
 

 

ABSTRACT 

Charles Pittman Humphrey Jr. CONTROLS ON SEPTIC SYSTEM WASTEWATER 

TREATMENT AND SHALLOW GROUNDWATER QUALITY IN COASTAL 

NORTH CAROLINA. (Under the direction of Dr. Michael O’Driscoll).  Ph.D. Program 

in Coastal Resources Management, December 2009.  

 Excess nitrogen and bacteria concentrations in coastal waters of North Carolina 

have led to eutrophic conditions, fish kills, and the closure of shellfish waters. Regulatory 

efforts by the state to reduce nitrogen and bacteria loading to surface waters have focused 

on agriculture, urban runoff, and centralized wastewater treatment plant discharges 

without regard to septic system derived nitrogen and bacteria. The effects of septic 

systems on groundwater quality (nitrogen and bacteria) were evaluated in eastern North 

Carolina. Sixteen sites (residential yards) with septic systems in soils ranging from sand 

(group I) to sandy clay loam (group III) were instrumented with groundwater monitoring 

wells adjacent to the systems. It was determined that the soil type and separation distance 

had strong influences on septic system treatment efficiency.  Increasing the separation 

distance requirements from systems to the seasonal high water table to 60 cm (from 30-

45 cm) could improve the treatment efficiency of systems (4 mg/L decrease in median 

NH4
+
-N concentrations and 65 cfu/100 mL decrease in geometric mean E. coli densities) 

and groundwater quality. 

Soil profile descriptions and groundwater level data from the sites were used to 

evaluate the accuracy of soil color (chroma 2 or 1 colors) for determining the depth to the 

seasonal high water table (SHWT) for septic system design purposes. For most sites, soil 



 

 

colors and the measured SHWT were within + 18 cm of each other. Therefore water level 

data also suggest an increase (15+ cm) in separation distance to SHWT indicators would 

be beneficial.  

Using groundwater quality and flow data from the sites, nitrogen loads from 

septic systems to groundwater were estimated. For the Newport River watershed, the 

septic system nitrogen loading rate to groundwater for systems in group I and II soils 

(28.5 to 57.5 kg/ha/yr) were similar to the nitrogen loading rate attributed to agriculture 

(37.5 kg/ha/yr) in the same county, and higher than estimates of atmospheric nitrogen 

deposition for the area (8 to 12 kg/ha/yr). Therefore, the potential pollutant contributions 

from septic systems to ground and surface waters should be included in watershed-scale 

efforts to reduce nitrogen and bacteria loading.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

 

At the national, state, and regional scale, septic systems are utilized by 25, 50, and 

60% of the population, respectively (Siegrist et al. 2005; and Pradhan et al. 2007). In 

North Carolina, 40,000 new systems are installed each year (Hoover 2004). These 

(septic) systems treat and dispose of human wastewater that contains many constituents 

such as viruses, bacteria, protozoa, nitrogen, phosphorus, and various metals that are 

potentially hazardous to public and environmental health (Canter and Knox 1985). 

Coastal North Carolina counties are expected to grow 20.5% by 2020 (Tillman 2004) 

with much of the future growth being accommodated by on-site systems.  More septic 

systems will increase wastewater loading to the subsurface environment.   

For coastal North Carolina, the potential for ground and surface water contamination 

by human wastewater constituents exists, due to sandy (and permeable) soils, shallow 

water tables, and the close proximity of on-site systems to surface waters such as rivers, 

estuaries, or the ocean. Ground and surface water contamination by improperly 

functioning septic systems may diminish the quality of drinking water, recreational 

waters, shellfisheries, coastal ecology, and tourism. Recent studies (Corbett et al. 2001; 

Buetow  2002;  Borchardt et al. 2003; Reay  2004;  Cahoon et al. 2006) have shown the 

potential for on-site systems to contribute pollutants to ground and surface waters, but 

there is a lack of published research that provides information on how common septic 

system subsurface treatment failures are in coastal areas, and the potential effect septic 

systems can have on shallow groundwater quality at the watershed scale. The study 
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objectives were to: 1) assess the effects of soil type and separation distance on 

groundwater quality adjacent to septic systems;  2) evaluate the use of soil colors as 

indicators of the seasonal high water table when designing septic systems;  3) develop a 

watershed- scale method of estimating the nitrogen loads from septic systems to 

groundwater in the Newport River Basin watershed;  and 4) to suggest management 

strategies for on-site wastewater management that can protect shallow groundwater 

quality in eastern North Carolina. 

1.2 Organization 

Chapter 2, “Effects of Soil Type and Separation Distance on Nitrogen and Bacteria 

Reduction from On-site Wastewater Systems in Coastal North Carolina”, presents data 

obtained from groundwater adjacent to 16 septic systems in soils spanning from sand to 

sandy clay loam. Dissolved inorganic nitrogen and E. coli densities adjacent to systems 

during periods of relatively shallow versus relatively deep water table periods were 

evaluated. Groundwater quality adjacent to septic systems in different soil groups were 

also compared to background conditions. This chapter provides a recommendation for 

vertical separation distances from septic systems to water table, based on observed water 

quality and water table dynamics.  

Chapter 3, “Evaluation of Soil Colors as Indicators of the Seasonal High Water Table 

for Designing On-site Wastewater Systems in Coastal North Carolina”, evaluates the 

accuracy of low chroma (2 or 1) colors for predicting the depth of the 14-day seasonal 

high water table for 6 soil series. An analysis of the frequency and duration of water table 

saturation for depths 30 to 60 cm above soil color water table indicators was conducted. 
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The septic drainfield installation depths of the 16 systems were compared to water table 

indicators and the observed 14-day seasonal high water table. These data were used to 

assess the likelihood that septic systems designed using low chroma colors as predictors 

of the seasonal high water table were meeting the separation distance requirement to the 

actual seasonal high water table.  

 Chapter 4, “Septic System Nitrogen Loading to Groundwater in the Newport 

River Watershed, North Carolina”, details a methodology for estimating the nitrogen 

contributions from on-site systems to the surficial aquifer at the watershed scale. This 

chapter also provides a comparison of nitrogen loading rates from other sources such as 

row crop agriculture and atmospheric deposition.  

Chapter 5 provides a synthesis of results and discusses shallow groundwater 

quality management implications for septic systems in coastal North Carolina and other 

states.  
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CHAPTER 2: EFFECTS OF SOIL TYPE AND SEPARATION DISTANCE ON 

NITROGEN AND BACTERIA REDUCTION FROM ON-SITE WASTEWATER 

SYSTEMS IN COASTAL NORTH CAROLINA 

2.1 Abstract 

The goals of this study were to evaluate the effects of soil type and vertical 

separation distance on shallow groundwater quality adjacent to septic systems in coastal 

settings. Groundwater quality and groundwater levels adjacent to 16 septic systems in 

three different soil groups (I-sand, II-sandy loam, and III-sandy clay loam) were 

monitored for the dissolved inorganic nitrogen (DIN) species (NO3
-
-N, NH4

+
-N), and E. 

coli and compared to background groundwater concentrations for 15 months in coastal 

North Carolina. Systems in soil group I had the highest median concentrations of DIN 

(18.9 mg/L) and systems in group II had the highest geometric mean E. coli densities 

(127 cfu/100 mL) in groundwater adjacent to septic systems, respectively. Systems in 

group III soils were more efficient at reducing DIN and E. coli densities. Median 

groundwater NH4
+
-N and geometric mean E. coli densities for systems in soil groups I 

and II that maintained a 60+ cm separation to the water table were 4 mg/L and 65 cfu/100 

mL lower in relation to systems that had < 60 cm separation. Increasing the North 

Carolina separation distance requirements to the water table for septic systems in sandy 

soils to 60+ cm could help in protecting shallow groundwater quality. 

2.2  Introduction 

 

Over the past 25 years, North Carolina has experienced degradation of its coastal 

water quality. Massive fish kills in the 1990’s and the closure of over 1150 acres of 
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shellfish waters since 1990 have been attributed to high nutrient and bacteria 

concentrations in coastal waters (Whitall et al. 2003; North Carolina Division of Water 

Quality 2005). Regulatory efforts by the state of North Carolina to improve water quality 

have focused on reducing nutrient and bacterial pollution from the agriculture industry, 

centralized wastewater treatment plants, and stormwater runoff from new developments 

(North Carolina Department of Environment and Natural Resources 2003). Potential 

pollutant (nutrient and bacteria) loadings to ground and surface waters from septic 

systems were not addressed even though almost 60% of the coastal residences use septic 

systems (North Carolina National Estuarine Research Reserve 2003) and domestic 

wastewater is known to contain high concentrations of bacteria and nutrients (Canter and 

Knox 1985).   

An analysis of North Carolina Division of Environmental Health (2006) reports 

indicates that nearly 1,500 coastal septic systems fail hydraulically (surfacing effluent 

and/or wastewater back-up in the home) each year. These failures may temporarily 

contribute pollutants to surface waters and/or expose people and animals to pollutants 

from wastewater. Hydraulic malfunctions are often visible and reported to local health 

departments voluntarily by users of the malfunctioning systems and/or adjacent 

landowners.  Hydraulic malfunctions are not the only means by which septic systems can 

affect water quality. Groundwater transport of septic effluent to adjacent surface waters is 

another potential source of degraded coastal water quality. Past studies have shown that 

nitrogen (Robertson et al. 1991; Postma et al. 1992; Harmon et al. 1996; Ptacek 1998; 

Buetow 2002; Corbett et al. 2002; and Reay 2004) and/or bacteria (Carlile et al. 1981; 
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Cogger et al. 1988; Lipp et al. 2001; Booth et al. 2003; Ahmed et al. 2005; and Cahoon et 

al. 2006) loadings from septic systems to ground and/or surface waters can result in the 

degradation of water quality.  

Nitrogen concentrations exceeding 20 mg/L in groundwater beneath and/or 

adjacent to septic systems have been reported for the Coastal Plain of North Carolina 

(Buetow 2002), a sandy aquifer in Ontario, Canada (Harman et al. 1996), a coastal barrier 

bar in Point Pelee, Ontario, Canada (Ptacek 1998), in Rhode Island (Postma et al. 1992) 

and in the Coastal Plain of Virginia (Reay 2004). Each of these sites contained sandy 

soils and sediments. The dissolved inorganic nitrogen concentrations (NO3
-
-N + NH4

+
-N) 

in groundwater beneath these systems were elevated in relation to background conditions 

and the North Carolina Department of Environment and Natural Resources (1998) water 

quality standard for NO3
- 
-N (10 mg/L).   

Furthermore, studies by Harmon et al. (1996), Robertson (1991), and Ptacek 

(1998) in Canada, Buetow (2002) in North Carolina, and Corbett et al. (2002) in Florida 

included tracking the groundwater septic plumes for varying distances away from the 

systems and each study showed septic systems impacts on groundwater away from the 

systems. Robertson (1991) found that nitrogen derived from septic systems can migrate 

away from the systems and affect groundwater quality at distances as great as 130 m. 

However, elevated groundwater NO3
- 
-N concentrations do not necessarily correspond to 

high loading rates of nitrogen to adjacent surface waters. Studies by Robertson (1991) 

and Buetow (2002) showed high concentrations of NO3
-
-N in groundwater down-gradient 

from the septic systems, but little of the nitrogen actually made it to surface waters 
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because the groundwater impacted plume had to flow through organic rich stream and 

river bed sediments that fueled denitrification.  

In addition to nitrogen, bacteria from septic systems may contribute to the  

degradation of shallow groundwater (Carlile et al. 1981; Cogger et al. 1988; and 

Scandura and Sobsey 1997) and surface water quality (Lipp et al. 2001; Booth et al. 

2003; Ahmed et al. 2005; and Cahoon et al. 2006). Studies in the Coastal Plain of North 

Carolina by Carlile et al. (1981) and Cogger et al. (1988) showed that groundwater 1.8 m 

and 16 m down-gradient from septic systems contained fecal coliform densities of up to 

3218 and 1600 MPN/100 mL, respectively. Coliform densities in groundwater beneath 

septic systems were higher during periods with high water tables (up to 25,000 MPN/100 

mL) than during periods of low water tables (60 MPN/100 mL). A study by Scandura and 

Sobsey (1997) in coastal North Carolina found that groundwater adjacent to septic 

systems installed in sandy soils with high water tables had extensive viral and bacterial 

contamination. These studies indicated that soil type and separation distance influence 

septic effluent treatment and shallow groundwater quality in coastal areas.  

Some groundwater studies did not include monitoring adjacent surface water 

quality (Carlile et al. 1981; Cogger et al. 1988; and Scandura and Sobsey 1997) however, 

research by Lipp et al. (2001), Booth et al. (2003), Ahmed et al. (2004), and Cahoon et al. 

(2006) provided links between septic system derived bacteria and surface water 

contamination in coastal areas of Charlotte Harbor, Florida, south central Virginia, 

Queensland, Australia, and coastal North Carolina, respectively.   
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The primary controls on groundwater quality beneath septic systems include soil 

texture, system type, vertical separation distance, wastewater strength, and wastewater 

loading rate (Siegrist 1987; Karathanasis et al. 2006; and Lowe et al. 2008). Soil and 

system type at each site are static while vertical separation distance, wastewater strength, 

and loading rate are often dynamic. The soil between the septic system drainfield 

trenches and water table provides most of the wastewater treatment (Hoover et al. 1996). 

The North Carolina Division of Environmental Health, On-site Wastewater Section 

(1999) requires 30 cm of vertical separation distance from septic system trench bottom to 

the seasonal high water table for systems installed in group II-IV soils (sandy loam and 

finer soil types), and 45 cm of separation for group I soils (sands). Other coastal states in 

the southeastern US (GA, VA, FL, MD) generally require a 45 to 60 cm separation 

distance for systems installed in any soil type, with the exception of South Carolina (15 

cm) (Stall 2008; Georgia Department of Human Resources 2007). Furthermore, North 

Carolina septic systems installed in group I soils are assigned the highest wastewater 

loading rates (Table 2.1), effectively reducing the land area required for a drainfield in 

group I in comparison to group II-IV soils and allowing for high septic system density. 

For example, in some coastal North Carolina communities, such as Atlantic Beach, 

densities of greater than 75 systems per square kilometer exist. If 30-45 cm of vertical 

separation distance from system to seasonal high water table is not sufficient in reducing 

pollutant concentrations in groundwater beneath systems, then shallow groundwater and 

potentially adjacent surface waters can be impacted by nutrients and bacteria.  
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The objectives of this study were to determine the effects that soil type and 

vertical separation distance have on shallow groundwater quality (dissolved inorganic 

nitrogen and E. coli) beneath septic systems in coastal settings. Groundwater quality data 

were analyzed in context of North Carolina’s current regulations and used to assess 

whether the rules adequately protect groundwater quality in the coastal areas. 

2.3 Methods 

 

2.3.1 Soil Characterization and Groundwater Monitoring 

 

Sixteen residential septic systems in coastal North Carolina (Figure 2.1) were 

instrumented with monitoring wells. The septic system components, including the tank 

and drainfield trenches, were located using a tile-drain probe rod. Wells were installed 

between drainfield trenches near the front of the systems (within 5 m of the start of the 

trench) for trench systems, and down-gradient from bed systems (Figure 2.2), to help 

ensure that the groundwater analyzed was within the septic plume area. At least two wells 

per residence or lot were installed adjacent to the septic systems. Neighboring residences 

and septic systems often shared a single background well. While the spatial variability of 

pollutant concentrations within a septic system groundwater plume may exist and not be 

fully captured at a site with 2 or more wells, a total of 63 monitoring wells were installed 

at 16 sites, and thus this approach provided a more broad comparison among groups.  

The wells adjacent to the septic systems were installed such that there was a 

relatively shallow and deep well (Figure 2.2A).  The deeper wells were installed to a 

depth that allowed collection of a water sample from the upper part of the water column 

during dry periods, while the shallow well was installed to capture the upper part of the 
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water column during the wet season. Monitoring wells were constructed of 10 cm 

diameter PVC with 75 cm screen intervals and installed using hand augers.  Sand was 

poured between the outside of the well and the borehole until the entire screen length was 

filled. Bentonite clay and sand slurry was then mixed and poured to seal the annular 

space above the well screen and prevent surface water vertical migration down the side of 

the pipe.  

The soil profiles at each site were examined using a hand auger, the texture by 

feel method (Brady et al. 2004) in the field, and the hydrometer method in the lab (Day 

1979) to determine the particle size distribution and NC DENR soil group status (Table 

2.2). Soil samples at the trench bottom depth were collected at each site and sent to the 

NC Department of Agriculture and Consumer Services Agronomic Division Lab in 

Raleigh, NC for descriptive analysis including: pH, effective cation exchange capacity 

(ECEC),  and % humic matter (Table 2.2). 

Monthly groundwater levels adjacent to systems were determined manually using 

a Solinst Model 107 Temperature Level and Conductivity (TLC) meter (Solinst Canada 

Ltd., 2007). Automated water level loggers (Onset Computer Corporation 2007) in the 

deep wells adjacent to each system recorded water levels each half hour. The 

groundwater level data were used to determine seasonal high water table (SHWT) for 

each site. The SHWT is defined as the shallowest depth below soil surface that the water 

table continuously saturates for 14 consecutive days. The groundwater level data coupled 

with the depth to trench bottom measured using the tile-drain probe were used to analyze 

the separation distance dynamics over time for each system.  
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Groundwater quality adjacent to the 16 septic systems was monitored monthly 

and compared to background groundwater conditions and EPA standards for groundwater 

quality. Well water samples were collected using disposable bailers. Wells were bailed 

three times, allowed to recharge and then a sample was collected. Water samples were 

analyzed for nitrate (NO3
-
-N), ammonium (NH4

+
-N) and chloride concentrations, 

monthly for 13 months, using a YSI Sonde 6920 multi-parameter water quality Sonde 

(YSI 2007). The Sonde uses ion selective reference electrodes for determining 

concentrations of NO3
-
-N,  NH4

+
-N and chloride (accuracy + 2 mg/L or 10% whichever 

is higher).  The Sonde was calibrated using NO3
-
-N, NH4

+
-N, and chloride standards 

before each monthly sampling event. Sonde NO3
-
-N and NH4

+
-N readings are susceptible 

to interference when placed in water with high chloride concentrations and specific 

conductance (1.2 mS/cm would cause 1.6 mg/L higher readings). However, given the 

mean chloride concentrations in groundwater adjacent to systems (5-254 mg/L) and the 

mean specific conductance (0.1 to 1.1 mS/cm for the 16 sites), potential interference from 

chloride would have been minimal for the sites. Sondes have been tested and performed 

well  in relation to other analytical methods (Capelo et al. 2007) and were used in recent 

studies (Li et al. 2008; Li et al. 2009) for determining various water quality parameters 

such as nitrate and ammonium concentrations.  For further quality control, twice during 

the study groundwater samples were collected from the sites and analyzed for the 

dissolved inorganic nitrogen species NO3
-
-N and NH4

+
-N (DIN) at the NCSU Soil 

Science Department Analytical Services laboratory using procedures described in the 

Standard Methods for Examination of Water and Wastewater (1995) with a Quick Chem 
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8000 Lachet Analyzer. The groundwater (DIN) concentrations from the laboratory 

analysis were included with the monthly Sonde field readings for a total of 15 months of 

readings.  Median groundwater DIN concentrations (mg/L) analyzed using the Sonde (13 

months/readings) for systems in soil groups I (20.1), II (12.2) and III (3.1) were similar to 

median groundwater DIN concentrations for systems in soil groups I (20.0), II (8.2) and 

III (1.2) analyzed in the laboratory (2 months/readings).   

Wastewater samples from accessible tanks (GI-A, GI-B, GI-D, GI-F, GII-A, GII-

C, GII-D, GIII-A, GIII-C, GIII-D) were collected and analyzed three times (December 

2007, January and February 2008) during the study period for DIN at the NCSU Soils 

laboratory and for E. coli at the East Carolina University Geochemistry laboratory. The 

E. coli densities in groundwater were analyzed seasonally for 1 year, using the membrane 

filtration method with m-ColiBlue 24 culture media. Samples were collected using 

disposable bailers (one-time), poured into sterile bottles, put on ice in coolers, transported 

to the laboratory and prepared for incubation the same day. Samples were incubated at 

35°
 
C for 24 hours, and the colonies counted and recorded. Because of the high bacterial 

densities, dilution factors ranging from 10-1000 were used for groundwater samples. 

Blanks were run approximately every 10 samples.  

2.3.2 Data Analysis 

The state and federal groundwater and surface water standard for NO3
-
-N is set at 

10 mg/L, for public health purposes (North Carolina Department of Environment and 

Natural Resources 2008). Water supplies with NO3
-
-N concentrations greater than 10 

mg/L may be hazardous to infants due to methemoglobinemia, or blue baby syndrome 
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(Brady et al. 2004). While high nitrate concentrations in drinking water are a public 

health risk, another environmental concern is groundwater transport of NH4
+
 and NO3

-
 to 

surface waters.  Both NH4
+
 and NO3

-
 are bio-available forms of nitrogen and can cause 

eutrophication in surface waters, as experienced in coastal North Carolina (Whitall et al. 

2003). Ammonium-N and NO3
-
-N also have been shown to account for the vast majority 

(75-97%) of nitrogen in septic tank effluent (Buetow 2002; and Cardona 2006) and 

groundwater beneath the septic systems (Robertson et al. 1991; Postma et al. 1992; 

Harmon et al. 1996; Buetow 2002; and Reay 2004).  Estuarine concentrations of 

available nitrogen including NH4
+
-N and NO3

-
-N that are 1 mg/L or even less, can cause 

eutrophic conditions (Osmond et al.  2003). Therefore, inadequate nitrogen treatment was 

defined as an occurrence when the concentration of DIN in groundwater beneath septic 

systems was greater than or equal to 10 mg/L.  While this chapter uses DIN as an 

indicator of wastewater effects on shallow groundwater quality, an analysis of septic 

system loading of dissolved organic nitrogen to groundwater is discussed in Chapter 4.  

Inadequate bacteria treatment was defined as an occurrence when the density of 

E. coli in groundwater beneath septic systems was greater than or equal to the US EPA 

(2003) freshwater full contact standard of 126 colony forming units (cfu) per 100 

milliliters.  The frequency of inadequate treatment events was reported for each system 

and each soil group. These analyses helped to determine which soil groups were more 

prone to inadequate treatment. To gain a broader perspective on how common inadequate 

septic system treatment was in this coastal region, inadequate treatment events for all 16 

sites were tallied.  A Mann Whitney nonparametric test (Davis 2001; Reay 2004; Ahmed 
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et al. 2005; and Cahoon et al. 2006) was used to determine if there was a significant (p < 

0.10) difference between groundwater concentrations (DIN and bacteria) beneath septic 

systems installed in soils of different texture, background concentrations, and water 

quality standards.  

There are several potential factors that can influence the water quality beneath 

septic systems. To control for the influence of system type, only sites with the same type 

of system (gravity distribution, gravel trenches or beds) were selected.  To determine the 

influence of vertical separation distance while controlling for wastewater strength and 

loading rate, water quality beneath each system during periods of relatively large 

separation distances was compared to water quality beneath systems during relatively 

small vertical separations, and the data was pooled for each soil group. For nitrogen 

analysis, the DIN concentrations during the six months with the largest separation 

distances (predominantly spring and summer) were compared to the concentrations 

during the six months with smallest vertical separation distances (predominantly fall and 

winter) for each site. For E.coli analysis, seasonal sampling provided four samples per 

system, bacteria densities beneath septic systems during the two months with the largest 

separation distance were compared to the concentrations during the two months with the 

smallest vertical separation distance.   

Typically in coastal North Carolina, the water table is highest during the winter 

months when there is relatively less evaporation and transpiration (ET). Groundwater 

tables are usually lowest during the summer months when ET is greatest, even though 

summer months typically have the highest seasonal rates of rainfall (Sun et al. 2002). 
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Coastal North Carolina has experienced flooding and elevated groundwater levels in the 

summer and fall seasons due to tropical storms and hurricanes. However, for the 16 

month groundwater monitoring study period (December 2006-March 2008) precipitation 

was 10 cm below the average (172 cm) for the overall study area (Figure 2.3).   

Septic system treatment efficiency (reduction in source pollutant concentration) 

was estimated using equation 2.1 below. The treatment efficiency for each soil group was 

calculated to determine the effects of soil type on wastewater treatment.  

Equation 2.1 Treatment Efficiency  

TE = {[T – (GW – BG) / T] * 100} 

where:  TE = Treatment Efficiency (%) 

T = Median septic tank wastewater DIN or geometric mean E. coli 

concentrations  

GW = Median groundwater DIN or geometric mean E. coli concentrations 

near septic system 

BG = Median background groundwater DIN or geometric mean E. coli 

concentrations 

2.4 Results 

2.4.1 Effects of Soil Type on Wastewater Treatment-Dissolved Inorganic Nitrogen 

Median septic tank DIN concentrations for all soil groups in this study (26-32 

mg/L) were similar to the lower end of concentrations reported in a literature review by 

Cardona (2006) (30 – 100 mg/L)  and reported in a literature review by Beutow (2002)  

(26-110 mg/L). Eleven of the 16 systems (69%), 7 of the 8 in soil group I and all 4 is soil 
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group II,  monitored had DIN concentrations greater than 10 mg/L in groundwater 

beneath the systems for more than 25% of the dates sampled (Table 2.3). Of the 226 

samples analyzed for DIN, 99 (44%) were greater than 10 mg/L. Systems installed in soil 

group I had the highest median concentration of DIN (18.9 mg/L) in groundwater beneath 

the systems (Table 2.3), followed by soil group II (11.0 mg/L), and soil group III (2.6 

mg/L). 

Dissolved inorganic nitrogen concentrations in groundwater adjacent to systems 

were significantly higher (p < 0.10) than in background wells for each soil group (Figure 

2.4). Only systems installed in soil group I had groundwater DIN concentrations 

significantly higher than 10 mg/L.  Collectively, systems installed in soil group III were 

the most efficient (Table 2.4) at reducing DIN concentrations before discharging into 

shallow groundwater (93%), followed by systems in soil group II (76%), and soil group I 

(17%).  

2.4.2 Effects of Soil Type on Wastewater Treatment-Bacteria 

Eight of the 16 septic systems (50%) had E. coli densities greater than 126 cfu for 

more than 25% of the times sampled (Table 2.5). These include 25% of systems (2 of 8) 

installed in soil group I, all four systems in soil group II (100%), and two of four systems 

(50%) in soil group III. Of the 32 samples analyzed for E. coli beneath systems in soil 

group I, 9 samples (28%) exceeded the standard. Nine of the 16 groundwater samples 

(56%) beneath systems in group II soils exceeded 126 cfu/100 mL and 5 of the 16 (31%) 

samples beneath systems in soil group III exceeded the standard. The geometric mean 

density of E. coli (cfu/100mL) for groundwater beneath septic systems was highest for 
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soil group II (127) followed by soil group III (47) and soil group I (23) (Table 2.5).  

Geometric mean densities of E. coli in groundwater were significantly higher beneath the 

septic systems than background groundwater for each soil group (Figure 2.5). 

All septic systems reduced bacteria concentrations from the septic tanks by 

greater than 99.99% (Table 2.6) before discharging to shallow groundwater, but systems 

in soil group III were the most efficient per unit depth of vertical separation, followed by 

soil group II and soil group I. Geometric mean septic tank wastewater densities of E. coli 

reported in this study for each soil group (6.4 x 10
5
 – 4.1 x 10

6
 cfu/100 mL) were similar 

to septic system densities (1.2 x 10
 6  

cfu/100 mL) reported by Pang et al. (2003).   

2.4.3 Effects of Vertical Separation Distance on Wastewater Treatment- Dissolved 

Inorganic Nitrogen 

Group I soils, as required by North Carolina regulations (15A NCAC 18A .1955) 

for the design and construction of septic systems, had the largest median vertical 

separation between the drainfield and water table (111 cm), followed by group II soils 

(65 cm), and group III soils (17 cm). Dissolved inorganic nitrogen treatment efficiency 

was lower for systems in soil groups I that had the smallest separation distances, but DIN 

treatment efficiency was similar for systems in soil groups II and III with varying 

separation distances (Table 2.4). Median DIN concentrations in groundwater beneath 

systems were higher during periods of deep as compared to shallow water tables for 

systems in all soil groups (Figures 2.6A and 2.6B) and the hydraulic gradient was also 

lower during deep water table periods for most systems (Table 2.7). 
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 Collectively, systems installed in group II soils had the highest percentage (43) of 

DIN in groundwater as NH4
+
-N. Systems in soil group II had median vertical separation 

distances of 65 cm (Table 2.3). All systems in group I soils had median vertical 

separation distances greater than 65 cm except system GI-A (57 cm), which also had a 

relative high percentage of DIN as NH4
+
-N (63%). This indicates that systems in group I 

and II soils may require more than 57-65 cm of median separation distance to water table 

for nitrification of most NH4
+
-N to occur. All systems in group II soils had less than 60 

cm vertical separation to seasonal high water table (Table 2.3).  Systems in soil group III 

with a median separation of 17 cm had NO3
-
-N as the dominant species (66%) in the 

shallow groundwater beneath the systems, possibly due to relatively more NH4
+
-N 

adsorption on cation exchange sites. One system in group III soils (GIII-D) maintained a 

30 cm separation distance to seasonal high water table, but the other 3 systems did not.  

