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The increase in mosquito populations following extreme weather events poses a major 

threat to humans because of mosquitoes‟ ability to carry disease-causing pathogens.  In areas 

with reservoirs of disease, mosquito abundance information can help to identify the areas at 

higher risk of disease transmission.  Using a Geographic Information System (GIS), mosquito 

abundance is predicted across the City of Chesapeake, Virginia.  The mosquito abundance model 

uses mosquito light trap counts, habitat suitability, and dynamic environmental variables to 

predict the abundance of the species Culiseta melanura, as well as the combined abundance of 

the ephemeral species, Aedes vexans and Psorophora columbiae, for the year 2003.  The 

predicted mosquito abundance values are compared to vulnerable population indices to 

determine the spatial distribution of risk of disease transmission.  The goal of this project is to 

create a portable, reproducible model that could be embedded in a decision support system to aid 

in detecting areas at high risk of mosquito-borne disease transmission. 
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CHAPTER 1: INTRODUCTION 

This chapter begins with an introduction to the mosquito research and its significance.  

This is followed by an overview of how GIS technology will be used in this mosquito study.  A 

brief background on the mosquito species under investigation is then discussed.  This chapter 

concludes with a brief overview of the methodology used to predict the risk of disease 

transmission from mosquitoes. 

Vector-borne Diseases and Public Health 

Infectious diseases continue to be a threat to populations around the world.  Vector-borne 

diseases such as those transmitted by mosquitoes, contribute significantly to the total disease 

burden in developing countries.  Currently, nearly half of the earth's people live in tropical or 

temperate regions where they may be at risk to one or more vector-borne diseases (Washino and 

Wood, 1994).  Over one million people die from mosquito-borne diseases every year (American 

Mosquito Control Association, 2005).  The increase in mosquito populations following extreme 

weather events poses a major threat to humans due to mosquitoes‟ ability to carry disease-

causing pathogens.  Environmental conditions such as increased rainfall and higher temperatures 

can lead to an increase in mosquito populations, commonly referred to as „blooms‟. Provided 

there is a disease reservoir population (e.g., birds), this can lead to an increase in vector-borne 

disease transmission such as Eastern Equine Encephalitis (EEE) and West Nile Virus (WNV).  

These diseases commonly increase following extreme weather events such as hurricanes and 

tropical storms (Noji, 1997).  

      In order to prevent the spread of disease, it is advantageous to first assess human risk of 

disease transmission, both spatially and temporally.  Knowing where risk is highest can improve 

preparedness and response efforts to the disease (World Health Organization, 2004).  According 

to Panditrao, Jeevan and Akbar (2006), the ability to predict outbreaks of vector-borne disease 
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will greatly enhance the efficacy of prevention efforts and will substantially reduce costs of 

prevention with efficient targeting of high-risk areas.  Knowing where areas of high risk are 

located is important to public health officials because they can target where mosquito control 

needs to be implemented the most.  This allows for increased interruption of the disease 

transmission as well as the saving of resources, personnel and control products, by directing their 

efficient application. Unfortunately, the environmental and ecological determinants of mosquito-

borne diseases act in complex ways, and it is therefore hard to predict the epidemiology of 

mosquito-borne diseases (Gage et al., 2008).   

GIS and Public Health 

Geographic Information Systems (GIS) are a vital tool for assessing the spatial 

epidemiology of these diseases and analyzing human risk of infection. GIS facilitates emergency 

planning and response for incidents ranging from natural disasters to bioterrorism, and the rapid 

assessment of the impact of such disasters (Waring et al., 2005).  GIS can also help with 

mosquito control by predicting vector abundance.  Accordingly, this study uses a GIS to 

determine how human vulnerability to mosquito-borne diseases changes temporally and spatially 

across Chesapeake, Virginia.  The purpose is to inform public health policy and improve 

GIScience methodology.  Spatial models were created that identify the mosquito vector-borne 

disease hazard and quantify risk of disease transmission to humans.   This study will potentially 

lend support to the growing body of GIScience assessing human vulnerability to infectious 

diseases.  One major goal of this project is to develop a set of methods that are reproducible in 

other study areas.  This will allow other regions to utilize these methods provided they have the 

necessary data. 
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Mosquito Species and Disease 

 The spatially distributed abundance of three mosquito species will be predicted in this 

study.  These species include:  Culiseta melanura, Aedes vexans, and Psorophora columbiae.  C. 

melanura is an important species because it is the primary enzootic vector of Eastern Equine 

Encephalitis (EEE).  According to the Centers for Disease Control and Prevention (CDC), EEE 

is a fatal virus with a 33% mortality rate (2009).  The virus is maintained in a cycle between C. 

melanura and avian hosts.  However, other mosquito species can create a „bridge‟ between 

infected birds and humans.  C. melanura is also a potential vector of West Nile Virus (WNV). C. 

melanura is found mostly in freshwater swamps, particularly subterranean crypts (Mahmood and 

Crans, 1998).   A. vexans is another important species because it is a potential epizootic vector 

for WNV.  WNV is a potentially serious epidemic affecting humans and animals throughout 

North America.  The virus often flares up in the summer and continues into the fall (CDC, 2006). 

P. columbiae is also a potential vector for WNV as well as Venezuelan Equine Encepahlitis 

(VEE).  Although  human and animal cases of VEE have been reported in the U.S., this virus is 

mainly confined to equatorial South America and Central America.  A. vexans and P. columbiae 

share a preferred habitat of ephemeral pools, particularly river floodplains (Crans, 2004).  Due to 

differences in habitat preferences, the abundance of C. melanura will be predicted separately 

from the other two species.  The abundance of A. vexans and P. columbiae will be predicted as a 

combined total.  These species will often be referred to as the „ephemeral group‟ throughout this 

thesis.  The abundance of these mosquito species will be predicted for the months of June 

through August for the year 2003.  The high temperatures and abundant precipitation from June 

through August create an ideal habitat for mosquito populations to thrive.  The year 2003 was 

chosen for this study based on the ample mosquito trap data available for this year.    
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Predicting Risk of Vector-borne Disease Transmission 

The presence of mosquitoes is dependent on many ecological factors. According to Gage 

et al. (2008), environmental variables such as temperature, precipitation, and humidity are known 

to affect the reproduction, development, behavior, and population dynamics of mosquito vectors.  

This is due to the fact that mosquitoes are ectothermic and subject to the effects of changing 

temperatures.  These climatic factors can also increase the transmission of vector-borne diseases 

both directly and indirectly.  For example, temperature can affect pathogen development within a 

mosquito and interact with humidity to influence vectorial capacity.  These climatic factors 

determine how suitable a habitat is for breeding.  Rainfall for instance, can strongly influence the 

availability of breeding sites for mosquitoes.  To determine the suitability of areas within 

Chesapeake for mosquito habitation, a habitat suitability index (HSI) was calculated for each 

species.   The HSI values can then be used along with additional environmental determinants that 

affect breeding patterns to predict mosquito abundance.  

Vector-borne diseases are climatically driven; however, disease transmission is also 

influenced by other factors such as land use, water storage, and human vulnerability.  To account 

for these multiple factors, this study will incorporate multiple causal factors of disease 

transmission, including human vulnerability.  According to Wilson (2002), the spatial pattern of 

infectious and susceptible people to vector-borne diseases is a basic determinant of exposure and 

disease risk.  Therefore, this study will assess the spatial distribution of vulnerability across 

Chesapeake in order to predict the risk of disease transmission.  Using U.S. 2000 decennial 

Census data and ancillary vulnerable population data from the City of Chesapeake, the spatial 

vulnerability of the population was determined for the year 2003.  Because the transmission of 

vector-borne diseases is partially dependent on the proximity of humans to the vector, the 
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monthly abundance values can be overlaid with the vulnerability patterns to predict the risk of 

disease transmission of vector-borne diseases.   
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CHAPTER 2: LITERATURE REVIEW 

This chapter begins by giving an overview of the types of literature directly related to this 

study.  These types of literature will then be discussed in more detail.  First, literature associated 

with climate and vector-borne diseases is discussed.  An overview of literature pertaining to 

disease surveillance is then provided.   The various methods used to investigate vector-borne 

diseases are also addressed.  Next, the literature pertaining to GIS and public health is examined.  

This chapter concludes by discussing how the literature discussed will be useful to this study. 

Overview 

There is an abundance of literature on the various types of vector-borne diseases and their 

impacts on human health.   Much of the literature discusses how vector-borne diseases are 

related to the environment.  There is also a great deal of literature on surveillance and 

epidemiology of vector-borne diseases.   As Geographic Information Systems (GIS) are 

becoming more widely used, more literature is emerging that discusses how GIS is used to 

investigate vector-borne diseases.  Much of this literature explains how GIS can be used for 

evaluating the spatial epidemiology of these diseases.  A large portion of the literature also 

discusses how GIS is used to link climate and disease.  Unfortunately, there is not a great deal of 

literature on how GIS can be used to both assess human vulnerability to vector-borne diseases 

and to model possible risk transmission to inform vector surveillance or control.   

Climate and Vector-borne Diseases 

Much of the literature discusses the effect of climate on vectors such as mosquitoes.  

Changes in temperature, precipitation, humidity and wind patterns can all affect a vector‟s 

reproduction, development rate and longevity (Martens et al. 1995).  In the case of temperature, 

warming of the environment boosts mosquito reproduction rates and the number of blood meals 
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they take, prolongs their breeding season, and shortens the maturation period for the microbes 

they disperse (Epstein, 2005).  Increased temperature also affects the susceptibility of a vector to 

pathogens, the incubation period of a pathogen, the seasonality of vector activity, and the 

seasonality of pathogen transmission (Hunter, 2003).  Precipitation influences vector populations 

by increasing the number of breeding sites for vectors and increasing vegetation to allow 

expansion in vector populations.  Flooding can also eliminate vector habitats and force hosts into 

closer contact with humans.  Temperature and precipitation changes also affect the behavior and 

geographical distribution of vectors such as mosquitoes (Martens et al. 1995).    

Gage et al. (2008) discuss how climate can contribute to outbreaks in vector-borne 

diseases such as malaria and West Nile Virus.  Their work reveals how temperature can increase 

the transmission of arboviruses by decreasing the development time of mosquito vectors, 

increasing the extrinsic incubation period, and increasing the viral titer, or concentration, in 

mosquitoes.  They also discuss how precipitation affects vector populations at the larval and 

adult stages.  Caillouet et al. (2008) explain that at the larval stage, mosquitoes are very 

successful at colonizing newly-flooded habitats.  For adult mosquitoes, the flood waters create 

potential breeding sites (Speilman and D'Antonio, 2001).  Rainfall also increases the humidity 

which increases the longevity of the adult mosquito and reduces evapotranspiration, potentially 

sustaining active breeding sites (Martens et al., 1995).  Hayes and Hess (1964) examined weather 

and disease data in order to investigate the relationship between Eastern Encephalitis and 

extreme weather in areas of the United States where both human and equine cases have occurred.  

The only region in which a temporal correlation was found between extreme weather and Eastern 

Encephalitis was Southeastern Massachusetts. Each outbreak occurred after there was unusually 

heavy rainfall.  
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 One observation noted in much of the literature on vector-borne diseases is an emphasis 

that climate alone does not determine disease events.  Gage et al. (2008) mention that the effects 

of climate change on these diseases are not easily predictable and the ecologic determinants of 

these diseases interact in complex ways.  Other factors contribute to these diseases such as vector 

and host ecology, human culture and behavior, land use and other local conditions.  Mather et al. 

(2004) also explain that although hazards can contribute to human health, its presence alone may 

not be enough to affect the health of a population.  Dengue fever transmission, for instance, is 

influenced by rainfall and humidity, but is not directly related to these factors (Watson, Gayer, 

and Connely, 2007).  The risk for outbreaks can be influenced by changes in human behavior, 

which can yield increased exposure to mosquitoes while being outside, movement from dengue-

nonendemic to endemic areas, a pause in disease control activities, and overcrowding.  Dengue 

transmission can also be influenced by changes in habitat that promote mosquito breeding such 

as landslides, deforestation, river damming and re-routing of water.  Malaria outbreaks are often 

caused by humans as well.  An article by Gratz (1999) discusses ecological changes associated 

with malaria. In many areas of the world, water development projects and increased irrigation 

have resulted in shifts from dry land to wetland rice cropping, resulting in an increase in vector 

populations.  Portions of Turkey for instance, illustrate a strong link between water development, 

increased vector densities, and malaria resurgence. In Sri Lanka, pits dug to search for gem 

stones filled with water and became the source for dense populations of malaria-carrying 

mosquitoes. Martens et al. (1995) emphasize that not only are there multiple factors influencing 

disease, but the consequences of climate change on vector-borne diseases are poorly understood.   
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Surveillance and Control 

 In order to assess the population at risk for vector-borne diseases, as well as respond to 

illness, epidemiologic surveillance is important.  Predicting risk to disease is important because it 

can improve epidemiologic surveillance and disease control efforts.  According to Nasci and 

Moore (1998), four major arboviruses are of human and veterinary health importance.  These 

include eastern equine encephalomyelitis (EEE), western equine encephalomyelitis (WEE), St. 

Louis encephalitis (SLE), and LaCrosse (LAC) encephalitis.  In nine out of ten extreme weather 

events in which surveillance has been conducted, arbovirus activity was detected in surveillance 

programs initiated after the event.  Because the factors controlling disease act in complex ways, 

public health agencies must not only monitor mosquito populations, but other factors such as 

drinking water, pesticide exposure, and pollutants (Gage et al., 2008).  Glass and Noji (1992) 

explain the importance of epidemiologic surveillance and how it is performed.   Following a 

natural disaster, epidemiological techniques have been incorporated into disaster relief 

operations.  Epidemiologists must be able to define the nature and extent of the potential health 

problems, identify groups in the population at risk of adverse health events, optimize the relief 

response, monitor the effectiveness of the relief effort, and provide recommendations to decrease 

the consequences from future disasters.   

 Predicting human vulnerability to disease is important because it could guide officials on 

decisions of where to implement control efforts.  Mosquito control is one common method for 

inhibiting the spread of disease.  Aerial application of insecticide is often used to control 

mosquitoes because it is less prone to patchy coverage than ground-based applications.  Aerial 

application is also capable of covering larger areas in shorter time periods than ground-based 

applications (CDC, 2003).  In 2005, spraying at ten sites following Hurricane Katrina resulted in 
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a 91% reduction in expected mosquito density (Manuel, 2006).  Although mosquito control 

techniques are widely used, control efforts are costly and at times ineffective.  Mosquitoes can 

become resistant to insecticides, reducing their efficacy (Lacey and Lacey, 1990).  Insecticide 

use can also pose health risks to humans, animals, and the environment.  Adulticide applications 

pose acute health risks including neurological, allergic, and respiratory risks (Thier, 2001).  

