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 Submerged aquatic vegetation (SAV) is a valuable natural resource in North Carolina 

estuaries. The State's Coastal Habitat Protection Plan (CHPP) has stated a need to monitor SAV 

coverage over time. Thus, the Albemarle-Pamlico National Estuarine Program (APNEP) SAV 

Partners has a project underway developing a mapping methodology combining remote sensing 

and boat-based methods to map SAV. As a partner in the APNEP mapping program, this 

research investigated the utility of satellite remote sensing in the mapping of SAV in NC 

estuaries. In particular, the data of DigitalGlobe's WorldView-2 (WV-2) satellite launched 

October 2009 were studied. The WV-2 data are of high spatial resolution (~2x2 m) and 5 visible 

multi-spectral bands, including a "coastal" band (400-450 nm).  

 One WV-2 image per site was acquired. Three sites were, Jarrett Bay, Blounts Bay, and 

Sandy Point. Land and deep water (>2 m) pixels were eliminated from each image and subjected 

to a principal component analysis (PCA), where the first two components were input into the 

Iterative Self-Organizing Data Analysis Techniques (ISODATA) unsupervised classification. 

Ground reference points were used to perform an accuracy assessment. At Jarrett Bay, where a 

continuous SAV bed covered 40%-70% of the study site, results showed an 86.4% classification 



 

 

accuracy in water depths < 0.8 m and 40.9% accuracy in water depths > 0.8m. At Blounts Bay, 

where SAV coverage was sparse (0%-10%), classification accuracy was 50% in water depths   < 

0.8 m and remained at 50% in depths > 0.8m. The Sandy Point image was deemed unusable due 

to extensive sun glint. Most misclassifications were due to dark sediment and the sensor's 

difficulty in detecting small SAV patches (< 1x1 m). Additionally, according to the 

environmental conditions present in the images, a water depth threshold where WV-2 can 

accurately detect SAV was determined at 0.8 m in NC estuaries. With improved water clarity, 

this 0.8 m threshold would increase. Finally, the unique coastal band was highly susceptible to 

scattering and absorption due to suspended sediment and colored dissolved organic matter 

(CDOM) present in the water column of the study area.  
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SECTION 1.0: INTRODUCTION 

1.1 Introduction to the Problem 

Seagrasses are typically considered to be submerged aquatic vegetation (SAV) because 

they are vascular plants that can live in complete submersion in shallow water. However, SAV 

requires a high level of light in order to survive, which limits their habitat to near-shore shallow 

waters (Duarte 2002; Kenworthy and Fonseca 1996). Individual seagrass plants or SAV growing 

in a large, semi-continuous area is considered an SAV bed (Fonseca and Bell 1998). SAV beds 

have proven to be very valuable to the marine ecosystem. Near-shore fisheries rely on SAV as 

nurseries for juvenile fish that will eventually migrate into deeper waters (Beck et al. 2003). 

Industrial and recreational fishing are dependent upon sustainable fish populations, which SAV 

beds help to provide. Many predators may also acquire prey such as clams that bury in SAV 

beds, tearing up the seagrass to get at their molluscan prey (Blaylock 1993). Additionally, the 

root system of the beds stabilizes bottom sediment and the SAV leaves help to attenuate wave 

energy, which slows coastal erosion. The level of SAV health, as indicated by growth behavior 

and biomass, can be used to assess estuarine water quality, as was done in the Chesapeake Bay, 

Virginia (Dennison et al. 1993). 

 SAV can be impacted by human activity and development, and its living environment can 

be greatly influenced by eutrophication, dredging, docks, marinas, heavy boat traffic, and 

propeller scaring; all contribute to the destruction of SAV beds. SAV loss has become a 

recognized worldwide issue because there is to be a long term decline in SAV worldwide 

because of coastal development and decrease in water quality due to pollution (Duarte 2002 and 

Waycott et al. 2009). On a more local scale, SAV loss in North Carolina has become an interest 

of the State because of its environmental value to estuaries (Street et al. 2005). Coastal North 
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Carolina is a major summer destination as well as the location of development within the State. 

Sometimes coastal development requires the removal of SAV to make way for such things as 

new marinas or coastal housing developments. North Carolina has enacted a law that protects 

SAV in an effort to look after this important component of the near-shore ecosystem and 

included it in its Coastal Habitat Protection Plan (CHPP) (Street et al. 2005). However, to protect 

SAV the State must inventory the SAV resource on a regular basis and determine current 

baselines for the spatial extent and status of SAV. 

 There have been studies in the past that have mapped SAV coverage for portions of the 

North Carolina coastal areas (Davis and Brinson 1990; Ferguson et al. 1993; Ferguson and 

Korfmacher 1997; Steel 1991). Recently the Albemarle-Pamlico National Estuary Program 

(APNEP) began a research project lead by the APNEP SAV Partners 

(http://portal.ncdenr.org/web/apnep/sav-partnership) that is aiming to develop SAV mapping 

methods to be used to map SAV coverage for the entire estuarine coast (Carpenter et al. 2009). 

The “Partners” referred to here are researchers from East Carolina University (ECU), National 

Oceanic and Atmospheric Administration (NOAA), and North Carolina State University (NC 

State). In order to detect change in coast wide SAV coverage, the APNEP SAV Partners were 

originally going to use aerial or satellite imagery alone to map SAV coverage, but the remote 

sensing approach had its deficiencies. Cloud cover, water turbidity, and water depth could result 

in SAV beds going undetected, which could potentially result in an inaccurate detection of any 

change in SAV coverage. A protocol is being proposed that a method that incorporates remote 

sensing along with the boat-based methods of underwater video and sonar to assess change state-

wide over time (Dr. Joseph Luczkovich, personal communication). 
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 Both boat-based methods allow for SAV growing in water too deep or too turbid to be 

detected by remote sensing platforms. Each method involves running transects perpendicular to 

the shoreline, but each have their own advantages and limitations. The high resolution 

underwater video takes 1x1 m georeferenced snapshots of the water bottom while the boat 

travels along each transect. This approach allows the presence or absence of SAV to be identified 

as well as the seagrass species to be identified. Additionally, the underwater video does not 

require ground reference data to verify its findings. Its main limitation is the amount of time 

required to acquire the data as a result of the slow speed the boat needs to be traveling to acquire 

usable images, which limits the size of an area that can be surveyed in a reasonable amount of 

time. The images must also manually be interpreted by a trained staff, which requires a 

significant amount of time to accomplish. 

 Sonar provides another reliable method to detect SAV in deep, turbid waters. The 

algorithmic interpretation of an acoustic signal received from the water bottom is able to identify 

the presence or absence of SAV. The boat is able to travel at a moderate speed, which increases 

the area it can survey. Since the acoustic method is a form of remote sensing, it requires ground 

reference data to be acquired to verify its findings. Species identification is not detectable by the 

acoustic signal. Finally, both boat-based methods are limited to waters that are deep enough to 

operate a boat, which means any SAV growing in very shallow water cannot be accounted for by 

either of these methods. In summary, each boat-based method has the capability to detect SAV 

where remote sensing cannot, deep and turbid water. The APNEP SAV Partners mapping project 

has not yet identified the water depth threshold at which remote sensing can no longer reliably 

and accurately detect seagrass. 
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Digital aerial orthophotographs were acquired for most of the coast for the APNEP SAV 

Partners mapping project from 2006 - 2008. This imagery was interpreted 2010 – 2011, but the 

interpretations have not been released to the public. The sensor used to acquire the imagery was 

the Intergraph Z/I Imaging Digital Mapping Camera (DMC). The imagery was acquired at a 1 m 

spatial resolution, a radiometric resolution of 12-bits per pixel, and 4 band multispectral bands, 3 

visible BGR bands and one near-infrared band 

(http://www.dewberry.com/uploadedFiles/IntergraphDMC_Presentation_082907.pdf; last 

accessed 4/30/2010). These spectral specifications have capability for use in benthic mapping 

(Wolter et al. 2005). Aerial imagery is a useful tool in mapping SAV because of its high spatial 

resolution and the fact that it is in a digital format that can be analyzed with remote sensing and 

geographic information system (GIS) software. Also, aerial sensors are able to acquire imagery 

on demand, which is not possible with satellite sensors. DigitalGlobe launched a new satellite, 

WorldView-2 (WV-2), in October 2009 which has 9 spectral bands that include one 

panchromatic band at .46 m spatial resolution and 8 multispectral bands at 1.84 m spatial 

resolution. It has a radiometric resolution of 11-bits per pixel and with its 20 degree off-nadir 

capabilities has a temporal resolution from 1.1 to 3.7 days. Of the 8 multispectral bands, 5 are 

visible bands which include a “coastal” band in the blue light range from 400 to 450 nm 

(http://www.digitalglobe.com/index.php/88/WorldView-2; last accessed 6/15/2011). This new 

spectral band could improve benthic mapping capabilities and serve to better fulill APNEP's 

SAV mapping needs because the narrow coastal band may get deeper water penetration. 

