for membrane structure and organization, lipid 

rafts and cell-signaling, and endocytosis [reviewed by Maxfield and Tabas (64)].  

Excess cholesterol, on the other hand, can disrupt cell-signaling, cause 

membrane rigidity, and stimulate pro-apoptotic cascades.  Cells maintain 

cholesterol levels through the uptake of cholesterol from circulation and 

biosynthesis of cholesterol de novo (Figure 1.2).  The intracellular level of 

cholesterol is a critical part of the regulation of these processes [reviewed by 

Brown and Goldstein (65)].   

 Cholesterol is synthesized in the cell from acetyl-CoenzymeA through the 

mevalonate pathway.  In response to limited cholesterol, the nuclear transcription 

factor sterol response element-binding protein 2 (SREBP2) undergoes proteolytic 

cleavage, enters the nucleus, and promotes the transcription of all the cholesterol 

biosynthesis pathway enzymes including the rate-limiting enzyme 3-hydroxy-3-

methylglutaryl-coenzyme A reductase (HMGCR) (66,67).  HMGCR is the first 

committed step in the biosynthesis of cholesterol and a major site of feedback 

regulation (68,69).   

 Cholesterol obtained from the diet is carried in circulation by the low-

density lipoprotein (LDL).  In addition to cholesterol biosynthesis enzymes, in 

response to low sterol levels SREBP2 also promotes transcription of the LDL   

receptor (LDL-R) (70,71).  As cell cholesterol levels increase, LDL-R expression  
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Figure 1.2 Cholesterol biosynthesis, uptake, and efflux in macrophages. In 
response to limited cholesterol, SREBP2 promotes the transcription of important 
cholesterol biosynthesis enzyme HMGCR and cholesterol receptor LDL-R.  Free 
cholesterol is actively transported from macrophages by ABCA1 and ABCG1 to 
acceptor molecules Apo-AI and HDL, respectively.  CE, cholesteryl ester; FC, 
free cholesterol; SRE, sterol response element.  
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is reduced (72).  Further, LDL-derived cholesterol negatively regulates 

transcription of LDL-R and HMGCR through the SREBP2 pathway (71).  HMGCR 

is also subject to degradation in the presence of sterols through a sterol-sensing 

domain (73).   

 In addition to LDL-R, macrophages express several scavenger receptors 

that bind and internalize excess cholesterol in tissues.  Contrasting with the LDL-

R, scavenger receptor A-I (SRA-I) and CD36 are not inhibited by high 

intracellular cholesterol levels but rather are up-regulated in the presence of 

extracellular cholesterol bound to modified-LDL particles (74).  SRA-I and CD36 

are expressed on extrahepatic macrophages, such as those found in the 

vascular tissue.  The removal of cholesterol from macrophages is mediated by 

lipid transporters ABCG1 and ABCA1 which transfer cholesterol to the acceptor 

molecules high-density lipoprotein (HDL) and apolipoprotein A-I (Apo A-I), 

respectively.  Cholesterol is then recycled to the liver to make bile through a 

process called reverse cholesterol transport.  The accumulation of cholesterol in 

macrophages promotes foam cell formation and pro-inflammatory responses 

(75).  In fact, it has been demonstrated in models of atherosclerosis that 

“unrestricted” uptake of cholesterol by the scavenger receptors (due to high 

substrate levels) in cholesterol-rich tissues can result in intracellular cholesterol 

overload and foam cell formation when the efflux of cholesterol is insufficient or 

dysregulated (75).   
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 Cholesterol is primarily delivered to the lungs by lipoproteins (76).  

Although cholesterol is a relatively minor component, pulmonary surfactant is a 

major pool of cholesterol in the body.  Cholesterol is a functionally diverse lipid 

capable of influencing cell structure and signaling.   

 It has been shown that cholesterol levels are increased in the lungs of 

PAP patients while no difference was measured in the sera (47).  Cholesterol 

metabolites 3ß-hydroxy-5-cholestenoic acid (cholestenoic acid) and 27-

hydroxycholesterol (27-OH), however, were significantly elevated in the lungs 

and sera of PAP patients (47).  It was suggested that the increases were likely 

due to increased substrate supply rather than altered hepatic metabolism.  These 

results indicated that cholesterol metabolites could be a biomarker of pulmonary 

cholesterol homeostasis.  Combined with the presence of foam cells in the lungs 

of patients, these results also provided evidence that homeostasis of cholesterol 

catabolism may be disrupted in PAP.  Interestingly, the contribution of impaired 

cholesterol catabolism to the overall disruption of surfactant catabolism in the 

pathogenesis of PAP has not been specifically addressed.   

 While little is known of regulatory role of PPARγ in the lipid metabolism of 

alveolar macrophages specifically, data from other tissue macrophages have 

shown that macrophages are critical in maintaining the balance of cholesterol in 

circulation and in many tissues.  Cholesterol metabolism in turn is 

transcriptionally regulated by PPARγ through the expression of lipid transporters 

and scavenger receptors, described in the next section.   
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Regulation of Lipid Receptors, Lipid Transporters, and Transcription 

Factors in Macrophages by PPARγγγγ    

 

 Little is known of the regulatory role of PPARγ in the lipid metabolism of 

alveolar macrophages. Most of the research regarding PPARγ and lipid 

metabolism in macrophages has been done on other tissue macrophages such 

as peritoneal macrophages.  This work has shown that PPARγ transcriptionally 

promotes the efflux of cholesterol via transactivation of sterol-sensing 

transcription factor liver X receptor-alpha (LXRα) and lipid transporters ABCG1 

and ABCA1 (Figure 1.3) (77-79).  In a macrophage, cholesterol is metabolized 

into PPARγ ligands (oxidized fatty acids) (58) and LXR ligands (oxysterols) (80-

82) which transcriptionally activate both transcription factors and in turn, drives 

the removal of lipids from the macrophage via ABCG1 and ABCA1.  As 

described in the previous section, free cholesterol is transported by ABCG1 and 

ABCA1 to acceptor molecules HDL and ApoA-I and then on to the liver via 

reverse cholesterol transport (83,84).  The PPARγ-LXR-ABC cascade is critical to 

maintaining cholesterol efflux (85) as it is regarded as the rate-limiting step in 

reverse cholesterol transport.   

 Studies from knockout models have shown that the ABC transporters work 

synergistically and appear to have compensatory mechanisms.  When one ABC 

transporter is deficient, PPARγ and LXR ligands accumulate and induce 

expression of the other transporter (86,87).  ABCA1 deficient macrophages 
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Figure 1.3 PPARγγγγ and LXR regulate cholesterol efflux.  Upon ligand binding, 
PPARγ and LXRα/β heterodimerizes with RXR and promotes the transcription of 
downstream genes ABCG1, ABCA1, ApoE, and CYP27A1.  The PPARγ-LXR 
cascade is critical to the maintenance of cholesterol efflux in macrophages.  This 
image was adapted from Argmann, et al. (88). 
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 exhibit increased ABCG1-mediated cholesterol efflux and ABCG1 deficient 

macrophages have increased ABCA1-mediated cholesterol efflux (86).  These 

studies also demonstrated that ABCA1 is less able to compensate for loss of 

ABCG1 as ABCG1-deficient mice develop more severe lipid accumulation in the 

lung (86,89,90). 

 Although scavenger receptor-mediated uptake of modified-LDL particles is 

complex and is not fully understood, it is known to be regulated in part by PPARγ: 

CD36 is directly up-regulated by PPARγ (61) while SRA-I is negatively regulated 

by PPARγ (60).  Cholesterol influx and efflux contribute to the overall cholesterol 

level in macrophages which in turn regulates the biosynthesis of cholesterol.  As 

PPARγ directly regulates cholesterol influx (via scavenger receptors) and efflux 

(via ABC transporters), it indirectly affects the biosynthesis of cholesterol in 

macrophages (Figure 1.4).   

Although PPARγ has been implicated as a critical mediator in cholesterol 

metabolism in various tissue macrophages, PPARγ may hold particular 

importance in cholesterol catabolism in alveolar macrophages given the amount 

of cholesterol in the lung.   
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Figure 1.4 PPARγγγγ regulates cholesterol influx, efflux, and biosynthesis.  
PPARγ directly promotes transcription of genes involved in the movement of 
cholesterol in and out of the cell, including scavenger receptor CD36 and genes 
involved in cholesterol efflux LXRα, ABCG1, and CYP27A1, which influence the 
intracellular cholesterol level.  In turn, cholesterol levels regulate the biosynthesis 
of cholesterol through the expression of transcription factor SREBP2 and 
downstream targets HMGCR and LDL-R.  Therefore, PPARγ directly and 
indirectly regulates the influx, efflux, and biosynthesis of cholesterol in 
macrophages. 
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Statement of the Problem 

 

The expression of PPARγ is deficient in the alveolar macrophages of PAP 

patients and GM-CSF KO mice, which exhibit PAP-like pulmonary pathology and 

accumulate pulmonary cholesterol (6). However, the accumulation of surfactant 

has not been directly linked to the deficiency of PPARγ.  Further work in the 

laboratory on the alveolar macrophages of PAP patients and GM-CSF KO mice 

revealed that the expression of the lipid transporter ABCG1 was also deficient 

(51).  We therefore hypothesized that PPARγ promotes surfactant catabolism 

through regulation of ABCG1.  To address the hypothesis, we utilized a 

macrophage-specific PPARγ knockout (PPARγ KO) mouse model.   

  Chapter 2 addresses the hypothesis by utilizing PPARγ KO mice.  The 

specific objectives of Chapter 2 were to: (1) analyze the lipids accumulating in 

the alveolar spaces and alveolar macrophages of PPARγ KO mice, and (2) 

evaluate the expression of downstream PPARγ genes, including ABCG1, which 

may be involved in the catabolism of surfactant.   

Chapter 3 describes the generation of a Lentivirus vector containing the 

PPARγ sequence (Lenti-PPARγ).  We utilized Lenti-PPARγ to up-regulate PPARγ 

in primary murine and human alveolar macrophages in vitro.  Methods detailed in 

this chapter were critical to the in vivo experiments in Chapters 4 and 5.   

Chapter 4 discusses experiments that evaluate the effects of replacing 

PPARγ in vivo using Lenti-PPARγ on the regulation of cholesterol metabolism 
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genes.  The specific objectives of Chapter 4 were to: (1) up-regulate deficient 

expression of LXRα and ABCG1, and (2) investigate the expression of genes 

involved in cholesterol influx and synthesis in the alveolar macrophages of 

PPARγ KO mice. 

Chapter 5 investigates the reconstitution of PPARγ in PPARγ-deficient 

alveolar macrophages of GM-CSF KO mice. The specific purpose of Chapter 5 

was to investigate PPARγ-mediated changes on cholesterol efflux gene 

expression and clearance of surfactant in GM-CSF KO.  We hypothesized that 

surfactant catabolism is regulated by a PPARγ-ABCG1 pathway and that up-

regulation of PPARγ will increase surfactant catabolism and reduce the presence 

of lipid-engorged alveolar macrophages in the lung.   
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Abstract 

 

Surfactant accumulates in the alveolar macrophages of granulocyte-macrophage 

colony-stimulating factor knockout (GM-CSF KO) mice and pulmonary alveolar 

proteinosis (PAP) patients with a functional loss of GM-CSF resulting from 

neutralizing anti-GM-CSF antibody.  Alveolar macrophages from PAP patients 

and GM-CSF KO mice are deficient in peroxisome proliferator-activated receptor-

gamma (PPARγ) and ATP-binding cassette (ABC) lipid transporter ABCG1.  

Previous studies have demonstrated that GM-CSF induces PPARγ.  We 

therefore hypothesized that PPARγ promotes surfactant catabolism through 

regulation of ABCG1.  To address this hypothesis macrophage-specific PPARγ 

knockout (PPARγ KO) mice were utilized.  PPARγ KO mice develop foamy, lipid-

engorged Oil Red O positive alveolar macrophages.  Lipid analyses revealed 

significant increases in the cholesterol and phospholipid contents of PPARγ KO 

alveolar macrophages and extracellular bronchoalveolar lavage (BAL)–derived 

fluids.  Increased surfactant proteins A and D were detected in BAL fluid.  PPARγ 

KO alveolar macrophages showed decreased expression of ABCG1 and a 

deficiency in ABCG1-mediated cholesterol efflux to HDL.  Lipid metabolism may 

also be regulated by liver X receptor (LXR)—ABCA1 pathways.  Interestingly, 

ABCA1 and LXRβ expression were elevated indicating that this pathway is not 

sufficient to prevent surfactant accumulation in alveolar macrophages.  These 
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results suggest that PPARγ mediates a critical role in surfactant homeostasis 

through the regulation of ABCG1. 
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Introduction 

 

Pulmonary alveolar proteinosis (PAP) is a rare autoimmune lung disease 

characterized by neutralizing auto-antibodies to granulocyte-macrophage colony-

stimulating factor (GM-CSF) (1,91).  This loss of functional GM-CSF results in a 

filling of the alveolar spaces of the lungs with the lipoproteinaceous material 

called surfactant.  While PAP is a rare lung disorder, surfactant abnormalities are 

problematic in many lung diseases, including acute respiratory distress syndrome 

(ARDS), sarcoidosis, and asthma [reviewed by Sorensen (4)].  

Pulmonary surfactant is comprised of 90% lipid, 10% protein, and less 

than 1% carbohydrate. Phospholipids are the major lipid in surfactant and are 

associated with four surfactant-associated proteins (SP-A, -B, -C, and –D). SP-B 

and SP-C contribute to the surface tension lowering properties of surfactant and 

SP-A and SP-D are actively involved in the innate immunity of the lung [reviewed 

by Trapnell and Whitsett (92)].  Other lipids associated with surfactant include 

cholesterol, triglycerides, and free fatty acids.  Cholesterol is the major neutral 

lipid (up to 90%) in pulmonary surfactant (93).  Surfactant is produced by type II 

pneumocytes and two pathways have been described in the clearance of 

surfactant [reviewed by Hawgood and Poulain (21)].  Type II cells endocytose 

surfactant lipids and complexes and recycle them into new surfactant.  Alveolar 

macrophages phagocytose and degrade surfactant and are considered to be the 

primary cell involved in the clearance and catabolism of surfactant (3).  
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PAP patients produce normal levels of surfactant (25).  The accumulation 

of surfactant in the lungs of PAP patients is due to insufficient surfactant 

catabolism by alveolar macrophages (25,26,28).  Alveolar macrophages from 

PAP patients have an activated phenotype resembling foam cells and are 

engorged with neutral lipid, as evidenced by positive Oil Red O staining (50).  