Bacteria and DIN concentrations for all four systems in group III soils were similar.  

2.4.4 Effects of Vertical Separation Distance on Wastewater Treatment - Bacteria 

Geometric mean E. coli densities in the groundwater beneath systems in each soil 

group were higher during periods of shallow water tables and small vertical separation 

distances (Figures 2.7, 2.8). Relatively larger separation distances allow for more 

potential filtration and removal of bacteria before discharge to the groundwater system. 

All systems reduced bacteria densities from the tank by more than 99.99% before 

discharge into the shallow groundwater (Table 2.6). However, systems in group I soils 

had the largest mean vertical separation distance (83 cm) followed by systems in group II 

(53 cm) and group III (32 cm), indicating that systems in more fine textured soils can 
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achieve relatively high bacteria density reductions with less vertical separation than 

coarse textured soils.  

2.5 Discussion 

 

Shallow groundwater concentrations of DIN and E. coli adjacent to septic systems 

in coastal North Carolina soils were significantly higher than background concentrations, 

and were often higher than groundwater quality standards, particularly for systems in 

group I and II soils with shallow water tables. While groundwater beneath systems in 

group I soils had higher NO3
-
-N concentrations than groundwater beneath systems in 

group II soils, the total DIN (NH4
+
-N + NO3

-
-N) concentrations were not significantly 

different (p = 0.1751) because groundwater adjacent to group II soils had relatively more 

NH4
+
-N. For systems installed in soil groups I and II, in particular, separation distance 

appears to affect the speciation of nitrogen entering the shallow groundwater system. For 

example, most of the DIN (87% excluding system GI-A) adjacent to systems in group I 

soils was NO3
-
-N except for system GI-A, which had the smallest median vertical 

separation distance (57 cm) of the group I systems and shallowest separation distance (44 

cm) during the 14-day seasonal high water table (Table 2.3). For GI-A, NH4
+
-N was the 

dominant species (63%) of DIN in the groundwater adjacent to the system, indicating that 

other conditions necessary for nitrification to occur (presence of oxygen and nitrifying 

bacteria) were not present.   

Overall, systems installed in group I soils in comparison to group II soils had 

larger median separation distances, 111 and 65 cm, respectively, affecting the aeration of 

the soils and speciation of nitrogen.  Seven of eight systems in soil group I (88%) and all 
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four systems in group II (100%) had frequencies of groundwater DIN concentrations 

greater than 10 mg/L for more than 25% of the times sampled, but none of the systems in 

group III soil did. This indicates that the separation distance between systems and the 

water table in coarse-grained, sandy soils (group I and II) may affect the dominant 

species of nitrogen and that sandy soils are more prone to nitrogen loadings to shallow 

groundwater.  

Systems in soil group III collectively had the highest percentages of clay, lowest 

hydraulic conductivities, smallest vertical separation distances, and the lowest DIN 

concentrations in groundwater beneath the systems (Tables 2.2, 2.3 and Figure 2.4). A 

possible explanation may be that relatively more of the NH4
+
-N entering the drainfield 

trenches in group III soils is bound to cation exchange sites on the clay minerals (Carroll 

et al. 2004) and/or biomat on the trench. The group I and group II soils had lower 

effective cation exchange capacities (mean 3.1 and 2.9 cmol/Kg, respectively) than group 

III soils (mean 7.4 cmol/Kg) (Table 2.2). Also, group III soils had the lowest mean 

hydraulic conductivities (0.19 m/day) in comparison to group II (mean 0.32 m/day) and 

group I soils (3.34 m/day), suggesting longer subsurface residence times (Table 2.2). 

Other possibilities for lower concentrations of DIN in groundwater beneath systems in 

group III soils are greater nitrification and denitrification rates, more immobilization of 

NH4
+
-N by microorganisms and/or greater plant uptake for systems installed relative to 

group I and II soils. These findings are consistent with the results of a recent experiment 

by Karathanasis et al. (2006) that found finer textured soils (group III and IV) were more 
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efficient at reducing NH4
+
-N, total N and BOD than coarse textured soils, due to more 

reactive surface areas and greater nitrification/denitrification potential.    

Dissolved inorganic nitrogen concentrations were higher during periods of deep 

relative to shallow water tables for systems in all three soil groups. Some possible 

reasons for the increase in DIN with an increase in separation may include less dilution 

and dispersion and higher nitrification and leaching rates during deeper water table 

periods.  Darcy’s law (Q = KA*dh/dl) relates groundwater flow rate (q) to the hydraulic 

gradient (dh/dl). The hydraulic gradient for most systems was smaller during deep water 

table conditions (Table 2.7). Lower groundwater flux and less dispersion could lead to 

relatively higher DIN concentrations during periods of deeper water tables and smaller 

hydraulic gradients due to less mixing and dilution of wastewater with rainwater that 

infiltrates the soil. Greater separation distances may stimulate oxidation of NH4
+
-N held 

on soil exchange sites (Ptacek et al. 1998) or in soil water, leading to increased 

nitrification and leaching.  

For systems installed in all three soil groups, the geometric mean densities of 

bacteria during periods of shallow water tables and small vertical separation distances 

were higher than during periods of deep water tables and large vertical separation 

distances (Figures 2.7, 2.8). Even with relatively less dilution and dispersion during deep 

water table conditions, the larger system separation distances provided better overall 

treatment and bacteria reduction for each soil group. These data indicate that separation 

distance is an important control on bacteria treatment, particularly for coarse textured 

soils.  
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Soil type also influences shallow groundwater quality beneath systems. For 

example, when comparing the geometric mean E. coli densities beneath systems in soil 

groups II and III during periods of similar median separation distances, densities beneath 

group II soils were much larger.  For systems in group II and III soils during periods of 

similar median separation distances 27 cm and 29 cm respectively, the geometric mean 

density of E. coli in groundwater beneath systems in soil group II were 358 compared to 

28 cfu/100 mL for soil group III (Figure 2.8).  These data suggest that group III soils 

provide better removal of bacteria per unit length of separation than group II soils. Also, 

the geometric mean densities of E. coli beneath group I and group III soils with median 

vertical separation distances of 105 cm and 29 cm, respectively, were nearly identical (32 

and 28 cfu/100 mL), indicating that clay rich soils provide better treatment of bacteria per 

given length of separation distance (Figure 2.8).  

These trends are also present when comparing the DIN treatment efficiency of 

systems in different soils with similar separation distances. For DIN concentration 

reductions, system GI-A (group I soil) with a median separation distance of 57 cm, 

reduced DIN by 8%, as compared to systems GII-D and GIII-D with median separation 

distances of 56 and 60 cm and DIN  reductions of 76 and 94%, respectively (Table 2.4). 

While all systems were efficient at reducing E. coli densities from the tank (> 99.99%), 

systems in soil group III achieved the reduction percentage with the smallest mean 

vertical separation distance (32 cm), followed by systems in group II (53 cm) and group I 

(109 cm). The superior treatment efficiency of group III soils may be due to inherent 

properties of soils with higher clay contents such as relatively high ECEC, more reactive 
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surface area, and lower hydraulic conductivity. These properties can increase the 

residence time of wastewater in soil, thus allowing more opportunity for pollutant 

reduction processes to occur. 

While groundwater DIN and E. coli concentrations adjacent to septic systems 

were significantly higher than background groundwater for each soil group, there were 

some background groundwater samples that had elevated concentrations of DIN and  

E. coli. This may be due to the influence from other septic systems and row crop 

agriculture up-gradient from the background wells. The background wells were not 

installed in isolated areas; they were installed up-gradient from the monitored septic 

systems. Overall, the background groundwater quality for each soil group follows a 

similar pattern as the water quality adjacent to the septic systems in the soil groups. More 

specifically, the lowest median concentration of DIN was found in background 

groundwater in soil group III and highest geometric mean E. coli densities in soil group 

II.  This suggests that septic systems can influence groundwater quality not only adjacent 

to systems, but many meters away. 

2.6 Management Implications and Conclusions 

Systems installed in group I and II soils that maintained a 60+ cm separation 

distance to the seasonal high water table (GI-B, GI-C, GI-D, GI-E, GI-F, GI-G, GI-H) 

had median NH4
+
-N and geometric mean E. coli densities of 0.4 mg/L and 31 cfu/100mL, 

respectively.  Systems in group I (GI-A) and group II (GII-A, GII-B, GII-C, GII-D) soils 

with less than 60 cm vertical separation (Tables 2.3 and 2.5) had median NH4
+
-N and 

geometric mean E. coli densities of 4.4 mg/L and 96 cfu/100mL respectively. For 
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systems in group III soils, a 30 cm separation distance to water table was effective at 

reducing source concentrations of bacteria and nitrogen. However, more information is 

needed to determine the frequency and duration of direct wastewater discharge to 

groundwater (periods of water table elevations greater than trench bottom elevations) for 

systems that meet the 30 cm standard to SHWT but experience encroachments of the 

separation distance requirements throughout the year.  

Septic systems in coastal soils are generally more efficient at reducing bacteria in 

comparison to nitrogen concentrations before discharge into the shallow groundwater. 

Soil type and separation distance are two factors that influence water quality beneath 

systems. Septic systems in soil groups I and II were less effective at pollutant removal as 

compared to systems in soil group III per unit depth of separation.  

Systems installed in soil groups II with 30 cm of required separation distance and 

systems in soil group I with 45 cm of required separation distance consistently 

contributed septic effluent with elevated NH4
+
-N and E. coli to the shallow groundwater 

system. The shallow groundwater in coastal North Carolina is connected to the adjacent 

surface waters and pollutant loading may contribute to eutrophication, closure of shellfish 

waters and/or beach advisories.  Increasing the required vertical separation distance from 

system to seasonal high water table from 45 and 30 cm to 60 cm for systems in group I 

and II soils respectively, should increase the likelihood of effluent nitrification beneath 

systems and reduce bacteria concentrations in shallow groundwater. Dissolved inorganic 

nitrogen concentrations in groundwater adjacent to systems may increase with an 

increase in separation distance due to greater nitrification rates and leaching. However, 
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DIN contributions from septic systems to adjacent surface waters may decrease if the 

predominant species of DIN is NO3
-
, and NO3

-
 is removed via denitrification before 

entering surface waters. Ammonium is not removed through the denitrification process.   

This study provided evidence that groundwater adjacent to septic systems can 

have high concentrations of nitrogen and bacteria (from the systems), but it is possible 

that the core of the septic system impacted groundwater plume was not sampled due to 

the spatial variability of the plume, and that the actual contributions were even greater. 

Also, we did not research the fate of the observed pollutants. Therefore, more research is 

needed on the spatial variability of pollutants within a wastewater impacted groundwater 

plume, the fate and transport of such pollutants and the environmental and public health 

risks of these septic system derived and groundwater transported contaminants. A long-

term, shallow groundwater monitoring network is needed to help provide some of this 

important data. 

Based on data collected in this study and other literature, increasing the separation 

distance requirements from systems to SHWT to 60 cm can improve the likelihood of 

effluent nitrification, and requiring vegetated buffers along streams may improve water 

quality by increasing the likelihood of denitrification and thus improve water quality 

(Robertson et al. 1991; and Buetow 2002).  
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Table 2.1 North Carolina DENR soil groups and corresponding USDA textural class 

designations with loading rate ranges and separation distance requirements for septic 

system design (NC Division of Environmental Health 1999).  

 

 

NC DENR      Loading Rate   NC Separation  

Soil Groups USDA Textural Class   (L/day/m
2
)  Distance (cm) 

Group I Sand, Loamy Sand  0.42 – 0.28   45 

Group II Sandy Loam, Loam  0.28 – 0.21   30 

Group III Silt Loam, Clay Loam,  0.21 – 0.11   30 

Sandy Clay Loam, Silt, 

Silty Clay Loam 

Group IV Sandy Clay, Clay  0.14 – 0.04   30 

  Silty Clay 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

  

Table 2.2 Site, soil and system information. Site elevation above mean sea level was approximated from topographic maps. Mean ground water (GW) 

elevation was during the December 2006-March 2008 period.  Site location of NWP is Newport, AB is Atlantic Beach, and PKS is Pine Knoll Shores.  

Con. is a conventional system with 2 or more 90 cm wide, drainfield trenches, bed systems have one trench often 180 cm wide or greater. Effective 

cation exchange capacity (ECEC) is a measure of the capacity to absorb and exchange cations in reversible reactions. Humic matter percentage (HM) is 

the amount of complex organic material. Hydraulic conductivity (Ksat) is the measured rate (slug tests using Bower and Rice (1976) method) water 

moves through the soil under saturated conditions. 

 

Soil 

Group I 

Site 
Elevation 

(m) 

Mean GW 

Elevation (m) 

System 
Install 

Date 

Site Location 

City/Town 

System 

Type 

USDA Soil 

Series % Sand 

% 

Silt 

% 

Clay 

ECEC 

(cmol/kg) pH HM% 

Ksat 

(m/day) 

GI-A 3.3 2.23 2006 NWP Bed Mandarin 90.3 4.6 5.1 5.6 4.7 4.8 0.98 

GI-B 3.66 2.3 2005 NWP Bed Baymeade 94.6 2 3.4 1.2 5.3 0.2 2.47 

GI-C 3.13 1.9 2006 NWP Con. Baymeade 90.7 3.9 5.3 3.2 6.1 0.7 1.01 

GI-D 2.94 1 1991 AB Con. Fripp 98 0.3 1.7 2.3 4.8 0.6 1.95 

GI-E 3.28 0.42 1996 PKS Bed Fripp 98.3 0 1.7 1.5 5.8 0 8.44 

GI-F 3.15 1.05 1979 PKS Bed Newhan 97.2 0.3 2.5 2 6.2 0.1 1.37 

GI-G 2.59 0.56 1977 PKS Con. Newhan 98 0.3 1.7 5.6 7.6 0.2 5.7 

GI-H 2.32 0.39 1977 PKS Con. Newhan 97.2 1.2 1.7 3.1 6.3 0.3 4.82 

Mean 3.05 1.23 1992       95.5 1.6 2.9 3.1 5.9 0.9 3.34 
                  

Soil 
Group II 

Site 

Elevation 
(m) 

Mean GW 
Elevation (m) 

System 

Install 
Date 

Site Location 
City/Town 

System 
Type 

USDA Soil 
Series % Sand 

% 
Silt 

% 
Clay 

ECEC 
(cmol/kg) pH HM% 

Ksat 
(m/day) 

GII-A 3.58 2.26 1987 NWP Con. Goldsboro 74.2 9.6 16.2 3.2 5.6 0.2 0.18 

GII-B 2.74 1.96 1985 NWP Con. Goldsboro 80.7 10.1 9.2 3.5 6.6 1.9 0.52 

GII-C 3.6 2.34 1998 NWP Con. Goldsboro 79 7.5 13.4 2.8 5.5 0.5 0.49 

GII-D 3.44 2.37 1999 NWP Con. Goldsboro 75.4 11.1 13.5 2.1 5.8 0.6 0.09 

Mean 3.34 2.23 1990       77.3 9.6 13.1 2.9 5.9 0.8 0.32 

    
Soil 

Group 

III 

Site 

Elevation 

(m) 

Mean GW 

Elevation (m) 

System 

Install 

Date 

Site Location 

City/Town 

System 

Type 

USDA Soil 

Series % Sand 

% 

Silt 

% 

Clay 

ECEC 

(cmol/kg) pH HM% 

Ksat 

(m/day) 

GIII-A 2.01 1.05 1995 Smyrna Con. Altavista 66.8 12.3 20.9 7 6.8 0.1 0.15 

GIII-B 1.68 0.85 1986 Smyrna Con. Altavista 71.2 5.2 23.6 7.7 7.8 0 0.18 

GIII-C 1.91 0.93 1994 Smyrna Con. Altavista 67 8.2 24.7 7.2 7.6 0 0.09 

GIII-D 2.33 1.23 1991 Smyrna Con. Altavista 64.9 9.7 25.4 7.5 6.9 0.1 0.34 

Mean 1.98 1.02 1992       67.5 8.9 23.7 7.4 7.3 0 0.19 
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Table 2.3  Median and mean dissolved inorganic nitrogen concentrations (NH4
+

-N+NO3
-
-N) in 

groundwater adjacent to septic systems in soil groups I, II and III. Frequencies of concentrations 

greater than 10 mg/L were reported along with the percentage of DIN as NH4
+
-N and as NO3

-
-N. 

Mean and median separation distances from the septic system trench bottom to the water during 

sampling events and during the 14-day seasonal high water table* was reported.  

 

 

 

 

 

 

 

 

 
N-(NH4+NO3) mg/L 

   
Separation (cm) 

Soil Group I  n Mean Med Freq > 10 % NH4 % NO3 
 

Mean Med SHWT  

GI-A 14 32.3 29.7 100 63 37 
 

58 57 44* 

GI-B 15 28 28.5 67 5 95 
 

87 88 68 

GI-C 12 14 12.5 58 15 85 
 

91 91 67 

GI-D 13 24.7 24.8 85 10 90 
 

126 130 104 

GI-E 11 31.8 29 82 4 96 
 

213 215 199 

GI-F 14 15.8 13 50 15 85 
 

135 135 116 

GI-G 15 5.6 4.4 13 11 89 
 

144 145 124 

GI-H 15 14.7 4.6 33 28 72 
 

83 83 65 

Med 
  

18.9 
 

13 87 
  

111 
 

           

Soil Group II n Mean Med Freq > 10 % NH4 % NO3 
 

Mean Med SHWT  

GII-A 14 20.6 14 50 48 52 
 

76 77 24* 

GII-B 15 14.6 12.5 73 32 68 
 

33 38 0* 

GII-C 13 8.5 6.9 31 52 48 
 

74 73 41 

GII-D 15 24.5 9.4 47 39 61 
 

58 56 25* 

Med 
  

11 
 

43 57 
  

65 
 

           

Soil Group III n Mean Med Freq > 10 % NH4 % NO3 
 

Mean Med SHWT  

GIII-A 15 3.8 2.5 7 47 53 
 

14 15 0* 

GIII-B 15 3.3 0.9 13 43 57 
 

16 19 0* 

GIII-C 15 5.3 2.7 7 25 75 
 

4 4 0* 

GIII-D 15 3.4 3.2 7 24 76 
 

61 60 43 

Med 
  

2.6 
 

34 66 
  

17 
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Table 2.4  Dissolved inorganic nitrogen (NH4
+
-N+NO3

-
-N) treatment efficiency for 

systems in soil groups I, II and III. Treatment efficiency was only calculated for systems 

that septic tank samples were collected from. Median and mean separation distances 

during sampling periods for DIN are reported. Median DIN values are listed for the tank, 

groundwater and background for the treatment efficiency calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System 

Tank 

(DIN) 

Mg/L 

Groundwater 

(DIN) mg/L 

Background 

(DIN) mg/L 

GW-BG 

DIN 

(mg/L) 

Treatment 

Efficiency 

% 

Median 

Separation 

(cm) 

Mean 

Separation 

(cm) 

GI-A 31.2 29.7 0.9 28.8 8 57 58 

GI-B 29.4 28.5 0.9 27.6 6 88 87 

GI-D 32.2 24.8 0.8 24.0 25 214 213 

GI-F 22.9 13 1.4 11.6 49 145 144 

Median 30.3 26 0.9 25.8 17 117 116 

Mean 28.9 24.0 1.0 23.0 22 126 126 

        

GII-A 31.2 14 2.4 11.6 63 77 76 

GII-C 33.9 6.9 1.9 5 85 73 74 

GII-D 30.7 9.4 1.9 7.5 76 56 58 

Median 31.2 9.4 1.9 7.5 76 73 74 

Mean 31.9 10.1 2.0 8.0 75 69 69 

        

GIII-A 26.4 2.5 0.8 1.7 94 15 14 

GIII-C 31.0 2.7 0.5 2.2 93 19 16 

GIII-D 19.9 3.2 0.5 2.7 86 60 61 

Median 26.4 2.7 0.5 2.2 93 19 16 

Mean 25.8 2.8 0.6 2.2 91 31 30 
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Table 2.5  Geometric mean and median E. coli densities in groundwater adjacent to septic 

systems in soil groups I, II, III. Frequencies of densities (Freq) greater than 126 cfu/100 

mL of sample were reported. Mean and median vertical separation distances during times 

of bacteria sampling and the separation to seasonal high water table (SHWT) are 

reported. A “0” depth to SHWT indicates that the water table was at or higher than the 

septic trench bottom. Summary is for all samples in each soil group; sum of (n), 

geometric mean E. coli, median E. coli, mean frequency and vertical separation distance 

and median separation distance. 

 

 

 
Septic Groundwater E. coli Densities  

(cfu/ 100 mL)  Vertical Separation Distance 

System n 

Geo-

mean Med 

Freq  

> 126 

Mean 

(cm) Med (cm) SHWT 

GI-A 4 31 57 25 68 69 44 

GI-B 4 26 59 25 94 98 68 

GI-C 4 20 184 50 94 91 67 

GI-D 4 5 6 0 133 133 104 

GI-E 4 210 385 75 223 222 199 

GI-F 4 55 96 25 141 142 116 

GI-G 4 40 100 25 176 176 124 

GI-H 4 3 1 0 90 94 65 

Summary 32 23 59 28 114 115  

        

System n 

Geo-

mean Med 

Freq  

> 126 

Mean Sep 

(cm) 

Med Sep 

(cm) SHWT 

GII-A 4 194 117 50 37 40 24 

GII-B 4 156 340 75 1 11 0 

GII-C 4 52 184 50 61 54 41 

GII-D 4 164 153 50 62 64 25 

Summary 16 127 157 56 49 47  

        

System n 

Geo-

mean Med 

Freq  

> 126 

Mean Sep 

(cm) 

Med Sep 

(cm) SHWT 

GIII-A 4 38 114 50 20 22 0 

GIII-B 4 9 31 0 9 10 0 

GIII-C 4 112 100 25 23 24 0 

GIII-D 4 123 126 50 53 53 43 

Summary 16 47 96 31 21 23  
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Table 2.6  Septic system bacteria (E. coli) treatment efficiencies for systems in soil 

groups I, II, and III. Ground water adjacent to systems (GW), background groundwater 

(BG) and separation distance to seasonal high water table (SHWT) are shown. A “0” 

depth to SHWT indicates that the water table was at or higher than the septic trench 

bottom. Treatment efficiencies were only calculated for systems that septic tank samples 

were collected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Geometric Mean E. coli (cfu/ 100 ml)  

Vertical Separation Distances 

(cm) 

System Tank GW BG GW - BG 

Treatment 

Efficiency % Median Mean SHWT 

GI-A 433859 31 2 29 99.99 69 68 44 

GI-B 4544739 26 2 24 99.99 98 94 68 

GI-D 420000 5 1 4 99.99 133 133 104 

GI-F 846168 55 4 51 99.99 142 141 116 

Median 640013 29 2 27 99.99 116 113 86 

Mean 1561191 29 2  99.99 111 109 83 

         

GII-A 3662228 194 17 177 99.99 40 37 24 

GII-C 3838294 164 2 162 99.99 64 62 41 

GII-D 2363332 52 2 50 99.99 54 61 25 

Median 3662228 164 2 162 99.99 61 61 25 

Mean 3287951 137 7  99.99 53 53 30 

         

GIII-A 610000 38 1 37 99.99 22 20 0 

GIII-C 4100000 112 2 110 99.99 24 23 0 

GIII-D 14091664 123 2 121 99.99 53 53 43 

Median 4100000 112 2 110 99.99 24 23 0 

Mean 5486667 91 2  99.99 33 32 14 
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Table 2.7   Hydraulic gradients (m/m) for systems installed in soil groups I, II and III 

during periods of relatively shallow water tables with small (S) separation distances and 

deep water tables and large (L) separation distances; (x) indicates the larger gradient. For 

most systems the larger gradients were during shallow water table periods.  

 

 

 

 

Shallow Water Table Deep Water Table 

        

  Mean Median     Mean Median   

GI-A 0.0175 0.0178 x GI-A 0.0168 0.0171   

GI-B 0.0467 0.0464 x GI-B 0.0431 0.0433   

GI-C 0.0311 0.0304 x GI-C 0.0267 0.0269   

GI-E 0.0349 0.0351   GI-E 0.0355 0.0357 x 

GI-F 0.0272 0.0272   GI-F 0.0280 0.0272 x 

GI-G 0.0006 0.0005 x GI-G 0.0006 0.0004   

GI-H 0.0006 0.0005 x GI-H 0.0006 0.0004   

        

GII-A 0.0125 0.0105   GII-A 0.0146 0.0145 x 

GII-B 0.0016 0.0017 x GII-B 0.0013 0.0006   

GII-C 0.0040 0.0039 x GII-C 0.0034 0.0038   

GII-D 0.0056 0.0060 x GII-D 0.0045 0.0034   

        

GIII-A 0.0040 0.0038 x GIII-A 0.0032 0.0035   

GIII-B 0.0039 0.0038 x GIII-B 0.0046 0.0028  

GIII-C 0.0063 0.0064 x GIII-C 0.0036 0.0034   

GIII-D 0.0153 0.0147 x GIII-D 0.0126 0.0126   
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Figure 2.1  Research sites located in the towns/cities of Newport, Atlantic Beach, Pine 

Knoll Shores and Smyrna in coastal Carteret County, North Carolina. North Carolina 

state map with Carteret County in red.  Scale is approximate. Maps created using base 

maps from Wikipedia and Carteret County GIS page.  
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Figure 2.2A  Plan-view of a groundwater monitoring design with adjacent houses, background 

well, nested septic groundwater monitoring wells between septic  

system trenches and groundwater flow direction wells at the corners of the lots.  

This design is similar to monitoring scheme for systems GII-C and GII-D.  

 
 

Figure 2.2B  Cross-section view of septic drainfield monitoring well design with deep  

and shallow wells and screen intervals (75 cm each). The mean depth to trench bottom  

and water table for all systems was 65 cm and 145 cm, respectively.  
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Figure 2.3 Median depths to groundwater for all 16 systems monitored and monthly 

average precipitation and observed precipitation for the study areas. Average and 

observed precipitation data was obtained from the North Carolina Climate Office (2009) 

for weather stations in Cherry Point, Newport, Morehead City and Atlantic Beach, North 

Carolina and from a research site at North River, North Carolina.  
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Figure 2.4  Dissolved inorganic nitrogen (DIN) concentrations (mg/L) adjacent to septic 

systems and in background groundwater (BG) for areas with group I (GI), group II (GII) 

and group III (GIII) soils. Significant (p < 0.10) differences in DIN concentrations 

included: GI-N > GI-BG-N, GII-N > GII-BG-N, GIII-N > GIII-BG-N, GI-N > GIII-N, 

and GII-N > GIII-N. No significant differences were found between GI-N and GII-N. 

Only GI-N was significantly greater than 10 mg/L standard.  
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Figure 2.5  Log E. coli densities (colony forming units/ 100 mL), adjacent to septic 

systems in group I (GI), II (GII) and III (GIII) soils and in background groundwater 

(BG). Significant (p < 0.10) differences included: GI > GI-BG, GII > GII-BG, GIII > 

GIII-BG, GII > GI, GII > GIII. No significant differences were found between systems in 

GI and GIII soils.  

 

 

 

 

 

 

 

 

 

 

n = 32           n = 20        n = 16               n = 8           n = 16 n = 8 
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Figure 2.6A  Dissolved inorganic nitrogen (DIN) concentrations (mg/L) in groundwater 

adjacent to systems in soil groups I, II and III during periods (6 months) of relatively 

large (L) and ( 6 months) small (S) vertical separation distances measured when sampling 

for DIN.  
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Figure 2.6B  Vertical separation distances (cm) to water table measured when sampling 

groundwater for DIN for systems in soils groups I, II and III during the  

6 months of relatively deep (L) and 6 months of shallow (S) water table periods. Deep 

and shallow water tables represent large and small separation distances, respectively.  
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Figure 2.7A  Geometric mean densities of E. coli (cfu/100mL) adjacent to septic systems 

in soil groups I, II and III during relatively large and small separation distances.   

 

 
 

Figure 2.7B  Median separation distances from septic systems to the water table  

in soil groups I, II, and III during periods of relatively large and small separation 

distances.  Separation distances were measured during E. coli sampling.  
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Figure 2.8A  Log E. coli densities (cfu/100mL) adjacent to septic systems in soils groups 

I, II and III during periods of relatively deep and shallow water tables. Significant (p < 

0.10) difference included: GII Shallow > GII Deep, GIII Shallow > GIII Deep. No 

significant difference was found between GI Shallow and GI Deep.  
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Figure 2.8B  Vertical separation distances (cm) to water table in soil groups I, II and III 

during periods of deep (L) and shallow (S) water tables measured during E. coli 

sampling.  
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CHAPTER 3: EVALUATION OF SOIL COLORS AS INDICATORS OF THE 

SEASONAL HIGH WATER TABLE FOR DESIGNING ON-SITE WASTEWATER 

SYSTEMS IN COASTAL NORTH CAROLINA 

3.1 Abstract 

Low chroma (2 or less) soil colors are used as indicators of the seasonal high 

water table (SHWT) when land is evaluated for permitting septic systems. The separation 

distance from septic system to water table is important for providing aerated conditions 

for wastewater treatment. In North Carolina, septic systems installed in group I soils 

(sands) are required to have 45 cm of separation distance to the seasonal high water table, 

while systems in group II - IV soils (coarse loams to clay) are required to have 30 cm of 

separation. The objective of this study was to evaluate how closely low chroma soil 

colors predicted the depths to SHWT for 16 septic systems installed in 6 soil series 

including Goldsboro (group II), Altavista (group III), and Mandarin, Baymeade, Fripp 

and Newhan (all group I). For 11 of 16 systems, the depth to chroma 2 colors was within 

22 cm of the observed SHWT, or both the chroma 2 depths and observed SHWT depth 

were greater than 122 cm, the maximum depth of evaluation for most septic system 

designs. Water tables frequently rose into the trenches of some systems (averages greater 

than 400 and 2400 hours/year for systems in Goldsboro and Altavista series, respectively) 

due to the installation depths and the relatively small (30 cm) separation distance 

requirements to SHWT. Increasing the North Carolina separation distance requirements 

from 30 to 45+ cm for systems in group II (sandy loam) and group III (clay loams) soils 
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could reduce the cumulative duration of water table levels above trenches by 75 and 67%, 

respectively, and thus improve groundwater quality. 