 Therefore, the purpose of this research is to develop new, improved techniques for 

mapping SAV via remote sensing imagery by using the new narrow visible band data from the 
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recently launched WV-2 satellite to classify SAV. Such an improvement would contribute to 

APNEP‟s SAV mapping project and future resources monitoring capability. 

1.2 Research Questions 

The study will contribute to the APNEP SAV mapping project by investigating the following 

research questions: 

1. Can the narrow visible bands of the WorldView-2 satellite improve SAV classification 

accuracy? 

2. Does inputting the two PCA derived components into the Iterative Self-Organizing Data 

Analysis Techniques (ISODATA) classification over the raw 5 visible bands improve 

classification accuracy? 

3. At what water depths can remote sensing techniques accurately classify SAV? 

It is important to investigate the latest technology to see if current capabilities can be 

improved. The WV-2 sensor with its 5 visible bands and its high radiometric, spatial, and 

temporal resolutions has the potential to improve the current mapping capabilities employed by 

the APNEP SAV Partners to map SAV in North Carolina. This study will test those capabilities 

by classifying SAV in images acquired at three different study sites that have three different 

levels of SAV coverage. 

 The classification scheme used in this study was an unsupervised classification. 

Classification accuracy is very important Different variations of the data were input into the 

ISODATA unsupervised classification algorithm to find the data variation that produced the 

most accurate classification. To help increase the interoperability of the data by the ISODATA 

algorithm, the data was compressed using a PCA to derive two components. 



 

 

Being able to identify a water depth threshold where remote sensing can accurately classify 

SAV will mean that water depths where the two boat-based methods should be used to map SAV 

can be identified as well. This type of information will help the APNEP SAV Partners to identify 

areas that need to be mapped using the boat-based methods instead of remote sensing. 

 SECTION 2.0: REVIEW OF LITERATURE 

2.1 What is SAV? 

According to the North Carolina Division of Marine Fisheries, SAV is fish habitat that is 

made up of one or more species of vascular plants that are rooted in sediment (Street et al. 2005) 

and are also known as „seagrass‟ for the grass like resemblance of the species (Hartog and Kuo 

2006). SAV isss angiosperm vegetation that grows in complete submersion in marine and 

freshwater environments (Duarte 2002). SAV habitat is mainly confined to areas that must have 

three characteristics; protection from strong waves and currents, adequate amount of sunlight 

where seagrass can perform photosynthesis (Duarte 1991; Kenworthy and Fonseca 1996), and 

nutrient rich sediment bottom type (Street et al. 2005). Of the three factors, light is the main 

factor that controls SAV growth (Street et al. 2005). The factors that determine the penetration 

depth of light are the amount of particles suspended in the water column (turbidity) and water 

depth (Duarte 1991; Zimmerman and Dekker 2006). 

 The value of SAV habitat to the coastal environment has been recognized at the local 

scale. The State of North Carolina has regulations place through the Coastal Area Management 

Act (CAMA) to help control human induced impacts on SAV beds (15A NCAC 07H .0209 

(d)(4)). Currently, the State is interested in identifying the location and extent of SAV beds 

within the State's estuaries. The North Carolina Department of Environment and Natural 

Resources (NCDENR) developed the 2005 CHPP (Street et al. 2005). The CHPP has a section 
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devoted strictly to outlining the role of SAV beds in the underwater ecosystem, the natural and 

human impacts that face SAV beds, and measures to manage and protect SAV beds. It is 

important to protect SAV habitats because of the freshwater and marine life that relies on the 

beds to survive. Coastal fisheries thrive in and around SAV beds, which has implications not 

only for the fish, but also for the fishing industry (Street et al. 2005). SAV beds provide many 

juvenile fish protection while they develop to adulthood and subsequently migrate into other 

habitats where they are fished by recreational and industrial fishermen (Beck et al. 2003; Street 

et al. 2005). 

SAV beds play a vital role in the underwater ecosystem. They serve as near shore 

nurseries for juvenile marine life as they provide protection from predators during early life 

development (Beck 2003). Additionally, they are essential in providing oxygen for the water 

column, lowering water turbidity by knocking down or filtering out suspended particles, 

trapping, cycling, and consuming excess nutrients, as well as providing a source of food for SAV 

grazers, such as sea turtles (Duarte 2002; Thayer et al. 1984; SAFMC 1998). As a result of the 

afore mentioned services and functions, SAV beds have been determined to be one of the most 

valuable ecosystems in the world (Costanza et al. 1997). 

 There are numerous species of low salinity and high salinity SAV, in North Carolina 

estuaries; Three are high salinity species including eelgrass (Zostra marina), shoalgrass 

(Halodule wrightii), and widgeon grass (Ruppia maritima), which should be noted is found in a 

wide range of salinity levels (Ferguson and Wood 1994) as well as five fresh water species 

which include wild celery (Vallisneria americana), sago pondweed (Potamogeton pectinatus), 

non-native Eurasian milfoil (Myriophyllum spicatum), bushy pondweed (Najas guadalupensis), 

rnd redhead grass (Potamogeton perfoliatus) (Deaton et al. 2010). The majority of SAV bed 
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coverage in North Carolina estuaries are dominated by the high salinity species, eelgrass and 

shoalgrass (Ferguson and Korfmacher 1997). Additionally, it has been determined that SAV in 

North Carolina does not normally occur in depths deeper than 2.0 m (Ferguson and Wood 1994). 

 The spatial extent of SAV habitat bottom coverage is highly variable and dynamic, which 

makes delineating a hard boundary of SAV habitat very difficult. The 2010 CHPP defines SAV 

habit to be areas that “have been vegetated by one or more [SAV] species . . . within the past 10 

annual growing seasons and that meet the average physical requirements of water depth (six feet 

or less), average light availability (secchi depth of one foot or more), and limited wave exposure 

that characterize the environment suitable for growth of SAV.” (Deaton et al. 2010). This means 

that current unvegetated areas between adjacent SAV beds that had been vegetated at one point 

in the last 10 years are considered SAV habitat just as much as the SAV bed itself because of the 

potential for SAV to regrow there. The rate at which an unvegetated area between SAV beds can 

become vegetated could be anywhere from several days to several years depending on the 

physical conditions and species of SAV (Fonseca and Bell 1998). One factor that contributes to 

the spatial extent of SAV habitat is the yearly phenological cycle SAV experiences (Moore 

2000). Similar to the cycle that a deciduous tree goes through, of growing and then losing its 

leaves, SAV blades grow from the rhizome system and then later die off. This yearly cycle is 

determined by the seasonal changes of environmental conditions such as sun radiation, 

temperature, and weather. For example, if a survey was taken of SAV coverage in a particular 

estuary during the month of August, then again in January, the area coverage would be 

substantially lower. This is because August is during the summer months where conditions are 

conducive to SAV growth, mainly as a result of heightened solar radiation striking the northern 

hemisphere.  
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2.2 Human and Natural Impacts to SAV 

 There are areas outside of North Carolina that have experienced heavy losses of SAV 

coverage. The Chesapeake Bay has been the site of substantial SAV loss. For example, Fleets 

Bay, which is a part of the Chesapeake Bay, went from over 500 ha of SAV coverage in 1960 to 

nearly nothing in 1980. There were similar declines in many other parts of the Chesapeake Bay 

due to water quality issues (Orth and Moore 1983). Tampa Bay, Florida, has seen losses as high 

as 50% (Smith 1998). In these examples much of the cause of SAV coverage decline was due in 

part to nearby urban development and industry affecting water quality, particularly in the 

Chesapeake Bay. 

Since SAV habitat is near the shore, the biggest impact to SAV beds is human activity 

(Duarte 2002). The North Carolina Outer Banks permanent population rose an estimated 32% 

from 40,800 to 54,000 from 1990 to 2000 (Street et al. 2005). Since the year 2000, the rate of 

permanent population increase in coastal communities has slowed, which is due to the fact that 

the thin barrier islands were built out during the 1990‟s not allowing room for more homes and 

other structures to be built. This lead to a boom of new housing developments built along the 

mainland waterfront or the “Inner Banks” from 2002 to 2006. The expansion of development and 

the increase in infrastructure needed to support such development has put further stress on SAV 

(Deaton et al. 2010). Additionally, during the summer months tourism increases, this attracts 

people from other states as well and from mainland North Carolina counties to the coastal region. 

At beach towns, the latest estimates show a seasonal population that is 3 to 59 times larger than 

the permanent population (Deaton et al. 2010). The heightened human activity in the North 

Carolina coastal region during the summer months occurs at the time of the SAV growing 

season, which inevitably results in heightened stress on SAV. The impacts from human activities 
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include coastal development, dredging, eutrophication from non-point source pollution, siltation, 

frequent industrial ship traffic, and frequent recreational boating (Beck et al. 2003; Duarte 2002). 