The nuclear transcription factor peroxisome proliferator-activated receptor-

gamma (PPARγ) is constitutively expressed in the alveolar macrophages of 

healthy controls and is up-regulated by GM-CSF (6,7).  Our previous studies 

have shown that the alveolar macrophages of PAP patients and the GM-CSF 

knockout (GM-CSF KO) mouse model of PAP are deficient in PPARγ (6,51).   

While the role of PPARγ in surfactant catabolism in the lung remains 

unclear, PPARγ is known to directly and indirectly regulate many genes involved 

in cholesterol metabolism and transport including the nuclear transcription factor 

liver X receptor alpha (LXRα) and ATP-binding cassette (ABC) lipid transporters, 

ABCG1 and ABCA1 (51,77,78,94).  Studies have suggested that PPARγ 

deficiencies result in decreased expression of ABCG1 (51,77).  The deletion of 

ABCG1 in mice (ABCG1 KO) results in severe pulmonary lipidosis (89). 

Cholesterol and phospholipid accumulate and foam cell formation occurs in the 

macrophages of ABCG1 KO (84,86,89). Moreover, ABCG1 KO macrophages 

display reduced capacities to efflux cholesterol and phospholipid (83-85,95).  We 

therefore hypothesized that PPARγ may promote surfactant catabolism through 

regulation of the lipid transporter ABCG1.  To test this hypothesis, we 
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investigated the alveolar macrophages from macrophage-specific PPARγ 

knockout (PPARγ KO) mice. 
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Materials and Methods 

 

Mice. Animal studies were conducted in conformity with Public Health Service 

policy on the humane care and use of laboratory animals and were approved by 

the Institutional Animal Care Committee.  C57Bl/6 wild type (WT) mice were 

obtained from Jackson Laboratory (Bar Harbor, ME).  Macrophage-specific 

PPARγ KO mice have been previously described (96).  Bronchoalveolar lavage 

(BAL) cells were obtained as described earlier from 8–12 week old PPARγ KO 

mice and age- and gender-matched wild type C57Bl/6 controls (96). Briefly, the 

thoracic cavity was opened and the lungs were exposed. After cannulating the 

trachea, a tube was inserted and BAL was carried out with warmed (37°C) PBS 

in 1 mL aliquots x 5.  Except where indicated, sample number (n) refers sets of 

BAL cells pooled from 3-5 mice while BAL fluid was analyzed from individual 

mice.  Following previously established guidelines for analysis of acellular 

components of BAL fluid (97), analysis BAL fluid protein and lipid utilized 

samples with similar volumes recovered [ranging from 4.25-5.0mL for wild type 

and 4.1-4.8mL for PPARγ KO].  Cell viability was measured by trypan blue 

exclusion.  BAL cell differentials from all animals used in the experiments were 

stained with a Wright-Giemsa stain and revealed >90% macrophages.  Cytospins 

of BAL cells were stained with Oil Red O to detect intracellular neutral lipids. BAL 

cells were fixed in 4% paraformaldehyde, stained with Gill’s hematoxylin (Sigma, 

St. Louis, MI), and incubated in Oil Red O solution (Rowley Biochemical Inc., 
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Danvers, MA) overnight.  BAL cells were washed in 85% propylene glycol and 

mounted in Mount-Quick aqueous mounting medium (Daido Sangyo Co., Tokyo, 

Japan).  Oil Red O positivity was quantified by counting 100 cells on each 

cytospin slide from C57Bl/6 and PPARγ KO mice.   

 

RNA purification and analysis.  Total RNA was extracted from the cells by the 

RNeasy protocol (Qiagen, Valencia, CA).  Expression of mRNA was determined 

by real-time RT-PCR analysis using the ABI Prism 7300 Detection System 

(TaqMan; Applied Biosystems, Foster City, CA) according to the manufacturer's 

instructions.  RNA specimens were analyzed in duplicate using primer sets for 

mouse LXRα (Mm00443454), LXRβ (Mm00437262), ABCA1 (Mm00442646), 

ABCG1 (Mm00437390), CYP27A1 (Mm00470430), and APOE (Mm00437573) 

(Applied Biosystems).  Relative gene expression was quantified as described 

(98).  Briefly, the control group (C57Bl/6) values were calculated by subtracting 

the raw cycle (CT) data for the housekeeping gene (GAPDH, 4352339E) from 

the cycle data for the gene of interest.  The ensuing values (∆CT) were averaged 

and normalized to 1.0.  Data from PPARγ KO were quantified in a similar fashion 

and expressed as fold change in gene expression relative to wild type.  For these 

experiments, BAL cells were isolated from individual PPARγ KO mice and 

compared to pooled samples of C57Bl/6 BAL cells. 
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Cholesterol efflux assay.  Pooled BAL cells (3.5x105/well) were plated in 48-

well cell culture plates in complete DMEM media (Invitrogen, Carlsbad, CA) and 

maintained at 37°C and 5% CO 2.  Non-adherent cells were removed after one 

hour.  Cells were incubated for 24 hours in 2 µCi/mL of [1,2-3H(N)]-cholesterol 

(NEN, Perkin Elmer, Waltham, MA), equilibrated in serum free media for 24 

hours, and incubated in the presence of 10% fetal bovine serum (FBS), 

apolipoprotein A-I (ApoA-I) (25 µg/mL) (Sigma), or HDL (25 µg/mL) (Intracel, 

Frederick, MD) for 24 hours.  Supernatant fluids were harvested and centrifuged 

at 1800rpm for 5 minutes to remove cellular debris.  Cells were washed with PBS 

and lysed in 0.2 M sodium hydroxide (NaOH) with 0.1% SDS for 1 hour at room 

temperature.  Supernatant and cell-associated radioactivity was measured by 

liquid scintillation.  Cholesterol efflux was expressed as the percentage of 

radioactivity in the supernatant divided by the total radioactivity of the cells and 

supernatant.  Each assay was performed in duplicate and results from three 

independent assays were used to calculate percent efflux. 

 

Immunoblotting.  Equal volumes of BAL fluid were used for analysis of 

surfactant protein.  For analysis of BAL cell protein, samples were loaded based 

on equal total protein determined using a modified Lowry assay (Dc Protein 

Assay, Bio-Rad Laboratories, Hercules, CA).  Gels were eletrophoresed under 

reducing conditions using a 10% Bis-Tris gel (Bio-Rad) with MOPS buffer 

(Invitrogen).  The following primary antibodies and dilutions were used: 1:500 
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ABCG1 (sc-11150) and 1:500 ABCA1 (sc-5491, Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA); 1:5000 SP-A (AB3420) and 1:2000 SP-D (AB3434, Millipore, 

Billerica, MA). Bands corresponding to ABCG1 were normalized to β-actin as the 

loading control and the intensity of the protein bands were quantified using 

ImageQuant TL (GE Healthcare, Little Chalfont, England). Bands corresponding 

to ABCA1 were analyzed in the same manner using ImageJ.   

 

Lipid extraction.  Lipid analysis was carried out on sets of pooled BAL cells and 

1mL aliquots of BAL fluids with similar effluent volumes.  Total lipids were 

extracted using a modified method of Bligh and Dyer in HPLC-grade 

chloroform/methanol/1M sodium chloride (NaCl) (2/1/1.25, v/v/v) (Sigma) (99).  

The organic phase was obtained by centrifugation at 1500rpm.  Lipids were dried 

under a gentle stream of nitrogen gas.  The Phospholipids C kit (Wako Pure 

Chemicals, Osaka, Japan) was analyzed according to manufacturer’s 

instructions.  Phospholipid content was expressed as mg phospholipid per mg 

total protein. 

 

Cholesterol content analysis.  Sets of pooled BAL cells and BAL fluid samples 

with similar effluent recovered were analyzed for cholesterol content using the 

Amplex Red Cholesterol Assay (Invitrogen) according to the manufacturer’s 

protocol.  Cells and aliquots of cell-free BAL fluid were assayed in serial dilution 
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in 96-well plates.  Cholesterol content was expressed as µg cholesterol per mg 

total protein. 

 

Statistical analysis.  Data were analyzed by Student's t-test using Prism 

software (GraphPad, Inc., San Diego, CA). Significance was defined as p ≤ 0.05. 
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Results 

 

PPARγγγγ deficiency results in lipid accumulation and dysregulation of lipid 

transporters in alveolar macrophages.  Wright-Giemsa staining revealed large 

foamy alveolar macrophages and Oil Red O staining showed that 88.8±1.7% of 

PPARγ KO alveolar macrophages stained positive, compared to 2.4±1.0% of wild 

type, indicating neutral lipid accumulation in the PPARγ KO (p<0.0001) (Figure 

2.1A).  Due to the lipid accumulation, we evaluated mRNA expression of the lipid 

transporters ABCG1 and ABCA1 which are known to be involved in lipid 

metabolism in macrophages and are downstream targets of PPARγ (100). 

ABCG1 mRNA was decreased 1.5-fold and in contrast ABCA1 was increased 

5.9-fold (Figure 2.1B).  Decreased ABCG1 and increased ABCA1 protein 

expression were confirmed at the protein level by immunoblotting (Figure 2.1C-

D).   

 

Surfactant lipids and proteins accumulate in the lungs of PPARγγγγ KO mice.  

The composition of the lipid accumulating in the lungs of the PPARγ KO was 

determined by measuring both cholesterol and phospholipid levels in the alveolar 

macrophages and BAL fluids.  Compared to wild type mice, cellular content of 

free cholesterol was significantly increased in PPARγ KO mice (0.39±0.07 versus 

5.80±1.69 µg/mg protein) while the cholesteryl ester content was not significantly 

different (0.12±0.01 versus 0.58±0.29 µg/mg protein) (Figure 2.2A).  Free  
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Figure 2.1 PPARγγγγ deficiency results in dysregulation of lipid metabolism in 
alveolar macrophages.  (A) Marked Oil Red O staining of alveolar macrophages 
from PPARγ KO indicate neutral lipid accumulation compared to wild type (n=3).  
(B) ABCG1 is decreased whereas ABCA1 expression is enhanced in PPARγ KO 
compared to wild type as measured by RT-PCR (n=6).  (C) ABCG1 protein is 
decreased and (D) ABCA1 protein is increased in PPARγ KO alveolar 
macrophages as shown in a representative immunoblot from one of two 
experiments. The numbers above the bands refer to sets of pooled BAL cells 
from each genotype.  The intensity ratios of the ABCG1 and ABCA1 protein 
bands to actin are indicated.  
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cholesterol was also elevated in the BAL fluid of PPARγ KO mice (59.6±5.7 

µg/mg protein) compared to wild type (17.8±1.3 µg/mg protein) (Figure 2.2B).  

Cholesteryl esters were not detected in the BAL fluid of wild type or PPARγ KO 

mice.  The cellular phospholipid content in PPARγ KO alveolar macrophages was 

significantly increased over wild type (0.03±0.01 versus 0.26±0.07 mg/mg 

protein) (Figure 2.2C).  Extracellular phospholipids were elevated in the BAL fluid 

of PPARγ KO mice (257.5±28.9 mg/mg protein) compared to wild type 

(174.2±16.0 mg/ mg protein) (Figure 2.2D).  Surfactant-associated proteins A 

(SP-A) and D (SP-D) were increased in the BAL fluid of PPARγ KO mice as 

shown by immunoblotting (Figure 2.2E).  

 

PPARγγγγ deficiency results in decreased cholesterol efflux to HDL from 

alveolar macrophages.  The accumulation of cholesterol in the lungs and 

alveolar macrophages of the PPARγ KO and decreased expression of key 

cholesterol efflux mediators led us to evaluate the cholesterol efflux system.  

Baseline cholesterol efflux (no acceptor) was increased in the PPARγ KO 

alveolar macrophages (8.3±0.8%) compared to wild type (4.5±0.3%), and the 

overall cholesterol efflux to media supplemented with FBS was decreased in the 

PPARγ KO (59.5±1.7%) relative to wild type (70.5±3.5%) (Figure 2.3).  We next 

measured the efflux of cholesterol to acceptor molecules HDL and ApoA-I.  

Cholesterol efflux to ApoA-I in PPARγ KO (25.7±1.7%) was significantly  
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Figure 2.2 Surfactant lipids and proteins accumulate in the lungs of PPARγγγγ 
KO mice. (A) Cholesterol levels of PPARγ KO alveolar macrophages (n=3 sets) 
and (B) BAL fluid (n=5) are increased.  Total and free cholesterol were measured 
and cholesteryl ester was determined by subtraction (90).  (C) The phospholipid 
content of PPARγ KO alveolar macrophages (n=4 sets) and (D) BAL fluid (n=11 
mice) are increased.  (E) Surfactant associated protein A (SP-A) and surfactant 
associated protein D (SP-D) were found at increased levels in the BAL fluid of 
PPARγ KO mice as shown by a representative immunoblot from one of three 
experiments.  The numbers above the bands refer to individual mice.  Following 
previously established guidelines for analysis of acellular components of BAL 
fluid (97), analysis BAL fluid protein and lipid utilized samples with similar 
volumes recovered.  
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increased over wild type (17.3±1.5%) and efflux to HDL was significantly 

decreased in PPARγ KO (46.2±1.5%) compared to wild type (56.7±3.6%).  These 

results suggest impairment of ABCG1-mediated cholesterol efflux.  

 

PPARγγγγ deficiency results in dysregulated LXRαααα and LXRββββ expression. 

