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The family of p21-activated protein kinases (PAKs) has

been implicated in various signal transduction pathways

leading to cytoskeletal rearrangements in both muscle and

non-muscle systems. PAKs are serine/threonine kinases

with homologues in different lower eukaryotes like yeast

(STE20, Leberer et al. 1992), Drosophila (DPAK, Harden et
al. 1996) and Dictyostelium (myosin I heavy chain

kinase, Lee et al. 1996). PAKs consist of two functional

domains: an N-terminal regulatory domain containing the

Ccd42/Rac-binding site and proline-rich motifs that are

binding sites for SH3-domains and a C-terminal catalytic

domain. At least six mammalian PAK isoforms (Manser et
al. 1994, 1995; Teo et al. 1995; Abo et al. 1998; Dan et al.
2002; Lee et al. 2002) have been identified showing

different tissue-specific expressions. PAK1, PAK2 and

PAK3 appear to be expressed in differentiated tracheal

smooth muscle (Dechert et al. 2001). Only PAK1 and

PAK3 appear to be expressed in vascular smooth muscle

with PAK1 as the predominant isoform (Schmitz et al.
1998). The three most closely related mammalian PAK

isoforms, PAK1, PAK2 and PAK3, show 70 % identity in

overall amino acid sequence and over 90 % identity in the

kinase domain. Binding of Cdc42/Rac in the active GTP-

bound form leads to autophosphorylation of both the

regulatory and catalytic domain of PAK and kinase

activation (Manser et al. 1997; Chong et al. 2001).

The p21-activated protein kinases may affect smooth

muscle contraction through phosphorylation of one or

more regulatory proteins of the contractile apparatus:

myosin light chain kinase (MLCK; Sanders et al. 1999;

Goeckeler et al. 2000), the regulatory light chains of

myosin (r-MLC; Chew et al. 1998), myosin light chain

phosphatase (MLCP; Takizawa et al. 2002), and

caldesmon (Van Eyk et al. 1998). MLCK is a highly specific

serine/threonine kinase that is activated by Ca2+-calmodulin
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The p21-activated protein kinases (PAKs) have been implicated in cytoskeletal rearrangements and

modulation of non-muscle contractility. Little, however, is known about the role of the PAK family

members in smooth muscle contraction. Therefore, we investigated the effect of the predominant

isoform in vascular smooth muscle cells, PAK1, on contraction and phosphorylation of the

regulatory light chains of myosin (r-MLC) in Triton-skinned guinea-pig smooth muscle. We also

investigated which of the three putative substrates at the contractile apparatus – MLCK, caldesmon

or r-MLC – is phosphorylated by PAK1 in smooth muscle tissue. Incubation of Triton-skinned

carotid artery and taenia coli from guinea-pig with an active mutant of PAK1 in relaxing solution for

30–60 min resulted in inhibition of submaximal force by about 50 %. The mechanism of inhibition

of force was studied in the Triton-skinned taenia coli. In this preparation, inhibition of force was

associated with a respective inhibition of r-MLC phosphorylation. In the presence of the

myosin phosphatase inhibitor, microcystin-LR (10 mM), the rate of contraction and r-MLC

phosphorylation elicited at pCa 6.79 were both decreased. Because under these conditions the rate

of r-MLC phosphorylation is solely dependent on MLCK activity, this result suggests that the

inhibitory effect of PAK1 on steady-state force and r-MLC phosphorylation is due to inhibition of

MLCK. In line with this, we found that MLCK was significantly phosphorylated by PAK1 while

there was very little 32P incorporation into caldesmon. PAK1 phosphorylated isolated r-MLC but

not those in the skinned fibres or in purified smooth muscle myosin II. In conclusion, these results

suggest that PAK1 attenuates contraction of skinned smooth muscle by phosphorylating and

inhibiting MLCK.
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complexes when the intracellular Ca2+ concentration rises

due to electrical or chemical stimulaton of smooth muscle

(for review see Arner & Pfitzer, 1999). Activated MLCK

phosphorylates Ser19 on r-MLC, which switches on the

actin-activated MgATPase activity of myosin II, crossbridge

cycling and contraction. The reverse reaction is catalysed

by MLCP, a type 1 phosphatase, that dephosphorylates

r-MLC and leads to relaxation of smooth muscle. The level

of r-MLC phosphorylation is determined by the ratio of

the catalytic activities of these two enyzmes, which can

both be modulated in a Ca2+-independent manner by

several intracellular signalling cascades (see Pfitzer, 2001,

for review). Caldesmon is a thin filament-associated

protein that inhibits the actin-activated MgATPase

activity of myosin II (for review see Arner & Pfitzer, 1999)

and based on skinned fibre studies it was suggested that

caldesmon is involved in the regulation of tension

development in smooth muscle (Katsuyama et al. 1992;

Pfitzer et al. 1993; Malmqvist et al. 1996). However, the

precise role of caldesmon in regulating smooth muscle

contraction is not yet clear.

Phosphorylation of MLCK, r-MLC and caldesmon by

members of the PAK family has been reported to have

diverse and, sometimes, contradictory effects on cellular

responses. Transfection of baby hamster kidney (BHK-21)

cells with a constitutively active PAK1 impaired cell

spreading most likely due to an inhibitory phosphorylation

of MLCK and, hence, a decrease in r-MLC phosphorylation

(Sanders et al. 1999). A loss of stress fibres was observed

after expression of constitutively active PAK1 in HeLa cells

and fibroblasts (Manser et al. 1997). The microinjection of

PAK1 in quiescent Swiss 3T3 cells induced the formation

of polarized filopodia (Sells et al. 1997) and the membrane

targeting of PAK1 in PC12 cells led to neurite outgrowth

that is inhibited by expression of dominant-negative

mutants of Cdc42 and Rac (Daniels et al. 1998). PAK2 is

reported to both attenuate (Goeckeler et al. 2000) and

stimulate (Chew et al. 1998) the contraction of permeabil-

ized endothelial cell monolayers by phosphorylating and

inhibiting MLCK (Goeckeler et al. 2000) or phosphoryl-

ating and activating myosin II (Chew et al. 1998),

respectively. In contrast, incubation of permeabilized

guinea-pig taenia coli fibres with PAK3 induced a Ca2+-

independent contraction that was associated with

phosphorylation of caldesmon and desmin but not of

myosin II (Van Eyk et al. 1998). It is not known whether

these diverging results are due to the different cell types

and/or different isoenzymes of PAK.

