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Obesity is considered a major health threat to the U.S. due to being a strong risk factor 

for developing type 2 diabetes and other metabolic diseases. The prevalence and severity of 

obesity is even greater among some subpopulations in the U.S. (African-American Women). In 

this regard, metabolic dysfunction may be associated with an impairment of mitochondrial fatty 

acid oxidation (mtFAO) which can lead to over accumulation of bioactive lipids such as fatty 

acyl-CoA species. While reductions in mitochondrial content may be a precipitating variable, 

reductions in key enzymes that lead to partitioning fatty acids towards mitochondrial oxidation 

may also be a contributing factor. Recently, reductions of acyl-CoA synthetase (ACS) activity 

have been identified in skeletal muscle. Long chain acyl-CoA synthetase (ACSL) exists as five 

different isoforms, the roles of which are to activate fatty acids to acyl-CoAs in the initial step of 

fatty acid metabolism (synthesis or oxidation). In liver of rodents, ACSL-1 has been thought to 

direct fatty acids toward mtFAO, but little data exists in human skeletal muscle. The purpose of 

this study was to understand the potential role of ACSL-1 activity in lipid metabolism in human 

skeletal muscle. To address the purpose of the study, we employed a model of 

underexpression/knockdown (UEX/KD) of ACSL-1 in primary human skeletal muscle cells 

(HSKM). Based on data from our laboratory, ACSL-1 overexpression significantly increased 

mtFAO in HSKM cells from obese individuals. Therefore, we hypothesized that ACSL-1 



 

UEX/KD would reduce mtFAO in this tissue. To address our hypothesis, we conducted fatty acid 

oxidation and lipid synthesis experiments following 48 h of lipid exposure in HSKM primary 

myotubes obtained from percutaneous biopsies of the vastus lateralis transfected with either 

shRNA (KD) or scrambled RNA (control) plasmid vectors. Results demonstrated that ACSL-1 

was significantly reduced (P<0.05) following KD vs. control. However, following ACSL-1 KD, 

we observed an absence of change in complete (CO2) and acid soluble metabolites (ASM) 

incomplete metabolites oxidation palmitate. In addition, we also reported no alterations of total 

lipid synthesis and esterification of acyl-CoA toward MAG, DAG, and TAG synthesis despite 

the supply of exogenous lipids in our cell model. This is the first report of successful transfection 

and ACSL-1 KD in HSKM cells. Given the inconsistent findings with our original hypothesis, 

we now hypothesize the presence of compensatory mechanisms that exist following UEX/KD of 

ACSL-1 to offset the negative effects of ACSL-1 KD. Alternatives include upregulation of 

additional ACSL isoforms (e.g., ACSL-5) and/or elevations in peroxisomal activity. 
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DEFINITIONS, SYMBOLS and ABBREVIATIONS 

1. Obesity: increased body weight caused by excessive accumulation of fat or those with a     

BMI (Body Mass Index) expressed as body weight per height (kg/m
2
) ≥ 30. 

2. AAW: African American Women 

3. CW: Caucasian Women 

4. CPT-I: Carnitine palmitoyl transferase I. Transporter that allows entrance of long-chain 

fatty acid into the mitochondrial matrix. 

5. ACS: Acyl-CoA synthetase. Mitochondria outer membrane protein that activates long-

chain fatty acids by ligation of coenzyme A to fatty acyl lipids.   

6. ACSL: long-chain Acyl-Coenzyme A synthetase. Its product, acyl-CoA is the “activated” 

substrate for CPT-I regulated fatty acid mitochondrial important for β-oxidation or 

partitioning toward lipid synthesis at and within the endoplasmic reticulum. Thus, the 

products of ACSLs are acetyl-CoA via β-oxidation and CO2 from the Krebs Cycle or  

triacylglycerol (TAG), phospholipids (PL), and cholesteryl esters (CE). 

7. ACSL-1: Isoform highly expressed in liver, heart, adipose tissue, express at moderate 

levels in skeletal muscle and at low levels in lung tissues. 

8. ACSL-5: Isoform highly expressed in liver, adipose, and duodenal tissues and at very low 

levels in skeletal muscle.  

9. shRNA: short hairpin RNA or small hairpin RNA. Plasmids encoding shRNA enter the cell 

via lipid-based transfection. shRNA plasmids are capable of stable inhibition of gene 

expression. 

10. Mitochondria: organelle that functions in energy production. Site of β-oxidation and 

oxidative phosphorylation. 

11. In vitro: Procedure performed in a controlled environment outside the living organism. 



 

12. β-oxidation: Mitochondrial (Matrix) pathway responsible for the removal of carbons from a 

long-chain fatty acid to acetate (acetyl-CoA) units for entrance into the Krebs Cycle. 

13. Nucleofection: Transfection technology based on the momentary creation of small pores in 

cell membranes by applying electrical pulses. 

14. Gene knockdown (KD): Molecular technique used to reduce the expression of a gene’s 

activity through genetic modification or by treatment with a reagent such as short DNA or 

RNA oligonucleotide. 

15. Western blotting: A technique used to detect a specific protein by using antibodies specific 

for epitopes on protein structure and subsequently identified following PAGE separation,  

transfer and bound to a membrane; and finally detected by Horse Radish Peroxidase driven  

chemiluminesce methods. 

16. Cell viability: A determination of living or dead cells based on a total cell sample.  

17. Myotube: Differentiated myocell derived from satellite cell precursors obtained from tissue 

biopsies. The differentiated cell is an elongated, multinucleated myotube.    

18. Myoblast: An undifferentiated cell capable of giving rise to muscle cells. 

19. Tryacylglycerol o triglyceride (TG): A naturally occurring ester of three fatty acids and a 

glycerol that is the chief constituent of stored fats and oils within the cell cytoplasm. 

20. Esterification: A chemical reaction resulting in the formation of at least one ester product. 



 

 

CHAPTER I  

INTRODUCTION    

 In a human, obesity is defined by an individual possessing a body mass index 

(BMI) greater than or equal to 30 kg/m
2
. More specifically, BMI is classified as normal (18.5 to 

less than 25 kg/m
2
), overweight (25 to less than 30 kg/m

2
) and obese (30 kg/m

2 
or greater) 

(Flegal, Graubard, Williamson, & Gail, 2005). BMI is calculated as height ( m
2
) divided by body 

weight (in kg) and is used as an indicator of total body fat according to Centers for Disease 

Control in the United States (U.S.) (CDC, 1985-2008). 

 In general, human obesity is the result of an energy imbalance (positive energy balance) 

due to an excess in energy consumption above that needed for daily physiological requirements 

(e.g., basal, resting metabolism plus that needed for physical activity) and reductions in energy 

expenditure. Thus and more recently, it is recognized by health officials that the rise in those 

incurring a positive energy balance in Western Society is also due to a reduction in energy 

expenditure due to less daily physical activity. A potential explanation for this observed positive 

energy balance is thought to be an ever growing dependence on technology leading to a 

reduction in recreational/health activities and less energy expenditure (Booth, Gordon, Carlson, 

& Hamilton, 2000). Consequently, it is not surprising that the incidence of childhood obesity is 

also on the rise in the U.S. In 2003-2004, 17.1 % of children and adolescents were overweight 

(Ogden, Carroll, Curtin, Lamb, & Flegal, 2010). 

Obesity is strongly linked with the development of metabolic related diseases known as 

the Metabolic Syndrome manifested as elevated triglycerides, hypertension, whole body 

inflammation, skeletal muscle and liver insulin resistance, elevated fasting plasma glucose, and 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Booth%20FW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Booth%20FW%22%5BAuthor%5D
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reduced high density lipoprotein cholesterol (HDL-C), (Nesto, Nelinson, & Pagotto, 2009). Also 

not surprising is the link between the high incidence of obesity and the presence of type 2 

diabetes in the U.S. which has increased dramatically over the past two decades. In 2002, an 

estimated 6.3% (18.2 million people) of the U.S. population was diagnosed with diabetes (CDC, 

2003). When additional demographic data were linked to type 2 diabetes, the CDC defined this 

disease and its complications as the seventh leading cause of death in the U.S. with many states 

reporting statistics of over 10% of their population was diagnosed with type 2 diabetes (CDC, 

2007) 

While admittedly changes in lifestyle and environmental factors are likely to play a 

significant part for the rise in incidence and metabolic outcomes of obesity and type 2 diabetes, 

biological factors are also hypothezised to be contributors in a cause and effect fashion 

(Bouchard, 2007; Wing et al., 2001). This appears to be true not only for obesity in general, but 

may biological differences also account (at least in part) for differences among U.S. 

subpopulations. For example, the stark differences in the prevalence and severity of obesity 

between African-American Women (AAW) vs. Caucasian Women (CW) (Kumanyika, 1987). In 

general, lower mitochondrial content has been reported in skeletal muscle from obese and 

diabetic individuals compared to lean participants (Kelley, He, Menshikova, & Ritov, 2002) as 

well as the more recent finding that obese AAW appear to possess a reduced skeletal muscle 

capacity to oxidize exogenous fatty acids under maximal stimulated conditions compared to CW 

(Cortright, et al., 2006; Privette, Hickner, MacDonald, Pories, & Barakat, 2003). This may, in 

part, explain the finding that AAW have a two fold higher incidence and severity of obesity 

when compared to CW of similar age and socio-economic status (CDC, 2006-2008).  

Given the above discussion, for some time now, alterations in mitochondrial handling of 

fatty acids have been proposed to be linked with the obese state and insulin resistance. For 
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example, mitochondrial dysfunction due to a deficiency or dysfunction in key regulatory proteins 

involved in the β-oxidative spiral for lipid oxidation leads to an increase of triglyceride (TAG) 

storage and/or acumulation of “bioactive lipid species” in both mouse skeletal muscle and liver 

causing severe hepatic and muscle insulin resistance (Zhang, et al., 2007). An extension of the 

developed insulin resistance in these tissues is heightened blood glycemia, endothelial 

glycosylation leading to reduction in peripheral blood flow to tissues, and pathological outcomes 

such as tissue necrosis/amputation, and retinopathy/blindness on top of neuropathies (Engelgau 

et al., 2004).  