Dredging commonly occurs in areas where there is high traffic of industrial and recreational 

boats and is a direct threat to SAV beds because it not only can remove SAV habitat, but it can 

cause an increase in turbidity and wave action from further increases in vessel traffic as well as 

produce dredge spoils that are sometimes deposited on top of SAV beds as was the case in the 

Core Sound in North Carolina outlined in Ferguson and Wood (1994). 

 Hardened shorelines, a development reaction to erosion, sea-level rise, and storm damage 

protection have also impacted SAV. As the sea-level rises, SAV will have to adapt by spreading 

to newly submerged sandy bottom area. Structures such as bulkheads, rip rap, and 

marinas/docking facilities stand literally as barriers to SAV adaptation because SAV cannot 

spread past the structures, resulting in a net “placement loss” of habitat. Bulkheads are a 

common structure built on coastal residence properties as well as the use of rip rap to prevent 

erosion and are quite readily permitted in estuarine environments of NC under current policy. 

Also, bulkheads are standard at marinas in addition to concrete boat ramps coupled with a high 

frequency of boat traffic prevent SAV from growing or adapting. (Street et al. 2005). 

Though many anthropogenic influences impact SAV growth, nature too has impacts that 

can adjust SAV growth. Nature has a role that effects SAV growth, but nature's way helps to 

sustain a sense of equilibrium in the natural environment by keeping SAV bed growth at a 

sustainable level. Large storms such as hurricanes and tropical storms produce strong waves that 

can rip SAV out from the water bottom resulting in a large scale blow to SAV beds. These large 

storms also create high levels of turbidity from resuspended particles and flood waters flowing 

into the system. The heightened turbidity can obstruct light from penetrating the water column 
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down to the water bottom, which can kill off SAV, particularly the SAV growing in deeper water 

where adequate light might be limited under standard conditions. Events such as hurricanes or 

tropical storms that produce high levels of turbidity are called pulsed turbidity events (Orth et al. 

2006 and Preen et al. 1995). As an example, in Hervey Bay, Australia there was a documented 

loss of nearly 1000 km
2
 of SAV resulting from tropical storms causing pulsed turbidity events 

(Preen et al. 1995). Additionally, grazers and foragers impact SAV coverage. Grazers such as sea 

turtles will graze on SAV and foragers such as Atlantic stingrays will rip up SAV searching for 

prey (Thayer et al. 1984).  

Other natural impacts on SAV beds include infectious diseases, called seagrass wasting 

disease, that are sometimes introduced to SAV beds, by migrating foragers (Jackson et al. 2001). 

Low salinity SAV species are less susceptible to pathogens because they are in low saline water 

(Short et al. 1987). The South Atlantic Fisheries Management Council (SAFMC) stated in their 

1998 final report that Zostera SAV in Core Sound, Back Sound, and Bogue Sound displayed 

signs of wasting disease (1998). These three sounds are high salinity sounds because of the high 

saline seawater brought up from the Gulf Stream Current. 

In North Carolina, historical observations of SAV coverage have shown SAV coverage trends 

from the early 1900's to 2002. Most of the losses occurred as a result of circumstances such as 

increases in water turbidity, diseased seagrass, increases in salinity in freshwater environments, 

and hurricanes. The overview of SAV coverage history based on the qualitative analyses of 

Davis and Brinson (1990) and Steel (1991) were outline by the 2005 North CHPP (Table 1). 

These historical trends highlight the fact that SAV coverage has been highly variable over time 

due to its susceptibility to human and natural impacts, which why it is important to regularly 

monitor SAV coverage, so current coverage trends and their causes can be understood.  
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Table 1: Major temporal trends in coverage of SAV in North Carolina (Davis and Brinson 1990; 

Steel 1991) 

To do this contemporary coverage statistics are needed for analysis of the current state of 

SAV and to create a baseline for future SAV coverage change analysis. 

 

 

  

  

Year Changes in SAV Coverage in North Carolina 

1918 – 

1919 

Currituck Sound experienced a significant decline attributed to opening of Albemarle 

and Chesapeake Canal. 

1930 Eelgrass decline in Pamlico, Core, and Bogue sounds resulting from seagrass wasting 

disease  

1952 Full recovery of SAV in Currituck Sound from better management practices of canal 

locks 

1955 Major SAV loss in Currituck Sound due to four hurricanes, but within two years SAV 

recovered  

1960 Eelgrass in Pamlico, Core, and Bogue sounds near full recovery from wasting disease 

1962 Freshwater species in Currituck Sound decline because influx of salt water and being 

displaced by non-native Eurasian watermilfoil  

1975 SAV is common in upper Pamlico River estuary 

1985 Major loss of SAV in upper Pamlico River estuary (1% of pre-1970 levels), western 

Pamlico Sound, and Neuse River estuary resulting from extreme sediment loading 

1990 Minor recovery of SAV in Neuse and Pamlico estuaries due to improved erosion 

control methods and/or weather patterns  

2002 Increase of SAV reported in Albemarle Sound possibly from improved water clarity 

caused by drought conditions  
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2.3 SAV Mapping 

 SAV coverage loss can be severely extensive as a result of anthropogenic stresses to the 

near shore ecosystem. There have only been historical reports based on observations of SAV loss 

in North Carolina, SAV loss has yet to be quantified (Street et al. 2005; Davis and Brinson 

1990). Since coverage variation (loss or gain) of SAV for coastal North Carolina has never been 

quantified temporally, the CHPP 2010 stated there is a need in North Carolina to begin 

quantifying SAV coverage in order to develop a baseline map that can be used for regular SAV 

coverage monitoring in the future (Deaton et al. 2010). Also, in addition to the published studies 

in the past that have mapped SAV beds off North Carolina's coast (Carroway and Priddy 1983; 

Davis and Brinson 1990; Ferguson and Korfmacher 1997; Ferguson and Wood 1993) there have 

been unpublished mapping projects done between 1997 and 2008 by the Division of Water 

Quality (DWQ), DWQ Rapid Response Team, Division of Marine Fisheries (DMF), Department 

of Transportation (DOT), Elizabeth City State University Mapping Program, and North Carolina 

State University (Unpublished SAV Mapping Inventory, 

http://www.ncfisheries.net/habitat/miscdownloads/SAV_mapping_inventory_2008.pdf, last 

accessed 6/15/2011). None of these studies or projects were aimed at investigating statewide 

SAV coverage as the current APNEP mapping project is aimed at trying to accomplish using the 

new approach of combining acoustic, video, and remote sensing mapping techniques. 

 Sonar has the ability to detect the presence or absence of SAV. In the instance when SAV 

is present, the first return from the ping is the SAV and the last return is the bottom. Thus, a 

sonar acoustic sensor can provide three types of data, presence or absence of SAV, water depth, 

and plant height. Water depth data can be used to improve unsupervised classification of SAV 
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(Ferguson and Korfmacher 1997). The limitations of a sonar sensor are that it cannot detect SAV 

species and there is minimum threshold of object height that is set at 2 acoustic bins 

(approximately 3.5 cm) above the substratum in the software associated with the sonar sensor 

which processes the raw sonar data. Therefore, any SAV shorter than ~3.5 cm threshold goes 

undetected, which from the preliminary finding of the ANEP project has shown would tend to 

underestimate SAV coverage. Additionally, the acoustics are limited to water that is deep enough 

to support boat navigation, so that seagrass located in water too shallow cannot be surveyed. 

 Remote sensing imagery has been used for mapping large areas of SAV bed coverage 

(Mumby and Edwards 2002; Ferguson and Korfmacher 1997; Luczkovich et al. 1993; 

Andrefouet et al. 2003; Chauvaud et al. 1998; Wabnitz et al. 2008). With remote sensing 

techniques, one can classify imagery for large areas to be mapped, with less resources, and less 

expenses that are required to employ ground based surveying techniques (Mumby et al. 1999).  

 Ferguson and Korfmacher (1997) completed a study in the Core Sound in North Carolina 

where they mapped SAV coverage using Landsat data to map SAV in North Carolina. Based on 

the results of principle component analysis, bands 1 (450-520 nm, blue) and 5 (1,550-1,750 nm, 

middle IR) were used to classify the SAV. A bathymetric layer was also included in the 

classification. It is interesting that band 5 in the middle infrared wavelength was used, since 

infrared light is absorbed by water, which can be problematic when mapping benthic habitats 

(Wolter et al. 2005). SAV habitat was found at shallow water depths down to 2 m with most 

SAV coverage being most prominent at depths shallower than .5 m. The use of a bathymetric 

data layer as another “band” for classification was determined to improve SAV classification. 

Ferguson and Korfmacher (1997) used a bathymetric layer created from data collected in the 

1800‟s and suggested that contemporary bathymetric data should be used to further improve 
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classification accuracy. Additionally, the Landsat spatial resolution is 30 x 30 m, which is course 

when compared to the higher spatial resolution satellite sensors available in 2011 (such as WV-

2) that did not exist previous to 1997 when the Ferguson and Korfmacher published their work. 