Chronic health risks such as developmental toxicity, endocrine disruption, carcinogenicity, 

genotoxicity, and immune system damage also have been related to adulticide use.  Peterson, 

Macedo, and Davis (2006) assessed the human-health risk for West Nile Virus and compared the 

results to the health risk of insecticide use.  The results indicate that the risks from WNV exceed 

the risks from exposure to mosquito insecticides.  Source reduction is another effective method 

for reducing mosquito vectors.  Source reduction consists of the removal of larval habitats or 

rendering of such habitats unsuitable for larval development (Rose, 2001).  Ways to reduce larval 

pools include cleaning rain gutters, bird baths, and unused swimming pools (CDC, 2003).  In 

areas where source reduction is not feasible, larvicides can be used to prevent the emergence of 

mosquito vectors.  This method is often less controversial than adulticide use (Rose, 2001).  

Bacterial control agents such as Bacillus thuringiensis and Bacillus sphaericus are common 

types of larvicide (Becker, 2000).  These bacteria serve as a toxin which disrupts the gut of the 

mosquito when ingested.  Biological controls such as predators can also be used to reduce 

populations of mosquito larvae.  Predators of mosquito larvae and pupae such as dragonfly 

nymphs or the mosquito, Toxorhynchites spp., are commonly used to control vector populations.  

The mosquito fish, Gambusia affinis and G. holbrooki are the most commonly used biological 

control for mosquitoes (Rose, 2001). 
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Methods Used to Research Vector-borne Diseases 

  Various methods are used investigate the transmission of vector-borne diseases.  Many of 

these approaches attempt to link climate with the presence of vector-borne diseases. Statistical 

analyses are a common method for determining the relationship between the environment and 

disease.  Biological (or process-based) models are another approach for modeling the impact of 

the environment on transmission of diseases such as malaria.  These models can exist in many 

different forms.  These models measure the extent to which the natural world would allow the 

transmission of disease if there were no other human-induced constraints on transmission 

(McCarthy et al., 2001).  Another type of modeling investigates the change in distribution of 

vectors as an indicator of disease risk.  Each of these approaches for investigating disease is 

unique, however, these approaches are often used together to accurately estimate the distribution 

of vector-borne diseases.  

Statistical analyses are a commonly used mechanism for determining the relationship 

between the environment and disease.  Mather et al. (1995) explain that three types of statistical 

analyses are typically applied to health and hazards.  The first method is to track trends and 

analyze them.  The second is ecologic analysis, which describes the coexistence of risk factors 

with disease between and within populations.  The third type of statistical analysis is 

epidemiologic studies which associate exposure in individuals to health outcomes by means of 

case-control studies in rare disease and cohort studies.  Lawson (2001) also explains how 

statistical methods can be used in spatial epidemiology.  In particular, this book discusses how to 

model infectious diseases, particularly the space-time behavior of infectious disease.  Statistical 

analyses are often used in accordance with GIS techniques to determine the relationship between 
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environmental variables and vector-borne diseases.  Because they are of focal interest here, 

studies that use this approach will be discussed in a subsequent section.    

Biologicals models are another method for investigating the association between climate 

and disease.  Martens et al. (1995) investigated the effects of temperature and precipitation 

changes on mosquito reproduction rates based on global climate models (GCMs).  Climate 

scenarios were created by modeling changes in temperature and precipitation data for the period 

1961-1990.  Model simulations indicated that variation in precipitation and temperature resulted 

in minor changes in the potential areas at risk for malaria.  This study also estimated the number 

of people at risk of disease transmission based on anthropogenic climate change.  However, this 

model is based solely on climatic factors and does not take into account population data.  

Martens et al. (1999) also used GCMs to calculate the global impact of climate change on 

malaria transmission.  Using climate change scenarios and vector distribution data, they 

predicted the number of people at risk of malaria.  The model took into account population 

growth data in order to estimate the risk of transmission but did not take vulnerability data into 

account.   In an effort to control mosquitoes and mosquito-borne diseases, Shaman et al. (2002) 

used a dynamic hydrology model to predict mosquito abundances in flood and swamp water.  

The model provides both hourly and daily time series of hydrologic variables including water 

table depth, percent surface saturation, and total surface runoff.  By providing variables which 

can affect surface wetness, the model can capture the expansion and contraction of breeding 

pools at rates that impact mosquito development.  Hoshen et al. (2005) used a biological model 

to determine vector capacity of mosquitoes in Africa based on climatic parameters.  The model 

used equations to incorporate the stages of the malaria vector and their dependence on 

temperature and rainfall and parts of the within-host parasite population dynamics.  The results 
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of the model indicate that the rate of maturation of mosquito larvae is directly related to 

temperature.  The model also indicated that the wetter regions of Africa had a higher prevalence 

of malaria compared to the drier regions.  

 Vector modeling estimates the spatial distribution of disease vectors in order to assess the 

transmission of disease risk.   Sutherst (1998) used the CLIMEX model to estimate changes in 

global and national (Australia) distribution of malaria vectors using a range of climate scenarios.  

The CLIMEX model is designed to extract maximum information from spatially distributed 

observational data on the distribution of species or other biological factors.  Bryan et al. (1996) 

also used the CLIMEX model to investigate the present and future distribution of malaria vectors 

in Australia.  Schaeffer, Mondet, and Touzeau (2008) also built a climate-dependent model that 

predicts the abundance of Aedes mosquito species.  The model takes into account dynamic 

population information such as reproductive rate, growth, and death.  Brownstein, Holford, and 

Fish (2003) used climate data within a statistical model to predict the abundance of the Lyme 

disease tick vector, Ixodes scapularis. A logistic regression model was derived for the 

relationship between environmental variables and established tick populations, and was used 

with GIS techniques to predict the abundance of I. scapularis. 

GIS and Public Health 

Medical geography is both a venerable and new specialization (Meade and Earickson, 

2005).  Medical geography uses geographic techniques to study health and the spread of disease.  

This sub-discipline of Geography can be concerned with the impact of climate and location on an 

individual's health as well as the distribution of health services.  One of the first studies which 

used geographic techniques to study disease was performed by Dr. John Snow in the mid 1800s 

(Cameron and Jones, 1983).  Snow isolated the source for Cholera in London by mapping 
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Cholera-related deaths.  He found a large number of deaths centered on a water pump on Broad 

Street and determined that pump to be the source for the deadly bacterium.  Today, medical 

geography has advanced greatly with the use of GIS.  The resurgence of infectious disease, 

particularly vector-borne disease, has led public health agencies to use GIS for the purpose of 

investigating these diseases (Cromley and McLafferty, 2002). According to Albert, Gesler, and 

Levergood (2000), GIS is often used for many applications in medical geography.  Some 

common uses are emergency response, AIDS prevention, catchment area studies, monitoring and 

surveillance, and cancer-related research.  GIS is also used in the context of epidemiology for 

disease mapping, disease pattern recognition, and exploration of disease correlates (Ray, 

Randolph and Rogers, 2000).   Much of the literature on mosquito-borne diseases discusses how 

GIS is used for the purpose of medical geography.  Gatrell and Loytonen (1998) explain that GIS 

is used in medical geography for the purpose of environmental and spatial epidemiology.   

Environmental epidemiology focuses on links between disease and the environment.  This can be 

contrasted with spatial epidemiology where description, exploration, and modeling of disease 

incidence does not necessarily involve investigating links with the environment.   

Assessing Vector-borne Diseases using GIS Technology 

As GIS is becoming more commonly used, literature is emerging that discusses how GIS 

is used to map and assess patterns of disease infection.  Some studies evaluate patterns of vector 

or human case distributions, while others calculate risk of disease transmission based on 

entomological, epidemiological and environmental determinants (Kitron, 2000).  One limitation 

is that many risk assessment studies use either environmental variables or vector abundance as 

the only indicators of disease risk, and do not take into account population vulnerability.  

Another shortcoming is that these studies are often static and only predict abundance or risk at 
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one particular time and place.  According to Ceccato et al. (2005), epidemic risk mapping should 

be dynamic and updated frequently to reflect the changes in vulnerability factors. 

Geospatial technology is often used for assessing and mapping disease patterns.  Albert 

(2000) discusses how a GIS has been used for thematic mapping in order to describe patterns of 

environmental variables contributing to Lyme disease, tick distributions, or human cases of 

Lyme disease.  Albert used a GIS to track the distribution of Lacrosse Encephalitis in Illinois and 

Human Babesiosis in the northern United States.  Gatton et al. (2004) also used a GIS to 

investigate spatial and temporal patterns of the Ross River (RR) virus in Queensland, Australia 

by mapping incidence rates within each Local Government Area (LGA) for the years 1991 to 

2001.  Kitron et al. (1997) used a GIS and spatial statistics to map the distribution of Lacrosse 

Encephalitis in Illinois.  Human cases of Lacrosse encephalitis were mapped at the county, town 

and address level from 1988 to 1994.  Rather than mapping disease cases, Shone et al. (2001) 

mapped mosquito vectors as an indicator of the risk of WNV.  Using light trap data, a GIS was 

utilized to map the temporal and spatial abundance of mosquito species across Maryland.   

Multiple studies have used environmental characteristics associated with vector presence 

as a measure of disease risk.  Guerra et al. (2002) used GIS techniques to predict the abundance 

of the tick vector Ixodes scapularis, as well as the risk of Lyme disease in parts of Wisconsin, 

Illinois, and Michigan.  Logistic regression analysis determined the relationship between tick 

presence and habitat attributes.  The logistic equation was then used to calculate the probability 

of the tick vector in each cell of a grid.  The abundance of the vector was then used to map the 

risk of Lyme disease transmission from I. scapularis.  Glass et al. (1995) used GIS techniques to 

identify environmental risk factors for Lyme disease in Baltimore County, Maryland.  A logistic 

regression model was used to determine the relationship between environmental attributes and 
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cases of Lyme disease.  The results were used to create a risk map of Lyme disease. Craig et al. 

(1999) used a GIS-based model to predict malaria transmission in Sub-Saharan Africa. Vector 

and climate data were incorporated into a mathematical model using a GIS in order to predict the 

risk of transmission.  Brownstein et al. (2002) mapped West Nile Virus cases in New York City 

to determine areas at high risk.  A SATscan statistic creates a window around each Census tract 

centroid and a likelihood ratio is calculated for each window to identify the most likely clusters.  

A logistic model was used to extrapolate all the Census tracts to create a map of risky Census 

tracts.  A threshold probability level was applied to each tract so that tracts above the cutoff 

value were classified as high risk.  

Remote sensing techniques are commonly used to inventory environmental variables 

associated with vector presence and disease.  Glass et al. (2006) predicted risk of hantavirus 

pulmonary syndrome (HPS) transmission using remote sensing techniques.  Using Landsat 

satellite data of environmental attributes, logistic regression was used to model the odds that a 

site was at risk of HPS.   Beck et al. (1994) used remote sensing and GIS technology to identify 

villages at high risk for malaria transmission in southern Chiapas, Mexico.  Stepwise linear 

regression was used to determine the relationship between environmental attributes and 

abundance of the malaria vector, Anopheles albimanus.  The linear regression equation was then 

used to predict the abundance of A. albimanus.  The results of the abundance model were used to 

discriminate between areas of high and low risk of malaria transmission.  Ceccato et al. (2005) 

discuss how GIS and remote sensing models can be used to assess risk in order to create an early 

warning system for malaria outbreaks.  Remotely sensed images can also be used to map vector 

borne disease indicators such as land cover and rainfall.  The indicator variables can then be 

incorporated into a GIS-based model to predict the risk of malaria.  Thomson et al. (1997) 
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applied remote sensing techniques to observe environmental changes related to vector change 

and abundance in Africa with the goal of implementing an early warning system for malaria.   

Despite advances in predicting vector and pathogen abundances, few studies also 

incorporate population vulnerability data when predicting risk of disease transmission.  

According to Ahern et al. (2005), not much effort has been made by public health agencies to 

target vulnerable groups.  One of the few studies to use population data in order to calculate 

disease risk was performed by Hassan et al. (2003).  This study used a GIS along with 

epidemiological, environmental, and socioeconomic data to predict the risk of malaria in Egypt.   

Socioeconomic data included governorate-level information on the total population, average 

number of households, crowding index, and sanitary conditions.  Discriminant analysis was used 

to identify the variables that best predicted malaria risk.  GIS spatial analysis was utilized with 

the predictor variables to map the risk of malaria across Egypt.  Hu et al. (1998) used a GIS and 

multiple regression analysis to determine the nature and extent of factors influencing malaria 

transmission in Yunnan Province, China.  This study discovered that the combined effects of the 

physical environment, the presence of competent vectors and the degree of population mobility 

had the largest influence on malaria transmission.  Allen and Wong (2006) used the kernel 

density estimation (KDE) method to explore the spatial pattern of potential risk for WNV in 

Fairfax County, Virginia, combining population and dead bird data collected in 2002.  Using 

vulnerable locations such as elderly care facilities and day cares, a density surface of the 

vulnerable population was created.  The population density map was then overlaid with the dead 

bird density map to create a risk map of the study area.   Sutherst (2004) developed a 

mathematical model that calculates disease risk based on climatic factors as well as human 
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vulnerability.  Human vulnerability was calculated using a mathematical model that incorporates 

variables such as exposure and sensitivity to pathogens.   

Synthesis of the Literature 

The diverse literature on vector-borne diseases and GIS has provided a broad range of 

resources to assist with this thesis.  Much of the literature addresses how the environment is 

related to mosquito populations and vector-borne diseases.  These types of studies are important 

as they provide the necessary background to situate the methodology of this study.  The literature 

relating to GIS and public health provides many useful approaches that could be applied to this 

particular analysis.  The most noticeable gap in the literature is the lack of work that attempts to 

predict risk to disease infection using population vulnerability.  Many studies have assessed 

disease and vector patterns, but few have used GIS-based modeling to predict transmission risk 

over space and time.  This study will try to fill this gap by using dynamic predictive modeling 

along with interacting variables to quantify risk of disease infection.  According to Sutherst 

(2004), few climate change risk assessments have been reported for diseases other than malaria.  