To extend, obese and type 2 diabetic individuals have been associated with a 

phenomenon known as lipid metabolic inflexibility (Storlien, Oakes, & Kelley, 2004). For 

example, as seen at the whole body level, following a high fat meal or during endurance 

exercise, the normal metabolic response of skeletal muscle is to “switch” metabolic processes to 

a greater reliance on lipids (oxidation) versus stored glycogen or blood glucose. This 

phenomenon does not occur in obese or diabetic individuals. The inflexibility of fatty acid 

oxidation is observed at the level of the mitochondria as evidenced by a low activity of 

Carnitine-Palmitoyl Transferase I (CPT-I) which is an entry step for fatty acyl-CoAs into the 

mitochondria for oxidation, and is considered the rate limiting step in the bioenergetic use of 

fatty acids (J.Y. Kim, Hickner, Cortright, Dohm, & Houmard, 2000). As evidence, fatty acid 

oxidation was observed to be significantly lower in skeletal muscle of extremely obese 

individuals under maximal stimulated conditions (Hulver et al., 2003). In terms of lipid balance, 

elevated serum lipid levels and increased intracellular uptake, coupled with a decrease in 

mitochondrial utilization of cellular fatty acids can lead to increased intramyocellular metabolites 

such as fatty acyl-CoAs and diacylglycerols (DAG) and the creation of a lipotoxic cellular 

environment (Li, Klett, & Coleman, 2010).  
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More recently, another candidate, long-chain acyl-CoA synthetase (ACSL), has been 

identified as a potential contributor to the reduced mitochondrial oxidative process of fatty acid 

disposal in skeletal muscle from obese individuals. ACSL is the required activator of fatty acyl 

long-chain molecules which act as the utilizable substrate for CPT-I (Coleman, Lewin, Van 

Horn, & Gonzalez-Baró, 2002). For example, it has been observed in AAW that CPT-I content 

and activity is significantly lower compared to CW of similar BMI (Cortright et al., 2006; 

Privette et al., 2003). ACSL is the focus of the present investigation. 

There are five identified mammalian ACSL isoforms which utilize fatty acid chain 

lengths from 12 to 20 carbons (Soupene, E. and Kuypers, F.A., 2008). The five isoforms of the 

ACSL family consists of ACSL-1, ACSL-3, ACSL-4, ACSL-5 and ACSL-6. Each of the ACSL 

isoforms differ in their organelle localization, substrate preference, and enzyme kinetics 

(Mashek, Li, & Coleman, 2006); The function of the ACSL enzyme is required for activating 

acyl-CoA units towards either storage in the form of TAG at the level of the endoplasmic 

reticulum, or for fatty acid oxidation by the mitochondria (Digel, Ehehalt, Stremmel, & 

Fullekrug, 2009). 

Despite the progress in our understanding of ACSL’s role in cellular and mitochondrial 

partitioning and cellular derived fatty acids, this understanding is based almost exclusively on 

studies in rodent derived liver. Little is known about their activity and function in skeletal 

muscle, specifically human tissues. Clinically, this may be extremely important as skeletal 

muscle accounts for the majority of lipid oxidation and ~85% of glucose disposal following a 

meal (DeFronzo, 2010); a condition that can be impaired in the insulin resistant state associated 

with reduced skeletal muscle lipid metabolism. Thus changes in ACSL function may be linked, 

either directly or indirectly to lipid induced insulin resistance and the progression towards type 2 

diabetes.  
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Most recently, studies using a transgenic model to knockout ACSL-1 (ACSL-1
L-/-

 ) 

showed an accumulation of hepatic fat in ACSL-1
L-/-

 mice compared to wildtype controls. 

Eliminating ACSL-1 in the liver of ACSL-1
L-/-

 mice resulted in lower long chain acyl-CoA 

content, lower incorporation of oleate into hepatic TAG and reduced oleate oxidation, suggesting 

that hepatic ACSL-1 is important for mitochondrial β-oxidation (Li, et al., 2009). An 

accumulation of fat in the liver can lead to hepatic steatosis and disruption of hepatic insulin 

signalling as observed in Li et al. (2009) study. The high content of intracellular fatty acids 

resulted in an elevation of malonyl-CoA which inhibits CPT-I activity and β-oxidation 

(Schrauwen & Hesselink, 2004). Additionally, accumulation of hepatic fat in mouse models 

stimulate an increase in fatty acid metabolites (fatty acyl-CoA, DAG, ceramide, and 

glycosphingolipid), leading to TAG storage and activating cellular kinases that can reduce 

insulin action (Nagle, Klett, & Coleman, 2009). The same occurs in a defect with human skeletal 

muscle fatty acid oxidation of obese individuals leading to accumulation of not only 

intramyocellular triacylglycerols (IMTG) but in bioactive lipid species that are known activators 

of kinases known to attenuate the insulin signaling cascade and induce insulin resistance in this 

tissue (Shulman, 2000).  

In summary, the goal of this research was to understand the role of ACSL-1 activity on 

fatty acid oxidation in cells derived from HSKM cells. To address this goal, we employed a 

model to underexpress/knockdown ACSL-1 (ACSL-1 KD) using short hairpin RNA (shRNA) 

technology. Our hypothesis was that ACSL-1 plays a major role in skeletal muscle fatty acid 

oxidation, and may be important for overall lipid dynamics; therefore reducing ACSL-1 activity 

would lead to decrements in the entrance of fatty acids into the mitochodria for oxidation. 

Although beyond the scope of the current project, we suspected that the biological consequence 

of ACSL-1 KD would be an accumulation of bioactive lipid species in skeletal muscle (e.g., 
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DAG, fatty acyl-CoA, ceramides) (Hulver et al., 2003) leading to impaired insulin signaling and 

induction of insulin resistance, contributing to the etiology of type 2 diabetes.   

Statement of the Problem : Obesity is considered a major health threat in the U.S. and a strong 

risk factor for developing type 2 diabetes and other metabolic diseases. Common observations in 

skeletal muscle in the obese and diabetic state include reductions in CPT-I activity/content and 

decrements in mitochondrial oxidative capacity for fatty acids which can led to an accumulation 

of bioactive lipid species and ultimately insulin resistance. Although the rate limiting step in 

lipid oxidation is considered to be at the level of CPT-I, limitations in substrate availability for 

CPT-I (acyl-CoAs) could also limit fatty acid oxidation. Given recent reports of decrements in 

total ACSL activity in skeletal muscle in the obese state as well as the observations from animal 

studies, the present research focused on the role of ACSL-1 isoform on skeletal muscle fatty acid 

oxidation in humans. The ACSL-1 isoform was chosen as the target based on its suspected 

association with the mitochondria.  

Purpose of the Study: To establish a role of ACSL-1 in human skeletal muscle (HSKM) fatty 

acid oxidation.  

Researh hypothesis: Based on previous results from our laboratory, ACSL-1 overexpression 

significantly elevated mitochondrial fatty acid oxidation approximately 2-fold (P < 0.05) in 

HSKM from obese subjects (data courtesy of Dr. H.B. Kwak; Appendix H). Therefore, we 

hypothesized that ACSL-1 isoform functions in the oxidation of fatty acids in human skeletal 

muscle and that a reduction of ACSL-1 would reduce mitochondria fatty acid oxidation in this 

tissue. We addressed the proposed hypothesis by using an shRNA transfection model in HSKM 

primary myotubes to underexpress/KD ACSL-1 protein content.  
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Delimitations (Self selected boundaries for the study) 

1. The use of ACSL-1 isoform specific gene knockdown (KD) in human primary myotubes 

obtained from the vastus lateralis muscle group. 

2. Participants involved in the study were lean Caucasian women. 

3. Effects of ACSL-1 KD were extrapolated from Western Blotting assays. 

4. Use of shRNA transfection by electroporation technology vs. adenoviral KD RNAi 

approaches as is common for studies of this type. 

5. ACSL-1 KD by shRNA transfection occurred at the myoblast stage. 

6. The control samples used to compare oxidation rates following ACSL-1 KD were 

transfected myoblasts with scrambled RNA.  

7. Transfected cells were incubated with oleate and palmitate for 48 h prior to 

measurements of fatty acid oxidation and evaluation of lipid synthesis. 

 

Limitations (The researcher has no control)  

1. Primary myotube’s metabolic response to the transfection technique. 

2. The conclusions derived from the research design were limited to data from in vitro 

studies. 

3. The potential for ACSL-1 KD on myotube growth and differentiation. 

4. Survival rate of transfected cells. 

5. Unequal transfection among myoblast cells. 



 

 

CHAPTER II 

  REVIEW OF LITERATURE 

Overview 

The incidence of obesity continues to escalate in the Western world. Obesity, although in 

many cases is a preventable or treatable disease, it remains a continuing major health problem in 

the U.S. and the occurrence continues to escalate. As such, obesity remains a serious health 

threat in the U.S. due to its link with the major life threatening pathologies such as coronary 

heart disease, promotion of insulin resistance, and hypertension (Garrison, Higgins, & Kannel, 

1996). According to recent CDC statistical data obtained from Behavioral Risk Factor 

Survelliance System (BRFSS) in 2005, 60.5 % of the total U.S. adult population is overweight, 

23.9 % obese, and 3.0 % morbidly obese (CDC, 2005). When obesity rates were compared 

according to ethnicity, obesity prevalence was higher in Non-Hispanic Blacks (35.7 %), followed 

by Hispanics (28.7 %) and non-Hispanic Whites (23.7 %). When obesity was compared by 

gender, non-Hispanic Black women had greater occurrence (39.2 %), followed by non-Hispanic 

Black men (31.6 %), Hispanic women (29.4%), Hispanic men (27.8 %), non-Hispanic White 

men (25.4 %) and non-Hispanic White women (21.8 %) (CDC, 2006-2008). In the past years, 

there have been 111, 909 reported deaths associated with obesity, with the majority occuring in 

individuals younger than 70 years old (Flegal et al., 2005). If the epidemic of obesity as a threat 

to the health of the U.S. is not enough of a concern, the associated economic burden that obesity 

imposes on the U.S. health care system continues to rise in parallel. In 1998, medical cost of 

obesity was $ 78.5 billion, in 2008, the cost has risen to $ 147 billion and continue to escalate. 

(Finkelstein, Trogdon, Cohen, & Dietz, 2009).  
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Obesity has been identified as a strong risk factor for the development of type 2 diabetes, 

(Nesto et al., 2009). In 2006, diabetes was reported to represent the seventh leading cause of 

death in the U.S. Some of the cost associated with diabetes are heart disease, stroke, 

hypertension, blindness, kidney disease, nervous system disease, among others (CDC, 2007).  

With regard to type 2 diabetes as a comorbidity with obesity, the total estimated cost of 

diabetes alone in 2007 was $174 billion. Medical costs attributed to diabetes were estimated to 

be around $27 billion for care to directly treat diabetes, $58 billion to treat the portion of related 

chronic complications that were attributed to diabetes, and $31 billon in excess general medical 

costs (CDC, 2007). Together, these statitistics make obesity and type 2 diabetes one of the most 

economically burdensome health concerns for the nation.  

How might the obese state be associated with type 2 diabetes? Among many scientific 

strategies used to answer this question, it was noted early that the accumulation of TAGs and 

other lipids in skeletal muscle was associated with insulin resistance in this tissue (Pan et al., 

1997). Logically, then it was speculated that excess lipid storage, not only in adipose tissue but 

in skeletal muscle was occuring as a result of a chronic positive energy balance due not only to 

high dietary fat consumption, but also reduced energy expenditure (Coppack, Jensen, & Miles, 

1994), as exemplified by the low levels of physical activity reported in present day society. 

