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In eukaryotic cells, DNA replication and the subsequent packaging of DNA into specific 

chromatin states are essential processes for the transmission of genetic material and genomic 

stability which may be linked by interactions between DNA replication proteins and chromatin 

association proteins.  The discovery of several proteins with roles in both processes is evidence 

for this.  Mcm10 is one such protein that has shown evidence for multiple roles in DNA 

replication, heterochromatin formation, and chromosome condensation.  The separation of the 

functions of Mcm10 are investigated in this study by the analysis of two mutant alleles. A 

hypomorphic allele of Mcm10 demonstrates that Mcm10 has a role in heterochromatic silencing, 

chromosome condensation, and DNA replication.  The analysis of a C terminal truncation allele 

indicates a role in endoreplication mediated through an interaction with Mcm2.  The C terminal 

however, does not seem to be involved in heterochromatic silencing or chromosome 

condensation. 

The second phase of this study involves the development of a novel yeast three-hybrid 

system.  The yeast two-hybrid system is a useful tool for detecting interactions between two 

proteins and identifying novel protein interactions.  However, one limitation to the system is that 

some two-protein interactions require a third protein to stabilize or facilitate the binding between 

the two.  In this system, we present two novel vectors; pGBKTet and pHook (derived from 



pDela) that are Gatewaytm

 

 compatible and allow screening for the third protein.   Due to its 

numerous protein interactions and its exceptional abundance in the  eukaryotic cell with 

approximately 40,000 molecules per haploid yeast cell, it has been proposed that Mcm10 not 

only has roles in DNA replication and heterochromatin formation, but also serves as a facilitator 

of other protein interactions. Using this system, it was shown that Mcm10 may participate in several 

ternary protein complexes.   
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CHAPTER 1: ANALYSIS OF TWO MUTANT ALLELES OF MCM10 
 

INTRODUCTION 
 

In eukaryotic cells, DNA replication and packaging of DNA into specific chromatin 

states are essential processes that are likely linked by interactions between DNA replication 

proteins and chromatin associated proteins.  However, it is unclear how these processes are 

specifically linked.  It is possible that DNA replication proteins interact with separate chromatin 

establishment factors.  Another model suggests that DNA replication proteins themselves have 

roles in chromatin formation [1].  Both DNA replication and heterochromatin formation have 

long been known as important aspects in cancer biology.  DNA replication is the central 

mechanism for the cell cycle and cell proliferation.  Cancer is characterized by unregulated 

growth and loss of control of the cell cycle. The proper chromatin condensation of chromatin 

into chromosomes is critical for genome stability and any defects that are implicated in genome 

instability are associated with many cancers [2].  Also, the packaging of DNA into 

heterochromatin is known to be defective in tumor cells [3]. By understanding these two 

processes, it has allowed for a better understanding of cancer treatment and therapies.  However, 

understanding how these two processes may be linked, can add new and useful information to 

ongoing cancer research.   

Initiation of DNA synthesis occurs at replication origins scattered along the chromosome 

and are bound by the six-subunit origin recognition complex (ORC), which then directs the 

formation of protein complexes leading to the assembly of the bidirectional replication forks [4].  

These events begin with the assembly of the pre-replicative complex (pre-RC) at the origins of 

replication.  First, Cdc6 is recruited to the origin and is required for the heterohexamer complex 

Mcm2-7 to bind and act as a DNA helicase to melt the double helix.  Another replication protein, 
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Cdt1, has been shown to associate with Cdc6 to cooperatively promote the association of Mcm2-

7 to the chromatin.  Together, these factors make up the pre-RC which is a key intermediate in 

replication initiation [4]. Before replication can be initiated, several other protein complexes 

must associate with the origin.  Phosphorlyation of the Mcm2-7 complex by Dcd7-Dbf4 kinase 

allows the binding of Cdc45 which is necessary for the loading of DNA polymerase α on 

chromatin.  Simultaneously the GINS complex is added and this leads to the formation of the 

pre-initiation complex (Pre-IC).  Once DNA replication is initiated, Mcm2-7, Cdc45, and the 

GINS complex migrate with the replication fork [5].  A schematic of DNA synthesis from 

recruitment to activation of the MCM complex is shown in figure 1-1 [6].  How these proteins 

rearrange to become part of the replication fork is not fully understood, but likely involves an 

interaction with Mcm10 which may mediate the anchoring of the MCM complex [6] and help 

recruit DNA polymerase α to the chromatin for initiation of DNA replication [5].  

The establishment of a chromatin state is dependent upon not only the replication of 

DNA but also the transmission of the epigenetic state to the newly formed chromatin.  Epigenetic 

states are associated with modifications of the nucleotides and DNA associated proteins that 

result in an altered expression of genes.  One example of a protein modification associated with 

specific epigenetic states is the modification of histones in the nucleosome [7].  Many DNA 

replication factors are necessary for the proper establishment of different states of chromatin, 

which supports the hypothesis that DNA replication factors themselves have roles in chromatin 

formation.  For example, ORC, which is involved in the initiation of DNA replication, is also a 

structural component of heterochromatin in yeast and also interacts with heterochromatin protein 

1 (Hp1) in Drosophila [1].  Support for the hypothesis that DNA replication factors interact with 

separate chromatin factors comes from CAF-1 (chromatin assembly factor 1) and its interaction 
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with PCNA to deposit H3 and H4 histones onto replicating DNA [8].  Identifying factors that 

have roles in both DNA replication and chromatin formation is crucial for understanding how the 

two processes are linked.   

One such replication factor that is involved in establishing proper epigenetic states is 

Mcm10.  It has been shown to interact with members of the Pre-RC, Pre-IC and Hp1 (Table 1-1) 

[1].  It was identified in a screen for strains with defects in plasmid stability which also isolated 

Mcm2, Mcm3 and Mcm5 [4] and was identified in budding yeast as a protein required for stable 

maintenance of minichromosomes [9].  In a study by Merchant et al [10], mutations in Mcm10 of 

Saccharomyces cerevisiae showed a reduction in DNA replication initiation at origins and also 

pausing of replication forks during elongation, suggesting a role in DNA replication initiation 

and elongation.  In a study by Liachko and Tye [9] using S. cerevisiae, Mcm10 mutants 

displayed a defect in the maintenance of transcriptional silencing.  Using a two-hybrid analysis, 

Mcm10 was found to interact with proteins Sir2 and Sir3 which are both known to maintain 

transcriptional silencing.  These studies indicate that Mcm10 has more than one function in 

chromosome biology, and therefore would be an ideal candidate to study the links between DNA 

replication and chromatin dynamics.  More evidence to support multiple roles for Mcm10 comes 

from an early observation that there are over 37,000 copies of this protein per cell in S. 

cerevisiae which indicates that Mcm10 is well in excess for having only a role in DNA 

replication [11][12]. 