Using higher spatial resolution would likely increase the ability to accurately detect the extent of 

SAV coverage. 

 Using high spatial resolution Quickbird imagery (2.44x2.44m), a study was done in the 

Great Lakes (Wolter et al. 2005). Three visible bands of the sensor (485, 560, and 660 nm) were 

used in the analysis to classify SAV using unsupervised ISODATA classification method. 

Visible bands are the optimal bands to use when classifying marine habitats because they have a 

lower wavelength enabling them to penetrate the water column, unlike the infrared bands which 

are absorbed by water (Wolter et al. 2005). Wolter et al. (2005) were able to quantify SAV 

coverage for each study site. 

 A change detection analysis of SAV coverage using aerial photography was done on the 

Texas Gulf Coast (Fletcher et al. 2009). They used aerial photos from three consecutive years 

then changed the RGB values to intensity, hue, and saturation values. The histograms were then 

used to define bare bottom and vegetated bottom. They had classification accuracies ranging 

from 75 to 100% and used GIS techniques to quantify the change throughout the three years. 

This study showed that aerial remote sensing can also be used to map SAV.   

 DigitalGlobe launched WV-2 in October 2009. The new satellite has five bands in the 

visible light spectrum and three in the near infrared (NIR) (Table 2). The radiometric resolution 

is 11-bits per pixel (http://www.digitalglobe.com/index.php/88/WorldView-2 accessed 

6/15/2011). DigitalGlobe advertises and shows examples of the coastal band being used in clear 

tropical water on their website. The price for new acquisition of an 8 band bundle dataset is 
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$30.40 per km
2
 with a minimum image size of 47 km

2
, which brings the minimum purchase to 

approximately $1,430. DigitalGlobe does have archived imagery that can be purchased at a 

cheaper rate though in order for an image to be archived it must have previously been a new 

acquisition order. Also, sample datasets are not provided before data are purchased. 

Band 1 2 3 4 5 6 7 8 

Name Coastal Blue Green Yellow Red 
Red 

Edge 
NIR 1 NIR 2 

Spectrum 

Width 

(nm) 

 400 - 

450 

 450 - 

510 

 510 – 

580 

 585 - 

625 

 630 - 

690 

 705 - 

745 

 770 - 

895 

 860 - 

1040 

 

The wavelength of the Coastal band (400-450 nm) is shorter than the blue band (400-550 

nm) of the DMC used in the APNEP SAV Partners project. Though the aerial sensor (12-bit) has 

a higher dynamic range than the satellite sensor (11-bit), the improvement with the shorter 

wavelength band should theoretically allow for a more accurate classification of SAV coverage 

as well as an increase in the area that can be mapped using remote sensing imagery.  

 Even with the improved spectral and radiometric resolutions of the Worldview-2 

imagery, it still has limitations. One limitation is of course, water turbidity. It does not matter 

how fine the spectral and radiometric resolutions may be, if the water is highly turbid then the 

sensor still cannot detect benthic habitat. Another limitation is the temporal resolution. WV-2 has 

off-nadir capabilities, but still it is unable to go over the same spot every day and at times off-

nadir look angles may provide difficulties when mapping underwater habitats because the 

reflectance must travel through a larger portion of the water column, attenuating the signal. 

Table 2: Multi-Spectral bands of the WorldVeiw-2 satellite sensor 

(http://www.digitalglobe.com/index.php/88/WorldView-2, last accessed 6/15/2011).  
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Furthermore, the cost of the imagery can be a limitation as it may be too costly for some to use 

WV-2 imagery.  

Geolocation accuracy is also a limitation, as is true with all remote sensing sensors. The 

stated geolocation accuracy for WV-2 is 4.6 to 10.7 meters 

(http://www.digitalglobe.com/index.php/88/WorldView-2, last accessed 6/15/11). This means 

that the actual location of a mapped SAV bed could be up to almost 11 m off of the actual real 

world location, which could present potential issues. For example, if a homeowner wanted to 

build a dock out from his/her property and a permit request was denied because the SAV map 

shows there is an SAV bed where the dock is proposed to be built. However, in reality the map 

location of that SAV bed is off 10 m and the location of the proposed dock is over an 

unvegetated bottom. A scenario such as this could go the other way as well, where a dock is 

approved because the SAV map shows that there is no SAV at risk, but in reality there is SAV 

and a portion of an SAV bed is subsequently destroyed. With remote sensing georeferencing 

techniques there is the potential that the geolocation accuracy of the imagery can be improved. 

Georeferening imagery is a common remote sensing technique (Jensen, 2005). But 

georeferencing images where a majority of the image is water can be problematic because there 

are virtually no reliable ground control points (GCP) on the water. 

 In this study, remote sensing classification techniques will be used to investigate the 

capabilities of the WV-2 satellite to map SAV in North Carolina estuaries and its potential to be 

used as part of the APNEP Mapping Partners SAV mapping project currently underway for the 

North Carolina DMF. 
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2.4 Study Sites 

 Three study sites were used: Sandy Point, Blounts Bay, and Jarrett Bay (Figure 1). Three 

was the chosen number of sites largely because there was only enough funding to purchase three 

images. The study sites at Blounts bay and Jarrett Bay extended out from the shoreline 

approximately 300 m and was 300 m wide. The Sandy Point study site extended out from the 

shoreline approximately 500 m and was 300 m wide. The site extended out to 500 m because the 

SAV coverage was so extensive that the SAV bed edge extended beyond 300 m from the 

shoreline. Sandy Point is located in the Albemarle Sound near Edenton, NC. This was a low 

salinity site that is mainly fed by the Roanoke River. This site was selected because there was a 

previous seagrass survey completed at the same location for a proposed coastal community and 

because it was located in the north portion of the North Carolina estuarine system (Dr. Joseph 

Luczkovich, personal communication). SAV species present at the site were Myriophyllum 

spicatum, Najas guadalupensis, Potamogeton, and Vallisneria. The shoreline was relatively 

pristine with a line of trees near the shore and a large farm field behind the trees. An exception of 

the pristine setting was a canal that had been dredged through the SAV bed in preparation for the 

building of the housing development. 

 Blounts Bay is located off the Pamlico River across from Goose Creek State Park, east of 

Washington, NC. This too is a low salinity site that is mainly fed by the Tar/Pamlico River as 

well as the small tributary Blounts Creek, hence the name of the bay. Blounts Bay was selected 

as a site after a probing survey identified SAV at this location and because it is located in the mid 

portion of the estuarine system. SAV species found at the site were Najas guadalupensis, 

Potamogeton, Ruppia, and Vallisneria. SAV cover of the site was very sparse. The shoreline is 
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mostly lined by private property where many homeowners have hardened shorelines and docks.  

 Jarrett Bay is located off of the southern portion of the Core Sound, which is north of 

Harkers Island, NC. This is the only high salinity study site used in this study. Beaufort Inlet, 

located south of Core Sound, and Drum Inlet, located in the northern portion of Core Sound, are 

the two inlets located closest to Jarrett Bay and which provide the high salinity water found at 

the site. Ocean water is forced in and out of both inlets during flood and ebb tides respectively. 

Additionally, there are frequent Nor'easter winds that push water from the Pamlico Sound into 

Jarrett Bay, which at times can minimize the difference of high and low tide water levels. Jarrett 

Bay was selected as a site using aerial imagery flown in 2007 for the APNEP SAV Partners 

project and was selected because it represented high salinity seagrass species and was located in 

the southern portion of estuarine system. SAV in Jarrett Bay is predominantly made of the high 

salinity species of Halodule, Ruppia, and Zostera (Ferguson and Korfmacher 1997). SAV 

coverage of this site was moderate. 
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Figure 1: Location map for three sites. 



 

 

SECTION 3.0: METHODOLOGY 

3.1 Mapping North Carolina SAV 

There were a total of three images that were analyzed in this study, one image for each 

site. The images were purchased from the DigitalGlobe as a new acquisition order. The first of 

the three images was acquired September 18, 2010 and the last image was acquired a month later 

on October 18, 2010 (Table 3). The imagery was analyzed and classified using ERDAS Imagine. 

Study Site Date of Image Acquisition Date of Ground Ref. Acquisition 

Blounts Bay October 18, 2010 September 24, 2010 

Jarrett Bay September 18, 2010 September 17 & 18, 2010 

Sandy Point October 15, 2010 September 25, 2010 

 

 

The WV-2 imagery went through an analytic process aimed at determining the best 

classification methodology, which would yield the most accurate classification. From initial 

inspection of the imagery, it was determined that the Jarrett Bay image, which had a dense, 

continuous SAV bed that covered a moderate portion of the site, was the best image available 

and was subsequently used as the center of the remote sensing analysis to develop the 

classification methodology. Using this image a methodology was created to classify the coverage 

of SAV at the other two sites. From field observations and ground reference data, Blounts Bay 

was identified as having very sparse coverage and Sandy Point had extensive coverage. Each of 

the three sites were put identified by one of the four classes of percent coverage (0-10%, 10-

40%, 40-70%, and 70-100%) used by Lyons (2011). From the classification methodology 

developed, four analyses were performed:  

Table 3: Dates of WV-2 image acquisition and ground reference data 

acquisition for each site. 
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 Testing what classification had the highest classification accuracy between using all 5 

visible bands, using components derived from a PCA, or using a combination of the 5 

visible band and the PCA components.  