According to NHANES 2003-2004 data, physical activity decreases between childhood and 

adolescence. For example, 42% of children ages 6-11 years old accumulated one hour of 

physical activity on most days of the week, but only 8% of adolescentes achieved these 

guidelines (Troiano et al., 2008). Given these statistics, it became evident that there was an 

absence of a mechanistic answer for the relationship between tissue (skeletal muscle) lipid 

accumulation, reductions in physical activity, and a disruption of cellular homeostasis. However, 

what slowly began to emerge was that an over accumulation of cellular lipids appeared to have a 
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cause and effect relationship between altered lipid metabolism and insulin resistance. The end 

result of the latter was the creation of a chronic state of hyperglycemia and eventual 

overstimulation and loss of function of pancreatic insulin secretion (i.e., type 2 diabetes). 

Thus, current wisdom linking obesity with skeletal muscle insulin resistance, and 

eventually diabetes, centers on investigations that study disturbances in lipid homeostasis in 

skeletal muscle of obese individuals. Refering to a lipid substrate balance analogy, increased 

adiposity can occur under chronic conditions of consumption of a high fat/energy meals coupled 

with reductions in energy demand (e.g., reduced physical activity and hence ATP production 

demand). The end result would be increased adiposity visually realized to the naked eye or by 

one of several measures of adiposity such as DEXA scanning, skinfold, girth assessments, or 

BMI calculations (Booth et al., 2000). Environmental factors such as behavior or the lipid 

content in Western foods could account for the obesity/diabetes epidemic (Wing et al., 2001). 

That is, fat cells enlarge to accommodate high circulating levels of lipid but when their storage 

capacity is exceeded, spillover occurs, one site being skeletal muscle. The end result is increased 

TAG storage and flux of more bioactive lipid species in this tissue (Lieberman & Marks, 2009).  

The above scenario is undoubtedly a contributing factor to the etiology of obesity and the 

accumulation of skeletal muscle lipids. However, the other side of the substrate balance equation 

must also be considered, that being the metabolism of cellular lipids. This requires a competent 

mitochondrial mass with a capacity to oxidize fatty acids that meets or exceeds cytosolic fatty 

acid concentrations. The question then arises, do mitochondria function normally in skeletal 

muscle from obese subjects? In response to this querie, our laboratory and others have 

demonstrated a decrease in fatty acid oxidation in skeletal muscle of morbidly obese women 

under maximally stimulated conditions (Hulver et al., 2003; Privette, et al., 2003). Similarly, 

Kelley, Goodpaster, Wing and Simoneau (1999) reported that fatty acid oxidation measured in 
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obese and lean subjects by indirect calorimetry was lower in the obese individuals under 

maximally stimulated conditions. Likewise, J.Y. Kim et al. (2000) demonstrated that the rate of 

palmitate oxidation in skeletal muscle of obese women was lower compared to lean women and 

this reduction was due (in part) to low activity of CPT-I, the protein complex required for fatty 

acid uptake into the mitochondrial matrix for oxidation (J.Y. Kim et al., 2000). Thus, in a 

physiological condition that leads to an elevation of plasma free fatty acids (high fat diet and/or 

inactivity), skeletal muscle would increase its lipid content due to increased uptake as with obese 

and diabetic individuals. This in combination with a diminished capacity to oxidize fatty acids 

under maximally stimulated conditions could lead to a further accumulation of not only neutral 

lipids (i.e., IMTG) but also bioactive lipid metabolites (i.e., DAG, acyl-CoA and ceramides) in 

liver, heart, and the topic of this research, skeletal muscle. The accumulation of intramuscular 

lipids has been shown to correlate with insulin resistance (Schrauwen & Hesselink, 2004). This 

impairment could be due to a number of sites of dysfunction: increased sarcolemmal 

transporters, mitochondrial CPT-I, and the electron transport chain. The impairment of 

mitochondrial fatty acid oxidation could be due to lower mitochondrial and microsomal acyl-

CoA synthetase in skeletal muscle (the enzyme that ligates coenzyme A to long-chain fatty acids 

which is the required substrate for CPT-I and hence obligatory entrance into the mitochondrial 

matrix for oxidation). In summary, these metabolic defects appear to be associated with obesity 

leading to insulin resistance in skeletal muscle of obese individuals and the development of type 

2 diabetes (Pan, et al., 1997).   

With this brief overview in mind, the global purpose of the proposed research is to further 

understand the metabolic regulators of skeletal muscle lipid metabolism as it relates to insulin 

resistance and obesity. Our intent is to add scientific knowledge about mechanisms that 

contribute to the development of these diseases along with gaining insight towards more 
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effective interventions for those affected with obesity and insulin resistance and associated 

pathologies. We addressed these goals by the described research studies designed to further 

understand the effect of a recently identified reduction in the protein responsible for activating 

fatty acids, namely acyl-CoA synthetase (ACS), for storage or oxidation in human skeletal 

muscle (Privette et al., 2003). Our approach is to compliment ongoing studies in our laboratory 

by knocking down the presence of a specific isoform of ACSL, ACSL-1, which has been 

associated with mitochondrial oxidation of fatty acids and observed the consequence of that 

knockdown in HSKM cells. 

 

The Role of Skeletal Muscle in Fatty Acid Metabolism. 

 Skeletal muscle is the major site of not only insulin stimulated glucose disposal 

following a meal (~ 85% of the blood clearance is due to skeletal muscle uptake) (DeFronzo, 

2010) but also is the major site of fatty acid oxidation. A cause and effect relationship between 

excess intra-myofibrillar lipid load and insulin resistance has been supported by many studies in 

the literature. To understand the relationship, it is first important to understand the normal 

metabolic handling of fatty acids by skeletal muscle in the healthy state in order to discern sites 

of dysregulation that occur in the obese, insulin resistant condition.  

Fatty acids are transported to skeletal muscle from the liver as very long density 

lipoprotein (VLDL) (de novo lipid synthesis), from the diet as chylomicrons, or esterified to 

albumin following lipolysis of adipocyte triglyceride (Lieberman & Marks, 2009). Afterwards, 

they are taken up to the skeletal muscle by active and passive transport (CD36 fatty acid 

transporter) (Schwenk, Holloway, Luiken, Bonen, & Glatz, 2010). Subsequently, fatty acids can 

be partitioned toward TAG formation by the endoplasmic reticulum, or they can be chaperoned 
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to the mitochondrial for transport into the matrix for β-oxidation and subsequent production of 

reducing equivalents (NADH, FADH2) to support oxidative-phosphorylation and maintenance of 

energy charge in the cell (Lieberman & Marks, 2009). This research proposal focuses on the 

mitochondrial arm of the lipid partitioning pathways.  

As depicted in Figure 1, long chain fatty acids (LCFA) are activated by the thioester 

linkage of coenzyme A (CoA) by acyl-CoA synthetase enzyme to create LCFA-CoA (Mashek, 

Li, & Coleman, 2007). These activated lipid species are then made available to the mitochondria 

organelle at the site of CPT-I which enzymatically exchanges the CoA moiety for cytosolic 

carnitine. On the matrix side, LCFA-carnitine is activated back to LCFA-CoA by the analog to 

CPT-I, namely CPT-II, which converts the translocated acyl-Carnitine back to acyl-CoA 

(McGarry, & Brown, 1997). Finally, fatty acids are oxidized by the β-oxidation system 

generating acetyl-CoA for entrance into the tricarboxylic acid cycle (TCA). CPT-I allows 

entrance of LCFAs into the mitochondrial matrix and towards β-oxidation. The main biological 

regulator of CPT-I activity is malonyl-CoA. Malonyl–CoA is synthesized from acetyl-CoA by 

the enzyme acetyl-CoA carboxylase-2 (ACC2). Studies have shown that mice lacking ACC2 

have increased skeletal muscle oxidation. In contrast, an excess of malonyl-CoA disrupts CPT-I 

activity and results in the accumulation of fatty acids (Lieberman & Marks, 2009). 
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Figure 1. The Role of Mitochondrial Fatty Acid Oxidation in Skeletal Muscle 

(courtesy of Muoio, D. Ph.D.). Cytosolic long-chain fatty acid (LCFA) is activated by acyl-CoA 

synthetase (ACSL). ACSL is necessary for enzymatically ligating coenzyme A (CoA) to 

cytosolic LCFA and its activated form is required for transport into the mitochondria by CPT-I. 

CPT-II exchanges carnitine for CoA gaining access inside the mitochondria matrix to undergo β-

oxidation. In opposition, acetyl-CoA carboxylase converts mitochondrial derived acetyl-CoA 

(from TCA citrate) to malonyl-CoA. Malonyl-CoA is the biological inhibitor of CPT-I and thus 

reduces mitochondrial β-oxidation via inhibition of fatty acid transport to the matrix.  

 

The disruption of the above pathway can lead to an accumulation of IMTG or bioactive 

lipid species which has been demonstrated to disturb cellular homeostasis in non- adipose tissues 

such as heart, liver, and skeletal muscle (i.e., creation of a cellular lipotoxic environment). This 

begs the question as to what is or are the major sites of lipid partitioning regulation in the 

myocyte? As alluded above, to date the rate limiting step in fatty acid oxidation has been 

assumed to be CPT-I (Wolfgang et al., 2008). Disruption of CPT-I activity by its inhibitors 

malonyl-CoA (its naturally occurring biological inhibitor) or etomoxir (synthetic inhibitor of 

CPT-I) leads to more than a 90% reduction of mitochondrial fatty acid oxidation (Noland et al., 

2007; Sebastián et al., 2009). Up to now, the metabolic step prior to CPT-I transport, production 

of CPT-I substrate acyl-CoA by ACSL, as described above, was not considered rate limiting for 
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fatty acid oxidation. Recently however, potential dysfunction or reductions in activity of ACSL 

in the obese state has been suggested (described below). ACSL-1 has been thought to activate 

fatty acids destined to lipid synthesis but this data is based solely on studies in the liver from 

rodents (Li et al., 2009). A potential role for ACSL-1 in mitochondrial fatty acid oxidation in 

skeletal muscle is only now emerging based on data generated in rat, mice liver and heart 

(Muoio, Lewin, Wiedmer, & Coleman, 2000; Li et al. 2009; Chiu et al., 2001) 

 

Mitochondrial Changes and Skeletal Muscle Lipid Accumulation in Obesity and Diabetes  

The reduction of fatty acid oxidation in the extremely obese participants contributes to an 

accumulation of intramyocellular long chain fatty acyl-CoA due to impairment in skeletal muscle 

lipid metabolism (Hulver et al., 2003). In contrast, there is considerable evidence to associate 

other lipid species derived from altered skeletal muscle lipid metabolism such as DAGs, fatty-

acylCoA/phospholipid species and ceramides (Yu et al., 2002). Raising plasma free fatty acid 

levels during euglycemic-hyperinsulinemic clamp in HSKM showed an increase in DAGs levels 

and protein kinase C (PKC) signaling, but no increase was observed in intracellular ceramide 

(Itani, Ruderman, Schmieder, & Boden, 2002). What is hypothesized to lead to the accumulation 

of “bioactive lipid species” is an alteration in the lipid partitioning pathways of lipid metabolism 

(Schrauwen & Hesselink, 2004). For example, changes in mitochondrial handling of cellular 

lipid flux, which is elevated in the obese-insulin resistance condition, is hypothesized to be a 

mitigating factor leading to fatty acid accumulation within skeletal muscle in this population 

(Blaak, 2004). What is currently unknown is the exact mechanism by which the mitochondrial 

capacity to oxidize lipids becomes insufficient to lessen the cytosolic lipid accumulation leading 

to reduced insulin action. Evidence for reductions in mitochondrial mass has been presented 

(Ritov et al., 2005). For example, Ritov et al. (2005) indicated that electron transport chain 
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activity in subsarcolemmal mitochondria (located underneath skeletal muscle membrane) was 

reduced in obese and type 2 diabetic individuals compared to lean subjects. This reduction was 

confirmed by transmission electron microscopy. Kelley et al. (2002) measured skeletal muscle 

mitochondria bioenergetic function in lean, obese, and type 2 diabetic individuals. They reported 

dysfunction of mitochondria of type 2 diabetic participants. These subjects had a lower capacity 

of electron transport chain measured by NADH:O2 oxidoreductase (measures the overall activity 

of mitochondrial electron transport chain), and it was highest in lean volunteers. Kelley et al. 