Given the increased expression of ABCA1 in PPARγ KO alveolar macrophages, 

we next investigated the expression of the LXR transcription factors, which may 

regulate cholesterol metabolism in macrophages in part by mediating 

transcription of the ABC transporters (101).  RT-PCR analysis revealed a 1.7-fold 

decrease in LXRα mRNA and a 2.1-fold increase in LXRβ mRNA expression in 

PPARγ KO alveolar macrophages (Figure 2.4A).  RT-PCR analysis also revealed 

increased expression in apolipoprotein E (ApoE) (34-fold) and sterol 27-

hydroxylase (CYP27A1) (2.3-fold) mRNA in PPARγ KO alveolar macrophages, 

indicating that the LXR pathway is enhanced (Figure 2.4B).  
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Figure 2.3 PPARγγγγ deficiency results in decreased cholesterol efflux to HDL 
from alveolar macrophages.  The efflux of 3H labeled cholesterol was 
measured in PPARγ KO alveolar macrophages and compared to wild type (n=3).   
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Figure 2.4 PPARγγγγ deficiency results in dysregulated LXRαααα and LXRββββ 
expression.  (A)  Gene expression of LXRα and LXRβ in BAL cells from wild 
type (n=4) PPARγ KO mice (n=6) were analyzed by RT-PCR.  LXRα mRNA 
expression is decreased in PPARγ KO alveolar macrophages in contrast LXRβ is 
increased.  (B) ApoE and CYP27A1 mRNA expression are increased in PPARγ 
KO alveolar macrophages (n=6) compared to wild type (n=5). 
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Discussion 

 

  In the present study we show that the targeted knockout of PPARγ in 

macrophages results in the accumulation of surfactant-like material in the 

alveolar spaces of the lung and within the alveolar macrophages.  This is the first 

report directly linking the deficiency of PPARγ to lipid accumulation in the lung.  

PPARγ KO alveolar macrophages phenotypically resemble those of PAP patients 

in that they are foamy and Oil Red O positive for neutral lipid accumulation (50).  

Additionally, surfactant components (surfactant-associated proteins, 

phospholipids, and cholesterol) are increased within extracellular BAL fluids.  

Finally, the alveolar macrophages of PPARγ KO mice have reduced expression 

of ABCG1 and exhibit reduced ABCG1-mediated cholesterol efflux to HDL.  Our 

results support the hypothesis that PPARγ-mediated regulation of ABCG1 

expression is critical for surfactant catabolism in alveolar macrophages. 

Previous studies have suggested that PPARγ is a key mediator of 

surfactant clearance and catabolism by alveolar macrophages (6,51).  Surfactant 

accumulates in alveolar macrophages of PAP patients.  PPARγ is deficient in the 

alveolar macrophages of these patients and is associated with the presence of 

neutralizing auto-antibodies against the hematopoietic growth factor GM-CSF (6).  

PPARγ deficiencies were also demonstrated in the GM-CSF KO mouse model of 

the disease (51).  
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GM-CSF also promotes cell survival, proliferation, and differentiation of 

alveolar macrophages and promotes the transcription of PPARγ in macrophages 

(7,29,102).  The biological loss of GM-CSF has been reported to impair the 

differentiation of alveolar macrophages through dysregulation of the transcription 

factor PU.1 [reviewed by Trapnell and Whitsett (92)].  It was further demonstrated 

that PU.1 is deficient in the alveolar macrophages of PAP patients and GM-CSF 

KO mice (103,104); however no deficiency in GM-CSF or PU.1 expression was 

observed in the alveolar macrophages of the PPARγ KO mice.  GM-CSF was up-

regulated 2.7±0.25-fold (n=5, p=0.02) while PU.1 expression was not different 

from wild type mice (n=3).  These data suggest that maturation of the PPARγ KO 

alveolar macrophages is not disrupted as it is in PAP patients and GM-CSF KO 

mice (92). This is consistent with current literature suggesting that although 

PPARγ is not necessary for the differentiation of monocytes, a variation in the 

expression levels of PPARγ may modulate differentiation (105-107). 

Consistent with the findings in PAP patients and GM-CSF KO mice 

(47,49,108-110), the PPARγ KO mice exhibit elevated levels of the major 

components of surfactant including cholesterol, phospholipid, and surfactant-

associated proteins in the BAL fluid and alveolar macrophages.  The alveolar 

macrophages from the PPARγ KO mice exhibited significantly increased 

cholesterol content comprised predominantly of free cholesterol.  Cellular 

deposition of free cholesterol is considered to be a pivotal step in foam cell 

formation (111) and is consistent with the foamy phenotype of the PPARγ KO 
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alveolar macrophages.  The pattern of lipid accumulation both in the alveolar 

space and alveolar macrophages of the lungs of PPARγ KO mice suggests 

deficient or incomplete surfactant catabolism by the alveolar macrophages.  

RT-PCR analysis of the PPARγ KO alveolar macrophages revealed similar 

gene expression patterns of downstream PPARγ targets to those previously 

reported from PAP patients and GM-CSF KO mice with decreased expression of 

ABCG1 mRNA (1.5-fold) and increased expression in ABCA1 mRNA (5-fold) 

(6,51).  These results are consistent with several studies indicating deficiency of 

one ABC transporter is compensated by the other transporter and is mediated by 

the sterol-sensing nuclear transcription factor LXR in response to the buildup of 

oxysterol ligands (87) or the oxidation of cholesterol metabolites by CYP27A1 in 

foamy macrophages (112).  The two isoforms of LXR, LXR alpha (LXRα) and 

LXR beta (LXRβ), have overlapping roles in promoting cellular cholesterol export 

through regulation of the ABC transporters and ApoE (101).   

In contrast to increased LXRα expression reported in PAP and GM-CSF 

KO (51), LXRα was down-regulated nearly 2-fold in the PPARγ KO mice.  The 

differential expression of LXRα, which is regulated in part by PPARγ (77), may be 

explained by the varying levels of PPARγ in these systems: PPARγ is deficient in 

PAP and GM-CSF KO and is absent in PPARγ KO.  This is supported by the 

finding that LXRβ expression, which is regulated independently of PPARγ (77), is 
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increased nearly 2-fold in the PPARγ KO alveolar macrophages.  The expression 

of LXRβ has not been reported in PAP or GM-CSF KO alveolar macrophages.   

While more study is needed to elucidate the possible mechanisms and 

differential regulation of the LXRs, it has been shown that the function and 

expression of the LXR isoforms are tissue-dependent (101,113,114).  LXRβ is 

expressed at higher levels than LXRα in macrophages and is more effective than 

LXRα at up-regulating ABCA1 in response to sterol ligands (115).  While the 

contributions of the individual LXR isoforms are unknown, as specific gene 

targets have yet to be identified, the LXR pathway overall is enhanced in the 

PPARγ KO, as evidenced by increased expression of downstream targets 

ABCA1 and ApoE.  We show that increased expression of the LXR pathway is 

not sufficient to maintain surfactant catabolism in the absence of PPARγ. 

The accumulation of cholesterol in the lungs and alveolar macrophages of 

PPARγ KO mice and the dysregulation of several cholesterol transport genes led 

us to investigate the efflux of cholesterol in PPARγ KO alveolar macrophages in 

vitro.  PPARγ promotes lipid influx and efflux in macrophages through 

transcriptional regulation of ABC transporters and LXRs.  ABCG1 mediates 

transport of cholesterol to extracellular acceptor HDL and ABCA1 transports 

cholesterol to lipid-free ApoA-I (83-85,116,117).  In the present study, ABCG1-

mediated cholesterol efflux to HDL was reduced and ABCA1-mediated efflux to 

ApoA-I was increased. Overall cholesterol efflux to FBS (10% serum) was 

decreased compared to wild type, consistent with the high levels of cholesterol in 
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the macrophages in vivo.  These findings indicate that the reduction in 

cholesterol efflux in the PPARγ KO alveolar macrophages may be due to 

deficient transporter mediated cholesterol efflux pathways, specifically transport 

mediated by ABCG1.   

Interestingly, similar patterns of cholesterol and phospholipid accumulation 

and altered lipid efflux have been reported in ABCG1 KO models (86,89).  A 

reduction in total cholesterol efflux and a specific reduction in efflux to HDL were 

noted in ABCG1 KO peritoneal macrophages (86). Importantly, the authors also 

noted significantly increased efflux to ApoA-I in ABCG1 KO indicating 

compensation by ABCA1.  Taken together, deficiencies in ABCG1 may result in 

dysregulated or insufficient cholesterol efflux and therefore cholesterol 

accumulation in the lung. 

A summary of the differential gene expression of various lipid regulators 

and transporters in the alveolar macrophages from PPARγ KO mice, GM-CSF 

KO mice, and PAP patients is presented in Table 2.1.  Comparison of the data 

supports the hypothesis that PPARγ-mediated regulation of ABCG1 is necessary 

to prevent the accumulation of surfactant.  Additionally, the LXR pathway is 

enhanced in all of the groups, as evidenced by increased expression in ABCA1.  

An interesting difference, however, is the expression of LXRα which is increased 

in PAP and GM-CSF KO (PPARγ-deficient) alveolar macrophages and 

decreased in the PPARγ KO model.  We speculate that lipid accumulation 
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Table 2.1  

Summary table of expression levels of key lipid regulator and transporter genes 
in the alveolar macrophages from PPARγ KO mice, GM-CSF KO mice, and PAP 
patients. 
 
Lipid Regulators PPARγγγγ KO MICE GM-CSF KO MICE PAP PATIENTS 

GM-CSF Increased Not expressed (29) Decreased* (118) 

PPARγγγγ Decreased Decreased (51) Decreased (6) 

ABCG1 Decreased Decreased (51) Decreased (51) 

ABCA1 Increased Increased (51) Increased (51) 

LXRαααα Decreased Increased (51) Increased (51) 

LXRββββ Increased Not reported Not reported 

 

*GM-CSF mRNA is increased (118). However, protein is functionally reduced due to neutralizing antibodies 

against GM-CSF (1). 
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 activates the LXR-ABCA1 pathway as a compensation mechanism, and that in 

the absence of PPARγ, LXRβ is the predominant isoform driving the up-

regulation of ABCA1 and ApoE.  

In the PPARγ KO mouse model, the absence of PPARγ results in reduced 

expression levels of ABCG1 and LXRα.  Despite increased expression of LXRα 

and ABCA1 and increased ABCA1-mediated cholesterol efflux, surfactant 

components accumulate in the alveolar macrophages and BAL fluid of PPARγ 

KO mice.  Our results indicate that as part of surfactant catabolism, ABCG1-

mediated cholesterol efflux to HDL may be the major pathway for cholesterol 

efflux in alveolar macrophages.  Thus PPARγ-mediated regulation of ABCG1 

expression may be critical to the maintenance of surfactant homeostasis.  This is 

the first report directly linking PPARγ deficiency in alveolar macrophages to lipid 

accumulation in the lungs.  Understanding the role of PPARγ in normal surfactant 

homeostasis contributes to our knowledge of the pathophysiology of PAP and 

identifies a potential target for therapy.  
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Abstract 

 

The use of the Lentivirus expression system for gene delivery has gained 

significant interest due to its rapid, stable and long-term gene expression into a 

wide variety of cell types.  Herein, we have utilized this system to successfully 

generate a Lentivirus, (Lenti-PPARγ), which expresses human PPARγ, a 

transcription factor of the nuclear hormone receptor superfamily which is involved 

in lipid metabolism in macrophages.  Transduction of Lenti-PPARγ into several 

cell types including cell lines and primary murine and human alveolar 

macrophages isolated from bronchoalveolar lavage led to the efficient expression 

of PPARγ as confirmed by RT-PCR and immunoblotting.  Moreover, RT-PCR 

analysis revealed expression was dose-dependent.  These results demonstrate 

that this system provides a reliable approach to study gene expression.   
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Introduction 

 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a lipid-

binding nuclear transcription factor involved in lipid and glucose metabolism in 

macrophages.  Alveolar macrophages constitutively express high levels of 

PPARγ (6).  The alveolar macrophages from patients with the autoimmune lung 

disease pulmonary alveolar proteinosis (PAP) are deficient in PPARγ (6).  The 

biological loss of granulocyte-macrophage colony-stimulating factor (GM-CSF) 

due to a neutralizing auto-antibody results in the accumulation of surfactant in the 

lungs and alveolar macrophages of PAP patients (1,91).  GM-CSF has been 

shown to up-regulate PPARγ (7).  Therefore, we hypothesized that the GM-CSF-

PPARγ pathway is involved in the regulation of surfactant catabolism (Figure 

3.1).  In order to test this hypothesis, we have utilized a Lentivirus expression 

system to restore expression of PPARγ in the PPARγ-deficient alveolar 

macrophages of GM-CSF knockout (GM-CSF KO) mice, a well-established 

model for studying PAP (29).   

The most common mediators of gene delivery are DNA plasmids, 

liposome vectors, and recombinant viral vectors.  While DNA plasmids are 

unstable and liposome vectors can evoke inflammatory responses (119), 

recombinant viral vectors are robust and can be adapted to be non-disruptive to 

host cells.   
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Figure 3.1 Proposed pathway of interest.  The GM-CSF-PPARγ pathway in 
alveolar macrophages promotes the clearance of surfactant, particularly the 
cholesterol component, through the regulation of liver X receptor-alpha (LXRα), 
ABC transporters (ABC) ABCG1 and ABCA1, apolipoprotein E (ApoE), and 27-
hydroxylase (CYP27A1).  PPRE, PPARγ response element; RXR, retinoid X 
receptor. 
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The Lentivirus expression system offers many advantages.  In contrast to 

adenoviral-based vectors, recombinant retroviral vectors offer the unique 

capacity of delivering, integrating, and expressing genetic material in the host cell 

without undergoing lytic, destructive cycles of replication, making them ideal for 

targeting non-dividing cells (120).  Lentivirus has been adapted for gene therapy 

by the removal of essential wild type replication genes and the addition of self-

inactivating long terminal repeats (Figure 3.2).  Lentivirus vectors may be 

engineered to target specific cell types by pseudotyping the viral protein coat.  

Lentivirus-mediated integration is stable and heritable, unlike the adenoviral 

vectors which offer poor efficiency and transient expression of the delivered 

gene.  Additionally, Lentivirus is capable of transducing non-dividing cells, such 

as terminally differentiated alveolar macrophages.   