Homologs of Mcm10 have been identified in Drosophila, Xenopus, and human and are 

well conserved across different organisms [13] (Figure 1-2). The highly conserved core of 

Mcm10 is present in all eukaryotes and contains a zinc finger domain.  In higher eukaryotes, 

Mcm10 is expanded and has a highly conserved C terminal domain with two zinc finger motifs 
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[1].  A structure of Mcm10 was determined by electron microscopy and single particle analysis 

[14] (Figure 1-3).  The shape of the molecule is a double-layered ring with six-fold symmetry. 

The ring ‘helicase-like’ structure of human Mcm10 suggests a molecular model for its evolution 

in which Mcm10 served as an ancestral helicase that eventually lost its helicase activity to 

become a docking protein to facilitate interactions between other DNA replication proteins [14].   

Overall, there is much evidence that Mcm10 has more than one function in chromosome 

biology.  Previous studies indicate that Mcm10 would be a good target for study of the linkage 

between DNA replication and chromatin formation.  However, what is still not understood is the 

link between DNA replication and chromosome biology.  Do replication proteins such as Mcm10 

participate in mechanisms outside their role in DNA replication? Or are the mechanisms 

intricately linked to one another?  Due to its involvement in many stages of DNA replication, 

Mcm10 is an ideal target to study.  
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Figure 1-1. Initiation of DNA synthesis. (A) Cdc6 and Cdt1 are recruited to replication origins 

in G1

 

 phase where ORC and Mcm10 are bound. (B) Cdc6 and Cdt1 facilitate the loading of the 

MCM complex which is anchored through interaction with Mcm10. Cdc6 is removed once the 

MCM complex is recruited and the Cdc7-Dbf4 kinase is recruited to the origin.  (C) 

Phosphorylation of the MCM complex by Cdc7-Dbf4 kinase during S phase is coupled to a 

conformational change which results in the melting of the DNA. (D) The MCM complex is 

converted to an active helicase due to the conformational change. Cdc45 is recruited and the 

disassociation of the MCM complex by Cdc45 from the Mcm10 anchor initiates DNA melting 

and recruits RPA, DNA polymerase α and primase to the origins. (E) Melting of the dsDNA 

induces a conformational change in ORC then the origins assume a post-replication chromatin 

state. Mcm10 is believed to stay bound to the origins throughout the cell cycle [6]. 
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Protein Function 
HP1 Establishment of chromatin 

silencing 
Orc2 DNA replication origin 

binding 
Orc5 DNA replication origin 

binding 
Cdc45 DNA replication 

 
Mcm10 DNA replication and 

chromatin silencing 
Mcm2 DNA helicase activity 

 
Dup/Cdt1 DNA replication 

 
 

Table 1-1. List of proteins that interact with Mcm10 and their function. 
 
 
 
 

 
 
 

 
 
 
 

Figure 1-2. Alignment of Mcm10 from multiple species showing conserved zinc finger motifs 

(red), highly conserved regions (black) and moderately conserved regions (grey) [1]. 
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Figure 1-3. Structure of human Mcm10 by electron microscopy and single- particle analysis 

[14]. 
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OBJECTIVES 
 

The specific purpose of this research was to understand the multiple roles of Mcm10.  Do 

DNA replication proteins have a role in chromatin dynamics and are these roles separable?  

There is a lot of research on the role for DNA in replication and chromatin formation but hardly 

any of the studies have attempted to separate these functions.  Understanding Mcm10 is a good 

starting point for further studies on the link between these mechanisms. In order to begin to 

investigate the roles of Mcm10, two mutant alleles were used for this study.  

The first mutant allele was identified in a literature search and is a P element insertion 76 

base pairs upstream of the start codon of Mcm10 [15] (Figure 1-4A).  This allele exhibits a 

dominant minichromosome maintenance defect and is named Sensitized Chromosome 

Inheritance Modifier 19 (Mcm10Scim19

Another allele of Mcm10 was identified in the Exelisis P element insertion which inserts 

a P element into the 3’ region of the coding sequence of Mcm10 and truncates the last 85 amino 

acids of the protein (Mcm10

).  Due to the close proximity of the P-element to the start 

codon of Mcm10, this allele is hypomorphic and reduces transcription by 74 % [1].  

d08029

Using these two mutants, there were several phases of the research to study the roles of 

Mcm10: 

) (Figure 4A). Truncating the last 85aa causes the removal of 

one of the two conserved zinc finger motifs in the C terminal (Figure 1-4B). Both mutant alleles 

are homozygous viable [1]. 

1. Assay the mutants for impacts on DNA replication. 

2. Map the interaction domains of Mcm10 with known protein interactors. 

3. Assay effects of a C-terminal truncation of Mcm10 with known protein interactors. 
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Figure 1-4. Two mutant alleles of Mcm10. A. Schematic of the two Mcm10 mutant alleles on 

chromosome 2L with P element insertion sites indicated.  B. The Mcm10d08029

 

 allele is predicted 

to cut off 85aa from the C terminal of the protein and remove a conserved zinc finger domain 

[1]. 
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METHODS 
 

 
Fly husbandry/Stocks: Fly stocks (Mcm10Scim19 Flybase ID: FBst0013070, y[1] w[67c23]; 

P{y[+mDint2] w[BR.E.BR]=SUPor-P}Mcm10[KG00233]) and (Mcm10d08029 Flybase ID: 

FBst1011557, P{XP}Mcm10[d08029]) were obtained from the Bloomington Fly stock center 

and the Exelixis Drosophila Stock Collection at Harvard Medical School.  Previously in the lab, 

the Mcm10 P element insertions were confirmed by PCR (data not shown) and each line was 

backcrossed >7 times to w; Df(2L), b[82-2] / CyO to remove unwanted second site mutations. 

Fly stocks were maintained on Caltech media (US Biological # D9600-07) at room temperature 

[1].   

