
Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in
hematopoietic drug resistance

James A. McCubrey1,#, Linda S. Steelman1, Richard A. Franklin1, Steven L. Abrams1,
William H. Chappell1, Ellis WT Wong1, Brian Lehmann2, David M. Terrian2, Jorg Basecke3,
Franca Stivala4, Massimo Libra4, Camilla Evangelisti5, and Alberto M. Martelli5
1 Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University,
Greenville, North Carolina, USA 27858

2 Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville,
North Carolina, USA 27858

3 Division of Hematology and Oncology- Department of Medicine, University of Göttingen, Göttingen,
Germany

4 Department of Biomedical Sciences, University of Catania, Catania, Italy

5 Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Bologna, Italy

Introduction
Biology and Unanswered Questions Regarding Acute Myeloid Leukemia (AML)

Cancer remains the second leading cause of death in the USA despite recent advances in
treatment of patients with anti-neoplastic drugs. Approximately 42,000 people in the USA die
each year from leukemias and lymphomas which represent 10% of all cancer deaths.
Approximately 11,000 Americans will be diagnosed with AML this year, and about 75% will
eventually die from this disease. While improvements in the outcomes have been observed
with young patients with AML over the past 40 years, progress in the treatment of older AML
patients has not been as significant (Tallmann et al., 2005). Fifty to 75% of adults with AML
achieve complete remission with a combination chemotherapy which consists of combination
of the deoxycytidine analogue cytarabine and an anthracycline antibiotic (doxorubicin,
daunorubicin, idarubicin or the anthracenedione mitoxantrone, which inhibit the enzyme
topoisomerase IIa). However, this treatment is not always effective as only approximately 25%
of these patients enjoy long term survival (Tallmann et al., 2005). The incidence of AML
increase with age, 1.2 cases per 100,000 at age 30 and greater than 20 cases per 100,000 at age
80 (Tallmann et al., 2005). Unfortunately the outcome decreases with age. As the average life
span of Americans increases due to improvements in health care and life styles, AML will be
an increasing problem in American health care.

While approximately 50% of AML cases have genetic aberrations which can be identified
(e.g., deletions such as 5q-, translocations such as t(8;21) AML-ETO, or duplications such as
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Flt-3 internal tandem duplication [ITD]), the other 50% do not have currently identifiable
genetic mutations (Tallmann et al., 2004). Unlike chronic myelogenous leukemia (CML)
where the BCR-ABL translocation is present in virtually all patients and the majority of the
patients are sensitive to Imatinib, treatment with a targeted “upstream” inhibitor (e.g., Flt-3
inhibitor) would be ineffective in many AML cases. In summary, AML remains a difficult
disease to treat due in part to its genetic diversity.

Upregulation of the Ras>Raf>MEK>ERK and PI3K>Akt pathways and phosphorylation of
the downstream target Bad are observed frequently in AML specimens and associated with a
poorer prognosis than patients lacking these changes (Kornblau et al., 2006; Martelli et al.,
2206). Aberrant expression of a single pathway is associated with a poor prognosis and
abnormal expression of multiple signaling pathways is associated with an even worse prognosis
(Kornblau et al., 2006). Flt-3 ITD mutations have been detected in 20% of AMLs and these
patients have a poorer prognosis than patients lacking these mutations (Stone et al., 2004).
Dysregulation of the Ras>Raf>MEK>ERK and PI3K>Akt pathways in some AMLs may result
from constitutive activation of Flt-3 (Birkenkamp et al., 2004; Stirewalt et al., 2003; Meshinchi
et al., 2003). Thus these two signaling pathways provide important clues regarding the
mechanisms responsible for autonomous AML growth (Yokota et al., 1998; Hoelzer et al.,
2000; Pui et al., 1999; Attwell et al., 2003; McKearn et al., 1985). Targeting these
“downstream” pathways may prove effective for AML therapy, especially in those cases where
the precise mutation responsible for malignant transformation is unknown.

Drug Resistance and AML
A frequent side effect of treatment of AML patients with chemotherapeutic drugs is the
development of drug resistance. After chemotherapeutic drug treatment, drug resistant cells
arise which exhibit enhanced efflux of chemotherapeutic drugs (Tallmann et al., 2005Tallmann
et al., 2006;Burnett et al., 2006) Furthermore, the drug resistant cells often exhibit multi-drug
resistance as they are resistant to multiple chemotherapeutic drugs which are structurally
unrelated. In some cases, this phenomenon has been shown to be due to the increased expression
of membrane transporters (Gottesman et al., 2002; Norgaard et al., 2004; van den Heuvel-
Eibrink et al., 2000; Ross 2000; Kruh et al., 2003). These transporters belong to a large family
of proteins which contains an ATP binding cassette (ABC) domain. Multi-drug resistance
protein (Mdr-1 a.k.a., P glycoprotein, Pgp) was one of the first of these molecules to be
identified to have a role in drug resistance. Subsequently, additional proteins with this ABC
domain were identified and determined to have a role in drug resistance. This family includes:
breast cancer resistance protein (BCRP-1), multi drug resistant protein (MRP), MRP1, MRP2,
MRP3, MRP4, MRP5, MRP6, MRP7, MRP8 as well as some other proteins. Inhibitors to some
of these membrane transporters have been developed and evaluated in clinical trials.
Unfortunately, these clinical trials have not yet yielded support for inclusion of these inhibitors
in drug resistance therapy (Teodori et al., 2006; Polgar et al., 2005; Ross 2004; Mahadevan
et al., 2004). An alternative approach could be to target the growth and survival pathways
which become activated in the drug resistant cells. Two pathways frequently implicated in drug
resistance are Raf>MEK>ERK and PI3K>Akt (Steelman et al., 2004; Lee et al., 2002; Osaki
et al, 2004; Tsuro et al., 2003, Kim et al., 2005). The proposed studies will investigate the roles
these pathways play in AML growth, drug resistance and sensitivity to targeted therapy.

The Ras>Raf>MEK>ERK Pathway
The Ras>Raf>MEK>ERK pathway is activated by many cytokines which are important in
driving the proliferation and promoting the survival of myeloid cells (Steelman et al., 2004).
After receptor ligation, Shc, Src homology (SH)-2, a SH2-domain containing protein, becomes
associated with the c-terminus of the cytokine receptor (Matsuguchi et al., 1994; Inhorn et
al., 1995; Okuda et al., 1999). Shc recruits the GTP-exchange complex Grb2/Sos resulting in
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the loading of membrane bound Ras with GTP (Tauchi et al., 1994; Lanfrancone et al.,
1995). Ras:GTP then recruits Raf to the membrane where it becomes activated, likely via a
Src-family tyrosine kinase (Karin et al., 1994; Lange-Carter et al., 1994; Marais et al., 1995).
Raf is responsible for phosphorylation of the mitogen associated/extracellular regulated
kinase-1 (MEK1) (Marais et al., 1997; Mason et al., 1999; Xu et al., 1995). MEK1
phosphorylates extracellular regulated kinases 1 and 2 (ERKs 1 and 2) on specific threonine
and tyrosine residues (Marais et al., 1997; Mason et al., 1999; Xu et al., 1995). Activated ERK1
and ERK2 serine/threonine kinases phosphorylate and activate a variety of substrates including
p90Rsk1 (Cardone et al., 1998; Allan et al., 2003; Davis et al., 1995; Xing et al., 1996; Coutant
et al., 2002; Iijima et al., 2002; Blalock et al., 2003). p90Rsk1 can activate the cyclic-AMP
response element binding protein (CREB) transcription factor (Xing et al., 1996). Moreover,
ERK can translocate to the nucleus and phosphorylate additional transcription factors such as
Elk1, CREB and Fos which bind promoters of many genes, including IL-3, a cytokine important
in stimulating the growth and survival of early myeloid progenitor cells (Deng et al., 1994;
Davis 1995; Robinson et al.,, 1998; Aplin et al., 2001; McCubrey et al., 2000; Tresini et al.,
2001; Eblen et al., 2001; Adachi et al., 2002; Wang et al., 1994; Thomas et al., 1997; Ponti et
al., 2002; Fry et al., 2002). The Raf>MEK>ERK pathway can also modulate the activity of
many proteins involved in apoptosis including: Bcl-2, Bad, Bim, Mcl-1, caspase 9, and Survivin
(Deng et al., 2001; Carter et al., 2003; Steelman et al., 2004; Jia et al., 2003; Troppmair et
al., 2003; Harada et al., 2004; Marani et al., 2004; Ley et al., 2003; Weston et al., 2003; Domina
et al., 2004; Gelinas et al., 2006).