Herein, we have transduced primary murine macrophages resulting in the 

up-regulation of PPARγ, in vitro.  Additionally, preliminary experiments on human 

alveolar macrophages demonstrated the effectiveness of the Lentivirus system 

on primary human cells.  These results demonstrate an efficient, reliable 

technique for the up-regulation of PPARγ in primary macrophages for the further 

study of PPARγ in surfactant catabolism.   
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Figure 3.2 Production of live Lenti-PPARγγγγ virus.  The Lentivirus plasmid 
containing the PPARγ sequence along with plasmids encoding for env, gag/pol, 
and rev genes were transfected into 293FT cells to produce live Lenti-PPARγ 
virus.  Image adapted from Malur, et al. (121).  SIN, self-inactivating; LTR, long 
terminal repeat; RRE, Rev response element; SA, splice acceptor; SD, splice 
donor; CMV, cytomegalovirus promoter, MCS, multiple-cloning site; SV40, 
Simian virus 40 promoter; BLSD, blasticidin.   
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Materials and Methods 

 

Mice.  Animal studies were conducted in conformity with Public Health Service 

(PHS) Policy on humane care and use of laboratory animals and were approved by 

the institutional animal care committee.  C57Bl/6 wild type (WT) mice were obtained 

from Jackson Laboratory (Bar Harbor, ME).  The GM-CSF KO mice were generated 

by Dr. Glenn Dranoff (29).  The mice have been backcrossed eight generations to 

C57Bl/6.   

 

Bronchoalveolar lavage (BAL).  Macrophages from 3-5 animals were pooled for 

each set of experiments.  Mice received ketamine (90 mg/kg) and xylazine (10 

mg/kg) intraperitoneally.  The thoracic cavity was opened and the lungs were 

exposed.  After cannulating the trachea a tube was inserted and bronchoalveolar 

lavage was carried out with warmed (37oC) PBS in 1ml aliquots.  Cytospins of BAL 

cells were stained with a modified Wright–Giemsa stain for differentials.  Viability 

was >95% as determined by trypan blue for all cell preparations. 

 

Peritoneal exudate cells.  To obtain peritoneal macrophages, mice were 

euthanized with Isofluorane.  Five mL of warmed PBS was injected 

intraperitoneally using a 23 gauge needle.  After exposing the peritoneal cavity, a 

small incision was made in the peritoneum and a transfer pipet was used to draw 

out the fluid.  Cells and fluid were pooled and processed as above.    
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Healthy control cell collection.  This protocol was approved by the Institutional 

Review Board, and written informed consent was obtained from all subjects.  

Healthy control individuals had no history of lung disease and were not on 

medication (n=3).  Alveolar macrophages were derived from BAL fluid obtained 

by fiber-optic bronchoscopy as described previously (122).  Differential cell 

counts were obtained from cytospins stained with a modified Wright's stain. 

Differential cell counts from BAL fluid indicated that >95% of healthy control cells 

were alveolar macrophages.  The mean viability of lavage cells was >95% as 

determined by trypan blue dye exclusion. 

 

Lentivirus construction and transduction.  A self-inactivating Lentivirus 

expression vector that was previously utilized in the generation of a stable cell 

line expressing the human parainfluenza virus type 3 C protein was used for 

these experiments (51,121).  cDNA corresponding to the human PPARγ 

sequence was cloned into the multiple cloning sites downstream of a CMV 

promoter using standard techniques as described (121).  The recombinant 

Lentiviral plasmid thus obtained was transfected into 293FT cells along with 

plasmids encoding the gag, pol and rev genes and a plasmid possessing the 

vesicular stomatitis glycoprotein (G) using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA).  At 72 hrs post transfection, cell culture supernatant containing 

the Lentivirus-PPARγ (Lenti-PPARγ) was collected and then purified by 

centrifugation at 27,000 rpm at 40C for 3.5 hrs.  The Lenti-PPARγ virus pellet was 
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resuspended in PBS and aliquots of 100µl were stored at -700C.  The 

concentration of Lenti-PPARγ virus was determined by a p24 ELISA (Cell 

Biolabs, San Diego, CA).  A Lentivirus expressing the enhanced Green 

Fluorescent Protein (Lenti-eGFP) was obtained using a similar protocol and was 

utilized as a control in experiments for the determination of transduction 

efficiency.  Cells expressing eGFP were observed by fluorescent microscopy.  

For in vitro analyses, BAL and peritoneal macrophages were transduced in 

culture with Lenti-PPARγ or Lenti-eGFP for 24 hours in Opti-MEM (Invitrogen) 

media and then incubated 24 hours in complete DMEM media (Invitrogen) prior 

to collection.   

 

RNA purification and analysis.  Total RNA was extracted from cells by RNeasy 

protocol (Qiagen, Valencia, CA).  Expression of mRNA was determined by real time 

RT-PCR using the ABI Prism 7300 Detection System (TaqMan, Applied Biosystems, 

Foster City, CA) according to the manufacturer’s instructions.  RNA specimens were 

analyzed in duplicate using primer/probe sets for mouse PPARγ (Mm0040945) and 

human PPARγ (Hs00234592) (ABI) as previously described (51).  Primer/probe 

sequences for eGFP have been described (123).  Threshold cycle (CT) values for 

genes of interest were normalized to a housekeeping gene [glyceraldehyde 3 

phosphate dehydrogenase, (GAPDH)] and used to calculate the relative quantity of 

mRNA expression.  Data were expressed as a fold change in mRNA expression 

relative to control values (98). 
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Protein analysis.  Whole cell lysates were prepared using a modified Nonidet P-

40 lysis buffer as described previously (51).  10% SDS-PAGE gels were loaded 

based on equal protein obtained by the bicinchoninic acid assay (Pierce, 

Rockford, IL).  Primary antibody to PPARγ (H-100, Santa Cruz Biotechnology, 

Santa Cruz, CA) was diluted to 1:000 and blots were visualized by 

chemiluminescence.  

 

Statistical analysis.  Data were analyzed by Student’s t-test using Prism software 

(GraphPad, Inc., San Diego, CA).  Significance was defined as p ≤ 0.05.   
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Results 

 

Lenti-PPARγγγγ mediates stable expression of PPARγγγγ in human and mouse 

cell lines.  Preliminary experiments demonstrating the stable expression of 

eGFP and PPARγ were carried out on HeLa and MH-S cell lines.  HeLa and MH-

S cells were transduced with Lenti-eGFP.  After 72 hours, cells were challenged 

with blasticidin (10 µg/uL).  After several passages, cells were collected for 

analysis.  HeLa cells exhibited eGFP positive cells (Figure 3.3A).  Experiments 

testing the Lenti-PPARγ virus were carried out in a similar manner.  Neither HeLa 

nor MH-S cells express detectable amounts of PPARγ.  RT-PCR analysis of 

HeLa and MH-S cells transduced with Lenti-PPARγ, however, exhibit increased 

expression of PPARγ mRNA (Figure 3.3B).  Transduction with serial dilutions of 

Lenti-PPARγ virus resulted in up-regulation of PPARγ protein in HeLa cells 

(Figure 3.3C). 

 

Lenti-PPARγγγγ    mediates efficient up-regulation of PPARγγγγ in primary murine 

macrophages.  To determine the transduction efficiency of the Lenti-PPARγ 

virus on primary cells, we harvested peritoneal macrophages from wild type and 

GM-CSF KO mice which do not express detectable levels of PPARγ and treated 

the cells with Lenti-PPARγ in vitro.  Analysis by RT-PCR demonstrated increased 

levels of PPARγ in a dose-dependent manner in wild type and GM-CSF KO cells  
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Figure 3.3 Lenti-PPARγγγγ mediates expression of PPARγγγγ in human and 
mouse cell lines.  (A) HeLa cells expressed eGFP after transduction with Lenti-
eGFP.  (B) RT-PCR analysis of HeLa and MH-S cell lines transduced with Lenti-
PPARγ exhibited increased expression of PPARγ mRNA.  (C) Transduction with 
serial dilutions of Lenti-PPARγ virus resulted in the up-regulation of PPARγ 
protein in HeLa cells.  
 



75 

 
 
A.       
 
 
 
 
 
 
 
 
 
 
 
 
B. 
 
 
 
 
 
 
  
 
 
 
 

 

C. 



76 

compared to non-transduced controls (Figure 3.4A-B).  Further, we transduced 

alveolar macrophages of GM-CSF KO and noted increased expression of PPARγ 

mRNA (Figure 3.4C).  Transduction with control Lenti-eGFP virus did not result in 

increases in PPARγ mRNA in any experiment.  These results demonstrated 

efficient up-regulation of PPARγ in peritoneal macrophages that do not 

constitutively express PPARγ and alveolar macrophages deficient in PPARγ. 

 

Lentivirus mediates up-regulation of eGFP and PPARγγγγ in alveolar 

macrophages from healthy human controls.  In order to evaluate the 

Lentivirus expression system in primary human macrophages, we transduced 

alveolar macrophages from healthy controls with increasing titers of Lenti-eGFP 

and measured eGFP mRNA by RT-PCR (Figure 3.5A).  Transduction efficiency 

was also determined by counting eGFP-positive cells [data previously published 

(51)].  Additionally, a preliminary experiment demonstrated a 60-fold increase in 

PPARγ mRNA expression in alveolar macrophages from a healthy individual 

upon transduction with Lenti-PPARγ (Figure 3.5B).  Taken together, these results 

provide evidence that Lenti-PPARγ is an effective investigative tool to study the 

up-regulation of PPARγ in primary alveolar macrophages. 
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Figure 3.4  Lenti-PPARγγγγ mediates efficient up-regulation of PPARγγγγ in 
primary murine macrophages.  (A) RT-PCR analysis demonstrated dose-
dependent up-regulation of PPARγ mRNA in WT and (B) GM-CSF KO peritoneal 
macrophages treated with Lenti-PPARγ virus compared to non-transduced cells 
(0 ng/mL p24).  Expression of PPARγ mRNA in macrophages treated with control 
virus (Lenti-eGFP) was not different from non-treated cells.  (C) Up-regulation of 
PPARγ was also detected by RT-PCR in GM-CSF alveolar macrophages upon 
treatment with Lenti-PPARγ (25 ng/mL p24).   
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Figure 3.5 Lentivirus mediates up-regulation of eGFP and PPARγγγγ in alveolar 
macrophages from healthy human controls.  (A) Human alveolar 
macrophages transduced with Lenti-eGFP for 24 hours up-regulated eGFP 
mRNA in a dose-dependent manner.  (B) Alveolar macrophages from a healthy 
control exhibited increased PPARγ mRNA expression upon transduction with 
Lenti-PPARγ. 
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Discussion 
 

 
PPARγ is deficient in the alveolar macrophages of PAP patients and GM-

CSF KO mice (6,51).  Previous studies from our laboratory have implicated 

PPARγ in the promotion of surfactant catabolism in alveolar macrophages 

(unpublished data).  PPARγ regulates several genes involved in the transcription 

and transport of lipids in macrophages.  In order to investigate our hypothesis 

that the up-regulation of PPARγ will increase surfactant catabolism and reduce 

the presence of lipid-engorged alveolar macrophages in the lung, we required an 

efficient system to up-regulate PPARγ in primary macrophages. 

Lentivirus vectors are capable of delivering and expressing a gene of 

interest without being disruptive to the host cell (120).  Secondly, the Lentivirus 

expression system is an advantageous therapeutic gene delivery system and has 

the potential for delivery of genetic material in vivo.  In the present study, we 

utilized the Lentivirus system to transduce primary murine and human alveolar 

macrophages in vitro.   

In initial experiments, the Lenti-eGFP virus was used to measure 

transduction efficiency.  Additionally, macrophages transduced with Lenti-eGFP 

were used as a control in RT-PCR analysis as these samples did not exhibit 

significant changes in PPARγ mRNA compared to non-transduced cells.  Thus, 

the up-regulation in PPARγ is due to the specific Lenti-PPARγ construct and not 

produced in response to foreign DNA or macrophage activation upon the 
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introduction of virus.  Additional preliminary work entailed determining optimal 

Lentivirus transduction concentrations.  Dose responses ranging from 2.5-25 

ng/mL p24 were carried out on cultured peritoneal macrophages from wild type 

and GM-CSF KO mice.  Alveolar macrophages from GM-CSF KO mice were 

transduced with 25 ng/mL p24.  We next investigated the use of the Lentivirus 

constructs on alveolar macrophages from healthy volunteers.  All doses induced 

transcription of PPARγ supporting the efficiency of the Lentivirus expression 

system.   

These experiments demonstrate successful up-regulation of the proteins 

of interest, eGFP and PPARγ, and provide a foundation to pursue in vivo 

replacement of PPARγ in GM-CSF KO alveolar macrophages using Lenti-

PPARγ.  Unlike adenoviral vectors which offer poor efficiency and transient 

expression of the delivered gene, Lenti-PPARγ provides efficient up-regulation of 

PPARγ and may used in a variety of experiments to investigate the transcriptional 

regulation of PPARγ.  This system provides a reliable approach to study the role 

of PPARγ gene expression in surfactant catabolism and homeostasis in alveolar 

macrophages.  Understanding surfactant homeostasis is fundamental to the 

treatment of human pulmonary disease.   
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Abstract 

 

Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear 

transcription factor involved in lipid metabolism that is constitutively expressed in 

the alveolar macrophages of healthy individuals.  While the mechanism remains 

unclear, PPARγ has recently been implicated in the catabolism of surfactant by 

alveolar macrophages, specifically the cholesterol component of surfactant.  

Studies from other tissue macrophages have shown that PPARγ transcriptionally 

regulates genes involved in cholesterol metabolism.  PPARγ promotes the 

expression of the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 

(ABCG1) which are involved in cholesterol efflux and CD36 which is involved in 

the uptake of cholesterol.  We have recently shown that macrophage-specific 

PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar 

macrophages that exhibit decreased expression of LXRα and ABCG1 and 

reduced cholesterol efflux.  We hypothesized that in addition to dysregulated 

cholesterol efflux, cholesterol biosynthesis and uptake genes were also 

dysregulated and that replacement of PPARγ would induce expression of these 

genes.  To investigate this hypothesis, we have utilized a Lentivirus expression 

system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages 

of PPARγ KO mice.   Our results show that the alveolar macrophages of PPARγ 

KO mice have decreased expression of key cholesterol biosynthesis genes and 

increased expression of cholesterol receptors CD36 and scavenger receptor A-I 
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(SRA-I).  The replacement of PPARγ induced transcription of LXRα and ABCG1; 

(2) corrected suppressed expression of cholesterol biosynthesis genes; and (3) 

enhanced the expression of CD36. These results suggest that PPARγ regulates 

cholesterol metabolism in alveolar macrophages.  
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Introduction 

 

 

Pulmonary alveolar proteinosis (PAP) is an autoimmune lung disease 

characterized by the accumulation of surfactant (1).  Pulmonary surfactant is 

comprised of 90% lipid, 10% protein, and less than 1% carbohydrate. The lipid 

component is comprised of phospholipids and neutral lipids, cholesterol being the 

major neutral lipid (93).  Alveolar macrophages catabolize and recycle 

cholesterol from surfactant.  However, the alveolar macrophages of PAP patients 

do not catabolize surfactant sufficiently and become engorged with lipid 

(25,26,28,50).  It has been shown that cholesterol levels are increased in the 

lungs of PAP patients (47).  Combined with the presence of foam cells in the 

lungs of patients, these results provided evidence that homeostasis of cholesterol 

catabolism may be disrupted in PAP.  Interestingly, the contribution of impaired 

cholesterol catabolism to the overall disruption of surfactant catabolism in the 

pathogenesis of PAP has not been specifically addressed.   