By predicting the risk of EEE and WNV infection, this study will strive to fill this gap in the 

literature.    
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CHAPTER 3: DATA AND METHODS 

This chapter provides an overview of the methodology involved in predicting the risk of 

mosquito-borne disease transmission to humans.  The data and steps used to predict mosquito 

abundance are discussed in detail.  Next, the data and methods used to estimate human 

vulnerability across Chesapeake are explained.  The chapter concludes by explaining how 

mosquito abundance and human vulnerability are integrated and used to predict the risk of 

disease transmission.   

Overview 

Several GIS-based models were created that were used for predicting mosquito 

abundance and ultimately, risk of disease transmission.  The first step was to create a model that 

estimates the habitat suitability for both groups of mosquitoes across Chesapeake.  The model 

used mosquito trap data along with environmental attributes, to calculate a city-wide habitat 

suitability index (HSI) for C. melanura and the ephemeral species, A. vexans and P. columbiae, 

that indicates where these species are most likely to occur.  The HSI values along with other 

environmental variables were then used in a predictive model that estimates the monthly 

abundance of both mosquito groups from June through August of 2003.  The methods used for 

predicting habitat suitability and abundance were based on the methodology used by Bellows 

(2007).  Bellows predicted the abundance of C. melanura across Chesapeake, Virginia for the 

years 2003 and 2004.  This thesis takes Bellows‟ study a step further by incorporating human 

vulnerability and dasymetric mapping techniques to predict the risk of disease transmission.   

Once mosquito abundance is predicted, the vulnerability of the Chesapeake population to 

disease can be assessed.  The number of vulnerable individuals was estimated and then mapped 

according to land cover using dasymetric mapping techniques.  Finally, the results of the 

abundance model and vulnerability mapping were overlaid to predict the risk of disease 
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transmission from both groups of mosquitoes from June to August of 2003.  An overview of the 

steps used in predicting risk of disease transmission is provided in Figure 1. 

 

 

 

Figure 1: Overview of the steps involved in predicting the risk of disease transmission across 

Chesapeake. 

 

Study Area 

Chesapeake is an independent city which comprises 340 square miles (2000) of 

Southeastern Virginia and has a population of 220,111 (2008).  The city is located in the coastal 

plain of Virginia and contains the northeastern portion of the Great Dismal Swamp (Figure 2).  

Although it serves as a large reservoir of bird and mosquito vectors, the Great Dismal Swamp 

was excluded from the study area because there are no permanent residents in the swamp.  

Therefore, it would be irrelevant to predict the risk of disease transmission to residents in this 
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region. The prominent wetlands and creeks within Chesapeake are conducive to mosquito 

breeding and therefore provide a suitable habitat for mosquitoes.  The proximity of these 

mosquito habitats to the metropolitan areas of Chesapeake allows mosquitoes to easily transmit 

diseases to humans.  Chesapeake was selected as the study area because of its extensive 

mosquito trap data.  Other areas in coastal North Carolina were considered for this study, 

however, these regions lacked the quality of data that Chesapeake holds.  The trap data were 

acquired from the City of Chesapeake Mosquito Control Commission (CMCC).   
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Figure 2: Map of Chesapeake, Virginia and its surrounding jurisdictions. 
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Habitat Suitability Index 

In order to predict mosquito abundance, a habitat suitability index (HSI) is calculated for 

each mosquito species group.  Linear regression models were used to quantify the HSI for each 

group.  Assuming that mosquito abundance is a function of environmental variables, certain 

habitat attributes were used as independent variables to explain the spatial variation in mosquito 

capture data.  Because the predictor variable data is time invariant across the year, a single 

habitat suitability index was calculated for each mosquito group to represent the entire breeding 

season.  The habitat attributes (X) are weighted using the corresponding regression coefficient 

(b) and incorporated in a regression equation to calculate habitat suitability (Equation 1).  The 

final HSI‟s were created on the basis of a 30 meter pixel grid, which serves as the unit of 

observation.   

Equation 1: HSI = a + b1(X1) + b2(X2) … bp(Xp) 

Dependent Variables 

CO2-baited CDC light traps were placed at 40 locations across Chesapeake, Virginia in 

2003 (Figure 3).  A point shapefile of the trap sites containing capture data was obtained from 

the Chesapeake GIS office.  Mosquito numbers were counted weekly at each trapping site from 

April through November.  Only female captures were used in this study as male mosquitoes do 

not bite.  Capture data includes the number of each species counted in the traps per week.  The 

cumulative counts of the ephemeral species, A. vexans and P. columbiae were summed for each 

month as well as for the entire season.  Culiseta melanura counts were also aggregated 

accordingly.  To take into account the variation in trap nights (i.e. trapping effort), the capture 

data were normalized by dividing the total season‟s captures by the total number of trap nights.  

The monthly totals were also divided by the number of monthly trap nights.  To display how the 
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dependent variables vary spatially, inverse distance weighting (IDW) methods were used to 

interpolate a surface of the normalized trap counts.  Figures 4 and 5 illustrate the interpolated 

surfaces of the monthly trap counts.  The trap points were overlaid onto the interpolated surfaces. 

These surfaces can later be compared to the predicted mosquito abundance values.   

 

Figure 3: Light trap locations throughout Chesapeake in 2003. 
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Figure 4:  Interpolated surfaces of the normalized monthly trap counts for the ephemeral species.  

Surfaces were created using IDW.  Values are symbolized using a quantile classification.   
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Figure 5:  Interpolated surfaces of the normalized monthly trap counts for C. melanura.  Surfaces 

were created using IDW.  Values are symbolized using a quantile classification.   

 

Independent Variables 

  The habitat variables expected to best predict the spatial variation in mosquito capture 

data were chosen as the independent variables in the linear regression models (Table 1).   These 

variables were chosen based primarily on methods developed by Bellows (2007).  Each 

independent variable required some manipulation before being used in the regression models.  

Each habitat attribute was converted into a 30 m pixel grid format.  A model was created using 
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the ArcGIS „Model Builder‟ application that included pre-processing of the variables as well as 

the final HSI calculation for both species groups (Figure 12).  

Landsat satellite imagery was used to produce landscape-scale evaluation of habitat 

suitability.  A Tasseled-Cap transformation was calculated from a 2002 Landsat image acquired 

from the United States Geologic Society (USGS).  The Tasseled-Cap transformation is used to 

separate brightness, greenness, and wetness bands within satellite imagery (Crist and Cicone, 

1984).  Brightness, greenness, and wetness indices are useful for characterizing spatial patterns 

associated with habitat suitability.  Brightness is a measure of reflectance and is correlated to the 

texture and moisture content of soils (Guerra et al., 2002).   Greenness is a measure of the 

density of green vegetation present, while wetness is a measure of the moisture in soils and 

vegetation.   The transformed values are reprojected onto three orthogonal axes (TC1-TC3).  

TC1-TC3 were used as the independent variables in the linear regression equations (Figure 6).   

Soil survey data was acquired from the United States Department of Agriculture (USDA) 

National Resources Conservation Service‟s (NRCS) soil data mart.  Chesapeake soil data for 

2002 was exported into SSURGO format (Soil Survey Geographic Data).  The SSURGO soil 

data is presented in the form of ArcGIS polygon shapefiles.  Various soil attributes were chosen 

to be used as explanatory variables in the habitat suitability model.  The variables were chosen 

based on their relationship to mosquito habitat preferences.   The soil attributes chosen are each 

associated with soil moisture.  According to Tanser, Sharp, and le Sueur (2003), soil moisture is 

an important factor in mosquito survival.  Once the soil variables were converted into grid 

format, the variables were reclassified into numeric values (Table 2).  These numbers are 

standard values used by SSURGO.  The soil variable grids are shown in Figures 7-11.  
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Variable Code Data Type Source Description 

Tasseled-Cap TC1-

TC3 

Raster: 

Landsat-7    

ETM+ 

USGS TC1 (Brightness) 

TC2 (Greenness) 

TC3 (Wetness) 

Hydrologic HYD Vector 

(polygon) 

NRCS Presence of water 

Percent Hydric 

Composition 

HYDRIC Vector 

(polygon) 

NRCS Soil meets requirements for 

 hydric soil 

Drain Potential DRAIN Vector 

(polygon) 

NRCS Degree of hydraulic conductivity  

and low water-holding capacity 

Runoff Potential RUNOF Vector 

(polygon) 

NRCS Degree of potential water loss by  

overland flow 

Water Table Depth WTD Vector 

(polygon) 

NRCS Minimum value for the range in  

depth to the seasonally high 

water 

 table (April-June) 

Available water 

storage (25 cm) 

AWS25 Vector 

(polygon) 

NRCS Maximum value for the range of 

 available water in plant root 

zones  

 

Table 1: Habitat attributes used as independent variables in habitat suitability regression model 
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Soil Attribute Values 

HYD 0 = no water 

1 = water 

HYDRIC 0 = not hydric 

1 = hydric 

DRAIN 1 = well drained 

2 = moderately well drained 

3 = somewhat poorly drained 

4 = poorly drained 

5 = Very poorly drained 

6 =  water 

RUNOF 1.00 =  neglible 

0.75 = very low 

0.50 = low 

0.25 = medium 

0 = water 

WTD Continuous 

AWS25 Continuous 

 

Table 2: Soil attributes used as independent variables in habitat suitability regression models.   

 

Not every habitat attribute was used in each linear regression model.  The variables used 

in each model were chosen based primarily on work by Bellows (2007).  Bellows used multiple 

regression models to calculate a HSI for the same species included in this thesis, using equivalent 

trap data for Chesapeake, Virginia.  Bellows used all possible regressions (APR) to select the 

independent variables that best explain the spatial variation in trap data.  The variables chosen by 

Bellows were used as the independent variables in the corresponding linear regression models to 

predict mosquito abundance (Table 3). 
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Ephemeral Species Model C. melanura Model 

TC1 TC2 

TC2 TC3 

HYD DRAIN 

DRAIN RUNOF 

RUNOF AWS25 

WTD 

 

Table 3: Independent variables chosen to be used in linear regression models to predict HSI.   

 

The effect of variables influencing landscape and ecosystem-level patterns, processes, 

and functions is scale-dependent (Turner, 1989).  Therefore, the spatial scale used for each 

habitat attribute was not the same in every case.  For each habitat attribute, the spatial scale that 

is most strongly correlated with mosquito captures for each species group was used.  The spatial 

scales were chosen based on research by Bellows (2007).  Bellows used Pearson‟s correlation 

analysis to determine the spatial scale most strongly correlated with mosquito captures for each 

independent variable. ArcGIS Spatial Analyst tools were used to replace the raster values for 

each attribute with the focal neighborhood mean of the pixels with the corresponding spatial 

scale.  The spatial scales for each habitat attribute are included in Tables 4 and 5.  In order to 

associate the predictor variables with the mosquito counts at each trap site, the corresponding 

predictor variable data were spatially joined to the attribute table of each trap point. 
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Independent Variable Neighborhood Settings 

TC1 17 x 17 

TC2 21 x 21 

HYD 3 x 3 

DRAIN 5 x 5 

RUNOF 19 x 19 

WTD 1 x 1 

 

Table 4: Focal neighborhood settings (height x width) for the ephemeral species group. 

 

Independent Variable Neighborhood Settings 

TC2 21 x 21 

TC3 21 x 21 

DRAIN 17 x 17 

RUNOF 17 x 17 

AWS25 7 x 7 

 

Table 5: Focal neighborhood settings (height x width) for C. melanura. 
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Figure 6: Tasseled-cap indices.   
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Figure 7: Percent hydric composition of the soil.  Soil that meets the hydric percentage 

requirements were classified as „hydric‟. 
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Figure 8: Soil drainage potential.  Values are based on standard numbers used by SSURGO.   
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Figure 9: Soil runoff potential.  Values are based on standard indices used by SSURGO. 
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Figure 10: Water table depth.  Values represent the depth in cm to the water table.   
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Figure 11: Available water holding capacity of the soil at 25 cm.  Values represent volume of 

water in cm. 
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Linear Regression Models 

Using the statistical software PASW Statistics 17.0, linear regression models were 

calculated for each species group which model the effect of the independent variables on 

mosquito counts.  For each group of species, the total normalized mosquito count for all months 

was regressed upon the corresponding predictor variables. Because there are 39 traps and the 

study period covers three months, ideally the sample size (n) should have been 117 traps.  

However, not every trap was counted each month, reducing the sample size to 93 traps.  In order 

to obtain the regression equation of best fit, two outliers were removed from the C. melanura 

regression model.  The results of the linear regression models for both species groups are shown 

in Equations 2 and 3.   

R
2
 Adjusted R

2
 F Sig 

0.356 0.238 3.035 .018 

 

Table 6: Summary of the linear regression model for the ephemeral species group. 

 

Variable B t Sig 

Constant -111.719 -1.629 0.113 

TC1 1.065 3.106 0.004 

TC2 0.517 1.805 0.080 

HYD 20.807 0.762 0.452 

DRAIN -7.925 -1.212 0.234 

RUNOF 20.730 0.904 0.373 

WTD -0.283 -1.266 0.215 

 

Table 7: Results of the linear regression equation for the ephemeral species group.   
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Equation 2: Regression equation to calculate HSI for the ephemeral species. 

HSIEp = -111.719 + 20.730 (RUNOF) – 0.283 (WTD) + 0.517 (TC2) + 1.065 (TC1) + 20.807 

(HYD) - 7.925 (DRAIN) 

 

R
2
 Adjusted R

2
 F Sig 

0.339 0.236 3.287 .017 

 

Table 8: Summary of the linear regression model for C. melanura. 

 

Variable B t Sig 

Constant -532.162 -2.818 0.008 

TC2 -5.357 -2.599 0.014 

TC3 0.193 0.059 0.953 

DRAIN 11.926 0.531 0.599 

RUNOF 510.400 3.096 0.004 

AWS25 51.574 1.924 0.063 

 

Table 9: Results of the linear regression equation for C. melanura. 

 

Equation 3: Regression equation to calculate HSI for C. melanura. 