B. 2.1 Roles of the Ras>Raf>MEK>ERK Pathway in Neoplasia
Ras is one of the most frequently mutated oncogenes in human cancer. Ten-50% of individuals
diagnozed with myelodysplastic syndrome or AML have Ras mutations (Janssen et al.,
1987; Padua et al., 1988; Needleman et al., 1988; Nakagawa et al., 1992; Lubbert et al.,
1992; Kubo et al., 1993; Aurer et al., 1994; Vasioukhin et al., 1994; Neubauer et al., 1994;
Gougopoulou et al., 1996; Gallagher et al., 1997; Parry 1997; Constantinidou et al., 1997; de
Souza Fernandez et al., 1998; Kiyoi et al., 1999; Flotho et al., 1999; Stirewalt et al., 2001;
Nakamura et al., 2004; Zebisch et al., 2006; Zebisch et al., 2006; Wellbrock et al., 2004;
Garnett et al., 2004). These are often point mutations which alter key residues that affect Ras
activity. Mutations which alter Ras activity also perturb the Raf>MEK>ERK kinase cascade.
Mutation of B-Raf is frequently observed in melanomas and most thyroid cancers (~70%) but
rarely in hematopoietic cancers (<4% in AML & NHL) (Davies et al., 2002; Brose et al.,
2002; Lee et al., 2003; Chan et al., 2003; Xu et al., 2003; Mercer et al., 2003; Lilleberg et
al., 2004; Kambara et al., 2004; Daniotti et al., 2004; Puxeddu et al., 2004; Wan et al., 2004;
Kim et al., 2004; Reifenberger et al., 2004; Fransen et al., 2004; Lee et al., 2004). Activating
mutations have been detected at Raf-1 in therapy-induced AML in certain families in Austria
(Zebisch et al., 2006). These preexisting Raf-1 mutations are genetically transmitted. MEK
and ERK are not thought to be frequently mutated in human cancer; however, the actual
published studies which document this are few, although they are listed at the Catalogue of
Somatic Mutations in Cancer, COSMIC, http://www.sanger.ac.uk/genetics/CGP/cosmic).
Mutations in upstream receptors such as Flt-3 (20 to 30%), Kit (7 to 17% of AMLs), Fms (12%
of MDS) and granulocyte colony stimulating factor receptor (G-CSF-R) have been documented
in AML and will cause the activation of the Ras>Raf>MEK>ERK pathway (Kiyoi et., 1998;
Shimada et al., 2006; Christiansen et al., 2005; Padua et al., 1998, Dong et al., 1997, Dong et
al., 1999). Furthermore, over expression of VEGF-R receptors has been observed in AML
which could result in activation of this pathway (Hiramatsu et al., 2006). Constitutive activation
of the Raf>MEK>ERK pathway has been implicated in invasion (Silberman et al., 1997),
metastases (Canman et al., 1995; Keller et al., 2005), angiogenesis (Canman et al., 1995; Simon
et al., 1996; Loda et al., 1996; Magi-Galluzzi et al., 1997) and radioresistance (Pirollo et al.,
1997). Aberrant activation of the Raf>MEK>ERK cascade has been associated with Bcl-2 and
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multi-drug resistance gene expression (Kim et al., 1996; Weinstein-Oppenheimer et al.,
2001; Arcinas et al., 2001; Wilson et al., 1996; Ji et al., 1996; Nunez et al., 1996; Davis et
al., 2003). A diagram of the mutations which can result in activation of the Raf>MEK>ERK
cascade is presented in Figure 1.

The PI3K>Akt Pathway
Cytokine receptor ligation also leads to rapid activation of phosphatidylinositol 3 kinase (PI3K)
(Drexler 1996; Rao et al., 1995; Chang et al., 2003; Steelman et al., 2004). Only Class IA PI3K
consists of an 85-kDa regulatory subunit, which contains SH3 Src-homology 2 (SH) and SH3
domains, and a 110-kDa catalytic subunit (Rao et al., 1995; Chang et al., 2003; Steelman et
al., 2004). Cytokine stimulation often creates a PI3K binding site on the cytokine receptor. The
p85 subunit SH2 domain associates with this site (Rao et al., 1995; Chang et al., 2003; Steelman
et al., 2004). The p85 subunit is then phosphorylated, which leads to activation of the p110
catalytic subunit. Activated PI3K phosphorylates the membrane lipid phosphatidylinositol
(4,5)-bisphosphate [PtdIns(4,5)P2] to phosphatidylinositol (3,4,5)-tri-phosphate [PtdIns(3,4,5)
P3] which activates PI3K-dependent kinase (PDK1). PDK1 then phosphorylates Akt at
threonine 308 (T308) (Steelman et al., 2004). A second kinase phosphorylates Akt on serine
473 (S473) (Cardone et al., 1998; Allan et al., 2003; Troussard et al., 2003; Xu et al., 2003;
Persad et al., 2003; Kumar et al., 2004; Songyang et al., 1997).

Akt can transduce an anti-apoptotic signal by phosphorylating downstream target proteins
involved in the regulation of cell growth [e.g., glycogen synthase kinase-3β (GSK-3β), Bim,
Bad, MDM-2, p21Cip1, X-linked inhibitor of apoptosis (XIAP) and the Foxo3a transcription
factor](Songyang et al., 1997; Scheid et al., 1998; del Peso et al., 1997; Nakae et al., 1999;
Brunet et al., 1999; Medema et al., 2000; Dijkers et al., 2000; Qi et al., 2006; Mayo et al.,
2001; Gottlieb et al., 2002; Zhou et al., 2002, Dan et al., 2004). Phosphorylated Foxo3a loses
its ability to induce Fas, p27Kip1, Bim, Noxa, and Puma gene transcription (Nakae et al.,
1999; Brunet et al., 1999; Medema et al., 2000; Dijkers et al., 2000; You et al., 2006; Obexer
et al., 2006). Akt also phosphorylates I-κK, which subsequently phosphorylates I-κB, resulting
in its ubiquitination and subsequent degradation in proteosomes (Ozes et al., 1999;
Romashkova et al., 1999; Madrid et al., 20000; Howe et al., 2002, 2004; Hu et al., 2004; Mayo
et al., 2000; Shishodia et al., 2004; Du et al., 1998; Arcinas et al., 2001). Disassociation of I-
κB from NF-κB enables NF-κB to translocate into the nucleus to promote gene expression that,
under certain circumstances, stimulates growth and prevents apoptosis (Du et al., 1998; Arcinas
et al., 2001). The PI3K>Akt pathway can also phosphorylate and activate CREB which
regulates anti-apoptotic genes including Mcl-1 and Bcl-2 (Du k et al., 1998;Wang et al.,
1999).

The PI3K pathway also results in activation of ribosomal protein kinases such as p70S6K (an
S6 ribosomal protein kinase) (Mahalingam et al., 1996; Dufner et al., 1999; Romanelli et al.,
1999; Harada et al., 2001; Edinger et al., 2004; Panwalkar et al., 2004; Jonassen et al.,
2004). p70S6K enhances translation of certain mRNAs, is needed for the early events of cell
cycle progression and suppresses apoptosis by phosphorylating Bad (Mahalingam et al.,
1996; Dufner et al., 1999; Romanelli et al., 1999; Harada et al., 2001; Edinger et al., 2004).
p70S6K is regulated by the mammalian Target of Rapamycin (mTOR) (Ma et al., 2005; Shaw
et al., 2006).

The PI3K pathway is negatively regulated by phosphatases. PTEN (phosphatase and tensin
homologue deleted on chromosome 10) is considered a tumor suppressor gene (Chang et al.,
2003; Steck et al., 1997; Li et al., 1997; Steelman et al., 2004). PTEN is primarily a lipid
phosphatase that removes the 3-phosphate from the PI3K lipid product PtdIns (3,4,5)P3 to
produce PtdIns (4,5)P2 which prevents Akt activation. PTEN is also reported to be a protein
phosphatase, although there is some controversy over the precise protein substrates (Steelman
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et al., 2004; Mahimainathan et al., 2004; Raftopoulou et al., 2004). Two other phosphatases,
SHIP-1 and SHIP-2, remove the 5-phosphate from PtdIns(3,4,5)P3 to produce PtdIns(3,4)P2
(Damen et al., 1996; Kavanaugh et al., 1996; Lioubin et al., 1996; Taylor et al., 2000; Muraille
et al., 1999).

Roles of the PI3K>Akt Pathway in Neoplasia
This pathway provides proliferative and anti-apoptotic signals and its dysregulation have often
been linked with malignant transformation and drug resistance (Kubota et al., 2004; Cuni et
al., 2004). Ras can activate PI3K and some Ras mutations result in deregulated PI3K and
downstream Akt activation (Rodriguez-Viciana et al., 1994; Hu et al., 2003; Gire et al.,
2000; Sun et al., 2000; Ninomiya et al., 2004). Mutations at the p85 subunit of PI3K have been
detected in Hodgkin’s lymphoma cells (Jucker et al., 2002). Recently it was shown that the
p110 subunit of PI3K is frequently mutated (~25%) in breast and some other cancers but it has
not been reported to be frequently mutated in leukemia (Engelman et al., 2006; Vogt et al.,
2006; Bader et al., 2005; Kang et al., 2005; Muller et al., 2006). PTEN negatively regulates
Akt activity; hence mutations which result in PTEN loss may lead to persistent elevated Akt
levels (Leslie et al., 2000; Dahia et al., 1999; Sakai et al., 1998). Mutations and hemizygous
deletions of PTEN have been detected in some primary acute leukemias and non-Hodgkin’s
lymphomas (Sakai et al., 1998; Aggerholm et al., 2000; Herranz et al., 2000; Nakahara et al.,
1998; Butler et al., 1999). Some hematopoietic cell lines lack or have low PTEN protein
expression (Sakai et al., 1998; Aggerholm et al., 2000; Herranz et al., 2000; Nakahara et al.,
1998; Butler et al., 1999). Increased Akt expression has also been linked with tumor
progression; the Akt-related Akt-2 gene is amplified in some cervical, ovarian, pancreatic
cancers and non-Hodgkin’s lymphomas (Graff et al., 2000; Staal 1987; Cheng et al., 1992,
1996). SHIP-1 may also affect Akt activity by controlling the levels of PtdIns(3,4,5)P3 and
PtdIns(3,4)P2. SHIP mutations have been detected in certain leukemias including AML (22%).
One study reported 22% of AML samples were mutated at SHIP1 (Luo et al., 2003, 2004).
Thus the PI3K>Akt pathway is intricately regulated and there are many possible mechanisms
which can lead to elevated Akt levels. Hence targeting the PI3K>Akt pathway may prove
effective in leukemia therapy.