Our laboratory was the first to determine that the alveolar macrophages of 

PAP patients were deficient in the nuclear transcription factor peroxisome 

proliferator-activated receptor-gamma (PPARγ) (6,51).  Although the role of 

PPARγ in the lung is relatively unexplored, PPARγ has been implicated as a 

critical mediator in cholesterol metabolism in various tissue macrophages.  Given 

the amount of cholesterol present in lung surfactant, PPARγ may hold particular 
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importance in promotion of cholesterol catabolism in alveolar macrophages and 

deficient cholesterol catabolism could impair the catabolism of surfactant overall.   

Studies on other tissue macrophages have shown that PPARγ regulates 

many genes involved in cholesterol transport (influx and efflux) and metabolism. 

PPARγ transcriptionally promotes the sterol-sensing nuclear transcription factor 

liver X receptor-alpha (LXRα) and cholesterol transporter ATP-binding cassette 

G1 (ABCG1) (51,77,94). The PPARγ-LXR cascade is critical to maintaining 

cholesterol efflux in macrophages (85).  CYP27A1 is an important enzyme that 

converts cholesterol into LXR ligands thereby promoting cholesterol transport 

from extrahepatic macrophages (112).  Additionally, alveolar macrophages have 

been shown to readily secrete the more polar hydroxycholesterol produced by 

CYP27A1 in response to cholesterol-loading (124,125).   

While deficiencies in cholesterol efflux could lead to cholesterol 

accumulation (75), the uptake of cholesterol via scavenger receptors has also 

been strongly associated with the accumulation of cholesterol (126,127).  

Scavenger receptors are up-regulated in the presence of substrate yielding 

macrophages with the unique capacity for cholesterol uptake regardless of 

intracellular cholesterol levels.  The scavenger receptors CD36 and scavenger 

receptor A-I (SRA-I) internalize cholesterol bound to oxidized (ox)-LDL [reviewed 

by Glass and Witztum (74)].  Macrophages from mice lacking CD36 and SRA-I 

exhibit a 90% reduction in ox-LDL uptake (126).  Although scavenger receptor-

mediated cholesterol uptake is complex and is not fully understood, it is known to 
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be regulated in part by PPARγ: CD36 is directly up-regulated by PPARγ (61) 

while SRA-I is negatively regulated by PPARγ (60).   

PPARγ regulates both the cholesterol influx (CD36 and SRA-I) and efflux 

genes (LXRα and ABCG1) and therefore influences the level of intracellular 

cholesterol present in macrophages.  In turn, cholesterol levels regulate the de 

novo synthesis of cholesterol.  In response to limited cholesterol, the nuclear 

transcription factor sterol response element-binding protein 2 (SREBP2) 

promotes cholesterol synthesis and uptake through the up-regulation of 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and low-density 

lipoprotein receptor (LDL-R) [reviewed by Goldstein, et al. (67)].  Alternatively, 

intracellular cholesterol and oxysterols negatively regulate cholesterol synthesis 

in part by reduced transcriptional activity of SREBP2. 

To investigate PPARγ and the promotion of cholesterol catabolism in 

alveolar macrophages, we have utilized macrophage-specific PPARγ knockout 

(PPARγ KO) mice which develop a PAP-like lung pathology with the 

accumulation of cholesterol and foamy, cholesterol-laden alveolar macrophages 

(unpublished data).  The alveolar macrophages of PPARγ KO mice exhibit 

decreased expression of LXRα and ABCG1 and reduced cholesterol efflux.   

These results suggest PPARγ is a key mediator of cholesterol catabolism 

in alveolar macrophages.  Thus, we hypothesized that in addition to dysregulated 

cholesterol efflux genes, the expression of cholesterol synthesis and influx genes 
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were also dysregulated in the alveolar macrophages of PPARγ KO mice.  To test 

this hypothesis we investigated the expression cholesterol metabolism genes 

and the effects of in vivo replacement of PPARγ using a Lentivirus expression 

system (Lenti-PPARγ).  

 

 



91 

Materials and Methods 

 

Mice. Animal studies were conducted in conformity with Public Health Service 

policy on the humane care and use of laboratory animals and were approved by 

the Institutional Animal Care Committee.  C57Bl/6 wild type mice were obtained 

from Jackson Laboratory (Bar Harbor, ME).  Macrophage-specific PPARγ KO 

mice have been previously described (96).  BAL cells were obtained as 

described earlier from 8–12 week old PPARγ KO mice and age- and gender-

matched wild type C57Bl/6 controls (96). For experiments, a minimum of 4 

individual PPARγ KO mice were used except where indicated.  For wild type 

mice, a minimum of 3 sets of pooled cells from 3-5 mice were used in all 

experiments.  Briefly, the thoracic cavity was opened and the lungs were 

exposed. After cannulating the trachea, a tube was inserted and BAL was carried 

out with warmed (37°C) PBS in 1 mL aliquots. Cell via bility was measured by 

trypan blue exclusion.  BAL cell differentials from all animals used in the 

experiments were stained with a Wright-Giemsa stain and revealed >90% 

macrophages.   

 

Lentivirus plasmid and instillation. A self-inactivating Lentivirus expression 

vector containing cDNA corresponding to the human PPARγ (Lenti-PPARγ) was 

cloned into the multiple cloning sites downstream of a CMV promoter using 

standard techniques as described (96,121).  A Lentivirus expressing the 
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enhanced Green Fluorescent Protein (Lenti-eGFP) was obtained using a similar 

protocol and was utilized as a control.  For experiments utilizing Lenti-eGFP and 

Lenti-PPARγ, mice were intra-tracheally instilled 30 days prior to BAL, as 

described previously (96).  

 

RNA purification and analysis.  Total RNA was extracted from the cells by the 

RNeasy protocol (Qiagen, Valencia, CA).  Expression of mRNA was determined 

by real-time RT-PCR analysis using the ABI Prism 7300 Detection System 

(TaqMan; Applied Biosystems, Foster City, CA) according to the manufacturer's 

instructions.  RNA specimens were analyzed in duplicate using primer sets for 

mouse ABCA1 (Mm00442646), ABCG1 (Mm00437390), CD36 (Mm00432403), 

HMGCR (Mm01282494), LDL-R (Mm00440169), LXRα (Mm00443454), LXRβ 

(Mm00437262), SRA-I (Mm00446214), and SREBP2 (Mm01306300) (Applied 

Biosystems).  Threshold cycle values for genes of interest were normalized to a 

housekeeping gene (GAPDH, 4352339E) (Applied Biosystems) and used to 

calculate the relative quantity of mRNA expression in PPARγ KO samples 

compared with wild type murine controls.  For the Lentivirus experiments, Lenti-

eGFP samples were used as the controls for Lenti-PPARγ samples.  Data are 

expressed as fold change in mRNA expression relative to control values (98).  

 

Statistical analysis.  Data were analyzed by Student's t-test using Prism 

software (GraphPad, Inc., San Diego, CA). Significance was defined as p ≤ 0.05. 
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Results and Discussion 

 

Cholesterol metabolism genes are dysregulated in PPARγγγγ KO alveolar 

macrophages.  We have previously shown that the alveolar macrophages of 

PPARγ KO mice exhibit reduced cholesterol efflux and are loaded with 

cholesterol (unpublished data).  The lungs of PPARγ KO mice also have elevated 

levels of cholesterol.  Therefore, we investigated the expression of cholesterol 

metabolism and biosynthesis genes that are regulated by intracellular and 

extracellular cholesterol in the alveolar macrophages of PPARγ KO mice.   

RT-PCR analysis of SREBP2 and downstream targets HMGCR and LDL-

R in the alveolar macrophages of PPARγ KO mice demonstrated that the 

expression of SREBP2, HMGCR, and LDL-R was significantly decreased (1.8-

fold, 1.5-fold, and 1.9-fold respectively) compared to wild type (Figure 4.1A).  

Alternatively, the expression of scavenger receptors CD36 and SRA-I which are 

positively regulated by extracellular cholesterol content, specifically cholesterol 

bound to ox-LDL (74), was up-regulated 1.5-fold and 10.1-fold, respectively 

(Figure 4.1B).   

While the regulation of cholesterol synthesis genes is complex, cholesterol 

has been shown to negatively regulate cholesterol synthesis at the transcriptional 

level (128).  Wang, et al. demonstrated that the accumulation of free cholesterol 

in ABCG1-deficient macrophages inhibited the expression of HMGCR and LDL-R 

(129).  THP1-derived macrophages loaded with ox-LDL displayed reduced 
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Figure 4.1  Cholesterol metabolism genes are dysregulated in PPARγγγγ KO 
alveolar macrophages.  (A) RT-PCR analysis demonstrated that genes involved 
in the biosynthesis and uptake of cholesterol SREBP2, HMGCR, and LDL-R are 
down-regulated in the PPARγ KO compared to wild type.  (B)  Expression of 
scavenger receptors CD36 and SRA-I are increased in the PPARγ KO compared 
to wild type.   
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HMGCR mRNA (130).  Moreover, incubation of murine macrophages with 

modified-LDL decreased HMGCR enzymatic activity (131).  Decreased 

expression of cholesterol synthesis genes in the cholesterol-laden alveolar 

macrophages of PPARγ KO mice indicates that the suppression of cholesterol 

synthesis is intact, in contrast to sterol-insensitive cells which continue to 

produce cholesterol when loaded (132).   

While reduced cholesterol efflux, such as that observed in the PPARγ KO, 

can contribute to cholesterol-overload, enhanced ox-LDL uptake via scavenger 

receptors is also strongly linked to the accumulation of cholesterol.  PPARγ has 

been implicated in the regulation of cholesterol uptake by CD36 and SRA-I.  

Exposure of THP-1 macrophages with ox-LDL induces expression of PPARγ, 

CD36, and SRA-I (58).  While PPARγ directly promotes expression of CD36 (61), 

SRA-I can be negatively regulated by PPARγ and independently of PPARγ by the 

presence of ox-LDL (105,106).  In the present study, PPARγ KO alveolar 

macrophages exhibited highly up-regulated SRA-I.  Therefore, elevated 

expression of SRA-I may reflect the combination of substrate availability and the 

absence of PPARγ.   

 In addition to cholesterol, we have also shown that other surfactant lipids 

accumulate in the alveolar macrophages of PPARγ KO mice (unpublished data).  

Analysis of phospholipid, fatty acid, and triglyceride synthesis genes (lipin1, fatty 

acid synthase, SREBP1c, diacylglycerol acyltransferase, and glycerol-3-

phosphate acyltransferase) by RT-PCR revealed no differences in expression 
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compared to wild type mice (data not shown).  This data indicates (1) it is unlikely 

that the intracellular accumulation of lipids is due to de novo synthesis, and (2) 

PPARγ is particularly critical to the regulation of cholesterol. 

We demonstrate in the present study that the cholesterol synthesis 

pathway is suppressed in PPARγ KO alveolar macrophages, as evidenced by 

decreased expression of SREBP2, HMGCR, and LDL-R while the uptake of ox-

LDL may be enhanced given that the expression of CD36 and SRA-I is 

increased.  These results demonstrate that both systems are responsive to the 

accumulation of cholesterol in the lungs and alveolar macrophages of PPARγ KO 

mice.    

 

Up-regulation of PPARγγγγ in vivo promotes the expression of cholesterol 

efflux genes.  We have determined that the expression of PPARγ-regulated 

genes LXRα and ABCG1 was reduced in the alveolar macrophages of PPARγ 

KO mice (unpublished data).  Additionally, we demonstrated that LXRβ and 

CYP27A1 were up-regulated.  As a continuation of this work, we investigated the 

expression of these genes upon up-regulation of PPARγ in vivo.  RT-PCR 

analysis demonstrated ABCG1 and LXRα mRNA was up-regulated (1.8-fold and 

1.6-fold, respectively) in PPARγ KO mice instilled with Lenti-PPARγ compared to 

mice instilled with Lenti-eGFP (Figure 4.2A).  LXRβ and CYP27A1 were also up- 
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Figure 4.2 Up-regulation of PPARγγγγ in vivo promotes the expression of 
cholesterol efflux genes.  (A)  RT-PCR analysis revealed ABCG1 and LXRα 
expression in the alveolar macrophages of PPARγ KO mice instilled with Lenti-
PPARγ were up-regulated compared to controls. (B)  The expression of LXRβ 
and CYP27A1 was increased in Lenti-PPARγ treated animals (n=3) compared to 
Lenti-eGFP controls. 
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regulated 4.9-fold and 3.5-fold, respectively, in PPARγ KO instilled with Lenti-

PPARγ (Figure 4.2B).   

While the restoration of ABCG1 mRNA confirms previous results directly 

linking PPARγ to ABCG1 expression (51), perhaps the most significant finding in 

this report is the induction of LXRα in treated PPARγ KO mice.  Peritoneal 

macrophages from PPARγ KO mice have been shown to exhibit decreased 

expression of LXRα which did not increase upon treatment with ligand due to the 

absence of PPARγ (100).  Consistent with findings from other tissue 

macrophages in which upstream PPARγ signaling was essential to the promotion 

of cholesterol efflux by LXRα (77), PPARγ appears to be essential to the 

promotion of cholesterol efflux by LXRα in alveolar macrophages.  These results 

indicate that PPARγ is a key regulator of cholesterol efflux. 