(2002) also observed skeletal muscle mitochondria was reduced by 35% in obese and type 2 

diabetic individuals compared to lean counterparts. These findings lead to the contention that 

impairment of mitochondrial function in skeletal muscle contribute to the development insulin 

resistance. Certainly, reductions in mitochondrial oxidation of fatty acids stemming from lower 

mitochondrial enzyme content could result in accumulation of fatty acids; however, the literature 

is still lacking as to whether this is an early stage of lipid associated metabolic disease, or 

whether it is the result of chronic overload of lipids leading to a lipid toxic environment that 

eventually results in mitoptosis (Schrauwen & Hessellink, 2004). In this regard, increased free 

radical production due to an imbalance between lipid flux and a low energy demand (reduced 

electron flow to complex IV of the electron transport chain) has been proposed as the initial 

lesion in the excess lipid induced insulin resistance in skeletal muscle (Anderson et al., 2009; 

J.A. Kim, Wei, & Sowers, 2008). Although beyond the scope of the present investigation, studies 

of this sort are being pursued in our and other laboratories (Anderson et al., 2009). Alternatively, 

reduction in particular mitochondrial proteins upstream of the electron transport chain have been 

investigated, albeit on a limited basis in human skeletal muscle. Early and current findings are 

discussed below.  
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Evidence for Reduced Fatty Acid Oxidation Activity in the Obese State. 

 Our laboratory has measured muscle lipid oxidation by analyzing skeletal muscle 

homogenates of obese and lean individuals (J.Y. Kim et al., 2000). The results show a decrease 

in muscle lipid oxidation of obese individuals under maximally stimulated conditions. The 

substrates utilized in the studies to measure fatty acid oxidation rates were palmitate (C16 long-

chain fatty acid requiring ACSL activity for deriving CPT-I substrate), palmitoyl carnitine 

(molecule generated by CPT-I; hence CPT-I independence), octanoate (C8 medium-chain fatty 

acid; independent of CPT-I activity) and as well as determination of CPT-I activity/content. 

Palmitate oxidation was significantly lower by 62 % in obese participants compared to lean 

counterparts. Palmitoyl carnitine oxidation was also decreased with obesity by ~45% and 

octanoate was reduced by ~69 %. Palmitate oxidation after correction for mitochondrial volume 

(palmitate oxidation/citrate synthase activity) was also reduced with obesity by 48 %. In 

summary, the results indicate that skeletal muscle of obese individuals have a decreased ability 

to oxidize lipids under maximally stimulated conditions and directs them toward synthesis. This 

is at least in part by a reduction of CPT-I activity and likely reflects, at least partially, a reduced 

mitochondrial content as reported by Ritov et al. (2005) and Kelley et al. (2002). More recently 

however, additional insights gained from our laboratory also indicate that reductions in 

mitochondrial fatty acid oxidation may exist at the level of ACSL. 
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Acyl-CoA Synthetase (ACSL) Enzyme Function in Metabolism. 

ACSL is divided into five sub-families based on its chain length of acyl groups: acyl-

CoA synthetase short chain (ACSS) C2 to C4; medium-chain (ACSM) C4 to C12; long chain 

(ACSL) C12 to C20; bubblegum (ACSBG) C14 to C24; and very long chain, annotated as a 

solute carrier family 27A (SLC27A) C18 to C26 (Soupene & Kuypers, 2008). 

Based on studies in rodents, there is a family of mammalian long chain Acyl-CoA 

synthetase (ACSL) isoforms that consist of five members, ACSL-1, ACSL-3, ACSL-4, ACSL-5 

and ACSL-6. Each of the ACSL isoforms differs in their organelle localization, substrate 

preference and enzyme kinetics (Mashek et al., 2006). ACSL-1 has been reported to be located in 

the liver mitochondrial membrane (Distler, Kerner, & Hoppel, 2007), plasma membrane and 

mitochondria of adipocytes (Soupene & Kuypers, 2008), adipocyte GLUT-4 vesicles (Sleeman, 

Donegan, Heller-Harrison, Lane & Czech, 1998), and endoplasmic reticulum (Lewin, Kim, 

Granger, Vance & Coleman, 2001). ACSL-1 mRNA in rodents has been identified to be richly 

present in adipose tissue, liver, and heart, at moderate levels in skeletal muscle, and at low levels 

in lung, kidney and adrenal organs (Mashek et al., 2006). Overexpression of ACSL-1 in mouse 

heart increases myocardial lipids, such as TAG, and causes dysfunction of β-oxidation leading to 

cardiac hypertrophy, heart failure, left ventricular dysfunction, and sudden death (Chiu et al., 

2001). Overexpression of ACSL-1 in the liver leads to TAG synthesis (Parkes et al., 2006). 

Overexpressing ACSL-1 in NIH-3T3 fibroblasts or PC12 neurons also increases oleic acid 

incorporation into TAG (Mashek et al., 2007). ACSL-3 was predominantly found in the brain 

and testis (Mashek et al., 2006). It is believed to be required for the synthesis of fatty acids 

important for brain metabolism (Van Horn et al., 2005). ASCL-4 was expresed abundantly in 

liver and adrenal gland (Mashek et al. 2006). ACSL-5 is mostly expressed in brown adipose 

tissue, duodenal mucosa, and liver tissue. Its overexpression in hepatic cells partitions exogenous 
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fatty acid towards synthesis pathways (Mashek et al., 2006). ACSL-6 was found at moderate 

levels in skeletal muscle, testis and mostly in the brain. The overexpression of clonned ACSL-6 

from rat brain increased fatty acid synthesis towards specific lipids. (Van Horn et al., 2005). 

 

The Role of ACSL-1 in Rodent Liver 

The fate of acyl-CoA depends on the acyl-CoA synthetase’s (ACS) location. ACSL-1 can 

direct acyl-CoA towards synthesis of TAG, phospholipids and β-oxidation, recycling pathways 

or cholesterol and retinal esterification. Acyl-CoA can also alter cell signals such as insulin 

secretion, apoptosis, glucose transport and metabolism. Evidence shows that each of the ACSL 

isoforms channels fatty acid into different metabolic pathways (Coleman et al., 2002). Studies in 

rats suggest that in liver, acyl-CoAs do not move freely but are channeled toward specific 

pathways. This was delineated by using the ACSL inhibitor triacsin C in isolated rat hepatocytes. 

Triacsin C inhibited TAG synthesis, but had little effect on oleate incorporation into cholesterol 

esters, phospholipids, or the end products of β-oxidation. When rat hepatocytes where studied in 

the fed state, triacsin C inhibited TAG synthesis more than in starved rat hepatocytes indicating 

that acyl-CoA synthetase has different metabolic pathways at least in the liver. It was also found 

that ACSL-1 was found mostly in microsomes of rat hepatocytes indicating its involvement with 

TAG synthesis and not β-oxidation (Muoio et al., 2000). Another study knocking out ACSL-1 

observed a reduced presence of long chain acyl-carnitine and its metabolite products from long 

chain fatty acids from mitochondrial β-oxidation in liver. The decrease of long chain acyl-

carnitine and acid soluble metabolites (ASM; requires acyl-CoA entrance into the mitochondrial 

matrix but represents incomplete β-oxidation/TCA metabolism) suggested that long chain fatty 

acid oxidation in liver was impaired by ACSL-1 deficiency (Li, et al., 2009). The low activity of 
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enzyme ACSL-1 led to the accumulation fatty acids in the liver and impaired its function. 

Overall, the absence or presence of acyl-CoA synthetases changed the intracellular 

concentrations of fatty acids and acyl-CoA content with the latter being more important in 

signaling molecules as stated above (Digel et al., 2009).  

The Role of ACSL-1 in Rodent Skeletal Muscle 

At present, there is little information with regard to the metabolic pathway(s) regulated 

by ACSL-1 in skeletal muscle. As stated, it is known from studies in the liver that ACSL 

catalyzes the first step in fatty acid metabolism by converting long chain fatty acids into acyl-

CoA thioesters. Acyl-CoAs enter both anabolic and catabolic pathways and their altered content 

can be linked to insulin resistance and other disorders (Li et al., 2006). It has been hypothesized 

that the absence of ACSL-1 in skeletal muscle would lead to an accumulation of IMTG and other 

lipid species due to an impairment of mitochondria’s ability to activate long-chain fatty acids for 

subsequent mitochondrial transport and oxidation. It has been observed that mice with a 

conditional knockdown of ACSL-1 (ACSL-1
T-/-

) have a 70-90 % reduction in total ACS activity 

in gastrocnemius, soleus, quadriceps, and extensor digitorum longus. This indicates that skeletal 

muscle oxidation of palmitate in ACSL-1
T-/- 

is impaired in skeletal muscle compared to the 

control group (data courtesy of Dr. Rosalind A. Coleman, unpublished findings). Furthermore, 

recent data from our laboratory suggested that ACSL-1 overexpression in skeletal muscle 

increases fatty acid oxidation, H.B. Kwak (personal communication; Appendix H). Primary 

myoblasts isolated from vastus lateralis of obese subjects (N=5) were transfected with ACSL-1 

plasmid DNA, differentiated into myotubes, and harvested (7 d) to measure FAO ([1-
14

C] 

palmitate), Radioactivity of CO2 (complete palmitate oxidation) and ASM (acid soluble 

metabolites; incomplete palmitate oxidation) was determined by [1-
14

C] and liquid scintillation. 



21 

Both complete (CO2) and incomplete (ASM) FAO increased by approximately 2-fold (P < 0.05) 

in ACSL-1 overexpression. 