PAK1 is activated by angiotensin II in vascular smooth

muscle cells (Schmitz et al. 1998). However, the effect of

PAK1 on contraction of smooth muscle is not known.

Depending on which substrate of the contractile apparatus

is phosphorylated it could activate or inhibit force. We,

therefore, investigated which of the three substrates of the

contractile apparatus was phosphorylated by PAK1 and

how this affected smooth muscle contraction. The

majority of experiments were performed in Triton-

skinned taenia coli smooth muscle because the effect of

PAK3 on smooth muscle contraction was investigated in

this preparation (Van Eyk et al. 1998). Furthermore,

Triton-permeabilized smooth muscle is more suitable for

studying direct effects of PAK1 on the contractile

apparatus and its associated regulatory proteins (Pfitzer &

Boels, 1991). We show here that MLCK but not caldesmon

or r-MLC is phosphorylated by PAK1. This was associated

with a decrease in the Ca2+ sensitivity of force development

and steady-state r-MLC phosphorylation. The rate of

r-MLC phosphorylation under conditions where MLCP is

inhibited by the phosphatase inhibitor microcystin-LR

was also decreased. PAK1 also inhibited submaximal

contraction in Triton-skinned carotid arteries.

METHODS
Tissue preparation and force measurements
Guinea-pigs of either sex (Dunkin Harley) were anaesthetized
with halothane and killed by exsanguination with procedures
approved by the Institutional Animal Care and Use Committee.
The taenia coli and carotid artery were rapidly removed and fixed
at their in situ length with stainless-steel pins in a Sylgard dish. The
tissue was heavily permeabilized by chemical skinning with 1 %
Triton X-100 for 4 h on ice, as described in Albrecht et al. (1997).
The skinned fibre bundles were stored at _20 °C in relaxing
solution (see below) containing 50 % (v/v) glycerol and used
within 1 week. For force measurements thin fibre bundles
(150–250 mm in diameter) or small rings (width ~500 mm) were
mounted in a myograph using a KG7 (Scientific Instruments,
Germany) force transducer and allowed to equilibrate in relaxing
solution for 15–20 min. Contraction was elicited by increasing
Ca2+ concentrations. All experiments were carried out at room
temperature (21–24 °C) unless stated otherwise. Force was
normalized to the first maximal contraction (Fmax) elicited at
pCa 4.3 and 1 mM calmodulin (CaM), if not stated otherwise.
Following the initial contraction–relaxation cycle, fibres were
incubated in relaxing solution containing 10 nM okadaic acid and
either PAK1 (72 mg ml_1) carrying an activating mutation
(T422E) or the appropriate amount of the dialysis buffer for
60 min. Recombinant PAK proteins are not fully active, even if
they are carrying activating mutations and even if they are
overexpressed in cultured cells containing endogenous Rac and
Cdc42 (Manser et al. 1997). Moreover, the purified proteins
are very sensitive to phosphatases (E. Manser, unpublished
observations) and members of the PAK family can complex with
type 2A phosphatases (Westphal et al. 1999). These points might
explain why we detect low and variable effects in the absence of
okadaic acid. Control experiments showed that okadaic acid,
which at this low concentration has been reported to only inhibit
type 2A phosphatases (Takai et al. 1989), had no significant effect
on steady-state force and r-MLC phosphorylation (cf. Results).

Solutions
The relaxing solution for force measurements consisted of (mM):
imidazole 20, EGTA 4, MgCl2 10, ATP 7.5, DTT 2, NaN3 1,
creatine phosphate 10, leupeptin 1 mM, calmodulin 0.5 or 1 mM,
creatine kinase 140 U ml_1. The pH was adjusted to 6.7 at room
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temperature with KOH. The contracting solution contained in
addition 4 mM CaCl2. Alterations in the free Ca2+ concentration
were obtained by mixing relaxing and contracting solution in the
appropriate ratio and free [Ca2+] was calculated as in Andrews et
al. (1991). Rigor solution consisted of (mM): imidazole 20, EGTA
4, MgCl2 3, KCl 50, NaN3 1, DTT 2, leupeptin 1 mM, pH 6.7 at
room temperature.

Protein preparations
The GST-PAK1 used in these experiments was cloned, expressed
and purified as described previously (Manser et al. 1997). In brief,
the construct encoded rat a-PAK cDNA (this differs from human
PAK1, which has one additional aspartic acid residue at position
180 in the polyacidic stretch). The autophosphorylation site in the
activation loop of the catalytic domain of the enzyme was mutated
(T422E) to increase the basal activity of the purified kinase. The
cDNA was inserted in a pGEX-vector and the GST-fusion protein
was expressed in E. coli BL21 strain. Purification followed the
standard protocol (Pharmacia): elution from glutathione-
Sepharose was with 10 mM glutathione in purification buffer (PBS
containing 50 mM Tris-HCl pH 7.8, 0.5 mM MgCl2). The purified
protein (1.8 mg ml_1) was dialysed into the following buffer
(mM): KCl 100, imidazole 10 (pH 7.0), DTT 1. Calmodulin was
purified from bovine testicle by using a modification of the
procedure of Gopalakrishna & Anderson (1982). Caldesmon
purified from chicken gizzard according to Chalovich et al.
(1987) was used for immunization of rabbits (SeqLab, Göttingen,
Germany). The antibodies were precipitated with 41 % ammonium
sulphate and purified by affinity chromatography on a BrCN-
Sepharose 4B column (Amersham Biosciences, UK) using 0.1 M

glycin, pH 1.8, as elution buffer.