HSICm = -532.162 + 510.400 (RUNOF) + 51.574 (AWS25) – 5.357 (TC2) + 0.193 (TC3) + 

11.926 (DRAIN) 

 

Once the linear regression models were calculated, the regression equations could be 

encoded into the spatial model to calculate the HSI value in each grid cell.  Each independent 

variable was inserted into the regression equations using the „Map Algebra‟ tool (Figure 12).  
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The raw HSI values were separated into five equal interval classes to represent the percent 

suitability (Figure 13).  
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C. melanura Model 

Ephemeral Species Model Independent 

Variables 

Rescaled 

 Independent Variables 

a 

b 

Figure 12: Model that calculates HSI for the ephemeral species (a) and C. melanura (b). 
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Figure 13: HSI for ephemeral species group and C. melanura.  The HSI values were calculated 

using equations 2 and 3. Values were classified into 5 equal interval classes.   

 

Mosquito Abundance Models 

Using the Model Builder function, an equation was built for both groups of mosquitoes 

which predicted mosquito abundance for each month from June to August of 2003.  Linear 

regression models were used to quantify the effect of certain climate variables on mosquito trap 

counts for each month.   The regression equations were then used to calculate monthly indices to 

represent the weighted effects of the variables on mosquito captures for both mosquito groups.  

The indices representing the weighted spatial coefficients for each climate variable were 
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abbreviated as „WSC‟.  The WSC monthly indices were each overlaid with the corresponding 

HSI grid to calculate the monthly mosquito abundance. 

Independent Variables 

Topographic Soil Moisture Index (TMI), monthly precipitation, and Average Weekly Air 

Temperature (AWAT) were used as the explanatory variables in the linear regression models.  

The product of temperature and precipitation were also used as an independent variable in the 

models to account for possible interaction.  Each variable was aggregated to a 30 m x 30 m pixel 

grid.  Each grid cell is representative of the corresponding month‟s environmental conditions.  In 

other words, there will be three grids for each variable representing each month in the study 

period.   

Topographic Soil Moisture Index (TMI) Grid 

The Topographic Soil Moisture Index (TMI) is a derivative of slope (Figure 14) and flow 

accumulation (Figure 15).  Using a ArcGIS hydrology tools, flow accumulation and slope were 

calculated using a 2-ft interval Digital Elevation Model (DEM) of Chesapeake. TMI was 

calculated using an equation derived from Beven (1997) which is shown below.   

 Equation 4: TMI = ln (A / tan β) 

Where A = flow accumulation surface and β = slope surface.  The Map Algebra tool was used to 

calculate this equation and create a 30 m TMI grid.  The TMI grid was normalized and rescaled 

using the following equation:  

Equation 5:  TMIr =  (TMIO – TMImin)      

   (TMImax – TMImin) 

   

x  100 
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Where TMIr = normalized and rescaled TMI pixels, TMIO = calculated TMI values (Equation 4), 

TMImin = the lowest pixel value in the calculated TMI surface, and TMImax = the highest pixel 

value in the calculated TMI surface.  The final rescaled TMI surface is shown in Figure 16. 

 
Figure 14: Slope surface of the DEM. 
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Figure 15: Flow accumulation surface of the DEM.  Values represent the number of pixels 

flowing into each cell. 
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Figure 16: Topographic soil moisture index (TMI).  Values calculated using Equation 5. 
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Weekly Average Air Temperature (AWAT) Grids 

Unfortunately, spatially dependent temperature grids for Chesapeake, Virginia are not 

available for 2003.  AWAT constant-value grids are available from the National Climatic Data 

Center (NCDC), collected at the NWS Station at Chesapeake Regional Airport (KCPK).  Each 

grid displays the mean weekly temperature in Fahrenheit degrees across Chesapeake.  Rather 

than using weekly temperature grids, AWAT temperature data was obtained and aggregated to 

the month.  For each month, the weekly average temperatures were averaged and attributed to 

the grid (Figure 17).  The temperature values were normalized and rescaled using the following 

equation:  

Equation 6: Xr = (XO – Xmin) 

    

Where Xr = the normalized and rescaled monthly temperature value (0-100), XO = the observed 

temperature value, Xmin = the minimum monthly temperature value, and Xmax = the maximum 

monthly temperature value.   

 

 

 

 

 

(Xmax – Xmin) 

 

x 100 
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Figure 17: Monthly average air temperature grids.  The values were rescaled from 1 to 100 using 

Equation 6. 

 

PRISM Precipitation Grids 

Monthly precipitation grids were obtained from the PRISM Climate Group.  The 

precipitation data sets are created using the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) climate mapping system.  Chesapeake experienced a particularly wet 

summer in 2003 due to Hurricane Isabel which made landfall in North Carolina on September 

18, 2003 (Smith and Graffeo, 2005).  PRISM grids display the nationwide average rainfall in 

millimeters for each month of the study period.  Grids were downloaded in ASCII format and 

converted to raster format (Figure 18).  Each monthly grid was clipped to the full extent of the 
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study area and the values were normalized and rescaled from 1 to 100 using the following 

equation:  

Equation 7:  Xr = (XO / Xmax) x 100 

Where Xr = the normalized and rescaled monthly temperature value (0-100), XO = the observed 

value, and Xmax = the maximum value.  To take into account the combined effect of temperature 

and rainfall on mosquito counts, the corresponding monthly precipitation and temperature grids 

were multiplied using the equation: 

Equation 8: Xpt = Xprec x Xtemp 

Where Xpt = the product of the average monthly precipitation and average monthly temperature, 

Xprec = the rescaled monthly precipitation values, and Xtemp = the rescaled monthly temperature 

values.  The resulting grids are shown in Figure 19.  
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Figure 18: Monthly average rainfall. Values were rescaled from 1 to 100 using Equation 7. 

 

Figure 19: The product of average monthly temperature and average monthly precipitation for 

each month within the study period.  Values were calculated using Equation 8. 
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Predicting Monthly Mosquito Abundance 

 

Using the software program, PASW Statistics 17.0, a linear regression model was created 

for both species groups that use the independent variables to explain the variation in monthly 

mosquito trap data.  Spatial Analyst tools were used to extract the independent variable data for 

each coinciding trap point into a database.  The resulting table could then be used in PASW to 

calculate the regression equations.  In order to normalize the mosquito capture data, the mosquito 

counts were log transformed to calculate the natural log of the values.  A separate model was 

created for each species in which the log transformed capture value at each trap site was 

regressed upon the corresponding monthly independent variables.  The results of both linear 

regression models are shown below. 

R
2
 Adjusted R

2
 F Significance 

0.270 0.235 7.846 0.000 

 

Table 10: Summary of the linear regression model for the ephemeral species. 

 

Variable B t Significance 

Constant -104.888 -2.875 0.005 

Precipitation 1.144 2.989 0.004 

Temperature 1.399 2.987 0.004 

Precip_Temp -0.015 -3.108 0.003 

TMI 0.000 -0.006 0.995 

 

Table 11: Results of linear regression model for the ephemeral species. 
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R
2
 Adjusted R

2
 F Significance 

0.405 0.377 14.793 0.000 

 

Table 12: Summary of linear regression model for C. melanura. 

 

Variable B t Sig 

Constant -138.191 -3.298 0.001 

Precipitation 1.444 3.295 0.001 

Temperature 1.881 3.508 0.001 

Precip_Temp -0.020 -3.498 0.001 

TMI 0.016 1.224 0.224 

 

Table 13: Results of linear regression model for C. melanura. 

 

Because environmental variables often affect the subsequent month‟s mosquito counts, a 

temporal lag model was also considered as a method for predicting abundance.  For each of these 

models, the monthly mosquito abundance was regressed upon the preceding month‟s 

independent variables.  This lag model however, did not significantly diverge from the 

relationships in the linear regression models already calculated and therefore were disregarded.   

Once the linear regression equations were calculated for both species groups, the 

equations could be used to calculate monthly WSC.  The regression coefficients from each 

equation were used to calculate the weighted influence of the independent variables on the 

mosquito trap counts.  The equations were calculated using the „Map Algebra‟ tool and 

incorporated into each abundance model (Figure 20).  The equations for the linear regression 

models are revealed below:  
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Equation 9: WSCEp = -0.016 (Temperature x Precipitation) + 1.462 (Temperature) + 1.193 

(Precipitation)  

Equation 10:  WSCCm = -0.020 (Temperature x Precipitation) + 1.883 (Temperature) + 1.444 

(Precipitation) + 0.016 (TMI) 

 

Where WSCEp = the weighted influence of the independent variables on ephemeral species 

abundance for a particular month, and WSCCm = the weighted influence of the independent 

variables on C. melanura for a particular month.   The monthly values were each represented as a 

30 m grid (Figure 21).   Within each model, the monthly WSC grids were used along with the 

HSI grids to predict abundance.  Abundance was predicted for each month on a pixel-by-pixel 

basis using the equation:  

Equation 11: AbundanceCm = HSICm x WSCCm 

Where AbundanceCm = total C. melanura abundance for a particular month.   For each month, 

the abundance values were rescaled to reflect the season‟s overall abundance using the equation: 

Equation 12:  Abundancer=  AbundanceO - Abundancemin 

             Abundancemax - Abundancemin 

Where Abundancer =  the rescaled abundance for a particular month, AbundanceO = the observed 

abundance for the month, Abundancemin = the minimum abundance for the month, and 

Abundancemax = the maximum abundance for all months within the study period.   

 

 x 100 
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Figure 20: Abundance model for C. melanura created using Model Builder.  The model predicts 

the abundance of C.melanura for each month from June to August. 
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a)  

b)  

Figure 21: The weighted influence of the independent variables on ephemeral species abundance 

(a) and C. melanura (b).  Values were separated into five equal interval classes that represent the 

percent effect on abundance. 
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Predicting Human Risk of Mosquito-Borne Disease Transmission 

In order to calculate a disease transmission risk index, the population that is most 

vulnerable to mosquito-borne diseases must first be determined.  Using U.S. decennial Census 

data for 2000 and GIS data from the Chesapeake Information Technology Department, a 

vulnerable population was initially inventoried across Chesapeake.  Population data is often 

mapped according to enumeration units such as Census blocks, which do not reflect the actual 

distribution of the population.  Rather than mapping the vulnerable population according to an 

enumeration unit, a dasymetric map was created that displays the vulnerable population 

according to land cover classes.  This will allow the vulnerable population to be distributed in a 

more accurate and finer resolution than other methods based on less meaningful observational 

units.  The predicted vulnerable population can then be used with the previously calculated 

mosquito abundance to predict the risk of disease transmission for each month within the study 

period. 

Dasymetric Mapping of the Vulnerable Population 

This study utilizes the Intelligent Dasymetric Mapping (IDM) approach developed by 

Mennis and Hultgren (2006).  This automated approach uses the cartographer‟s domain 

knowledge and the relationship between the enumeration units and the ancillary information 

(Slocum et al, 2009).  The IDM approach takes data mapped to a set of source zones and a 

categorical ancillary data set, and redistributes the data to a set of target zones formed by the 

intersection of the source and ancillary zones.  In this case, Census block groups will serve as the 

source zones, while the land cover data will serve as the ancillary data.  A 30 m pixel land cover 

grid from NOAA‟s Coastal Change Analysis Program (C-CAP) for 2001 was used as the 

ancillary layer for the dasymetric map.  The data are redistributed based on a combination of 
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   ^ 

areal weighting and the relative densities of ancillary classes.  The formula for calculating the 

estimated count of the target zone is: 

 

       

 

= the estimated count for target zone t 

ys = the count of a source zone, which overlaps the target zone 

At = the area of the given target zone 

Dc = the estimated density of ancillary class c associated with the target zone 

 

In some cases, cartographers may use their own domain knowledge to specify the value of Dc.  In 

this case, the dasymetric tool computed the value of Dc using the percent cover method.  This 

option allows the cartographer to select a threshold percentage and selects the zones whose 

percentage of coverage equals or exceeds that threshold.  Once the zones are selected, the 

estimated density of the ancillary class is selected using the equation: 

 

 
 
 
 
 

= the estimated density of ancillary class c 

Ys = the count of a source zone 

As = the area of a source zone 

 

Predicting the vulnerable human population consisted of two major steps.  The first step 

was to calculate the vulnerable population within each Census block group.   Because Census 

data reflects only a “nighttime” population distribution, points of higher possible vulnerable 

Equation 13: 

Equation 14: 
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populations, such as hospitals, day cares, elder care facilities, and schools were also included in 

the vulnerable population analysis. The second phase of vulnerability prediction was to add these 

points of high vulnerability to the vulnerable population within each Census block group. 

  To predict the vulnerable population, a U.S. Census polygon shapefile was obtained 

from ESRI and clipped to the extent of Chesapeake, Virginia.   Unfortunately, Census population 

data was not available for the year 2003.  The Census data displays various population variables 

according to Census block groups estimated for the year 2004.  ArcGIS tools were used to 

calculate the vulnerable population within each block group.  According to the CDC (2009), 

persons over age 50 and under age 15 are at greatest risk for developing severe disease when 

infected with EEE and WNV.  Based on this information, the „field calculator‟ function was used 

to sum the population less than 5 years of age and greater than 50 years of age within each 

Census block group (Figure 22).  Children between 5 and 15 years of age were not included in 

the categorization because the Census data did not have a classification that matched this age 

range. 

  To complete the second step of vulnerability prediction, vulnerable location data was 

obtained from the City of Chesapeake Information Technology Department.   The data was 

obtained in the form of a point shapefile in which each point represents a vulnerable location 

(Figure 22c).  The population for each elderly care facility was already included in the shapefile 

and required no research. The population of Chesapeake General Hospital was calculated by 

summing the total number of inpatients and outpatients.  Unfortunately, not every school and 

daycare center contained population data in the corresponding attribute tables.  Therefore, the 

population of these locations had to be determined through additional research.  By making 

phone calls and utilizing Internet resources, the population of the schools and daycares was 
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determined.  Analysis was limited to primary, elementary, and intermediate schools.  

Determining the population of every daycare was cost prohibitive of this study (there are over 

250 facilities).  To calculate the final vulnerable population within each block group, ArcGIS 

was used to add the population of each vulnerable point to the previously calculated block group 

vulnerable population.  The final output was processed in the form of a polygon shapefile.  In 

order to reflect the total population in each block group, the vulnerable population was 

normalized using the following equation:  

Equation 15:  Populationn =  Populationv 

                      PopulationTotal 

 

Where Populationn = the normalized vulnerable population per block group, Populationv = the 

calculated vulnerable population per block group, and PopulationTotal = total population of the 

block group.  The final vulnerable population is shown in Figure 23.  