Cellular Lipid Accumulation and Insulin Action in Skeletal Muscle 

It has been proposed that the accumulation of intramuscular lipids could disrupt insulin 

signaling by changing the dynamic flux of lipid species such as acyl-CoAs and DAGs and thus 

up regulate certain PKC serine/kinase isoforms (i.e., PKC θ) which have been demonstrated to 

impair insulin receptor tyrosine kinase and IRS-1 activity; the result would be an attenuation of 

glucose transporter 4 (GLUT 4) translocation to the cell surface membrane leading to impaired 

glucose uptake (skeletal muscle insulin resistance; the hallmark of the Metabolic Syndrome) 

(Lowell & Shulman, 2005). The later outcome would be chronic reductions in glucose uptake 

which would then overstimulate the pancreatic β cells as an attempt to offset the insulin 

resistance at the level of skeletal muscle in an attempt to clear blood glucose. Eventually, chronic 

overstimulation would lead to β-cell failure and manifestation of overt type 2 diabetes (Kasuga, 

2006). As observed by Kelley et al. (1999) lipid accumulation in obese skeletal muscle reduces 

fatty acid oxidation under maximally stimulated conditions which has been associated with 

insulin resistance.  

 In summary, a change in function of several key lipid-mitochondrial proteins can have 

profound effects on mitochondrial handling of long-chain fatty acids and cellular bioenergetics. 

In the past, a strong association between lipid overload, reductions in mitochondrial oxidative 

capacity and insulin signaling have been hypothesized (J.Y. Kim et al., 2000). Several cause and 

effect relationships have been suggested including lipid induced activation of certain PKC 

isoforms and consequently induction of the serine/threonine phosphorylation of key elements in 

the signaling cascade with subsequent reduction in GLUT 4 recruitment and induction of skeletal 
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muscle insulin resistance. The eventual outcome would lead to pancreatic β cell failure and 

Frank type 2 diabetes and related pathologies (Itani, Zhou, Pories, MacDonald, & Dohm, 2000). 

Those mechanisms which could induce reductions in the insulin signaling cascade and insulin 

action could be initiated by a reduction in the mitochondrial oxidation of fatty acids. In the past, 

it is believed that CPT-I was the main regulator of mitochondrial oxidation as it is responsible for 

fatty acid transport into the matrix for subsequent oxidation (McGarry & Brown, 1997). More 

recently however, other potential regulators have been identified to change in function under 

altered conditions of lipid metabolism. Relevant to the current research is the function of acyl-

CoA synthetases in lipid trafficking toward synthesis or oxidation of fatty acids (Coleman et al., 

2002). Acyl-CoA synthetase activity is necessary for activation of acyl-lipids in order to serve as 

CPT-I substrate or for lipid synthesis in the endoplasmic reticulum. Altered function of this 

enzyme could therefore alter mitochondrial oxidation of fatty acids and drive an imbalanced 

partitioning toward synthesis and metabolism to bioactive lipids which could, hypothetically, 

induce insulin resistance (J.Y. Kim et al., 2000). As such, ACSL-1 is an essential enzyme that 

contributes to the regulation of mitochondria bioenergetics in the regulation of fatty acids and 

could help aid in devising mechanistic based therapies for combating the ever rising incidence 

and severity of obesity induced skeletal muscle insulin resistance and progression towards type 2 

diabetes. The presence and action of ACSL-1 is being delineated in the liver, but little is 

understood about its potential role in skeletal muscle, the major organ for lipid oxidation/disposal 

and blood clearance of dietary glucose. Based on data from rodent liver and preliminary data 

from our laboratory, we hypothesize that ACSL-1 is present in human skeletal muscle and its 

decrease in activity could lead to a decrease in mitochondria fatty acid oxidation.  



 

 

CHAPTER III 

METHODOLOGY 

Experimental Design 

The aim of this study was to test the metabolic effect of ACSL-1 underexpression/KD on 

skeletal muscle cell’s ability to oxidize fatty acids. To address this aim, we harvested skeletal 

muscle cells obtained from the vastus lateralis and induced a KD condition of ACSL-1 by cell 

transfection using shRNA scramble as a negative control and ACSL-1 shRNA plasmids to create 

inhibition of the target gene expression. We used the transfected cells to test our hypothesis that 

ACSL-1 KD would result in a decrease of HSKM fatty acid oxidation. In order to study the role 

of ACSL-1 KD expression in primary HSKM cells several experimental approaches were 

employed 1) Participants were screened at baseline (Appendix C) and assessed for fasting blood 

glucose, insulin action, and caloric levels. 2) A series of control experiments were performed to 

detect transfection efficiency 3) specificity of our ACSL-1 antibody was tested on several tissues 

with known ACSL-1 activity and this data also provided us with a proper approach towards gel 

loading of protein (µg) for Western Blotting 4) We conducted Western Blotting assays to 

confirm the effectiveness of our shRNA plasmid transfection model on ACSL-1 gene 

knockdown at protein level 5) We conducted measurement assays on in vitro rates of fatty acid 

oxidation in primary, differentiated myotubes obtained from vastus lateralis muscle biopsies and 

finally 6) assays were conducted to the effect(s) of ACSL-1 KD on total lipid synthesis and 

presence of subclasses of lipids in transfected cells.  
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Participants 

Six non-obese Caucasian (BMI < 27 kg/m
2
)
 
women (ages 25-45 yr) were recruited to 

participate in this investigation. HSKM cells were cultured from non-obese Caucasian women 

because they posses “normal” ACSL activity compared to obese individuals. All participants 

were premenopausal women who were non-smokers. Inclusion/exclusion criteria included 

subjects that were: non-diabetic, without metabolic disease known to affect glucose and lipid 

metabolism, and the absence of any medications (e.g., synthroid) known to alter metabolism 

(Appendix C). Participants received both oral and written information about the experimental 

procedures before giving their informed consent (Appendix B). The experiments were approved 

by the Institutional Review Board of East Carolina University (Appendix A). Participants were 

screened and their diet history was evaluated prior to entrance into the study using a 3-day (two 

non-consecutive week days and one weekend day) food record (Appendix D) and 24-h recall 

diets were evaluated for estimated total energy, fat carbohydrate, and protein intake (nutritionist 

5 software). Prior to commencing the study, participants were evaluated for body composition by 

DEXA, aerobic capacity (VO2 peak) using a cycle ergometer. On the day of the experiment, 

participants reported to the laboratory following an overnight fast (approximately 10 h). Height, 

body weight and menstrual cycle (Appendix E) data were recorded. Skeletal muscle biopsies 

were obtained from the lateral aspect of the vastus lateralis by the percutaneous needle biopsy 

technique under local subcutaneous anesthesia (1% lidocaine) (Evans, Phinney, & Young, 1982).   
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Cell Culture Procedures   

The culture technique used in the laboratory is schematically outlined in Figure 2. The 

typical mass of the skeletal muscle fibers obtained was ~120 mg from the lateral portion of the 

vastus lateralis. Approximately 60-70 mg was used for cell culture procedures. The sample was 

collected in cold low glucose DMEM. At the cell culture laboratory under sterilize conditions, 

sterilize forceps and scalpel were used to mince muscle in a petri dish containing 2 mL DMEM to 

remove blood clots, fat, and connective tissue. Minced muscle was transferred into 50 mL conical 

tube rinsing with hanks buffer saline (HBS) as necessary. The sample was centrifuged at 500 g for 

10 min, the supernatant was removed and sample was resuspended in 5 mL trypsin collagenase 

cocktail, warmed to 37°C in a slow shaking water bath for 30 min. Afterwards, 1 mL (5% conc) 

FBS (fetal bovine serum) was added to stop trypsin action. The sample was again centrifuged at 

500 g for 10 min. Supernatant was then removed and sample was transferred to non-collagen 

coated T-25 flask containing warmed growth media and placed in the incubator for 3 h. Sample 

was then transferred to collagen coated T-25 flask containing growth media and 24 h later 2 mL 

growth media was added to the flask inside the incubator. Growth media was changed every 5 days 

until cells reached 80% confluence; this process took ~6 weeks. Cells were transferred to collagen 

coated T-75 flask; first growth media was removed from T-25 flask and washed gently with 5 mL 

hanks solution. Cells were detached with 2 mL (0.05%) trypsin EDTA for 2 min. Trypsin was 

stopped by adding 10 mL growth media and transferred to conical tube. The T-25 Flask was rinsed 

with hanks and sample was centrifuged at 500 g for 10 min. Supernatant was removed and cells 

were resuspended in 12 mL growth media and transferred to T-75 collagen coated flask containing 

growth media and allowed to reach 80 % confluence or cells were frozen down in cryovial 

containing 5% DMSO (dimethyl sulfoxide) and stored in liquid nitrogen for further studies. 

NOTE: We were concern during the growth and differentiation processes of the cells that 
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adipocyte cells may have also be stimulated to grow along with the myotubes. However, repeated 

examination using microscopy has led us to believe that this was not the case. Our laboratory has 

not observed the presence of adipocytes or lipid droplets associated with differentiated myotubes.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic of human skeletal muscle cell isolation, propagation, and storage.   

Berggren, J.R., Tanner, C.J., and Houmard J.A. (2007) 

 DMEM: Dulbecco’s 

modified eagle medium 

1X, low glucose 

 HBS: Hanks Buffer   

    Saline (Ca++ and Mg++    

    free)  

 FBS: heat inactivated 

fetal bovine serum 

 SKGM (skeletal growth 

media): DMEM+ 10 % 

FBS+ growth factors + 

antibiotics 

 Digestion cocktail: 

2.5% Trypsin, 2.0% 

EDTA-Na, 1.0% 

collagenase IV,     

1.0%BSA 

 

Transfer media with minimal 

tissue, debris to collagen coated 

flask (T-25)  

Change SKGM every 5d, 

reincubate until ≥70% confluent  

Freeze cells in 5% 

DMSO 

4-6 wk 

Transfer cells to T-75 flask. Change SKGM 

every 2 d, reincubate until ≥80% confluent. 

Detach cells and re plate in four T-75 flask. 

Change SKGM every 2 d, reincubate until 

≥80% confluent.  

 

Obtain 60-70 mg 

skeletal muscle tissue 

in ice-cold DMEM 

Mince muscle in minimal 

volume of Ca++ and Mg++ 

free HBS remove blood 

and connective tissue 

 

Transfer to 50 mL 

conical tube using 

several HBS washes 

Centrifuge at 500g 

for 10 min 

Remove supernatant, add 

5 mL digestion cocktail at 

37°C in shaking water 

bath 

Add FBS to ~5% conc and 

aspirate suspension to stop 

digestion 

Centrifuge at 500 g for 

10 min. 

Incubate 30 min 

Incubation chamber 37°C, 95% 

humidity, 5% CO2  

Optional cell count 

(important if initial 

satellite isolation 

number is needed)  

After 3 h 

Incubation chamber 37°C, 95% 

humidity, 5% CO2  

Add 2 mL SKGM warmed to  
37°C 

24 h 

Incubation chamber 37°C, 95% 

humidity, 5% CO2  

Remove supernatant, add minimal 

volume (≤ 3 mL) SKGM warmed to 

37°C, Aspirate suspension and place 

in cell culture treated flask (T-25) 



27 

Control Experiments to Detect Transfection Efficiency and ACSL-1 Antibody Specificity.  