Quantification of myosin light chain phosphorylation
For determination of r-MLC phosphorylation, thin fibre bundles
were mounted isometrically on loops of stainless-steel holders. At
the desired time points the tissue was immersed in ice-cold 15 %
trichloroacetic acid, 5 % sodium pyrophosphate for 10 min. The
muscle strips were homogenized in the following buffer: urea
9.2 M, Tris-HCl (pH 7.5) 0.01 M, DTT 0.01 M, ampholine
(pH 4.5–5.4) 3 %, bromophenol blue 0.0001 %. The proteins of
the lysates were separated first by isoelectric focusing (pH
gradient 4.5–5.4) followed by 15 % sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) as described
previously (Lucius et al. 1998) using a mini-gel system (Biometra,
Göttingen, Germany). The relative amounts of phosphorylated
and non-phosphorylated r-MLC were determined by scanning
the silver-stained gels (Bio-Rad) using a desktop scanner
(GT-9600, Epson) and Phoretix software (Biostep, Jahnsdorf,
Germany).

Protein phosphorylation experiments
For determination of phosphorylation of MLCK, caldesmon fibre
bundles (6–7 or 2–3, respectively; diameter 150–250 mm, length
5–8 mm) of guinea-pig taenia coli were incubated in (mM):
imidazole 20, EGTA 4, MgCl2 5.5, [g32P]-ATP 3 (specific activity
250 mCi (1.5 mmol)_1), DTT 2, NaN3 1, BSA 0.1 %, okadaic acid
10 nM, and GST-PAK1 72 mg ml_1 or an equal amount of dialysate
for 1 h. The phosphorylation reaction was terminated by rapidly
freezing the fibres in liquid nitrogen. The fibres were
homogenized in 500 ml of the following buffer (mM): sodium
pyrophosphate 50, NaF 100, NaCl 300, sodium molybdate 10,
EGTA 10, EDTA 2, Na2PO4 25, and 10 nM okadaic acid and
1 % NP-40, pH 7.4. After addition of 7.2 mg of an affinity purified
antibody to MLCK (de Lanerolle et al. 1991) the homogenates

were incubated for 2 h at 4 °C on a mixing device. Thereafter
100 ml protein A-sepharose (Amersham Pharmacia, 50 %
solution) were added and incubated for 1.5 h at 4 °C with gentle
mixing. The beads were washed twice in homogenization buffer,
twice in 1 M NaCl, 20 mM Tris, pH 7.5, and twice in 5 mM Tris,
pH 7.5. With each solution change the beads were washed by
gently inverting the tube back and forth for 1–2 min, pelleted in a
microfuge and the supernatant removed. All procedures were
carried out at 4 °C. For elution of the bound protein the beads
were boiled in 150 ml of 0.25 % SDS and 50 mM DTT. This step
was repeated two times and the pooled eluants were lyophilized.
For electrophoresis the protein was resuspended in 10 % glycerol,
bromphenolblue, 100 mM Tris, pH 6.7, and resolved on 7.5–20 %
gradient gel. The gels were stained with Biosafe Coomassie
(Biorad), dried on filter paper and exposed to X-ray films (Biomax,
Kodak). 32P incorporation was quantified by densitometrical
scanning of the X-ray films and evaluated by using Phoretix
software (Biostep).

For determining caldesmon phosphorylation, MLCK was first
immunoprecipitated as described above, except that the amount
of antibody was increased to 10.8 mg. The beads with the bound
MLCK were removed and 41 mg of affinity-purified a-caldesmon
antibody was added to the supernatant. Caldesmon was
precipitated in the same way as MLCK, except that the beads were
not washed with homogenization buffer. Eluting and processing
of caldesmon for electrophoresis was carried out as described
above.

For determining r-MLC phosphorylation in vitro myosin II,
purified from bovine tracheal smooth muscle (6 mg), or purified
bacterially expressed rat aorta smooth muscle r-MLC (2 mg), was
incubated for 60 min at 30 °C with either PAK1 (0.5 mg) or
purified chicken gizzard MLCK (50 ng) in (mM): MgCl2 10, DTT
2, [g32P]ATP 0.2 (specific activity ~2000 c.p.m. pmol_1), Tris-
HCl (pH 7.5) 20, CaCl2 (0.5 mM) and calmodulin (100 nM) were
also added to the MLCK assays. The reactions were terminated by
boiling in SDS sample buffer and analysed by SDS-PAGE and
autoradiography.

Determination of PAK content in taenia coli and Western
blot analysis
Intact and Triton-skinned fibres taken immediately after
skinning were homogenized in Laemmli buffer containing tris-
(hydroxymethyl)-aminomethane (Tris)-HCl 50 mM, pH 6.8, urea
4.0 M, sodium dodecylsulphate (SDS) 1 % (w/v), DTE 20 mM.
Proteins were separated with 10 % SDS-PAGE. Equal amounts of
protein were loaded on each lane. The protein concentration was
determined using the method of Bradford (1976) with bovine
serum albumin (BSA) as standard. SDS-PAGE, transfer of the
proteins to nitrocellulose and blocking of the membranes were
carried out as in Pfitzer et al. (2001). PAK1 was detected with
an a-PAK antibody (C-19, rabbit polyclonal, Santa Cruz
Biotechnology, Inc.; dilution 1:500) that is partially cross-reactive
with b-PAK and g-PAK. MLCK was detected using the anti-
MLCK clone K36 (mouse monoclonal) from Sigma (dilution
1:10 000). The anti-caldesmon IgG was a gift from Dr W.
Lehmann (Boston University) and was used in a dilution of
1:2000. The affinity-purified caldesmon antibody was used in a
dilution of 1:1000. All secondary antibodies were obtained
from Jackson ImmunoResearch (Dianova, Hamburg, Germany).
Immunoreactive protein bands were detected with enhanced
chemiluminescence (ECL, Amersham) and quantified by
densitometrical scanning of the autoradiograms using a desktop
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scanner and Phoretix software (Biostep). The densitometric
intensity of the PAK immunoreactive band was expressed relative
to the intensity of the caldesmon immunoreactive band. To
correct for slight variations in protein loading levels, the Ponceau
Red-stained membranes were also scanned.