  In order to distribute the population into dasymetric zones, the land cover classes were 

divided into categories.  Initially, the land cover data set consisted of 22 land cover classes.  The 

land cover types were separated into four classes: highly intensity developed, low intensity 

developed, non-urban, and water (Figure 24).  This method has been used by Sleeter (2004) to 

map the San Francisco Bay according to land cover.  Using the dasymetric mapping extension 

downloaded from the U.S. Geological Society (http://geography.wr.usgs.gov/science/ 

dasymetric/data.htm), populationn  was mapped according to the reclassified land cover (Figure 

25).  The output was a 30 m pixel grid.  In order to clearly represent the population across 

Chesapeake, the grid units were converted to persons per hectare using the following equation: 
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Equation 16:    Populationh = Populationp  x  10,000 

Where Populationh = the population per hectare and Populationp = the population per pixel.   

 

 

 

 

 

Figure 22: The population that is most vulnerable to mosquito-borne diseases using Census block 

groups.  The maps show the population of children less than 5 years of age (a), the population 

greater than 50 years of age (b) and the sum of the children and elderly overlaid with the 

vulnerable locations across Chesapeake, VA (c). 

 

 

a) b) c) 
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Figure 23: Vulnerable population density per block group.  Values were calculated using 

Equation 15. 
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Figure 24: Reclassified land cover types used as the ancillary units in dasymetric map.  
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Figure 25: Spatial overlay of the vulnerable population and land cover.  The image to the far 

right represents the dasymetric map of the vulnerable population mapped according to land 

cover. Values were calculated using Equation 16. 

 

 

Predicting the Risk of Mosquito-Borne Disease Transmission 

Using the monthly mosquito abundance values and the dasymetric map of the vulnerable 

population, a monthly risk index could be calculated that indicates the risk of disease 

transmission from the corresponding mosquito species to humans.  The units of risk are arbitrary 

and merely represent an index ranging from low to high risk.  Spatial Analyst tools were utilized 

to overlay the dasymetric map with the mosquito abundance grids (Figure 26).  The outputs were 

created in the form of 30 m pixel grids. The final risk values were calculated using the equation: 

Equation 17:  Riskep =   (Populationh x Abundancer) 
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Where Riskep = the risk of disease transmission from the ephemeral species for a particular 

month, Populationh = the vulnerable population per hectare, and Abundancer = the rescaled 

abundance of the ephemeral species for the corresponding month.   

 

 

Figure 26: Visual representation of the spatial overlay used to predict the risk of disease 

transmission.  This example represents the risk of disease transmission from the ephemeral 

species for June of 2003.  The abundance and risk values were classified using a quantile 

classification, while the vulnerable population values are classified using natural breaks. 
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CHAPTER 4: RESULTS 

This chapter begins by discussing the results of the habitat suitability index and the 

influence of the independent variables on mosquito trap data.  The chapter then discusses the 

results associated with the mosquito abundance models.  The chapter concludes with a discussion 

of the human vulnerability patterns and the risk of disease transmission predictions. 

Habitat Suitability Index (HSI) 

The habitat suitability maps for both groups of mosquitoes are each unique and 

representative of the corresponding mosquito preferences.  First the results of the habitat 

suitability model for the ephemeral species will be evaluated.  The R
2
 value for the habitat 

suitability regression model indicates that independent variables explain 35.6% of the variation 

in mosquito trap data (Table 6).  The model indicates that TC1 or brightness is the most 

significant variable in predicting the suitable habitat for ephemeral species.  With a regression 

coefficient of 1.065, the model indicates that brightness and habitat suitability are positively 

correlated.  Since the regression coefficient for TC1 is relatively small, the correlation between 

brightness and habitat suitability is not particularly strong.  By overlaying the brightness variable 

onto the HSI map, it is clear that the correlation between habitat suitability and brightness is not 

very prominent.  Because high brightness values represent a lack of vegetation, this weak 

correlation between HSI and TC1 is expected.  The preferred habitat of A. vexans and P. 

columbiae is ephemeral pools which do not correspond with regions of high brightness. A few of 

the highly suitable regions do in fact overlay with bright regions.  These regions may represent 

suburban areas where mosquitoes may be breeding in containers. According to the regression 

model, TC2 or greenness is another important variable in predicting habitat suitability.  The 

model indicates that greenness is positively correlated with habitat suitability.  However, habitat 
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suitability actually appears to be inversely correlated with greenness.  Like the brightness 

variable, the regression coefficient for the greenness variable is small.  This low coefficient of 

0.517 would explain the lack of correlation between HSI and TC2.  Overall, the most suitable 

habitat for A. vexans and P. columbiae appear to be regions covered in open water such as rivers 

and lakes.   There is no distinct pattern between unsuitable regions and land cover.  The highly 

unsuitable regions coincide with many land cover types.  

The habitat suitability model results for C. melanura vary considerably from the 

ephemeral species model.  The R
2
 value indicates that independent variables explain 33.9% of 

the variation in C. melanura trap data (Table 8).  With a significance value of 0.004 (Table 9), 

the soil runoff variable proved to be the most significant attribute in the habitat suitability model 

for C. melanura.  According to the linear regression model, runoff and suitability are positively 

correlated.  Because higher runoff values actually represent less runoff potential, it is expected 

that highly suitable areas should overlay with high runoff values.  The habitat suitability map 

confirms the significance of the runoff variable.  By overlaying the runoff variable onto the 

habitat suitability map, it is clear that the regions with the highest suitability appear to have 

either soils with low runoff potential or are covered by water.  Available water holding capacity 

is another significant variable in predicting habitat suitability for C. melanura.  The linear 

regression results (Table 9) indicate that soil water holding capacity and habitat suitability are 

positively correlated.  An overlay of the two variables confirms that as water holding capacity 

increases, so does habitat suitability.  Because C. melanura prefer a moist habitat, it makes sense 

that a lack of runoff and increase in available water holding capacity are associated with an 

increase in habitat suitability. In general, the most suitable areas for C. melanura habitation 

appear to be swamps and marshes.  This observation is expected since swamps are the preferred 
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habitat for these species.  Open water areas such as rivers were predicted to be very unsuitable 

for C. melanura.  This prediction contrasts with the HSI results for the ephemeral species.  

Weighted Influence of Independent Variables on Mosquitoes (WSC) 

The results of the linear regression models (Tables 10-13) reveal the relationship between 

the environmental variables and mosquito trap data.  For the ephemeral species, the model 

indicates that the independent variables explain 27.0% of the variation in ephemeral species 

counts (Table 10).  Temperature, precipitation, and the combined effects of temperature and 

precipitation are all significant variables in the ephemeral species abundance model.  With a 

regression coefficient of 0.000 and a significance value of 0.995, the TMI variable is not a 

significant variable in predicting ephemeral species abundance.  Temperature and precipitation 

are both positively correlated with mosquito abundance.  This was expected since an increase in 

these conditions often produces habitats conducive to mosquito breeding.  On the other hand, the 

interaction of temperature and precipitation had a negative correlation with mosquito abundance.  

However, with a regression coefficient of -0.015, the negative influence of this variable on 

abundance is minimal.    

The monthly WSC grids (Figure 21a) illustrate the weighted impacts of the 

environmental variables on ephemeral species counts.   The WSC values were scaled from 0 to 

100 to represent the percent influence of the variables on mosquito captures.  From June through 

August, WSC values increase moving from east to west.  The effect of the independent variables 

on mosquito counts is particularly high in western Chesapeake across all months. In July, the 

WSC values are especially high across Chesapeake.  The environmental variables were predicted 

to have more than an 80% influence on mosquito numbers across a large portion of the city. 
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The results of the regression model for C. melanura are quite similar to the ephemeral 

species regression results.  According to the model results for C. melanura (Tables 12 and 13), 

temperature and precipitation are significant variables in predicting abundance and are positively 

correlated with mosquito numbers.  The combined effects of temperature and precipitation are 

also significant variables for predicting C. melanura presence, but are negatively correlated with 

abundance.  However, the regression coefficient for this variable is close to 0, indicating that the 

product of precipitation and temperature does not have a strong influence on abundance.  Unlike 

the other independent variables, TMI is not a significant variable in predicting abundance.  The 

low regression coefficient of 0.016 and significance value of 0.224, indicate that TMI does not 

have a strong influence on abundance.   

The WSC indices for C. melanura (Figure 21b) show similar patterns to the values for the 

ephemeral species. The WSC values were again scaled from 0 to 100.  After experimenting with 

different classification schemes, the WSC values were classified into equal intervals.   For all 

months, the influence of the environmental variables on mosquitoes increases going east to west.  

Compared to the WSC values for the ephemeral species, the WSC values for C. melanura are 

relatively lower.  There are very few regions where the independent variables have more than an 

80% influence on C. melanura captures.  June in particular has low WSC values compared to 

July and August.   July on the other hand, exhibits very high WSC values across much of 

Chesapeake.  One major difference between WSC grids for both mosquito groups is that the 

influence of the TMI values can be seen in the WSC grids for C. melanura.  As mentioned earlier 

however, the effect of this variable on C. melanura abundance is negligible. 

 

 



 

69 

 

Mosquito Abundance 

As predicted, the abundance results for both groups of mosquitoes are relatively 

distinctive.  The abundance results appear to be representative of each species‟ breeding and 

habitat preferences.  The rescaled abundance values for both groups of mosquitoes were 

classified into quantiles to represent different levels of abundance. The abundance values for 

both mosquito groups were rendered on the same scale across all months.  Although there is 

significant variation in abundance between the mosquito groups, similar spatial and temporal 

patterns can be seen among both groups.    

Ephemeral Species Abundance 

The abundance model results for the ephemeral group (Figure 27) shows a strong 

relationship between HSI values and abundance.  As the HSI model suggested, ephemeral 

species abundance is very high in rivers and open water regions from June through August. In 

general, abundance values are highly reflective of the WSC grids (Figure 21).  The patterns seen 

in the monthly WSC maps are also seen in the abundance grids.  For the most part, regions with 

high WSC values have correspondingly high numbers of ephemeral species.  Like the WSC 

values, monthly abundance appears to increase going from east to west across Chesapeake.  For 

all three months, the western side of Chesapeake was predicted to have a large abundance of 

these species.   In June, abundance is highest in the western portion of Chesapeake and gets 

progressively lower going east.  Overall, July is predicted to have a very broad distribution of 

high abundance regions.  In August, Chesapeake is predicted to have many low abundance 

regions, particularly on the eastern side of the city.  Unlike the other months, August abundance 

was predicted to be concentrated and very high on the western side of Chesapeake.   
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By displaying the trap data in relation to the abundance results, we can determine the 

predictive ability of the trap data.  Figure 28 displays the trap sites across Chesapeake and the 

number of ephemeral species counted at each site.  The trap counts were symbolized using a 

quantile classification in order to give the abundance data an even distribution.  In many regions, 

the trap data for all three months appear to be indicative of the final abundance results.  In June 

and July, traps on the western side of the city that had a large number of mosquitoes correspond 

to high abundance results for those months (Figure 29a).  The wetlands at the southern end of 

Chesapeake also show a positive correlation between trap data and abundance (Figure 29b).  At 

other sites however, there appears to be no relationship between trap counts and predicted 

abundance.  Figure 29c shows a trap point with a high number of ephemeral species but a low 

predicted abundance across all months.  This point is on the edge of the city, therefore, it is 

possible that some mosquitoes were dispersed to Chesapeake by wind.   
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Figure 27: Monthly abundance of the ephemeral species for each month.  Values were classified 

into quantiles. 
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Figure 28: Trap sites overlaid onto the monthly abundance maps of the ephemeral species.  

Graduated symbology is used to display the monthly mosquito counts for the corresponding trap 

sites.  Points with no graduated symbology represent traps where no data was collected for that 

month. 
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Figure 29: Trap sites overlaid onto the monthly abundance maps of the ephemeral species.  

Regions a and b indicate areas where trap data and abundance values are positively correlated 

across all months.  Region c shows a trap point where mosquito counts and calculated abundance 

values are negatively correlated. 

 

C. melanura Abundance 

 The abundance results for C. melanura (Figure 30) show patterns consistent with the HSI 

results.  The HSI model predicted that open water areas such as rivers would be unsuitable for C. 

melanura.  Accordingly, the abundance model predicted that there would be a very small number 

of these species in open water areas.  Based on the HSI results, the model predicted a high 

abundance of C. melanura in wetlands.  The predicted high abundance of this species in 

wetlands is no surprise since swamps are the preferred habitat of this species.    

b 

a 

c 

a 

b 

b 
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 Overall, C. melanura abundance is very high across most of Chesapeake from June 

through August.  For all three months, abundance was predicted to be especially high on the 

western side of the city, adjoining the Great Dismal Swamp.  Central Chesapeake was also 

predicted to have a high abundance of C. melanura.  This can be partly attributed to the impact 

of the environmental variables on mosquito counts, which increases going from east to west 

(Figure 21b).  In June and July, abundance is very high across most of the city.  The abundance 

patterns for these months are highly reflective of the corresponding WSC grids.  In August, 

abundance is very high on the western half of the city and very low on the eastern side.  One 

obvious similarity between June and August is that the northern tip of Chesapeake was predicted 

to have a very low abundance of C. melanura. 

 To determine how well the predicted C. melanura abundance reflects the trap data, the 

trap counts were overlaid with the abundance results (Figure 31).  Many of the trap counts are in 

fact suggestive of the calculated abundance values.  Trap values along the river for instance are 

relatively low in June and August (Figure 32a).  Accordingly, the abundance model predicted 

that there would be a low number of C. melanura in this region.  The correlation between trap 

data and abundance is especially obvious in the western portion of Chesapeake for July and 

August (Figure 32b).  Across all three months, abundance was predicted to be high on the 

western side of the city.  Trap data for C. melanura is proportionately high in these regions in 

July and August.  There is also a positive correlation between trap data and abundance along the 

southern wetlands of Chesapeake (Figure 32c).  Conversely, there are traps along this region 

where trap data is not proportionate to the calculated abundance values (Figure 32d).  Perhaps 

these differences in mosquito abundance could be attributed to the fine scale of the abundance 
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grids.  The spatial variation in monthly abundance values may be too detailed to compare to the 

trap data.   

 

Figure 30: Monthly abundance of C. melanura. Values were separated into quantiles. 
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Figure 31: Trap sites overlaid onto the monthly abundance maps of C. melanura.  Graduated 

symbology is used to display the monthly mosquito counts for the corresponding trap sites.  

Points with no graduated symbology represent traps where no data was collected for that month. 
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Figure 32: Trap sites overlaid onto the monthly abundance maps of the ephemeral species.  