Transfection efficiency was measured by green fluorescent protein (GFP) and a series of 

control tissue samples were used in order to determine ACSL-1 antibody specificity prior to 

initiate experiments. 

Earlier, our laboratory, had assessed transfection efficiency into myoblasts (technique 

performed by H.B. Kwak, Appendix F) harvested and grown from satellite cells obtained from 

vastus lateralis biopsies. Myoblasts (1x10
6
 cells) were resuspended in 100 μl Nucleofector solution 

(Lonza, Walkersville, MD) combined with 3 μg ACSL plasmid DNA (Invitrogen: Carlsbad, CA) 

and 2 μg pmax GFP (green fluorescent protein) (Lonza: Walkersville, MD).  

ACSL-1 antibody was measured on rat tissues and mouse liver. Rat adrenal, brain, and lung 

organs were collected in lyses buffer containing 50 mM HEPES, 10 mM EDTA, 100 mM NaF, 50 

mM Na pyrophosphate, 10 mM Na orthovanadate, and 1% Triton X-100 supplemented with 

phosphatase and protease inhibitor cocktails (Sigma-Aldrich, St. Louis, MO). Frozen mice liver 

was powder and homogenized on lyses buffer. Rat and mice samples were sonicated two times for 

10 sec and placed in cold room to rotate for 2 hours and vortex every 15 min. Consequently, 

samples were centrifuged at 15 000 rpm for 15 min. Supernatant was collected, bicinchoninic acid 

BCA (Pierce Biotechnology, Rockford, IL) was performed and samples were stored at -80°C. On 

the day of Western Blotting experiments, samples were diluted to obtain the desired final protein 

concentration.  
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Transfection Procedures    

Once myoblasts have reached 80% confluence, they were split into four T-75 flasks and 

allowed once again to reach 80% confluence. Cells were carefully detached from T-75 flasks as 

described under “Cell Culture Procedures.” Cell counting determinations were performed using a 

Vi Cell 
TM 

Cell Viability Analyzer (Beckman Coulter: Hialeah, FL). During this time frame, 

myoblast cells were centrifuged at 90 g for 10 min. Cells (1.3 x 10
6
), gently resuspended in 100 μl 

room temperature Nucleofector solution (Lonza, Walkersville, MD) combined with 2 μg scramble 

shRNA/ACSL-1 shRNA plasmids (Santa Cruz Biotechnology: Santa Cruz, CA) and transfected by 

Amaxa’s Nucleofector Technology (Lonza: Walkersville, MD). We chose shRNA methods over 

siRNA transfection because sRNA has greater efficiency to underexpress the desired gene and 

long lasting effect whereas siRNA transfection is transient to maximal 72 h (Dykxhoorn, Novina, 

& Sharp, 2003). After transfection, myoblasts cells were transferred to pre-equilibrated growth 

media and cell plated into 24 well plates and 6 well plates at 37°C in a humidified 5% CO2 and 

95% O2 incubator for ~48 hours to reach 80% confluence and growth media was then switched to 

differentiation media (Appendix I). Figure 3, illustrates a timetable for the experiments from cell 

growth to day 7 experimentation for palmitate oxidation and cell lysate collection for Western 

Blotting analysis. 

 

Figure 3: Experiment Timetable  

 

      

Thaw       Allow cells    Split cells             Transfection.           Allow cells to         Day 0             Day 5                        Day 7 

Cryovial  reach ~80%  into (4) T-75   Cells were transferred  grow (~48hrs)      Switched to      Preincubate              Experiment 

Transfer   confluence.  flasks until           into 24 & 6 well                                   Differentiation  With P:O               Incubate 24W 

Cells to T-75.              cells reach             plates.                                                 Media.                              in 14Cpalmitate          

with growth media       ~80%                                                                                                                                       & 6W lyse cells. 

                    Confluence. 
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Myotube Cells on Differentiation Media 

Once myoblast cells reached 80% confluency, cells were placed in differentiation media to 

reach myotube stage for 7 days. On Day 5 of differentiation, primary human myotubes from 24 

and 6 well plates were incubated for 48 h in lipid media containing 100 µM palmitate: oleate, 0.5% 

BSA, 1.0 mM carnitine, 0.1 mM CoA and differentiation media. On day 7 of differentiation, 6 well 

plate cells were harvested (Refer to Cell Lyses Procedures), BCA (Pierce Biotechonology, 

Rockford, IL) analysis was done on cells and samples were aliquoted and frozen at -80°C for 

further protein analysis. Cells differentiated on 24 well plates were incubated in radioactive media 

for fatty acid oxidation experiment (Refer to Measurement of Fatty Acid Oxidation Procedures). 

Protein concentrations and the rate of fatty acid oxidation were determined by using BCA assay kit 

(Pierce Biotechonology, Rockford, IL); data was expressed as pmol/µg protein/hr. 

 

Cell Lyses Procedures 

On day 7 of differentiation, lipid media (palmitate:oleate) was removed from 6 well plate  

cells, and cells were gently washed twice with 2 mL PBS (phosphate buffer saline). Myotubes 

were harvested in lyses buffer. Cells were sonicated for 3 sec. Samples were placed on ice and 

vortex every 10 min for 2 h. Afterwards, cells were centrifuged for 15 min at 14,000 rpm. 

Supernatant was collected and protein content was determined using BCA protein assay kit (Pierce 

Biotechnology, Rockford, IL). Aliquots of total proteins (15 µg) were stored at -80°C for further 

analysis. 
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Western Immunoblot Analysis  

On the day of Western blotting, frozen samples were slow thawed on ice water and 

prepared in loading buffer (4x Laemmli and DL-Dithiothreitol). Fifteen µg of protein from 

myotube cell lysates samples were denatured at 95°C for 5 min and then equally loaded into 10 % 

Tris HCl polyacrylamide gels, and electrophoresed at 100V. The gel was then transferred at 100V 

for 2 h onto a nitrocellulose membrane for binding proteins. Afterwards, the membrane was 

blocked in 5% nonfat milk in TBS with 0.1% Tween-20 for 2 h. After blocking, the membrane was 

cut at 50 kDa lane and the top part was incubated at 4°C in blocking buffer overnight in cold room 

with the appropriate primary antibody rabbit polyclonal ACSL-1 (1:1000, Cell Signaling: Beverly, 

MA). The bottom part of the blot cut was incubated separately overnight with primary antibody 

monoclonal mouse GAPDH to verify equal loading among lanes (1:10000 Advanced 

Immunochemical: Long Beach, CA). Next day, the membranes were retrieved and washed four 

times in TBS with 0.1% Tween-20 for 5 min. The membranes were incubated at room temperature 

for 1 h in 5% nonfat dry milk blocking buffer with horseradish peroxidase (HRP) conjugated 

secondary antibodies (Cell Signaling: Beverly, MA and Millipore: Billerica, MA). Following 4 

washes in TBS with 0.1% Tween-20, an enhanced chemiluminescence (ECL) detection system 

(Amersham: Piscataway, NJ) was used for visualization. Densitometry (as area times grayscale 

relative to background) was performed using a Kodak film cartridge and film, a scanner interfaced 

with a microcomputer, and the NIH Image Analysis 1.62 software program. All bands were 

normalized to mouse liver control band density. Equal loading of sample protein was confirmed by 

GAPDH band densities for each treatment sample and controls. 
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Measurement of Fatty Acid Oxidation Procedures 

Following incubation of differentiating cells from days 5-7 with lipid media (described 

above), cells plated on 24 well plate were incubated with radioactive media utilizing a radiolabeled 

free fatty acid as a tracer, [1-
14

C] palmitate (Perkin Elmer: Boston, MA), on day 7 to measure fatty 

acid oxidation in primary human skeletal myotubes cells according to the methods of J.Y. Kim et 

al. (2000). In brief, differentiated HSKM cells with scrambled or shRNA ACSL-1 plasmids were 

incubated at 37°C in a humidified 5% CO2 and 95% O2 incubator for 3 hours in differentiation 

media containing 100 µM palmitate, 12.5 mM HEPES, 0.25% BSA, 1.0 mM carnitine, 0.1 mM 

CoA and 1µCi/ml [1-
14

C] palmitate (Perkin Elmer: Boston, MA). Following the incubation period, 

the medium was transferred to 48 well plate to measure radioactivity of CO2 (complete palmitate 

oxidation) and acid soluble metabolites, ASM, (incomplete palmitate oxidation) fractions by liquid 

scintillation counting using 4 ml of Uniscint BD (National Diagnostics, Atlanta, GA). The 

remaining cell pellets were washed twice with ice-cold phosphate-buffered saline, harvested in  

200 µl 0.05% SDS, and cell lysates were stored at -80°C for subsequent protein determination and 

fractional and total lipid content (Refer to Total Lipid and Lipid Fraction Determination 

Procedures).  
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Total Lipid and Lipid Fraction Determination Procedures 

Total Lipid Analysis 

Cells followed [1-
14

C] palmitate incubation were retrieved from -80°C for BCA analysis. 

On the day of experimentation, samples following [1-
14 

C] palmitate incubation were slowly thawed 

on ice water and transferred 150 µL from each sample into glass tubes. Then 1:2 chloroform 

(CHCl3) : Methanol (CH3OH) was added and vortex. Next, 625 µL of CHCl3 was added to each 

sample and vortex, and 625 µL ddH2O was added to each sample and vortex one more time. 

Samples were then centrifuged at 1,000 rpm for 5 min at room temperature to separate the phases. 

The organic layer was obtained with a glass Pasteur pipette and transferred to a glass scintillation 

vial. Samples were dried overnight with the caps off. The next day, each sample was resuspended in 

500 µL of 2:1 (CHCl3 : CH3OH) and vortex. Then, 50 µL were taken out from each sample and 

placed in scintillation vials with 4 mL of scintillation fluid to determine total lipid synthesis. The 

remaining 450 µL were left on glass scintillation vials with caps off to dry overnight.  

 

Assessment of Mono-, Di-, and Tri- acyl lipid Species by Thin Layer Chromatography 

Procedures 

On the day after assessment of total lipids, samples were resuspended in 50 µL of 2:1 

(CHCl3 : CH3OH) and enriched with 20 µL of each standard monoacylglycerol (MAG), 

diacylglycerol (DAG), and triacylglycerol (TAG). Each sample was spotted in respective lanes on 

an oven-dried TLC plate (Analtech Inc.: Newark, DE) which was then placed in a sealed tank 

containing solvent (60:40:3, heptane-isopropyl ether-acetic acid). Samples were allowed to migrate 

on the thin layer chromatography (TLC) plate until ¼ inch from the top; afterwards, the TLC plate 

was removed from the tank and allowed to dry overnight. The next day, dried TLC plates were 
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exposed to iodine crystals until the bands depicting MAG, DAG and TAG were visualized. Finally, 

each individual band was scraped and place in separate scintillation vials with scintillation fluid and 

counted. Data was expressed as pmol/µg protein/hr. 