Polytene Chromosomes: The size of the polytene chromosomes in the mutant flies were 

qualitatively compared to wild-type controls.  This was done using the polytene chromosome 

protocol (Christensen 2008).  With tweezers, the 3rd instar wandering larvae of the desired 

genotype were captured and placed in a well containing 100ul of 1X PBS pH 7.2 with 1% PEG 

8000.  The larvae were pulled apart by grasping the posterior end and the anterior mouth hooks 

with tweezers.  The polytene glands were identified and placed in a fixative (50% acetic acid, 2% 

lactic acid, 3.7% formaldehyde) for two minutes.  The polytene glands were then transferred to a 

microscope slide and a siliconized coverslip was pressed on top until the chromosomes were well 

spread.  Using a digital torque wrench, 15 Nm of pressure was applied to the slide for two 

minutes.  The slide was lowered into liquid nitrogen for one minute then placed in 100% ethanol 

for 10 seconds.  Finally, Vectasheild with DAPI was added to the slide and a coverslip was 

placed on top. The polytene chromosomes were viewed under the confocal microscope in the 

Howell Science Complex.  
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Larval brain squashes/Mitotic index: The two mutant alleles were tested for competency in the 

more recognized cell cycle in the bran tissues of the wandering 3rd instar larvae. In order to 

measure chromosomes, brain squashes of third instar larvae of each mutant and wild-type were 

performed.  This was done using a brain squash protocol (Christensen 2008).  Third instar 

wandering larvae were placed in 1XPBS pH 7.2 with 1% PEG 8000 and pulled apart by grasping 

the posterior end and the mouth hooks using tweezers.  The brain was identified and placed into 

a hypotonic solution (0.5% sodium citrate) for 10 minutes.  It was then transferred to a fixative 

(acetic acid: methanol: water 11:11:2) for 20 seconds. The brain was transferred to a microscope 

slide and a siliconized cover slip was placed on top. Using the digital torque wrench, 15 Nm of 

pressure was applied then the slide was lowered in a container with liquid nitrogen then washed 

with ethanol.  Vectashield with DAPI was placed on the slide then viewed using the confocal 

microscope.  Mitotic indices were calculated by taking the number of cells in mitosis from 10 

different random views at 60X divided by the total number of cells to determine if cells are 

delayed in S phase.  Mcm10Scim19 and Mcm10d08029 were used to generate other mutants to 

analyze in order to ensure that the results from the mitotic indices were not due to other factors 

such as maternal loading. Mcm10Scim19 homozygous females were used to generate 

Mcm10Scim19/+ and Mcm10Scim19/Df(2L) by crossing to Df(2L)/CyO, GFP.  Mcm10Scim19 

homozygous females were also crossed to Mcm10d08029/Mcm10d08029 to generate 

Mcm10Scim19/Mcm10d08029.   Mcm10d08029/+ and Mcm10d08029/Df(2L) were generated as above 

except using Mcm10d08029 homozygous females instead.  Statistical analysis was performed 

using Minitabtm

Hatch rates: Recently eclosed Drosophila were allowed to deposit eggs on yeast dusted grape 

plates at 26°C for 2 hours.  Eggs were counted then grape plates were incubated for 24 hours at 

 [1]. 
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26°C.  After the 24 hours, the unhatched eggs were counted.  A minimum of 3 independent trials 

were conducted for each phenotype. 

Yeast two-hybrid analysis: Yeast two-hybrid analysis was conducted according to standard 

protocols as in [13] and manufacture’s protocols (Clonetech, Matchmakertm Yeast two-hybrid 

system).  Yeast strain AH109 (Clonetech) containing the HIS3 reporter was used as the reporter 

strain. Plasmids pGBKT7 and pGADT7 (Clonetech) were converted to the Gatewaytm cloning 

system (Invitrogen) by insertion of a Gatewaytm cassette into the MCS were used as Gal binding 

domain and Gal activating domain, respectively. Also, the KanR gene of pGBKT7 was disrupted 

by AmpR for use in the Gatewaytm

 

 system.  All clones were sequence verified to ensure proper 

reading frame was maintained and there were no ectopic mutations. 
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RESULTS 

Impact on DNA replication: Since it has been widely established that mcm10 has a role in 

DNA replication [5][12][16][17][18][19], the impact of the two mutant alleles of Mcm10 on 

DNA replication of polytene chromosomes and brain tissue were observed. 

Polytene Chromosomes: In Drosophila, there are different types of DNA replication that have 

different modes of regulation [20].  One common cell cycle variant is endoreplication, in which 

cells increase their genomic DNA content without dividing to generate polyploid tissues.  

Examples of this in Drosophila are the polytene chromosomes of the salivary gland tissues of 

wandering 3rd instar larvae.  Some, but not all DNA replication proteins have a role in 

endoreplication [1].  In order to determine whether Mcm10 has a role in the process, polytene 

chromosomes from wild-tpe, Mcm10d08029 and Mcm10Scim19 were observed (Figure 1-5) [1].  The 

micrographs reveal that Mcm10Scim19 polytene chromosomes appear normal compared to wild-

type controls.  This indicates that normal levels of Mcm10 are not required for endoreplication.  

However, polytene chromosomes of Mcm10d08029

 

 showed under-replication when compared to 

wild-type, suggesting that the last 85 amino acids of Mcm10 play a role in endoreplication.   

Figure 1-5. Confocal micrographs of polytene chromosomes from genotypes indicated.  

Mcm10d08029 polytene chromosomes are under-replicated compared to Mcm10Scim19

 

 and wild-type 

[1]. (Note: micrographs were taken by other persons in the lab) 
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Brain squashes/Mitotic index: In addition to endoreplication, we sought to investigate the role 

of Mcm10 on the more traditional cell cycle of the brain.  To test for a possible cell cycle delay, 

mitotic indices were done on genotypes indicated (Figure 1-6)[1].  Mcm10Scim19 showed 

significantly fewer cells in mitosis when compared to wild-type and the combinations of 

Mcm10Scim19 with Mcm10+ and Df(2L) showed a dosage dependent trend with 

Mcm10Scim19/Df(2L), Mcm10Scim19/Mcm10Scim19, Mcm10Scim19/+, and Mcm10Scim19/Mcm10Scim19; 

p[Mcm10+]/p[Mcm10+] larvae having 6.0X, 3.6X, 2.6X and 1.1X respectively fewer nuclei in 

mitosis compared to wild-type.  Since the trend is that the mutant over deficiency has the greatest 

defect, followed by the homozygote, then heterozygote, with the rescue mutant similar to wild-

type, it can be concluded that Mcm10Scim19 represents a hypomorphic semi-dominant allele of 

Mcm10.  Mitotic indices for combinations of Mcm10d08029 suggest that this allele is dominant for 

cell cycle delay as well as endoreplication as previously reported.  The Mcm10d08029 allele differs 

from Mcm10Scim19 in that it required the addition of 3 wild-type copies of Mcm10 to rescue the 

mutant so that the number of nuclei in mitosis was similar to wild-type.  Also, the mitotic indices 

for the Mcm10d08029 homozygote and Mcm10d08029/Df(2L) were not significantly different from 

one another which suggests that the defects in this allele are not due to reductions in the level of 

protein, unlike the Mcm10Scim19 allele [1].   
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Figure 1-6. Graph of fraction of cells in mitosis from brain squashes of genotypes indicated [1]. 