Increased expression of CYP27A1 in the alveolar macrophages of PPARγ 

KO mice instilled with Lenti-PPARγ may have contributed to increased LXRβ 

expression through the production of LXR ligand (112).  Llaverias, et al. have 

reported that the loading of macrophages with cholesterol results in increased 

CYP27A1 expression (133).  While LXRβ has been shown to be regulated 

independently of PPARγ (77), CYP27A1 can be regulated by PPARγ.  At least 

two reports have demonstrated that the transcription of CYP27A1 is inducible by 

PPARγ ligands, independent of LXR or cellular cholesterol content (134,135).  

Therefore, increased expression of CYP27A1 in untreated PPARγ KO may result 
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from intracellular cholesterol content, while in treated mice PPARγ may directly 

contribute to the expression of CYP27A1 to promote the removal of cholesterol 

from alveolar macrophages. 

Taken together, these data indicate that the replacement of PPARγ in 

cholesterol-laden macrophages promotes the expression of cholesterol efflux 

through transcription of LXRα, ABCG1, and CYP27A1. 

 

Up-regulation of PPARγγγγ in vivo increases expression of cholesterol 

metabolism genes.  In contrast to decreased expression of cholesterol 

synthesis genes in PPARγ KO alveolar macrophages, restoration of PPARγ in 

vivo resulted in the up-regulation of SREBP2, HMGCR, and LDL-R mRNA 

compared to Lenti-eGFP controls (1.7-fold, 1.9-fold, and 1.7-fold, respectively) 

(Figure 4.3A).  Replacement of PPARγ also resulted in increased expression of 

CD36 (2.1-fold) while no significant changes in SRA-I expression were observed 

(Figure 4.3B).   

 Overexpression of SREBP-2 has been shown to increase the mRNA 

expression of all cholesterol synthesis enzymes, with the highest induction of 

HMGCR (136).  Although predominantly recognized to be transcriptionally 

regulated by SREBP2 (137), PPARγ has been also implicated in the transcription 

of HMGCR.  Both the mRNA and enzyme activity of HMGCR was increased 

THP-1 cells treated with PPARγ agonists (138).  Increased expression of 

cholesterol biosynthesis genes SREBP-2 and HMGCR upon up-regulation of 



102 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Up-regulation of PPARγγγγ in vivo increases expression of 
cholesterol metabolism genes.  (A)  RT-PCR analysis of alveolar macrophages 
revealed increased expression of SREBP2, HMGCR, and LDL-R in PPARγ KO 
instilled with Lenti-PPARγ (n=3) compared to controls.  (B) CD36 mRNA was up-
regulated after instillation with Lenti-PPARγ compared to Lenti-eGFP controls.  
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PPARγ suggests an indirect relationship between PPARγ and the synthesis of 

cholesterol, probably mediated by intracellular sterol levels.  These results 

provide evidence that the up-regulation of PPARγ and downstream genes 

involved in cholesterol efflux including LXRα, ABCG1, and CYP27A1 relieved 

inhibition of the cholesterol biosynthesis genes (Figure 4.4).   

The induction of CD36 mRNA upon the restoration of PPARγ is consistent 

with previous studies demonstrating that CD36 is transcriptionally promoted by 

PPARγ (58).  Given that PPARγ can negatively regulate SRA-I (105,106), it was 

somewhat unexpected to find that the expression of SRA-I was unchanged in 

PPARγ KO mice upon up-regulation of PPARγ.  However, ox-LDL can induce 

expression of SRA-I independently of PPARγ (139).  Our results suggest that 

increased expression of SRA-I occurs in the absence of PPARγ, and that 

continued expression SRA-I after PPARγ replacement may be attributed to 

substrate availability.  Further, elevated expression of CD36 and SRA-I suggest 

that the uptake of cholesterol is enhanced in the alveolar macrophages of PPARγ 

KO mice.  
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Figure 4.4 Hypothetical pathway by which PPARγγγγ regulates cholesterol 
influx, efflux, and biosynthesis in alveolar macrophages.  PPARγ directly 
promotes transcription of cholesterol influx and efflux genes which determine the 
intracellular cholesterol level.  In turn, cholesterol levels regulate the de novo 
synthesis of cholesterol.  
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Conclusions 

 

Alveolar macrophages of PPARγ KO mice exhibit decreased expression 

cholesterol influx, efflux, and biosynthesis genes.  The replacement of PPARγ in 

vivo increased expression of cholesterol efflux genes ABCG1 and LXRα, 

cholesterol biosynthesis genes SREBP2 and HMGCR, and receptors LDL-R and 

CD36.  These results suggest that PPARγ regulates cholesterol metabolism in 

alveolar macrophages and promotes the catabolism and transport of cholesterol 

in the lung.  Our findings provide evidence that the catabolism of cholesterol 

affects the catabolism of surfactant overall and may have implications in the 

study of PPARγ and human lung diseases associated with the accumulation of 

surfactant. 

 

 



108 

Acknowledgments 

 

This work was supported by a faculty recruitment grant from the North Carolina 

Biotechnology Center, GRANT No 2005-FRG-1013 awarded to MJT. 



109 

CHAPTER 5 

 

RESTORATION OF PPARγγγγ REVERSES LIPID ACCUMULATION IN 

ALVEOLAR MACROPHAGES OF GM-CSF KNOCKOUT MICE 

Anna D. Baker1, Anagha Malur1, Achut G. Malur2, Almedia J. Mccoy1, Barbara P. 

Barna1, Mani S. Kavuru1, and Mary Jane Thomassen1 

East Carolina University, 1Department of Internal Medicine, Division of 

Pulmonary, Critical Care, and Sleep Medicine and 2Department of Microbiology 

and Immunology. 

 

Running Title: Lentivirus-PPARγ in Alveolar Macrophages  

Keywords: alveolar macrophage, Lentivirus, PPARγ, ABCG1, foam cells  

 

Corresponding Author:  

Dr. Mary Jane Thomassen1 

The Brody School of Medicine, East Carolina University 

3E-149 Brody Medical Sciences Building 

Greenville, NC 27834 

(252) 744-1117, FAX (252) 744-2583 

email:  thomassenm@ecu.edu 



110 

The results presented in this chapter are part of a manuscript that is in final 

preparations for submission to a peer-reviewed journal. 

 



111 

Abstract 

 

Pulmonary alveolar proteinosis (PAP) is a lung disease characterized by 

neutralizing auto-antibodies to granulocyte-macrophage colony-stimulating factor 

(GM-CSF).  The loss of functional GM-CSF results in the filling of alveolar spaces 

and alveolar macrophages of the lungs with surfactant.  The nuclear transcription 

factor peroxisome proliferator-activated receptor-gamma (PPARγ), a key 

regulator of lipid metabolism, is constitutively expressed in the alveolar 

macrophages of healthy individuals and is up-regulated by GM-CSF.  We have 

previously demonstrated decreased levels of PPARγ and ATP-binding cassette 

transporter G1 (ABCG1) in the alveolar macrophages from both PAP patients 

and GM-CSF knockout (GM-CSF KO) mice, suggesting the involvement of 

PPARγ and ABCG1 in surfactant catabolism.  We hypothesized that up-

regulation of PPARγ would lead to an increase in ABCG1 and decrease lipid 

accumulation in alveolar macrophages.  The up-regulation of PPARγ was 

achieved using a Lentivirus expression system in vivo.  GM-CSF KO mice 

received instillation of Lentivirus (Lenti)-PPARγ or control Lenti-eGFP (enhanced 

Green Fluorescence Protein) via the intra-tracheal route.  Alveolar macrophages 

were harvested 10 and 30 days post-instillation.  Fluorescence microscopy 

indicated that 79 and 54% of alveolar macrophages instilled with Lenti-eGFP 

contained eGFP at 10 and 30 days post-instillation, respectively.  We 

demonstrated significant increases in PPARγ and ABCG1 gene expression in 
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alveolar macrophages of mice instilled with Lenti-PPARγ, while PPARγ and 

ABCG1 levels remained unchanged in control groups instilled with Lenti-eGFP or 

PBS.  Oil Red O positivity was reduced within the alveolar macrophages of mice 

treated with Lenti-PPARγ at 10 days post-instillation.  Finally, we measured 

increased ABCG1-mediated cholesterol efflux in alveolar macrophages from 

Lenti-PPARγ treated mice at 10 days.  Results with Lenti-PPARγ instillations 

demonstrate: (1) efficient in vivo transduction of alveolar macrophages; (2) up-

regulation of ABCG1; (3) a reduction in macrophage lipid accumulation; and (4) 

increased ABCG1-mediated cholesterol efflux.  These studies suggest that the 

expression PPARγ and ABCG1 in alveolar macrophages promotes the 

catabolism of surfactant. 
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Introduction 

 

Pulmonary alveolar proteinosis (PAP) is a rare autoimmune disease 

characterized by neutralizing auto-antibodies to granulocyte-macrophage colony-

stimulating factor (GM-CSF) (1,91). Genetically engineered mice which are 

homozygous for a disrupted GM-CSF gene develop a PAP-like lung disease with 

the accumulation of excess surfactant (29,30,140).  These studies have revealed 

a previously unknown role for GM-CSF in normal lung homeostasis, as 

pathogenesis in PAP patients and mouse models are confined to the lung.   

The alveolar macrophages in PAP patients and GM-CSF knockout (GM-

CSF KO) mice are foamy and laden with lipid, as evidenced by positive Oil Red 

O staining (50,51).  The accumulation of surfactant has been linked decreased 

clearance by the alveolar macrophages of PAP and GM-CSF KO rather than 

increased production of surfactant (25,26,28).  Interestingly, GM-CSF up-

regulates the nuclear transcription factor peroxisome proliferator-activated 

receptor-gamma (PPARγ) expression in alveolar macrophages suggesting the 

involvement of PPARγ in surfactant clearance (6).  PPARγ is constitutively 

expressed in the alveolar macrophages of healthy individuals but deficient in the 

alveolar macrophages of PAP patients and GM-CSF KO mice (6).   

A critical role for PPARγ has been reported in regulation of genes involved 

in lipid metabolism as well as in inflammation (141).  PPARγ is one of the key 

proteins involved in regulating macrophage cholesterol efflux and this regulation 
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may involve expression of the ATP-binding cassette (ABC) transporters ABCG1 

and ABCA1 (58,61,77,100,142,143).  Our laboratory has recently shown that the 

expression of ABCG1 is decreased in the alveolar macrophages of PAP patients 

and GM-CSF KO mice (51).  The studies of PAP and GM-CSF KO mice have 

shown that GM-CSF is a critical mediator of surfactant clearance.  We 

hypothesized that GM-CSF mediates surfactant catabolism in alveolar 

macrophages through a PPARγ-ABCG1 pathway and that up-regulation of 

PPARγ in would lead to an increase in ABCG1 and decrease the lipid 

accumulating in the alveolar macrophages of GM-CSF KO mice.  To address this 

hypothesis we utilized a Lentivirus expression system in vivo to up-regulate 

PPARγ. 
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Materials and Methods 

 

Mice.  Animal studies were conducted in conformity with Public Health Service 

(PHS) Policy on humane care and use of laboratory animals and were approved 

by the institutional animal care committee.  The GM-CSF KO mice were 

generated by Dr. Glenn Dranoff (29).  The mice have been backcrossed eight 

generations to C57Bl/6.   

 

Bronchoalveolar lavage (BAL).  Post lenti-instillation (10 or 30 days) 5-7 

animals per group were lavaged.  Mice received ketamine (90 mg/kg) and 

xylazine (10 mg/kg) intraperitoneally.  The thoracic cavity was opened and the 

lungs were exposed.  After cannulating the trachea a tube was inserted and 

bronchoalveolar lavage was carried out with warmed (37oC) PBS in 1ml aliquots.  

Cytospins of BAL cells were stained with a modified Wright–Giemsa stain for 

differentials or Oil Red O stain to detect intracellular neutral lipids, and 

counterstained with Gill’s hematoxylin stain.  Viability was >95% as determined 

by trypan blue for all cell preparations. 

 

Lentivirus construction and transduction.  A self-inactivating Lentivirus 

expression vector that was previously utilized in the generation of a stable cell 

line expressing the human parainfluenza virus type 3 C protein was used for 

these experiments (51,121).  cDNA corresponding to the human PPARγ 
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sequence was cloned into the multiple cloning sites downstream of a CMV 

promoter using standard techniques as described (121).  The recombinant 

Lentiviral plasmid thus obtained was transfected into 293FT cells along with 

plasmids encoding the gag, pol and rev genes and a plasmid possessing the 

vesicular stomatitis glycoprotein (G) using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA).  At 72 hrs post transfection, cell culture supernatant containing 

the Lentivirus-PPARγ (Lenti-PPARγ) was collected and then purified by 

centrifugation at 27,000 rpm at 40C for 3.5 hrs.  The Lenti-PPARγ virus pellet was 

resuspended in PBS and aliquots of 100µl were stored at -700C.  The 

concentration of Lenti-PPARγ virus was determined by a p24 ELISA (Cell 

Biolabs, San Diego, CA).  A Lentivirus expressing the enhanced Green 

Fluorescent Protein (Lenti-eGFP) was obtained using a similar protocol and was 

utilized as a control in experiments for the determination of transduction 

efficiency.  For in vivo analyses, GM-CSF KO received 50 ng/mL p24 of Lenti-

PPARγ in 50 uL of PBS, Lenti-eGFP or PBS alone (sham) by intra-tracheal 

instillation.   

 

RNA purification and analysis.  Total RNA was extracted from cells by RNeasy 

protocol (Qiagen, Valencia, CA).  Expression of mRNA was determined by real 

time RT-PCR using the ABI Prism 7300 Detection System (TaqMan, Applied 

Biosystems, Foster City, CA) according to the manufacturer’s instructions.  RNA 

specimens were analyzed in duplicate using primer/probe sets for mouse PPARγ, 
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ABCA1 and ABCG1 (ABI) as previously described (51).  Threshold cycle (CT) 

values for genes of interest were normalized to a housekeeping gene 

[glyceraldehyde 3 phosphate dehydrogenase, (GAPDH)] and used to calculate 

the relative quantity of mRNA expression.  Data were expressed as a fold 

change in mRNA expression relative to control values (98). 

 

Cholesterol efflux assay.  BAL cells were plated in 48 well cell culture plates 

(3.5x105 per well) in complete media and maintained at 37°C and 5% CO2.  Cells 

were incubated for 24 hours in 2 µCi/mL [1,2-3H(N)]-cholesterol (NEN, Perkin 

Elmer, Waltham, MA), washed and equilibrated in serum free media for 24 hours.  