3.2 Introduction 

In North Carolina over 40,000 new septic systems are installed each year, 5,000 in 

coastal areas (North Carolina Department of Environment and Natural Resources 2007). 

These (septic) systems treat and dispose of human wastewater that contains many 

constituents such as viruses, bacteria, protozoa, nitrogen, phosphorus, and various metals 

that are potentially hazardous to public and/or environmental health (Canter and Knox 

1985). Septic systems have three main components: a tank; drainfield trenches; and soil 

beneath the trenches. Liquid effluent flows from the tank to the drainfield trenches and 

infiltrates the soil, where most of the septic system wastewater pollutant removal occurs. 

The vertical separation distance from septic system to water table influences wastewater 

treatment efficiency, with larger separations typically providing better removal of 

pollutants such as nutrients (Carrol et al. 2004; Karathanasis et al. 2006), bacteria (Carlile 

et al. 1981; and Cogger et al. 1988), and viruses (Nicosia et al. 2001). Preventing 

groundwater pollution in coastal North Carolina is important because many communities 

rely on groundwater wells for water supply and the shallow groundwater is hydraulically 

connected to adjacent surface waters, many of which have experienced pollution 

problems such as eutrophication (Fear et al. 2004) and closure of shellfisheries due to 

bacterial pollution (Cahoon et al. 2006).    
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3.2.1 North Carolina Septic System Vertical Separation Distance Regulations 

Prior to 1983, undeveloped building lots in North Carolina were evaluated for 

septic system suitability by performing a percolation (perk) test. The test involved 

digging three or more holes 45+ cm deep, within the proposed septic drainfield area, 

filling the holes with water and recording the depth to water after 24 hours. The perk test 

was a measure of the hydraulic conductivity of the soil, but did not provide definitive 

information on where the seasonal high water table was located within the soil profile, 

only an estimate of the rate at which water moves through the soil and potentially the 

location of the water table during the test.  Research conducted in eastern North Carolina, 

(Daniels et al. 1971; Carlile et al. 1981) supported the use of soil colors as a relatively 

reliable and quick method to determine the seasonal high water table, an important design 

consideration for the installation of septic systems. By 1983 the North Carolina 

Department of Environment and Natural Resources required all counties in North 

Carolina to use soil morphology, more specifically, low chroma (2 or less) colors as 

indicators of soil wetness conditions and/or seasonal high water tables.  

Current North Carolina regulations for the design and construction of septic 

systems require that septic system drainfield trenches maintain a 30 to 45+ cm vertical 

separation to seasonal high water table for systems installed in group II-IV (loam to clay 

textures) and group I (sand texture) soils (Figure 3.1), respectively (15A NCAC 18A 

.1955m). The basic field procedure for determining the depth to soil wetness conditions 

and/or the seasonal high water table is to evaluate soil profiles using a soil pit or soil 

auger, and record the depth to chroma 2 or less (Munsell’s Color Chart) soil colors that 
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occupy 2% or more of the soil volume in mottles or matrix (15A NCAC 18A .1942b). 

The depth to chroma 2 (or lower) colors is the reference point above which septic system 

trenches must maintain a 30-45 cm vertical separation distance. Soils that do not contain 

low chroma colors or saturation within 122 cm (4 ft) of the surface are considered 

suitable in relation to depth to water table (15A NCAC 18A. 1942c) and therefore, most 

soil evaluations do not extend below 122 cm.  

3.2.2 Soil Color and Reduction – Oxidation Processes 

Low chroma (2 or lower) soil colors result from the reduction and loss of iron 

from a soil horizon. Iron is one of the most abundant elements in most soils, and under 

aerobic conditions, persists predominately in the ferric (Fe
3+

) form in various oxides, 

hydroxides, and coatings on mineral grains (Richardson et al. 2001). When soil organic 

matter becomes inundated, microorganisms deplete oxygen during the organic 

decomposition process. Once oxygen is depleted, microorganisms in the soil can 

sequentially use nitrate (NO3
-
), manganese (MnO2), and iron (Fe (OH)3) as terminal 

electron acceptors, thus reducing nitrate, manganese, and ferric iron while oxidizing 

carbon (Mitsch et al. 2000). When iron is reduced from the ferric form (Fe
3
+) to the 

ferrous (Fe
2
+) form, it becomes colorless, mobile and can be leached from the soil profile 

when the water table falls. The loss of ferric iron from the horizon also means a loss of 

the Fe colors (red, brown, yellow), leaving behind the grey (low chroma) colors of the 

uncoated mineral grains (Figure 3.2A) (Richardson et al. 2001). The low chroma colors 

are indicative of saturated soils (periods of low oxygen), available carbon supplies and 
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microorganisms, suitable environmental conditions (temperature, pH, etc.,), and time 

(duration of saturation) for the iron reduction and leaching process (Vepraskas 1999).  

Some coastal soils have formed from parent materials that lack iron and therefore 

may contain chroma 2 or lower colors throughout their profiles (Figure 3.2B) (Buol et al. 

1997). Shallow soil horizons including the A and E horizons may contain chroma 2 or 

less colors due to the accumulation of organic matter (A horizons), or the eluviation of 

iron, aluminum, clay and/or organic matter (E horizon) to deeper soil horizons (B, Bt, Bh, 

Bs) due to podzolization processes such as chelation and translocation (Buol et al. 1997). 

Therefore, low chroma colors in the A and E horizons due to organic matter coated soil 

particles or eluviation processes are not necessarily indicative of reduction and oxidation 

processes (Buol et al. 1997).    

Another situation in which low chroma colors may not be indicative of saturated 

and anaerobic conditions include soils with drainage improvements that effectively 

lowered the water table, but the low chroma colors persist high in the soil profile, thus 

reflecting past conditions. Scenarios such as these can lead to inaccurate predictions of 

the depth to SHWT/seasonal wetness when using soil colors and in these instances may 

require groundwater monitoring to determine the true level of seasonal high saturation.  

Inaccurate predictions of the depth to SHWT are significant to coastal wastewater 

management because they can result in drainfields being installed too close to the water 

table and increase the potential for trench flooding and direct discharge of wastewater to 

the shallow groundwater system. 
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3.2.3 Alternative Methods of Seasonal High Water Table Determination 

An alternative method of determining the depth to seasonal high water table in 

North Carolina includes a direct monitoring procedure (15A NCAC 18A .1942).  Direct 

monitoring requires the installation of shallow water table observation wells in the 

proposed system area and monitoring of the depth to groundwater (daily) and rainfall 

amount (hourly) for a period that extends through the typical wet season. Groundwater 

levels must be monitored from January through April, rainfall from December through 

April at a minimum. The seasonal high water table/soil wetness conditions are 

determined by the highest level that the water table maintains for 14 consecutive days. 

Therefore, the depth to low chroma soil colors should correspond to the depth to 14 days 

of consecutive saturation in soils as indicated by measured groundwater levels.  

The designated period of 14 days of consecutive saturation as the duration 

required to form low chroma colors for all soils has been disputed (He 2000; He et al. 

2003; Severson et al. 2008). Research in the Coastal Plain of North Carolina showed that 

it took an average of 21 days of continuous saturation to produce Fe-depletions of chroma 

2 or less, between the soil surface and a depth of 60 cm (He 2000; He et al. 2003). Longer 

durations (> 21 days) of saturation were required to produce low chroma colors deeper (> 

60 cm) in the soil profiles, apparently due to less soluble organic matter at deeper depths. 

Additional studies in the south eastern US revealed that other redoximorphic features 

such as Fe-depletions of chroma 3 or less and iron concentrations of chroma 6 or greater 

were also indicative of fluctuating water tables and reduction/oxidation processes but 
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with shorter periods of saturation than necessary for chroma 2 or less mottling (Genthner 

et al. 1989; and West et al. 1998).  

A recent study (Severson et al. 2008) on a toposequence of sandy loam soils 

including a moderately well drained soil (Foreston series), an unnamed transition soil 

deemed “wet Foreston”, and a somewhat poorly drained (Stallings series) soil in Coastal 

North Carolina found that the shallowest depth to which the soils were saturated for a 21-

day or longer period was deeper in the profile than the depth of chroma 2 or less 

depletions with 2% or greater abundance. Therefore, less than 21 days of saturation were 

needed to form chroma 2 or less colors for some soils.  Severson et al. (2008) showed 

that the 14-day continuous saturation standard related to different redoximorphic features 

in different soils. Average depth to redox concentrations (chroma > 6) coincided well 

with the average depth to 14 day saturation in the Foreston series, chroma 3 or less 

depletions matched with the 14 day saturation depth for the wet Foreston, and the depth 

of chroma 2 or less depletions related well to the 14-day continuous saturation in the 

Stallings series (Severson et al. 2008). Their findings have important implications for the 

design of septic systems in Coastal Plain soils. Since wastewater treatment is dependent 

upon the depth of aerated soil beneath the septic trenches (Nicosia et al. 2001; 

Karathanasis et al. 2006; Stall 2008), soils with high cumulative water table saturation 

percentages (% CS; cumulative duration of water table saturation at or above a reference 

point such as the chroma 2 depth) might not be as efficient at removing wastewater 

pollutants as systems in soils with lower % CS, even if they have similar 14-day seasonal 

high water table depths.   
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The vertical separation distance regulations aim to ensure aerated conditions 

beneath septic drainfield trenches and to prevent septic tank effluent from discharging 

directly into the groundwater. Because the seasonal high water table is defined as the 

shallowest depth that the soil remains saturated for 14 consecutive days, hypothetically 

the water table could rise to the trench bottom depth or above for several 13-day periods 

throughout the year and not be in violation of the regulation, but groundwater quality 

may be degraded because the water table encroaches on the 30-45 cm vertical separation 

distance to the system or rises above the trench.  

With approximately 60% of coastal North Carolina residences utilizing septic 

systems (North Carolina Estuarine Research Reserve 2003) there is great potential for 

septic systems to load viruses, bacteria, nutrients and other wastewater constituents to the 

shallow groundwater, surface waters, and the coastal ocean if design criteria for septic 

systems are ineffective, not stringent enough, or not properly implemented.   Regulations 

establishing minimum separation distances from trenches to water table have an 

important role in protecting water quality and public health. Equally important is the 

methodology for determining where the seasonal high water table is located in the soil 

profile.  If the methodology for determining the depth to the SHWT overestimates the 

depth of seasonal saturation, then the intended vertical separation will not be met and 

water quality may be adversely affected (Figure 3.3).  

The main objective of this study was to determine how accurate low chroma (2 or 

lower) soil colors are for predicting the depth to seasonal high water table for some 

common soil series in coastal North Carolina (and coastal southeastern US). Soil colors 
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were compared to water table dynamics and the implications were evaluated in the 

context of vertical separation distance effects on septic system wastewater treatment and 

shallow groundwater quality. The % CS of different soils at the chroma 2 depth and the 

depth of the 14-day seasonal high water table were compared to see how closely the 

methods aligned.  Most southeastern US states (Georgia, Florida, Maryland, Virginia and 

North Carolina) require a 30 to 60 cm vertical separation from septic system to water 

table (Stall 2008, Georgia Department of Human Resources 2007) therefore % CS at 30-

60 cm above the SHWT and chroma 2 colors were evaluated. 

Secondary goals were to determine the % CS for soils 30-60 cm above the chroma 

2 and 14-day SHWT depths and to evaluate the frequency and duration of separation 

distance encroachments (when water table rises above required vertical separation 

distance) and trench ponding ( water table rises to or above trench bottom depth) for the 

monitored systems (Figure 3.4).   

3.3 Methods 

3.3.1 Soil Colors and Seasonal High Water Table Monitoring 

Sixteen sites with septic systems in 6 different soil series were evaluated in 

coastal Carteret County, North Carolina (Figure 3.5, Tables 3.1, 3.2). Eight sites had 

systems in group I soils (sand/loamy sand) including 2 in the Baymeade series (loamy, 

semiactive, thermic arenic hapludults), 1 in the Mandarin Series (sandy, siliceous, 

thermic, oxyaquic alorthod), 3 in the Newhan series (thermic, uncoated typic 

quartzipsamments) and 2 in the Fripp series (thermic uncoated typic quartzipsamments). 

Four sites had systems in the group II (sandy loam) Goldsboro series (fine-loamy, 
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siliceous, subactive, thermic aquic paleudults) and four sites had systems in the sandy 

clay loam (group III),  Altavista series (fine-loamy, mixed, semiactive, thermic aquic 

hapludults).  

The soil profiles at each site were examined using a hand auger, the texture by 

feel method (Brady et al. 2004) in the field and the hydrometer method in the lab (Day 

1979) to determine and record the particle size distribution and North Carolina 

Department of Environment and Natural Resources (NC DENR) soil group status (Table 

3.1). The soil profiles described in the field conformed to the soil series descriptions 

mapped in the Carteret County, North Carolina Soil Survey (Goodwin, Jr. et al. 1984). 

Soil samples at the trench bottom depth were collected at each site for particle size 

analysis using the hydrometer method (Day 1979), and for descriptive analyses including: 

pH, effective cation exchange capacity, and humic matter content. The North Carolina 

Department of Agriculture and Consumer Services- Agronomic Division in Raleigh, 

North Carolina performed the descriptive analyses. Soil morphological characteristics 

including the depth and presence of soil mottling/matrix with chroma 2 or less colors 

were evaluated using a Munsell color book and tape measure (Table 3.2). The depth to 

chroma 2 colors represents the predicted seasonal high water table (SHWT).   

3.3.2 Septic System Characterization and Groundwater Well Installation 

Septic systems, including the tank and drain-field trenches at each of the 16 sites 

were located using a tile-drain probe rod. Adjacent to the drainfield trenches, 16 

groundwater monitoring wells constructed of 10 cm diameter screened PVC were 

installed using hand augers.  Well depths ranged from 1.3 to 3.3 m and depth of 
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installation was generally 1 m below the water table, encountered during installation. 

Sand was poured between the outside of the well and the borehole until the entire screen 

length was filled. A bentonite clay and sand slurry was then mixed and poured to seal the 

annular space above the well screen and prevent surface water leaching and 

contamination of groundwater. The wells were encased in valve boxes and installed flush 

with the soil surface for easy location and accessibility.  

Each month (December 2006-March 2008) groundwater depths were determined 

manually using the Solinst Model 107 Temperature Level and Conductivity (TLC) meter 

(Solinst Canada Ltd.  2007) and automated HOBO water level loggers (Onset Computer 

Corporation  2007) recorded one-half hourly water levels in groundwater wells adjacent 

to each septic system. The manual groundwater data readings were used to ground-truth 

the automated groundwater levels measured by loggers. Dedicated atmospheric pressure 

loggers and correction software were used in conjunction with the groundwater level 

loggers to correct for atmospheric pressure changes that would otherwise have affected 

the water table (pressure) measurements. Hourly precipitation data from local weather 

stations in Cherry Point, Newport, Atlantic Beach, Morehead City (NC Climate Office 

2008) and a research site in North River, North Carolina (NC State University Biological 

and Agricultural Engineering Department 2008) were used for the sites in this study.  

Hydrographs (groundwater level over time) were produced for each site. Slug tests were 

performed using the Bouwer and Rice method (1976) to determine the horizontal 

hydraulic conductivity (Ksat) of the surficial aquifer sediments.  
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3.3.3 Cumulative Saturation Determination 

The depth to seasonal high water table as recorded by groundwater level loggers 

was compared to the soil profile descriptions and depth to low chroma colors. This 

information was used to evaluate how closely soil colors predicted the 14 day periods of 

continuous saturation (Figure 3.6).  

Cumulative saturation is the total amount of time the water table saturates a 

specific depth of soil (expressed as total hours saturated and as the ratio of total hours the 

water table was elevated at or above the specified depth to total hours monitored as %). 

The half-hour water level data were used to calculate the cumulative saturation (% CS) of 

the predicted SHWT (using chroma 2 soil color) depth, the observed 14-day SHWT 

depth, and the % CS at 30, 45, and 60 cm above the predicted and observed SHWT 

depths (Figure 3.7). Cumulative saturation percentages at 30, 45, and 60 cm above the 

predicted and observed SHWT represent the percentage of time wastewater would 

discharge directly to the groundwater (no vertical separation) if septic systems had been 

installed 30-60 cm above chroma 2 colors and the measured 14 day SHWT depths.  

3.3.4 System Evaluation 

The depth to trench bottom at each site was compared to the soil profile 

descriptions (textural class and depth to low chroma soil colors) and water table data 

(Figure 3.6).  Systems in group I soils should by North Carolina regulations (15A NCAC 

18A .1955m), be installed with the trench bottom elevated at least 45+ cm above the 

chroma 2 (or lower) colors (2% or greater of soil volume). Systems in group II-IV soils 

should be elevated at least 30+ cm above the low chroma colors.  The measured vertical 
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separation distance was recorded as the difference from the trench bottom to the top of 

the water table as indicated by the recorded groundwater levels adjacent to the drainfield 

trenches. The separation distance dynamics over time for each system were used to show 

the frequency and duration of encroachment of the North Carolina Division of 

Environmental Health (1999) vertical separation distance requirements.  The amount of 

time each system did not meet the required 30-45 cm of separation to chroma 2 colors 

and the measured 14-day SHWT was tallied.  

3.3.5 Compliance with Current Vertical Separation Distance Regulations 

A vertical separation distance encroachment occurred when the water table was 

within 45 cm of the drainfield trench for systems in group I soils or less than 30 cm for 

systems in group II-IV soils. If the encroachments lasted for more than 14 consecutive 

days then the system was not in compliance with the regulations (15A NCAC 18A 

.1955m). The frequency and duration that each system encroached on the mandated 

separation distance was calculated.  In addition, the number of hours that groundwater 

flooded the trench (trench ponding) and wastewater was seeping directly into the 

groundwater system was also calculated for each system.  

3.4 Results 

3.4.1 Predicted and Measured Seasonal High Water Tables 

The predicted (depth to chroma 2 colors) and measured (water table monitoring) 

depths to  SHWT were within 22 cm of each other for 8 of 16 sites, and for 3 sites both 

the predicted and measured SHWT were deeper than 122 cm (Table 3.3 and Figure 3.8). 

Three of 4 sites in the Goldsboro series, 3 of 4 in Altavista, the Mandarin site, and 1 of 2 
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sites in Baymeade soil series had chroma 2 colors within 22 cm of the measured SHWT 

depth (Figure 3.8). For the two sites in the Fripp series, the predicted and measured 

SHWT were both deeper than 122 cm. For one site in the Newhan series, the predicted 

and measured SHWT were both deeper than 122 cm.  

In general low chroma colors were better predictors of the depth to SHWT for the 

group II and group III soils (75% of sites within 22 cm) in comparison to the group I soils 

(25% of sites within 22 cm). Also, soil series with relatively shallow mean depths to the 

measured SHWT (Goldsboro, Altavista and Mandarin series) had chroma 2 colors closer 

to the measured SHWT (mean difference of 6-14 cm) than sites with relatively deep 

water tables (Newhan, Fripp and Baymeade series with mean difference of 21-130+ cm) 

(Figure 3.9).   

3.4.2 Cumulative Saturation 

The cumulative saturation (CS) of the depth to chroma 2 colors (expressed as total 

hours saturated and as the ratio of total hours the water table was elevated above the 

depth to chroma 2 colors to total hours monitored as %) was highest for the Baymeade 

series (3908 hours, 44%), followed by the Altavista series (3120 hours, 36%), Goldsboro 

series (772 hours, 8.5%), and the Mandarin series (587 hours, 6.6%) (Figures 3.10 and 

Table 3.3). Also, the water table rose above the chroma 2 depth more frequently for the 

Baymeade series (33 times on average), than for the Altavista (31), Mandarin (29) or the 

Goldsboro series (14) (Table 3.3 and Figure 3.11). 

The CS of the measured SHWT depth was highest for the Altavista series (2134 

hours, 25.1%) followed by the Fripp (1610 hours, 18%), Mandarin (1497 hours, 16.8%), 
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Baymeade (1332 hours, 14.9%), Goldsboro (1337 hours, 14.8%), and the Newhan (812 

hours, 9%) (Figure 3.12 and Table 3.3).  The Mandarin series had the most frequent 

water table spikes above the depth to measured SHWT (44 times) followed by the Fripp 

(29), Altavista (28), Goldsboro, and Baymeade (average of 26 times each), and the 

Newhan series (15) (Table 3.3 and Figure 3.13).  

3.4.3 Cumulative Saturation and Frequency of Soil Saturation 30-60 cm Above Predicted 

SHWT Depths 

The average CS (expressed in total hours) of soil 30 cm above the depth to 

predicted SHWT was longest for the Altavista series (642.5 hours) followed by the 

Baymeade series (528) and the Goldsboro series (96.8 hours) (Figure 3.10). The water 

table for the Mandarin series did not rise 30 cm above the predicted SHWT depth, and 

the depth to predicted SHWT for the Fripp series (> 165 cm) was below the soil depths 

typically evaluated for septic systems.  For the Newhan series sites, the predicted depth to 

SHWT was deeper than soils were evaluated for GI-F(>122 cm); chroma 2 colors were 

present in the surface (0 cm) and subsurface horizons for GI-G but the measured SHWT 

was 198 cm deep and the water table never rose within 136 cm of the surface;  chroma 2 

colors were found 107 cm deep for GI-H, but the depth to measured SHWT was 172 cm 

and the highest the water table rose was 141 cm below the surface (Tables 3.3 and 3.4).  

The frequency of saturation 30 cm above the predicted depth of SHWT was 

highest for the Alatavista (14 times) and Baymeade (13) series, followed by the 

Goldsboro (4), Mandarin (0), Fripp (0) and Newhan (0) series (Figure 3.11).  
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The average CS of soil 45 cm above the predicted depth to SHWT was longest for 

the Altavista series (211 hours) followed by the Baymeade (45) and Goldsboro (24) 

series (Figure 3.10). The frequency of saturation 45 cm above the predicted depth to 

SHWT was highest for the Altavista series (8.8 times) followed by the Goldsboro series 

(2.5) and Baymeade series (2) (Figure 3.11). The water table rose 60 cm above the 

predicted depth to SHWT only for the Altavista series (average 5 times, 65 hours of 

cumulative saturation) (Figure 3.11).  

After log transformation of the cumulative saturation data, strong inverse 

relationships (R
2
 = 0.77 to 0.98) were found between vertical separation distance 

requirements from chroma 2 colors and cumulative saturation durations (Figure 3.14). 

Therefore, increasing separation distance requirements from chroma 2 colors could 

reduce cumulative saturation and trench ponding durations.  

3.4.4 Cumulative Saturation and Frequency of Soil Saturation 30-60 cm Above Measured 

Seasonal High Water Table Depths 

The average CS (hours) 30 cm above the measured SHWT was longest for the 

Altavista series (331.3), followed by the Goldsboro (95.1), Fripp (84.3), Newhan (30.8), 

and Baymeade and Mandarin (0 each) series (Figure 3.12). The average frequency of 

saturation 30 cm above the measured SHWT was highest for Altavista series (11 times), 

followed by the Goldsboro (6.5), Newhan (1.7), and Fripp (0.5) series (Figure 3.13). With 

a 45 cm separation from the measured SHWT, the average CS was longest for the Fripp 

series (84.3 hours), followed by the Altavista (79.8), Goldsboro (13), and Newhan (2) 

series (Figure 3.12). The average frequency of saturation 45 cm above the measured 



57 

 

  

SHWT was highest for the Altavista series (6.8 times) followed by the Goldsboro (2.3), 

Newhan (0.7), and Fripp series (0.5) (Figure 3.13). Not all systems in the Newhan and 

Fripp series had water table spikes 45 cm above the measured SHWT, thus some soil 

series may have an average less than 1. The Fripp series also had the longest CS 60 cm 

above the measured SHWT (25.5 hours) followed by the Atlavista (14.8), and Goldsboro 

series (3.9) (Figure 3.12). The water table for the Newhan series did not rise 60 cm above 

the measured SHWT and the frequency of saturation 60 cm above the measured SHWT 

was highest for the Altavista series (3.5 times) followed by the Fripp (1.5) and Goldsboro 

series (0.75) (Figure 3.13) 

3.4.5 Evaluation of System Installations 

Ten of 16 systems monitored did not meet today’s required separation distance 

(30 to 45 cm) from trench bottom to chroma 2 colors including systems GI-A, GI-G, GI-

H, GII-A, GII-B, GII-C, GII-D, GIII-A, GIII-B and GIII-C (Table 3.4). However, two of 

the systems (GI-G and GI-H) were installed before 1983, the date that chroma 2 colors 

were first used as indicators of SHWT. It should be noted also that two of the systems 

that were installed with less than today’s minimum separation to chroma 2 colors (GI-G 

and GI-H) were in the Newhan series, a soil series that formed from iron poor parent 

materials where field identification of the predicted SHWT using chroma 2 colors may 

not be useful. Systems GI-G and GI-H had chroma 2 colors at the surface and at 107 cm 

deep, but the water table never rose within 137 cm of the surface for either site. The use 

of chroma 2 colors to determine the SHWT at these sites was not effective and the two 

sites were evaluated correctly. Therefore, 6 systems were installed with less than 30-45 
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cm of separation from chroma 2 colors, indicating that the depth to chroma 2 colors was 

misinterpreted and/or the drainfield trenches were installed too deep. Seven systems did 

not meet the required (15A NCAC 18A .1955m) vertical separation distance to seasonal 

high water table as determined by groundwater table monitoring. The systems that did not 

meet their required 30-45 cm separation to the SHWT included GI-A, GII-A, GII-B, GII-

D, GIII-A, GIII-B, and GIII-C (Table 3.4), six of which were also not compliant with the 

separation distance to chroma 2 colors. 

For systems installed in the Altavista series (GIII’s), the required vertical 

separation distance was encroached on an average of 5800 out of 8500 hours (Table 3.4 

and Figure 3.15). The average cumulative encroachment time for systems in the 

Goldsboro series (GII’s) was 2026 hours, followed by system GI-A in the Mandarin 

series (1838 hours) and systems in the Baymeade series averaged 57 hours of cumulative 

vertical separation distance encroachment (Table 3.4 and Figure 3.15).   

Only systems in the Altavista and Goldsboro series experienced groundwater 

levels higher than the depth to trench bottoms (trench ponding of groundwater) (Table 3.4 

and Figure 3.15). For systems in the Altavista series the average cumulative trench 

ponding was over 2400 hours and for systems in the Goldsboro series, the average 

cumulative trench ponding was over 410 hours (Table 3.4). During periods of trench 

ponding, wastewater is discharged directly to the groundwater from the septic tank.  

3.5 Discussion 

From a water quality perspective, the best case scenario would be for the low 

chroma soil color depth and the SHWT depth to be the same or a consistent distance in 
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one direction (shallower or deeper). This (consistency) would allow regulators the ability 

to design septic systems that most often would meet the required standards for separation 

distance.  

Overall, excluding the Newhan and Fripp series sites (dune sands that developed 

from iron poor parent materials), there were 6 sites (GI-B, GI-C, GII-B, GIII-A, GIII-B, 

and GIII-C) that chroma 2 colors were deeper (18 cm on average) than the SHWT depths 

(Table 3.4). For these sites, had the systems been installed with the minimum vertical 

separation distance from chroma 2 colors, they would not have met the required 

separation to the SHWT. Systems GI-A, GII-A, GII-C, GII-D, and GIII-D had chroma 2 

colors shallower than the SHWT depths with an average difference of 17 cm (Table 3.4). 

Therefore excluding the Fripp and Newhan series sites in Atlantic Beach and Pine Knoll 

Shores (dune sands), low chroma colors on average predicted the depth to SHWT within 

17-18 cm.  

In general, soil series with relatively deep depths to water tables had longer 

periods of continuous saturation at the chroma 2 color depths than soils with relatively 

shallow water tables. Similar trends were also found at study sites in other coastal plain 

soils, possibly because available carbon for iron reduction typically decreases with depth 

(He 2000, 2003). Systems in the Baymeade series (GI-B and GI-C) had an average depth 

to SHWT of 110 cm, an average chroma 2 depth continuous saturation of 79 days and an 

average humic matter % of 0.5, followed by systems in the Altavista series (GIII) with 

average SHWT depths of 75 cm, a continuous saturation of 32 days and an average HM% 

of 0.05, systems in the Goldsboro series (GII) had average depths to SHWT of 71 cm an 
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average continuous saturation of 6 days and a HM% of 0.8, and the system in the 

Mandarin series (GI-A) with a depth to SHWT of 92 had a similar (to Goldsboro series) 

chroma 2 depth continuous saturation of 6 days (Table 3.3). While the Mandarin series 

had a relatively deep SHWT (92 cm) with only 6 days of continuous saturation at the 

chroma 2 depth, the Mandarin series also had the highest humic matter percentage (4.8%) 

near the water table depth, possibly fueling reduction processes within a relatively short 

time period (Tables 3.1and 3.3).  