 Apply the same methodology to the Sandy Point image, where SAV coverage 

predominantly fell into the 70%-100% coverage class, to test the upper end of the 

coverage classification methodology. 

 Apply the coverage classification methodology to the Blounts Bay image, where SAV 

coverage predominantly fell into the 0%-10% coverage class to investigate the lower end 

of the coverage classification methodology. 

 Perform and accuracy assessment at incremental water depths in order to identify the 

depth threshold where remote sensing classification can reliably map SAV. 

 As a general outline of the classification methodology, it started with eliminating pixels 

that had the potential of confusing the unsupervised classification algorithm by masking out land 

using WV-2 NIR 2 band (band 8) (Table 2) and masking out deep water pixels using the acoustic 

sensor derived water depth data. A covariance matrix PCA was then run to compress the WV-2 

five visible bands down to two components (Chauvaud et al. 1998; Ferguson and Korfmacher 

1997; Khan et al. 1992). With the PCA components as input data, the ISODATA clustering, an 

unsupervised classification method, was used to identify natural groupings that existed within the 

imagery (Chauvaud et al. 1998; Ferguson and Korfmacher 1997; Su et al. 2006; Wolter et al. 

2005) as well as using cluster busting (Jensen 2005b) in problem areas where it was difficult to 

differentiate pixels associated with SAV from other dark pixels such as dark sediment bottom 

type, turbid water, or deeper water. From the unsupervised classification there were two output 

classification categories: SAV and Bare Bottom. There were only two classification categories 
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because the APNEP mapping project was concerned with defining either presence or absence of 

SAV (Dr. Joseph Luczkovich, personal communication). The classifications were each subject to 

an accuracy assessment.  

3.1.1 ISODATA unsupervised classification 

 There were two segments involved in the classification of each WV-2 image, the 

ISODATA classification algorithm and the remote sensing analyst. The unsupervised 

classification process used in this study primarily entailed accounting for each pixel‟s spatial and 

spectral properties. For a pixel to be classified as SAV it must have met certain spatial and 

spectral standards. The spatial standard was accounted for by the analyst, while the spectral 

standard was accounted for by the analyst and the ISODATA algorithm. In order for the analyst 

to maximize classification accuracy, pixels that potentially may have had similar spectral 

properties of the SAV pixels, but were not located in the nearshore were masked out. Nearshore 

here, is being defined as the area were water depths were shallower than 2.0 m. The nearshore 

threshold was set at 2.0 m because it has been shown that SAV in North Carolina does not 

typically grow in water depths deeper than 2.0 m (Furguson and Korfmacher 1997). Field work 

done in conjunction with this study confirmed the 2.0 m threshold, with the exception of the 

Sandy Point study site where SAV presence was observed deeper than 2.0 m. When classifying 

SAV, which is a near shore benthic habitat, all pixels not located in the near shore nor in the 

water were eliminated from the image because many of these pixels had the potential of meeting 

the spectral standard, but did not meet the spatial standard as a result of their location. When a 

pixel is wrongly classified, meaning the pixel is classified as something it is not, this is called 

pixel confusion (Ferguson et al. 1993; Su et al 2006; Wabnitz et al. 2008; Wolter et al. 2005).  
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 Bathymetric data available from NOAA was a possible data source to be used to identify 

and mask out deep water pixels, but the spatial resolution of the NOAA bathymetric maps were 

too course for the purposes of this study. The finest horizontal and vertical resolution available 

from NOAA was their 1x1 arcsecond map, which has a cell size of 30x30 m horizontally and 1 

m vertical resolution. For the relatively small study areas, these resolutions were too course. 

Also, as stated before, much of the NOAA bathymetric maps that exist for North Carolina 

estuaries were derived from data that dates back from the late 1800's to mid 1900's, which 

presented water depth accuracy issues as results of the course resolution and potentially out-of-

date of the maps. This same issue was encountered by Ferguson and Korfmacher (1997). They 

pointed out that the historical depth data created some error in their SAV classification and went 

on to suggest that contemporary bathymetric data should be used for SAV classification. 

Contemporary bathymetric data used in this study was derived from the boat-based active 

acoustics mapping method used in the APNEP SAV Partners mapping project.  

 Contemporary bathymetric data used in this study were derived from the boat-based 

BioSonic DT-X echosounder acoustic sensor used in the APNEP SAV Partners mapping project. 

The acoustic method uses a BioSonics single-beam sonar 420-kHz transducer attached to the 

side of a flat bottom boat to collect data. The transducer sends out pings that travel through the 

water column and strike the water bottom or whatever structure, object, or even living plants 

(seagrass) or animals (such as fish) that may be between the DT-X and the water bottom. Then 

the ping bounces off the water bottom or object and travels back through the water column and is 

received by the DT-X. The raw acoustic data collected was then processed via BioSonics 

ECOSAV2 software, which aggregated the data into individual goereferenced acoustic reports. 

An acoustic report consisted of 10 pings and holds information such as percent SAV cover and 
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water depth. The ECOSAV2 output data were in a GIS compatible CSV format. This file was 

converted into georefernced point data into ArcMap 9.3 where SAV coverage and bathymetry 

layers were created. A bathymetric layer was created through the kriging interpolation algorithm 

available in ArcMap. From the active acoustic derived bathymetry, water pixels within each 

study site that did not meet the spatial standard of being located in water depths shallower than 

2.0 m were identified and subsequently masked out of the imagery (Figure 2). According to 

Ferguson and Korfmacher, this contemporary bathymetry increased the classification accuracy of 

SAV coverage (1997).  

Figure 2: Map of the bathymetry for Blounts Bay derived from the acoustic survey. 
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 As stated previously, the coverage of the acoustic derived data was limited to water 

depths that were deep enough for the boat to navigate. From the unpublished results of the 

Summer 2010 acoustic surveys done by the ECU membership of the APNEP SAV Partners, it 

was determined that anything shallower than 0.5 m was too shallow to survey. In addition to 

navigation difficulties in shallow water, this 0.5 m threshold was also due to detection limitations 

of the transducer. The transducer sat nearly 0.2 m in the water column and was unable to detect 

SAV or bottom within the "acoustic near-field," which is approximately 0.3 m. Therefore, 0.5 m 

in depth was set as a threshold.    

Figure 3: WV-2 image in the near IR2 (band 8) for Jarrett Bay, NC. Water appears black and 

land in shades of gray. The bright spot in the water was the pixel of our boat when 

the satellite flew over the site where the fieldwork was being conducted 

concurrently. 
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 Pixels located on land were also masked out of the imagery. This was done because 

including land in the unsupervised classification would increase the number of irrelevant clusters 

in the output classification. Land pixels were easily identified using WV-2 Band 8, which is the 

NIR 2 band. Reflectance in the IR spectrum is absorbed by water, so in an image displaying an 

IR band, water appears dark in contrast to land because the IR light only gets reflected back to 

the sensor from the land (Figure 3). Using this band, water and land were identified and a 

boolean water mask was created to mask out the land at each study site. What remained in each 

image were only the pixels in the nearshore environment and were then subsequently submitted 

into a PCA to further investigate.  

The spectral standard of each pixel was investigated by first running the nearshore water 

pixels through a PCA. Since SAV grows in complete submersion, only WV-2‟s 5 visible bands 

were input into the PCA. The PCA was used in order to maximize the interpretability of the data 

in an effort to improve classification accuracy.   

  The ISODATA unsupervised classification is a remote sensing classification method that 

uses an algorithm to group all the pixels into an analyst defined number of clusters. The 

algorithm uses the pixel values of each pixel in the image, which in this case was derived from 

the two new bands created from the PCA, to create a feature space. It is in this feature space that 

the data are grouped into an analyst set number of clusters, by the first iteration of the algorithm. 

The algorithm calculates the mean of each cluster and subsequently assigns each pixel to the 

cluster with the closest mean. The algorithm continues to recalculate these statistics and grouping 

the pixels in the defined number of clusters until the max amount of iterations, which amount is 

analyst defined, is met or until little change occurs between iterations, this change is called the 

convergence threshold (Jensen 2005b).  
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 The parameters used for the ISODATA classification of the study images were 10 classes 

and 15 iterations with a convergence threshold of 95%. 10 classes was determined through 

process of trial and error to yield the best classification of the SAV. 15 iterations provided 

enough iterations for the 95% convergence threshold to be reached before the maximum number 

of iterations was reached. 