 

Chromosome Condensation and Early Embryo: It had been previously reported in RNAi 

studies that depletion of mcm10 in Drosophila KC cells results in under-condensed metaphase 

chromosomes [13].  However, in this study, metaphase chromosomes from 3rd instar larvae of 

Mcm10d08029 and Mcm10Scim19

 The effect of the mutant alleles on the early embryo cell cycle was investigated due to the 

fact that the early embryo cell cycles 10-12 differ from the larval brain which was already 

examined.  The early embryo cell cycles occur in a syncytium, lack gap phases, are synchronous 

and occur rapidly over about 9 minutes [21].  Homozygous early embryos of both mutant alleles 

at cell cycles 10-12 were examined.  Mcm10

 did not show a defect in chromosome condensation (Figure 1-7A). 

d08029 embryos shoed normal synchrony and not a 

significant number of anaphase bridges while Mcm10Scim19 embryos revealed asynchronous 

divisions and anaphase bridges in 29% of the embryos examined (Figure 1-7B).  The asynchrony 

and bridging of the hypomorphic allele early embryos may have a negative effect on embryo 
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viability because the hatch rates for Mcm10Scim19 were only 46% compared to 68% for wild-type 

(Figure 1-7C).  Hatch rates were also slightly lower for embryos with Mcm10d08029 background 

(Figure 1-7C).  Since it was observed that Mcm10Scim19 shows an S phase delay (this study)[1], it 

is hypothesized that the asynchrony and anaphase bridges are a consequence of entry into mitosis 

before DNA replication is complete [1].  However, the S phase delay that has been observed with 

Mcm10d08029

 

 does not come from asynchrony in the early embryo.  It is possible that protein 

levels of Mcm10 are important in the early embryo for rapid DNA synthesis to occur and the last 

85aa are dispensable for this process. (Note: chromosome condensation and hatching rates were 

performed by JA while early embryo experiments were done by other persons in the lab). 

Figure 1-7. Chromosomal phenotypes in larval brains and early embryo. A. Fluorescent 

micrographs of mitotic figures from brain squashes of the indicated genotypes. B. Fluorescent 

micrographs o nuclei in early embryos and the percent of embryos showing 2 or more anaphase 

bridges and also hatching rates for genotypes indicated [1]. 
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Dissection of interaction domains: As mentioned before, the central core of Mcm10 is 

conserved across different organisms while the C terminal is present in only higher eukaryotes.  

Determining which proteins interact with the different domains of Mcm10 could give insight into 

the multiple roles of Mcm10 that may have evolved over time.  In order to determine the 

domains of Mcm10 responsible for protein interactions, a yeast two-hybrid analysis was 

performed using 200 amino acid fragments of Mcm10 overlapping by 100 amino acids against 

known protein interactors [13]. First, these known interactions were confirmed by yeast two-

hybrid analysis (Figure 1-8A). Known protein interactors of Mcm10 (Mcm2, Orc2, Mcm10-100 

aa, and Hp1) were fused to the Gal binding domain (pGBKT7 GW) and full length Mcm10 was 

fused to the Gal activation domain (pGADT7 GW).  Mcm10 minus the first 100 amino acids was 

fused to the Gal binding domain because it has been previously shown that the first 100 amino 

acids have one-hybrid activity with the binding domain but not the activating domain [1].  

Plasmids were then transformed into yeast strain AH109 and plated on complete media lacking 

histidine.  Interactions were indicated by growth on the media as a result of the transcription of 

the HIS3 reporter construct.  Growth was observed when Mcm10 was combined with Mcm2, 

Mcm10-100 aa, Orc 2 and Hp1 but not with the empty vector.   

In order to determine the domains of Mcm10 responsible for protein interactions, a yeast 

two-hybrid analysis was performed using 200 amino acid fragments of Mcm10 overlapping by 

100 amino acids against known protein interactors (Figure 1-8B).  Fragments of Mcm10 were 

fused to the Gal activation domain (pGADT7 GW) and known protein interactors Mcm2, 

Mcm10, Orc2, and Hp1 were fused to the Gal binding domain (pGBKT7 GW).  Plasmids were 

then be transformed into yeast strain AH109 then plated on complete media lacking histidine.  
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Interactions were indicated by growth on the media as a result of the transcription of the HIS3 

reporter construct in the AH109 yeast strain. 

Results show that Mcm10 interacts with Mcm2 via a region that contains the highly 

conserved core and central zinc finger as well as through the C-terminal of Mcm10 which 

includes one of the two conserved zinc finger domains (Figure 1-8C).  Mcm10 self interaction 

occurs in the central region and C-terminal domain also.  However, the Mcm10 interaction with 

Orc2 is mediated only through the C-terminal domain and the Hp1 interaction is mediated 

through an expanded portion of the C-terminal (Figure 1-8C.) 

It should also be noted that one-hybrid activity was detected in the first 100 amino acids 

of Mcm10 (Figure 1-8B).  In order to eliminate one-hybrid activity in further testing, clones were 

constructed without the first 100 amino acids. 
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Figure 1-8. Dissection of interaction domains. A. Yeast two-hybrid analysis indicating 

interaction of Mcm10 with Mcm10, Mcm2, Orc2, and Hp1. Growth was not observed with one-

hybrid controls. B. Schematic of the dissection of Mcm10 into 200 amino acid fragments, 
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overlapping by 100 amino acids and yeast two-hybrid analysis of each segment with known 

protein interactors from A directly below.  The first 100 amino acids showed one-hybrid activity.  

C. Schematic of the interaction domains of Mcm10 [1]. 

 

Impact of truncation on protein interactions: The dissection of the interaction domains of 

Mcm10 revealed that the C-terminal is involved in interactions with Mcm2, Mcm10, Orc2, and 

Hp1.  Therefore, the next step was to determine the consequences of a C-terminal truncation of 

Mcm10 on its interactions with these proteins using the Mcm10d08029 allele which truncates the 

last 85 amino acids.  This was done using a semi-quantitative yeast two-hybrid analysis using a 

clone of Mcm10 consisting of amino acids 101-691.  The first 100 amino acids of the N-terminal 

were removed due to one-hybrid activity previously discovered and the last 85 amino acids 

correspond to the Mcm10d08029 allele.  The truncated Mcm10d08029

 These results suggest that the last 85 amino acids are required for an interaction with 

Mcm2. In fact, within the C-terminal, Mcm2 only interacted with the last 76 amino acids of 

Mcm10 (Figure 1-8C) which was removed with the truncation.  In contrast, Mcm10 self 

interaction and interaction with Orc2 occurred over a larger region in the C-terminal which may 

 and Mcm10 minus the first 100 

amino acids were each fused to the Gal binding domain.  Mcm2, Mcm10, Orc2, and Hp1 were 

each fused to the Gal activation domain and tested against the two Mcm10 clones (Figure 1-9).  