Interactions Between PI3K>Akt and Raf>MEK>ERK Pathways which Regulate Apoptosis
Akt can phosphorylate Raf-1 on S259 and lead to its inactivation in certain cell types (Rommel
et al., 1999; Zimmermann et al., 1999). Akt and serum/glucocorticoid regulated kinase (SGK)
can phosphorylate B-Raf which results in its inactivation in certain cell types (Guan et al.,
2000; Zhang et al., 2001). Studies in 32D myeloid hematopoietic cells have shown that Akt
can activate Raf-1 through a Ras-independent but protein kinase C (PKC)-dependent
mechanism which results in the prevention of apoptosis (Majewski et al., 1999). Thus Akt and
related proteins phosphorylate Raf family members and either inhibit or enhance their activity
and these effects may depend on the cell lineage or environmental cues. Suppression of
apoptosis in some cells by Raf and MEK requires PI3K dependent signals (McCubrey et al.,
2001; Gelfanov et al., 2001; von Gise et al., 2001; Shelton et al., 2003, 2004).

Both PI3K>Akt and Raf>MEK>ERK pathways contribute to the transcriptional and post-
translational regulation of Bcl-2 family members as they can regulate CREB phosphorylation
and CREB binds the Mcl-1 and Bcl-2 promoter region (Yang et al., 1995; Pugazhenthi et al.,
2000, 1999; Bonni et al., 1999). Moreover, both pathways phosphorylate pro-apoptotic Bcl2
homology (BH)-3 only domain protein Bad which abolishes its apoptotic effects as it is
complexed with 14-3-3 proteins and is cytoplasmically localized (Cardone et al., 1998; Allan
et al., 2003; Datta et al., 1997; Harada et al., 1999). Another MAPK, Jun N-terminal kinase
(JNK) can phosphorylate 14-3-3 proteins which results in their disassociation with
phosphorylated Bad proteins and the Bad proteins translocate to the mitochondrion (Sunayama
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et al., 2005). When Bad associates with Bcl-2 or Bcl-XL, Bad promotes apoptosis by preventing
Bcl-2 or Bcl-XL from interacting with Bax (She et al., 2005). Bad is phosphorylated in most
AML specimens examined suggesting that inhibition of this molecule is important in AML
(Zhao et al., 2004). Interestingly, the anti-apoptotic Mcl-1 protein which is expressed in
myeloid cells, is not reported to interact with Bad (Chen et al., 2005).

Both the Raf>MEK>ERK and PI3K>Akt pathways can phosphorylate the BH3 only domain
protein Bim (Harada et al., 2004; Qi et al., 2006). When Bim is phosphorylated by ERK and
Akt it is targeted for ubiquitination and degradation in the proteosome (Gelinas et al., 2006).
ERK also can phosphorylate Mcl-1 which results in its stabilization. Mcl-1 can bind Bim which
prevents the activation and mitochondrial translocation of Bak and Bax and it can bind Bim
and is able to prevent the activation and mitochondrial translocation of Bak and Bax (Domina
et al., 2004). In contrast, JNK can phosphorylate Bim at S65 which enhances its ability to
induce Bax activation and hence stimulates apoptosis (Putcha et al., 2003). Mcl-1 can also bind
pro-apoptotic Bak (Chen et al., 2005). The Mcl-1:Bax interaction can be disrupted by the
binding of the BH3 domain Noxa protein which results in Mcl-1 being ubiquitinated and
degraded in the proteosome (Willis et al., 2005). Bak can then form active dimers and induce
apoptosis. The stability of Mcl-1 is influenced by both transcriptional (PI3K>Akt) and post-
transcriptional (Raf>MEK>ERK) mechanism (Gelinas et al., 2006; Wang et al., 1999).

Cytokines such as IL-3 also induce the Jak/STAT pathway which regulates the transcription
of Bcl-XL (Nosaka et al., 1999). Bcl-XL can prevent the formation of Bax:Bax homodimers
(Wang et al., 1998). Furthermore JNK can antagonize some of the effects of Raf>MEK>ERK
and PI3K>Akt pathways by phosphorylating 14-3-3 proteins which result in released Bad that
can translocate to the mitochondrion (Sunayama et al., 2005) or JNK can phosphorylate Bim
at different residues than ERK and Akt which results in Bim stabilization. Hence it is clear that
the Raf>MEK>ERK, PI3K>Akt, Jak>STAT and JNK pathways regulate many molecules
involved in prevention of apoptosis. Dysregulation of these pathways may lead to drug
resistance. A diagram of these interactions is presented in Figure 1.

Chemotherapeutic Drugs and Induction of Reactive Oxygen Species (ROS)
Doxorubicin exerts its chemotherapeutic effects through multiple mechanisms. One
mechanism is through its interactions with DNA and inhibition of topoisomerase II (Fornari
et al., 1994). The other mechanism of action is due to the generation of ROS that occurs via
the interaction of doxorubicin with iron (Myers et al., 1986). It is reported that doxorubicin
treatment results in the intracellular generation of superoxide anion, hydrogen peroxide, and
the hydroxyl radical (Myers et al., 1986; Liu and Tan, 2003). ROS appear to be important for
some of the therapeutic effects of doxorubicin as scavenging oxygen radicals using anti-
oxidants decreases the ability of doxorubicin to induce apoptosis (Friesen et al., 1999; Gewirtz,
1999; Singal et al., 2000). While ROS are important for some of the activities of doxorubicin
they are also are the cause of some of the undesirable side effects of this drug (Hoke et al.,
2005).

ROS are known to induce the activation of ERK, JNK, p38 and Big MAP Kinase (BMK)/
ERK5 signaling pathways. Oxidative stress-induced ERK1/2 activation is reported in a variety
of cell types (Jimenez et al., 1997; Tournier et al., 1997; Griffith et al., 1998; Buder-Hoffmann
et al., 2001; Kim et al., 2001; Xiao et al., 2002; Blanc et al., 2003; Usatyuk et al., 2003; Conde
de la Rosa et al., 2005). In some cases ROS can act directly on receptors, such as the EGFR,
and induce the ERK1/2 signaling pathway (Knebel et al., 1996). Triggering of the EGFR is
well known to result in the activation of Ras and the subsequent activation of the
Raf>MEK>ERK module. ROS can induce the ligand-independent activation of the PDGF
receptor and a subsequent increase in Ras and ERK1/2 activity (Knebel et al., 1996). Ligand-
independent receptor activation is not the only mechanism by which oxygen radicals activate
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the ERK1/2 signaling pathway. ROS not only act via growth factor receptors, but also appear
to mediate activation of Ras independently of reactive oxygen intermediate-induced receptor
activation (Lander et al., 1996). Nor is Ras expression is an absolute requirement for reactive
oxygen intermediate activation of the ERK1/2 signaling pathway. ROS will induce the
activation of the ERK1/2 signaling pathway in Ras negative cells (Zou et al., 1996). The non-
receptor tyrosine kinase, Src, is sensitive to cellular redox and can phosphorylate and activate
PLC-γ (Wang et al., 2001). This results in the generation of DAG and increases in intracellular
calcium which in turn induce activation of several forms of PKC. Although PKC can lead to
Ras activation, it has also been shown to directly activate Raf (Buhl et al., 1995). ROS are also
known to inhibit protein phosphatases (Whisler et al., 1995; Rao and Clayton, 2002) and
inhibition of phosphatase activity results in activation of the ERK1/2 signaling pathways (Lee
and Esselman, 2002). Thus, it would appear that the ERK1/2 kinase signaling cascade can be
activated at multiple points by ROS. However, the MEK1 and 2 inhibitors U0126 and PD98059
both block oxidative stress-induced ERK1/2 activation (Lee et al., 2005a;Lee et al., 2005b),
indicating that activating actions of oxidative stress on ERK are not direct but instead upstream
of ERK. Hydrogen peroxide is able to stimulate ERK5/BMK1 activation in human skin
fibroblasts, human vascular smooth muscle cells, and human umbilical vein endothelial cells
(Abe et al., 1996). In PC12 cells, hydrogen peroxide-induced ERK5/BMK1 activation requires
the activation of a Src kinase (Suzaki et al., 2002). Superoxide anion may play a role in BMK1
activation as superoxide scavengers prevented Angiotensin II- and endothelin-1-induced
BMK1 phosphorylation. Since doxorubicin induces ROS, and ROS may induce the ERK
signaling pathway. Understanding this pathway may be important in determining how AML
cells develop drug resistance. A diagram of the effects of signaling pathways, p53 and ROS
and how they may result in drug resistance is presented in Figure 2.