 The clusters from the ISODATA output were identified by the analyst to be one of three 

classes; vegetated, unvegetated, and confused. Areas where pixel confusion was recognized, 

were masked out and reclassified using the ISODATA unsupervised classification, which is 

called “Cluster busting” (Jensen 2005). The final classification was imported from ERDAS 

Imagine to ArcMap 9.3 for accuracy assessment. 

3.3 Accuracy Assessment 

 An accuracy assessment was performed at each study site. Because of the highly variable 

growth behavior of SAV throughout its annual phonological cycle, using any other reference 

data source aside from ground reference data collected on or near the imagery acquisition date 

would introduce high levels of uncertainly in the accuracy assessment. The ground reference data 

used were point data gathered from two sources, snorkeling quadrats and GPS recorded walking 

transects.  

3.3.1 Quadrat Data  

All quadrats were collected via snorkeling and were located only in water depths where it was 

deep enough for the acoustic surveying boat to navigate. The quadrat locations were randomly 

selected from the acoustic reports, which each report had a lat/long location. The acoustic reports 

came from the boat transects that had start and end points that were derived from a systematic 

random location selection process. In order for the acoustic survey method to obtain an adequate 

A) 

B) 



29 

 

 

amount of sample points within a 300x300 m study site to detect at least a 10% change in spatial 

coverage of SAV it was determined by a statistical power analysis that at least 36 transects 

should be done. The location of the first transect was randomly located within the first 8.3 m 

(300 m / 36 transects) of the top of the study site and the remaining 35 transects were spaced 8.3 

m apart for the rest of the width of the study site. All transects ran perpendicular in nature to the 

shoreline starting at the systematic random start locations and ending at the opposite side the of 

the study site. 

Each of the quadrats used were 1x1 m and were divided up into 100 10x10 cm squares by 

string. A percent cover was derived from each quadrat reading by simply counting the number of 

squares with the presence or absence of SAV. For example, if 25 squares had SAV present then 

that quadrat location had a percent cover of 25%. In the accuracy assessment the coverage in 

percent values were not used, but rather each quadrat point location was designated as SAV or 

bare bottom. 

3.3.2 Walking Transects 

Walking transects were used to obtain reference data for the areas too shallow for the boat to 

navigate. GPS units used were Garmin 76 and 76s with a locational accuracy of up to 15 m. At 

each data point a vegetated or not vegetated distinction was made and the water depth was also 

recorded. The walking transects ran near parallel to the shoreline along the entire length of the 

study site. The starting locations of the walking transects were randomly selected in the field. 

The location at which a data point was collected was every 10 then 15 steps, alternating between 

the two step distances. The ground reference data were collected on September 18, 2010 for 

Jarrett Bay and on September 24, 2010 for Blounts Bay. The Jarrett Bay image was acquired on 

September 18, 2010 and the Blounts Bay image was on October 10, 2010. 
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3.3.3 Classification Accuracy Statistics 

Standard confusion matrices were generated. The accuracy statistics included: user‟s accuracy 

(error of commission), 

producer‟s accuracy 

(error of omission), 

overall accuracy, and  

coefficient of 

agreement. The 

classification accuracy 

methodology was done 

in a way that would 

identify the water 

depth threshold where 

remote sensing could accurately detect SAV. Using the bathymetry layer created from the 

acoustics, the ground reference points were divided into groups according to water depths at 

every 10 cm. For each study site there were a total of 6 groups ranging from depths less than 0.5 

m up to 1.0 m (< 0.5 m, 0.50 to 0.59 m, 0.60 to 0.69 m, . . . etc.). A confusion matrix as well as 

user's and producer's statistics and a  coefficient were calculated for each group. There were a 

minimum of 6 points in each group. There were substantially more ground reference points in the 

shallow water than there were in the deeper water of the study site (Figure 4). This was simply 

the result of the difficulty of obtaining data in the deeper water.

Figure 4: Map showing the depths of the ground reference points at 

Jarrett Bay. 



 

 

SECTION 4.0: RESULTS AND DISCUSSION 

4.1 Jarrett Bay  

 After the examining of 5 visible bands, the shorter wavelength bands (coastal and blue) 

showed the least contrast between SAV and bare bottom. In particular, the coastal band seemed 

unable to detect the SAV bed at all (Figure 5). This was surprising because the ground reference 

data indicated that the most shallow portion of the water column covering the SAV bed was only 

20 cm and the deepest was 85 cm and yet it was unable to detect any of the benthic cover type. 

This may be attributed to two factors. The reflectance of short wavelengths is more susceptible to 

Rayleigh scattering and suspended particles that could contribute to the diffused scattering. Also, 

colored dissolved organic matter (CDOM) greatly absorbs the energy in the wavelength region 

of blue light (Biber et al. 2008). The reflectance absorption of the coastal and blue bands may 

have input noise into the ISODATA classification of the visible bands causing the classification 

to have difficulty accurately delineating the edge of SAV bed. Bands 3, 4, and 5 seemed to best 

define the SAV bed in the image as a result of these three bands being less susceptible to 

scattering from suspended particles and being absorbed by CDOM. Inputting the image through 

a PCA seemed to remove the noise caused by the scattering and absorption of the two shorter 

wavelength bands and emphasized the spectral differences of SAV and bare bottom.  



32 

 

 

  

Figure 5: Multi-spectrum images of Jarrett 

Bay showing: a) Coastal Band, b) Blue 

Band, c) Green Band, d) Yellow Band, and 

e) Red Band 
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 The band combination of the WV-2 image (R: band 8, G: band 3, and B: band 1) shown 

in Figure 6, gives some insight into the imagery. In the water, bare bottom is a light blue color, 

while the SAV is the dark blue and the red in the image is land vegetation. The vegetation 

appears red because band 8 (NIR 2) was assigned to be displayed as red in the red, green, and 

blue (RGB) display composition. Because of chlorophyll, healthy vegetation will always reflect 

high amounts of green and NIR light and absorb blue and red light. SAV too, has chlorophyll in 

its biological makeup, but it grows under water, so the NIR light is absorbed by the water. This is 

why the SAV in the image is a dark blue not a red color. 

 

Figure 6: WV-2 image of Jarrett Bay with a RGB combination of bands 8, 

3, and 1.     
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 Only the first two (Figure 7a and b) of the five available PCA components were used 

because a total of 98% of the data variation were explained by components 1 and 2. The 

remaining three components did 

not provide much information 

(Table 4). From the eigenvector 

matrix, it was clear that band 3 

(green) and band 4 (yellow) 

dominate the first component. 

The second component was 

dominated by band 3 (green) and 

band 5 (red) (Table 5). Through 

visual interpretation of 

Components 1 and 2 and 

consideration that bands 3, 4, and 

5 were the leading contributors to 

the first two components, it was 

assumed Component 1 was 

showing variation in bottom type 

and Component 2 was showing 

variation in water depth. Further 

analysis is needed to verify these 

interpretations. Component 1 

Figure 7: a) The first PCA component at the Jarrett Bay 

study site explaining 87.7% of the data 

variation.  

b) The second PCA component explaining 

10.3% of the variation. 
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and Component 2 became two "bands," that were then input into the ISODATA unsupervised 

classification. 

 Additionally, through process of trial and error with the Jarrett Bay image, it was 

determined that the most accurate classification resulted from inputting only the two PCA 

components as a two-band image into the ISODATA algorithm. The other two possible inputs 

were the 5 visible bands and a combination of the visible bands and 2 PCA components. 

 The resulting classification of the image was able to detect the SAV bed in the study site 

(Figure 8). The overall classification accuracy was 71.2% with an SAV producer's accuracy of 

80%, a user's accuracy of 74%, and  coefficient of agreement of 71.2% (Table 6). These results, 

at best were moderate. There were three main causes of misclassification. Dark sediment bottom 

type in the nearshore environment seemed to cause some false positive error by classifying bare 

bottom as SAV. Also, in the northeast portion of the study site there was an area that had 

combination of dark sediment as well as deeper water (~0.95 to 1.0 m), which too caused bare 

bottom to be mistakenly classified as SAV. The third cause of classification error resulted from 

the fact that the sensor was unable to detect small patches of SAV in the deeper turbid water. As 

PCA 

Component 

Eigen- 

values 

Variation 

Explained 

1 191.12 87.7% 

2 22.41 10.3% 

3 2.75 1.3% 

4 1.02 0.5% 

5 0.59 0.3% 

Eigenvector Matrix 

  Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 

Band 1 0.12 -0.23 -0.62 0.25 0.70 

Band 2 0.26 -0.34 -0.61 -0.10 -0.66 

Band 3 0.66 -0.54 0.42 -0.25 0.18 

Band 4 0.56 0.37 0.09 0.71 -0.15 

Band 5 0.41 0.63 -0.24 -0.59 0.14 

Table 4: Eigenvalue table for 

the Jarrett Bay PCA. 