In order to semi-quantitatively measure the strength of the interaction, the yeast cultures were 

plated in 5 fold dilutions.  The results indicate that a truncation of the last 85 amino acids of 

Mcm10 eliminates its interaction with Mcm2.  It was also shown that the truncation weakened 

Mcm10 self interaction and interaction with Orc2.  However, the interaction with Hp1 seems 

unaffected.   
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explain a reduction, but not loss of interaction with Mcm10.  Additionally, the observation that 

Hp1 remains unaffected by the truncation could be due to its interaction over a larger area of the 

C-terminal (276 amino acids).  After the removal of the last 85 amino acids, the remaining 191 

were sufficient for the interaction with Hp1.  Lastly, the dissection of the interaction domains of 

Mcm10 revealed that Mcm2 and Mcm10 self interaction also occur at the core of Mcm10 

(Figure 1-8C).  It is possible that a false-positive occurred here since creating 200 amino acid 

fragments of Mcm10 could have exposed a binding domain that is normally folded within the 

protein.   
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Figure 1-9. Serial dilution yeast two-hybrid showing the effect of a C-terminal truncation on 

Mcm10’s interaction with other proteins.  The first column is growth on media lacking histidine 

and the second column is a growth control.  The top panel is a one-hybrid control showing that 

none of the clones interact with the empty vector.  The second panel shows Mcm10 interacting 

with the proteins indicated and the third panel shows the effect of the truncation on these 

interactions [1]. 

 

 

Additional Results from Christensen Lab: Numerous experiments by others in the lab show 

support for multiple roles of Mcm10 in heterochromatin formation and DNA replication and add 

to the body of evidence shown above [1]. 

EdU Incorporation: Given that the mitotic indices of the two mutants showed a decrease in the 

number of cells in mitosis when compared to wild type, we sought to test for an S phase delay by 

utilizing EdU (5-ethynyl-2’-deoxyuridine) incorporation assays performed for 30 minutes on 

dissected 3rd instar brains.  Two observations were made upon visualization of the brains.  First, 

the brains of the wild-type larva were slightly larger than either Mcm10Scim19 or Mcm10d08029 

which suggests that cell proliferation is slower in the mutants (Figure 1-10).  Secondly, both 

mutants showed more EdU incorporation than the wild type (Figure 1-10) which is likely due to 

an S phase delay [1].  The decreased brain sizes, the increase in the number of cells in S phase 

and the reduced mitotic indices (Figure 1-6) are all consistent with a possible delay in S phase. 
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Figure 1-10. Fluorescent micrograph of wandering 3rd

 

 instar larval brain. DNA is shown in blue 

and EdU incorporation in green.  WT brain is larger and shows less EdU incorporation than 

either mutant [1]. 

Position Effect Variegation (PEV) Analysis: Since Mcm10 has been shown to interact with Hp1 

[2][1], a test was done to determine whether or not Mcm10 has a role in heterochromatin 

formation. This was done by using variegating dumpy (dp) alleles that result in variable wing 

morphology due to the proximity of dp to centric heterochromatin [1].  Wing phenotypes were 

scored into categories of dp phenotypes by severity (Figure 1-11A). The impact of the two 

Mcm10 mutant alleles on PEV were compared to wild type and an Hp1 mutation (Figure 1-

11A&B).  The Hp1 mutant served as a positive control and as expected, was able to suppress 

PEV of the dp wing phenotype when compared to wild-type (Figure 1-11A).  Interestingly, when 

analyzing the two Mcm10 mutant alleles, only the hypomorphic allele dominantly suppressed 

PEV and the truncated allele showed no suppression. Therefore, it is suggested that levels of 

Mcm10 are important for heterochromatin formation but the last 85aa are not involved [1]. 
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Figure 1-11.  PEV analysis of Mcm10 mutants and Hp15 mutant using a variegating dumpy 

reporter line.  A. Fraction of flies scored in each phenotypic class (1-5) for genotypes indicated.  

B. Average “dumpy” score for each genotype.  Hp15 and Mcm10Scim19 show a significant 

suppression of dumpy PEV while Mcm10d08029

 

 shows no shift from wild-type [1]. 
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DISCUSSION 

 Analysis of the two mutant alleles of Mcm10 and its interaction analysis suggest multiple 

roles for Mcm10.  It has long been established that Mcm10 has a role in DNA replication, but 

new information is revealing that Mcm10 is involved in many processes in the cell, including 

heterochromatic silencing [9], making Mcm10 an ideal candidate to study the link between DNA 

replication and heterochromatin formation.  By utilizing a hypomorphic allele, Mcm10Scim19,   we 

were able to investigate the processes in which the majority of Mcm10 in the cell is involved.  

Since the C-terminal of Mcm10 was shown to be crucial for protein interactions, such as 

mediating the interaction between Sir2 and the Mcm2-7 complex [22], the truncated allele, 

Mcm10d08029

Comparisons of the polytene chromosomes, mitotic indices, and early embryo synchrony 

of each reveal interesting results with regard to DNA replication.  It appears that the last 85 

amino acids of Mcm10 play a role in endoreplication since the truncation allele expressed under-

replicated polytene chromosomes.  However, only a small amount of Mcm10 is required for 

endoreplication since the hypomorph did not show any defect.  The mitotic indices and the EdU 

incorporation assays suggest that both mutants are delayed in S phase, consistent with previous 

findings in human cell lines where depletion of Mcm10 resulted in S phase delay [16]. While 

both mutants showed a defect in DNA replication in the brain, the two mutants did not show the 

same trend when the alleles were combined with wild-type copies of Mcm10 and Df(2L).  

Mcm10

, provided insight into the significance of Mcm10’s protein interactions.    

Scim19 revealed a dosage dependent trend with the fewest nuclei in mitosis when the 

dosage of Mcm10 was the lowest.  The results of the mitotic indices for the combinations of 

Mcm10d08029 infer that the defects observed were not due to reductions in levels of Mcm10.  