Materials and chemicals
[g32P]ATP (5000 Ci mmol_1) was purchased from Hartmann
Analytic (Braunschweig, Germany). Okadaic acid was purchased
from Alexis Biochemicals, ML-9 (1-(5-chloronaphthalene-1-
sulphonyl)-1H-hexahydro-1,4-diazepine), microcystin-LR (MC-LR)
and wortmannin were from Sigma. Hexokinase was obtained
from Boehringer-Mannheim.

Statistics
Values are shown as means ± S.E.M., and n is the number of
observations. Difference of responsiveness among groups was
analysed by ANOVA followed by the Newman–Keuls test.
Student’s t test was used when appropriate. A P value < 0.05 was
considered to indicate statistically significant differences.

RESULTS
All Triton-skinned smooth muscle fibres from guinea-pig

taenia coli were first subjected to a control activation at

pCa 6.2 and pCa 4.3 in the presence of 0.5 mM CaM. The

CaM concentration was then increased to 1 mM, which did

not significantly increase force further (Fig. 1). All

contractions were normalized to this contraction, denoted

as Fmax. Incubation with recombinant GST-aPAK

(referred to as PAK1*) significantly inhibited subsequent

tension development by about 50 % at pCa 6.2 and 29 % at

pCa 4.3 (Fig. 1B and C). In the time control experiments

(Fig. 1A), force elicited at pCa 6.2 was not significantly

different from the preceding control contraction, while

force at pCa 4.3 decreased by about 13 % irrespective of the

concentration of CaM (Fig. 1A and C). Thus, force under

maximally activating conditions in PAK1*-treated fibres

A. Wirth and others492 J Physiol 549.2

Figure 1. Activated GST-PAK1 (PAK1*) inhibits force development in guinea-pig taenia coli
skinned muscle fibres
After control contractions at pCa 6.2 and pCa 4.3 with 0.5 mM CaM and pCa 4.3 with 1 mM CaM, fibres were
incubated with buffer or PAK1* (72 mg ml_1) for 1 h in the presence of 10 nM okadaic acid followed by a
second stimulation with increasing [Ca2+]. Force was normalized to Fmax at pCa 4.3 with 1 mM CaM before
incubation with PAK1* or buffer. Typical isometric force tracings of Triton X-100-skinned guinea-pig taenia
coli fibres incubated with buffer (A) or PAK1* (B). C summarizes the results. Values are given as
means ± S.E.M. for buffer control (n = 4–6) and PAK1* (n = 6–7); **P < 0.01; ***P < 0.001. D, r-MLC
phosphorylation was determined after incubation with PAK1* or buffer in relaxing solution containing
10 nM okadaic acid and in the plateau of the second contraction elicited with pCa 6.2. Values are given as
means ± S.E.M. for buffer control (n = 4–5) and PAK1* (n = 4–5); *P < 0.05; **P < 0.01.
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was significantly reduced compared with buffer-treated

fibres. Reducing the incubation time to 30 min did not

diminish the inhibitory effect of PAK1* on submaximal

and maximal Ca2+-activated force (n = 3, data not shown).

Also, we never observed a contraction in relaxing solution,

either in control or in PAK1*-treated fibres. Heat-

inactivated PAK1* did not inhibit force.

The PAK1*-induced inhibition of force development at

pCa 6.2 was associated with a significant decrease in

steady-state r-MLC phosphorylation to ~50 % of control

(Fig. 1D). Interestingly, PAK1* also inhibited resting

r-MLC phosphorylation at pCa > 8 (Fig. 1D). To analyse

further whether r-MLC is a substrate for PAK1* in

intact smooth muscle myosin, in vitro phosphorylation

experiments were carried out. Intact smooth muscle

myosin II and recombinant r-MLC were incubated with

MLCK or PAK1* and phosphorylation levels determined

by autoradiography (Fig. 2). As expected, MLCK leads to

phosphate incorporation both into r-MLC of intact

myosin II and recombinant r-MLC. PAK1*, however, is

only able to phosphorylate the isolated regulatory light

chains. There is no detectable phosphorylation of intact

smooth muscle myosin II by PAK1*, thus suggesting that

r-MLC is not a physiologically relevant substrate for

PAK1* in smooth muscle tissue.

The inhibitory effect of PAK1* on force generation was

reversible. Experiments were carried out as in Fig. 1 but

with an additional contraction–relaxation cycle in the

absence of PAK1* or buffer and okadaic acid. As shown

in Fig. 3A, the inhibitory effects of PAK1* on steady-

state contraction were at least partially reversible,

i.e. contraction in the fibres that had been treated with

PAK1* was not significantly different from that of the

buffer-treated fibres. Wash-out of PAK1* completely

reversed the increase in half-time of submaximal tension

development (TÎ) seen after treatment with PAK1*

(Fig. 3C). This was associated with a complete loss of

recombinant PAK1* from the fibres (n = 4; Fig. 3B)

indicating that the exogenous PAK1* does not bind tightly

to proteins in the skinned fibres. Figure 3B also shows that

the heavily Triton-permeabilized taenia coli fibres still

contain some endogenous PAK immunoreactivity

immediately after skinning and after a 30 min loading

period with PAK1* in relaxing solution, but not in fibres

that were subjected to several solution changes. The

immunoreactivity of endogenous PAK was higher in the

PAK1*-loaded fibres and we cannot exclude the possibility

that this is due to cleavage of the fusion protein. In intact

fibres the intensitiy of the PAK1 immunoreactivity is

2.4 ± 0.3-fold (n = 6, P < 0.01) higher than in the Triton-

skinned fibres, which were analysed immediately after

skinning (Fig. 4). In contrast, the content of caldesmon,

which has binding sites for both actin and myosin (Pfitzer

et al. 1993), is not different between intact and Triton-

skinned fibres. We also expressed the intensity of the PAK

band relative to that of the caldesmon band and found this

ratio to be also significantly higher in the intact compared

with the Triton-skinned fibres (Fig. 4), again indicating

that the content of PAK is higher in the intact fibres. These

experiments indicate that not only exogenous but also

endogenous PAK does not bind tightly to the contractile

apparatus or cytoskelelal structures.