Table 5: Eigenvector matrix for the Jarrett Bay PCA. 
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a result of the 2x2 m spatial resolution of WV-2, it would have difficulty detecting any patches 

that were smaller than 1 m in diameter or a 1x1 square. Additionally, the small SAV patches that 

were present were in fact just that, small. Quadrat results showed very low percent coverage 

(<15%) for all of the locations in the deeper water .  

 

 However, the classification was able to accurately delineate the deep and shallow edges 

of the dense SAV bed. It is important for the classification to be able to accurately delineate the 

boundaries of the bed in order to accurately quantify the spatial coverage of SAV. The SAV 

producer‟s error of 80% says that SAV can be classified correctly 80% of the time and a user‟s 

accuracy of 74% means that a pixel classified as SAV is correct 74% of the time (Table 6). A  

of 38.5% shows a satisfactory agreement between the classification and the ground reference 

data (Landis and Koch, 1977). 

Figure 8: Map showing an overlay of classified SAV at Jarrett Bay over 

R= Band 8, G= Band, and B=Band 1 of the WV-2 imagery.    
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Table 6: Table showing the confusion matrix and overall classification accuracy as well 

as the user's and producer's accuracy and  Coefficient of Agreement. 

 

K
^
 coefficient for Jarrett Bay. 

 

4.2 Jarrett Bay Results by Depth 

 Breaking down classification accuracy by depth allowed for classification accuracy 

trends related to depth to be investigated. The four depth ranges ranging from < 0.50 m up to 

0.70 - 0.79 m, had moderate to high classification accuracy results with the lowest being 73% 

and highest 100%. The two deepest depth ranges (0.80 - 0.89 m and 0.90 - 0.99 m) had the same 

classification accuracies at 36.4% and 45.5% respectively, which was considered low (Figure 9). 

The trend in the classification accuracy by depth shows a steep drop in accuracy from depth 

range 0.70 - 0.79 m to 0.80 - 0.89 m. This trend shows that in this image the water depth 

Jarrett Bay Overall Classification Accuracy 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 32 11 43 74% 

Bare 8 15 23 65% 

# of Ground Ref. Pixels 40 26 66 

71.2% Producer's Accuracy 80% 58% Overall Accuracy = 

  Coefficient = 38.5% 
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Figure 9: Classification accuracy according to water depth. 

threshold of 0.8 m is the limit that remote sensing can accurately detect SAV if the water depth is 

shallower than 0.8 m. With the identification of the threshold one can determine where the boat 

based methods should be utilize to map the SAV. It should be noted that the 0.8 m depth 

threshold would vary and depend on the turbidity levels. When comparing the classification 

accuracies of the depth ranges below 0.8 m with the depth ranges above 0.8 m, there is a 

substantial difference. Within the four shallow depth ranges the classification accuracy jumped 

up to 86% (Table 7). The SAV producer's and user's accuracies also increased up to 84% and 

100% respectively. This producer's accuracy means that with the classification scheme  

 

presented, SAV can be correctly classified 84% of the time in water depths shallower than 0.8 m. 

The user's accuracy means that SAV is correctly classified nearly 100% of the time. All values 

are high and further show that remote sensing can accurately identify SAV in waters shallower 

than 0.8 m. The user's accuracy of 50% for bare bottom, was probably attributed to the pixel 

confusion of dark bare bottom sediment being incorrectly classified as SAV.  
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Table 7: Table showing the confusion matrix and classification accuracy as well as the 

user's and producer's accuracy and  coefficient. 

 

                                                          In contrast, at the two 

deepest depth ranges alone the classification accuracy plummeted from the overall accuracy of 

73% down to 40.9% (Table 8). Both the SAV producer's and user's accuracies were 0%, which 

signifies the fact that as the water depth increased the ability of the sensor to detect SAV, 

Jarrett Bay Classification Accuracy SHALLOWER than 0.8 m 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 32 0 32 100% 

Bare 6 6 12 50% 

# of Ground Ref. Pixels 38 6 44 

86.4% Producer's Accuracy 84% 100% Accuracy = 

  Coefficient = 59.3% 

Jarrett Bay Classification Accuracy DEEPER than 0.8 m 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 0 11 11 0% 

Bare 2 9 11 82% 

# of Ground Ref. Pixels 1 21 22 

40.9% Producer's Accuracy 0% 45% Accuracy = 

  Coefficient = -18.2% 

Table 8: Table showing the confusion matrix and classification accuracy as well as the 

user's and producer's accuracy and  coefficient. 
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particularly small SAV patches, significantly decreased in water depths deeper than 0.8 m. 

Interestingly enough, the bare bottom user's accuracy was relatively high at 82%. This shows 

that when a pixel is classified as bare bottom in water depths ≥ 0.8 m it was is correct 82% of the 

time. On the other hand, the bare bottom producer's accuracy of 45% shows that there was a high 

level of omission error when it came to classifying bare bottom in water deeper than 0.8 m. 

Therefore, the classification scheme could correctly identify bare bottom 45% of the time and 

82% of the pixels classified as bare bottom were classified correctly.  

   

4.3 Blounts Bay 

 Upon first inspection of the Blounts Bay image only a small patch of SAV near the south 

east shoreline could be visually interpreted. Also, there were shadows, cast by trees immediately 

adjacent to the shoreline over the water nearest to the shore (Figure 10). It was determined from 

ground reference data that a significant portion of SAV was present under the tree shadows. The 

shadows were masked out because they were too dark to distinguish SAV from bare bottom. As 

a result, all land, deep water, and shadow pixels were excluded. The first two PCA components 

explained 96.5% of the data variation (Table 9). Component 1 was primarily comprised of band 

4 (yellow) and Component 2 bands 1 (coastal) and 2 (blue) (Table 10). These components differ 

from what was found at Jarrett Bay. The amount of variation explained by the first two 

components decreased and the make-up of the components changed. Component 2 was 

interesting because it had the same composition as Component 3 in the Jarrett Bay PCA, which 

were bands 1 and 2. These bands were susceptible to suspended particles and CDOM, which are 

elements of turbidity. Therefore, it can be also assumed that Component 2 was showing variation 

in water turbidity. There was little SAV present in the image, so variation in bottom type would 
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be difficult for the sensor to detect, which more than likely contributed to the reason why the 

composition of the first two components differed from Jarrett Bay and why the classification had 

difficulty identifying the SAV in the image (Figure 11). Further analysis is needed to confirm 

such observations. 

 

PCA 

Component 

Eigen- 

values 

Variation 

Explained 

1 46.37 81.08% 

2 8.82 15.42% 

3 0.96 1.68% 

4 0.59 1.03% 

5 0.45 0.79% 

Eigenvector Matrix 

  Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 

Band 1 0.03 -0.56 0.38 0.41 0.61 

Band 2 0.07 -0.63 0.02 0.22 -0.74 

Band 3 0.42 -0.44 -0.16 -0.76 0.18 

Band 4 0.79 0.31 0.49 0.13 -0.14 

Band 5 0.44 0.00 -0.77 0.44 0.16 

Table 9: Eigenvalue table for 

the Blounts Bay PCA. 

Table 10: Eigenvector matrix for the Blounts Bay PCA. 

Figure 10: WV-2 image of Blounts Bay with a RGB combination of bands 

8, 3, and 1.     
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Table 11: Table showing the confusion matrix and overall classification accuracy as well 

as the user's and producer's accuracy and  coefficient. 

 

 

Blounts Bay Overall Classification Accuracy 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 6 1 7 86% 

Bare 15 10 25 40% 

# of Ground Ref. Pixels 21 11 32 

50.0% Producer's Accuracy 29% 91% Overall Accuracy = 

  Coefficient = 15% 

Figure 11: Map of the final classification of SAV at Blounts Bay.  



43 

 

 

 

  The classification was able to detect only a section of the small SAV patch in the 

southeast portion of the study area (Figure 11). The portion of the SAV that was detected seemed 

to be the most dense section of the bed. Some water pixels that were deeper than 1 m as well as 

some dark sediment pixels were incorrectly classified as SAV. Overall classification accuracy 

was 50% with an SAV producer's accuracy of 29%, an SAV user's accuracy of 86%, and a  of 

15% (Table 11). These results showed that the WV-2 sensor had significant difficulty in the 

classification of sparsely growing SAV beds. 

It should be noted that the unsatisfactory outcome in Blounts Bay classification could be 

caused by the time lapse between the dates when the ground reference data was collected and the 

image was acquired. The ground reference data was collect on September 22 and 24, 2010 and 

the image was acquired on October 18, 2010. The time span was at least 24 days. According to 

the unpublished findings of the monthly acoustic surveys there were noticeable declines in SAV 

coverage at Blounts Bay between monthly surveys that were taken from May to September.  