Targeted Therapy in AML
While treatment of some subsets of AML, such as acute promyelocytic leukemia (APL) have
shown great success with retinoids and arsenic tri-oxide, a significant problem in the remainder
of AML patients is that most chemotherapy does not ultimately work and eventually the
patients relapse and succumb to the disease (Tallman et al., 2005). Also another nagging
problem in AML therapy is the emergence of drug resistance (Teodori et al., 2006; Polgar et
al., 2005; Ross 2004; Mahadevan et al., 2004). Unlike the success stories observed with
Gleevec (Imatinib) and Dasatinib in treatment of CML, similar successes have not been
observed in AML due in part to the genetic heterogeneity of the disease (Talpaz et al., 2006).
Flt-3 inhibitors have been developed, but only approximately 20% of AMLs have mutations
at Flt-3 which render them somewhat sensitive to Flt-3 inhibitor monotherapy (Traxier 2003;
Markovic et al., 2005; Stone et al., 2005). There have been some combination clinical trials to
evaluate the sensitivity of Flt-3 positive AML to chemotherapy and Flt-3 inhibitors.

Materials and methods
Cell line models for identifying signaling pathways involved in hematopoietic drug
resistance

The FL5.12 cell line is an IL-3-dependent early hematopoietic progenitor cell line isolated
from the fetal liver of mice (McKearn et al., 1985). It is strictly cytokine (interleukin-3[IL-3])
dependent and does not form tumors upon injection into immunocompromised mice. However,
FL5.12 cells can be transformed to cytokine-independent and leukemic cells by oncogenes
such as v-abl and BCR-ABL (McCubrey et al., 1989). It has wild type (WT) p53 genes.

The effects of the Raf>MEK>ERK and PI3K>Akt pathways on transformation and drug
resistance were examined by infecting FL5.12 cells with retroviral vectors encoding activated
Akt, activated Raf-1, activated and dominant negative (DN) MEK1, WT and DN p53 as
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described (Shelton et al., 2003). FL/ΔAkt:ER*(Myr+) + ΔRaf-1:AR are derivatives of FL5.12
cells which grow in response to Akt and Raf activation in the absence of exogenous IL-3
(Shelton et al., 2003). Activated MEK1 (ΔStuMEKLIDEMAN), DN MEK1 encoding
retroviral vectors (von Gise et al., 2001) were generously provided by Dr. Jakob Troppmair
(Daniel Swarovski Research Laboratory, Innsbruck Medical University, Innsbruck, Austria).
The effects of p53 on drug resistance were examined by infecting FL5.12 cells with retroviruses
encoding WT and DN p53 (Gottlieb et al., 1994) generously provided by Dr. Moshe Oren,
(The Weizmann Institute of Science, Rehovot, Israel). The FL5.12 cells and derivative
transformed lines represent models to understand normal and transformed as well as drug
resistant early hematopoietic progenitor cells.

Cell lines and growth factors
Cells were maintained in a humidified 5% CO2 incubator with RPMI-1640 [(RPMI) Invitrogen,
Carlsbad, CA, USA] supplemented with 5% fetal bovine serum (FBS) (Atlanta Biologicals,
Atlanta, GA, USA). The IL-3 dependent FL5.12 murine cell line was cultured in this medium
supplemented with 10% WEHI-3B(D−) conditioned medium (WCM) as a source of IL-3.
Conditionally-transformed FL/ΔAkt:ER*(Myr+) + ΔRaf-1:AR cells were grown in RPMI +
5% FCS + 500 nM 4 hydroxyl tamoxifen (4HT), an estrogen receptor antagonist which
activates the ΔAkt:ER*(Myr+) (Sigma, St. Louis, MO, USA), and 100 nM testosterone
(Sigma), which activates the ΔRaf-1:AR. ΔAkt:ER*(Myr+) contains a mutated ER domain
(ER*) which responds to 4HT 100-fold more efficiently than β-estradiol (Shelton et al.,
2003). Thus 4HT as apposed to β-estradiol was used to stimulate Akt activity. ΔRaf-1:AR
contains the androgen receptor (AR) hormone binding domain and is activated by testosterone
(Shelton et al., 2003).

Limiting dilution analysis in doxorubicin and paclitaxel
FL5.12 and FL/ΔAkt:ER*(Myr+)+ΔRaf-1:AR cells were plated at cell concentrations ranging
from 0.1 to 100,000 cells/well in 96 well plates (Corning, Corning NY). Limiting dilution
analysis with the parental FL5.12 cells was performed in the presence of IL-3 in doxorubicin
(1, 10, 25, 50, 100, 1000 nM) or paclitaxel (0.01, 0.1, 1, 10 and 100 nM). Limiting dilution
analysis in the FL/ΔAkt:ER*(Myr+)+ΔRaf-1:AR cells was performed in the presence of IL-3,
4HT, Testosterone or 4HT+Testosterone in doxorubicin (1, 10, 25, 50, 100, 1000 nM) or
paclitaxel (0.01, 0.1, 1, 10 and 100 nM). Fresh medium containing the drugs was added every
three days and clones isolated from the plates with the least number of colonies after
approximately 1 month in culture. After isolation of the clones, they were first expanded in 1
ml cultures in 24 well plates, then subsequently expanded into 5 ml cultures in 25 cm2 tissue
culture flasks. The drug resistant cells were grown in medium containing doxorubicin (10 to
100 nM) or paclitaxel (0.1 to 1 nM) with either IL-3 or 4HT+testosterone.

Analysis of Cell Sensitivity to Anticancer Agents
Sensitivity of FL5.12 and FL/ΔAkt:ER* (Myr+)+ ΔRaf-1:AR cells to doxorubicin, paclitaxel,
daunorubicin, cisplatin or 5-flurouracil (all purchased from Sigma) were investigated by
characterizing effects of these agents on proliferation (Lee et al., 2004). Proliferation assays
were performed in order to measure cellular growth under various conditions over a period of
5 days. FL5.12 and FL/ΔAkt:ER*(Myr+)+ΔRaf-1:AR cells were resuspended in phenol red
free RPMI containing 5% FBS and either IL-3 (FL5.12 cells) or 4HT, Test, 4HT+Test or no
supplement (FL/ΔAkt:ER*(Myr+)+ΔRaf-1:AR cells). Cells were seeded in 96-well cell culture
plates (BD Biosciences) at a density of 5,000 cells/well in 100 μL/well of cell culture medium.
A 100 μl dose of treatment medium (chemotherapeutic drugs) was added to each well the day
after cells were initially seeded. Treatment medium with doxorubicin consisted of 4,000 nM,
2,000 nM, 1,000 nM, 500 nM, 250 nM, 125 nM, 63 nM, 31 nM, 16 nM, 8 nM, 4 nM, or 0 nM
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in cell culture medium for analysis of proliferation by spectrophotometry. Treatment medium
with paclitaxel consisted of 400 nM, 200 nM, 100 nM, 50 nM, 25 nM, 13 nM, 6.3 nM, 3.1 nM,
1.6 nM, 0.8 nM, 0.34 nM, or 0 nM paclitaxel in cell culture medium for analysis of proliferation
by spectrophotometry. Treatment medium with daunorubicin consisted of 4,000 nM, 2,000
nM, 1,000 nM, 500 nM, 250 nM, 125 nM, 63 nM, 31 nM, 16 nM, 8 nM, 4 nM, or 0 nM
daunorubicin in cell culture medium for analysis of proliferation by spectrophotometry.
Treatment medium with cisplatin consisted of 1000 nM, 500 nM, 250 nM, 125 nM, 62.5 nM,
31.3 nM, 15.6 nM, 7.8 nM, 3.9 nM, 2 nM, 1 nM, or 0 nM cisplatin in cell culture medium for
analysis of proliferation by spectrophotometry. Treatment medium with 5 flurouracil (5FU)
consisted of 200 nM, 100 nM, 50 nM, 25 nM, 12.5 nM, 6.25 nM, 3.1 nM, 1.6 nM, 0.8 nM, 0.4
nM, 0.2 nM, or 0 nM 5FU in cell culture medium for analysis of proliferation by
spectrophotometry. Cell culture plates were incubated in a cell culture incubator at 37 °C until
extent of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, Sigma)
reduction in each well was quantified.

Extent of MTT reduction in each well was measured daily from the day cells were treated until
4 days after treatment. A 40 μl aliquot of MTT medium was added to each well at the end of
the treatment period. MTT medium consisted of 3 mg/ml MTT in cell culture medium. MTT
medium was sterilized by vacuum filtration before use. After addition of MTT medium, the
final volume of medium in each well was 240 μl and the final concentration of MTT was 500
μg/ml. Cell culture plates were incubated in a cell culture incubator for 3 hours at 37 °C to
permit MTT reduction by viable cells. MTT reduction produces 1-(4,5-dimethylthiazol-2-
yl)-3,5-diphenylformazan, which forms crystals that adhere to the bottom of each well because
it is insoluble in aqueous solution. Cell culture media was removed after incubation by
manually shaking cell culture plates in an inverted position. Crystals of reduced MTT
remaining in each well were dissolved in 200 μl of DMSO (Sigma). Cell culture plates were
gently shaken for 5 minutes at 37 °C to facilitate dissolution of reduced MTT crystals.
Absorbance of each well was measured at 530 nm with a FL600 microplate fluorescence reader
(Bio-Tek Instruments, Winooski, VT).