To test whether the decreased steady-state r-MLC

phosphorylation was due to a reduced MLCK activity we

determined the rate of r-MLC phosphorylation in the

presence of high concentrations of microcystin-LR, which

completely inhibit MLCP activity, as described previously

(Lee et al. 1997) with some modifications. In brief,

following incubation with PAK1* or buffer as before,

ATP was depleted by washing in rigor solution in the

continuous presence of 10 nM okadaic acid, which at this

concentration does not inhibit MLCP (Takai et al. 1989) to

stabilize the phosphorylation of the PAK1* substrates. To

this solution hexokinase and glucose were added to

deplete endogenous ATP from the strips. This was

followed by pretreatment with 10 mM microcystin-LR

(MC-LR), an inhibitor of phosphatase PP1 and PP2A, in

PAK and smooth muscle contractionJ Physiol 549.2 493

Figure 2. PAK1* does not phosphorylate intact smooth muscle myosin II in vitro
Intact myosin II (MII) purified from bovine tracheal smooth muscle (TSM) or recombinant regulatory light
chains of myosin II (r-MLC) were incubated with MLCK or PAK1* at 30 °C for 60 min. Phosphorylation
reactions were terminated and phosphorylation levels analysed by autoradiography. The upper panel shows
the Coomassie-stained light chains of myosin II (r-MLC and MLC17), and the lower panel shows the
corresponding autoradiogram. Results are representative of two independent experiments.
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rigor solution. The fibres were then activated in

contracting solution (containing MgATP) at pCa 6.79.

This low Ca2+ concentration produced no contraction in

the absence of MC-LR. In PAK1*-treated fibres, the rate of

rise of contraction and of r-MLC phosphorylation was

significantly slowed down compared with the buffer-

treated fibres (Fig. 5). As in this experiment the rate of

r-MLC phosphorylation depends only on the activity of

MLCK (Lee et al. 1997), the results are in line with the

suggestion that phosphorylation of MLCK by PAK1*

decreased the catalytic activity of MLCK (Sanders et al.
1999). However, inhibition of MLCK was incomplete as

the MLCK inhibitor, wortmannin, produced a more

pronounced inhibition of the rate of tension development

(Fig. 5A).

We then investigated whether MLCK and/or caldesmon

are phosphorylated by PAK1*. For these experiments,

fibres were incubated with buffer or PAK1* in the presence

of [g32P]ATP. Lysates were prepared from the fibres

and MLCK and caldesmon were sequentially immuno-

precipitated with specific antibodies (see Methods). As

shown in Fig. 6A, 32P incorporation was increased by

148 ± 20 % (n = 4) into a protein band with a molecular

mass of approximately 130 kDa in PAK1*-treated fibres

compared with time-matched control fibres incubated

with buffer. Immunoblots (Fig. 6B) show that this band is

immunoreactive with commercial MLCK antibodies but

not with caldesmon antibodies. Figure 6 also shows that

the caldesmon antibodies precipitated a protein band of

similar mobility that was slightly phosphorylated. However,
32P incorporation into the caldesmon immunoprecipitate

was only 4 ± 0.8 % (n = 3) of that into the MLCK

immunoprecipitate. There was also a slight reaction of the

anti-MLCK antibody against the protein that was

precipitated with the anti-caldesmon antibody (Fig. 6B).

That was due either to a small amount of MLCK that co-

precipitated with the anti-caldesmon or to a weak cross-

A. Wirth and others494 J Physiol 549.2

Figure 3. The inhibitory effect of PAK1* on force development and half-time of contraction is
reversible
A, strips were incubated with PAK1* or buffer as in Fig. 1, which was followed by two contraction–relaxation
cycles in the absence of PAK (pCa 6.2/CaM 0.5 mM, 5; pCa 4.3/CaM 0.5 mM, ≈; pCa 4.3/CaM 1 mM, %). Note
that in PAK1*-treated strips submaximal force after wash-out is not significantly (n.s.) different from the
buffer control and is significantly (P < 0.05) higher than before. Values are given as means ± S.E.M. for buffer
control (n = 4) and PAK1* (n = 4). B, detection of endogenous PAK and PAK1* in Triton-skinned taenia
coli. Strips were homogenized directly after permeabilization with Triton X-100 (lane 1), after incubation
with PAK1* for 30 min in relaxing solution (lane 2), at the end of force measurements shown in Fig. 1 of
PAK1*-treated strips (lane 3) or control strips (lane 4). Lane 5, purified GST-PAK1*. It should be noted that
the PAK signal in lane 1 does not represent the content of PAK in intact smooth muscle. Results are
representative of four independent experiments. C, half-times of contraction elicited at pCa 6.2.
Experimental protocol as in panel A and Fig. 1. Bars represent means ± S.E.M. with n = 11–20 for control,
buffer and PAK1* and n = 4 for the wash-out experiments. *P < 0.05; **P < 0.01.
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reactivity between the anti-MLCK antibody against

caldesmon. Whatever the reason, the small background

does not alter the conclusion that MLCK is much more

heavily phosphorylated than caldesmon in response to

PAK1* treatment of taenia coli fibres.