Regions a,b, and c are areas where trap data and abundance values are positively correlated.  

Region d shows trap points where mosquito counts and calculated abundance values are 

negatively correlated. 

 

Model Results vs. Interpolated Surfaces 

To determine the predictive nature of the trap data and evaluate the accuracy of the 

model, the results of the abundance model can be compared to the surfaces interpolated from the 

trap data.  Figure 4 illustrates the surfaces created from the ephemeral species monthly trap data.  

The patterns displayed in the interpolated surfaces differ significantly from the monthly 

abundance results (Figure 27).  Compared to the model results, the interpolated surfaces show 

more temporal variation in abundance.  The interpolated surfaces also show more spatial 
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variation.  Rather than abundance increasing continuously from east to west, abundance varies 

across the city.   The interpolated surfaces for the C. melanura trap data (Figure 5) also vary 

significantly from the abundance results (Figure 30) both spatially and temporally.  One 

similarity is the concentration of high abundance regions predicted in western Chesapeake. Like 

the abundance results, western Chesapeake was interpolated to have a high abundance of C. 

melanura for all three months.   

Human Vulnerability 

By mapping the vulnerable population according to Census block groups (Figure 23), 

patterns of vulnerability are visible across Chesapeake, Virginia.  The highly vulnerable regions 

seem to be concentrated in the northern portion of the city.  This can be attributed to the 

clustering of vulnerable locations in northern Chesapeake (Figure 22c).  There are also several 

block groups scattered throughout the city that are classified as highly vulnerable.  However, 

these patterns of vulnerability are not as meaningful as the dasymetric map of population 

vulnerability (Figure 33).  The dasymetric map of vulnerability displays the number of 

vulnerable people within each hectare.  The vulnerable population values were classified using a 

natural breaks classification to represent areas ranging from very low to very high vulnerability.  

This map indicates that the highly vulnerable regions are mainly concentrated in the northern 

portion of the city.  Areas of moderate vulnerability are also limited to the northern portion of the 

city, as well as to central Chesapeake.  Most of Chesapeake is classified as having a low 

population vulnerability to mosquito-borne diseases. 

  By overlaying the dasymetric map with the land cover classes (Figure 24), the 

relationship between human vulnerability and land cover can be seen.  For the most part, regions 

covered in water or non-urban areas are populated with a small number of vulnerable people.  
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This was expected since there are less vulnerable locations in these regions compared to other 

areas.  In general, moderately vulnerable regions are classified as low intensity developed.  The 

highly vulnerable regions are classified as either low intensity or high intensity developed.  This 

observation was expected since these developed regions have more points of vulnerability such 

as schools and daycare centers.  Although the low and high intensity developed regions are 

populated with a high number of vulnerable people, the vulnerability patterns vary across these 

land cover classes.  Vulnerable population values range from very low to very high across the 

developed regions. 
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Figure 33: Dasymetric map of the population that is most vulnerable to mosquito-borne diseases.  

The vulnerable population data was mapped according to C-CAP land cover classes.  
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Risk of Mosquito-Borne Disease Transmission 

By overlaying the monthly mosquito abundance grids with the habitat suitability indices, 

the risk of disease transmission from both groups of mosquitoes is predicted across Chesapeake.  

The results represent an index of the risk of disease infection from the corresponding mosquitoes 

for June through August of 2003. Due to the normalization of the abundance values used to 

calculate risk, the risk indices are relative values.  The risk indices were classified to represent a 

scale of the level of risk of infection from mosquitoes for a particular month. 

Risk of Disease Infection from the Ephemeral Species 

The risk of disease transmission across Chesapeake from both A. vexans and P. 

columbiae is shown in Figure 34.  To provide an effective visualization of the risk indices, the 

risk values were classified into quantiles.  Each month‟s index was represented on the same 

scale.  It is apparent in looking at the maps that July has the widest spatial distribution of high 

risk areas.  In particular, northern Chesapeake has a very high potential risk of disease 

transmission in July.  The risk of disease transmission was predicted to be high across northern 

Chesapeake in June and August as well.  These northern high risk regions are mostly developed 

areas where vulnerability to disease is particularly high (Figure 33).  Across all months, the risk 

of transmission is especially high in the center of the city.  Many of these high risk areas are 

reflective of the dasymetric map of vulnerability.  By looking at the dasymetric map (Figure 33), 

it is clear that these high risk regions are areas classified as having a population with a high 

vulnerability to disease.  Based on the ephemeral species abundance maps (Figure  27), one 

might expect the western side of Chesapeake to have a high risk of disease transmission.  

However, the low proportion of vulnerable people in western Chesapeake causes the risk index 

to be relatively low on that side of the city, with the exception of the northwestern corner of the 
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Western Branch.  Overall, much of the rural area within the city was classified as having a low 

risk of disease infection from the ephemeral species from June to August. 

Figure 34: Risk of disease transmission from the ephemeral mosquito species.   Map values were 

classified into quantiles. 

 

Risk of Disease Infection from C. melanura 

The risk of disease infection from C. melanura across Chesapeake is represented in 

Figure 35.  The monthly risk indices were rendered on the same scale and were classified into 

quantiles.  The risk patterns regarding C. melanura are similar to those for the ephemeral species.  

However, when viewed closely, it is apparent that each monthly risk index is distinctive.  Across 

all months, the risk of disease transmission from C. melanura is particularly high in northern 
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Chesapeake. Central Chesapeake also exhibits a high risk of disease infection for all three 

months.  In July, the highest risk areas are more widely distributed across northern Chesapeake.  

As mentioned with regard to the ephemeral species, these high risk areas are regions estimated to 

have a population that is highly vulnerable to disease.  For all three months, a large portion of 

Chesapeake was predicted to have a very low risk of disease transmission from C. melanura.   

 

 

Figure 35: Risk of disease transmission from C. melanura.  Values were classified into quantiles. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

This chapter begins by discussing the patterns associated with the mosquito abundance 

and risk of disease transmission results.  This chapter also describes the limitations associated 

with this study as well disease data that supports the model results.  This chapter concludes with 

a summary of the significance of this research.   

Mosquito Abundance Patterns 

The linear regression results have provided valuable insight regarding the relationship 

between environmental variables and mosquito trap data in 2003.  Based on the WSC linear 

regression model, we can conclude that temperature, rainfall, and TMI had the greatest impact on 

mosquito presence in western Chesapeake.  Using these results as well as the HSI model, 

populations of A. vexans, P. columbiae, and C. melanura were predicted to be very high in 

western Chesapeake.  This western region where abundance is especially high, surrounds the 

Great Dismal Swamp.  It is no surprise that abundance is predicted to be high in this region, as 

the Great Dismal Swamp is known to be heavily populated with mosquitoes (Pettie, 1976).  The 

wet conditions of the swamp provide an ideal habitat for mosquitoes to breed.  These high 

abundance regions in the west are mostly covered by wetlands or cultivated croplands.  Swamps 

and wetlands are known to be the prime breeding grounds for C. melanura.  Cultivated croplands 

also have been proven to be ideal habitats for mosquitoes.  According to Ward et al. (2009), 

agricultural runoff and irrigation from cultivated croplands can support mosquito presence.  

Ditches and temporary pools of water can also serve as breeding grounds for mosquitoes.  In 

regard to the ephemeral species, the high numbers predicted to reside in rivers and open water 

was expected.  According to Crans (2004), the largest numbers of these species are found in 

flood plains where rivers overflow their banks, but significant numbers can be produced from 

virtually any area where fresh ground water accumulates on an intermittent basis.   
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Comparatively, eastern Chesapeake is predicted to have a low monthly abundance of 

both types of mosquitoes.  These predictions are partially based on the linear regression model 

which predicted that the environmental variables would have a limiting effect on mosquito 

presence in central and eastern Chesapeake.  This prediction could be partly attributed to the 

limited number of mosquito captures in eastern Chesapeake.  In general, the traps on the eastern 

side of the city have significantly less mosquitoes than the western side of the city (Figures 28 

and 31).  Eastern Chesapeake is covered by various types of land cover.  Agricultural land such 

as cultivated croplands and pastures cover much of southeastern Chesapeake. Although irrigation 

and runoff from cultivated land can support mosquito populations, these regions are expected to 

be a poorer habitat for mosquitoes due to the high drainage potential.  Although there are highly 

drained areas across eastern Chesapeake, the drainage potential varies across this side of the city 

(Figure 8).  One pattern among the abundance results can be seen in northern Chesapeake, 

particularly on the northern tip of the city.  This region was predicted to have a very low 

abundance of both mosquito types in July and August.  The northern portion of Chesapeake is 

dominated by low and high intensity developed land.  Because urban areas are not the primary 

habitat of the three mosquito species under consideration, these developed areas are not expected 

to have a large number of mosquitoes.  Another obvious trend is the low number of mosquitoes 

predicted for August.  The trap data shows that August had significantly less mosquito captures 

in August compared to the other months (Figures 27 and 30).  The capture data is surprising 

since Hurricane Isabel struck Chesapeake in September of 2003.  The average temperature across 

Chesapeake was higher in August compared to other months, which would potentially increase 

the number of mosquitoes.    
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 The model results were considerably different than the surfaces interpolated from the 

mosquito captures. Overall, the interpolated surfaces show more spatial and temporal variation 

compared to the model results.  However, using the interpolation method to estimate the 

distribution of mosquito counts can be limiting.  For example, in eastern Chesapeake, ephemeral 

abundance was interpolated to be high in July and August based on only one trap site.  The trap 

data symbology (Figure 28) illustrates that one trap site in eastern Chesapeake had a particularly 

high abundance of ephemeral species across all months.  The high abundance of this particular 

trap caused a large portion of eastern Chesapeake to have a high abundance of ephemeral 

species.  If the trap data set included more trap sites, the IDW approach could more accurately 

interpolate the number of mosquitoes across Chesapeake.  Another limitation is that many of the 

trap sites were not counted during certain months.  If the trap data included a more even 

distribution of trap sites and regular count intervals, these surfaces could be a more reliable 

source for estimating mosquito abundance.  The abundance model on the other hand, may be 

more accurate due to the various determinant variables taken into account.  Mosquito presence is 

influenced by many interacting factors, particularly climatic variables (Gage et al., 2008). By 

incorporating environmental variables into the abundance model, the results may be more 

accurate than relying on vector abundance alone.    

Risk of Disease Transmission 

In general, the risk of disease transmission from mosquitoes does not vary drastically 

between the two species groups.  Because the risk values were influenced equally by the 

vulnerability and abundance values, the risk results represent the mean of the two variables.  

Regions with a high abundance of mosquitoes were not necessarily predicted to be at high risk of 

disease transmission.  For instance, the western side of Chesapeake was expected to have a high 
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risk of infection based on the high number of mosquitoes predicted.  However, because the 

number of vulnerable people in western Chesapeake is especially low, the risk of disease 

transmission is also low along western Chesapeake.  Regions that were predicted to have a high 

risk of disease transmission were areas that coincided with a high vulnerability to disease 

infection.   

Overall, areas at greatest risk of disease exposure are the more developed regions.  

Northern and central Chesapeake are predicted to be at very high risk of disease infection from 

both groups of mosquitoes. However, north Chesapeake is not predicted to have a high 

abundance of either mosquito type in June or August.  Therefore, in July and August, the high 

risk prediction in northern Chesapeake is based solely on the highly vulnerable nature of the 

population.  Central Chesapeake however, is predicted to have a large abundance of mosquitoes 

for most months.   Because northern and central Chesapeake have a higher density of people 

compared to other regions, it seems reasonable that people in these areas are more likely to 

become infected with a mosquito-borne disease.  Developed regions contain more points of 

vulnerability such as schools and nursing homes, increasing the vulnerable population in these 

areas.  According to Sutherst (2004), higher human population densities can have profound 

effects on the transmission potential of diseases. 

Study Limitations 

Although this thesis has attempted to avoid the problems commonly involved with 

predicting the risk of disease transmission, this study also faces some limitations.  One major 

constraint is the inconsistencies in the mosquito trap data.  A major problem in the abundance 

model is the uneven distribution of trap sites across the city.  Southeastern Chesapeake, in 

particular, has a limited number of mosquito traps compared to the rest of the city.  With a 
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broader range of trap locations, the linear regression model could more accurately predict the 

effects that the environmental variables have on mosquito presence.  Another issue with the trap 

data is the inconsistency in the frequency of trap counts.  In other words, trap captures were not 

counted at consistent weekly intervals.  Although the trap counts were normalized to take into 

account the number of trap nights, uniform trap counts could potentially have led to more 

sensitive model results.  With a more complete data set, the relationship between the independent 

variables and the trap counts may have been more significant.  Also, trap data may have not been 

the best variable for predicting the risk of disease infection.  A more effective variable would 

have been the sites of human infection.  However, disease cases are often underreported and this 

type of data would be extremely difficult to access.  Nonetheless, Chesapeake has a much more 

comprehensive mosquito data set compared to surrounding jurisdictions.   

Another limiting variable is the AWAT temperature dataset.  Because the monthly 

temperature values are constant across the city, the spatial variation in temperature is lost.  If the 

temperature values had been spatially-dependent, the relationship between temperature and the 

trap data may have been more significant.  Other spatially-dependent variables may have been 

considered for this study.  Wind speed or direction may have been useful variables for estimating 

vector abundance.  Wind activity can interact with the flight activity of mosquitoes and help 

disperse them to new areas (Service, 1980).   

Another limitation of this study was the lack of consideration for mosquito control efforts 

in Chesapeake.  Due to discrepancies that may exist between vector abundance and risk, it is 

important to consider factors limiting mosquito populations.  For instance, mosquito control 

efforts in Chesapeake could have limited the number of mosquitoes in areas predicted to have a 

high abundance.  In Chesapeake, control efforts such as adulticiding, larviciding, and source 
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reduction are implemented as needed, making it difficult to analyze the patterns associated with 

mosquito control efforts.   Ultimately, these disparities could affect the trap counts and risk 

estimation across Chesapeake.  Although small-scale control efforts were applied across 

Chesapeake in 2003, no large-scale control efforts were employed.  In 2003, aerial pesticide 

spraying was limited to cities such as Newport News, Hampton, and Pocuoson (Schnaars, 2003).   