Overall, the presence of chroma 2 colors for these soils corresponded to varying 

durations of saturation. Less variability was found between the mean frequency of 

saturation events at or above the chroma 2 depths for the Mandarin (29), Baymeade (33), 

Goldsboro (14) and Altavista (31) soils (standard deviation = 8.7) than for the mean 

periods (days) of continuous saturation durations for the Mandarin (6), Baymeade (79), 

Goldsboro (6), and Altavista (32) soils (standard deviation = 34.4). Therefore for these 

sites, during the monitored period, chroma 2 colors were more indicative of frequency of 

saturation events than duration of continuous saturation.  

While monitoring the groundwater table is the best methodology for determining 

the SHWT, it is also resource and labor intensive and not practical for all site and system 

evaluations. If we understand that on average chroma 2 colors may overestimate the 

depth of the SHWT by 18 cm for many sites, then it may be more cost effective to 

increase the separation distance requirements from septic systems to chroma 2 colors by a 

similar length and continue to use chroma 2 colors as a reference point. A 15 cm increase 

in separation distance from the current standards would result in group I soils requiring a 
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60 cm separation and group II –IV soils a 45 cm separation. Many other coastal states 

including Georgia, Florida, Maryland and Virginia already require 45 – 60 cm of 

separations (Stall 2008; and Georgia Department of Health 2008).  

Studies have shown that fine textured soils typically provide better removal of 

septic system wastewater pollutants per unit depth of aerated soil beneath the trench 

bottom than systems in more coarse textured soils (Karathanasis et al. 2006; and Nicosia 

et al. 2001) and thus some states such as North Carolina require less (than sandy soils) 

vertical separation distance to the SHWT for systems in clayey soils. However, with a 

requirement of only 30 cm of separation to the SHWT, there were some systems in this 

study (GII-C and GIII-D) that met the separation requirements to 14 day SHWT, but 

experienced periods of trench ponding (Table 3.4). Conversely, there was a system in 

group I soils (GI-A) that did not meet the 45 cm separation distance to SHWT 

requirement, but never experienced trench ponding or direct discharge of septic tank 

effluent to the groundwater (Table 3.4). These examples highlight the need for more than 

30 cm of vertical separation distance to the SHWT for systems in group II-IV soils. 

Increasing the separation distance requirements for each soil group should provide longer 

durations of aerated soil beneath septic systems, reduce trench ponding, and thus improve 

water quality. 

One explanation for the relatively high cumulative saturations for the Altavista 

series (group III soils) is the hydraulic properties of clay loam soils in relation to sandy 

loam and sandy soils. Darcy’s law (Q = KA*dh/dl) relates groundwater discharge (Q) to 

the hydraulic conductivity (K), the cross-sectional area (A), and the hydraulic gradient 
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(dh/dl). The group III soils in this study had the smallest mean hydraulic conductivity (K 

of 0.19 m/day for group III, in comparison to 0.32 m/day for group II and 0.98 to 5.2 

m/day for group I soils) (Table 3.1), indicating that to move similar volumes of water 

away from the septic systems, a larger hydraulic gradient would be necessary. Therefore, 

water tables must rise higher in fine textured soils and/or remain higher for longer 

durations to transmit similar volumes of water as a more coarse textured soil. The water 

table essentially reached the surface in three of the four systems in group III soils (within 

2 cm), while systems in group I soils had the smallest water table range (85cm, in relation 

to 165 cm for group II and 138 cm for group III) (Table 3.4). Furthermore, because fine 

textured clay loam and clay soils have smaller pores and more total pore space, they 

retain relatively more water during periods of similar suction than do sandier soils (Hillel 

et al 1998) and they have thicker capillary fringes, potentially affecting the cumulative 

saturations. When the rainfall rate declined in February 2007 the water table remained 

higher in the profile of the group III in relation to group I and II soils, possibly due to the 

hydraulic and moisture retention properties of the clay loam soils (Table 3.1 and Figure 

3.16), thus affecting the cumulative saturation.  

3.6 Conclusions and Management Implications 

Increasing the North Carolina separation distance requirements from septic 

drainfields to low chroma colors by 15+ cm could help reduce the frequency and 

cumulative duration of trench ponding, especially for systems in group II and III soils 

that currently only require a 30 cm vertical separation distance. There was an average 

67% decrease in trench ponding time at a depth 45 cm above chroma 2 colors (210 hours) 
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in comparison to 30 cm above chroma 2 colors (642 hours) for the group III Altavista 

series (Figure 3.10). A 45 cm separation distance requirement for the group II Goldsboro 

soils would have reduced trench ponding time by an average of 75% in comparison to a 

30 cm separation from chroma 2 colors and increasing the separation distance 

requirement for group I soils to 60 cm would have eliminated all trench ponding for the 

Baymeade series (Figure 3.10).  

Reducing or eliminating trench ponding frequency and duration should improve 

shallow groundwater quality by reducing the time that septic tank effluent directly 

discharges into the groundwater without being filtered by soil. Research (Carlile et al. 

1981; Cogger et al. 1988; Nicosia et al. 2001; Carrol et al. 2004 and Karathanasis et al. 

2006) has shown that wastewater pollutant treatment is related to the aerated soil beneath 

septic systems. Because chroma 2 colors can sometimes overestimate the depth of the 

SHWT, there will be cases where the vertical separation to chroma 2 colors is met but the 

separation to SHWT is not in compliance. Therefore, requiring an additional 15+ cm of 

vertical separation to chroma 2 colors (45 – 60+ cm) should increase the percentage of 

new systems that actually meet the current requirements for separation distances to 

SHWT (30-45 cm), reduce trench ponding frequencies and durations, and improve 

groundwater quality. 

Sixteen systems were evaluated in this study, six of which were installed too deep 

in relation to chroma 2 colors (excluding two systems installed prior to 1983 and two 

systems installed in soils with iron poor parent materials, so 6/12), and seven were 

installed too deep in relation to the observed SHWT.  While 16 septic systems represents 
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a small percent of the total systems being used in coastal North Carolina, the results agree 

with a recent field survey of 163 septic systems in two counties (Craven and Carteret) in 

coastal North Carolina (Deal et al. 2007). Deal et al. (2007)  found that 47+% of systems 

surveyed did not meet their North Carolina Division of Environmental Health (1999) 

required separation distances to the seasonal high water table as indicated by chroma 2 

colors and system installation depths. On average, the surveyed systems had a 20.5 cm 

separation distance to chroma 2 colors, and were installed 16 cm too deep in relation to 

their design (Deal et al. 2007). In the current study (excluding systems installed in the 

iron poor Newhan and Fripp Series) the surveyed systems were installed approximately 

20 cm too deep in relation to chroma 2 colors. While Deal et al. (2007) did not include 

actual water table and vertical separation distance monitoring, the results did highlight 

the need for more investigation on the links between soil morphology and water table 

dynamics, septic system design and installation, and system performance, as did this 

study. Increasing the separation distance requirements from systems to inferred SHWT 

(chroma 2 colors) by 15 cm+ can help improve water quality if the soils are evaluated 

correctly, the septic systems are designed and installed correctly, and if the systems are 

maintained.  

In areas such as the barriers islands where the soils formed from iron poor parent 

materials, the use of low chroma soil colors as indicators of the seasonal high water table 

was not effective.  Also, the effects of stream channelization, and land drainage on 

chroma 2 soil colors are not well known. As sea level continues to rise, coastal soils may 

influence changes in hydrology and potentially color. More research including 
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groundwater monitoring and/or modeling may be necessary to accurately predict the 

depth of seasonal saturation for system design purposes. While monitoring and modeling 

requires more effort, equipment, and funds, coastal waters have already experienced 

excess nutrient and bacterial pollution and thus there is a need for accurate 

determinations of the water table to ensure that septic systems maintain the required 

vertical separation distance to groundwater.  
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Table 3.1  Site, soil and system information. Site elevation above mean sea level was approximated from 

topographic maps. Mean ground water (GW) elevation was during the December 2006-March 2008 period.  

Site location of NWP is Newport, AB is Atlantic Beach, and PKS is Pine Knoll Shores, NC.  Con. is a 

conventional system with 2 or more 90 cm wide, drainfield trenches, bed systems have one trench often 

180 cm wide or greater. Effective cation exchange capacity (ECEC) is a measure of the capacity to absorb 

and exchange cations in reversible reactions. Humic matter percentage (HM) is the amount of complex 

organic, rather than mineral composition.  

 

Soil / 

Site 

USDA Soil 

Series 

Site 

Elevation 

(m) 

Mean GW 

Elevation 

(m) 

System 

Install 

Date 

Site 

Location 

City/Town 

System 

Type 

% 

Sand 

% 

Silt 

% 

Clay 

ECEC 

(cmol/kg) 

pH HM% Ksat 

(m/day) 

GI-A Mandarin 3.3 2.23 2006 NWP Bed 90.3 4.6 5.1 5.6 4.7 4.8 0.98 

              

GI-B Baymeade 3.66 2.3 2005 NWP Bed 94.6 2 3.4 1.2 5.3 0.2 2.47 

GI-C Baymeade 3.13 1.9 2006 NWP Con. 90.7 3.9 5.3 3.2 6.1 0.7 1.01 

Avg  3.4 2.1 2006   92.7 3 4.4 2.2 5.7 0.5 1.74 

              

GI-D Fripp 2.94 1 1991 AB Con. 98 0.3 1.7 2.3 4.8 0.6 1.95 

GI-E Fripp 3.28 0.42 1996 PKS Bed 98.3 0 1.7 1.5 5.8 0 8.44 

Avg  3.11 0.71 1994   98.15 0.15 1.7 1.9 5.3 0.3 5.2 

              

GI-F Newhan 3.15 1.05 1979 PKS Bed 97.2 0.3 2.5 2 6.2 0.1 1.37 

GI-G Newhan 2.59 0.56 1977 PKS Con. 98 0.3 1.7 5.6 7.6 0.2 5.7 

GI-H Newhan 2.32 0.39 1977 PKS Con. 97.2 1.2 1.7 3.1 6.3 0.3 4.82 

Avg  2.69 0.67 1978   97.5 0.6 2 3.6 6.7 0.2 3.96 

        

GII-A Goldsboro  3.58 2.26 1987 NWP Con. 74.2 9.6 16.2 3.2 5.6 0.2 0.18 

GII-B Goldsboro  2.74 1.96 1985 NWP Con. 80.7 10.1 9.2 3.5 6.6 1.9 0.52 

GII-C Goldsboro  3.44 2.37 1999 NWP Con. 75.4 11.1 13.5 2.1 5.8 0.6 0.09 

GII-D Goldsboro  3.6 2.34 1998 NWP Con. 79 7.5 13.4 2.8 5.5 0.5 0.49 

Avg  3.34 2.23 1990   77.3 9.6 13.1 2.9 5.9 0.8 0.32 

   

GIII-A Altavista 2.01 1.05 1995 Smyrna  Con. 66.8 12.3 20.9 7 6.8 0.1 0.15 

GIII-B Altavista 1.68 0.85 1986 Smyrna  Con. 71.2 5.2 23.6 7.7 7.8 0 0.18 

GIII-C Altavista 1.91 0.93 1994 Smyrna  Con. 67 8.2 24.7 7.2 7.6 0 0.09 

GIII-D Altavista 2.33 1.23 1991 Smyrna  Con. 64.9 9.7 25.4 7.5 6.9 0.1 0.34 

Avg  1.98 1.02 1992   67.5 8.9 23.7 7.4 7.3 0 0.19 
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Table 3.2  Typical soil profile descriptions for the Mandarin, Baymeade, Fripp and Newhan series in group I sandy soils, the Goldsboro series for the 

group II sandy loam soils and the Altavista series descriptions in the group III sandy clay loam soils. Soil groups refer to the North Carolina Department 

of Environment and Natural Resources classification for the soil texture beneath septic systems. Soil structure types: single grain (SG); granular (Gr); 

and subangular blocky (SBK).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mandarin Series (GI-A)  Fripp Series (GI-D, GI-E) 

Depth (cm) Horizon Color Texture Structure  Depth (cm) Horizon Color Texture Structure 

0-30 Fill 10 YR 2/2 LS Gr  0-25 A 10 YR 4/2 LS SG 

30-41 A 10 YR 5/2 LS SG  25-41 C1 10 YR 4/3 S SG 

41-86 E 10 YR 6/1 LS SG  41-84 C2 2.5 Y 6/4 S SG 

86-94 Bh 10 YR 2/2 LS Gr  84-127+  C3 2.5Y 6/4 with 10YR 5/6 mottles S SG 

94-130 B2 10YR 3/2 or 3/3  LS SBK      

           

Baymeade Series (GI-B, GI-C)  Newhan Series (GI-F, GI-G, GI-H) 

Depth (cm) Horizon Color Texture Structure  Depth (cm) Horizon Color Texture Structure 

0-21 Fill 10 YR 7/1 S Gr  0-8 A 10 YR 2/1 LS SG 

37-49 A 10 YR 4/4 SL SG   C1 10 YR 4/2 S SG 

49-91 E 10YR 7/2 LS SG          25-61 C2 10 YR 3/1 S SG 

91-101   Bh 10 YR 5/3 SL SG  61-91+ C3 10 YR 5/2 S SG 

101-122   Bt 10 YR 5/8 SL SBK       

122-142+   BC 2.5 YR 6/2  LS Massive  Altavista Series (GIII-A to GIII-D) 

      Depth (cm) Horizon Color Texture Structure 

Goldsboro Series (GII-A to GII-D)  0-18 A 10 YR 3/2 SL Gr 

Depth (cm) Horizon Color Texture Structure  18-51 E 10 YR 4/3 SL Gr 

0-33 A 10 YR 3/2 SL GR  51-61 Bt1 2.5 Y 5/6 SCL SBK 

33-56 B 10 YR 4/3  SL SBK  61-69 Bt2 2.5 Y 5/3 with  SCL SBK 

56-64 B2 10 YR 4/3 with SL/SCL SBK    few 10 YR 7/2 and   

  10 YR 6/2 mottles      10 YR 6/6 mottles   

64-74+ BCg 10 YR 5/2  SL SBK  69-89 BC 2.5 Y 5/6 with common SCL SBK 

64-74+ BCg 10 YR 5/2  SL SBK    2.5 Y 5/3 mottles    

      89-102+ C1 2.5 Y 5/4 with common SCL Massive 

        10 YR 7/2 mottles    
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Table 3.3  Predicted (depth to chroma 2 colors) and observed depths to the 14-day seasonal high water table (SHWT) for septic systems installed in group I sandy soils including Mandarin 

(GI-A), Baymeade (GI-B, GI-C), Fripp (GI-D, GI-E), and Newhan (GI-F, GI-G, GI-H) soil series; group II sandy loam Goldsboro series (GII-A to GII-D) and group  
III sandy clay loam Altavista series (GIII-A to GIII-D).  Cumulative saturation is the total amount of time the water table was above a reference point such as the depth to  

chroma 2 colors or the depth to 14-days of continuous saturation.  

Soil 

Group / 

System 

ID 

Water Table 

Range (cm) 

Depth (cm) 

to Chroma 

2   

Depth (cm) to 

14 Day 

Saturation 

Difference 

(cm)  Chroma 

2 and 14 day 

Chroma 2 

Continuous 

Saturation (d)  

 Times 

Above 

Chroma 2 

Chroma 2 

Cumulative 

Saturation (hrs) 

Chroma 2 

Cumulative Sat 

(% total) 

Avg Above 

Chroma 2 

Time 

(hours) 

Times 

Above 

SHWT 

Time 

Above 

SHWT 

(hrs) 

Avg 

Time 

(hrs) 

Over 

SHWT 

Cumulative 

Time % Above 

SHWT 

GI-A 64-134 86 92 6 6 29 587 6.6 20.2 44 1497.0 34.0 16.8 

              

GI-B 87-165 140 116 24 93 28 4776 53.5 170.6 40 1540.5 38.5 17.2 

GI-C 91-182+ 140 121 19 66 37 3040 34.0 82.2 11 1123.0 102.1 12.6 

Avg  140 119 22 79 33 3908 44 126.4 26 1331.8 70.3 14.9 

              

GI-D 145-213+ >122 165 N/A N/A N/A N/A N/A N/A 29 1349.0 46.5 15.0 

GI-E 204-305+ >122 272 N/A N/A N/A N/A N/A        N/A 29 1871.5 64.5 20.6 

Avg   219 N/A N/A     29 1610 56 18 

              

GI-F 164-238+ >122 190 N/A N/A N/A N/A N/A      N/A 14 709.5 50.7 7.9 

GI-G 137-270+ 0 198 198            0 0 0 0         0 5 679.5 135.9 7.5 

GI-H 141-207+ 107 172 65 0 0 0 0         0 25 1048.0 41.9 12.0 

Avg   187       15 812 76 9 

              

GII-A 10-210 58 80 22 2 9 145.8 1.6 16.2 17 822.0 48.4 9.1 

GII-B 1-154 56 40 16 17 27 2457 27.1 91.0 17 1038.0 61.1 11.5 

GII-C 39-180 56 92 36 1 4 58 0.6 14.5 35 1855.5 53.0 20.5 

GII-D 9-173 58 73 15 4 17 428.4 4.7 25.2 33 1633.5 49.5 18.1 

Avg  57 71 22 6 14 772.3 8.5 36.7 26 1337.3 53.0 14.8 

              

GIII-A 2-149 91 65 26 49 38 3876 43.0 102 22 1835.5 83.4 20.3 

GIII-B 0-120 79 65 14 51 31 3803.7 42.0 122.7 31 2107.0 68.0 23.3 

GIII-C 2-135 84 77 7 18 22 2728 33.8 124 22 2070.0 94.1 25.7 

GIII-D 9-160 89 94 5 10 32 2070.4 25.5 64.7 36 2525.0 70.1 31.1 

Avg  86 75 13 32 31 3119.5 36.1 103.4 28 2134.4 78.9 25.1 



69 

 

  

Table 3.4  Septic system performance including vertical separation distances to chroma 2 soil colors and 14-day seasonal high water tables, cumulative duration and frequency  

of vertical separation and trench/groundwater ponding for each system. Averages for each soil series were determined including the Baymeade (GI-B and GI-C), Fripp  
(GI-D, GI-E), Newhan (GI-F, GI-G, GI-H), Goldsboro (GII-A to GII-D) and Altavista series (GIII-A to GIII-D) and Mandarin (GI-A) series. A (--) indicates chroma 2  

colors were above the trench bottom.  

 

Site/ 

System 

ID 

Monitored (h) Chroma 2 

Depth 

(cm) 

14-d 

SHWT 

Depth 

(cm) 

Trench 

Depth 

(cm) 

Required 

Sep Dis 

(cm) 

Separation 

During 

SHWT (cm) 

Trench/ 

Chroma 2 

Sep 

(cm) 

Vertical Sep 

Encroachment 

(h) 

Vertical Sep 

Encroachment 

Freq 

Avg 

Encroachment 

Time (h) 

Trench 

Ponding 

(h) 

Trench 

Ponding 

Freq 

GI-A 8888.5 86 92 48 45 44 38 1838 60 30.6 0 0 

             

GI-B 8933 140 116 48 45 68 92 48.5 3 17.8 0 0 

GI-C 8932.5 140 121 53 45 68 87 66 5 13.8 0 0 

Avg 8932.8 140 118.5 50.7  67.8 89 57.3 4 15.8 0 0 

             

GI-D 8995.5 127 165 61 45 104 66 0 0 0 0 0 

GI-E 9073      >144 272 74 45 >45 --- 0 0 0 0 0 

Avg 9034.3  218.5 67.4    0.0 0.0 0.0 0.0 0.0 

             

GI-F 8961 >144 190 74 45 >45 --- 0 0 0 0 0 

GI-G 9083 107 198 74 45 124 33 0 0 0 0 0 

GI-H 8720 0 172 107 45 65 --- 0 0 0 0 0 

Avg 8921  187 85    0 0 0 0 0 

             

GII-A 9070 58 80 56 30 24 2 1216 32 38 145.5 9 

GII-B 9065.5 56 40 46 30 -6 10 4114.5 11 374 1326 20 

GII-C 9051 56 92 51 30 41 5 622.5 17 37 37.5 4 

GII-D 9022.5 58 73 48 30 25 10 2151.5 18 120 145.5 11 

Avg 9052 57 71 50  21 8 2026.1 19.5 142.0 413.6 11.0 

             

GIII-A 9024 91 65 81 30 -16 10 7464 29 257.4 2571 14 

GIII-B 9058 79 65 79 30 -14 0 8471.5 39 217.2 4259.5 26 

GIII-C 8062 84 77 84 30 -7 0 6041 20 302.1 2724 24 

GIII-D 8113 89 94 51 30 43 38 1432 20 71.6 130.5 7 

Avg 8564 86 75 74  2 12 5852.1 27.0 212.1 2421.3 17.8 



70 

 

  

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  North Carolina vertical separation distance requirements from septic systems 

to the seasonal high water table and chroma 2 colors for systems in group I (sands) and 

group II-IV (sandy loam to clay) soils. Chroma 2 colors (that occupy greater than 2% of 

soil) are used as indicators of the depth to seasonal high water table. Systems installed in 

group I soils require 45 cm of vertical separation to SHWT and chroma 2 colors, while 

systems installed in soil groups II-IV require 30 cm of separation.    
                      

45 cm 

30 cm 

Group I Soil 

(Sand) 

Water Table 

Water Table 

Group II-IV Soils 

(Loam to Clay) 
Septic 

Trenches 

Group I Soil 

(Sand) 

Group II-IV Soils 

(Loam to Clay) 

Chroma 2 

Chroma 2 

30 cm 
45 cm 

Septic 

Trenches 



71 

 

  

A.     

         

B.   
 

Figure 3.2  Low chroma soil colors due to the reduction and leaching of iron from soil 

(A- Goldsboro series) and from soils formed from iron poor materials (B Newhan series). 

For the soil (A) the SHWT was within 15 cm of the low chroma colors. For the soil (B), 

the seasonal high water table was more than 2m deep, but low chroma colors were 

present at the surface.  
 

Low chroma colors (2 or 1) due to 

iron reduction, leaching and loss of 

color (good indicator of the SHWT) 

High chroma colors due to oxidized 

iron impart yellow, red, orange and 

brown colors in soil 

Low chroma colors (2 or 1) 

throughout the entire profile due to 

iron poor parent materials (not a good 

indicator of the SHWT) 
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Figure 3.3A  Scenario where the predicted depth of seasonal saturation based on chroma 

2 colors overestimates the depth of the actual seasonal high water table (SHWT). The 

drainfield trench was installed 30 cm shallower than the chroma 2 colors, but would not 

actually maintain a 30 cm separation to the SHWT, instead a 10 cm separation would 

occur.   
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Figure 3.3B  Scenario where the predicted depth of seasonal saturation based on chroma 

2 colors underestimates the depth of the actual seasonal high water table (SHWT). The 

drainfield trench was installed with 30 cm shallower than the chroma 2 colors, and would 

actually maintain a 50 cm separation to the SHWT.  
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Figure 3.4 Vertical separation encroachments (VSE) occur when the water table rises to 

within 30 cm of the trench bottom for septic systems in soil groups II-IV (sandy loam to 

clay). Trench ponding (TP) occurs when the water table rises above or to the depth of the 

trench bottom and there is no separation. The frequency (number of encroachments) and 

duration (total time) of vertical separation distance encroachments and trench ponding 

were calculated using hydrograph data generated from automated water level loggers 

installed in groundwater wells near septic systems and the depth to trench bottom for 

each system. For septic systems in group I soils (sands), vertical separation distance 

encroachments would occur when the water table rises to within 45 cm of the trench 

bottom depth. The frequency of TP in this example is 1, and the frequency of VSE is 3. 

The duration of VSE is the total combined hours the water table was within 30 cm of the 

trench bottom for the 3 encroachments. The duration of TP is the total amount of time for 

water table was above the trench bottom depth.  
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Figure 3.5  Research sites located in the towns/cities of Newport, Atlantic Beach, Pine 

Knoll Shores and Smyrna in Carteret County, North Carolina. Carteret County is 

highlighted in the state map of North Carolina. Scale is approximate. Map modified from 

Carteret County, NC GIS web page and Wikipedia.  
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Figure 3.6  Depths to the measured seasonal high water table (SHWT), chroma 2 colors, 

septic system trench bottom, and 30 cm below the trench bottom (NC vertical separation 

requirement for group II-IV soils) for system GII-D. For this site, the chroma 2 colors 

underestimated the depth of seasonal saturation, the trench bottom was installed with less 

than 30 cm of separation from the chroma 2 colors, the water table encroached on the 30 

cm vertical separation three times and there were three trench ponding events where the 

water table rose above the trench bottom. The measured SHWT is the shallowest depth at 

which the water table saturates the soil for 14 consecutive days.  
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Figure 3.7  Cumulative saturation of the chroma 2 and measured SHWT depths  

for system GII-D. Cumulative saturation is the sum (total time) of the saturation events or 

periods when the water table rises to or above the chroma 2 or SHWT depths.  Saturation 

of chroma 2 + 30 cm and SHWT + 30 cm occurs when the water table rises 30 cm or 

more above the chroma 2 color depth and SHWT depths,  respectively. Cumulative 

saturation is the sum (total cumulative time) of these events.  
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Figure 3.8  Depths to chroma 2 colors and the 14-day seasonal high water table (SHWT) 

for sites GI- A in the Mandarin series, GI-B and GI-C in the Baymeade series, GI-D and 

GI-E in the Fripp series, GI-F, GI-G and GI-H in the Newhan series, GII-A to GII-D in 

the Goldsboro series and GIII-A to GIII-D in the Altavista series. Eleven of 16 sites had 

chroma 2 colors within 22 cm of the observed SHWT or both the chroma 2 colors and the 

SHWT were deeper than 122 cm. Most sites are not evaluated deeper than 122 cm 

beneath the surface because most septic system technologies require less soil depth than 

122 cm. 
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Figure 3.9  Mean depths to chroma 2 colors, 14-day seasonal high water tables (SHWT), 

and trench bottoms for septic systems in the Mandarin, Baymeade, Fripp, Newhan, 

Goldsboro and Altavista series. Septic systems in the Altavista and Goldsboro series 

require a 30 cm separation distance from trench bottom to chroma 2 colors and the 

SHWT, systems in the other series require a 45 cm separation distance in North Carolina. 

Most systems did not meet the required separation distance. 
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Figure 3.10  Cumulative saturations of  the depth to chroma 2 (C2) colors, or 30 to 60 cm 

above the depth to C2 colors for septic systems installed in the Mandarin, Baymeade, 

Fripp, Newhan, Goldsboro and Altavista soil series. C2 colors are used as indicators of 

the 14-day seasonal high water table (SHWT). Many states require septic systems to be 

installed at least 30 to 60 cm above indicators of the SHWT. Cumulative saturation of C2 

+ 30, C2 + 45 and C2 + 60 cm, refers to the time that the water table would be at or 

above the trench bottom of a septic systems requiring 30-60 cm of vertical separation 

from C2 colors. For each soil type, as the separation distance increases, the cumulative 

saturation decreases. Fripp and Newhan series soils had chroma 2 colors very close to the 

surface, but had deep water tables that never rose close to the chroma 2 colors and 

therefore had (0) hours of cumulative saturation.  
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Figure 3.11  Frequency of water table spikes above the depth to chroma 2 colors (C2), 

and 30 to 60 cm above the C2 colors. C2 colors are used as indicators of the  

14-day seasonal high water table (SHWT), and many states require septic systems  

to be installed at least 30 to 60 cm above water table indicators. Saturation events 

 of C2 + 30, C2 + 45 and C2 + 60 cm, refers to the number of times that the water table 

rose to or above the trench bottom of a septic systems requiring 30-60 cm of vertical 

separation from C2 colors. For each soil type, as the separation distance increased, the 

frequency of saturation events decreased.  
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Figure 3.12   Cumulative saturations of the depths to the 14-day seasonal high  

water tables for group I (sandy) soils including Mandarin, Baymeade, Fripp and Newhan 

soil series; group II (sandy loam) soils Goldsboro, and group III (sandy clay loam) 

Altavista series. Values represent the total number of hours the water table was at or 

above the depth of 14 days of continuous saturation. The depth that soil is saturated for 

fourteen continuous days is considered the SHWT for permitting septic systems in North 

Carolina. Septic systems must be installed at least 30 to 45 cm above the SHWT. Systems 

in group I soils require 45+ cm of separation, systems in other soils require at least 30 

cm. For each soil group, as the separation distance increased, the cumulative saturation 

decreased.  
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Figure 3.13  Frequency of water table spikes above the depth of 14 continuous days of 

saturation (SHWT), and 30 to 60 cm above the SHWT depth. Many states, including 

North Carolina, require septic systems to be installed at least 30 to 60 cm above water 

table indicators. Saturation events of SHWT + 30, SHWT + 45 and SHWT + 60 cm, 

refers to the number of times that the water table rose to or above the trench bottom of a 

septic systems requiring 30-60 cm of vertical separation from SHWT. For each soil type, 

as the separation distance increased, the frequency of saturation events decreased.  
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A.        B. 