Cells were then treated with no acceptors or in the presence of high density 

lipoprotein (HDL) (25µg/uL) (Intracel, Frederick, MD) for an additional 24 hours.  

Supernatants were harvested and cell debris removed by a 5 minute 

centrifugation at 1800 rpm. Cells were washed with 1XPBS and dissolved in 0.2 

M NaOH with 0.1% SDS for 1 hour at room temperature. Aliquots of cell lysates 

and supernatants were counted by liquid scintillation.  Cholesterol efflux was 

expressed as the percentage of radioactivity in the supernatant divided by the 

total radioactivity of the cells and supernatant.  Each assay was run in duplicate.   

 

Cholesterol content analysis. Cholesterol was measured in BAL fluid using the 

Amplex Red Cholesterol Assay (Molecular Probes, Invitrogen, Eugene, OR) 

according to the manufacturer’s protocol.  Aliquots of cell-free BAL fluid were 
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assayed in serial dilution in 96-well plates.  Data is expressed as µg of 

cholesterol per mL of BAL fluid. 

 

Statistical analysis.  Data were analyzed by Student’s t-test using Prism 

software (GraphPad, Inc., San Diego, CA).  Significance was defined as p ≤ 0.05.   
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Results 

 

Lentivirus efficiently transduces alveolar macrophages in vivo.  To monitor 

the transduction efficiency of Lentivirus vectors in alveolar macrophages of GM-

CSF KO mice, we utilized Lenti-eGFP and quantified the number of eGFP 

positive alveolar macrophages (Figure 5.1).  The transduction efficiency was 

79% at 10 days and 54% at 30 days.  Based on these results, the remaining 

experiments were carried only to 10 days post-instillation.  

 
PPARγγγγ and cholesterol transporters ABCG1 and ABCA1 are up-regulated.  

To evaluate the effect of Lenti-PPARγ transduction on alveolar macrophages, 

RNA was extracted from freshly isolated BAL cells at 10 days post-instillation and 

compared to sham treated GM-CSF KO mice (Figure 5.2).  PPARγ mRNA was 

up-regulated 2-fold.  We next evaluated the effect of Lenti-PPARγ on the PPARγ-

regulated transporters ABCG1 and ABCA1, and determined that their mRNA 

expression was also elevated.  PPARγ, ABCG1, and ABCA1 gene expression in 

alveolar macrophages from Lenti-eGFP instilled animals were not different from 

sham.  Increased expression of PPARγ, ABCG1, and ABCA1 protein was also 

determined by immunofluorescence (data not shown). 
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Figure 5.1  Lentivirus efficiently transduces alveolar macrophages in vivo.  
GM-CSF KO instilled with Lenti-eGFP in vivo exhibit eGFP positive cells at 10 
and 30 days post-instillation.  (A) Representative image of eGFP positive GM-
CSF KO alveolar macrophages.  (B) Cytospin preparations of BAL cells were 
counted for eGFP positivity. 
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Figure 5.2 PPARγγγγ and cholesterol transporters ABCG1 and ABCA1 are up-
regulated.  (A) RT-PCR analysis demonstrated up-regulation of PPARγ, (B) 
ABCG1, and (C) ABCA1 mRNA in the alveolar macrophages of GM-CSF KO 
mice instilled with Lenti-PPARγ virus at 10 days post-instillation, compared to 
untreated animals.  RT-PCR values for GM-CSF KO mice instilled with control 
virus Lenti-eGFP were not different from untreated animals.  
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Cholesterol clearance from alveolar macrophages is increased.  The 

previously reported accumulation of cholesterol in the alveolar macrophages and 

BAL fluids of GM-CSF KO mice (110) together with our observations of 

decreased PPARγ and ABCG1 (51) suggested that cholesterol efflux to HDL 

might be impaired.  Having demonstrated the up-regulation of the cholesterol 

transporter ABCG1, we next investigated the cholesterol efflux in the alveolar 

macrophages of Lenti-PPARγ treated GM-CSF KO mice compared to 

macrophages from untreated animals.  The mean cholesterol efflux to HDL 

compared to basal efflux (no acceptor) was 1.4±3.3% in untreated GM-CSF 

macrophages whereas efflux in alveolar macrophages 10 days post-instillation 

was 6.0±0.9% (Figure 5.3A).  To further evaluate the clearance of cholesterol, we 

measured the intracellular neutral lipid accumulation at 10 days post-instillation 

with Lenti-PPARγ.  The intensity of Oil Red O staining was decreased in treated 

mice (Figure 5.3B).  Cell size of Lenti-PPARγ treated GM-CSF KO mice was also 

significantly reduced (data not shown).  Given enhanced cholesterol efflux and 

decreased cellular lipid accumulation, we speculated that extracellular 

cholesterol would be increased in the BAL fluid.  As expected, the extracellular 

cholesterol was increased (27±3 µg/mL) as compared to BAL fluid from untreated 

GM-CSF KO mice (12±0.2 µg/mL) (Figure 5.3C).  These results suggest PPARγ 

promotes cholesterol catabolism in alveolar macrophages through ABCG1.   
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Figure 5.3 Cholesterol clearance from alveolar macrophages is increased.   
(A) ABCG1-mediated cholesterol efflux to HDL is increased in the alveolar 
macrophages of GM-CSF KO mice instilled with Lenti-PPARγ.  (B)  
Representative images from alveolar macrophages stained with Oil Red O to 
detect neutral lipid accumulation show decreased intensity of Oil Red O staining 
in the alveolar macrophages treated with Lenti-PPARγ at 10 days post-instillation.   
(C)  Cholesterol accumulates in the BAL fluid of GM-CSF KO mice instilled with 
Lenti-PPARγ.   
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Discussion 

 

 Alternative therapies for PAP are needed, as less than 50% of patients 

treated with recombinant GM-CSF exhibit symptomatic and radiographic 

improvement (53,144,145).  Previous studies have suggested that the clearance 

of surfactant by alveolar macrophages is mediated by the GM-CSF-PPARγ 

pathway (6,7).  Our findings confirm PPARγ transcriptionally regulates surfactant 

catabolism in alveolar macrophages and provide evidence that PPARγ is a valid 

therapeutic target.  

 To address the role of PPARγ in surfactant catabolism, we have up-

regulated PPARγ in PPARγ-deficient alveolar macrophages of GM-CSF KO mice 

in vivo.  We have demonstrated increased expression of PPARγ and downstream 

targets ABCG1 and ABCA1.  Up-regulation of PPARγ and ABCG1 resulted in 

increased cholesterol efflux via the ABCG1-HDL pathway.  Neutral lipid 

accumulation was reduced in treated alveolar macrophages, as evidenced by Oil 

Red O.  Finally, free cholesterol was increased in the BAL fluid of treated GM-

CSF KO mice.  Taken together, these studies suggest that the expression 

PPARγ and ABCG1 in alveolar macrophages promotes the catabolism of 

surfactant, specifically the cholesterol component of surfactant.   

 PPARγ regulates the catabolism and transport of cholesterol in other 

tissue macrophages via the lipid transporters ABCG1 and ABCA1 (77,78).  The 

expression of PPARγ, ABCG1, and ABCA1 were increased in the alveolar 
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macrophages of GM-CSF KO mice treated with Lenti-PPARγ at 10 days post-

instillation.  These results are an extension of our previous results in which 

PPARγ and ABCG1 were deficient in GM-CSF KO alveolar macrophages.  

Replacement of PPARγ corrects these deficiencies and further links the PPARγ-

ABCG1 pathway in the catabolism of surfactant. 

Cholesterol is the major neutral lipid in surfactant.  Therefore, 

dysregulation of cholesterol catabolism in alveolar macrophages may have 

impacts on the clearance of surfactant overall.  We have shown that the alveolar 

macrophages of GM-CSF KO mice accumulate neutral lipids and are deficient in 

PPARγ (47).  We show that by restoring PPARγ in this system, there is a 

reduction in neutral lipid accumulation which we speculated was due to increased 

cholesterol efflux from the macrophages.  This was supported both by the 

increased ABCG1-HDL cholesterol efflux and elevated levels of extracellular 

cholesterol in Lenti-PPARγ treated GM-CSF KO mice. 

 Utilizing a Lenti-PPARγ virus, we restored expression of PPARγ in the 

PPARγ-deficient alveolar macrophages of GM-CSF KO mice.  Replacement of 

PPARγ resulted in increased expression of the cholesterol transporter ABCG1 

and decreased intracellular lipid accumulation, confirming our hypothesis.  Taken 

together, these studies directly link the expression of PPARγ and ABCG1 in the 

promotion of surfactant catabolism and may serve as potential therapeutic 

targets in the treatment of PAP.  
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 CHAPTER 6 
 
 

SUMMARY 

 

 The overall purpose of the studies described in Chapters 2-5 was to 

investigate the role of the nuclear transcription factor PPARγ in surfactant 

catabolism in alveolar macrophages.  This dissertation investigated the 

hypothesis that surfactant catabolism is regulated by the PPARγ-ABCG1 

pathway.  Chapters 2 and 4 detailed experiments which utilized a macrophage-

specific PPARγ KO mouse model and demonstrated the following: 

(1) PPARγ KO mice exhibit a PAP-like lung pathology with the accumulation 

of surfactant and the presence of foamy alveolar macrophages.  

(2) The deletion of PPARγ resulted in the dysregulation of ABC transporters 

and LXR transcription factors and reduced ABCG1-mediated cholesterol 

efflux. 

(3) In addition to dysregulated cholesterol efflux genes LXRα and ABCG1, the 

alveolar macrophages of PPARγ KO exhibited decreased expression of 

cholesterol biosynthesis gene SREBP2 and downstream targets HMGCR 

and LDL-R and increased expression of cholesterol scavenger receptors 

CD36 and SRA-I. 

(4) Replacement of PPARγ in vivo in PPARγ KO mice resulted in up-

regulation of cholesterol efflux genes LXRα and ABCG1, cholesterol 
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biosynthesis genes SREBP2 and HMGCR, and receptors LDL-R and 

CD36 in alveolar macrophages. 

Results from these studies indicate that PPARγ regulates surfactant catabolism 

through the regulation of LXR transcription factors and ABC lipid transporters in 

alveolar macrophages. 

 Chapter 5 relates experiments in which PPARγ expression was restored in 

vivo in the PPARγ-deficient alveolar macrophages of GM-CSF KO mice, the 

mouse model for the human lung disease PAP.  These experiments 

demonstrated the following: 

(1)  GM-CSF KO mice instilled in Lenti-PPARγ in vivo efficiently up-regulated 

PPARγ and ABCG1. 

(2) Expression of the PPARγ-ABCG1 pathway resulted in increased 

cholesterol efflux from GM-CSF KO alveolar macrophages.  

(3) Expression of PPARγ resulted in reduction of lipid-laden alveolar 

macrophages and increased extracellular cholesterol in the lungs of GM- 

CSF mice. 
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Macrophage-specific Deletion of PPARγγγγ  

 

 Previous findings in our laboratory demonstrated that the alveolar 

macrophages of PAP patients and GM-CSF KO mice were deficient in PPARγ 

(6,51).  We utilized a macrophage-specific PPARγ KO mouse to investigate the 

role of PPARγ in alveolar macrophages and surfactant catabolism.  Interestingly, 

PPARγ KO mice developed pulmonary disease similar to that of PAP patients 

and GM-CSF KO mice with the accumulation of surfactant phospholipids, 

cholesterol, and associated proteins.  Additionally, the foamy, lipid-laden alveolar 

macrophages of PPARγ KO mice phenotypically resembled those of PAP 

patients and GM-CSF KO mice. This is the first report directly linking the 

deficiency of PPARγ in alveolar macrophages to the accumulation of surfactant.    

 Consistent with PAP patients and GM-CSF KO mice (51), the expression 

of ABCG1 was decreased and ABCA1 increased in alveolar macrophages of 

PPARγ KO mice.  Functional analyses of the transporters corresponded to gene 

expression in that PPARγ KO alveolar macrophages exhibited decreased 

ABCG1-mediated cholesterol efflux and increased ABCA1-mediated efflux.  

These results may reflect a compensatory mechanism in which the deficiency of 

one ABC transporter results in PPARγ and LXR ligand accumulation leading to 

the induction of the other transporter (86,87).  However, it has been suggested, 

and our results provide further evidence, that the induction of ABCA1 is less 

efficient at compensating for the loss of ABCG1, as ABCG1-deficient mice 
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develop more severe lipid accumulation in the lung than ABCA1 knockout 

models (86,89,90).  Our results indicate that ABCG1-mediated cholesterol efflux 

to HDL may be the major pathway for cholesterol efflux in alveolar macrophages.    

An important, unexpected difference emerged from the study of PPARγ 

KO alveolar macrophages from what has been published previously on PAP 

patients and GM-CSF KO mice: LXRα expression was increased in PAP and 

GM-CSF KO (51) but decreased in PPARγ KO.  We postulate that this difference 

is due to the fact that PPARγ is not completely absent in PAP patients and GM-

CSF KO mice.  Indeed, upon restoration of PPARγ in PPARγ KO mice, LXRα 

expression was induced.  Although regulated by additional independent 

mechanisms, LXRα is directly regulated by PPARγ.  Chawla, et al. concluded 

that PPARγ is an essential regulator of cholesterol metabolism in arterial 

macrophages (146) and our findings indicate the same is true in alveolar 

macrophages.   

 Although the expression of LXRβ has not been reported in PAP or GM-

CSF KO, we demonstrated that LXRβ was up-regulated in PPARγ KO alveolar 

macrophages.  While LXRα is typically regarded as the predominant isoform in 

the cholesterol efflux pathway in macrophages, both LXRα and LXRβ have been 

reported to transcriptionally promote genes involved in cholesterol efflux.  The 

transcriptional efficiency and tissue-specificity of the individual isoforms remain in 

question (101,113-115,147).  Importantly, LXRβ has been shown to be regulated 
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independently of PPARγ and thereby represents a PPARγ-independent pathway 

in the transcriptional promotion of cholesterol efflux from macrophages (146).   