MTT dissolved in DMSO has a yellow color and a visible light absorbance maximum of
approximately 410 nm (Plumb et al., 1989). In contrast, MTT reduced by viable cells then
dissolved in DMSO has a purple color and a visible light absorbance maximum of
approximately 560 nm. It is assumed that absorbance of each well above background at 530
nm is proportional to the number of cells present. Background absorbance at 530 nm was
estimated from 56 wells in which no cells were seeded. A 200 μl aliquot of cell culture medium
lacking cells was added to each of these wells. These wells were incubated in a cell culture
incubator for 1 day at 37 °C before extent of MTT reduction in the absence of cells was
determined. Mean absorbance of these 56 wells in which no cells were seeded was subtracted
from original absorbance values for all wells containing cells to yield adjusted absorbance.
Original absorbance values were adjusted in order to account for background absorbance.

Adjusted absorbance values were normalized by dividing by the mean initial adjusted
absorbance. Mean initial adjusted absorbance was measured from wells containing cells
incubated for 1 day after seeding. The mean and corresponding standard deviation of
normalized adjusted absorbance was calculated from 8 replicate wells for each drug
concentration and duration of incubation in order to investigate effects of the drugs and, in
some cases, ectopic gene (Raf-1, Akt, MEK1, DN-MEK, p53, DN-p53) expression on cell
proliferation rate and sensitivity to the different chemotherapeutic drugs. Relative growth rate
was calculated by subtracting mean initial adjusted absorbance from adjusted absorbance after
4 days of treatment then dividing this difference by the increase in mean adjusted absorbance
after 4 days of incubation in the absence of the drugs. The mean and standard deviation of
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relative growth was calculated from 8 replicate wells for each drug concentration to compare
effects of the chemotherapeutic drugs on proliferation rates of the different cells.

Inhibitory concentration 50% (IC50) is defined in this context as the concentration of drugs
that causes the cells to proliferate at a rate that is half as rapid as cells incubated in the absence
of drugs. IC50 values were estimated by linear interpolation of the highest drug concentration
yielding a mean relative growth rate greater than 0.5 and the lowest drug concentration yielding
a mean relative growth rate less than 0.5.

Annexin V apoptotic assays
AnnexinV/PI binding assays were performed as previously described (Blalock et al., 2000;
Bertrand et al., 2006) with a kit purchased from Roche (Indianapolis, IN, USA)

Western blot analysis
Cells were cultured and then protein lysates prepared as described (Blalock et al., 2000).
Western blots were performed with antibodies specific for phospho and total MEK, ERK, Akt,
JNK, p53, p21Cip-1, p27Kip-1 as we have previously described (Bertrand et al., 2006). The
above antibodies were obtained from Cell Signaling (Beverly, MA, USA). Antibodies which
recognize total Caspase 3, Bcl-2 and Bcl-XL were obtained from Cell Signaling. An antibody
which recognizes Mcl-1 was obtained from Pharmingen (San Diego, CA).

Results and discussion
To elucidate the pathways involved in hematopoietic drug resistance, FL5.12 cells were plated
in limiting dilution experiments in the presence of different concentrations of doxorubicin in
96 well plates. Doxorubicin resistant cells (FL/Doxo) were isolated in the presence of IL-3 and
either 10 or 100 nM doxorubicin but not 1000 nM doxorubicin (Figure 3, Panel A).
Approximately 1 in 20 FL5.12 cells would form a colony in the presence of IL-3 + 10 nM
doxorubicin while only 1 in 500 (frequency 2 × 10−3) FL5.12 cells would form a colony in the
presence of IL-3 + 100 nM doxorubicin. Approximately 25 different clones were isolated,
expanded into 200 μl, 1 ml, 5 ml, 10 ml then 25 ml cultures. These individual clones were
frozen down. Three different clones were chosen for further study: FL/Doxo-1 FL/Doxo-2,
and FL/Doxo-3. These clones have been maintained continuously in 10 to 100 nM doxorubicin
for the past two years. The results presented in this manuscript were obtained with FL/Doxo-1,
hereafter referred to as FL/Doxo. Similar results were obtained with FL/Doxo-2 and FL/
Doxo-3.

Additional limiting dilution experiments indicated that the doxorubicin resistant cells had an
enhanced subcloning efficiency when they were plated in medium containing doxorubicin than
the parental cells (Figure 3, Panels A & B). The doxorubicin selected cells that had been
maintained in 10 nM doxorubicin had a plating efficiency of 1.6 × 10−2 as 1 out of 60 cells
formed a colony when the cells were plated in 100 nM doxorubin. This represents an
approximate 8.3-fold increase in cloning efficiency in 100 nM doxorubicin as compared to the
unselected FL5.12 cells.

The morphologies of the doxorubicin sensitive (FL5.12) and resistant (FL/Doxo) cells were
examined by light microscopy (Figure 4, Panels A & B). The parental cells grew as non
adherent individual cells (Panel A). The doxorubicin resistant cells tended to grow in clusters
on the bottom of the flask (Panel B). The doxorubicin resistant cells were larger and more blast
like (Panel D) than the doxorubicin sensitive cells (Panel C). Furthermore upon staining the
cells with acridine orange, which enables visualization of the nucleus, many of the doxorubicin
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resistant cells had multiple nuclei whereas the parental cells had single nuclei (Figure 4, Panels
E & F).

The sensitivities of the parental and doxorubicin resistant cells to five common
chemotherapeutic drugs were examined. The doxorubicin resistant cells had increased IC50s
for doxorubicin, paclitaxel, daunorubicin but not 5-flurouracil (5FU) or cisplatin (Table 1).

The effects of these drugs on the induction of apoptosis were determined by the Annexin V/
PI binding assay (Table 2). The parental FL5.12 cells were more sensitive to the induction of
apoptosis by doxorubicin, paclitaxel and daunorubicin than the doxo resistant FL/Doxo cells.
In contrast, the parental and FL/Doxo cells displayed similar sensitivities to 5FU (data not
presented). Again, the greatest difference between the sensitive and resistant cells was observed
with paclitaxel.

Evidence for Raf>MEK>ERK Pathway in Drug Resistance
The roles of signal transduction, apoptotic regulatory and p53 pathways were examined in the
doxorubicin sensitive and resistant cells. FL5.12 and FL/Doxo cells, which had been growing
in IL-3 or IL-3 + 10 nM doxorubicin respectively, were collected, washed twice with PBS and
then both cell types were cultured in IL-3 or IL-3 + 10 nM doxorubicin for 24 hrs. When the
FL5.12 and FL/Doxo cells were cultured in IL-3 for 24 hrs, similar levels of phospho and total
ERK, JNK, Akt and Bcl-XL and Puma proteins were detected. Higher levels of Mcl-1 were
detected in the FL/Doxo cells than in FL5.12 cells. In contrast, when the FL5.12 and FL/Doxo
cells were culture in IL-3 + 10 nM doxorubicin for 24 hrs, activated MEK and ERK, and total
Mcl-1 proteins, were detected at higher levels in the FL/Doxo cells than parental FL5.12 cells
(Figure 5). Puma, which was detected at low levels when both cell types were cultured in IL-3,
was induced when the FL5.12 cells were cultured in IL-3 + 10 nM doxorubicin, while it was
not induced in the doxorubicin resistant cells when they were cultured in IL-3 + 10 nM
doxorubicin suggesting that these two cell types may differ in their induction of Puma after
doxorubicin treatment. When the doxorubicin sensitive and resistant cell lines were treated
with doxorubicin, they both displayed activation of p53, as detected with an antibody which
recognized p53 phosphorylated at S15 (data not presented). Thus the doxorubicin resistance
of the FL/Doxo cells did not appear to be due to a defective p53 response.

Consequences of MEK/ERK and p53 expression on Drug Sensitivity
To further examine the effects of MEK and p53 on the chemosensitivity of the cells, DN MEK
and DNp53 constructs were introduced into the cells and the doxorubicin IC50s were
determined by MTT analysis (Table 3). Cells were infected with retroviruses encoding DN
MEK (MEK-LIDA), DN p53 (p53#661) or as controls an empty retroviral vector (pLXSN) or
a WT p53. DN-MEK1 has serine 217 and 221 mutated to alanine which can not be
phosphorylated and activated by Raf and is inactive and interferes with endogenous MEK1.
DN p53 retrovirus encodes a p53 protein which lacks the DNA binding domain and results in
the formation of inactive p53 tetramers.

Introduction of DN MEK1 reduced the IC50 for doxorubicin in FL5.12 cells 7.5-fold and in
FL/Doxo cells 5.7-fold. Moreover, introduction of the DN MEK1 into the FL/Doxo and FL5.12
cells reduced the cloning efficiency in doxorubicin approximately 3 fold (Data not presented).
In contrast, introduction of DN-p53 into FL5.12 or FL/Doxo cells increased the IC50 for
doxorubicin approximately two to three fold compared to cells which were transduced with
the empty vector or the WT-p53 gene respectively.