There was some increase in 32P incorporation into MLCK

in the buffer-treated fibres which was due to the presence

of okadaic acid. Therefore, we tested whether this affected

the activity of MLCK by the protocol shown in Fig. 5,

which shows that omission of okadaic acid from the buffer

control had no statistically significant effect on the rate of

tension rise or r-MLC phosphorylation. After 2.5 min,

r-MLC phosphorylation in the absence of okadaic acid

was slightly higher (P > 0.05) suggesting that the 32P

incorporation into MLCK in the presence of okadaic acid

may lead to a small, but not significant, inhibition of

MLCK. Due to the complete inhibition of MLCP by

microcystin in these experiments, inhibition of MLCP by

okadaic acid cannot be detected. We therefore determined

in a separate series of experiments with the experimental

protocol shown in Fig. 1 whether omission of okadaic acid

from the buffer would increase submaximal steady-state

PAK and smooth muscle contractionJ Physiol 549.2 495

Figure 4. Content of PAK in intact
and Triton-skinned taenia coli
Left panel shows Ponceau Red-stained
SDS-PAGE of total muscle homogenates
(20 mg/lane) taken from intact (1) or
Triton-skinned (2) taenia coli. After
transfer of the proteins to nitrocellulose
the upper part of the blots was incubated
with affinity-purified caldesmon
antibodies (Anti CaD), and the lower
part was incubated with anti-PAK1
antibodies (Anti PAK1).
Immunoreactivity was visualized with
enhanced chemiluminescence. The bars
to the right represent means ± S.E.M. with
n = 6 of the ratio of the densitometric
intensities of the PAK1 to the CaD band.
***P < 0.001.

Figure 5. Effect of PAK1* on the time course of r-MLC phosphorylation and contraction after
complete inhibition of MLCP by microcystin-LR
After eliciting maximal control contractions and incubation in PAK1* (•) or dialysis buffer (ª), as described
in Fig. 1, strips were incubated for 10 min in rigor solution in the continued presence of 10 nM okadaic acid
with 10 mM glucose and 0.4 U (ml hexokinase)_1 to deplete the fibres of ATP, followed by incubation for
5 min in rigor solution containing 10 mM microcystin-LR. The fibres were then activated with pCa 6.79 in
ATP-containing contracting solution. Control experiments were carried out with 10 mM wortmannin (0)
and in fibres in which okadaic acid was omitted from the dialysis buffer (9). A, time course of contraction.
B, time course of r-MLC phosphorylation. Values are given as means ± S.E.M. for buffer control (n = 4–6),
PAK1* (n = 4–7) and wortmannin (n = 4). *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significantly
different.
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force and r-MLC phosphorylation. This is to be expected if

okadaic acid inhibited MLCP activity. In fibres incubated

in okadaic acid-free buffer, the second contraction elicited

at pCa 6.2 and pCa 4.3 was 69.3 ± 4.7 % and 77 ± 5.7 % of

Fmax (n = 3), while in okadaic acid-treated fibres it

amounted to 59 ± 5 and 75 ± 5 %, respectively (n = 3).

The small (~15 %) inhibition of submaximal Ca2+-

activated force in okadaic acid-treated fibres was not

statistically significant. It should also be noted that at this

low concentration, okadaic acid did not induce a Ca2+-

independent contraction. Omission of okadaic acid

from the buffer also had no statistically significant effect

on steady-state resting and submaximal r-MLC

phosphorylation, i.e. r-MLC phosphorylation amounted

to 17.4 ± 2.5 % at pCa > 8 (n = 11), and 51.7 ± 4.7 % at

pCa 6.2 (n = 11). These experiments show that we have no

evidence for inhibition of either MLCP or MLCK by the

low concentrations of okadaic acid used here. Rather,

inhibition of force and r-MLC phosphorylation is due to

treatment with PAK1*.

A decrease in steady-state r-MLC phosphorylation at a

given [Ca2+] could also result from activation of MLCP. If

this were the case we would expect an increase in the rate of

relaxation in PAK1*-treated strips compared with the

buffer control induced by inhibition of MLCK with ML-9

(200 mM) and rapidly removing Ca2+ and ATP (Lee et al.

1997). As shown in Fig. 7, there was essentially no

difference in the rate of tension decline between PAK1*-

and buffer-treated fibres.

We also tested whether PAK1 has the potential to

modulate contraction in vascular smooth muscle. As this

preparation is less stable than the Triton-skinned taenia

coli, the first submaximal contraction and stimulation

with pCa 4.3 in the presence of 1 mM calmodulin was

omitted. Furthermore, the incubation period with PAK1*

or buffer was reduced to 30 min. As shown in Fig. 8,

PAK1* inhibited submaximal Ca2+-activated force in

Triton-skinned guinea-pig carotid artery to a similar

extent as in taenia coli. In this preparation maximal force

was not affected.

DISCUSSION
The data shown in this study suggest that recombinant

PAK1* inhibits the contraction of Triton-skinned taenia

coli at constant [Ca2+], most likely due to an inhibitory

phosphorylation of MLCK. Inhibition of contraction was

associated with inhibition of r-MLC phosphorylation.

Because a decrease in r-MLC phosphorylation at constant

[Ca2+] may be due to inhibition of MLCK or activation of

MLCP, we determined MLCK activity in fibres by

measuring the rate of r-MLC phosphorylation. This was

A. Wirth and others496 J Physiol 549.2

Figure 6. PAK1* phosphorylates MLCK rather than caldesmon
MLCK and caldesmon (CaD) were immunoprecipitated from strips incubated with PAK1* or buffer as
described in Methods. A, Coomassie-stained SDS-PAGE of immunoprecipitates (IP) and corresponding
autoradiograms. Lane 1, basal phosphorylation in the absence of okadaic acid; lane 2, buffer control; lane 3,
PAK1*-treated fibres. B and C, MLCK and CaD immunoprecipitates were transferred to nitrocellulose
membrane and probed with anti-MLCK (B) or anti-CaD (C) antibody as described in Methods. Note that
there is a slight immunoreactivity with MLCK in the CaD immunoprecipitate but not vice versa. Results are
representative of three to four independent experiments.
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done in the presence of high concentrations of the

phosphatase inhibitor microcystin-LR, which was shown

to completely inhibit MLCP activity (Lee et al. 1997).