        
 C.         D.  

 
Figure 3.14  Log of the cumulative saturation duration (hours) at the chroma 2 depth and 30, 45 and 60 cm above the chroma 2 

depths. Cumulative saturation 30-60 cm above the chroma 2 depths represents the duration of groundwater levels above the trench 

bottoms of septic systems (trench ponding) and duration of direct discharge of wastewater into the groundwater. A) group I 

Mandarin series; B) group I Baymeade series; C) group II Goldsboro series;  and D) group III Altavista series.  
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Figure 3.15  Mean vertical separation distance encroachment (VSE)  times and 

frequencies  and mean total trench ponding times and frequencies (TP) for septic systems 

in the Mandarin, Baymeade, Fripp, Newhan, Goldsboro and Altavista series. VSE’s and 

Tp’s were more common for systems in the Goldsboro and Altavista soils, which require 

a 30 cm separation distance to SHWT, while systems in the Mandarin, Baymeade, Fripp 

and Newhan soil series require a 45 cm separation distance. Frequencies indicate the 

number of VSEs or TPs.  
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Figure 3.16 Average daily depths to the water table and daily precipitation for systems in 

group I (Baymeade and Mandarin series), group II (Goldsboro series) and group III 

(Altavista series) soils during the typical wet season (December – May).  Mean trench 

bottom depths (MTD) were 50 cm for systems in GI and GII soils, and 74 for systems in 

GIII soils. When precipitation amounts began to decline in February 2007, the Group II 

and III soils still experienced vertical separation encroachments due to the installation 

depths of the systems and the relatively shallow water tables.  

 

 

 

 

 

 

GIII MTD 

GI and GII MTD 



86 

 

  

CHAPTER 4: SEPTIC SYSTEM NITROGEN LOADING TO GROUNDWATER IN 

THE NEWPORT RIVER WATERSHED, NORTH CAROLINA 

4.1 Abstract 

Excess nutrient loading to surface waters in North Carolina have been linked with 

eutrophic conditions, designation of entire river basins as nutrient sensitive waters, and 

massive fish kills. To address these issues, regulations (15A NCAC 2B .0232-.0240 and 

15A NCAC 2B .0255-.0259) were implemented to reduce nitrogen loads from various 

sources of pollution. However, nitrogen loads from septic systems to the shallow aquifer 

were not addressed in the regulations. Nitrogen loading to septic tanks and groundwater 

in the Newport River watershed in coastal North Carolina were calculated using 

hydrological and water quality data from 16 septic systems installed in three different soil 

groups and the groundwater adjacent to these systems. Demographic and soil survey data 

indicate that over 30,000 people use septic systems in the watershed with 76% of the 

systems installed in group I soils (sands), 11% in group II soils (sandy loams), and 13% 

in group III soils (sandy clay loams). Systems in group III soils had lower dissolved 

inorganic nitrogen (0.2 kg/person/yr) and total dissolved nitrogen loading rates (0.3 

kg/person/yr) to groundwater than systems in group I (2.0 and 4.0 kg/person/yr) and II 

soils (0.7 and 1.9 kg/person/yr), respectively. Mean annual watershed dissolved inorganic 

nitrogen (DIN) and total dissolved nitrogen (TDN) loading from septic systems to the 

groundwater were 47,226 kg and 95,973 kg, respectively. Septic systems reduced TDN 

loading by over 180,000 kg/yr (65%) before discharge to the groundwater. Overall, the 

TDN annual loading rates from septic systems to groundwater, assuming 5 systems/ha in 
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group I and II soils (28.5 to 57.5 kg/ha), were similar to potential agricultural 

contributions to groundwater (37.5 kg/ ha) for the Carteret County area (Neuse Basin 

Oversight Committee 2009) and higher than estimated atmospheric deposition rates of 

nitrogen (8.0-12.0 kg/ ha) in eastern North Carolina (Whitall et al. 2003). The results 

suggest that coastal watersheds with sandy soils are particularly vulnerable to shallow 

nitrogen loading from septic systems and septic systems should be considered in future 

regulatory efforts to reduce nitrogen loading to shallow groundwater and surface waters. 

4.2 Introduction 

4.2.1 Septic Systems and Water Quality 

Approximately 60% of residences in coastal, North Carolina currently rely on on-

site systems for wastewater treatment and disposal (North Carolina National Estuarine 

Research Reserve 2003) and the population of Coastal counties is expected to grow 

20.5% from 2000 to 2010 (Tillman 2004).  Much of the future growth of coastal North 

Carolina will likely be accommodated by on-site systems, meaning greater discharges of 

wastewater to the subsurface environment. An analysis of North Carolina Division of 

Environmental Health (2006) reports shows that nearly 1,500 coastal septic systems fail 

hydraulically (surfacing effluent and/or wastewater back-up in the home) each year, 

temporarily contributing pollutants to surface waters and/or exposing people and animals 

to wastewater pollutants. Septic system hydraulic failures can affect the quality of 

drinking water, recreational waters, shellfisheries, coastal ecology and tourism by 

discharging wastewater pollutants such as nutrients, bacteria and viruses directly into 

surface waters without any treatment by the soil. Another potential pathway of pollutant 
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transport from septic systems to surface waters is through the shallow groundwater 

system (non-point source pollution).  

Past studies have shown that nitrogen (Robertson et al. 1991; Postma et al. 1992; 

Harmon et al. 1996; Ptacek 1998; Buetow 2002; Corbett et al. 2002; and Reay 2004), 

bacteria (Carlile et al. 1981; Cogger et al. 1988; Lipp et al. 2001; Booth et al. 2003; 

Borchardt et al. 2003; Ahmed et al. 2005; and Cahoon et al. 2006;) and viruses (Scandura 

and Sobsey 1997) can be transmitted from septic systems to ground and/or surface 

waters, resulting in the degradation of water quality.  

Nitrogen concentrations exceeding 20 mg/L in groundwater beneath and/or 

adjacent to septic systems have been reported for the Coastal Plain of North Carolina 

(Buetow 2002), a sandy aquifer in Ontario, Canada (Harman et al. 1996), a coastal barrier 

bar in Point Pelee, Ontario, Canada (Ptacek 1998), in Rhode Island (Postma et al. 1992) 

and in the Coastal Plain of Virginia (Reay 2004). Each of these sites contained sandy 

soils and sediments.  

Furthermore, studies by Harmon et al. (1996), Robertson (1991), and Ptacek 

(1998) in Canada, Buetow (2002) in North Carolina, and Corbett et al. (2002) in Florida 

included tracking the groundwater septic plumes for varying distances away from the 

systems and each study showed septic systems impacts on groundwater away from the 

systems. Robertson (1991) found that nitrogen derived from septic systems can migrate 

away from the systems and affect groundwater quality at distances as great as 130 m. 

However, elevated groundwater NO3
- 
-N concentrations do not necessarily correspond to 

high loading rates of nitrogen to adjacent surface waters. Studies by Robertson (1991) 
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and Buetow (2002) showed high concentrations of NO3
-
-N in groundwater down-gradient 

from the septic systems, but less than 25% of the nitrogen load actually made it to surface 

waters because the groundwater impacted plume had to flow through organic rich stream 

and river bed sediments that fueled denitrification.  

In addition to nitrogen, bacteria from septic systems may contribute to the  

degradation of shallow groundwater (Carlile et al. 1981; Cogger et al. 1988; and 

Scandura and Sobsey 1997) and surface water quality (Lipp et al. 2001; Booth et al. 

2003; Ahmed et al. 2005; and Cahoon et al. 2006;). Studies in the Coastal Plain of North 

Carolina by Carlile et al. (1981) and Cogger et al. (1988) showed that groundwater 1.8 m 

and 16 m down-gradient from septic systems contained fecal coliform densities of up to 

3218 and 1600 MPN/100 mL, respectively. Coliform densities in groundwater beneath 

septic systems were higher during periods with high water tables (up to 25,000 MPN/100 

mL) than during periods of low water tables (60 MPN/100 mL). A study by Scandura and 

Sobsey (1997) in coastal North Carolina found that groundwater adjacent to septic 

systems installed in sandy soils with high water tables had extensive viral and bacterial 

contamination. These studies indicated that soil type and separation distance influence 

septic effluent treatment and shallow groundwater quality in coastal areas.  

Some groundwater studies did not include monitoring adjacent surface water 

quality (Carlile et al. 1981; Cogger et al. 1988; and Scandura and Sobsey, 1997) however, 

research by Lipp et al. (2001), Booth et al. (2003), Ahmed et al. (2004), and Cahoon et al. 

(2006) provided links between septic system derived bacteria and surface water 
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contamination in coastal areas of Charlotte Harbor, Florida, south central Virginia, 

Queensland, Australia, and coastal North Carolina, respectively.   

4.2.2 North Carolina Watershed Water Quality Issues 

Coastal and inland waters of North Carolina have witnessed the effects of poor 

water quality resulting from excess nutrient and bacteria loadings. In the 1990’s, there 

were a series of massive fish kills near the mouths of the Neuse and Tar-Pamlico Rivers 

within the Albemarle-Pamlico Estuary system (APES). The primary causative agent of 

the fish kills in the 1990’s was determined to be excess nutrient loadings (Fear et al 

2004). Since the massive fish kills in the 1990’s, many point and non-point source 

polluters operating within the watersheds of two of the larger river basins (Neuse and 

Tar-Pamlico) feeding the APES, have been more stringently regulated under the umbrella 

of Nutrient Sensitive Waters (NSW) Strategies (North Carolina Department of 

Environment and Natural Resources, 2003) (Figure 4.1).  

Included in the strategies were goals focused on reducing nutrient loadings to the 

estuary by 30% from 1991-1995 baseline periods. Regulations targeted point and non-

point sources of nutrient loadings to the rivers including agricultural producers, industrial 

and municipal wastewater treatment plants, and developments that generate significant 

stormwater runoff in both the Neuse and Tar-Pamlico river systems. There was also a 

moratorium on new hog farms enacted in 1997 (NC House Bill 515), and several Bills 

since to continue the moratorium. Not addressed were the nitrogen loads from septic 

systems, even though almost 40 and 48% of the population in the Neuse and Tar-Pamlico 

River Basins rely on septic systems, respectively (Pradhan et al. 2007). A similar 
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watershed scale nutrient reduction strategy was recently implemented for the Jordan Lake 

Watershed (North Carolina Department of Environment and Natural Resources 2009) due 

to excess algae growth and eutrophic conditions. Similarly, the Jordan Lake rules targeted 

agriculture, urban stormwater runoff, and centralized wastewater treatment plants, but 

again, did not address nitrogen contributions from septic systems.  

Under the various NSW strategies, when agricultural lands are converted to 

residential or commercial developments, the agricultural industry receives a nitrogen 

reduction credit due to the land use conversion. While stormwater runoff (and stormwater 

delivered nitrogen load) from the newly developed property may be mitigated by the use 

of engineered runoff controls, the nitrogen loads from the septic systems serving these 

developments are not accounted for. Also there is the possibility of nitrogen loadings to 

shallow groundwater via lawn fertilization (Sharma et al. 1996) and pet waste (Flipse et 

al. 1984).  Reay (2004) estimated that nitrogen loading from septic systems to shallow 

groundwater was significant (5.7 to 10.7 kg/household/yr) and with 0.2 to 0.4 ha lot sizes, 

comparable to loadings from predominant row crop agriculture in the mid-Atlantic 

Coastal Plain. Therefore, when land use changes from agricultural to residential/urban 

development, actual nitrogen loading reduction to the groundwater and eventually the 

estuary may not be realized, although reduction credit (for the basin) is received. 

The White Oak River Basin Watershed, located just south of the Tar-Pamlico and 

Neuse River Basins (Figure 4.1) has also experienced water quality problems. The basin 

has four river systems including the New River, White Oak River, Newport River, and 

North River and 3 sounds: Core, Bogue, and Back. Of the estimated 47,348 ha of 
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shellfish growing waters in the watershed, 15,032 ha or 32% were listed as impaired in 

2007 (North Carolina Division of Water Quality 2007). This area represents a 3,800 ha 

increase in use impairment since 2001. The primary stressor for shellfishing waters in the 

watershed is fecal coliform, but nutrients have also contributed to use impairment in the 

White Oak (North Carolina Division of Water Quality 2007). There are over 4,320 ha of 

nutrient sensitive waters in the basin.  Thus, nutrient and bacteria loadings to surface 

water in the watershed are of increasing concern. The increase in acreage of nutrient 

sensitive and impaired waters has corresponded with an increase in population and land 

use conversion from forestry and agriculture to urban landscapes. From 1982 to 1997, 

there was an estimated 7.7% decline or loss of nearly 12,000 ha of forest lands, a 13.6 % 

decline or loss of over 3,600 ha of cultivated cropland and a population increase of over 

63,000 in the watershed (North Carolina Division of Water Quality 2007). Urban areas 

grew by 65.6% from 1982 to 1997 and expanded by over 14,000 ha of land (NC DWQ, 

2007). North Carolina Division of Environmental Health (2007) reports indicate that 

from 1995 to 2006, over 13,800 new septic systems were installed in Carteret and 

Onslow counties. Furthermore, the counties (Carteret and Onslow) that contain most of 

the watershed acreage and have the largest populations are expected to see 13.9% - 

15.8% increases in population from 2000 to 2020 (NC DWQ  2007). Future growth is 

likely to be accommodated by an increase in the number of septic systems.  

As more land is converted from agriculture and forestry to residential and 

commercial developments, septic system nitrogen loading to ground and surface waters 

will increase. In North Carolina, sandy soils (group I soils common in coastal settings) 
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are assigned relatively high wastewater loading rates (0.42 to 0.28 L/d/m
2
) (15A NCAC 

18A .1955) that allow for lot sizes smaller than 0.2 ha. Shallow groundwater quality and 

groundwater contribution of dissolved nitrogen to adjacent surface waters may not 

improve as land is converted from agricultural to residential development in coastal 

areas. This research aims to calculate the nitrogen loads contributed from septic systems 

to soils and shallow groundwater in the Newport River watershed (Figure 4.2), a coastal 

watershed that has experienced excess nutrient loadings. 

4.3 Methods 

4.3.1 Septic System and Groundwater Monitoring 

Sixteen residential septic systems in coastal North Carolina were instrumented 

with 10 cm diameter PVC monitoring wells. A minimum of two wells per residence/lot 

were installed adjacent to the septic systems. The wells were nested such that one well 

was relatively deep and the other relatively shallow (Figure 4.3). At each site, the septic 

system components including the tank and drainfield trenches were located using a tile-

drain probe rod and the soil properties were evaluated. The soil profiles at each site were 

examined using a hand auger, the texture by feel method (Brady et al. 2004) in the field, 

and the hydrometer method in the lab (Day 1979) to determine the particle size 

distribution and NC DENR soil group status (Table 4.1). Wells were installed between 

drainfield trenches for trench systems and down gradient from bed systems (Figure 4.3).  

Groundwater quality adjacent to the septic systems was monitored monthly for 

the most common species of nitrogen associated with septic tank effluent and non-point 

source pollution (NH4
+
 and NO3

-
 ) (Robertson et al. 1991; Postma et al. 1992; Harmon et 
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al. 1996; Buetow 2002; and Reay 2004). Well water samples were collected using 

disposable bailers. Wells were bailed three times, allowed to recharge and then a sample 

was collected. Water samples were analyzed for NO3
-
-N and NH4

+
-N monthly for 13 

months, using a YSI Sonde 6920 multi-parameter water quality Sonde (YSI 2007). The 

Sonde uses ion selective reference electrodes for determining concentrations of NO3-N 

and NH4-N (accuracy 2 mg/L or 10% whichever is greater).  The Sonde was calibrated 

using NO3
-
-N and NH4

+
-N standards before each monthly sampling event. Twice during 

the study (December 2007 and February 2008) groundwater samples were collected from 

the sites and analyzed for NO3
-
-N,  NH4

+
-N and Total Kjeldahl nitrogen (TKN) at the 

NCSU Soil Science Department Analytical Services laboratory using procedures 

described in Methods for Examination of Water and Wastewater (1995) with a Quick 

Chem 8000 Lachet Analyzer.  

Wastewater from 10 accessible tanks (GI-A, GI-B, GI-D, GI-F, GII-A, GII-C, 

GII-D, GIII-A, GIII-C, GIII-D) was collected and analyzed three times (December 2007, 

January and February 2008) during the study period for the dissolved inorganic species 

NO3-N and NH4-N and TKN at the NCSU Soils laboratory.  Total dissolved nitrogen 

(TDN) was calculated by adding NO3-N and TKN, while dissolved inorganic nitrogen 

(DIN) was calculated by adding the concentrations of NH4
+
-N and NO3

-
-N. Mean tank 

and groundwater and TDN concentrations were determined for each system and each soil 

group.  
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4.3.2 Nitrogen Loadings to Septic Tanks and Shallow Groundwater 

Estimates of mean daily water use (EPA 2002) with the measured mean septic 

tank nitrogen concentrations from the study sites were used to calculate nitrogen loadings 

processed by septic tanks. The EPA estimated monthly water use was multiplied by the 

mean tank DIN and TDN concentrations to determine the monthly loading to the septic 

tank for each home. Monthly nitrogen loading was divided by the number of people in 

the home, thus providing the per-person loading of pollutants to the septic tank.  Mean 

nitrogen loading to tanks was calculated and compared to other published estimates 

(Buetow 2002; and US EPA 2002). The watershed scale loading of nitrogen (N) to tanks 

was calculated for the Newport River watershed (within the White Oak River Basin) by 

multiplying the number of people using septic systems by the mean nitrogen loading per 

person.  

Nitrogen loading to the septic tank should be higher than loading to the shallow 

groundwater system, because of pollutant removal mechanisms in the tank and 

unsaturated zone between the trench bottom and water table. Potential N reduction and 

transformation mechanisms such as adsorption, cation exchange, plant and microbial 

uptake, ammonification, nitrification, and denitrification processes can result in load 

reductions to shallow groundwater in comparison to soil loading.  To calculate N 

loadings to shallow groundwater, the additional information required includes mean 

groundwater N concentrations adjacent to systems, soil types and groundwater 

hydrological properties including the soil hydraulic conductivity, hydraulic gradient, and 

groundwater flow direction.  
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 Mean groundwater DIN and TDN concentrations for each site was calculated 

from monthly water quality sampling and by taking the average DIN and TDN 

concentrations of the shallow and deep wells. To determine the various hydraulic 

properties, the monitoring wells at the 16 sites were located and plotted on maps using 

Global Positioning Systems (GPS) and their relative elevations were surveyed using laser 

levels. The relative elevation data was coupled with the water level depth information to 

calculate the relative elevation of the water table at each well. With the elevation and 

GPS spatial data, three-point contouring (Heath 1998) was used to determine 

groundwater flow direction and to determine the hydraulic gradient. Slug tests (Bouwer 

and Rice  1976) were performed to calculate hydraulic conductivity at each site.  

Darcy’s law (Q = KA*dh/dl) relates groundwater discharge (Q) to the hydraulic 

conductivity (K), the aquifer cross-sectional area (A) and the hydraulic gradient (dh/dl) 

and was used to calculate the septic system plume discharge. Groundwater hydraulic 

gradients, hydraulic conductivity measurements, plume width and depth information, and 

mean nitrogen concentrations were used to estimate loading rates of nitrogen to shallow 

groundwater at each site. For each site, plume width was calculated based on the 

configuration of septic system drainfield and the groundwater flow direction (Figure 4.3). 

Plume depth was based on the water level and water quality data obtained from the deep 

and shallow monitoring wells (150 cm total screen interval) adjacent to the system 

(Figure 4.3). The groundwater discharge multiplied by the mean DIN and TDN 

concentrations (in the groundwater) was used to determine loading to the groundwater for 

each system. System loading to the groundwater was divided by the number of people 
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using each system, thus providing a per-person nitrogen loading rate to groundwater.  

The mean nitrogen loading to shallow groundwater was calculated for each soil group by 

averaging the DIN and TDN loadings for each system in soil groups I, II and III. 

4.3.3 Septic System Nitrogen Loading to Shallow Groundwater in the Newport River 

Watershed 

For the Newport River watershed (Figure 4.2) the N loading to shallow 

groundwater was estimated using mean nitrogen loading per soil group for the total 

population using septic systems installed in soil groups I, II, and III. The population 

within the Newport River watershed was determined using demographic information 

from the North Carolina Office of State Budget and Management (2009) and Carteret 

County Economic Development Council (2009) for the Towns and Cities of Morehead, 

Beaufort, Newport, Pine Knoll Shores, Indian Beach, Emerald Isle, Bogue, Atlantic 

Beach, Cape Carteret and Cedar Point and the unincorporated areas. Centralized 

wastewater treatment plants serve most of the municipal populations of Newport, 

Beaufort and Morehead City (personal communication with Newport Planning Office, 

Carteret County Health Department, Town of Beaufort and Morehead City 

Administration, 2009), while an estimated 26% of the population in Atlantic Beach, Pine 

Knoll Shores, and Indian Beach have centralized sewer service via package plants 

(Dickinson 2007). The remaining watershed residents use septic systems.  In 1990, the 

last year septic system data was collected during the US Census, 68% of Carteret County 

residences used septic systems for wastewater treatment and disposal (North Carolina 

National Estuarine Research Reserve 2001).  
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The geographic boundaries of the sewer/package plant service areas were 

delineated using maps and information provided by town officials (personal 

communication, Newport Planning Office, Carteret County Health Department, Town of 

Beaufort and Morehead City Town Manager 2009) and engineering reports (Dickson 

2007). The number of people serviced by these centralized systems was subtracted from 

the total population of the watershed to yield the number of people using septic systems. 

By grouping adjacent towns using zip code population data and subtracting out the 

municipal populations of each using sewer services, an estimate of septic system use for 

the group of towns was calculated. Soil and demographic data from Newport, Bogue, 

Morehead City and Beaufort were pooled into one association, data for Atlantic Beach, 

Indian Beach, Pine Knoll Shores and Emerald Isle comprised another association and 

Cape Carteret and Cedar Point made the last association. Once the population statistics 

and geographic boundaries of the sewer service areas were established, aerial 

photographs and web soil surveys were used to determine the location of developments 

using septic systems (outside sewer service areas).  

4.3.4 Delineation of Areas Served by Septic Systems 

Soil surveys are land use planning tools published and digitized by the United 

States Department of Agriculture (USDA). Soil surveys include aerial photographs of 

counties and soil series maps. Soil series and soil boundaries are provided in the web soil 

survey as a data layer that is overlain on aerial photographs (USDA 2009).The web soil 

survey was used to create “areas of interest” for developments that used septic systems. 

Areas of interest (AOI) were produced for each town. The boundaries of municipal areas 
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serviced by sewer, agricultural, and forestry land uses, and sparse residential 

developments were excluded from the (AOI) procedure. A spreadsheet was produced 

with the creation of each AOI that included the acreage and percentage of each soil series 

within the AOI and the total area per AOI.  

Each soil series was catalogued as a group I, II, or III depending on the soil 

texture characteristics of the series at the 45 to 120 cm depth range (soil group depends 

on the textural group beneath the trench bottom and most systems are installed between 

45-90 cm deep). Therefore for each town and association, the percentage of land area 

used for septic systems in the group I, II, and III soils was determined. The total 

population of the town/area using septic systems was then multiplied by the ratio of land 

in soil group I, II, and III for each area to estimate the number of people using septic 

systems in the three soil groups.  With an estimate of the population using septic systems 

in soil groups I, II, and III and the mean nitrogen loading rate to the groundwater for each 

soil group, an estimate of the loading of nitrogen to the groundwater in the Newport 

River watershed was calculated. A comparison of loading to the soils (from tank samples) 

and to the groundwater system (from groundwater samples and estimates) for each soil 

group (I, II, and III) was used to determine the effectiveness of different soil types at 

treating wastewater. 

4.4 Results and Discussion 

4.4.1 Tank and Groundwater Nitrogen Loading 

 

Mean DIN tank loading was similar for systems in group I, II, and III soils 

ranging from 2.1 kg/person/yr for systems in group III soils to 2.7 kg/person/yr for 
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systems in group II soils. Mean TDN loading to tanks in soil groups I-III was higher and 

more variable (than DIN loading), but followed the same trends as DIN loading, with 

systems in group III soils having the lowest loading rate at 6.9 kg/person/yr and systems 

in group II soils having the highest loading rate of 12.6 kg/person/yr (Table 4.2). The 

TDN loading was higher than DIN loading due to the presence of organic nitrogen in the 

septic tanks.  While mean tank DIN concentrations ranged from 25.8 to 32.3 mg/L, mean 

tank TDN ranged from 83.3 to 151.8 mg/L (Table 4.2). The mean tank TDN 

concentrations for this study were similar to those measured by Ptacek (1998) (98 mg/L) 

but were higher than those reported by Buetow (2002) (18.9-54 mg/L) and the US EPA 

(2002) (26-75 mg/L). Mean tank DIN concentrations for the study sites (25.8 -32.2 mg/L) 

were similar to those reported previously by Buetow (2002), Cogger et al. (1988) and 

Waller et al. (1987), with ranges and means of (16-48.3 mg/L), 28 mg/L, and 26.2 mg/L, 

respectively.  

Septic system DIN and TDN loading to groundwater was less than nitrogen 

loading to the tanks due to septic system treatment processes. The mean groundwater 

DIN loading for septic systems in group I soils were the highest (2 kg/person/yr), 

followed by group II soils (0.7 kg/person/yr), and group III soils (0.2 kg/person/yr) 

(Table 4.3). The TDN loading from septic systems to the groundwater were also highest 

for group I soils (4.0 kg/person/yr), followed by group II soils (1.9 kg/person/yr), and 

group III soils (0.3 kg/person/yr) (Table 4.3). The TDN loading to the groundwater in 

group III soils were lower than in group I and II soils due to lower mean groundwater 

TDN concentrations (3.4 mg/L for group III, 34.3 and 32 mg/L for group I and II, 
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respectively) (Table 4.3). The TDN loading was much higher than DIN loading due to the 

predominance of organic nitrogen in groundwater adjacent to many systems.  Prior 

studies (Robertson et al. 1991; Ptacek 1998; and Buetow 2002) showed the potential for 

dissolved inorganic nitrogen species (NO3
-
-N and NH4

+
-N) to migrate at high 

concentrations away from septic systems, but research is needed on the fate of dissolved 

organic nitrogen discharged by septic systems.  

Research has shown that soils with relatively larger percentages of silt and clay 

provide better treatment of wastewater pollutants due to higher cation exchange 

capacities and more potential for denitrification (Carrol et al. 2004; Karathanasis et al. 

2006). The group III soils had the largest mean effective cation exchange capacity (group 

III-7.4, group II- 2.9, and group I-3.1 cmol/kg) and lowest mean hydraulic conductivity 

(group III- 0.19, group II-0.34, and group I-3.34 m/day) of the soil groups, indicating 

longer residence times for wastewater in the subsoil and more cation exchange sites for 

ammonium adsorption. Group III soils were the most efficient at reducing DIN and TDN 

loads to the groundwater (91 and 96%), followed by group II soils (74 and 85%) and 

group I soils (17 and 56%) (Table 4.4).  These data suggest that watersheds using septic 

systems with more clayey soils may have better shallow groundwater quality than 

watersheds with sandier soils.  

4.4.2 Demographic and Soil Group Data for the Newport Watershed 

Using web soil surveys and sewer service boundary information provided by local 

government officials, developed areas using septic systems within the Newport watershed 

were delineated and the acreage and percentage of land in group I, II and III soils was 
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calculated (Figures 4.4-4.15 and Tables 4.5-4.16). The towns/cities of Morehead City, 

Newport, Bogue and Beaufort were evaluated as an association (MH) by combining the 

demographic data using septic systems with the percent population using septic systems 

in soil groups I, II and III and the mean DIN and TDN per person loading to tank and 

groundwater. The other associations include Atlantic Beach, Indian Beach, Pine Knoll 

Shores and Emerald Isle on the barrier island (BI), and the Cape Carteret and Cedar Point 

association (CC). The MH association contained most of the watershed’s septic systems 

using population (22,169 of 30,277 people) and the predominate soil group was group I 

(61.8%) followed by group III (20.5%) and group II (17.7%) (Tables 4.15, 4.16, and 

Figure 4.15). For the BI association the total estimated population using septic systems 

was 6958, with 100% of the systems installed in group I soils (Tables 4.15, 4.16, and 

Figure 4.15). The CC association had 1150 people with 97.1% of the population using 

septic systems in group I soils, 2.4% in group II soils and 0.5% in group III soils (Tables 

4.15, 4.16, and Figure 4.15). For each association the DIN and TDN loading was highest 

for systems in group I soils and lowest for systems in group III soils (Tables 4.15, 4.16). 

For the entire watershed, the annual DIN and TDN loadings to septic tanks were 72,766 

kg and 277,155 kg, respectively (Table 4.16). The annual DIN loading to groundwater 

was an estimated 47,226 kg, and the annual TDN loading was 95,973 kg (Table 4.15).  

Therefore septic systems did reduce watershed DIN and TDN loadings by 35 and 65% 

respectively from the source.  