The effects of elevated Raf>MEK>ERK expression of the drug resistance of FL5.12 cells was
examined by introduction of a constitutive MEK1 gene (ΔStuMEKLIDEMAN (Von Gise et
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al., 2001), here after referred to MEK-Act (Act = Activated). The FL/Doxo cells with the
activated MEK1 gene (FL/Doxo+MEK-Act) had an approximately 5-fold higher doxorubicin
IC50 than the FL/Doxo infected with an empty retroviral vector (FL/Doxo+LXSN) cells
demonstrating that constitutive MEK activity increased the resistance to doxorubicin.

Decreased Caspase 3 Cleavage in Doxorubicin Resistant Cells
Caspase 3 cleavage and activation is one of the last steps in the caspase cascade leading to
apoptosis. The extent of caspase 3 cleavage was examined in the doxorubicin sensitive and
resistant cells by western blot analysis (Figure 6). Cleavage of caspase 3 was detected in FL5.12
cells in a dose dependent fashion after treatment with 100 or 1000 nM doxorubicin for 24 hrs.
In contrast, cleavage of caspase 3 in FL/Doxo cells was only detected after treated with 1000
nM doxorubicin. Furthermore, FL/Doxo+MEK-Act, no cleavage of caspase 3 was detected
which correlated with the increased IC50 for doxorubicin in these cells.

Lack of Elevated Mdr-1/MRP-1 Expression in Doxorubicin resistant FL/Doxo Cells
FL/Doxo cells were shown to be resistant to doxorubicin, paclitaxel, and daunomycin, but not
resistant to 5FU or cisplatin. Doxorubicin, paclitaxel and daunomycin can be transported by
the membrane transporter proteins Mdr-1 or MRP-1, whereas 5FU and cisplatin are transported
by different membrane transporters. A relatively simple means to determine if Mdr-1 or MRP-1
activity is elevated in FL/Doxo cells is to perform a functional Rhodamine 123 dye exclusion
assay by FACS analysis. The drug resistant and drug sensitive FL5.12 cells displayed similar
levels of drug efflux activity. This assay was performed 4 times. Thus by a functional assay
the drug resistant FL/Doxo cells did not appear to have elevated drug efflux when compared
to the parental cells.

The expression of these two transporters was examined by RT-PCR and western blot analysis.
mRNA levels for MRP-1 were similar in the doxorubicin sensitive and resistant cells.
Transcripts encoding Mdr-1 were not detected in ether cell line. Western blot analysis failed
to detect the expression of Mdr-1 or MRP-1 proteins in these cells while they were detected in
control cell lines. In summary, these results suggest that the drug resistance of FL/Doxo cells
is not due to the increased expression of Mdr-1 or MRP-1 but they do not eliminate that
possibility that some other transporter is involved in drug resistance.

Interactions between Raf>MEK>ERK and PI3K>Akt Pathways in Induction of Drug
Resistance in Hematopoietic Cells

We previously developed a model of hematopoietic cells which proliferate in response to
activation of both Raf and Akt (Shelton, et al., 2003). FL5.12 cells were infected with
conditional retroviral vectors encoding ΔRaf-1:AR (testosterone–inducible Raf-1) and
ΔAkt:ER*(Myr+) (*= tamoxifen, [4HT]-inducible Akt). These cells are named FL/ΔAkt:ER
+ΔRaf:AR cells. An advantage of the FL/ΔAkt:ER+ΔRaf:AR cells is the possibility to
investigate the effects of Akt and Raf on signal transduction pathways and drug resistance
either alone or together.

As described earlier with the FL5.12 cells, doxorubicin resistant FL/ΔAkt:ER+ΔRaf-1:AR
cells were isolated by culturing the cells in medium containing 10 or 100 nM doxorubicin and
4HT and testosterone. The unselected FL/ΔAkt:ER+ΔRaf-1:AR cells had a subcloning
efficiency of approximately 2 × 10−2 (1 in 50 cells would form a colony) in 10 nM doxorubicin.
In contrast to the results observed with IL-3 and the parental FL5.12 cells, drug resistant clones
were infrequently isolated from unselected FL/ΔAkt:ER+ΔRaf-1:AR cells when they were
plated in 100 nM doxorubicin as less than 1 in 105 cells would form a colony. The difference
in cloning efficiency in medium containing doxorubicin between in FL5.12 and FL/ΔAkt:ER
+ΔRaf-1:AR cells is likely due to the difference in culture conditions, as IL-3 will induce many
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signaling pathways in addition to Raf>MEK>ERK and PI3K>Akt such as Jak>STAT which
can contribute to drug resistance while 4HT and testosterone only induce the Akt and
Raf>MEK>ERK pathways.

Additional limiting dilution experiments indicated that the doxorubicin selected FL/ΔAkt:ER
+ΔRaf-1:AR cells had an enhanced subcloning efficiency when they were plated in medium
containing doxorubicin than the parental FL/ΔAkt:ER+ΔRaf-1:AR cells (Figure 7, Panels A
& B). In the doxorubicin selected FL/ΔAkt:ER+ΔRaf-1:AR cells that had been maintained in
10 nM doxorubicin, they had a plating efficiency of 1.25 × 10−1 as 1 in 8 cells would form a
colony in 10 nM doxorubicin, an approximate 6.3-fold increase in cloning efficiency. When
the doxorubicin selected FL/ΔAkt:ER+ΔRaf-1:AR cells were plated in 100 nM doxorubicin a
cloning efficiency of 1 × 10−5 as approximately 1 in 105 cells formed a colony.

The drug sensitivities of the doxorubicin sensitive and resistant FL/ΔAkt:ER+ΔRaf-1:AR cell
lines were compared (Table 4).

Effects of Raf Activation on the Doxorubicin IC5
The effects Raf and Akt individually on the doxorubicin IC50 were determined by performing
the MTT analysis in medium supplement with: no supplement, 4HT, testosterone or the
combination of 4HT + testosterone (Figure 8). Activation of Raf increased the IC50
approximately 10-fold, from approximately 3 nM with no supplement or 4HT to 30 nM with
testosterone treatment (Panel A).

Likewise in the drug resistant FL/ΔAkt:ER+ΔRaf-1:AR cells, activation of Raf increased the
IC50 for doxorubicin from approximately 3-fold from 15 to 25 nM with 4HT or no supplement
to approximately 70 nM when Raf was activated. This figure also demonstrates that the drug
resistant cells have retained their requirement for Raf for proliferation.

Requirement for Raf for the Prevention of Apoptosis
The effects of Raf and Akt activation on the prevention of apoptosis in response to doxorubicin
treatment of doxorubicin sensitive and resistant FL/ΔAkt:ER+ΔRaf-1:AR cells were examined
by annexin V/PI assays (Figure 9). The effects Raf and Akt individually on the doxorubicin
IC50 were determined by culturing the cells in medium supplement with: no supplement, 4HT,
testosterone (Figure 9). Activation of Raf increased the apoptosis IC50 approximately 10-fold
in the unselected doxorubicin sensitive FL/ΔAkt:ER+ΔRaf-1:AR, from approximately 0.2 nM
with no supplement or 4HT to 2 nM with testosterone treatment (Panel A). Likewise in the
drug resistant FL/ΔAkt:ER+ΔRaf-1:AR cells, activation of Raf increased the IC50 for
doxorubicin from approximately 80-fold from 0.2 nM with 4HT or no supplement to
approximately 8 nM when Raf was activated. This figure also demonstrates that the drug
resistant cells have retained their requirement for Raf for prevention of apoptosis.

Requirement for Raf and Akt Activation for Optimal Growth in the Presence of
Chemotherapeutic Drugs

The requirement of Raf and Akt activation in the growth of the cells in the presence and absence
of chemotherapeutic drugs was determined by culturing the cells in 4HT, Test, 4HT + Test or
no supplement and then performing MTT analysis (Figure 10). When these cells were cultured
in the absence of doxorubicin (Panel A), they proliferated equally well in response to either
Raf activation or Raf and Akt activation in 100 μl cultures in 96 well plates as measured by
MTT analysis. In contrast, in the presence of just 4HT, which activated Akt, or no supplement,
the cells did not proliferate well. Thus, in the absence of drugs, Raf-1 activation was able to
induce proliferation as estimated by an MTT assay. In contrast, when the cells were plated in
the presence of 25 nM doxorubicin (Panel B), the cells proliferated better when both Raf and
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Akt were activated as opposed to just activation of Raf-1 by itself. Similar results were observed
with daunorubicin and paclitaxel.

Potential Mechanisms for Induction of Drug Resistance
In the following sections, we will briefly summarize potential mechanisms by which
interactions between the Raf>MEK>ERK and PI3K>Akt pathways could result in drug
resistance. Cytokines such as IL-3 induce multiple signal transduction pathways which can
contribute to the prevention of apoptosis (Harada et al., 2004; Qi et al., 2006; Opferman et
al., 2003). If their expression becomes deranged, drug resistance may occur. An overview of
IL-3 and the different pathways which it induces is presented in Figure 11. Note that all these
signaling pathways have roles in the regulation of apoptotic pathways.