Under this condition the rate of phosphorylation depends

solely on the activity of MLCK. Both the rates of r-MLC

phosphorylation and contraction were decreased in

PAK1*-treated strips, which were associated with an

increase of 32P incorporation into MLCK. Omission of

okadaic acid from the buffer-treated fibres had no effect on

these rates suggesting that the 32P incorporation into

MLCK induced by okadaic acid has no effect on the

activity of MLCK. However, we cannot exclude the

possibility that this increase in phosphorylation facilitates

the PAK-induced inhibition of force and r-MLC

phosphorylation. In any case, our data support a

mechanism in which PAK1* increases the phosphoryl-

ation of MLCK, which results in the inhibition of both

r-MLC phosphorylation and force.

The effect of PAK1* is not confined to intestinal smooth

muscle, as submaximal force was also inhibited in Triton-

skinned carotid artery. We were, however, surprised to see

that with carotid artery PAK1* inhibited contraction only

at intermediate Ca2+ concentrations. Sanders et al. (1999)

showed that in baby hamster kidney-21 (BHK-21) cells

PAK phosphorylation of MLCK decreased its activity even

in the presence of saturating concentrations of calcium

and calmodulin. In line with this, we found inhibition of

force under maximally activating conditions in taenia coli.

This suggests that in the case of arterial smooth muscle,

PAK1* phosphorylation may function by a different

mechanism, e.g. by inhibiting Ca2+–calmodulin binding.

However, other explanations are possible. It will be

interesting to investigate this further. We can say with

some certainty that the inhibition of force and r-MLC

phosphorylation in the presence of PAK1* at intermediate

Ca2+ levels is real. We observed this consistently in more

than 20 Triton-skinned taenia coli fibres that were derived

from several animals and in the carotid artery.

Furthermore, wash-out of PAK1* reversed its inhibitory

effect while heat-inactivated PAK1* was without effect. So

it appears that PAK1 has the potential to inhibit MLCK

activity in both taenia coli and arterial smooth muscle.

Inhibitory phosphorylation of MLCK by both PAK1

(Sanders et al. 1999) and PAK2 (Goeckeler et al. 2000) has

been demonstrated in non-muscle cells. This was

associated with profound effects on the cytoskeleton and

contractile activities of these cells. Thus, PAK1 impaired

cell spreading of BHK-21 cells (Sanders et al. 1999) and

PAK2 inhibited tension development by 75 % in saponin-

permeabilized endothelial cells (Goeckeler et al. 2000).

The observation that the activity of MLCK is inhibited at

saturating concentrations of Ca2+ and calmodulin suggests

that PAKs, unlike most other kinases that phosphorylate

MLCK, have a direct effect on the maximum velocity

(Vmax) of MLCK (Sanders et al. 1999) rather than on the

affinity for calmodulin (KCaM; Gallagher et al. 1997).

While our data suggest that phosphorylation of MLCK by

PAK1 is responsible for the decreased steady-state r-MLC

phosphorylation, activation of MLCP could contribute to

this effect. To determine whether MLCP activity was

increased by PAK1*, we determined the rate of relaxation

from maximally contracted fibres under conditions that

PAK and smooth muscle contractionJ Physiol 549.2 497

Figure 7. PAK1* does not affect the time course of
relaxation
After eliciting a maximal control contraction (pCa 4.3) strips were
incubated in PAK1* (•) or buffer (ª) as shown in Fig. 1, followed
by a second maximal contraction. The fibres were then quickly
transferred to Ca2+-free rigor solution containing the MLCK
inhibitor ML-9 (200 mM). Force was normalized to the second
maximal contraction. Values are given as means ± S.E.M. for buffer
control (n = 8), and PAK1* (n = 9).

Figure 8. PAK1* inhibits submaximal force in Triton-
skinned guinea-pig carotid artery
Experimental protocol as in Fig. 1 with the exception that the first
submaximal contraction and contractions elicited at pCa 4.3 with
1 mM calmodulin were omitted and the incubation time with
PAK1* was reduced to 30 min. Bars represent means ± S.E.M.,
n = 5, **P < 0.01.
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rapidly inactivate MLCK (Lee et al. 1997). As shown

previously, the rate of relaxation increases or decreases

under these conditions when the rate of dephosphorylation

of r-MLC either increases (Lee et al. 1997) or decreases

(Masuo et al. 1994) due to an altered MLCP activity. This

experiment therefore may give a first indication of whether

or not the activity of MLCP is altered. Because we did not

see an increase in the rate of relaxation in PAK1*-treated

fibres, we suggest that the inhibition of steady-state force

and r-MLC phosphoryation is not due to inhibition of

MLCP.

It is, however, surprising that we did not see a decrease in

the rate of relaxation because during the reviewing process

of this manuscript Takizawa et al. (2002) reported that

PAK inhibits MLCP activity in vitro by two mechanisms:

(i) phosphorylation of the regulatory subunit of MLCP

(MYPT) at multiple sites including Thr641, the site that is

responsible for Rho-kinase-induced decrease in MLCP

activity in vitro (Feng et al. 1999), and (ii) phosphorylation

of CPI-17 at Thr38, an endogenous inhibitory

phosphopeptide of MLC phosphatase. Triton-skinned

smooth muscle is devoid of CPI-17 (Woodsome et al.
2001). Nevertheless, we would have expected a decrease in

the rate of relaxation because of the phosphorylation of

MYPT. However, recent evidence suggests that the

phosphorylation of this site does not change during

agonist-induced Ca2+ sensitization in permeabilized

smooth muscle and, hence, may not contribute to the

regulation of MLCP activity in smooth muscle (Niiro et al.
2003; Kitazawa et al. 2003). This contrasts with the changes

seen in CPI-17 phosphorylation upon agonist stimulation

(Niiro et al. 2003). Clearly, further studies are required to

investigate whether PAK1 affects phosphatase activity

within the smooth muscle tissue.