Unlike Mcm10Scim19, the S phase delay in Mcm10d08029 did not translate asynchrony in the early 
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embryo.  Taken together, the results from the polytene chromosomes, mitotic indices and early 

embryos may indicate multiple roles for Mcm10 in replication.  High protein levels of Mcm10, 

even if the C terminal is truncated, may be crucial for rapid DNA synthesis of the early embryo 

and S phase progression of the normal cell cycle while a small amount of Mcm10 is sufficient 

for endoreplication and relies on the C terminal. It is still unclear whether or not the S phase 

delays observed in the two mutants are due to the same defect, or reflect two separate roles for 

Mcm10 in S phase progression. 

It is possible that Mcm10’s highly conserved core which is present in all eukaryotes 

represents the ancient function of the protein and over time, Mcm10 acquired new roles with the 

conserved C-terminal domain in higher eukaryotes [1].  The observation that the last 85 amino 

acids appear to have a role in endoreplication may be evidence for this hypothesis.  In addition to 

the under-replication of polytene chromosomes of the truncated allele, there is more evidence 

that the last 85 amino acids are involved in endoreplication.  It was shown that fly larvae 

homozygous for the Mcm10d08029 

Yeast two-hybrid analysis using the C terminal truncated allele, Mcm10

allele are, on average, about 16% smaller than wild type larvae 

and they have a lower hatching rate [1]. This is consistent with a defect in endoreplication since 

most of the larval growth occurs through this process in which polyploidy cells are enlarged 

through many rounds of DNA replication without mitosis.   

d08029, which 

removes one of the zinc-finger motifs, has been beneficial in beginning to understand these 

newer roles.  The yeast two-hybrid results in this study revealed that the conserved C terminal is 

essential for Mcm10’s interaction with Mcm2, since truncating the allele caused a complete loss 

of interaction with Mcm2.  Taken with the results from the polytene chromosomes, it may be 
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possible that the last 85 amino acids are involved in endoreplication and that this function may 

be modulated through an interaction with Mcm2.   

Studies have shown that the central core is responsible for essential functions of Mcm10 

since mutations in this region affect cell viability and DNA replication [5][10][12].  There is also 

evidence that the central core is involved in heterochromatin silencing [9].  Since it was shown in 

this study that Mcm10 interacts with Hp1, the effect of Mcm10Scim19 and Mcm10d08029

Together with the DNA replication results above, a separation of function for Mcm10 is 

starting to become apparent.  It is possible that the conserved core of the protein has a major role 

in DNA replication and heterochromatin formation and that the bulk of Mcm10 in the cell is used 

for this purpose.  In higher eukaryotes, though, Mcm10 may have gained additional roles with 

the conserved C terminal in endoreplication and DNA replication.  Understanding the multiple 

roles for Mcm10 may start to shed light onto the ways in which DNA replication and packaging 

of DNA into chromatin states are intertwined to maintain genome stability. 

 on 

heterochromatin formation was investigated using position effect variegation (PEV) analysis.  

Results indicated that the last 85 amino acids were not involved in heterochromatin formation, 

but the hypomorph did show a defect in heterochromatin formation.  If the role of Mcm10 in 

heterochromatin formation is mediated through its interaction with Hp1, it would make sense 

that the interaction with Hp1 would not be affected by the C terminal truncation.  This is in fact 

consistent with what we observed in the yeast two-hybrid analysis.   

 

 

 

 

 



CHAPTER 2: DEVELOPMENT OF A NOVEL YEAST THREE-HYBRID (Y3H) 

SYSTEM 

INTRODUCTION 

The yeast two-hybrid system is a useful tool for detecting interactions between two 

proteins and identifying novel protein interactions.  However, one limitation to the system is that 

some two-protein interactions require a third protein to stabilize or facilitate the binding between 

the two.   In order to study these complexes, a number of yeast three-hybrid systems have been 

developed.  Zhang and Lautar [23] constructed a plasmid, pDela, which is compatible with other 

yeast two-hybrid plasmids (pGBT9 and pGAD424) and contains a URA3 gene for selection.  

Since the other two plasmids contain TRP1 (pGBT9) and LEU2 (pGAD424) genes for selection, 

triple transformants could be selected in a ura- trp- leu- yeast strain.  The yeast strain used 

contained LacZ and His3+ reporter genes so interaction between the three proteins could be 

detected by β-galactosidase activity and histidine independent growth.  This yeast three-hybrid 

system could be used to detect ternary complex formation or situations in which a third protein is 

required mediate an interaction between two proteins (Figure 2-1).   

Another yeast three-hybrid system developed by Tirode et al [24] involved a third protein 

under control of a conditional promoter (Met25).  This conditionally expressed third partner 

would allow or prevent the formation of the transcriptional activator.  However, this system 

utilizes methionine depletion for the Met25 promoter which hampers basal growth of the yeast 

strain [25].  To circumvent this issue, Moriyoshi developed another yeast three-hybrid system in 

which expression was tetracycline (Tet)- regulated.  Doxycycline (Dox), and inducing reagent 

for the Tet-regulated system, has no obvious effect on the phenotype.  A novel vector, pBT, was 

constructed and contained all the Tet-OFF components in a single plasmid.  One possible set-
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back for this method is that having all the components in a single plasmid may be excessive.  If 

one component of the system became compromised, it could easily result in a cascade effect 

causing the system to fail.  Therefore, a novel yeast three-hybrid system has been developed that 

contains two new vectors: pGBKTet and pHook (derived from pDela) that are Gatewaytm

 Unlike the system developed by Tirode et al [24] which uses methionine depletion, this 

novel system does not use a method that affects the basal growth of the yeast cells.  The system 

presented involves transformation of plasmids and growth on selective media to determine 

transcription of the HIS3 reporter gene, neither of which has been shown to affect the basal 

growth of the yeast.  The Tet-regulated system [25] may have resolved this issue, but in doing so 

may have created another.  The novel yeast three-hybrid system is much less complex than the 

Tet-regulated system, allowing for fewer sources of error. However, there are set-backs to the 

novel system as well.  Like any two-hybrid or three-hybrid system, it is still possible to get false 

positives when screening for proteins.  The proteins detected from the screen may not actually 

interact in vivo because they don’t come into contact in the cell or the interaction has no 

biological significance.  Therefore, the system is most useful as an initial investigation but more 

follow-up procedures are required. 

 

compatible and allow for efficient screening for a third protein interactor. 

This system will be useful for detecting two-protein interactions that rely on a third 

protein.  The protein in this research that will be investigated as a facilitator of interactions is 

Drosophila Mcm10.  Due to its numerous protein interactions and its exceptional abundance in 

the  eukaryotic cell with approximately 40,000 molecules per haploid yeast cell [11], it has been 

proposed that Mcm10 not only has roles in DNA replication and heterochromatin formation, but 

also serves as a facilitator of other protein interactions.  In a previous study, it was shown that 
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Mcm10 mediates human RecQ4 association with Mcm2-7 helicase during DNA replication [26]. 