Regions with sandy soils such as the Outer Banks and Sand Hills are most likely 

to experience high nitrogen loading rates to groundwater from septic systems. 
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Communities developed on soils with higher percentages of silt and clay (group III and 

IV) are less likely to have high groundwater nitrogen concentrations and loadings from 

septic systems. In North Carolina, the percentage of areas with sandy soils decreases as 

you travel from the coast to the mountains (Daniels et al. 1999), with some of the barrier 

islands having essentially 100% of the buildable land in soil group I (>88% sand 

fraction). Piedmont and Mountain soils typically have relatively higher percentages of silt 

and clay (group III and IV soils) and therefore are less likely to experience high nitrogen 

loadings from septic systems to the groundwater, but more research is needed for 

confirmation.  

Also of note, Carteret County is a tourist attraction and while the year round 

population of the County is just over 63,000 (NC Office of State Budget and 

Management 2008), during the summer the population can more than double as people 

visit the beach communities (Carteret County Economic Development 2008). Therefore, 

it is possible in coastal areas that wastewater loads processed by septic systems and 

entering groundwater also more than double during the tourism months, if the ratio of 

housing units served by septic systems used by tourists is equivalent to the year round 

population septic/sewer ratio.  

Currently, nitrogen contributions to ground and surface waters from septic 

systems are not considered in watershed-scale nutrient management strategies in North 

Carolina. Regulatory emphasis for non-point sources of pollution has focused on 

agriculture and stormwater runoff, with growing concern that atmospheric deposition 

(Whitall et al. 2003) can be significant as well. However, the TDN loading rates from 
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septic systems to groundwater for group I and II soils were 11.5 and 5.7 kg/household/yr.  

With five homes per ha (1/2 acre lots), the total septic system loadings rates would be 

28.5 to 57.5 kg/ha, comparable to the annual loading rates used by regulatory agencies 

for cropland (37.5 kg/ha) in the same County (Neuse Basin Oversight Committee 2009). 

Therefore, if land use changes from row crop agriculture to residential development with 

lots less than 0.4 ha (1 acre), total nitrogen loadings to water resources may not be 

reduced.  Atmospheric deposition rates for Eastern North Carolina typically range from 8 

to 12 kg/ ha/yr (Whitall et al. 2003) comparable to the septic system loading of TDN to 

groundwater in sandy soils from 1 person. As more land is developed, the contributions 

from septic systems will increase.  

4.6 Conclusions 

Soil type is an important controlling factor for septic system nitrogen loading to 

groundwater, with finer textured soils providing better treatment efficiency. There was an 

order of magnitude difference in nitrogen loading when comparing systems in group I 

and II soils to the finer textured group III soils. Watersheds with greater percentages of 

group III soils should have lower risks for shallow groundwater N contamination. 

Currently septic systems in North Carolina are designed based on the hydraulic 

conductivity of the soil, with sandy soils assigned higher loading rates and smaller 

drainfield areas. This methodology allows for relatively high density development in soil 

groups (I and II) that are the least effective at reducing nitrogen loading to groundwater. 

Also, many of the sandier soils are adjacent to estuaries and rivers that have experienced 

problems with excess nutrient loadings and eutrophication. At the watershed scale the 
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potential for substantial groundwater transport of septic system wastewater nitrogen to 

nearby surface waters is significant and comparable to the loading rates of agriculture and 

greater than rates from atmospheric deposition on a unit area basis. Vegetated and 

riparian buffers can help reduce the contribution of groundwater transported nitrogen to 

surface waters in geomorphic settings where the water table is within the root zone of 

buffer vegetation. However, vegetated buffers are not required in all coastal river basins, 

and drainage ditches and canals may short circuit the groundwater transport of septic 

system impacted groundwater through existing buffers. Also, if nitrogen in the 

groundwater flowing through the root zones of buffer vegetation is in the organic or 

NH4
+
-N form, then nitrogen removal via denitrification will be limited, because the 

denitrification process requires nitrogen in the NO3
-
 species (Sylvia et al. 1999). While 

most previous work involving groundwater nitrogen transport has focused on DIN, a 

recent study by Kroeger et al. (2006) suggests that a substantial portion of anthropogenic 

nitrogen introduced to watersheds is exported as DON. Therefore, septic system 

contributions of DON and NH4
+
-N could be significant.  

The potential nitrogen loading from septic systems to surface waters should be 

accounted for in future water quality improvement initiatives and regulations. It should 

also be noted that human wastewater treatment via centralized sewer and package plants 

also can contribute significant nitrogen loads to surface and groundwater waters, but 

these technologies are monitored more closely than septic systems. More work is needed 

in comparing the nitrogen loads and species, from different wastewater treatment systems 

to ground and surface water.  
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Table 4.1   Soil and site information including soil series name, particle size distribution, NC Department of Environment and Natural 

Resources soil group information, effective cation exchange capacity, pH, humic matter percentage, septic system type, installation date 

and location. Site location of NWP is Newport, AB is Atlantic Beach, and PKS is Pine Knoll Shores, NC.  Con. is a conventional system 

with 2 or more 90 cm wide, drainfield trenches, bed systems have one trench often 180 cm wide or greater. Effective cation exchange 

capacity (ECEC) is a measure of the capacity to absorb and exchange cations in reversible reactions. Humic matter percentage (HM) is the 

amount of complex organic, rather than mineral composition. 
 

Soil / Site USDA Soil 

Series 

System Install 

Date 

Site Location 

City/Town 

System 

Type 

% Sand % Silt % Clay ECEC 

(cmol/kg) 

pH HM%  

GI-A Mandarin 2006 NWP Bed 90.3 4.6 5.1 5.6 4.7 4.8  

GI-B Baymeade 2005 NWP Bed 94.6 2 3.4 1.2 5.3 0.2  

GI-C Baymeade 2006 NWP Con. 90.7 3.9 5.3 3.2 6.1 0.7  

GI-D Fripp 1991 AB Con. 98 0.3 1.7 2.3 4.8 0.6  

GI-E Fripp 1996 PKS Bed 98.3 0 1.7 1.5 5.8 0  

GI-F Newhan 1979 PKS Bed 97.2 0.3 2.5 2 6.2 0.1  

GI-G Newhan 1977 PKS Con. 98 0.3 1.7 5.6 7.6 0.2  

GI-H Newhan 1977 PKS Con. 97.2 1.2 1.7 3.1 6.3 0.3  

GI-Avg  1992   95.5 1.6 2.9 3.1 5.9 0.9  

            

GII-A Goldsboro  1987 NWP Con. 74.2 9.6 16.2 3.2 5.6 0.2  

GII-B Goldsboro  1985 NWP Con. 80.7 10.1 9.2 3.5 6.6 1.9  

GII-C Goldsboro  1999 NWP Con. 75.4 11.1 13.5 2.1 5.8 0.6  

GII-D Goldsboro  1998 NWP Con. 79 7.5 13.4 2.8 5.5 0.5  

Avg  1990   77.3 9.6 13.1 2.9 5.9 0.8  

            GIII-A Altavista 1995 Smyrna  Con. 66.8 12.3 20.9 7 6.8 0.1  

GIII-B Altavista 1986 Smyrna  Con. 71.2 5.2 23.6 7.7 7.8 0  

GIII-C Altavista 1994 Smyrna  Con. 67 8.2 24.7 7.2 7.6 0  

GIII-D Altavista 1991 Smyrna  Con. 64.9 9.7 25.4 7.5 6.9 0.1  

Avg  1992   67.5 8.9 23.7 7.4 7.3 0  
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Table 4.2  Total dissolved nitrogen (TDN= TKN + NO3-N) and dissolved inorganic 

nitrogen (DIN = NH4-N + NO3-N) loading to the septic tank for systems in soil groups I, 

II and III. Loadings calculated using mean nitrogen concentrations and mean estimated 

water use (EPA  2002).  

 

System 

Tank 

DIN 

(mg/L) 

Tank 

TN 

(mg/L) 

Water 

Use 

(L/day) 

DIN 

Loading 

Kg / yr 

DIN Loading 

Kg/person/Yr 

TDN 

Loading 

Kg / yr 

TDN Loading 

Kg/person/Yr 

GI-A 31.7 134.1 454 5.3 2.6 22.2 11.1 

GI-B 29.5 91.9 907 9.8 2.4 30.4 7.6 

GI-D 32.2 141.2 680 8 2.7 35.1 11.7 

GI-F 22.9 67 454 3.8 1.9 11.1 5.6 

GI-Avg 29.1 108.6 624 6.7 2.4 24.7 9.0 

STDEV 4.3 35.2 

 

2.7 0.4 10.5 2.9 

        
GII-A 31.6 121.2 907 10.5 2.6 40.1 10.0 

GII-C 33.9 182.3 454 5.6 2.8 30.2 15.1 

GII-D 31.4 

 

680 7.8 2.6 

  
GII-Avg 32.3 151.8 680 8.0 2.7 35.2 12.6 

STDEV 1.4 43.2 

 

2.4 0.1 7.0 3.6 

        
GIII-A 26.4 78.5 454 4.4 2.2 13.0 6.5 

GIII-C 31 127.6 454 5.1 2.6 21.1 10.6 

GIII-D 20 43.7 454 3.3 1.7 7.2 3.6 

GIII-Avg 25.8 83.3 454 4.3 2.1 13.8 6.9 

STDEV 5.5 42.2 

 

0.9 0.5 7.0 3.5 
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Table 4.3  Dissolved inorganic nitrogen (DIN) and total dissolved nitrogen (TDN = TKN + NO3-N) loading to the groundwater 

for septic systems installed in group I, II and III soils. Loadings calculated using Darcy’s law and mean nitrogen 

concentrations adjacent to monitored systems. Plume area is the cross sectional area of surficial aquifer impacted by the septic 

system.  

 

System 

DIN 

(mg/L) 

TDN 

(mg/L) DH/DL K(m/day) ne 

Plume 

Area 

(m2) 

Plume 

Q L/day 

 DIN GW 

Loading 

Kg/yr 

TDN GW 

Loading 

Kg/yr 

  DIN GW 

Loading 

Kg/person/yr 

TDN GW 

Loading 

Kg/person/yr 

GI-A 16.7 26.4 0.027 0.98 0.3 9.3 820 5 7.9 2.5 4 

GI-B 27.9 82.3 0.027 2.47 0.3 5.6 1245 12.7 37.4 3.2 9.3 

GI-C 10.3 22.2 0.035 1.01 0.3 8.4 990 3.7 8 1.9 4 

GI-D 18.2 19.7 0.012 1.95 0.25 20.4 1909 12.7 13.7 4.2 4.6 

GI-E 20 48.1 0.004 8.44 0.25 3.7 500 3.7 8.8 0.9 2.2 

GI-F 14.8 24.5 0.034 1.37 0.25 5.6 1043 5.6 9.3 2.8 4.7 

GI-G 2.8 42.1 0.002 5.7 0.25 7.8 356 0.4 5.6 0.2 2.8 

GI-H 10.5 8.9 0.002 4.82 0.25 7.4 285 1.1 0.9 0.5 0.5 

Avg 15.2 34.3 0.018 3.34 0.27 8.5 894 5.6 11.5 2 4 

STDEV 7.5 23.0 0.014 2.71 

 

5.1 535 4.7 11.1 1.4 2.6 

             

GII-A 12.2 29.4 0.017 0.37 0.2 19 1055 3.5 8.5 0.9 2.1 

GII-B 10.6 19.6 0.017 0.37 0.2 19 1160 3.1 5.6 0.8 1.4 

GII-C 6.9 70.4 0.008 0.3 0.2 25.2 1058 0.8 7.9 0.4 3.9 

GII-D 18.1 8.6 0.008 0.3 0.2 23.2 1740 1.8 0.9 0.6 0.3 

Avg 12 32 0.013 0.34 0.2 21.6 1275 2.3 5.7 0.7 1.9 

STDEV 4.7 27.0 0.005 0.04 

 

3.1 328 1.2 3.5 0.2 1.5 

             

GIII-A 3.1 2.6 0.006 0.15 0.1 27.9 209 0.3 0.2 0.1 0.1 

GIII-B 2.4 2.1 0.006 0.18 0.1 40.9 221 0.4 0.3 0.2 0.2 

GIII-C 4 3.4 0.007 0.09 0.1 23.2 104 0.2 0.2 0.1 0.1 

GIII-D 2 5.6 0.015 0.34 0.1 19.5 1193 0.7 2 0.4 1 

Avg 2.9 3.4 0.009 0.19 0.1 27.9 432 0.4 0.7 0.2 0.3 

STDEV 0.9 1.5 0.004 0.11 

 

9.3 510 0.2 0.9 0.1 0.4 
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Table. 4.4  Mean tank and groundwater dissolved inorganic (DIN) and total dissolved 

nitrogen  (TDN) loading calculations and reductions for systems in soil groups from tank 

and groundwater samples were collected. Percent reduction based on the difference in 

nitrogen loading from the tank to the groundwater.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil 

Group 

Tank DIN 

(Kg/person/yr) 

Tank TDN 

(Kg/person/yr) 

GW DIN 

(Kg/person/yr) 

GW TDN 

(Kg/person/yr) 

% DIN 

Reduction 

% TDN 

Reduction 

GI 2.4 9.0 2.0 4.0 17 56 

GII 2.7 12.6 0.7 1.9 74 85 

GIII 2.1 6.9 0.2 0.3 91 96 
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Table 4.5  Soil series, soil group and acreage information for areas of Morehead City, NC that use septic systems  

for wastewater treatment and disposal.  
 

Morehead City Soil Series Total (ha) Total (acres) Group 

Altavista Loamy Fine Sand, 0-2% slopes (AaA) 29.8 74.6 3 

Augusta Loamy Fine Sand (Ag) 33.9 84.8 3 

Autryville Loamy Fine Sand, 0-6% slopes (AuB) 149.4 373.5 2 

Arapahoe Fine Sandy Loam (Ap) 66.3 165.7 2 

Baymeade Fine Sand, 1-6% slopes (ByB) 71.7 179.3 1 

Carteret Sand, freq. flooded (CH) 9.4 23.5 1 

Conetoe Loamy Fine Sand, 0-5% slopes (CnB) 33.1 82.8 1 

Corolla-Urban Land Complex (Cu) 2.0 5 1 

Goldsboro Loamy Fine Sand, 0-2% slopes (GoA) 0.8 2.1 2 

Hobucken Mucky Fine Sandy Loam, freq. flooded (HB) 0.4 1.1 2 

Kureb Sand, 0-6% slopes (KuB) 418.5 1046.3 1 

Leon Sand (Ln) 584.1 1460.2 1 

Lynchburg Fine Sandy Loam (Ly) 13.6 33.9 3 

Masontown Mucky Loam, freq. flooded (MA) 18.0 45 2 

Mandarin Sand (Mn) 22.6 56.6 1 

Murville Mucky Sand (Mu) 235.7 589.3 1 

Onslow Loamy Sand (On) 59.7 149.2 3 

Pantego Fine Sandy Loam (Pa) 0.3 0.8 3 

Rains Fine Sandy Loam (Ra) 44.3 110.8 3 

Seabrook Fine Sand (Se) 130.0 324.9 1 

State Loamy Fine Sand, 0-2% slopes (StA) 9.6 24 2 

Tomotley Fine Sandy Loam (Tm) 43.4 108.4 3 

Torhunta Mucky Fine Sandy Loam (To) 70.0 175.1 2 

Wando Fine Sand, 0-6% slopes (WaB) 173.1 432.7 1 

Total 2219.8 5549.6 
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   Table 4.6  Soil series, soil group and acreage information for areas of Newport, NC that use septic systems for  

wastewater treatment and disposal. 

 

                                         Newport Soil Series Total (ha) Total (acres) Group 

Autryville Loamy Fine Sand, 0-6% slopes (AuB) 11.3 28.3 2 

Altavista Loamy Fine Sand, 0-2% slopes (AaA) 1.2 2.9 3 

Augusta Loamy Fine Sand (Ag) 4.5 11.2 3 

Arapahoe Fine Sandy Loam (Ap) 2.9 7.2 2 

Baymeade Fine Sand, 1-6% slopes (ByB) 80.6 201.6 1 

Conetoe Loamy Fine Sand, 0-5% slopes (CnB) 2.0 5.1 1 

Goldsboro Loamy Fine Sand, 0-2% slopes (GoA) 101.8 254.6 2 

Hobucken Mucky Fine Sandy Loam, freq. flooded (HB) 0.4 1 2 

Kureb Sand, 0-6% slopes (KuB) 50.4 126.1 1 

Leon Sand (Ln) 46.6 116.6 1 

Lynchburg Fine Sandy Loam (Ly) 56.1 140.3 3 

Masontown Mucky Loam, freq. flooded (MA) 15.2 38.1 2 

Mandarin Sand (Mn) 20.2 50.6 1 

Murville Mucky Sand (Mu) 11.9 29.8 1 

Norfolk Loamy Fine Sand, 0-2% slopes (NoA) 13.8 34.5 3 

Norfolk Loamy Fine Sand, 2-6% slopes (NoB) 20.2 50.6 3 

Onslow Loamy Sand (On) 22.5 56.3 1 

Pantego Fine Sandy Loam (Pa) 33.4 83.6 3 

Rains Fine Sandy Loam (Ra) 103.9 259.8 3 

Seabrook Fine Sand (Se) 3.9 9.8 1 

Tomotley Fine Sandy Loam (Tm) 6.5 16.3 2 

Torhunta Mucky Fine Sandy Loam (To) 62.2 155.5 2 

Total 671.9 1679.8 
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                                 Table 4.7  Soil series, soil group and acreage information for areas of Beaufort, NC that use septic systems for 

wastewater treatment and disposal.  
 
 
 

                 

Beaufort Soil Series Total (ha) 

Total 

(acres) Group 

Altavista Loamy Fine Sand, 0-2% slopes (AaA) 103.8 259.4 3 

Augusta Loamy Fine Sand (Ag) 81.3 203.2 3 

Arapahoe Fine Sandy Loam (Ap) 87.6 219 2 

Baymeade Fine Sand, 1-6% slopes (ByB) 8.1 20.3 1 

Carteret Sand, freq. flooded (CH) 3.4 8.4 1 

Conetoe Loamy Fine Sand, 0-5% slopes (CnB) 4.6 11.5 2 

Corolla_Urban Land Complex (Cu) 1.9 4.8 3 

State Loamy Fine Sand, 0-2% slopes (StA)  49.3 123.2 2 

Deloss Fine Sandy Loam (De) 16.5 41.2 3 

Hobucken Mucky Fine Sandy Loam, freq. flooded (HB) 3.2 8.1 2 

Leon Sand (Ln) 42.3 105.7 1 

Wando Fine Sand, 0-6% slopes (WaB) 6.8 16.9 1 

Tomotley Fine Sandy Loam (Tm) 56.6 141.5 3 

Totals 465.3 1163.2 
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   Table 4.8  Soil series, soil group and acreage information for areas of Bogue, NC that use septic systems for wastewater 

treatment and disposal. 
 

Bogue Soil Series Total (ha) Total (acres) Group  

Autryville Loamy Fine Sand, 0-6% slopes (AuB) 1.8 4.6 2 

Kureb Sand, 0-6% slopes (KuB) 129.4 323.6 1 

Arapahoe Fine Sandy Loam (Ap) 22.6 56.5 2 

Carteret Sand, freq. flooded (CH) 0.6 1.4 1 

Leon Sand (Ln) 68.1 170.3 1 

Mandarin Sand (Mn) 0.2 0.4 1 

Masontown Mucky Loam, freq. flooded (MA) 4.5 11.2 2 

Murville Mucky Sand (Mu) 10.0 25 1 

Seabrook Fine Sand (Se) 63.5 158.7 1 

Wando Fine Sand, 0-6% slopes (WaB) 177.6 444 1 

Total 478.3 1195.7 
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Table 4.9  Soil series, soil group and acreage information for areas of Atlantic Beach, NC that use septic systems for 

wastewater treatment and disposal. 

 

 

 

Atlantic Beach Soil Series Total (ha) Total (acres) 

Soil 

Group 

Corolla Fine Sand (Co) 9.5 23.8 1 

Fripp Fine Sand, 2-30% slopes (Fr)  31.2 77.9 1 

Newhan-Corolla Complex, 0-30% slopes (Nc) 17.1 42.8 1 

Duckston Fine Sand, freq. flooded (Du) 6.5 16.2 1 

Newhan-Urban Land Complex, 0-8% slopes (Ne) 46.6 116.5 1 

Newhan Fine Sand, 2-30% slopes (Nh) 28.7 71.7 1 

Corolla-Urban Land Complex (Cu) 44.0 110.1 1 

Carteret Sand, low, freq. flooded (CL) 0.0 0.1 1 

Total 183.6 459.1 
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Table 4.10  Soil series, soil group and acreage information for areas of Emerald Isle, NC that use septic systems for wastewater 

treatment and disposal. 

 

 

 

Emerald Isle Soil Series Total (ha) Total (acres) Soil Group 

Corolla Fine Sand (Co) 45.2 113.1 1 

Fripp Fine Sand, 2-30% slopes (Fr)  195.0 487.6 1 

Newhan-Corolla Complex, 0-30% slopes (Nc) 163.1 407.7 1 

Duckston Fine Sand, freq. flooded (Du) 41.4 103.6 1 

Newhan-Urban Land Complex, 0-8% slopes (Ne) 9.9 24.8 1 

Newhan Fine Sand, 2-30% slopes (Nh) 223.8 559.5 1 

Corolla-Urban Land Complex (Cu) 1.4 3.5 1 

Beaches, coastal (Be)* 0.1 0.3 1 

Carteret Sand, freq. flooded (CH) 1.4 3.6 1 

Carteret Sand, low, freq. flooded (CL) 0.2 0.4 1 

Total 681.6 1704.1  
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Table 4.11  Soil series, soil group and acreage information for areas of Indian Beach, NC that use septic systems for 

wastewater treatment and disposal. 

 

 

 

Indian Beach Soil Series Total (ha) Total (acres) Soil Group  

Corolla Fine Sand (Co) 5.6 14 1 

Fripp Fine Sand, 2-30% slopes (Fr)  2.4 6 1 

Newhan-Corolla Complex, 0-30% slopes (Nc) 54.9 137.2 1 

Duckston Fine Sand, freq. flooded (Du) 3.7 9.2 1 

Newhan-Urban Land Complex, 0-8% slopes (Ne) 23.3 58.2 1 

Newhan Fine Sand, 2-30% slopes (Nh) 42.6 106.6 1 

Corolla-Urban Land Complex (Cu) 6.6 16.4 1 

Carteret Sand, freq. flooded (CH) 0.9 2.3 1 

Carteret Sand, low, freq. flooded (CL) 0.4 0.9 1 

Total 140.3 350.8 
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Table 4.12  Soil series, soil group and acreage information for areas of Pine Knoll Shores, NC that use septic systems  

for wastewater treatment and disposal. 
 
 
 

 

Pine Knoll Shore Soil Series Total (ha) Total (acres) Soil Group  

Corolla Fine Sand (Co) 10.2 25.5 1 

Beaches, coastal (Be) 1.5 3.8 1 

Fripp Fine Sand, 2-30% slopes (Fr)  27.2 67.9 1 

Newhan-Corolla Complex, 0-30% slopes (Nc) 268.4 670.9 1 

Duckston Fine Sand, freq. flooded (Du) 2.5 6.3 1 

Newhan-Urban Land Complex, 0-8% slopes (Ne) 5.4 13.4 1 

Newhan Fine Sand, 2-30% slopes (Nh) 3.3 8.3 1 

Carteret Sand, low, freq. flooded (CL) 0.6 1.5 1 

Total  319.0 797.6 
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Table 4.13  Soil series, soil group and acreage information for areas of Cape Carteret, NC that use septic systems for 

wastewater treatment and disposal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cape Carteret Soil Series  Total (ha) Acres 

Soil 

Group  

Arapahoe Fine Sandy Loam (Ap) 1.8 4.4 1 

Baymeade Fine Sand, 1-6% slopes (ByB) 54.7 136.7 1 

Hobucken Mucky Fine Sandy Loam, freq. 

flooded (HB) 0.0 0.1 2 

Kureb Sand, 0-6% slopes (KuB) 133.0 332.4 1 

Leon Sand (Ln) 42.3 105.8 1 

Murville Mucky Sand (Mu) 2.4 5.9 1 

Seabrook Fine Sand (Se) 27.4 68.4 1 

Wando Fine Sand, 0-6% slopes (WaB) 177.3 443.3 1 

Total 438.8 1097 
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Table 4.14   Soil series, soil group and acreage information for areas of Cedar Point, NC that use septic systems  

for wastewater treatment and disposal. 

 

 

 

Cedar Point Soil Series Total (ha) Total (acres) Group 

Arapahoe Fine Sandy Loam (Ap) 14.7 36.7 2 

Baymeade Fine Sand, 1-6% slopes (ByB) 56.9 142.3 1 

Carteret Sand, freq. flooded (CH) 0.5 1.2 1 

Corolla-Urban Land Complex (Cu) 8.4 21 1 

Hobucken Mucky Fine Sandy Loam, freq. flooded 

(HB) 2.9 7.2 2 

Kureb Sand, 0-6% slopes (KuB) 21.8 54.6 1 

Leon Sand (Ln) 15.5 38.7 1 

Newhan Fine Sand, dredged, 2-30% slopes (Nd) 0.8 2.1 1 

Norfolk Loamy Fine Sand, 2-6% slopes (NoB) 3.2 8 3 

Seabrook Fine Sand (Se) 41.6 104 1 

Wando Fine Sand, 0-6% slopes (WaB) 124.3 310.8 1 

Total 290.6 726.6 
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Table 4.15  Estimated dissolved inorganic nitrogen (DIN) and total dissolved nitrogen (TDN) loading from septic systems to 

the groundwater in the Newport River watershed, North Carolina. Septic systems in group I and II soils had the highest loading 

rates, nearly an order of magnitude higher than systems in group III soils. The majority (76%) of the population in the Newport 

River watershed lives on group I soils. 

 

 
 

 

   

 
 

  
    
 
 

  

     

DIN Loading to Groundwater Kg/yr 

 

Association 

Population 

w/ Septic 

Fraction 

Group I 

Fraction 

Group 

II 

Fraction 

Group 

III Group I  

Group 

II  

Group 

III  

Total 

Loading Kg/person 

MH/NP/B/B 22169 0.618 0.177 0.205 27401 2747 909 31057 GI-2.0 

AB/PKS/IB/EI 6958 1.000 0.000 0.000 13916 0 0 13916 GII-0.7 

CC/CP 1150 0.971 0.024 0.004 2233 19 1 2254 GIII-0.2 

Total 30277 0.76 0.11 0.13 43550 2766 910 47226 

 

        

 

 

 

 

     

TDN Loading to Groundwater Kg/yr 

 

Association 

Population 

w/ Septic 

Fraction 

Group I 

Fraction 

Group 

II 

Fraction 

Group 

III Group I  

Group 

II  

Group 

III  

Total 

Loading Kg/person 

MH/NP/B/B 22169 0.618 0.177 0.205 54802 7455 1363 63621 GI- 4.0 

AB/PKS/IB/EI 6958 1.000 0.000 0.000 27832 0 0 27832 GII-1.9 

CC/CP 1150 0.971 0.024 0.004 4467 52 1 4520 GIII-0.3 

Total 30277 0.76 0.11 0.13 87100 7508 1365 95973 
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DIN Loading to Tank Kg/yr 

 

Population 

w/ Septic 

Fraction 

Group I 

Fraction 

Group II 

Fraction 

Group 

III Group I  

Group 

II  

Group 

III  

Total 

Loading Kg/person 

MH/NP/B/B 22169 0.618 0.177 0.205 33033 10467 9720 53220 2.4 

AB/PKS/IB/EI 6958 1.000 0.000 0.000 16769 0 0 16769 2.7 

CC/CP 1150 0.971 0.024 0.004 2692 74 11 2777 2.1 

Total 30277 0.76 0.11 0.13 52495 10541 9730 72766 

 
          

     

 

 

 

TDN Loading to Tank Kg/yr 

 

 

Population 

w/ Septic 

Fraction 

Group I 

Fraction 

Group II 

Fraction 

Group 

III Group I  

Group 

II  

Group 

III  

Total 

Loading Kg/person 

MH/NP/B/B 22169 0.618 0.177 0.205 123304 49441 31358 203757 9.0 

AB/PKS/IB/EI 6958 1.000 0.000 0.000 62622 0 0 62552 12.6 

CC/CP 1150 0.971 0.024 0.004 10050 348 32 10427 6.9 

Total 30277 0.76 0.11 0.13 195976 49789 31390 277155 

 
           

 

 

 

         

Table 4.16 Estimated dissolved inorganic nitrogen (DIN) and total dissolved nitrogen (TDN) loading to septic tanks 

in the Newport River watershed, North Carolina.  
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Figure 4.1  Unified Watershed Assessment categories (UWA) and major river basins in North Carolina, including the Neuse, 

Tar-Pamlico and White Oak River Basins located in eastern and coastal North Carolina. The Newport River watershed is a 

sub-unit of the White Oak River Basin. Map courtesy of the North Carolina Division of Water Quality Basinwide Planning 

Program (2007).  
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Figure 4.2  Newport River watershed located within the White Oak River Basin unified watershed assessment category in 

coastal North Carolina. Map courtesy of the North Carolina Division of Water Quality Basinwide Planning Program (2007). 
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Figure 4.3A  Plan-view of a groundwater monitoring design with a background well, nested septic 

groundwater monitoring wells between septic system trenches and groundwater flow direction wells at the 

corners of the lots. The plume width as indicated by the dashed arrows adjacent to the septic system of 

house 1, is determined by the configuration of the septic system and the direction of groundwater flow as 

indicated by the monitoring well data.  