Myosin II is also a putative substrate for members of the

PAK family. Injection of endothelial cells with active PAK2

induced cell retraction together with a modification of the

actin cytoskeleton, a result that was suggested to be due to

the activation of endothelial non-muscle myosin II by

direct phosphorylation of r-MLC (Zeng et al. 2000). In

fibroblasts expression of constitutively active PAK1 also

induced an increase in non-muscle r-MLC phosphoryl-

ation (Sells et al. 1999). Such r-MLC phosphorylation has

also been reported for smooth muscle myosin II (Van Eyk

et al. 1998). These authors described the in vitro
phosphorylation of both intact myosin II, as well as

purified r-MLC, by constitutively active PAK3. However,

they also reported that PAK3 uncouples force generation

from r-MLC phosphorylation. That is, there was no

increase in r-MLC phosphorylation in PAK3-treated,

permeabilized smooth muscle fibres and force appeared to

correlate with the phosphorylation of caldesmon and

desmin instead (Van Eyk et al. 1998). In contrast, using an

approach very similar to Van Eyk et al., we found a

decrease in r-MLC phosphorylation under relaxing

conditions (pCa > 8) in the presence of PAK1*, which is

consistent with the phosphorylation and inhibition of

MLCK. These results were supported by the observation

that intact smooth muscle myosin II is not phosphorylated

by PAK1*. A similar conclusion was reached by the study

of Takizawa et al. (2002).

We also investigated the possibility that caldesmon is

a substrate for PAK1* as the Ca2+ and r-MLC

phosphorylation-independent contraction in Triton-

skinned taenia coli induced by recombinant PAK3 was

associated with phosphorylation of caldesmon (Van Eyk

et al. 1998). Our investigations into PAK1*-induced

phosphorylation of caldesmon showed that antibodies to

caldesmon precipitated a protein band of ~130 kDa that

was only slightly phosphorylated. The 32P incorporation

was about 4 % of the 32P incorporation into the MLCK

immunoprecipitates. Since this band was also immuno-

reactive with MLCK antibodies, there remains the

possibility that the 32P incorporation is due to

MLCK contamination of the caldesmon immuno-

precipitates. If one assumes that the signal represents

phosphorylation of caldesmon and that the MLCK is

phosphorylated up to a stoichiometric amount of

2 mol Pi (mol MLCK)_1 (Goeckeler et al. 2000), then the

caldesmon phosphorylation would still amount to

< 0.1 mol Pi (mol caldesmon)_1. Given the fact that

stoichiometric in vitro phosphorylation of caldesmon

(2 mol Pi (mol caldesmon)_1) by constitutively active

PAK3 resulted in only a partial attenuation (~50 %) of

caldesmon’s inhibition of actin-activated S1 MgATPase

(Foster et al. 2000), the low level of phosphorylation

observed in our studies is unlikely to be of functional

significance.

It is known that in cultured smooth muscle cells PAK

activity is increased in response to several agonists

(Dechert et al. 2001; Schmitz et al. 1998, 2001). But it is not

known at present whether PAK is involved in the

regulation of smooth muscle contraction under

physiological conditions. The incubation time of 60 min is

rather long and could suggest that the inhibition of force is

an in vitro phenomenon. We chose this time period in

order not to miss a slowly developing Ca2+-independent

contraction (Van Eyk et al. 1998). But it should be noted

that an incubation time of 30 min is sufficient to induce

inhibition of similar extent. In a previous study we

observed that this incubation period is necessary to

homogenously load skinned fibres with large proteins

such as caldesmon (G. Pfitzer, unpublished results). Thus,

the time frame used in this study does not preclude a

physiological function.

In b-escin-permeabilized smooth muscle, constitutively

active Rac, which is an upstream activator of PAKs

A. Wirth and others498 J Physiol 549.2
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(Manser et al. 1997), antagonized the Ca2+ sensitization

induced by Rho (Gong et al. 2001). Thus, our results,

together with those of the laboratory of Somlyo (Gong et
al. 2001), suggest the interesting possibility that activation

of the Rac/PAK pathway may oppose the Rho/Rho-kinase

cascade. Activation of the latter pathway has been

suggested to be required for tension maintenance during

the tonic phase of smooth muscle contraction (for review

see Somlyo & Somlyo, 2000; Pfitzer, 2001). However, the

contractile agonist angiotensin II induced only a transient,

phasic contraction in porcine carotid arteries (Adam et al.
1990). As angiotensin II increased Rac and PAK activity in

cultured vascular smooth muscle cells (Schmitz et al.
2001), it will be interesting to see whether this transient

contraction is due to inhibition of MLCK by PAK.

In conclusion, the results presented here analyse, to the

best of our knowledge for the first time, the effect of PAK1

on contraction in skinned smooth muscle. In contrast to

PAK3, PAK1, which is the predominant isoform in

smooth muscle, inhibits Ca2+-activated smooth muscle

contraction and r-MLC phosphorylation, most likely due

to an inhibitory phosphorylation of MLCK. Caldesmon

and r-MLC, which are phosphorylated by other isoforms

of PAK (Van Eyk et al. 1998; Chew et al. 1998; Zeng et al.
2000), are not phosphorylated to a significant extent by

PAK1. However, our results do not exclude the possibility

that PAK1 may also regulate MLCP activity. Future

studies aimed at identifying the conditions under which

PAK1 becomes activated in intact smooth muscle

promise to provide new insight into whether and how

PAK1 participates in the regulation of smooth muscle

contraction.
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