4.4 Blounts Bay Results by Depth 

 The trend of the classification accuracy levels according to depth range showed a steep 

decline in accuracy as the water got deeper down to 0.8 m (Figure 12). The lowest accuracy level 

was in the 0.70 to 0.79 m range, with the highest accuracy level occurring at depths shallower 

than 0.5 m. The two deepest depth ranges had the same accuracy level of 50%. It was apparent 

that the classification did not produce accurate results. 
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Table 12: Table showing the confusion matrix and classification accuracy as well as 

the user's and producer's accuracy and  coefficient for Blounts Bay. 

 

 

Looking only at the water depths shallower than 0.8 m, the classification accuracy 

actually remained at 50%. The SAV producer's and user's accuracy also fell with percentages of 

9% and 50% respectively (Table 12). The  coefficient dropped down to 0%. These results are 

Blounts Bay Classification Accuracy SHALLOWER than 0.8 m 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 1 1 2 50% 

Bare 10 10 20 50% 

# of Ground Ref. Pixels 11 11 22 

50% Producer's Accuracy 9% 91% Overall Accuracy = 

  Coefficient = 0% 

Figure 12: Classification accuracy according to water depth in Blounts 

Bay.  
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Table 13: Table showing the confusion matrix and classification accuracy as well as 

the user's and producer's accuracy and  coefficient for depths deeper than 

0.8 m. 

opposite of what would be expected according to the findings at Jarrett Bay. Based on quadrat 

data, there was a big difference at two bays. At Blounts Bay, the SAV coverage was sparse at 

levels from 0 to 10%. This indicates that satellite remote sensing had difficulty detecting sparse 

SAV coverage. The classification was only able to correctly classify 1 of the 10 SAV ground 

reference points correctly, which resulted in a mere 9% producer‟s accuracy. Of the 11 bare 

bottom reference points the classification correctly classified 10, giving a high bare bottom 

producer‟s accuracy of 91%. Both user‟s accuracies were only 50%. 

 The classification accuracy from water depths deeper than 0.8 m remained at 50% and 

had a  coefficient of 0%, indicating poor agreement between the classification and ground 

reference data (Table 13). The SAV user‟s accuracy was surprisingly 100%, but this level was 

questionable because of the error introduced by the large time lapse between image and ground 

reference data acquisitions. 

 

Blounts Bay Classification Accuracy DEEPER than 0.8 m 

  
Ground Reference 

# of Classified Pixels User's Accuracy 
SAV Bare 

Classification 
SAV 5 0 5 100% 

Bare 5 0 5 0% 

# of Ground Ref. Pixels 10 0 10 

50% Producer's Accuracy 50% N/A Overall Accuracy = 

  Coefficient = 0% 
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4.5 Sandy Point 

 From visual interpretation there was a pattern that could be seen in the nearshore that 

appeared to be a strip of brown colored water (Figure 13). This could have possibly been SAV or 

suspended sediment. There were high hopes for this study site because SAV growth was 

documented by ground reference data gathered in the beginning of the summer to be as deep as 

2.5 m. On the day 

ground reference data 

was collected, 

continuous SAV 

coverage was out to 2 

m with small SAV 

patches seen out to 

2.5 m. This study site 

had the potential to 

investigate the water 

depth threshold of 

SAV detection for the 

WV-2 data. 

Unfortunately, this image showed one of the limitations of satellite remote sensing, which is sun 

glint. There was a possibility to request a reacquisition however, by the time a new image could 

have been acquired by WV-2, it would have been in the beginning or middle of November, 

which would have been long past the SAV growing season.  

Figure 13: Zoomed out Sandy Point image highlighting the brown 

colored pattern of water present along the nearshore 

waters.  
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Figure 14: PCA components from the Sand Point image. Ground reference data showed 

nearly 100% coverage for the majority of the study site, which was undetected 

by the sensor and is shown by the bottom type component. a) Component 1 

and b) Component 2.  

 Despite the difficulties presented by the sun glint, the Sandy Point image was classified 

to see if it had any sort of utility. The classification showed similar results to what the ground 

reference data had shown, but the patterns of the classification indicated that the classification 

was questionable. It was apparent from the two PCA components that the sensor was not able to 

reliably detect any SAV (Figure 14). A classification of the image shows a coverage pattern that 

may have been consistent with the coverage (70%-100% coverage) shown from the ground 

reference data, but the classification wasn't the result of detected SAV. As the PCA components 

showed, the variability in the present in the water was dominantly caused by the sun glint not, 

the presence or absence of SAV coverage. Using a PCA to derive two components showed that it 
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Table 14: Table showing the total 

and percentage area of 

nearshore habitat that 

should be mapped using 

remote sensing or boat-

based methods with depth 

thresholds of 0.8, 1.0, and 

1.5 m. 

has an additional purpose of allowing the remote sensing analyst to determine if an image subject 

to sun glint is still usable. Because the PCA was unable to detect SAV, it was determined that the 

brown water along the shoreline was suspended sediment stirred up by the wind generated 

waves. 

4.6 Product Derived from Depth Accuracy Results 

 With the establishment from the Jarrett Bay results that remote sensing can reliably map 

continuous SAV in water depths shallower than 0.8 m, areas where the two boat-based methods 

(active acoustics and underwater video) should be employed along the North Carolina estuarine 

coast can be identified. Using the bathymetry data available from NOAA, the total area and 

percentage area of the nearshore habitat (water depths from 0.0 m to 2.0 m) was calculated for 

three different depth thresholds where remote sensing should be used to map the SAV. These 

calculations also allowed the same 

two metrics to be calculated for the 

boat-based surveying methods (Table 

14). Three thresholds were used because it is assumed that with improved water turbidity 

conditions, WV-2 would be able to accurately detect SAV in waters deeper than 0.8 m. Depths 

Area and Percentage of Nearshore Habitat 

Mapped by Remote Sensing or Boat-based 

Methods 

Depth 

Threshold 
0.8 m 1.0 m 1.5 m 

R.S 

1533.5 

km² 

1761.9 

km² 

2214.6 

km² 

58% 67% 84% 

Boat-based 

1108.4 

km² 880.7 km² 427.9 km² 

42% 33% 16% 
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Figure 15: Map showing potential areas, according to bathymetry, where boat-based 

surveys and remote sensing should be used to map SAV in North Carolina 

estuaries. 
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shallower than 0.8 m were identified as areas where remote sensing should be used and depths 

from 0.8 m to 2.0 m were identified as areas where boat-based methods should be used to map 

SAV (Figure 15). Though the spatial resolution of the bathymetric data is 30x30 m, product such 

as this would aid the APNEP SAV Partners to identify areas where they should focus their boat-

based and remote sensing efforts. 

 

SECTION 5.0: CONCLUSIONS AND REMARKS 

 Using WV-2 data, one could map SAV in North Carolina estuaries. The Jarrett Bay 

image showcased this study. The edges of the SAV bed were accurately delineated with the deep 

edge being in approximately 0.8 m of water. Dark sediment located in the nearshore habitat at 

Jarrett Bay caused pixel confusion with the classification or misclassified of SAV, which 

resulted in an over classification of the spatial coverage of SAV. 

 Study at the Blounts Bay showed that sparse SAV coverage (0%-10%) was not able to 

accurately be delineated. Additionally, tree shadows covered the majority of the SAV that was 

present at the study site. If the SAV bed were uncovered by the shadows, the sparse SAV bed 

might have been detected because the SAV would have introduced more spectral variability in 

the image, which could have been highlighted by the PCA. 

 The upper end of the SAV coverage (up to 100%) was not able to be assessed due to sun 

glint in the Sand Point image. Sun glint was an example of one of the limitations in the use 

remotely sensed data since the glint severely affected the light penetrating into the water column. 

 Patches of SAV smaller than the 1x1 m spatial resolution of WV-2 are not able to be 

detected by the sensor, which was shown in both the Blounts Bay and Jarrett Bay classifications. 

This limitation can be off-set by the use of the two other boat based SAV surveying methods of 
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the APNEP Partners in water depths deeper than 0.8 m because the spatial resolutions of the data 

obtainable by both methods can be much finer than 1x1 m. 

 According to the environmental conditions present when the WV-2 images were 

acquired, the threshold of water depth where WV-2 data can accurately detect SAV was 

determined at 0.8 m. For the purposes of the APNEP SAV Partners mapping project, boat-based 

methods should be employed in the water depths deeper than 0.8 m. However, one should 

anticipate that the threshold could increase with an improved water clarity. Further analysis is 

needed to quantify the depth threshold as a function of remote sensing and water turbidity data in 

the accurate mapping of SAV. 

 The coastal band is one of the unique characteristics of WV-2 when compared to other 

multi-spectral satellite-borne or airborne sensors. Unfortunately, as a result of the coastal band 

being severely impacted by the scattering from the suspended sediment in the water column 

and/or CDOM absorption, other multi-spectral sensors with high spatial resolution (but without 

the coastal band) can be used to map the SAV in North Carolina. This may result in more 

economical imagery acquisition options.
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