 

 
 
Figure 4.3B  Cross-section view of septic system drainfield monitoring well design with deep and shallow 

wells and screen intervals. Each well had a 75 cm screen interval, so each monitoring nest covered 

approximately 150 cm. 
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Figure 4.4  Soil survey map of Morehead City, NC with the shaded portions representing areas that use septic systems.
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Figure 4.5  Soil survey map of Newport, NC with the shaded portions representing areas that use septic systems.  
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Figure 4.6  Soil survey map of Beaufort, NC with the shaded portions representing areas 

that use septic systems. 

 

 

 

 

 

 

 

 



128 

 

  

 

 

 

 

 

 
 

 

 

Figure 4.7  Soil survey map of Bogue, NC with the shaded portions representing areas that use septic systems. 
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Figure 4.8  Soil survey map of Atlantic Beach, NC with the shaded portions representing areas that use septic  

systems. 
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Figure 4.9  Soil survey map of Emerald Isle, NC with the shaded portions representing areas that use septic  

systems. 
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Figure 4.10   Soil survey map of Indian Beach, NC with the shaded portions representing areas that use septic  

systems. 
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Figure 4.11  Soil survey map of Pine Knoll Shores, NC with the shaded portions representing areas that use septic systems. 

 

 

 

 



133 

 

  

 

 
 

Figure 4.12  Web soil survey map of Cape Carteret, NC including areas that were developed and use septic  

systems for wastewater treatment and disposal (shaded). The symbols behind the polygons refer to the soil  

series.  
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Figure 4.13  Soil survey map of Cedar Point, NC with the shaded portions representing areas that use 

septic systems. 

 

 

 

    

    

    

    

    

    

    



135 

 

 

CHAPTER 5:  MANAGEMENT IMPLICATIONS 

Nitrogen and bacteria in septic system wastewater are transformed and/or reduced 

in aerated soil beneath the septic system trench bottom. North Carolina regulations 

require 30-45 cm of separation distance from the trench bottom to seasonal high water 

table for systems installed in group II-IV and group I soils, respectively. Results showed 

that increasing the separation distance requirements from 30 and 45 cm to 60 cm, could 

improve water quality by increasing the likelihood of effluent nitrification and reduction 

of bacteria contributions to groundwater. Nitrification requires a source of NH4
+
-N, 

oxygen, and nitrifying microorganisms. Nitrification of wastewater is important for 

subsequent removal of nitrogen via denitrification in groundwater. Denitrification 

requires a source of nitrate, denitrifying microorganisms, an available carbon source and 

anaerobic conditions. If septic systems are installed with insufficient aerobic soil beneath 

the drainfield trenches, NH4
+
-N in septic effluent may not be converted to NO3

-
-N, thus 

resulting in high NH4
+
-N concentrations in shallow groundwater and limiting 

denitrification because of relatively low NO3
-
-N.   

Increasing the separation distance to the seasonal high water table helps to 

increase the residence time of wastewater in aerated soil by providing longer flow paths 

for the wastewater. Many bacteria in wastewater are anaerobic or facultative bacteria that 

are at a competitive disadvantage when introduced to aerated soils. They (anaerobic 

bacteria) cannot compete well with microorganisms suited for aerobic conditions and 

thus may die due to lack of nutrients or food due to competition, or they can become prey 

to other microorganisms in the soil (Arnold et al 1996). Bacteria can also be filtered out 
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of the wastewater as they pass through small soil pores during unsaturated flow 

conditions. Hence, aerobic soil is very important for wastewater bacteria reduction. 

Results showed that systems with 60 cm or more vertical separation distance to the 

seasonal high water table had significantly lower (p < 0.10) median and geometric mean 

groundwater NH4
+
-N and E. coli densities,  4 mg/L and 65 cfu/100 mL lower 

respectively, than systems with less than 60 cm of vertical separation. Data indicated that 

by increasing the required vertical separation distance to 60 cm, the groundwater quality 

would improve. Many southeastern US states including Florida, Georgia, and Virginia 

already require a 60 cm separation distance from septic system to seasonal high water 

table.  

The current methodology in North Carolina for determining the depth to the 

seasonal high water table is finding the depth to low chroma (2 or 1) soil colors that 

occupy 2% or more of the soil. The current study has shown that, excluding soils formed 

from iron poor parent materials, over half the soils tested had seasonal high water tables 

closer to the surface (mean of 18 cm closer) than the soil color indicators predicted. 

Therefore, many systems (even if correctly designed and installed according to the 

current regulations) may not have 30-45 cm of vertical separation to the seasonal high 

water table. Increasing the separation distance requirements from chroma 2 or 1 colors by 

15+ cm from the current standard could help ensure aerated conditions beneath septic 

systems for longer periods. For group II and III soils, a 15 cm increase in separation 

distance to chroma 2 colors would have reduced periods of water table flooding of the 

trench bottom by 67 and 75%, respectively and a 15 cm increase in separation distance 
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for group I soils would have eliminated water table ponding of the trench completely, 

thus improving water quality. Therefore, water quality and water level data indicate that 

an increase in the vertical separation distance requirement from septic systems to 

seasonal high water table is warranted.  

In addition to increasing the separation distance from drainfield to chroma 2 soil 

colors, requiring vegetated buffers along streams may increase the carbon supply in 

stream bank and bed sediments, thus increasing the likelihood of denitrification before 

septic influenced groundwater discharges into the buffered streams (Robertson et al. 

1991; and Buetow 2002) or estuaries. Fifty foot (16 m) riparian buffers are currently 

required on intermittent and perennial streams in the Neuse and Tar Pamlico River Basins 

but not other river systems that empty into estuarine waters in North Carolina or along 

the estuarine coastline. These regulatory measures could improve septic system 

wastewater treatment efficiency and water quality and should be considered for 

implementation in future watershed scale nutrient reduction strategies.  

Septic systems are non-point sources of nutrient and bacterial pollution and their 

pollutant contributions to ground and surface water resources in North Carolina should be 

accounted for when watershed-scale strategies of pollutant mitigation are developed. 

Major North Carolina river basins such as the Neuse and Tar-Pamlico and watersheds 

such as Jordan Lake have regulations in place that require the use of agricultural and 

stormwater best management practices (BMPs) on agricultural and urban areas to reduce 

the nutrient loads leaving these lands. Wastewater treatment plants were required to 

reduce nutrient loadings and have to monitor and report nutrient and bacteria 
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concentrations and loadings discharged from their plants. Nutrient loads from septic 

systems were not addressed in any of the watershed-scale strategies to improve water 

quality. Because septic systems are used by nearly half of North Carolina residents and 

septic system loading rates of nitrogen to groundwater (28.5 to 57.5 kg/ha/yr) are 

comparable to rates from row crop agriculture (37.5 kg/ha/yr) and exceed estimated rates 

of atmospheric nitrogen deposition (8 to 12 kg/ha/yr) in eastern North Carolina, septic 

systems should be included in watershed scale regulations and initiatives to improve 

water quality.  

Methods used in this research to calculate the nitrogen loads from septic systems 

to groundwater can be used in other watersheds by gathering specific data. The required 

data include the predominant soil types, population and soil distribution characteristics 

within the watershed of interest, and groundwater level and groundwater quality data 

adjacent to septic systems in the common soil types. The septic systems evaluated in this 

study were installed in 6 soil series including Goldsboro, Altavista, Mandarin, Baymeade, 

Newhan, and Fripp. While the study was conducted solely in Coastal North Carolina, the 

6 soil series researched are also found in 8 other states including Alabama, Arkansas, 

Florida, Georgia, Mississippi, South Carolina, Tennessee, and Virginia and encompass 

over 674,000 ha of land (Figures 5.1A, 5.1B) (USDA 2009). Furthermore, the 

groundwater nitrogen concentrations near septic systems in sandy soils (median 11 -19+ 

mg/L) and annual total nitrogen loading from septic systems to groundwater (1.9 to 4.0 

kg/person) observed in this study were similar to the nitrogen concentrations and loadings 

observed in different coarse textured soil series in NC, other states, and other countries.  
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For example, Buetow (2002) reported mean groundwater nitrogen concentrations of 

approximately 20 mg/L and annual nitrogen loadings of 4.5 kg/person beneath septic 

systems in an Autryville loamy sand soil series in New Bern, North Carolina; Reay 

(2004) reported groundwater nitrogen concentrations (greater than 20 mg/L) and annual 

nitrogen loadings of 2.4 to 2.9 kg/person in groundwater adjacent to systems in sandy 

soils on the Coastal Plain of Virginia;  Gold et al. (1990) reported nitrogen concentrations 

greater than 10 mg/L and annual nitrogen loadings of approximately 3.2 kg/person from 

septic systems to groundwater near Kingston, Rhode Island;  and Ptacek (1998) reported 

nitrogen concentrations ranging from 10 to 80 mg/L in groundwater adjacent to septic 

systems in beach and dune sands in Point Pelee, Ontario, Canada.  Thus, this work should 

be applicable to areas beyond Coastal North Carolina, especially for settings with coarse 

textured soils.  

During this study, many other potential research needs were discovered. Some 

suggestions for future work include: 

1) Transport and fate on TKN and total phosphorus in groundwater beneath 

septic systems in soil textures ranging from sands to clays 

2) Transport and fate of indicator bacteria in groundwater beneath septic systems 

in soil texture ranging from sands to clays 

3) Investigation of the links between groundwater quality adjacent to septic 

systems and drinking water and/or irrigation wells 
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4) Comparison of wastewater treatment technologies, treatment efficiencies and 

long term costs, including package plants, centralized sewer systems, 

conventional septic systems and advanced technology septic systems  

5) Investigation of the seasonal loading of wastewater pollutants to ground and 

surface waters in coastal, tourism based communities 

6) Transport and fate of pharmaceuticals and other personal care products from 

septic systems to water resources in retirement communities 

7) Establishment of a permanent shallow groundwater monitoring network for 

long term trend analyses 

8) Sea level rise impacts on septic system treatment efficiencies 

9) Land use changes and impacts on groundwater and surface water quality 

 

The findings of this research in conjunction with literature cited in this study can 

help guide strategies for reducing the impacts of septic systems on ground and surface 

waters.  Potential mitigation strategies such as increasing the required separation distance 

to seasonal high water table to 60+cm, requiring vegetated buffers adjacent to waterways, 

drainage canals and ditches, limiting septic system density to 3-4 systems/ha in coarse 

textured soils (from 5+ systems/ha), requiring pre-treatment technologies such as peat 

filters and sand filters in areas adjacent to sensitive waters (shellfish growing areas, 

nutrient sensitive waters, etc.) could all help reduce impact of septic systems on ground 

and surface water quality. Another potential septic system water quality mitigation 

strategy would be to assess a recurring septic system environmental impact fee on 
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households that use septic systems.  For example, with over 1.4 million active septic 

systems in North Carolina (Arnold et al. 1996), a nominal $50 annual impact fee would 

generate $70,000,000/yr. The annual $50 fee would be an order of magnitude lower than 

what many people pay per year for centralized sewer service. The impact fee funds could 

be used for developing a statewide on-site wastewater management trust fund 

(OSWWTF). The OSWWTF, lead by a board of commissioners and field representatives 

could send out requests for proposals for projects that facilitate on-site wastewater related 

research, implementation and monitoring of various on-site wastewater best management 

practices and mitigation strategies (such as planting vegetated buffers), and enhancement 

of county-level on-site wastewater management programs (continuing education training, 

technical expertise, equipment, etc.).  

It is evident from this work that on-site wastewater systems, like other methods of 

wastewater treatment and disposal, are impacting water resources and should not be 

overlooked when developing and implementing water quality management strategies.  
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Total area (ha):  Altavista- 11,793        Goldsboro- 505,730    Fripp- 11,646 

 

 

 

Figure 5.1A  Soil series distribution maps for the Altavista, Goldsboro, and Fripp series and estimated area (ha) of coverage 

from the USDA web soil survey (2009). Orange, brown, and yellow shaded areas indicate locations where the soil series were 

mapped.  
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Total area (ha): Mandarin- 77,633   Baymeade-46,693    Newhan- 20,645 

 

 

Total area (ha) for all 6 soil series: 674,140 

 

 

 

Figure 5.1B  Soil series distribution maps for the Mandarin, Baymeade, and Newhan series and estimated area (ha) of coverage 

from the USDA web soil survey (2009). Orange, brown, and yellow shaded areas indicate locations where the soil series were 

mapped. 
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APPENDIX: WATER QUALITY, SOIL AND WATER LEVEL DATA. 
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Table A.1  Highest monthly NH4
+
-N concentrations mg/L (deep or shallow well) adjacent to systems.

Group I  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 23.8 40.8 22.5 32.3 36 28.5 24.7 24.4 15.2 14.3 11.3 12.5 0.1 14.5 22.9 21.6 

B 0.6 0.5 0.3 1.5 2 0.6 2.7 1.1 0.9 0.4 0.1 0.6 0.1 0.3 0.6 0.8 

C 0.2 0.3 0.1 2.1 1.9 1.3 

 

0.4 

 

0.1 

 

4 0.1 0.3 0.3 0.9 

D 0.2 0.1 0.3 1.1 1.2 0.7 7.7 4 0.4 0.5 0.1 0.2 0.1 0.5 0.5 1.2 

E 0.5 0.3 0.2 0.9 3 0.5 0.4 0.8 0.2 0.3 0.1 0.1 0.1 

 

0.3 0.6 

F 0.2 0.3 0.1 0.7 0.5 0.5 0.4 0.8 0.2 0.3 0.1 0.1 0.1 0.4 0.3 0.3 

G 0.3 0.2 0.4 0.5 6.8 3.9 9.2 1.8 0.5 0.4 0.1 0.1 0.1 0.3 0.4 1.7 

H 0.9 

 

0.5 2.5 1.7 

 

0.7 1.3 0.3 0.5 5.2 0.1 0.2 0.2 0.7 1.1 

Summary 3.7 6.1 3.4 5.6 7.3 5.1 7.5 4.8 2.9 2.3 2.0 2.5 0.1 2.7 0.5 3.5 

                 

Group II Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 3.2 12.8 9.6 15 

 

31 101 35.7 14.8 4.5 8.1 1 0.1 4.1 9.6 18.5 

B 2 2.7 1.6 4.9 9.6 5.8 6.4 2.6 0.3 0.4 0.2 0.1 0.1 0.2 1.8 2.6 

C 0.3 0.5 0.9 7.7 8.8 6.5 

 

7.5 1.1 3.8 1.1 13.4 0.1 

 

2.5 4.3 

D 0.4 3.8 11.5 29.9 29.4 11.7 14.9 5 12.3 1.5 0.2 0.1 0.1 0.1 4.4 8.6 

Summary 1.5 5.0 5.9 14.4 15.9 13.8 40.8 12.7 7.1 2.6 2.4 3.7 0.1 1.5 3.4 8.5 

                 

Group III Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 0.4 6.8 6 8.1 0.7 4.6 0.9 0.6 2 0.1 1.3 0.1 0.1 0.2 0.8 2.3 

B 0.1 0.1 0.2 1.2 4.2 2.9 1.3 0.6 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.8 

C 0.2 0.2 0.3 0.4 1.2 0.5 0.4 0.3 0.1 0.8 0.1 0.1 0.1 0.1 0.3 0.3 

D 0.2 0.1 0.1 0.5 0.4 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 

Summary 0.2 1.8 1.7 2.6 1.6 2.1 0.7 0.4 0.6 0.3 0.4 0.1 0.1 0.1 0.2 0.9 
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Table A.2  Highest monthly NO3
-
-N concentrations mg/L (deep or shallow well) adjacent to systems. 

 

 

Group I  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 

 

22 9.7 39 16.5 15.7 5.3 7.3 0.7 1 15.4 13.6 6 21.6 8.6 11.7 13.0 

B 30.3 36.6 27.2 28.1 9.1 36.2 10.9 7.6 6.7 1.7 38.9 0.9 60.6 43.8 40.4 28.1 25.3 

C 13.2 11.6 19 7.7 1.8 22.8 0.7 

 

4 

 

1.8 

 

11.9 21.8 41.6 11.8 13.2 

D 51 36.3 
 

35 34.5 36 
 

31.8 11.5 3.3 10.2 1.1 17.2 16.5 24.6 24.6 23.8 

E  

   

30 25.2 62.3 2.7 62 11.4 7 66 27.5 

 

31.9 39.8 30.0 33.3 

F 19.7 15.5 27 29 9 6.8 0.3 1.8 0.4 6.1 6.7 18.2 55 17.9 

 

12.3 15.2 

G 3.2 3.5 2 13 2.5 7.6 1.3 1.4 4.8 5.3 11.9 3.1 3.3 1.1 8 3.3 4.8 

H 1.6 3 7.5 45 22.1 59.5 0.7 3.2 12.6 3.8 1.3 0.3 1.4 0.1 2.6 3.0 11.0 

Summary 19.8 18.4 15.4 28.4 15.1 30.9 3.1 16.4 6.5 4.0 19.0 9.2 22.2 19.3 23.7 12.0 17.4 

                  

                  

Group II  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 2.8 7 9.3 8.1 9 

 

14 31 0.6 0.2 2.5 5.2 3.2 6.3 5.2 5.8 7.5 

B 9.2 10.5 2.4 8.9 14.5 6.5 17.6 6.1 0.3 0.3 33.3 12.6 12.4 17.4 13.7 10.5 11.0 

C 2.5 8.2 5.6 8.8 15.5 38.5 45.4 14.4 1.3 0.5 4.7 0.5 5.1 3.9 11.7 5.6 11.1 

D 6.9 8.4 2.1 2.9 9.1 13.2 0.1 

 

0.5 0.1 2.2 1.5 7.1 10.5 

 

2.9 5.0 

Summary 5.4 8.5 4.9 7.2 12.0 19.4 19.3 17.2 0.7 0.3 10.7 5.0 7.0 9.5 10.2 5.7 8.6 

                  

Group III Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Median Mean 

A 2.1 0.8 0.8 0.8 10.1 8.9 0.1 1.9 0.1 0.1 0.4 1.2 3.5 2.2 0.1 0.8 2.2 

B 0.9 0.4 0.5 0.6 3.2 21 3 1.2 0.1 0.1 0.4 0.3 3.4 0.3 0.1 0.5 2.4 

C 6.3 3.5 6.8 4.9 5 12.5 0.7 2.3 0.1 0.1 0.4 1.1 6.8 2.6 1.1 2.6 3.6 

D 3.7 3.3 3.8 3.3 6.8 17.6 3 1.1 0.2 0.1 0.6 0.1 1.6 0.5 0.1 1.6 3.1 

Summary 3.3 2.0 3.0 2.4 6.3 15.0 1.7 1.6 0.1 0.1 0.5 0.7 3.8 1.4 0.4 1.2 2.8 
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Table A.3  Highest DIN concentrations (NH4
+
-N + NO3

-
-N) mg/L in groundwater adjacent to septic systems in soil groups I, II 

and III from January 2007 to March 2008.  

 

 

 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Avg Med 

  
GI-A 0.9 45.8 50.5 61.5 48.8 51.7 33.8 32.0 25.1 16.2 29.7 24.9 18.5 21.7 23.1 32.3 29.7 

  GI-B 30.3 44.4 28.5 28.1 9.1 43.0 10.9 7.6 6.7 1.7 38.9 0.9 60.6 43.8 65.3 28.0 28.5 
  GI-C 13.2 11.8 19.1 7.8 3.9 24.7 1.6 

 

4.3 

 

1.9 

 

15.9 21.9 41.9 14.0 12.5 

  GI-D 51.0 37.0 
 

35.5 37.0 37.7 
 

32.5 12.8 3.6 10.7 5.2 17.3 16.6 24.8 24.7 24.8 
  GI-E 

 
4.2 1.8 30.3 26.3 63.5 3.4 62.6 12.4 7.4 66.5 27.6 67.2 32.0 40.3 31.8 29.0 

  GI-F 19.7 16.0 27.3 29.2 9.9 9.7 0.8 2.2 1.2 6.3 7.0 18.3 55.1 17.9 

 

15.8 13.0 

  GI-G 3.0 3.7 2.3 13.1 5.0 7.8 1.3 1.3 5.0 5.5 15.1 3.2 3.4 
 

8.4 5.6 4.4 
  GI-H 1.6 3.3 7.7 76.2 22.6 66.3 4.6 11.3 14.4 6.4 1.7 0.4 1.5 0.2 2.9 14.7 4.6 

  

                    

                    

                    

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Avg Med 

  GII-A 3.0 9.6 14.7 15.3 22.5 
 

33 31 36.3 15 7 13.3 4.2 6.4 8.9 15.7 14.0 
  GII-B 9.2 11.6 5.1 10.5 24.4 16.1 23.4 12.5 2.9 0.6 33.4 12.7 12.5 17.5 27.2 14.6 12.5 

  GII-C 6.9 8.6 2.6 3.8 16.8 22 6.6 

 

8.0 1.2 5.7 2.6 14.9 10.6 

 

8.5 6.9 

  GII-D 2.5 8.5 9.4 20.3 45.4 67.7 57.1 109.4 6.3 12.8 6.2 0.7 5.2 4.0 11.8 24.5 9.4 

  

                    

                    

                    

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Avg Med 

  GIII-A 2.1 1.2 7.6 6.8 10.8 9.6 4.7 2.7 0.7 2.1 0.5 2.5 3.6 2.3 0.2 3.8 2.5 
  GIII-B 1.5 1.2 0.9 0.8 4.4 25.2 5.9 3.4 0.7 0.3 0.6 0.4 3.5 0.4 0.3 3.3 0.9 

  GIII-C 6.3 3.7 7.0 5.0 5.4 34.0 1.1 2.5 0.5 0.2 1.2 1.2 6.9 2.7 1.2 5.3 2.7 

  GIII-D 3.7 3.5 3.9 3.4 7.3 18.0 3.2 3.7 0.4 0.2 0.7 0.2 1.7 0.6 0.2 3.4    3.2 
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Table A.4  Dissolved inorganic nitrogen concentrations (mg/L) in shallow (A), deep (B) and background (BG) groundwater 

wells adjacent to septic systems in soil groups I, II and III from January 2007 to March 2008. 

 

Jan-07 

Feb-

07 Mar-07 

Apr-

07 May-07 

June-

07 

July-

07 

Aug-

07 

Sep-

07 

Oct-

07 Nov-07 Dec-07 Jan-08 

Feb-

08 Mar-08 Avg 

GI-A 

                
Deep  

 

3.1 1.9 2.1 2.2 2.0 0.7 0.9 0.6 0.2 0.5 0.8 0.2 0.3 0.6 1.1 

Shallow 

 

45.8 50.5 61.5 48.8 51.7 33.8 32.0 25.1 16.2 29.7 24.9 18.5 21.7 22.9 32.3 

BG 0.9 3.6 2.0 2.2 0.0 4.5 0.8 0.0 0.8 0.0 1.1 0.7 0.2 0.2 0.7 1.2 

                 
GI-B 

                
Deep  17.2 36.6 27.2 28.1 9.1 36.2 10.9 7.6 6.7 1.7 38.9 0.9 33.3 9.3 65.3 21.9 

Shallow 30.3 44.4 28.5 
  

43.0 7.3 
 

6.4 
   

60.6 43.8 40.4 33.9 

                 
GI-C 

                
Deep  13.2 11.8 19.1 7.8 3.9 24.7 1.1 

 
4.3 

 
1.9 0.1 8.7 21.9 41.8 12.3 

Shallow 2.6 6.3 9.6 1.6 

 

8.8 1.6 

 

0.7 

   

15.9 9.1 26.6 8.3 

BG 0.5 2.2 2.9 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 3.7 6.2 8.8 1.7 

                 
GI-D 

                
Deep  51.0 36.6 

 

35.5 

    

4.4 

 

10.7 1.1 17.3 

  

22.4 

Shallow 33.6 37.0 

          

3.3 0.0 0.0 14.8 

Background 0.8 3.0 

      

0.7 

 

0.8 

 

0.3 1.4 2.1 1.3 

Deep-b 
    

37.0 37.7 
 

32.5 12.8 3.6 2.5 5.2 2.9 16.6 24.8 17.6 

 

 



162 

 

 

 

Table A.4 Continued 

GI-E Jan-07 

Feb-

07 Mar-07 

Apr-

07 May-07 

June-

07 

July-

07 

Aug-

07 

Sep-

07 

Oct-

07 Nov-07 

Dec-

07 Jan-08 

Feb-

08 Mar-08 Avg 

Deep  

 

4.2 1.8 6.0 2.4 8.8 0.7 10.7 4.2 0.6 1.0 2.8 4.6 0.1 0.5 3.5 

Shallow  

   

30.3 26.3 63.5 3.4 62.6 12.4 7.4 66.5 27.6 67.2 32.0 39.9 36.6 

BG 

 

3.0 4.3 2.3 3.2 6.3 1.6 1.0 0.3 0.2 0.4 0.1 1.1 0.5 6.9 2.2 

                 
GI-F 

                
Deep  19.7 16.0 27.3 29.2 9.9 7.7 0.8 2.2 1.2 3.3 7.0 18.3 36.5 17.9 

 

14.1 

Shallow 17.0 

    

9.7 

  

1.0 6.3 4.1 

 

55.1 

  

15.5 

BG 1.5 3.1 4.9 9.6 6.3 8.0 2.1 1.9 1.1 0.9 0.6 1.8 0.5 1.0 
 

3.1 

                 
GI-G 

                
Deep  3.0 3.7 

  

3.1 7.8 0.9 1.5 1.5 0.8 2.1 

 

3.4 0.2 8.4 3.0 

Shallow 
        

0.8 
 

1.8 
 

0.7 0.1 
 

0.9 

Up 

    

5.0 7.6 1.3 1.4 0.8 5.5 12.0 3.2 1.8 1.2 4.3 4.0 

Down 

   

13.1 2.4 5.7 0.6 1.5 5.0 0.9 3.0 0.4 1.2 0.1 3.2 3.1 

Other 3.2 

 

2.3 3.5 0.4 0.5 0.2 0.1 

  

0.1 

   

0.1 1.2 

                 
GI-H 

                
Deep  1.5 3.2 3.9 30.8 22.6 35.8 0.8 3.8 3.7 2.1 0.8 0.4 1.5 0.2 2.9 7.6 

Shallow 1.6 3.3 7.7 45.4 

 

66.3 4.6 11.3 14.4 4.3 1.7 

 

1.0 0.1 

 

13.5 

BG 0.9 1.4 2.2 4.1 4.3 12.6 0.7 1.1 0.8 1.4 0.4 0.2 0.9 0.8 2.6 2.3 
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Table A.4 Continued 

GII-A Jan-07 

Feb-

07 Mar-07 

Apr-

07 May-07 

June-

07 

July-

07 

Aug-

07 

Sep-

07 

Oct-

07 Nov-07 Dec-07 Jan-08 

Feb-

08 Mar-08 Avg 

Deep  3.0 9.6 11.3 15.3 22.5 
 

33.0 31.0 6.8 15.0 7.0 13.3 4.2 6.4 8.9 13.4 

Shallow 2.4 7.4 14.7 9.7 22.3 
 

14.0 11.1 36.3 
 

5.9 
 

2.1 0.3 6.5 11.1 

BG 7.8 9.1 3.1 3.7 8.6 
 

6.7 4.5 1.1 1.3 1.1 1.6 0.7 0.2 1.1 3.4 

                 
GII-B 

                
Deep  9.2 11.6 5.1 10.5 14.9 16.1 23.4 12.5 2.9 0.6 5.8 2.0 6.0 6.5 13.4 9.4 

Shallow 8.8 10.7 2.8 8.6 24.4 
  

5.4 2.8 0.4 33.4 12.7 12.5 17.5 13.8 11.8 

                 
GII-C 

                
Deep  2.2 6.2 2.5 3.8 16.8 22.0 6.6 

 
2.7 1.2 5.7 2.6 14.9 10.6 

 
7.5 

Shallow 6.9 8.6 2.6 
     

8.0 
 

4.5 
 

7.4 6.0 
 

6.3 

Background 2.0 5.7 1.9 1.8 6.3 
 

3.7 7.2 0.9 0.9 1.8 0.4 1.0 2.3 
 

2.8 

                 
GII-D 

                
Deep  2.4 8.0 9.4 20.3 45.4 67.7 57.1 18.7 1.2 12.8 0.8 0.7 4.5 1.1 6.0 17.1 

Shallow 2.5 8.5 3.0 
  

65.9 6.5 109.4 6.3 0.6 6.2 
 

5.2 4.0 11.8 19.2 
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Table A.4 Continued 

GIII-A Jan-07 

Feb-

07 Mar-07 

Apr-

07 May-07 

June-

07 

July-

07 

Aug-

07 

Sep-

07 

Oct-

07 Nov-07 Dec-07 Jan-08 

Feb-

08 Mar-08 Avg 

Deep  2.1 1.2 7.5 4.7 10.4 9.6 0.8 2.7 0.7 0.4 0.5 1.5 3.6 1.3 0.2 3.1 

Shallow 0.9 0.6 7.6 6.8 10.8 3.3 4.7 2.2 0.5 2.1 0.3 2.5 1.6 2.3 0.2 3.1 

                 
GIII-B 

                
Deep  0.9 0.5 0.6 0.8 4.4 25.2 5.9 2.1 0.7 0.2 0.4 0.3 1.9 0.4 0.2 3.0 

Shallow 1.5 1.2 0.9 0.5 3.8 7.9 3.3 3.4 0.5 0.3 0.6 0.4 3.5 0.2 0.2 1.9 

BG 1.3 1.1 0.9 0.6 2.6 4.4 0.8 0.8 0.4 0.2 0.5 0.3 3.3 0.1 0.2 1.2 

                 
GIII-C 

                
Deep  6.3 3.7 7.0 5.0 5.4 13.1 1.0 2.5 0.3 0.2 0.4 1.2 5.9 2.7 1.2 3.7 

Shallow 1.8 1.3 3.0 2.9 
 

34.0 1.1 2.5 0.5 0.2 1.2 1.2 6.9 2.4 1.2 4.3 

                 
GIII-D 

                
Deep  3.7 3.5 3.9 3.4 7.3 18.0 3.2 1.3 0.4 0.2 0.7 0.2 1.7 0.6 0.2 3.2 

Shallow 1.2 1.0 1.5 

   

0.5 3.7 0.3 0.2 0.4 0.2 0.9 0.2 0.2 0.9 

BG 0.9 1.1 0.6 0.4 1.3 0.0 0.0 1.2 0.0 0.2 0.4 0.3 0.7 0.1 0.2 0.5 
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Table A.5 Hydraulic gradients used in the Darcy’s law equation for determining groundwater flux.  