It was shown that Mcm10 is essential for the integrity of the RecQ4-MCM helicase/GINS 

complex and may regulate its DNA unwinding activity.  It was suggested that RecQ4 activity 

requires tight regulation by Mcm10 to prevent unlicensed replication initiation [26].  It has also 

been reported that an interaction between Mcm10 and And-1 is required to load DNA 

polymerase α onto chromatin [27].  It was shown that human And-1 forms a complex with 

Mcm10 and pol α.  However, what is not clear is whether or not they form a ternary complex. 

The model proposed suggests that the And-1-Mcm10 complex is part of a larger complex linking 

the Mcm2-7 helicase with the primase-containing pol α complex (Figure 2-2). The yeast three-

hybrid system presented will be useful in screening for additional protein interactions in which 

Mcm10 is acting as a facilitator.  

 

Figure 2-1. Schematic representation of three- protein complexes. A. Third protein (Z) is 

required for X and Y to interact.  B. Y binds to a composite contour created by a combination of 

X and Z [23]. 
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Figure 2-2. A model for the recruitment of pol α in which prior recruitment and interaction of 

Mcm10 and And-1 is required [27]. 
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METHODS 

Yeast Strains 

 Yeast strains PJ694-a (MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ 

LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ) and PJ694-α  (Matα trp1-901 leu2-3,112 

ura3-52 his3-200 gal4Δ gal80Δ LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ)  

(Clontech), which contain the HIS3 reporter, were used as the reporter strains.  Transformation 

and selection were performed according to [13].  

Construction of Novel Vectors 

Two novel vectors were constructed for the system.  The first vector, pGBKT7Tet, was 

constructed using the pGBKT7 vector (non-Gatewaytm) from Clonetech by replacing the 

kanamycin resistance with tetracycline resistance from the pBR322 plasmid. It was then 

converted to a destination vector by inserting a Gatewaytm cassette (Figure 2-3A).  The second 

vector, pHook, was derived from pDela [23]. The Gatewaytm cassette and FLAG-tag from the 

pTFW plasmid were amplified and inserted into a multiple cloning site of pDela so that the 

FLAG-tag and Gatewaytm cassette were in fram to an existing nuclear localization signal (Figure 

2-3B). Construction of these vectors was perfomed in the lab by Michael Reubens. 
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A. 
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Figure 2-3. Novel three-hybrid system vectors. A. In addition to the TRP1 selection gene, 

pGBKTetT7GW contains a Gatewaytm cassette and tetracycline resistance.  pHookGW contains 

the URA selection gene in addition to a Gatewaytm

 

 cassette and a FLAG-tag. 

 

 

 

 

B. 
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Yeast Three-hybrid Library 

 The library was created by using known interactors of Mcm10 that were identified in 

previous yeast two-hybrid screens in which Mcm10 was fused to pGBKT7 as a “bait” to screen 

an embryo derived cDNA library cloned into the pACT2 vector (Gal activation domain fusion) 

(Matchmakertm

 

 cDNA library Clonetech) (Table 2-1). By using a library of known interactors, it 

would narrow the yeast three-hybrid screen since Mcm10 has been known to interact with many 

proteins. 
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CG# Name Function 
10221 Hrd3 Binding 
10417  Serine/threonine phosphatase activity 
7144 Lysine ketoglutarate reductase  Regulation of histone methylation 
5486 Ubiquin-specific protease 64E Proteolysis 
32428   
3318 Dopamine N acetyltransferase (Dat) Catecholamine metabolic processes 
31708   
7023  Ubiquitin-dependent protein catabolic process 
15023   
5468 TweedleM  
11378   
3446  Mitochondrial electron transport 
6447 TweedleL  
10067 Actin 57B Cytokinesis 
16747 Ornithine decarboxylase antizyme (Oda) Cell differentiation 
1977 α Spectrin Actin and microtubule binding 
7178 Wings up A (wupA) Muscle development 
4609 Failed axon connections (fax) Axonogenesis 
6282  Lipid metabolic process 
7611   
2238 Elongation factor 2b (Ef2b) Mitotic spindle elongation/organization 
3297 Minidiscs (mnd) Leucine import 
3209  Metabolic process 
3680  Metabolic process 
1803 Regulacin  
2614  Metabolic process 
2493  Proteolysis 
4236 Chromatin assembly factor 1 (Caf1) Chromatin organization 
4738 Nuclear pore protein 160 (Nup160)  
9261 Nervana 2 (nrv2) Transmembrane transporter activity 
4974 Division abnormally delayed (dally) Organ development 
4651 Ribosomal protein L13 (RpL13) Mitotic spindle elongation/organization 
1681  Glutathione transferase activity 
1371  Carbohydrate binding 
33214   
5476 TweedleN  
34003 Nimrod B3 (nimB3)  
6692 Cysteine proteinase-1 (Cp1) Autophagic cell death 
7490 Ribosomal protein LP0 (RpLP0) Translation 
7109 Microtubule star (mts) Organelle organization, chromosome segregation 
11180  Nucleic acid binding 
17654 Enolase Glycolysis 
8938 Glutathione S transferase S1(GstS1) Response to oxidative stress 
8944  Zinc ion binding 
14672 Spec2  
14057  tRNA processing, RNA metabolic process 
7008 Tudor-SN RNA interference 
5642   
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7111 Receptor of activated protein kinase C 
1(Rack1) 

Wing disc development, oogenesis 

6480   
15118   
4625 Dihydroxyacetone phosphate 

acyltransferase (Dhap-at) 
Metabolic process 

1683 Adenine nucleotide translocase 2 (Ant2) ATP/ADP transport 
1651 Ankyrin Cytoskeleton anchoring at plasma membrane 
7538 Mcm2 DNA helicase activity 
8409 Suppressor of Variegation 205  Chromatin silencing 
18013 Psf2 DNA helicase activity 
3658 Cdc45 DNA replication, chromosome condensation 
3041 Orc2 DNA replication, chromosome condensation 
7977 Ribosomal protein L23A (RpL23A) Translation 
 Pol α DNA replication 
 

Table 2-1. “Prey” library created for the three-hybrid screen. Each were identified previously in 

a two-hybrid screen using Mcm10 as “bait” and an embryo derived cDNA library cloned into the 

pACT2 vector. 
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RESULTS 

 The two main objectives for this research was to develop a yeast-three hybrid system that 

is Gatewaytm compatible and is capable of screening for third protein interactors using known 

protein and also to investigate Mcm10 as a facilitator of protein interactions.  Mcm10 was cloned 

into the pHook vector to be used as the “hook” protein and a known protein interactor Psf2 was 

fused to the Gal binding domain (pGBKTet) to be used as “bait” for the screen.  Both were 

transformed into PJ694-α yeast cells along with the library to screen for “prey” and plated on 

media lacking histidine.  Clones were then streaked onto media containing 5-Fluoroorotic acid 