 

Statistical Approach  

Students paired t-test analysis was used to evaluate statistical differences between the 

means (scrambled vs. ACSL-1 shRNA transfected myotubes) on rates of fatty acid oxidation, 

ACSL-1 protein content, total and fractional lipid content. Data was presented as mean ± 

standard error of the mean (SEM), with significance set a priori at p<0.05. Statistical analysis 

was performed using Graph Pad Prism 5 (San Diego, CA). 

 

 

 

 

 

 

 

 



 

 

CHAPTER IV 

RESULTS 

Overview  

The major findings from this hypothesis driven research conducted in primary skeletal 

muscle cells obtained from lean Caucasian females were as follow: 1) Control experiments 

demonstrated a transfection efficiency of 50 % at 24 h after transfection in myoblast by Amaxa’s 

Nucleofector technology using a GFP plasmid probe compared to other studies that demonstrated 

exceeding 50% transfection efficiency of proliferated myoblasts in rodent models (Neuhuber, 

Huang, Daniels, & Torgan, 2002) 2) Western Blot analysis demonstrated antibody specificity for 

ACSL-1 protein in human skeletal muscle myotubes as confirmed by a) the presence of distinct 

Western Blot bands present at the correct molecular weight b) and the presence of distinct bands 

for mouse liver at the expected molecular weight highly expressed in this tissue (Distler et al., 

2007), human HepG2 lysates (positive control graciously provided by Cell Signaling: Beverly, 

MA) and human skeletal muscle homogenates, rodent lysates from lung tissue (which served as 

confirmatory negative control; protein expression was low in these tissues) 3) successful 

underexpression/knockdown of ACSL-1 protein was verified by Western Blotting. ACSL-1 KD 

was significantly reduced 31.6 % in shRNA transfected myotube cells (P= 0.03) (Figure 5) vs. 

control lysates (myoblasts transfected with scrambled RNA 4) Rates of palmitate oxidation in KD 

ACSL-1 myotube cells after 48 h palmitate:oleate incubation remained unchanged (Figure 6). 5) 

Finally, lipid analysis was performed on cells after [1
-14

C ] palmitate incubation. Total lipid 

synthesis and lipid specific measurement of MAG, DAG, and TAG remained unchanged as well 

(Figures 7 and 8). 
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Participants 

 Participant’s demographic data: age (y), height (m), weight (kg), and BMI (kg/m
2
) from six 

lean CW are presented in Table 1. Participants were between 37 and 45 years old and they were 

lean (BMI 23.2 ± 0.93). Five of the six participants completed the personal history questionnaire 

and confirmed that participants were premenopausal, sedentary and were not taking medications 

known to affect lipid metabolism (Appendix C). All participants filled out a menstrual cycle 

questionnaire (Appendix E) indicating the use and type of oral contraceptives during the study 

(Kane et al., 2010). Additionally, a 3-d dietary record was completed by five participants during 

baseline and their diets were evaluated for total calories (kJ/Kg), carbohydrate (g/Kg), fat (g/Kg), 

and protein (g/kg) to evaluate participants’ dietary intake of macronutrients prior to 

commencement of the study as illustrated in Table 2. According to the American Diabetes 

Association (ADA) guidelines, the Recommended Dietary Allowances (RDAs) for carbohydrate is 

130 g 
. 
day

-1
, for protein is 0.8 g 

. 
kg body wt

-1 .
 day

-1 
and total fat 65 g 

. 
day

-1 
based on a 2000 

calorie diet. In comparison to the U.S. Recommended Dietary Intake (RDI) guidelines for total 

energy intake of macronutrients (45-65% carbohydrate, 20-35% as fats, and 15-20% protein/46 g 
. 

day
-1

) participants were within the recommended values of % carbohydrate (54.3 ± 5.2), % fat 

(30.0 ± 4.7), and % protein (15.0 ± 0.8) as highlighted in Table 2.(Bantle et al., 2008). In addition, 

assessment of fasting blood glucose (mg/dL), fasting insulin (µU/mL), and insulin resistance by 

homeostatic model assessment of insulin resistance (HOMA-IR) was performed in five of the six 

participants before the study, as shown in Table 3. Fasting blood glucose (FBG) levels were 

determined according to the criteria of the ADA guidelines and insulin sensitivity levels were 

defined by Stern et al. (2005). According to the ADA guidelines, a normal FBG is between 70 and 

100 mg/dL, and a FBG > 126 mg/dL is the standard diagnose for diabetes. According to Stern et 

al. (2005), the levels for the diagnosis of diabetes by HOMA-IR < 3.60 is considered the criterion 
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for insulin sensitivity and HOMA-IR > 3.60 is considered the criterion for insulin resistance. 

HOMA was calculated from values of fasting blood glucose and insulin by using the following 

formula: fasting glucose (mg/dL) X fasting insulin (µU/mL) / 405. According to HOMA values, 

participants were not considered insulin resistance (1.08 ± 0.2). Note: data on the questionnaires 

and blood analysis is missing for subject six as she needed to be recruited after the original 

subject’s cell sample was eliminated due to low viability of an original sample. 

Participants’ Characteristics 

Lean Caucasian Women 

Number of Participants      (n= 6) 

                             Mean  ±  SEM 

Age                     36.8 ± 2.5 

Height (m)      1.64 ± 0.02  

Weight (Kg)      63.2 ± 2.36 

BMI (kg/m
2
 )                     23.2 ± 0.93 

 

Table 1.  Data are expressed as mean ± SEM for six lean Caucasian females; age, height, weight, 

and BMI (Body Mass Index) 

 

 

 

Total Calories, Carbohydrate, Fat, and Protein 

Lean Caucasian Women 

Number of Participants      (n= 5) 

        Mean ± SEM 

Total calories (kJ/Kg)              135.3 ± 14.6 

Carbohydrate (g/Kg)            1.9 ± 0.2 

Fat (g/Kg)        1.14 ± 0.2 

Protein (g/Kg)       1.25 ± 0.2 

Carbohydrate (%)                  54.3 ± 5.2 

Fat (%)                           30.0 ± 4.7 

Protein (%)        15.0 ± 0.8 

 

Table 2. Date are expressed as mean ± SEM for five lean Caucasian females. Total calories, 

carbohydrate, fat, and protein were evaluated prior to enter the study using a 3 day food record 

(two non-consecutive days and one weekend day). 
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Fasting Glucose, Insulin, and Insulin Resistance (HOMA) 

 

Lean Caucasian Women 

Number of Participants     (n= 5) 

                Mean ± SEM 

Glucose (mg/dL)                  86.3 ± 3.0 

Insulin (µU/mL)           4.9 ± 1.1 

HOMA           1.08 ± 0.2 

 

Table 3. Data are expressed as mean ± SEM. Data are expressed as glucose (mg/dL), insulin 

(µU/mL), and insulin sensitivity (HOMA) values in five lean Caucasian females prior to muscle 

biopsy. Fasting glucose, insulin, and HOMA values are within range.   

 

 

Control Experiments 

In order to determine transfection efficiency using Amaxa Nucleofector technology, 

primary human skeletal myoblasts were transfected by GFP plasmid DNA. Cell viability was  

approximately 40% and approximately 50% transfection efficiency at 24 h post transfection 

(Appendix F). Seven days after differentiation GFP showed fully differentiated cells as being 

fully elongated and multinucleated morphology of myotubes. This data indicated successful 

transfection by GFP plasmid DNA in differentiated primary HSKM cells (data courtesy of Dr. 

H.B. Kwak, personal communication, Appendix F).  

In order to determine that the antibody expression was specific to ACSL-1 isoform, the 

protein of interest was blotted for several tissues (Figure 4). Rat and liver protein levels were 

chosen for Western Blotting to serve as positive controls. ACSL-1 mRNA abundance in mouse 

models have shown to be highly expressed in liver, adipose, heart tissues; at moderate levels in 

gastrocnemius and soleus muscles, and at very low levels in lung, kidney, and adrenal organs 

(Mashek et al., 2006). In addition a dose response of human cell lysates was used to determine 

the optimal protein (µg) to load into the gels. The protein specific bands for ACSL-1 were 

observed at ~75kDa; this is in agreement with the study by Li et al. (2009). 
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ACSL-1   ~75 kDa 

                     1)HepG2 2) Liver                             3) Lung 4)Muscle H5)        6)          7)          8) Cell lysate  

GAPDH   ~36 kDa 

                       1)HepG2  2) Liver                         3) Lung 4) Muscle H 5)      6)             7)       8) Cell lysate 
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Figure 4. Dose Response. A dose response of human myotube lysate was performed to 

determine adequate amount of protein specific and visible to ACSL-1 antibody. In addition, 

antibody specificity was confirmed by using positive controls (HepG2 cells, mice liver tissue and 

skeletal muscle homogenates) and negative control (lung tissues). Bands were visible at ~75 

kDa. The amount of protein used was as followed HepG2 (20µg), LiverM (20µg), LungR (20µg), 

Muscle homogenates (20µg), Cell Lysate (5µg, 10µg, 20µg, and 50µg). Each band was 

normalized to HepG2 band.  
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ACSL-1 KD Efficacy Determined by Western Immunoblot Analysis 

 The generation of ACSL-1 KD was done by introducing ACSL-1 shRNA plasmid into 

myoblast cells. Control cells were transfected with a scramble shRNA sequence that did not lead to 

degradation of ACSL-1 gene. The lysates were prepared for Western Blotting following 

transfection procedures using AMAXA’s Nucleofector Technology (Lonza: Walkersville, MD) as 

described under “Transfection Procedures.” Protein bands were detected at the correct molecular 

weight at ~75 kDa band for mouse liver and lung samples as well as for control HepG2 lysates. 