Raf>MEK>ERK Expression Results in Altered Bim Localization
The pro-apoptotic Bim molecule can be phosphorylated by both the Raf>MEK>ERK and
PI3K>Akt pathways on multiple residues (Harada et al., 2004; Qi et al., 2006; Opferman et
al., 2003). Akt can phosphorylate Bim on S87 in IL-3 dependent cells. ERK induces the
phosphorylation of Bim at S55, S65 and S100. Once Bim is phosphorylated it loses its
association with Bcl-2 like antiapoptotic proteins associates with 14-3-3 proteins and is
ubiquitinated and targeted for degradation in the proteosome. Upon IL-3 withdrawal, non-
phosphorylated Bim associates with pro-apoptotic Bax proteins and stimulates apoptosis. JNK
also phosphorylates Bim, but this results in enhanced pro-apoptotic activity (Tsuruta et al.,
2004; Gao et al., 2005). JNK can also phosphorylate 14-3-3 proteins which may then release
cytosolic Bim. The presence of phosphorylated Bim may be elevated in the doxorubicin
resistant cells, alternatively, the subcellular localization of Bim may be different. Activation
of both Raf>MEK>ERK and PI3K>Akt pathways and hyperphosphorylation of Bim may be
necessary for the growth of the drug resistant cells in chemotherapeutic drugs. A diagram
depicting these potential interactions is presented in Figure 12.

Raf>MEK>ERK Elevates Bad Phosphorylation in Doxorubicin-Resistant Cells
Increased phosphorylation of Bad could be one component of the drug resistance of FL/Doxo
cells. Both the Raf>MEK>ERK and PI3K>Akt pathways phosphorylate Bad which results in
Bad’s translocation from the mitochondrion and association with 14-3-3 proteins in the
cytoplasm. Bcl-2 and Bcl-XL are able to bind Bax and prevent its activation. JNK will
phosphorylate 14-3-3 proteins which then release Bad and Bad translocates to the
mitochondrion. Bad is then able to bind Bcl-2 and Bcl-XL and Bax is activated and apoptosis
is induced. Increased ERK activity in FL/Doxo cells may result in higher levels of Bad
phosphorylation. However, this component would be predicted not to involve Mcl-1 as Mcl-1
is not thought to bind Bad whereas, Bcl-1 and Bcl-XL bind Bad. In some scenarios, inhibition
of Mcl-1 is not thought to be totally sufficient to induce apoptosis in some cells, as there is
thought to be compensatory effect by Bcl-XL. An overview of the interactions of
Raf>MEK>ERK, PI3K>Akt, Bcl-XL, Bcl-2 and Bad is presented in Figure 13.

However, we do not think that Bad will be the target responsible for drug resistance for two
reasons, Bad has been reported to be present at either very low levels or not at all in FL5.12
cells (Yamaguchi et al., 2001), and we did not see a difference in the levels of Bcl-XL in the
doxorubicin responsive and resistant cells.

Raf>MEK>ERK Expression Results in Altered Puma/Noxa Localization
Two proteins induced by p53 are the BH3 domain only pro-apoptotic proteins Puma and Noxa
(Yu et al., 2005). These proteins are involved in the induction of the caspase cascade by their
interactions with Mcl-1 and Bcl-XL. Two Puma proteins are generated from the Puma gene,
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Puma–α and Puma-β, both are induced by p53 and bind Bcl-XL and Mcl-1. Puma can induce
the displacement of Mcl-1 from Bak and Bax Puma then induces conformational changes in
Bax which results in Bax’s translocation to the mitochondria, cytochrome C release and
apoptosis. An overview of the interactions of Puma, Mcl-1, p53, Bak and Bax is presented in
Figure 14.

The expression of Puma is under the control of the PI3K/Akt pathway as it has recently been
shown that FOXO-3a regulates the expression of Puma (You et al., 2006). Noxa is another
BH3-domain protein which can be induced by p53. Noxa has recently been shown to interact
specifically with Mcl-1 and A1 (Chen et al.,2005) but not with Bcl-2, Bcl-XL or Bcl-2. The
pro-apoptotic Bak molecule associates with Mcl-1 and Bcl-XL but not Bcl-2, Bcl-w or A1
(Willis et al., 2005). Upon induction of Noxa by activation of p53, Noxa binds Mcl-1 and
displaces Bak. This leads to Mcl-1 degradation and Bak is free to induce apoptosis.

If the Raf>MEK>ERK pathway increases Mcl-1 protein levels and stability, that may lead to
an increase in Mcl-1 associated with Noxa and Puma and a decrease in free Bak levels.
Alternatively, PI3K>Akt may phosphorylate FOXO-3a which results in decreased Puma
expression. Both of these effects on Noxa and Puma may be required for drug resistance.

Raf>MEK>ERK Elevates Caspase 9 Phosphorylation in Doxorubicin-Resistant Cells
Human Caspase 9 was originally thought to be phosphorylated by Akt (Cardone et al., 1998),
but the murine caspase 9 lacks the Akt consensus phosphorylation site (Allan et al., 2003).
Caspase 9 is phosphorylated by the Raf>MEK>ERK pathway at T125 which inhibits activation
of the caspase cascade. Elevated phosphorylation of caspase 9 may be responsible for the
decreased Caspase 3 detected in the doxorubicin resistant cells.

One of the targets of caspase 3 is Mcl-1 (Weng et al., 2005). Decreased caspase 3 activation
could lead to a decrease in Mcl-1 cleavage. The extent of cleavage of Mcl-1 in the doxorubicin
sensitive and resistant cells could be different, resulting in the prevention of apoptosis in the
doxorubicin resistant cells. An overview of the effects of the effects of Raf>MEK>ERK and
PI3K>Akt pathways on the regulation of caspase activity and drug resistance is presented in
Figure 15.

Raf>MEK>ERK Elevates the Phosphorylation of Other Targets Responsible for Drug
Resistance

Obviously, there are other downstream targets which elevate Raf>MEK>ERK. These include:
p90Rsk, p70S6K, p21Cip1, p27Kip1, Bcl-2 and others. However, in order to keep this discussion
focused we have discussed the most direct targets of Raf>MEK>ERK which could lead to drug
resistance.

Raf>MEK>ERK Activates the Expression of Membrane Transporters other than Mdr-1/MRP-1
Which Lead to Drug Resistance

A membrane transporter protein other than MDR-1 or MRP-1 may be involved in the drug
resistance of the cells (BCRP-1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8).