 

Hydraulic Gradients 

 

Jan Feb March April May June July August Sept Oct Nov Dec Jan Feb Mar Avg 

GIA 0.029 

 

0.025 0.025 0.025 0.027 0.028 0.026 0.027 

 

0.027 

 

0.026 0.026 

 

0.027 

GIB 0.029 

 

0.025 0.025 0.025 0.027 0.028 0.026 0.027 

 

0.027 

 

0.026 0.026 

 

0.027 

GIC 0.035 0.037 0.032 0.033 0.028 0.032 0.038 0.026 0.044 

 

0.037 0.033 0.031 0.039 0.043 0.035 

GID 0.001 0.001 0.002 

 

0.049 0.047 

   

0.001 

 

0.001 

 

0.002 0.002 0.012 

GIE 0.004 0.005 0.005 

 

0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.006 0.003 

 

0.004 

GIF 0.034 0.034 0.034 

 

0.041 0.033 0.034 0.035 0.035 0.034 0.033 0.034 0.035 0.032 

 

0.034 

GIG 0.002 0.002 0.006 0.007 

    

0.001 

 

0.001 0.001 0.001 

 

0.001 0.002 

GIH 0.002 0.002 0.006 0.007 

    

0.001 

 

0.001 0.001 0.001 

 

0.001 0.002 

                 
GIIA 0.013 0.023 0.017 0.018 0.018 0.018 

 

0.020 0.017 

 

0.014 

 

0.012 

  

0.017 

GIIB 0.003 0.005 0.006 0.006 0.005 0.005 

 

0.008 0.008 

 

0.006 

 

0.005 

  

0.006 

GIIC 

 

0.004 0.003 0.004 

 

0.004 

  

0.005 

 

0.002 

 

0.004 0.003 

 

0.004 

GIID 0.005 0.005 0.005 0.007 

 

0.010 0.012 0.008 0.009 

  

0.007 0.008 

  

0.008 

                 
GIIIA 0.005 0.004 0.005 0.004 0.004 

 

0.007 0.004 0.006 0.004 0.004 0.004 0.006 0.004 0.018 0.006 

GIIIB 0.004 0.006 0.013 0.002 0.010 0.002 0.003 0.004 0.005 0.006 0.004 0.004 0.005 0.005 0.018 0.006 

GIIIC 0.007 0.007 0.005 0.003 0.002 0.006 0.002 0.003 0.006 0.017 0.004 0.004 0.008 0.006 0.021 0.007 

GIIID 0.020 0.013 0.012 0.011 0.013 0.012 0.013 0.015 0.015 0.016 0.014 0.013 0.013 0.016 0.031 0.015 
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Table A.6  E. coli densities (cfu/100 ml) in groundwater adjacent to septic systems in soil groups I, II and III.  

M is March 2007, S is September 2007, N is November 2007 and F is February 2008.  

 

Soil Group  M S N F Median 

Freq 

viol Geomean 

GI-A 1 33 333 80 57 25 31 

GI-B 250 17 1 100 59 25 26 

GI-C 1 1 367 400 184 50 20 

GI-D 1 1 50 10 6 0 5 

GI-E 636 33 133 700 385 75 210 

GI-F 91 1 100 1000 96 25 55 

GI-G 1 100 100 250 100 25 40 

GI-H 1 1 67 1 1 0 3 

        

        

Soil Group   M S N F Median 

Freq 

viol Geomean 

GII-A 1067 100 133 100 117 50 194 

GII-B 1 6533 500 180 340 75 156 

GII-C 364 300 67 1 184 50 52 

GII-D 1 35000 100 205 153 50 164 

        

        

Soil Group M S N F Median 

Freq 

viol Geomean 

GIII-A 1 27 200 400 114 50 38 

GIII-B 91 1 1 60 31 0 9 

GIII-C 83 191 100 100 100 25 112 

GIII-D 91 118 133 160 126 50 123 
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Table A.7  E. coli densities (cfu/100 ml) in back ground groundwater near septic systems in soil groups I, II  

and III. Some sites shared a common background well. M is March 2007, S is September 2007, N is November 2007 

 and F is February 2008.  

 

Soil Group M S N F Median 

Freq 

viol Geomean 

GI-A,B 1 1 1 20 1 0 2 

GI-C 1 

  

1 1 0 1 

GI-D 1 1 1 1 1 0 1 

GI-E 1 

 

1 1 1 0 1 

GI-F 1 1 200 1 1 25 4 

GI-G,H 1 

 

67 1 1 0 4 

        

        

Soil Group  M S N F Median 

Freq 

viol Geomean 

GII-A,B 400 1 200 1 101 50 17 

GII-C,D 1 1 33 1 1 0 2 

        

        

Soil Group  M S N F Median 

Freq 

viol Geomean 

GIII-A,B 1 1 1 1 1 0 1 

GIII-C,D 1 1 1 20 1 0 2 
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Table A.8  Depth to groundwater (m) adjacent to each septic system from December 2006 to March 2008.   

 

Depth to GW (m) 

 

Dec Jan Feb March April May June July August Sept Oct Nov Dec Jan Feb Mar 

GI-A 1.02 0.91 0.94 1.09 1.19 1.22 0.96 0.98 1.11 0.91 1.19 1.10 1.31 1.04 1.06 0.98 

GI-B 1.31 1.08 1.21 1.43 1.53 1.51 1.26 1.25 1.53 1.16 1.50 1.45 1.54 1.34 1.40 1.22 

GI-C 1.37 1.15 1.27 1.53 1.63 1.70 1.46 1.43 1.75 1.28 

 

1.60 1.34 1.44 1.46 1.29 

GI-D 1.60 1.61 1.69 

 

2.07 2.11 1.98 2.13 2.01 1.75 1.98 1.76 1.98 1.71 1.91 1.76 

GI-E 

 

2.79 2.87 3.04 2.91 2.95 2.73 2.86 2.81 2.67 2.77 2.77 2.97 2.93 2.94 

 GI-F 1.98 2.01 2.09 2.21 2.20 2.20 2.04 2.13 2.13 1.94 2.05 1.94 2.19 2.06 2.16 

 GI-G 2.23 2.16 2.26 

  

2.28 2.08 2.21 2.20 1.97 2.14 2.04 2.27 2.16 2.26 2.18 

GI-H 1.87 1.80 1.89 2.04 2.01 1.98 1.80 1.91 1.90 1.73 1.85 1.79 2.01 1.90 1.97 1.97 

                 

                 GII-A 1.25 0.84 0.83 1.31 1.46 1.66 1.77 1.61 1.60 1.00 1.60 1.34 1.63 1.17 1.17 0.89 

GII-B 0.71 0.49 0.45 0.79 0.97 1.10 1.20 1.40 0.92 0.30 0.94 0.88 0.96 0.46 0.58 0.41 

GII-C 1.17 0.86 0.90 1.28 1.48 1.59 1.55 1.51 

 

0.99 1.52 1.24 1.51 1.03 1.13 0.98 

GII-D 1.00 0.67 0.71 1.06 1.24 1.40 1.31 1.09 1.38 0.80 1.26 1.03 1.33 0.94 1.02 0.78 

                 GIII-A 0.94 0.76 0.89 1.09 1.12 1.19 1.25 1.12 0.98 0.58 0.84 0.94 1.10 0.63 1.04 0.81 

GIII-B 0.84 0.61 0.72 0.98 1.09 1.16 0.99 0.96 0.84 0.52 0.69 0.81 0.97 0.58 0.82 0.72 

GIII-C 1.04 0.76 0.96 1.20 1.43 1.30 1.13 1.18 1.06 0.60 0.76 0.95 1.11 0.68 1.01 0.87 

GIII-D 1.11 0.89 0.94 1.27 1.43 1.44 1.33 1.40 1.25 0.78 0.94 1.10 1.24 0.77 1.11 0.94 
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Table A.9  Relative water table elevations used to calculate the hydraulic gradients and groundwater flow directions.  

  

Relative Elevation of Water (m) 

 

Dec-06 Jan-07 Feb-07 Mar-07 Apr-07 May-07 June-07 July-07 Aug-07 Sep-07 Oct-07 Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Avg 

GI-A 2.28 2.39 2.36 2.22 2.11 2.08 2.34 2.33 2.19 2.39 2.11 2.20 1.99 2.26 2.24 2.33 2.24 

GI-B 2.35 2.58 2.45 2.23 2.13 2.15 2.39 2.40 2.13 2.50 2.16 2.21 2.12 2.32 2.26 2.44 2.30 

GI-B 3pt 

 

0.95 1.00 0.86 0.89 0.73 0.92 0.91 0.78 0.96 0.66 0.83 0.72 0.93 0.90 

 

0.86 

GI-B BG 2.32 2.55 0.00 2.25 2.28 2.09 2.42 2.44 2.23 2.46 

 

2.30 0.00 2.35 2.31 

 

2.33 

                  

GI-C 1.56 1.79 1.66 1.41 1.30 1.23 1.47 1.50 1.18 1.66 

 

1.33 1.59 1.50 1.47 1.65 1.49 

GI-C 3ptr 1.66 1.57 1.39 1.35 1.19 1.41 1.44 1.18 1.51 

 

1.35 

 

1.50 1.45 

  

1.42 

GI-C 3ptl 0.58 0.54 0.35 0.29 0.16 0.34 0.36 0.08 0.42 

 

0.30 

 

0.45 0.42 

  

0.36 

GI-C BG 2.00 2.24 2.13 1.86 1.76 1.69 1.91 1.95 1.68 2.13 

 

1.79 2.04 1.95 1.91 2.10 1.94 

                  

GI-E   

 

0.32 0.23 0.06 0.19 0.16 0.37 0.25 0.30 0.43 0.33 0.33 0.13 0.18 0.16 

 

0.24 

GI-E BG 

 

1.34 1.27 1.10 

 

1.19 1.37 1.24 1.30 1.45 1.34 1.35 1.15 1.24 1.15 1.18 1.26 

GI-E 3 pt 

 

0.81 0.71 

  

0.64 0.83 0.73 0.73 0.88 0.77 0.77 

    

0.76 

                  

GI-F 1.16 1.14 1.05 0.93 0.94 0.94 1.10 1.01 1.01 1.20 1.09 1.20 0.95 1.09 0.98 

 

1.05 

GI-F BG 2.05 2.03 1.95 1.82 

 

2.05 1.98 1.90 1.94 2.12 2.00 2.09 1.86 2.01 1.83 

 

1.97 

GI-F 3Pt 

 

1.27 1.16 

   

1.21 

 

1.09 1.37 1.18 1.32 

 

1.20 

  

1.22 

                  

GI-G 0.37 0.43 0.34 

  

0.31 0.51 0.38 0.39 0.62 0.45 0.55 0.32 0.43 0.34 0.41 0.42 

GI-H 0.45 0.51 0.42 0.26 0.30 0.32 0.51 0.42 0.41 0.55 0.46 0.52 0.28 

   

0.41 

GI-H BG 0.44 0.51 0.42 0.26 0.30 0.30 0.49 0.40 0.39 0.59 0.44 0.52 0.29 0.41 0.32 0.37 0.40 
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Table A. 9 Relative water table elevations continued. 
 

 

 

Dec-06 Jan-07 Feb-07 Mar-07 Apr-07 May-07 June-07 July-07 Aug-07 Sep-07 Oct-07 Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Avg 

GII-A 2.33 2.93 3.08 2.37 2.30 2.30 2.26 2.52 2.40 2.62 

 

2.30 

 

2.45 2.45 2.69 2.50 

GII- BG 2.21 2.61 2.50 2.14 2.01 1.91 1.88 2.12 2.19 2.55 1.98 2.18 1.97 2.32 2.28 2.44 2.21 

GII-3pt 1.74 2.32 1.99 1.58 1.45 1.45 1.43 

 

1.46 1.82 

 

1.65 

 

1.89 

  

1.71 

GII-B 1.83 2.43 2.28 1.97 1.96 1.85 1.70 1.71 1.97 2.43 2.01 2.08 1.93 2.29 2.11 2.28 2.05 

                  

GII-C 2.43 2.72 2.71 2.40 2.34 

 

2.33 

  

2.63 

 

2.40 

 

2.56 2.49 2.61 2.51 

GII-C BG 2.44 2.75 2.75 2.37 2.20 2.09 1.98 2.27 2.31 2.66 2.16 2.40 2.14 2.55 2.46 2.63 2.39 

GII-C 3 pt 

  

2.54 2.23 2.13 1.99 2.12 2.06 1.86 2.37 2.24 2.30 2.03 2.35 2.33 

 

2.20 

GII-D 2.47 2.79 2.76 2.40 2.26 2.21 2.23 2.38 2.37 2.76 2.38 2.60 

 

2.70 2.69 2.82 2.52 

GII-D 3pt 

  

2.55 2.20 2.05 1.92 

 

1.96 1.85 2.42 1.99 

 

2.01 2.39 2.35 

 

2.15 

                  

GIII-A 1.06 1.25 1.12 0.91 0.89 0.81 0.76 0.89 1.03 1.42 1.17 1.06 0.90 1.37 0.97 1.19 1.05 

GIII-A 3ptf 

 

1.08 1.08 0.72 0.65 0.60 0.78 0.79 1.15 1.17 1.03 0.92 0.79 1.16 0.87 

 

0.91 

GIII-A 3ptb 

 

0.90 0.84 0.60 0.60 0.52 0.78 0.41 0.76 1.05 0.88 0.78 0.64 0.98 0.69 

 

0.74 

                  

GIII-B 0.89 1.11 1.00 0.69 0.58 0.55 0.69 0.71 0.82 1.19 1.01 0.87 0.74 1.17 0.83 0.95 0.86 

GIII-BG 0.81 1.05 0.98 0.64 0.56 0.51 0.72 0.66 0.79 1.15 1.01 0.84 0.67 1.11 0.76 0.93 0.82 

GIII-3pt 

 

0.88 0.70 

 

0.49 

 

0.58 0.54 0.61 0.94 0.71 0.67 0.53 0.92 0.59 

 

0.68 

GIII-C 1.09 1.31 1.17 0.89 0.85 0.73 0.85 0.90 0.88 1.43 1.01 1.12 1.00 1.43 1.09 1.23 1.06 

GIII-C 3Pt 

 

0.90 0.77 0.60 0.70 0.61 0.50 0.81 0.73 1.10 

 

0.90 0.76 0.95 0.76 

 

0.78 

                  

GIII-D  1.26 1.51 1.45 1.11 1.03 1.01 1.09 1.02 1.18 1.66 1.51 1.33 1.18 1.67 1.29 1.49 1.30 

GIII-D 3pt 

 

0.54 0.82 0.51 0.51 0.39 0.51 0.41 0.48 0.92 0.75 0.65 0.55 1.02 0.54 

 

0.61 
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Table A.10  Demographic and septic system use data for the Newport River watershed.  

 

 

Sewer Septic 

NP,Bo, Be, MH 16497 22169 

AB, IB, PKS, EI 1039 6958 

CC, CP 

 

1150 

Total 17536 30277 

% Service 36.7 63.3 

 

 

 

 

 

 

Septic Sewer 

Newport 16195 3806 

Bogue 653 

 AB, IB, PKS 3055 1039 

Morehead 5321 8691 

Emerald Isle 3903 

 Cape Carteret 700 

 Cedar Point 450 

 Beaufort 0 4000 

 

Totals 30277 17536 

   Total Population  47813 

 Ratio Septic 0.633 
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Table A.11  Soil profile descriptions and photographs. 

 

 

GI-A (Mandarin Series) 

Depth (cm) Horizon   Color  Texture 

     0-30     Fill  10 YR 2/2     LS 

    30-41       A  10 YR 5/2     LS 

    41-86       E  10 YR 6/1     LS 

    86-94      Bh  10 YR 2/2     LS 

    94-130      B2  10YR 3/2      LS 
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Table A.11  Continued 

         

 

 

 
 

 

                      Baymeade Series (GI-B) 

 

Depth (cm) Color     Texture 

0-10  10 YR 6/2   S 

10-56  10 YR 7/1   S 

56-137  10 YR 4/4   SL 

137-152 10 YR 5/3   SL 

152+  2.5 YR 6/2    LS  
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Table A.11  Continued 

 

 

        
 

 

 

 

 

                           GI-C (Baymead Series) 

 

Depth (cm) Horizon Color               Texture 

0-21         Fill  10 YR 7/1       S 

37-49           A  10 YR 4/4      SL 

49-91           E                 LS 

91-101        Bh  10 YR 5/3      SL 

101-122        Bt         SL 

122-142+                           2.5 YR 6/2       LS 
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Table A.11  Continued 

 

 

 

Fripp Series (GI-D) 

 

Depth(cm)  Color         Texture 

0-28   10 YR 5/3   S 

28-45   10 YR 6/2   S 

45-61   2.5 Y 6/4   LS 

61-127   10 YR 5/6   LS 

127+   10 YR 6/2    S 

   10 YR 5/6 mottles 
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Table A.11  Continued 

 

 

 

 

 

 

                                     GI-E (Fripp Series) 

 

Depth (cm) Horizon Color    Texture 

 

0-25      A1  10 YR 4/2      LS 

25-41      A2  10 YR 4/3      LS 

41-84      B  2.5 Y 6/4      LS 

84-127+      C  2.5Y 6/4 with 

               10 YR 5/6 mottles 
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Table A.11  Continued 

 

 

 
 

Newhan Series (GI-F) 

 

Depth (cm)  Color         Texture 

0-8   10 YR 3/2   LS 

8-56   10 YR 4/3   LS 

56-66   10 YR 5/1   S 

66-91   10 YR 4/4   LS 

91+   10 YR 5/6   S 
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Table A.11  Continued 

 

 

 

Newhan Series (GI-G) 

 

Depth (cm) Color         Texture 

0-8  10 YR 2/1   SL 

8-107  2.5 Y 7/3   LS 

107-132 2.5 Y 5/1   LS 

132+  2.5 Y 4/2   LS 
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Table A.11  Continued 

 

 

 
 

 

 

GI-H  (Newhan Series) 

 

Depth (cm) Horizon Color        Texture 

 

0-20       A  10 YR 2/1  SL 

20-64       E  10 YR 4/2  S 

64-155       B  10 YR 3/1  S 

155-230+      C  10 YR 5/2  S 
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Table A.11  Continued 

 

 

 
 

Goldsboro Series (GII-A) 

 

Depth (cm)  Color              Texture 

0-41   10 YR 3/2      SL 

41-51   10 YR 4/3 with few     SL 

   10 YR 5/2 and  

   10 YR 4/6 mottles 

51-64   10 YR 4/3 with 

   10 YR 5/2 mottles common     SL 

  

64 +   10 YR 6/2 with       SL 

  10 YR 4/6 & 4/3 mottles 
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Table A.11  Continued 

 

 

 
 

 

 

GII-B (Goldsboro Series) 

 

Depth (cm) Horizon Color   Texture 

 

0-33  A  10 YR 3/2  SL 

33-56  B  10 YR 4/3   SL 

56-64  B2  10 YR 4/3 with SL/SCL 

    10 YR 6/2 mottles 

64-74+  C  10 YR 5/2   SL 
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Table A.11  Continued 

 

 
 

Goldsboro Series (GII-C) 

 

Depth (cm) Color         Texture 

0-41  10 YR 3/2   SL 

41-53  10 YR 5/6   SL 

53-64  10 YR 5/4   SL 

  10 YR 5/2 &  

  5/6 mottles common 

64-76   10 YR 5/2 with 5/4 

                         and 5/6 mottles 
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Table A.11  Continued 

 

 
 

 

 

 

Goldsboro Series (GII-D) 

 

Depth (cm)  Color         Texture 

0-41   2.5 Y 3/2   SL 

41-58   10 YR 4/3           SL 

58- 84   10 YR 5/2 with  SL 

   10 YR 4/6 mottles  

at 64 cm   

84+   10 YR 3/2   SL 
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Table A.11  Continued 

 

 

 
 

Altavista Series (GIII-A) 

 

Depth (cm)  Color         Texture 

0-33   10 YR 2/1   SL 

33-43   10 YR 3/2   SL 

43-58   2.5 Y 6/3   SL 

   2.5 Y 6/5 mottles 

58-91   2.5 Y 4/3 with   SCL 

   5 Y 5/6 mottles few 

   10YR 6/3  mottles common 

91-112                10YR 5/4                                  SCL 

   10 YR 7/2 mottles  
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Table A.11  Continued 

 

 
 

 

                      Altavista Series (GIII-B) 

 

Depth (cm)  Color         Texture 

0-30   10 YR 3/2   SL 

30-43   10 YR 4/6   SL 

   2.5 Y 6/3 mottles  

43-48   2.5 Y 7/3   LS 

48-64   10 YR 4/4  

   2.5 Y 6/3 mottles common SCL 

64-91   10 YR 4/4  

   2.5 Y 6/2 mottles at 78 cm 
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Table A.11  Continued 

 

 
 

 

Altavista Series (GIII-C) 

 

Depth (cm)  Color         Texture 

0-38   10 YR 4/3    SL  

38-48   10 YR 5/4   SL 

48-58    2.5 Y 6/3   SL 

58-84+   10 YR 4/6 with  SCL 

   10 YR 6/3 mottles  

   10 YR 6/2 mottles few at 69 

84+   10 YR 4/6 with 

   10 YR 6/2 & 5/8 mottles common 

    10 YR 6/1 mottles 
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Table A.11  Continued 

 

 

 
 

 

 

 

 

GIII-D (Altavista Series) 

 

Depth (cm) Horizon Color         Texture 

0-18  A  10 YR 3/2   SL 

18-51  A2  10 YR 4/3   SL 

51-61  B1  2.5 Y 5/6  

61-69  B2  2.5 Y 5/3 with   SCL 

    few 10 YR 7/2 and 

    10 YR 6/6 mottles 

69-89  B3  2.5 Y 5/6 with   SCL 

    2.5 Y 5/3 mottles common 

89-102+ C  2.5 Y 5/4 with   SCL 

    10 YR 7/2 mottles common 
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Table A.12  Mann Whitney statistical test results for groundwater and tank E. coli and nitrogen data.  

 

 
                               Mann Whitney Test Results ( P values) 

E. coli Tests 

 

Dissolved Inorganic Nitrogen 

Groundwater 

 

Groundwater  

GI > GI BG = 0.0026 

 

GI > GI BG = 0.0012 

GII > GII BG = 0.0526 

 

GII > GII BG = 0.0526 

GIII > GIII BG = 0.0526 

 

GIII > GIII BG = 0.0526 

   GII > GI = 0.0373 

 

GI > GII = 0.1975 

GII > GIII = 0.0562 

 

GI > GIII = 0.0042 

GIII > GI = 0.2223 

 

GII > GIII = 0.0152 

   GII BG > GI BG = 0.1497 

 

Lab Results (TKN + NO3)  

GII BG > GIII BG = 0.428 

 

GI > GII = 0.3995 

GI BG > GIII BG = 0.207 

 

GII > GIII = 0.0152 

  

GI > GIII = 0.0042 

GI S > GI D = 0.3359 

  GII S > GII D = 0.0628 

 

Septic Tanks  

GIII S > GIII D = 0.077 

 

GI < GII = 0.1080 

  

GII > GIII = 0.0404 

GI and GII E. coli 

 

GI > GIII = 0.1080 

< 60 cm Sep > 60+ cm Sep = 0.0794 

  

   Septic Tanks  

 

GI and GII -NH4  

GII > GI = 0.1844 

 

< 60 cm Sep > 60 cm + Sep = 0.0027 

GII > GIII = 0.0404 

  GI > GIII = 0.1080 

  

GI = Group I soils (sands) 

GII = Group II soils (coarse loams) 

GIII = Group III soils (fine loams) 

 

BG = Back ground groundwater 

 

Sep = Separation distance to seasonal high 

water table  

 

Dissolved Inorganic Nitrogen = NH4-N + NO3-

N 

 

S = Shallow water table periods 

 

D = Deep water table periods 

 

Lab Results = Samples analyzed for TKN, NH4 

and NO3 in laboratory, others in the field  
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Table A.13  Chloride concentrations (mg/L) in groundwater.  

GI-A Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  

 

12 9 7 12 7 14 5 1 12 3 11 3 11 8 

Shallow 

 

102 89 92 98 58 57 33 5 20 16 82 10 68 56 

Background 

 

16 

 

42 

 

16 161 

 

44 

 

86 218 21 

 

76 

                

GI-B Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  

 

40 42 38 3 39 41 18 5 22 16 44 7 49 28 

Shallow 

 

46 33 

  

44 44 

 

4 

   

6 41 31 

                

GI-C Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  

 

21 12 9 

 

17 11 

 

2 

 

3 

 

5 71 17 

Shallow 

 

4 9 5 

 

6 11 

 

1 

   

5 14 7 

Background 

 

10 9 

   

18 

   

6 

 

14 51 18 

                

GI-D Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  3 53 

 

52 54 40 

  

68 35 34 68 

 

60 52 

Shallow 4 40 

             

Background 1 27 

      

31 

 

195 

  

113 92 

                

GI-E Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  

 

14 16 11 19 20 12 7 5 12 11 26 

 

20 14 

Shallow  

   

70 72 75 70 60 16 25 47 87 

 

58 58 

Background 

 

24 25 22 27 38 40 11 5 43 41 45 

 

29 29 

                

GI-F Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  2 43 44 33 38 67 81 26 12 30 19 63 

 

52 42 

Shallow 

     

63 

  

19 34 23 

   

35 

Background 

 

62 79 51 69 29 78 42 14 46 30 94 

 

103 58 

                

GI-G Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  3 64 480 46 355 148 88 27 118 90 54 

  

249 156 

Shallow 

        

11 

      

newup 1 

   

312 84 30 11 5 520 540 169 

 

202 208 

newdown 

   

700 50 55 43 16 628 360 181 172 

 

116 232 

                

GI-H Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  

 

131 139 116 102 102 70 38 23 57 49 96 

 

103 86 

Shallow 9 126 138 102 

 

122 80 42 72 93 60 109 

  

94 

Background 19 214 121 32 75 69 85 65 82 62 260 107 

 

122 108 
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Table A.13 Continued. Chloride concentrations (mg/L) in groundwater.

Sites Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

GII-A 

               
Deep  1 27 

 

27 43 

 

85 75 6 31 20 58 8 44 39 

Shallow 0 6 9 8 35 
 

266 24 56 
 

109 
 

28 115 66 

Background 0 

 

20 4 20 

  

3 5 13 4 7 1 5 8 

                
GII-B 

               
Deep  2 42 26 26 42 36 82 8 160 185 208 202 38 124 91 

Shallow 1 9 9 19 47 

  

8 66 270 48 93 7 36 56 

                
GII-C 

               
Deep  

 

22 9 

 

62 47 38 

 

24 104 80 131 18 40 52 

Shallow 
 

18 11 
     

44 
 

62 
 

8 40 31 

Background 0 3 3 2 16 

 

15 22 2 7 6 7 

 

4 8 

                
GII-D 

               
Deep  2 35 42 61 92 110 80 18 12 1660 24 57 10 34 172 

Shallow 0 13 23 

  

80 150 16 360 60 50 

 

19 37 81 

                GIII-A Jan Feb March April May June July Aug Sep Oct Nov Dec Jan Feb AVG 

Deep  1 20 26 12 35 19 15 
 

1 3 2 7 2 14 13 

Shallow 1 17 34 24 20 36 25 

 

1 7 5 27 2 18 18 

                
GIII-B 

               Deep  3 51 58 29 45 94 73 

 

2 13 6 20 4 23 35 

Shallow 4 37 43 34 36 43 43 

 

1 11 5 23 2 13 24 

Background 2 24 23 13 19 27 21 

 

1 5 3 7 1 9 13 

                
GIII-C 

               
Deep  10 130 101 77 

 

104 58 

 

2 27 17 100 20 107 68 

Shallow 6 126 81 24 

 

54 37 

 

4 14 19 88 3 81 48 

                
GIII-D 

               
Deep  

 

60 57 47 52 63 22 

 

1 7 12 48 3 44 35 

Shallow 

 

23 24 

  

38 143 

 

1 4 4 11 1 11 26 

Background 10 175 160 161 180 262 

   

13 

 

79 6 62 122 
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