 Interest in differentiating the LXR isoforms has increased due to the 

potential therapeutic application for atherosclerosis.  For example, ligand 

activation of LXRβ reduced atherosclerosis in the vascular tissue of mice lacking 

LXRα (148).  However, unlike LXRα, specific activation of LXRβ did not result in 

increased triglyceride production (149,150).  The contribution of the individual 

LXR isoforms in surfactant catabolism is unknown and warrants further 

investigation.   

 While the LXR pathway is enhanced, as evidenced by increased 

expression of LXRβ, ABCA1, ApoE, and CYP27A1, surfactant accumulates in 

PPARγ KO mice suggesting this pathway is not sufficient to maintain surfactant 

catabolism in the absence of PPARγ.  Additionally, this data indicates LXRβ is 

responsive to intracellular oxysterol build-up and may also reflect the presence of 

LXRβ-specific ligand.  Increased basal expression of LXRβ was unexpected and 

to our knowledge has not been observed in other tissues that express both 

isoforms.  For example, the hepatic tissues of LXRα KO mice did not exhibit 

compensatory LXRβ expression (147).  Increased expression of LXRβ in the 

alveolar macrophages of PPARγ KO mice may demonstrate site and/or cell 

specific differences.  The deficiencies of transcription factors PPARγ and LXRα 

and cholesterol transporter ABCG1 and the resulting accumulation of various 
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surfactant components in PPARγ KO mice emphasize the importance of 

cholesterol catabolism in the overall clearance of surfactant.    

 Several comprehensive reviews have suggested that the PPARγ-LXR 

pathway is the link between lipid metabolism and inflammation in macrophages 

(151,152).  Studies presented in this thesis demonstrate that PPARγ regulates 

lipid metabolism in alveolar macrophages.  We have also recently reported that 

the alveolar macrophages of PPARγ KO mice exhibit increased expression of 

pro-inflammatory Th-1 associated cytokines (96).  Although the presence of 

modified-LDL in the lungs of PPARγ KO mice has not been determined, research 

in the field of atherosclerosis has shown that foam cell phenotype, the 

accumulation of cholesterol, and a pro-inflammatory state are indicative of 

increased uptake of modified-LDL (7).  We have presented indirect evidence 

supporting the presence of modified-LDL in the lungs of PPARγ KO mice.  First, 

enhanced expression of scavenger receptors CD36 and SRA-I indicate the 

increased presence of substrate (modified-LDL).  Secondly, the accumulation of 

predominantly free cholesterol in the alveolar macrophages of PPARγ KO mirrors 

the late atherosclerotic event in which free cholesterol deposition results from 

insufficient cholesterol hydrolysis in lysosomes due to oxidized-LDL particles 

(64).  Finally, data from Yvan-Charvet and colleagues have suggested ABCG1 

has a specific role of protecting the lungs from oxidized sterol accumulation 

(86,153).  ABCA1-deficient macrophages treated with oxidized-LDL rapidly 

underwent apoptosis but the addition of HDL significantly decreased the 
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percentage of cells undergoing apoptosis.  Therefore, the reduced expression of 

ABCG1 in PPARγ KO alveolar macrophages may have deleterious effects on the 

accumulation of oxidized sterols.   

 Our findings indicate that a combination of decreased cholesterol efflux 

and increased uptake of modified-LDL by scavenger receptors contributed to 

cholesterol overload and foam cell formation in the alveolar macrophages of 

PPARγ KO mice.  We speculate that insufficient catabolism of cholesterol derived 

from modified-LDL impairs the overall catabolism of surfactant in alveolar 

macrophages.  Similar to other tissue macrophages, the influx and efflux of 

cholesterol in alveolar macrophages appears to be regulated by PPARγ.  

However, the lung is a cholesterol-rich environment and the maintenance of 

cholesterol catabolism is critical.  While the changes in the lungs of PPARγ KO 

mice cannot be attributed to a single mechanism, the abundance of cholesterol 

indicates cholesterol may contribute to the dysregulated state of surfactant 

catabolism.   
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Restoration of PPARγγγγ in GM-CSF KO Mice  

 

 To further investigate the PPARγ-ABCG1 pathway in the catabolism of 

surfactant, we next reconstituted PPARγ expression in GM-CSF KO mice in vivo 

using the retroviral vector Lenti-PPARγ.  Ten days post-instillation of Lenti-

PPARγ, we measured increased expression of PPARγ and ABCG1 in the GM-

CSF KO alveolar macrophages.  Correlating to the up-regulation of the 

cholesterol transporter ABCG1, ABCG1-mediated cholesterol efflux was 

increased.  These results corresponded to decreased intracellular neutral lipid 

accumulation and increased extracellular cholesterol levels to suggest that 

cholesterol catabolism was enhanced in vivo in treated alveolar macrophages.  

These results provide further evidence that PPARγ transcriptionally regulates 

ABCG1 and thereby promotes cholesterol catabolism in alveolar macrophages.   

 Extrapolating from the GM-CSF KO model, our results suggest that foam 

cell formation and the accumulation of cholesterol in the lungs of PAP patients 

resulted from deficiencies in PPARγ and ABCG1 and perhaps contributed to the 

accumulation of surfactant overall.  This data extends our previous results and 

indicates that the GM-CSF-PPARγ pathway regulates surfactant clearance in 

alveolar macrophages through the ABCG1 lipid transporter. 

 It has been clearly demonstrated that GM-CSF is a critical mediator of 

surfactant homeostasis in alveolar macrophages.  Our work has continued this 

pathway to include PPARγ and ABCG1.  Alternative therapies are needed, as 
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treatment with recombinant GM-CSF results in symptomatic or radiographic 

improvement in approximately 50% of PAP patients (53,144,145).  A follow-up 

study demonstrated that non-responding patients have high titers of neutralizing 

GM-CSF auto-antibodies which may be too high for exogenous GM-CSF 

treatments to overcome (54).  In clinical trials, PAP patients were treated with 

higher doses of GM-CSF than current dose recommendations to reduce the 

duration and degree of neutropenia in certain cancer patients undergoing 

chemotherapy (53).  While there is no evidence to suggest that PAP patients 

increase production of neutralizing antibodies in response to GM-CSF treatment 

(53), the possibility remains that increasing doses of antigen could stimulate 

antibody production.  Taken together, this suggests PPARγ may be a more 

suitable therapeutic target than GM-CSF for PAP.   

 PPARγ agonist rosiglitazone may confer additional anti-inflammatory 

properties through the activation of PPARγ.  In fact, PPARγ agonists have been 

shown to diminish inflammatory responses in murine models of asthma (154) and 

improve lung function in corticosteroid-resistant asthma patients (155).  

Decreased levels of PPARγ protein in the alveolar macrophages of PAP patients 

may attenuate the effects of PPARγ agonists.  However, recent in vitro models 

have demonstrated that the presence of synthetic and natural PPARγ ligands up-

regulates the expression of PPARγ likely through downstream positive feedback 

mechanisms (156).  While currently only conjecture, PPARγ may prove to be a 

more suitable target for the treatment of PAP.  Our work, however, confirms 
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PPARγ regulates surfactant catabolism in alveolar macrophages and provides 

evidence that PPARγ is a valid therapeutic target. 
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Future Directions 

 

 Several questions arise from the work reported in this thesis.  First, one 

major difference between PPARγ KO and GM-CSF KO mice is the presence of 

GM-CSF.  GM-CSF is a hematopoietic growth factor that promotes cell survival 

and proliferation and has a specific role in the differentiation of alveolar 

macrophages (7,29,102).  One explanation for why GM-CSF deficiency only 

disrupts the terminal differentiation of alveolar macrophages is the expression of 

the transcription factor PU.1 (41).  PU.1 promotes differentiation in several 

hematopoetic lineages including alveolar macrophages, unlike other tissue 

macrophages (104,157).   

 The alveolar macrophages of PAP patients and GM-CSF KO mice have 

significantly reduced levels of PU.1 (103,104).  The alveolar macrophages from 

GM-CSF KO mice do not express differentiation marker CD11c (158,159), and 

PU.1-dependent terminal differentiation markers CD32, mannose receptor (MR), 

and macrophage colony-stimulating factor receptor (MCSFR) are reduced in the 

alveolar macrophages of PAP patients and GM-CSF KO mice (103,104).  

Replacement of PU.1 in GM-CSF KO mice corrected surfactant catabolism (3). 

 While induced upon differentiation into macrophages (160), PPARγ is not 

required for the differentiation of macrophages (100).  Further, the expression of 

GM-CSF and PU.1 is not deficient in the alveolar macrophages of PPARγ KO 

mice.  This suggests the differentiation and maturation of the PPARγ KO alveolar 
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macrophages is not affected as with GM-CSF KO mice.  Several cell-surface 

markers of macrophage maturation and differentiation, such as those mentioned 

above, could be analyzed by flow cytometry to conclusively address the 

differentiation of PPARγ KO alveolar macrophages.    

 Another area of interest stemming from this work is the relationship 

between lipid accumulation and inflammation in PPARγ KO mice.  Several 

comprehensive reviews have suggested that the PPARγ-LXR pathway is the link 

between lipid metabolism and inflammation in macrophages (151,152).  Herein 

we have demonstrated that PPARγ regulates lipid metabolism in alveolar 

macrophages.  We have also recently reported that the alveolar macrophages of 

PPARγ KO mice exhibit increased expression of Th-1 associated pro-

inflammatory cytokines (96).  It is unclear whether the deficiency of PPARγ 

resulted in lipid accumulation which lead to inflammation or if it was the 

production of inflammatory mediators that lead to lipid accumulation.   

 To address this question, we would first investigate the presence of pro-

inflammatory cytokines and surfactant accumulation in younger PPARγ KO mice 

than the 8-12 week old mice utilized in the present studies.  As GM-CSF KO 

mice develop pulmonary disease by 3 weeks of age (30), studying 3-6 week old 

PPARγ KO mice may clarify the onset of surfactant accumulation and 

inflammatory responses.  Since it is unlikely that the results from these 

experiments would be definitive, additional in vitro experiments would be needed.  

For example, we could compare the inflammatory response elicited from 
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cholesterol-depleted wild type and PPARγ KO alveolar macrophages, by 

treatment with methyl-beta-cyclodextrin, cultured in the presence surfactant and 

an inflammatory agent such as lipopolysaccharide (161,162).  Understanding the 

complex progression of lipid accumulation and inflammation in PPARγ KO mice 

is critical to the study of the regulation of surfactant metabolism in a broader 

context. 

 We have demonstrated that the alveolar macrophages of PPARγ KO mice 

develop cholesterol-laden alveolar macrophages that exhibit a foam cell 

phenotype.  Free cholesterol comprised the bulk of the intracellular cholesterol 

accumulation.  Importantly, the source of accumulating cholesterol (ie, LDL-

derived or modified-LDL-derived) is a major factor in the storage and metabolism 

of the cholesterol.  Cholesterol derived from modified-LDL is poorly catabolized 

and can result in the accumulation of free cholesterol which can disrupt cell 

signaling, cause plasma membrane rigidity, and induce pro-apoptotic cascades 

(163).  The presence of modified-LDL can be indirectly determined utilizing 

several protocols to detect the presence of modified-LDL antibodies in sera 

(164,165).  Alternatively, antibodies against modified-LDL could be used to 

measure the protein directly (166,167).   

 We propose that insufficient catabolism of cholesterol derived from 

modified-LDL impairs the overall catabolism of surfactant.  Phospholipid efflux 

studies on the alveolar macrophages of PPARγ KO mice, if found to be similar to 

wild type, could confirm specific defects in the regulation of cholesterol.  These 
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findings would have implications in the study of PPARγ and human lung diseases 

associated with surfactant accumulation. 

Finally, the maintenance of cholesterol efflux is a crucial part of cholesterol 

homeostasis and is essential in the prevention of foam cell formation (77,168).  

The results presented in this thesis suggest that ABCG1-mediated cholesterol 

efflux is especially critical to the catabolism of surfactant in the alveolar 

macrophage.  We have demonstrated that PPARγ KO alveolar macrophages 

exhibit reduced ABCG1 and ABCG1 cholesterol efflux.  Replacement of PPARγ 

in GM-CSF KO mice induced expression of ABCG1 and increased ABCG1-

mediated cholesterol efflux.  The next step in developing the PPARγ-ABCG1 

pathway would be to silence ABCG1 expression using small interfering RNA 

(siRNA) in wild type alveolar macrophages and measure the efflux of cholesterol 

to serum as a measure of maximum cholesterol efflux potential and to specific 

ABCG1-mediated efflux HDL.  If reduced, this would indicate ABCG1 is a major 

contributor to cholesterol efflux from alveolar macrophages.  LXR agonists could 

be used in conjunction with ABCG1 siRNA to induce ABCA1 expression to reflect 

conditions in PPARγ KO alveolar macrophages.    

 



143 

Conclusions 

 

The work presented in this dissertation addresses the role of PPARγ in 

surfactant catabolism in alveolar macrophages.  We hypothesized that PPARγ 

promotes surfactant catabolism by the regulation of ABCG1 and that the up-

regulation of PPARγ will increase surfactant catabolism in PPARγ-deficient 

alveolar macrophages and reduce the presence of lipid-engorged alveolar 

macrophages in the lung.   

We show that the targeted knockout of PPARγ in macrophages resulted in 

the accumulation of surfactant in the alveolar spaces of the lung and within the 

alveolar macrophages, reduced expression of ABCG1, and reduced ABCG1-

mediated cholesterol efflux.  These results support the hypothesis and directly 

link the deficiency of PPARγ to lipid accumulation in the lung.   

To study the effects of PPARγ replacement on surfactant catabolism in 

PPARγ-deficient alveolar macrophages in vivo, we developed an efficient 

Lentivirus expression system to up-regulate PPARγ.  Replacement of PPARγ in 

GM-CSF KO mice resulted in increased expression of ABCG1, enhanced 

ABCG1-mediated cholesterol efflux, and reduced intracellular lipid accumulation.   

Results from all sets of experiments suggest that PPARγ mediates a critical role 

in surfactant homeostasis through the regulation of ABCG1.  These findings have 

potential implications in lung diseases such as PAP in which surfactant 

accumulates and PPARγ and ABCG1 are deficient in alveolar macrophages.  
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Understanding the role of PPARγ in normal surfactant homeostasis provides 

insight into the pathophysiology of PAP and identifies a potential therapeutic 

target.  
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