Model Validation 

It is difficult to validate the models created in this thesis due to the lack of human disease 

data for Chesapeake, Virginia.  In 2003, there were no human cases of WNV or EEE in 

Chesapeake (Virginia Department of Health, 2004).  Therefore, the risk indices cannot be 

compared to actual disease cases.  In 2003, 20 pools of mosquitoes were found to be positive for 

C. melanura infected with EEE, while 10 pools were infected with C. melanura positive for 

WNV (Virginia Department of Health, 2004).  This data confirms that C. melanura mosquitoes 

were in fact a health threat to Chesapeake in 2003.  However, bird, equine, and sentinel flock 

cases of WNV and EEE were reported for this year (Figures 36-37).  These cases may not 

provide a validation of the model since the model estimates risk to humans, rather than animal 

hosts, but they do lend some credence to the model.  Some studies however, have found that 

animal cases can be accurate indicators of human disease cases.  Eidson et al. (2001) evaluated a 

system of dead bird surveillance as an early warning system for WNV in New York state. They 

found that dead bird reports preceded confirmation of viral activity in humans by at least three 

months.   There are no obvious similarities between the disease cases and the risk predictions.  

Disease cases in animals however, are expected to be positively related to mosquito abundance.  

The high density of WNV cases in northeastern Chesapeake (Figure 36) does show a strong 

correlation with the mosquito abundance results.  Across all months, abundance was predicted to 



 

90 

 

be high in northwestern Chesapeake for both groups of species.  A more obvious relationship can 

be seen between EEE cases and C. melanura abundance.  In 2003, the majority of EEE cases 

occurred in western Chesapeake, surrounding the Dismal Swamp.    The abundance of the EEE 

vector, C. melanura was predicted to be high in western Chesapeake from June through August.  

The high number of disease cases in western Chesapeake lends support to the accuracy of the 

mosquito abundance model.    
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Figure 36: Cases of WNV in birds, chickens, and horses across Chesapeake Virginia in 2003.  

This map was created by Chesapeake Mosquito Control GIS. 
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Figure 37: Cases of EEE in birds, chickens, and horses across Chesapeake Virginia in 2003.  

This map was created by Chesapeake Mosquito Control GIS. 
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Significance of Research 

As vector-borne diseases continue to persist, many researchers and healthcare officials 

are concerned with estimating and mapping disease risk.  Unfortunately, many of these attempts 

to estimate risk have been limited.  Risk estimation studies are often not dynamic or predictive.  

According to Sutherst (2004), there have not yet been thorough quantitative studies addressing 

the many processes at work involved with infectious diseases.  This thesis has attempted to 

address these and other shortcomings to accurately predict the risk of disease transmission from 

mosquitoes.    

Many studies estimate the risk of disease exposure based on disease incidence.  

According to Ostfeld, Glass, and Keesing (2005), discrepancies between risk and incidence can 

pose a problem when estimating risk.  For instance, the use of preventative measures such as 

mosquito bednets and water filtration can reduce incidence where risk of exposure is high.  

Inconsistent standards of disease reporting can also cause inaccuracies in risk estimation.  Under-

reporting as well as over-reporting of infectious diseases are a common problem.  Discrepancies 

between locations where infections were obtained and where the diseases were reported is also a 

common issue.  This study has avoided these issues by predicting the risk of disease transmission 

rather than simply mapping where disease cases have occurred.   

Another way this study has attempted to improve upon risk modeling techniques, is to 

predict vector abundance rather than to simply map the presence of vectors.   Many studies often 

use vector presence to estimate risk, rather than vector abundance. According to Ostfeld, Glass, 

and Keesling (2005), disease risk is more closely correlated with the abundance of vectors, rather 

than with the presence of the vector.  Using vector presence to estimate risk can also be 

constraining because the direct causal relationship linking environmental conditions to vector 
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presence is often not established.  This study has excluded this issue by using statistical methods 

to directly link environmental variables with mosquito presence. 

 Another shortcoming this study has addressed is the failure to incorporate human 

vulnerability into risk assessment studies.  More studies are using predictive modeling to 

estimate risk of disease transmission, but few take into account human behavior or vulnerability.  

According to McCarthy et al. (2001), effective modeling of future risk for vector-borne disease 

outbreaks needs to take into account human behavior that increases exposure.  Sutherst (2004) 

also explains that human vulnerability and socioeconomic changes have major significance in 

future disease patterns.  Vector abundance can be an effective method for estimating areas at 

high risk of disease infection, however, without considering the nature of the population, it is 

difficult to accurately estimate risk.   This thesis has attempted to fill this gap by predicting the 

risk of disease transmission using both environmental and human data.   

According to Glass et al. (1995), there is a need to extend risk analysis to larger, less 

defined areas, while reducing the expenditure of time and resources.  This study has addressed 

this issue by creating a time and cost efficient model that can assess risk over a large area.  

Although there were limitations to this study, the goal of this thesis was to create a portable and 

reproducible model that could predict the risk of disease transmission.  In this regard, this study 

was successful. With the appropriate data, the models created for this thesis could be applied to 

another city to identify areas at high risk for disease infection.   These techniques could be 

especially useful prior to an extreme weather event such as a hurricane.  It is important to 

identify high-risk areas and communities in order to focus efforts toward adaptation of the 

existing disease management programs (Sutherst, 2004).   By identifying high-risk areas in 

advance, healthcare officials can improve the efficacy of disease prevention measures.  More 
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specifically, officials can target where to implement early-warning systems and educational 

programs.  Knowing where infectious diseases are likely to emerge could aid healthcare 

managers in diagnosing and treating patients promptly.  By predicting areas of high vector 

abundance, the mosquito abundance model can potentially help officials target where to 

implement mosquito control efforts.   This could potentially reduce the high cost associated with 

mosquito control efforts.  Hopefully, more studies will employ techniques such as the ones used 

in this study to help prevent the occurrence and the spread of infectious diseases.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

96 

 

REFERENCES 

 

Ahern, M., R. S. Kovats, P. Wilkinson, R. Few and F. Matthies. 2005. Global Health Impacts of 

Floods: Epidemiologic Evidence. Epidemiologic Reviews 27: 36-46. 

Albert, D. P., W. M. Gesler, B. Levergood. 2000. Spatial Analysis, GIS, and Remote Sensing 

Applications in the Health Sciences. Chelsea, MI: Ann Arbor Press.  

Allen, T. R. and D.W. Wong. 2006.  Exploring GIS, Spatial Statistics and Remote Sensing for 

Risk Assessment of Vector-borne Diseases: A West Nile Virus Example. International 

Journal of Risk Assessment and Management 64(4-6): 253-275.  

American Mosquito Control Association. 2005. Mosquito-Borne Diseases. 

http://www.mosquito.org/mosquito-information/mosquito-borne.aspx. (last accessed 30 

April 2010).   

Beck, L. R., M. H. Rodriguez, S. W. Dister. A. D. Rodriguez, E. A. Rejmankova, A. Ulloa, R. A. 

Mexa, D. R. Roberts, J. F. Paris, M. A. Spanner, R. K. Washino, C. Hacker, and L. J. 

Legters. 1994. Remote Sensing as a Landscape Epidemiologic Tool to Identify Villages 

at High Risk of Transmission.  The American Journal of Tropical Medicine and Hygiene 

51(3): 271-280. 

Becker, N. 2000. Entomopathogenic Bacteria. Netherlands, Kluwer Academic Publishing. 

Bellows, A. S. 2007. Modeling Habitat and Environmental Factors Affecting Mosquito 

Abundance In Chesapeake,Virginia. Ph.D. Dissertation, Old Dominion University.  

Beven, K. J. 1007. Topmodel: a critique. Hydrologic Processes 11: 1069-1085. 

Brownstein, J. S., H. Rose, D. Purdy, J. R. Miller, M. Merlino, F. Mostashari, and D. Fish. 2002. 

Spatial Analysis of West Nile Virus: Rapid Risk Assessment of an Introduced Vector-

borne Zoonosis. Vector-borne and Zoonotic Diseases 2(3): 157-164. 

Brownstein, J. S., T. R. Holford, and D. Fish. 2003. A Climate-based Model Predicts the Spatial 

Distribution of the Lyme Disease Vector Ixodes scapularis in the United States. 

Environmental Health Perspectives 111(9): 1152-1157. 

 

Bryan, J. H., D. H. Foley, and R.W. Sutherst. 1996. Malaria Transmission and Climate Change 

in Australia. Medical Journal of Australia 164: 345-347. 

Caillouet, K.A., J.C. Carlson, D. Wesson, and F. Jordan. 2008. Colonization of Abandoned 

Swimming Pools by Larval Mosquitoes and Their Predators Following Hurricane 

Katrina. Journal of Vector Ecology 33(1): 166-172. 

 



 

97 

 

Cameron, D and I. G. Jones. 1983. John Snow, the Broad Street Pump and Modern 

 Epidemiology. International Journal of Epidemiology 12(4): 393-396. 

Ceccato, P., S. J. Connor, I. Jeanne, and M. C. Thomson. 2005. Application of Geographical 

Information Systems and Remote Sensing Technologies for Assessing and Monitoring 

Malaria Risk. Parasitologia 47: 81-96 

Centers for Disease Control and Prevention (CDC). 2003. Epidemic/Epizootic West Nile Virus 

in the United States: Revised Guidelines for Surveillance, Prevention, and Control.  U.S. 

Department of Health and Human Services, Public Health Service Report 3: 1-78.  

Centers for Disease Control and Prevention (CDC). 2006.  West Nile Virus: What You Need To 

Know. http://www.cdc.gov/ncidod/dvbid/westnile/wnv_factsheet.htm (last accessed 2 

Februrary 2010). 

Centers for Disease Control and Prevention (CDC). 2009. Eastern Equine Encephalitis. 

http://www.cdc.gov/EasternEquineEncephalitis/Epi.html (last accessed 29 October 

2009). 

Chesapeake Mosquito Control Commission. 2010. Mosquito Control. 

http://www.chesapeake.va.us/services/depart/mosquito/index.shtml (last accessed 27 

March 2010).   

Craig, M. H., R. W. Snow, and D. Le Sueur. 1999.  A Climate-based Distribution Model of 

Malaria Transmission in Sub-Saharan Africa. Parasitology Today 15(3): 105-111. 

 

Crans, W. G. 2004. A Classification System for Mosquito Life Cycles: Life Cycle Types for 

Mosquitoes of the Northeastern United States. Journal of Vector Ecology 29: 1-10.   

 

Crist, E. P. and R. C. Cicone. 1984. Application of the Tasseled Cap Concept to Simulated 

Thematic Mapper Data. Photogrammetric Engineering and Remote Sensing 50(3): 343-

352. 

 

Cromley, E.K. and S.L. McLafferty. 2002. GIS and Public Health. New York: Guilford Press.   

Eidson, M., N. Komar, F. Sorhage, R. Nelson, T. Talbot, F. Mostashari, R. Mclean, and the West 

Nile Virus Avian Surveillance Group. 2001. Crow Deaths as a Sentinel Surveillance 

System for West Nile Virus in the Northeastern United States, 1999. Emerging Infectious 

Diseases 7(4): 615-620. 

Epstein, P.R. 2005. Climate Change and Human Health. The New England Journal of 

 Medicine 353(14): 1433-1436.   

Ford, T. E., R. R. Colwell, J. B. Rose, S. S. Morse, D. J. Rogers, and T. L. Yates. 2009. Using 

Satellite Images of Environmental Changes to Predict Infectious Disease Outbreaks.  

Emerging Infectious Diseases 15(9): 1341-1346. 

Gage, K.L., T.R. Burkot, R.R. Eisen, and E.B. Hayes. 2008. Climate and Vectorborne 

 Diseases. American Journal of Preventitive Medicine 35(5): 436-450.  



 

98 

 

Gatton, M.L. A. Kelly-Hope, B.H. Kay, and P. A. Ryan. 2004. Spatial-Temporal Analysis of 

Ross River Virus Disease patterns in Queensland, Australia. The American Journal of 

Tropical Medicine and Hygiene 71(5): 629-635. 

Gatrell, A. and M. Loytonen. 1998. GIS and Health.  Philadelphia, PA: Taylor & Francis. 

Glass, G.E., B. S. Schwartz, J.M. Morgan, D.T. Johnson, P.M. Noy, and E. Israel. 1995. 

Environmental Risk Factors for Lyme Disease Identified with Geographic Information 

Systems. American Journal of Public Health 85(7): 944-948. 

Glass, G.E., T.M. Shields, R.R. Parmenter, D. Goade, J.N. Mills, J. Cheek, J. Cook, and T.L. 

Yates.  2006. Predicted Hantavirus Risk in 2006 for the Southwestern U.S. Occasional 

Papers, Museum of Texas Tech University 255(1): 1-16. 

Glass, R.I. and E.K. Noji. 1992.  Public health surveillance New York: Van Nostrand Reinhold.  

Gratz, N.G. 1999. Emerging and Resurging Vector-borne Diseases. Annual Review of 

 Entomology 44: 51-75. 

Guerra, M., E. Walker, C. Jones, S. Paskewitz, M.R. Cortinas, A. Stancil, L. Beck, M. Bobo, and 

U. Kitron. 2002. Predicting the Risk of Lyme Disease: Habitat Suitability for Ixodes 

scapularis in the North Central United States. Emerging Infectious Diseases 8(3): 289-

297. 

Hassan, A.N., M.A. Kenawy, H. Kamal, A.A. Abdel Sattar, and M.M. Sowilem. 2003 GIS-based 

Prediction of Malaria Risk in Egypt. Eastern Mediterranean Health Journal 9(4): 548-

558. 

Hayes, R.O. and A.D. Hess. 1964. Climatological Conditions Associated with Outbreaks of 

Eastern Encephalitis. The American Society of Tropical Medicine and Hygiene 13(6) 851-

858.  

Hoshen, M.B., A.P. Morse, E. Worrall, S.J. Connor, M.C. Thomson. 2005. The Modeling of 

Malaria Epidemics: Weather and prediction of Malaria Cases. Geography and Health 9: 

103-123.  

Hu, H., P. Singhasivanon, N.P. Salazar, K. Thimasarn, X. Li, Y. Wu, H. Yang, D. Zhu, S. 

Supavej, and S. Looarecsuwan. 1998. Factors Influencing Malaria Endemicity in Yunnan 

Province, PR China (analysis of spatial pattern by GIS).  Southeast Asian Journal of 

Tropical Medicine and Public Health 29(2): 191–200. 

Hunter, P.R. 2003. Climate Change and Waterborne and Vector-borne Diseases. Journal of 

Applied Microbiology 94: 37S-46S. 