Summary
We have presented data which documents the importance of the Raf>MEK>ERK and
PI3K>Akt pathways in the development of drug resistance in hematopoietic cells. Further
understanding of how these pathways interact and induce drug resistance could result in the
identification of novel approaches to treat drug resistance in leukemia. Furthermore, p53 played
a role in drug resistance in these cells as introduction of a DN-p53 construct increased the
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resistance of the cells to chemotherapeutic drugs. The drug sensitive and drug resistant FL/
ΔAkt:ER+ΔRaf-1:AR cells will allow us the ability to determine not only which downstream
components are induced by either Raf>MEK>ERK or PI3K>Akt that are necessary for
proliferation and prevention of apoptosis, but also which components are important in drug
resistance and how these two pathways can interact to influence drug resistance.
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Fig. 1.
Sites of mutation which can result in activation of the Raf>MEK>ERK pathway. Mutations
have been detected in Flt-3, Ras, Kit, Fms, G-CSFR, and at lower frequencies Raf-1 and B-
Raf in AML. The BCR-ABL chromosomal translocation is present in virtually all CMLs and
some ALLs. These mutations and chromosomal translocations could all result in activation of
the Raf>MEK>ERK cascade. A ? is indicated in the connection between Tpl-2 and MEK. This
is to indicate that there are other MEK activators besides Raf which can result in MEK
activation and may confer sensitivity to MEK inhibitors. Mutations at phosphatase genes could
also result in activation of this pathway although they would be predicted to be either tumor
suppressor or dominant negative type mutations.
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Fig. 2.
Overview of interactions between Raf>MEK>ERK, PI3K>Akt, p53 and apoptotic pathways
resulting in drug resistance. The Raf>MEK>ERK and PI3K>Akt pathways can phosphorylate
transcription factors which can stimulate gene transcription or apoptotic regulatory molecules
which control the induction of apoptosis. Possibly through reactive oxygen species (ROS),
doxorubicin can induce Raf>MEK>ERK. Doxorubicin can also activate p53 which can induce
the transcription of molecules involved in the regulation of apoptosis. Heparin binding
epidermal growth factor (hb-EGF) is a transcriptional target of p53 which could induce
activation of the Raf>MEK>ERK cascade. Finally doxorubicin could induce p53 which alters
the expression of phosphatases which could lead to prolonged ERK activation. Dysregulation
of these cascades can result in the prevention of apoptosis and the induction of drug resistance.
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Fig. 3.
Isolation of doxorubicin resistant cells from FL5.12 and enhanced subcloning efficiency in
doxorubicin. Limiting dilution analysis was performed in the presence of different
concentrations of doxorubicin on the FL5.12 (Panel A) and doxorubicin resistant FL/Doxo
(Panel B) cells. A dotted line is indicated at 37% of wells negative for growth from which the
cloning efficiency can be estimated. These experiments have been performed 4 times and
averaged together. Limiting dilution analysis with FL/Doxo-1 is presented in Panel B, similar
results were observed with 2 other FL/Doxo clones.
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Fig. 4.
Doxorubicin resistant FL5.12 cells are larger, more blast like and some are multinucleate. The
morphology of FL/5.12 and FL/Doxo cells was examined by light microscopy (Panels A & B,
10X magnification), (Panels C & D, 60X magnification). The cells were also stained with
acridine orange and the nuclear morphology examined (Panels E & F).
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Fig. 5.
Increased activated Mcl-1, pMEK and pERK in doxorubicin resistant FL5.12 cells. FL5.12
and FL/Doxo cells were grown for 24 hours in medium containing IL-3 or IL-3 + 10 nM
doxorubicin and then western blot analysis was performed with the indicated antibodies.
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Fig. 6.
Decreased caspase 3 cleavage in doxorubicin resistant cells. The extent of cleavage of Caspase
3 was determined in doxorubicin sensitive FL5.12 cells and doxorubicin resistant FL/Doxo
and FL/Doxo+MEK1-Act. The cells were incubated in the indicated concentrations of
doxorubicin for 24 hours and then protein lysates isolated.
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Fig. 7.
Isolation of doxorubicin resistant FL/ΔAkt:ER*+ΔRaf-1:AR cells. Limiting dilution analysis
was performed in the presence of different concentrations of doxorubicin on FL/ΔAkt:ER
+ΔRaf-1:AR cells. These results were obtained when the cells were cultured in medium
containing 4HT + testosterone. Additional limiting dilution analyses indicated that neither 4HT
nor testosterone were sufficient by themselves to result in the isolation of drug resistant cells
which could be expanded into larger cultures. A dotted line is indicated at 37% of wells negative
for growth from which the cloning efficiency can be estimated. These experiments have been
performed 5 times and averaged together. Limiting dilution analysis with FL/ΔAkt:ER
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+ΔRaf-1:AR clone 1 is presented in Panel B, similar results were observed with 2 other FL/
ΔAkt:ER+ΔRaf-1:AR clones.
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Fig. 8.
Dominant role of Raf in driving drug resistance. The effects of Raf activation by testosterone
and Akt activation by 4HT on the doxorubicin IC50 of non selected and doxorubicin selected
FL/ΔAkt:ER+ΔRaf-1:AR cells were examined by MTT analysis in 96 well plates. Activation
of Raf increased the IC50 in both the non selected and doxorubicin selected cells.
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Fig. 9.
Dominant role of Raf in preventing apoptosis. The effects of Raf activation by testosterone
and Akt activation by 4HT on the prevention of apoptosis induced by doxorubicin was
determined in non selected and doxorubicin selected FL/ΔAkt:ER+ΔRaf-1:AR cells by the
annexin V/PI technique. The extent of apoptosis was determined after incubation of the cells
for 3 days in the different concentrations of doxorubicin. Cells were cultured with medium
supplemented with 4HT, testosterone (test) on no supplement. Activation of Raf was dominant
in the suppression of apoptosis.
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Fig. 10.
Requirement of Raf and Akt in drug resistant growth. The effects of Akt activation by 4HT,
Raf activation by testosterone and their co-activation in doxorubicin selected FL/ΔAkt:ER
+ΔRaf-1:AR cells was determined by MTT analysis in the presence and absence of 25 nM
doxorubicin. Activation of Akt was not necessary for growth in 100 μL cultures over a 4 day
period in the absence of drugs. In contrast, activation of Akt enhanced the proliferation of the
cells when they were cultured in the presence of testosterone and 25 nM doxorubicin. Similar
results were observed with paclitaxel and daunorubicin.
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Fig. 11.
Cytokine mediated signal transduction pathways and drug resistance. Cytokines such as IL-3
can induce multiple signal transduction pathways which can effect the expression of apoptotic
molecules by transcriptional and post-transcriptional mechanisms. Elevated ERK in FL/Doxo
cells may phosphorylate Mcl-1 which results in its stabilization. This may result in prolonged
binding to Bax, prevent activation of Bax, contribute to the prevention of apoptosis and lead
to drug resistance.
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Fig. 12.
Effects of Raf>MEK>ERK and PI3K>Akt and JNK pathways on Bim phosphorylation and
the induction of drug resistance. All three of these pathways can phosphorylate Bim on different
residues which affect its activity and interactions with Mcl-1 and Bax and Bak. Phosphorylation
events mediated by Raf>MEK>ERK and PI3K>Akt result in the prevention of Bax and Bak
activation and lead to Bim being targeted to the proteosome ubiquitination and degradation.
In contrast phosphorylation of Bim by JNK results in its dissociation of Bim:Mcl-1
heterodimers, Mcl-1 is targeted to the proteosome, ubiquitination, and degradation and Bim
mediated activation of Bax and Bak.
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Fig. 13.
Effects of Raf>MEK>ERK and PI3K>Akt and JNK pathways on bad phosphorylation and the
induction of drug resistance. All three of these pathways can phosphorylate Bad on different
residues which affect its activity and interactions with Bcl-2 and Bcl-XL. Phosphorylation
events mediated by Raf>MEK>ERK and PI3K>Akt result in Bad being associated with 14-3-3
proteins and translocation from the mitochondrion to the cytoplasm. Bcl-2 and Bcl-XL remain
associated with Bax and Bak which prevent their activation and lead to suppression of
apoptosis. In contrast phosphorylation of Bad by JNK results in its dissociation with 14-3-3
proteins and Bad localizes to the mitochondrion and binds Bcl-2 and Bcl-XL. Bax and Bak are
then able to induce apoptosis.
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Fig. 14.
Effects of Raf>MEK>ERK, PI3K>Akt and p53 pathways on noxa and puma and the induction
of drug resistance. p53 can induce the BH3 only containing Noxa and Puma proteins which
interact with Mcl-1 and other anti-apoptotic proteins. When Mcl-1 is associated with Noxa and
Puma that prevents their ability to interact with Bax and Bak. Increased expression of ERK in
FL/Doxo cells may result in increased Mcl-1 levels which prevent Noxa and Puma abilities to
activate Bax and Bak.
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Fig. 15.
Effects of Raf>MEK>ERK and PI3K>Akt pathways on caspase 9 phosphorylation and the
induction of drug resistance. The Raf>MEK>ERK pathway phosphorylates caspase 9 which
prevents activation of caspase 3. The ability of Akt to phosphorylate caspase 9 is controversial
as the Akt consensus phosphorylation site is present in mouse but not human caspase 9.
Increased phosphorylation of caspase 9 by ERK in FL/Doxo cells could result in less caspase
9 activation, less caspase 3 activation and less Mcl-1 cleavage which could result in the
prevention of apoptosis and contribute to drug resistance.
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Table 1
Differences in growth IC50s in doxorubicin sensitive and resistant FL5.12 cells1

Cell Line→ FL5.12 FL/Doxo Fold Difference

Drug↓

Doxorubicin 10 nM 90 nM 9X

Daunorubicin 4 nM 20 nM 5X

Paclitaxel 1.8 nM 130 nM 72X

5-Flurouracil 800 nM 1000 nM 1.3X

Cisplatin 65,000 nM 85,000 nM 1.3X
1
Determined by plating 2500 cells/well in 96 well plates in phenol red free RPMI+10% FBS+IL-3 and serial 2-fold dilutions (n=12 dilutions) at 8 wells

per each drug concentration. MTT analysis was performed after 4 days of incubation and results were normalized to untreated cells.
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Table 2
Differences in apoptotic IC50s in doxorubicin sensitive and resistant FL5.12 cells1

Cell Line→ FL5.12 FL/Doxo Fold Difference

Drug↓

Doxorubicin 10 nM 100 nM 10X

Daunorubicin 0.5 nM 25 nM 50X

Paclitaxel 0.1 nM 9 nM 90X

5-Flurouracil 1000 nM 1000 nM 1X
1
Determined by plating 106 cells/well in 6 well plates in RPMI+10% FBS + IL-3 and serial 10-fold dilutions (n=6 dilutions) at 3 wells per each

concentration of the different drugs. Annexin V/PI apoptosis analysis was performed after 3 days of incubation and results were normalized to untreated
cells.
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Table 3
Effects of DN MEK1 and DNp53 on doxorubicin C50

1

Cell Line

Gene Introduced↓ FL5.12 FL/Doxo

DN-MEK1 2 nM 15 nM

Empty Vector 15 nM 85 nM

DN-p53 30 nM 200 nM

WT-p53 10 nM 80 nM
1
Determined by MTT analysis as described in the legend to Table 1.
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Table 4
Differences in IC50 in doxorubicin sensitive and resistant FL/ΔAkt:ER*(Myr+)+ΔRaf-1:AR cells1

Cell Line→ Doxo-Sensitive Doxo-Resistant Fold Difference

Drug↓

Doxorubicin 25 nM 75 nM 3X

Daunorubicin 12 nM 30 nM 2.5X

Paclitaxel 3 nM 18 nM 6X

1
Determined by plating 2500 cells/well in 96 well plates in phenol red free RPMI+10% FBS + 500 nM 4HT +100 nM Test and serial 2-fold dilutions

(n=12 dilutions) at 8 wells per each drug concentration. MTT analysis was performed after 4 days of incubation and results were normalized to untreated
cells. These experiments differ from those presented in Tables 1, 2 & 3 as in those cases the cells were plated in IL-3.
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