(5-FOA) to inhibit pHook which contains the URA gene for selection.  In order to determine 

whether or not the “hook” (Mcm10) is required for the other two proteins to interact, a yeast 

mating assay was performed.  An empty pHook and pHook Mcm10 were separately transformed 

into PJ694-a yeast cells and were grown in overnight liquid cultures.  Overnight cultures of 

clones from the 5-FOA plate containing only the “bait” (Psf2) and the “prey” in PJ694-α were 

also grown.  In a 96-well plate, 80 ul of the “bait” and “prey” culture and 80 ul of the pHook 

Mcm10 culture were mixed together and incubated at 30°C for 90 minutes to allow for the 

PJ694-a and PJ694-α to mate.  This was also done with pHook empty and the “bait” and “prey”.  

The mixtures were then plated on media lacking histidine (Figure 2-4 summarizes the protocol). 

Cells that grew in the presence of an empty pHook and in the presence of pHook Mcm10 

indicated that Mcm10 was not required for the other two proteins to interact, but Mcm10 does 

participate in the interaction. If cells grew only in the presence of pHook Mcm10 and not with 

pHook empty, this indicated that Mcm10 might be required for the other two proteins to interact. 

All clones were sequenced to identify the “prey” from the screen (Table 2-2).  This procedure 

was also performed using other “baits” for the screen.  These included (in addition to Psf2) Sld5, 
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Cdc45, And-1, and Mcm2 which are all known interactors of Mcm10.  Results from the screens 

suggest that Mcm10 is involved in numerous ternary protein complexes, but is not necessarily 

required for the interaction between the “bait” and “prey” (Figure 2-5).    

Controls with empty vectors were also done to eliminate the possibility of one-hybrid 

activity (data not shown).  To test one-hybrid activity, each individual pGADT7 plasmid was 

transformed into PJ694-α yeast. Also, pGBKTet empty was transformed into PJ694-a yeast.  The 

two cultures were incubated to allow for mating similar to the above procedure and plated on 

media lacking histidine. 

 

 

 

Figure 2-4. Summary of the yeast three-hybrid screen using Mcm10 as the “hook” and Psf2 as 

“bait” to screen a library of “prey”.  A. The pGADT7 library of known protein interactors is 

transformed into PJ694-α yeast cells containing pHook Mcm10 and pGBKTet Psf2.  B. Each 
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clone is streaked onto media with 5FOA to kick out pHook Mcm10. C. Resulting clones are 

sequenced to identify the “prey”. D. Resulting clones are also incubated in liquid with PJ694-a 

yeast cells containing pHook Mcm10 and also cells containing pHook empty to allow the yeast 

to mate.  E. Cultures are then plated on media lacking histidine to determine whether Mcm10 is 

required for the other two proteins to interact. 

 

“Bait” Used “Prey” Identity Name Function Is Mcm10 
required? 

Psf2 CG5486 Ubp64E Proteolysis No 
Psf2 CG32428 ----- ----- No 
Psf2 CG7111 Rack1 Oogenesis No 
Sld5 CG5642 ----- ----- No 

Mcm2 CG4236 Caf-1 Chromatin assembly No 
 

Table 2-2. “Prey” proteins identified in the yeast three-hybrid screen using Mcm10 as the 

“hook” and indicated proteins as the “bait”. 
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Figure 2-5. Assay to determine whether Mcm10 is required for the “bait” and “prey” interaction. 

“Bait” (pGBKTet) and “prey” (pGADT7) from the screen which were in PJ694-α yeast were 

mated with both pHook Mcm10 and pHook Empty which were in PJ694-a yeast. Mated yeast 

were then plated on media lacking histidine (left panel) and a growth control (right panel). All 

cultures grew in the absence of Mcm10, indicating Mcm10 is not required. 
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DISCUSSION 

 In this study, it is shown that this three-hybrid system can be useful in screening for 

ternary protein complexes in which the third protein participates but is not required for the other 

two to interact and may also be useful in identifying interactions in which a third protein is 

required to stabilize or facilitate an interaction between two others.  In particular, we investigated 

the possibility that Mcm10 is one of these facilitators since it has been previously shown to 

interact with many proteins.  However, the results indicate that Mcm10 may participate in 

several protein complexes, but is not necessarily required for the formation of these complexes.  

The question still remains as to whether or not Mcm10 has an essential role in facilitating 

interactions between other proteins.  Although, there is still a large number of protein interactors 

of Mcm10 that should be used as “bait” in the screen which may yield the hypothesized result.  

Whether or not Mcm10 turns out to be a facilitator, the system presented could be a useful tool to 

investigate other proteins.   

 One of the major advantages of our system is that it is Gatewaytm compatible which 

makes it much more efficient to use in the lab.  Investigators that have been using the yeast two-

hybrid system can easily upgrade to the three-hybrid system by using our new vectors.  The 

construction of the novel pGBKTet vector is beneficial when isolating the “prey” for 

identification (Figure 2-4).  Originally, both pGBKT7 and pGADT7 contained ampicillin 

resistance so when isolating the vectors, both the “bait” and the “prey” were being selected.  

With the new pGBKTet vector containing tetracycline resistance instead of ampicillin, only the 

“prey” is being selected for.  This means that fewer clones would need to be sequenced because 

the “bait” would be selected against.   
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 Our system not only permits the screening of a cDNA library to identify third protein 

interactors, it also allows us to determine whether or not the “hook” is essential for the 

interaction by using a simple yeast mating assay.  S. cerevisiae can stably exist as a haploid or 

diploid.  Haploid cells can mate with other haploid cells of the opposite mating type (mating type 

a can mate with α and vice versa). Haploid cells respond to the pheromone only of the opposite 

mating type.  This three-hybrid system takes advantage of this process by allowing PJ294-a and 

PJ694-α cells to mate then select for transcription of the HIS3  reporter gene by plating on media 

lacking histidine.  The alternative would be to transform all three vectors into the yeast then 

select for transcription of the reporter gene which is not only more time consuming but also more 

difficult for the yeast to grow. 

 The three-hybrid system is useful when doing an initial screen for protein interactions 

that may be of interest in future studies.  Therefore, the system is useful as an initial investigation 

into protein complexes but more follow-up research is required before making conclusions about 

their signficance. 
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