Kitron, U. 2000. Risk Maps: Transmission and Burden of Vector-borne Diseases. Parasitology 

Today 16 (8): 324-325. 

Kitron, U., J. Michael, J. Swanson, and L. Haramis. 1997. Spatial Analysis of the Distribution of 

Lacrosse Encephalitis. American Journal of Tropical Meteorology 57(4): 469-475. 



 

99 

 

Lacey, L.A., C. M. Lacey. 1990. The Medical Importance of Riceland Mosquitoes and their 

Control Using Alternatives to Chemical Insecticides. Journal of the American Mosquito 

Control 6(2): 1-93. 

 

Lawson, A.B. 2001. Statistical Methods in Spatial Epidemiology. West Sussex, England: Wiley.   

 

Mahmood, F. and W.J. Crans. 1998. Effect of Temperature on the Development of Culiseta 

melanura (Diptera: Culicidae) and its Impact on the Amplification of Eastern Equine 

Encephalomelitis Virus in Birds.  Journal of Medical Entomology 35 (6): 1007–1012. 

Manuel, J. 2006. In Katrina's Wake. Environmental Health Perspectives. 114(1): A32-A39.  

Martens, P., R.S. Kovats, S. Nijhof, P. de Vries, M. T. J. Livermore, D. J. Bradley, J. Cox, A. J. 

McMichael.  1999. Climate Change and Future Populations at Risk of Malaria- A Review 

of Recent Outbreaks. Global Environmental Change 9(1): 89-107. 

Martens, W.J. M., T.H. Jetten, J. Rotmans, and L.W. Nielsen. 1995. Climate Change and Vector-

borne Diseases: A Global Modelling Perspective. Global Environmental Change 5(3): 

195-209.   

Mather,  F.J., L.E. White, E.C. Langlois, C.F. Shorter, C.M. Swalm, J.G. Shaffer, and W.R. 

Hartley. 2004. Statistical Methods for Linking Health, Exposure, and Hazards. 

Environmental Health Perspectives 112(14): 1440-1445. 

McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S. (Eds.). 2001. Climate 

Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II 

to the Third Assessment Report of the Intergovernmental Panel on Climate Change. 

Cambridge: University Press, Cambridge. 

 

Meade, M.S. and R.J. Earickson. 2005. Medical Geography. New York, NY: Guildford Press. 

Mennis, J. and T. Hultgren. 2006. Intelligent Dasymetric Mapping and its Application to Areal 

Interpolation. Cartography and Geographic Information Science 33(3): 179-194. 

Nasci, R .S. and C. G. Moore. 1998. Vector-borne Disease Surveillance and Natural 

 Disasters. Emerging Infectious Diseases 4(2): 333-334. 

Noji, E.K. 1997. The Public Health Consequences of Disasters.  New York: Oxford University 

Press.  

Ostfeld, R.S., G.E. Glass, and F. Keesing. 2005. Spatial Epidemiology: An Emerging (or Re-

Emerging) Discipline. Trends in Ecology and Evolution 20(6): 328-336. 

Panditrao, M., P. Jeevan, and T. Akbar. 2006. Use of Geographic Information Systems (GIS) to 

Predict Vector-borne Disease Outbreaks: A crucial step towards cost effective prevention 

of diseases. Proposal submitted to the “Bears Breaking Boundaries” Contest.  

http://astro.temple.edu/%7Ejmennis/pubs/mennis_cagis06.pdf
http://astro.temple.edu/%7Ejmennis/pubs/mennis_cagis06.pdf


 

100 

 

Peterson, R.K., P.A. Macedo, and R.S. Davis. 2006. A Human-Health Risk Assessment for West 

Nile Virus and Insecticides Used in Mosquito Management. Environmental Health 

Perspectives 114 (3): 366–372.  

Pettie, S. T. 1976. Preserving the Great Dismal Swamp. Journal of Forest History 20(1): 28-33. 

Rose, R.I. 2001. Pesticides and Public Health: Integrated Methods of Mosquito Management.  

Emerging Infectious Diseases 7(1): 17-23. 

 

Schaeffer, B., B. Mondet, and S. Touzeau. 2008. Using a Climate-Dependent Model to Predict 

Mosquito Abundance: Application to Aedes (Stegomyia) africanus and Aedes 

(Diceromyia) furcifer (Diptera: Culicidae). Infection Genetics and Evolution 8(4): 422-

432. 

Service, M.W. 1980. Effects of Wind on the Behaviour and Distribution of Mosquitoes and 

Blackflies. Interational Journal of Biometeorology 24(4): 347-353. 

Shaman, J., M. Stieglitz, C. Stark, S Le Blancq, and M. Cane. 2002. Using a Dynamic 

 Hydrology model To Predict Mosquito Abundances in Flood and Swamp Water. 

 Emerging Infectious Diseases 8(1): 6-13.  

Shnaars, C. 2003. Localities Might Pay to Replace Spraying. The Daily Press 16 March.  

Shone, S. M., P.N. Ferrao, C.R. Lesser, D.E. Norris, and G.E. Glass. 2001. Analysis of Mosquito 

Vector Species Abundances in Maryland using Geographic Information Systems. Annals 

of the New York Academy of Sciences 951: 364-368. 

Sleeter, R. 2004. Dasymetric mapping techniques for the San Francisco Bay region, California: 

Urban and Regional Information Systems Association, Annual Conference, Proceedings, 

Reno, Nev., November 7–10, 2004. 

Slocum, T.A., R.B. McMaster, F.C. Kessler, and H.H. Howard. 2009. Dasymetric Mapping. In 

Thematic Cartography and Geovisualization, Third edition, 271-280. Pearson/Prentice 

Hall.  

Smith, C.M. and C.S. Graffeo. 2005. Regional Impact of Hurricane Isabel on Emergency 

Departments in Coastal Southeastern Virginia. Academic Emergency Medicine 12(12): 

1201-1205. 

 

Speilman, A. and M. D'Antonio. 2001. Mosquito: A Natural History of Our Most Persistent and 

Deady Foe.  New York: Hyperion. 

Sutherst, R.W. 1998. Implications of Global Change and Climate Variability for Vector-borne 

Diseases: Generic Approaches to Impact Assessments. International Journal for 

Parasitology 28: 935-945. 

Sutherst, R.W. 2004. Global Change and Human Vulnerability to Vector-borne Diseases.  

Clinical Microbiology Reviews 17(1): 136-173. 



 

101 

 

Tanser, F.C., B. Sharp, D. le Sueur.  2003. Potential Effect of Climate Change on Malaria in 

Africa. The Lancet 362(9398): 1792-1798. 

Thier, A. 2001. Balancing the Risks: Vector Control and Pesticide Use in Response to Emerging 

Illness. Journal of Urban Health: Bulletin of the New York Academy of Medicine 78(2): 

372-381. 

Thomson, M.C., S.J. Connor, P. Milligan, and S.P. Flasse. 1997. Mapping Malaria Risk in 

Africa: What Can Satellite Data Contribute?  Parasitology Today 13(8): 313-318. 

Turner, M.G. 1989. Landscape Ecology: The Effect of Pattern on Process. Annual Review of 

Ecology and Systematics 20: 171-197. 

United States Geologic Society (USGS). 2009.  Dasymetric Mapping Tools. 

http://geography.wr.usgs.gov/science/dasymetric/data.htm (last accessed 9 December 

2009). 

Virginia Department of Health. 2004. Arbovirus Data 2003.  

http://www.vdh.virginia.gov/epidemiology/DEE/Vectorborne/arboviral/documents/testre

sults/2003.html (last accessed 12 March 2010).   

Ward, M.P., C.A. Wittich, G. Fosgate, and R. Srinivasan. 2009.  Environmental Risk Factors for 

Equine West Nile Virus Disease Cases in Texas. Veterinary Research Communications 

33(5): 461-471. 

Waring, S., A. Zakos-Feliberti, R. Wood, M. Stone, P. Padgett, R. Arafat. 2005. The Utility of 

Geographic Information Systems (GIS) in Rapid Epidemiological Assessments 

Following Weather-related Disasters: Methodological Issues Based on the Tropical 

Storm Allison Experience. International Journal of Hygiene and Environmental Health 

208: 109-116. 

Washino, R.K. and B.L. Wood. 1994.  Application of Remote Sensing to Vector Arthropod 

Surveillance and Control.  American Journal of Tropical Medicine and Hygiene 50(6): 

134-144. 

Watson, J.T., M. Gayer, and M.A. Connolly. 2007. Epidemics After Natural Disasters. 

 Emerging Infectious Diseases 13(1): 1-5. 

Wilson, M.L. 2002. Emerging and Vector-borne Diseases: Role of High Spatial Resolution and 

Hyperspectral Images in Analyses and Forecasts.  Journal of Geographic Systems 4: 31-

42. 

World Health Organization (WHO). 2004. Using Climate to Predict Disease Outbreaks: A 

Review.  Communicable Diseases Surveillance and Response, Roll Back Malaria, 

Geneva, 2004. 

 



 

102 

 

APPENDIX A: 2003 C. melanura Trap Data  

 

Location June July August Total Trap Nights Normalized Total 

 

NW River Park 
27 326 35 496 25 19.84 

Timberwood 16 115 19 210 18 11.67 

3110 Monitor Ct 71 350 109 692 21 32.95 

5040 Portsmouth Blvd 45 1178 1133 3476 25 139.04 

4704 Waxwing Ct 11 563 483 7163 20 358.15 

4821 W Military HWY (past 

Econo Lodge) 
175 3336 515 7279 23 316.48 

Truitt Rd 577 8699 7783 25521 24 1063.38 

Martin Johnson Rd 586 9277 2086 21921 23 953.09 

Kentucky Trail 273 789 313 6977 21 332.24 

Appaloosa Trail 220 2229 1337 10349 24 431.21 

Shipyard Rd 2 694 55 1222 18 67.89 

1943 Elbow Rd 112 2340 210 3567 25 142.68 

Across from 2512 Pocaty RD 798 926 104 2138 23 92.96 

2032 Johnstown Rd 69 214 4 717 16 44.81 

472 Albemarle Dr 11 111 6 162 19 8.53 

Fernwood Farms 20 206 84 582 24 24.25 

3636 Ballahack Rd 156 596 221 1518 24 63.25 

2520 Wild Horse Ridge 1155 1672 1133 5635 22 256.14 

RRR (3531 Bunch Walnuts) 19 433 26 708 25 28.32 

Rokeby Ave 15   16 2 8 

1536 Bainbridge Blvd  64 7 77 10 7.7 

Hanes St (Godwin Ave) 15 57 10 181 25 7.24 

4210 Cornland Rd 1039 2972 359 9385 25 375.4 

Raquet Club-Back Rd-

Tunbridge 
747 784 

111 
1821 17 107.12 
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S. Military Hwy (Ches. 

Fence) 
2 152 5 186 15 12.4 

2308 Silvertown 70 75 107 915 16 57.19 

1341 Barbara Ct (Oakridge) 25 139 78 835 21 39.76 

Hallmark Way (Shillelagh 

Farms) 
 857 252 3407 16 212.94 

2333 Bugle dr  18  18 1 18 

4712 White Owl Crescent  210  210 1 210 

3933 Chadswyck RD  132 41 173 2 86.5 

McNeal Ave.  0 3 6 13 0.46 

Deep Creek Shop  32 1 33 2 16.5 

BARN WAY  1257  1257 1 1257 

2861 Meadow Wood Dr.  3  3 1 3 

4736 Barn Swallow Dr.  191  191 1 191 

Columbo/Coffman  360  360 1 360 

AMES CIR  81  81 1 81 

4421 Taylor Rd    17 1 17 

2332 Pocaty Rd    32 1 32 
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APPENDIX B: 2003 Ephemeral Species Trap Data  

 

Location June July August Total Trap Nights Normalized Total 

NW River Park 5 134 12 331 25 13.24 

Timberwood (3904 Savannah Dr) 6 62 6 91 18 5.06 

3110 Monitor Ct 78 49 10 145 21 6.90 

WB stables (5040 Portsmouth Blvd) 382 249 71 1112 25 44.48 

4704 Waxwing Ct 130 35 10 341 20 17.05 

West Military Hwy 284 177 38 546 23 23.74 

Truitt Rd 149 47 18 368 24 15.33 

Martin Johnson Rd 165 249 14 1097 23 47.70 

Kentucky Trl 29 3 2 160 21 7.62 

Appaloosa Trl 69 103 19 303 24 12.63 

Shipyard Rd 2 49 9 200 18 11.11 

1943 Elbow Rd 15 102 7 237 25 9.48 

Pocaty Rd 8 14 5 60 23 2.61 

2032 Johnstown Rd 27 9 1 48 16 3.00 

472 Albemarle Dr 157 11 56 240 19 12.63 

Fernwood Farms (Mapleshore Dr) 191 39 16 554 24 23.08 

3636 Ballahack Rd 643 359 298 1722 24 71.75 

2520 Wild Horse Ridge 2294 528 28 2944 22 133.82 

RRR (3531 Bunch Walnuts) 30 40 13 213 25 8.52 

Rokeby Ave 9 
  

13 2 6.50 

1536 Bainbridge Blvd 
 

35 5 79 10 7.90 

Haynes Ave 69 101 16 390 25 15.60 

4210 Cornland Rd 194 169 8 494 25 19.76 

Tunbridge Stn (Back Rd) 8 
35 

10 84 17 4.94 
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S. Military Hwy (Ches. Fence) 33 182 2 280 15 18.67 

2308 Sivertown Ave 60 406 400 1257 16 78.56 

Oakridge (1341 Barbara Ct) 61 91 7 207 21 9.86 

Hallmark Way (Shillelagh Farms) 
 

147 24 608 16 38.00 

2333 Bugle dr 
 

8 
 

8 1 8.00 

4712 White Owl Crescent 
 

20 
 

20 1 20.00 

3933 Chadswyck RD 
 

11 1 12 2 6.00 

McNeal Ave. 
 

14 3 24 13 1.85 

Deep Creek Shop 
 

2 0 2 2 1.00 

Barn Way 
 

2 
 

2 1 2.00 

2861 Meadow Wood Dr. 
 

9 
 

9 1 9.00 

4736 Barn Swallow Dr. 
 

8 
 

8 1 8.00 

Columbo/Coffman 
 

10 
 

10 1 10.00 

AMES CIR 
 

1 
 

1 1 1.00 

4221 Taylor Rd 
   

8 1 8.00 

2332 Pocaty Rd 
   

5 1 5.00 
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