Most importantly, Western Blot analysis confirmed successful reduction of ACSL-1 protein 

expression following transfection procedures. ACSL-1 protein levels verified by Western Blot 

analysis were reduced by 31.6 % (P= 0.03) Figure 5 following transfection with shRNA plasmid 

transfection. Furthermore, Western Blot probing for GAPDH confirmed equal loading of protein for 

treatment and all control samples (Appendix G). 
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A) 

ACSL-1   75 kDa 

                  LiverHepG2 Lung    C#37 KD#37    C#56 KD#56    C#16 KD#16                                    

GAPDH    36 kDa 

                 HepG2 Lung    C#37 KD#37         C#56 KD#56          C#16 KD#16                                    
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Figure 5. Transfection efficiency of ACSL-1 KD shRNA. Cell lyses obtained from participants 

who were 6 lean Caucasian women. A) Western blot bands were LiverM (1 µg ), LungR (15 µg), 

and 3 samples of ACSL-1 KD (15 µg). Bands were normalized to LiverM (1µg). GAPDH shows 

equal loading of samples. B) Open bars represent control cells transfected with an empty vector 

shRNA, closed bars represent ACSL-1 transfected cells with ACSL-1 shRNA. ACSL-1 gene was 

KD by 31.6 % (P=0.03). Data are presented as mean ± SEM (n=6).    
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In vitro Rates of Fatty Acid Oxidation 

The analysis of in vitro fatty acid oxidation following ACSL-1 transfected KD and control 

samples were measured as collected radioactivity of 
14

CO2 (complete fatty acid oxidation), ASM 

(incomplete fatty acid oxidation) and total fatty acid oxidation (
14

CO2 and ASM levels) by liquid 

scintillation counting. According to CO2 [1
-14 

C] palmitic radioactivity levels there was no change 

in fatty acid oxidation in the KD ACSL-1 transfected myotube cells (P= 0.10), ASM (P= 0.10) or 

total fatty acid oxidation (P=0.09) vs. control lysates. The rates of fatty acid oxidation were 

expressed as pmol/µg protein/ hr (Figure 6).  
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Figure 6. Effect of ACSL-1 KD in vitro fatty acid oxidation after 48h lipid incubation 

Participants were six lean Caucasian females who were biopsied from the vastus lateralis muscle 

following an overnight fast. Satellite cells were cultured and differentiated into myotubes and then 

transfected with scrambled RNA or shRNA plasmid vectors. Oxidation studies were performed 

according to methods described above. Fatty acid oxidation was measured by 
14

C-leveled 

radioactivity of CO2 (A) ASM (B) and total lipid oxidation (C) by liquid scintillation counting 

(open bar, control cells; closed bar, KD ACSL cells). Data are presented as mean ± SEM (n=6).  
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Lipid Synthesis and lipid Accumulation in ACSL-1 KD Myotubes 

 ACSL isoforms deliver Acyl-CoA substrates for lipid oxidation, synthesis and 

intermediates that act on cell signaling (Nagle et al., 2009). Several studies have suggested that 

intermediates such as ceramides, DAG, and Acyl-CoAs affect insulin sensitivity in skeletal muscle 

(Lowell & Shulman, 2005). In order to determine the rates of fatty acid incorporation into several 

lipid species the extraction of cellular lipids was performed as described under “Total lipid and 

TLC fraction determination procedures.” We examined that ACSL-1 KD cells after 48 h 

incubation of 1:1 palmitate: oleate (100µM). Results demonstrated an absence of change for the 

accumulation of total lipids in KD vs. control samples (P= 0.21) (Figure 7). Further analysis for 

MAG, DAG, and TAG also demonstrated an absence of significant differences in the means 

between control and ACSL-1 shRNA transfected cells (P= 0.14, P=0.19, and P=0.38 respectively) 

(Figure 8). Measurements for total lipid synthesis, MAG, DAG, and TAG were expressed as 

pmol/µg protein/hr. 
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Figure 7. Total Lipid Synthesis. Extraction of cellular total lipids performed in cell lysates 

incubated with 1:1 palmitate: oleate and after [1
-14

C] palmitic incorporation. Data are represented as 

mean ± SEM (n=6) 
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Figure 8. Lipid synthesis (MAG, DAG, and TAG). Lipid synthesis of monoacylglycerols, 

diacylglycerols, and triacylglycerols performed in cell lysates incubated with 1:1 palmitate: oleate 

and after [1
-14

C] palmitic incorporation. Data are represented as mean ± SEM (n=6) 



 

 

CHAPTER V 

DISCUSSION 

Transfection efficiency of our ACSL-1 shRNA plasmid vector into human primary skeletal 

muscle cells obtained from human skeletal muscle biopsies was verified by Western Blot analysis. 

Transfection efficiency from AMAXA device was measured by GFP technology and demonstrated 

a ~50% efficiency in our ability to successfully utilize a relatively new technology for this process 

(Appendix F). As expected, we provided clear evidence for the ability of the chosen antibody to 

detect protein at the correct molecular weight and with very high expression in our positive 

controls, rodent liver, HepG2 lysates, and human skeletal muscle homogenates, as well as the 

expected outcome of low expression in lung tissue as predicted by the literature (Mashek et al., 

2006). Results from the laboratory have demonstrated that overexpression of ACSL-5 isoform in 

our primary HSKM cell model does not result in elevation of complete and incomplete fatty acid 

oxidation nor does underexpression/KD of ACSL-1, resulting in alterations of lipids. To our 

knowledge this is the first report to demonstrate the presence of ACSL-1 in primary human 

skeletal muscle myotubes, the ability to reduce its expression in our model, and to report the effect 

on rates of fatty acid oxidation and lipid synthesis.    

The participants involved in the study were lean Caucasian women (n=6; BMI < 25 

kg/m
2
) with a mean age of 36 yr. All participants were premenopausal, considered healthy and 

sedentary after filling out a personal history form questionnaire (Appendix C). According to 

serum levels of fasting glucose, fasting insulin, and HOMA-IR participants reported no presence 

of insulin resistance (0.9 ± 0.7). Our premenopausal participants also fill out a menstrual cycle 

recall questionnaire (Appendix E) to determine type of birth control used, length of cycle and the 

effects of menstrual status and female sex steroids on mitochondrial bioenergetics. Results were 
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reported in a recently published manuscript (Kane et al., 2010). Overall, subjects met our 

inclusion criteria established a priori.  

In addition, a food diary form (based on Kg/body mass; Appendix D) was completed for 

five of the participants prior to the beginning of the study and before their muscle biopsy. 

Participants selected 2 weekdays and 1 weekend day for their food diary form. This was done to 

determine the major fuel oxidized in the participants. In comparison to the U.S. Recommended 

Dietary Intake (RDI) guidelines for total energy intake of macronutrients (45-65% carbohydrate, 

20-35% as fats, and 15-20% protein/46 g 
. 

day
-1

) participants were within the recommended 

values of % carbohydrate (54.3 ± 5.2), % fat (30.0 ± 4.7), and % protein (15.0 ± 0.8) Table 2. 

The ability to transfer exogenous shRNA into cultured primary human skeletal muscle 

myoblast cells to knockdown ACSL-1 gene was achieved by electroporation. This technique 

enabled us to study the regulation of fatty acid oxidation and lipid synthesis in our model. The 

first step was to determine transfection efficiency of AMAXA device. To determine transfection 

efficiency by Amaxa’s Nucleofector device, primary human skeletal myoblasts were transfected 

by GFP plasmid DNA. Based on methodology developed prior to this study, cell viability was 

approximately 40% and there was approximately 50% transfection efficiency at 24 h after 

transfection of myoblasts compared to exceeding 50% efficiency transfection of myoblasts 

cultured from rodent models (Neuhuber et al., 2002). After, 7 days of differentiation, GFP 

showed a strong fluorescence signal with fully differentiated cells being elongated and 

multinucleated. These data indicated successful transfection by GFP plasmid DNA in 

differentiated primary HSKM cells and supports the use of this technology for introduction of 

our selected plasmid in our cell culture model (data courtesy of Dr. H.B. Kwak, personal 

communication, Appendix F).  
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Additional control experiments were conducted using Western Blotting procedures to 

determine that the antibody was specific to our target protein, ACSL-1, in order for us to monitor 

the extent of our underexpression efforts (Figure 4). Earlier literature reported that ACSL-1 has 

been found to express strongly in liver and lower in lung tissues (Mashek et al., 2006). 

Therefore, we chose to do a series of Western Blotting experiments that detected ACSL-1 in 

these tissues. According to our molecular weight ladder, ACSL-1 antibody was detected at ~75 

kDa and highly in positive controls of mouse liver, human skeletal muscle homogenates and 

HepG2 and at lower levels in negative control (mouse lung extracts). Furthermore, we also 

blotted for human skeletal muscle cells at different protein levels (5 µg, 10 µg, 20 µg, and 50 

µg). The bands showed a dose response of increasing protein content. After these preliminary 

experiments, we felt confident that our chosen antibody was specific for our target protein 

(Figure 4) 

After successful confirmation of antibody specificity, we progressed toward the 

transfection studies. We chose shRNA over small interfering RNA (siRNA) because transfection 

of siRNAs leads to transient gene silencing and might not result in sustained interference for 

genes that encode proteins with long half-lives or for experiments that would be ongoing for 

greater than 36 h (Dykxhoorn et al., 2003). In the first step of the underexpression process using 

double-stranded RNA (dsRNA) is cleaved by an RNAase III family member, Dicer, into 21-23 

nucleotide siRNAs in an ATP dependent reaction. These siRNAs are incorporated into the RNA-

inducing silencing complex (RISC), and then the activated RISC targets the complementary 

mRNA for degradation (Dykxhoorn et al., 2003). The amount of shRNA used in this model to 

perform effective gene knockdown was 2 ug of shRNA ACSL-1 and equal amounts of scrambled 

RNA as control. Using the procedures established early in this specific project, the ACSL-1 gene 

was successfully underexpressed/KD as evidenced by a 31.6% reduction in normalized protein 
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levels (P= 0.03) and verified by Western Blotting from lysates of differentiated primary HSKM 

cells vs. controls derived from the same subject.  

In order to determine the rates of fatty acid oxidation in our model, we recapitulated the 

human, obese AAW phenotype by underexpression ACSL-1 in primary HSKM cells from lean 

CW. We incubated the myotubes with palmitate: oleate (100 µM) for 48 h on day 5 of 

differentiation. We hypothesized that ACSL-1 KD would reduce fatty acid oxidation levels 

based on earlier studies from our laboratory which overexpressed ACSL-1 in primary HSKM 

(Appendix H). In these earlier studies, palmitate complete CO2 oxidation was approximately 

75% higher in ACSL-1 overexpression compared with control. Similarly, palmitate incomplete 

ASM oxidation was 61.7 % higher in ACSL-1 overexpression compare to control (P < 0.05). 

(data courtesy of Dr. H. B. Kwak, Appendix H). This suggested that the ACSL-1 isoform indeed 

has a role in mitochondrial fatty acid oxidation in HSKM. Unexpectedly however, following 

ACSL-1 KD, fatty acid oxidation in our model, results following transfection demonstrated an 

absence of a reduced effect on complete (P= 0.10) and incomplete fatty acid oxidation (P=0.10).  

Given these unexpected findings, we proposed the following alternatives to assist in 

interpreting our data. First, it can be speculated that another isoform located on the outer 

mitochondrial membrane could have served as a compensatory mechanisms to offset the 

negative effects of ACSL-1 KD on mitochondrial fatty acid oxidation. For example, ACSL-5 

protein has been detected at 76 kDa in the mitochondrial fraction, 73 and 74.5 kDa levels in 

endoplasmic reticulum (ER), and 74.5 kDa in cytosol and mitochondria-associated membrane 

(MAM) (Lewin et al., 2001). In support, we have conducted earlier experiments in our laboratory 

examining the overexpression of ACSL-5 on fatty acid oxidation in human primary myotubes. 

According to captured [1-
14

C] label CO2 measurements, complete palmitate oxidation was higher 

(+112%; P<0.05) compared to control cells. Measured [1-
14

C] labeled ASM radioactivity from 
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ACSL-5 overexpressing cells also resulted in a significant increase (+71%; P<0.05) following a 

3 h incubation protocol with 100 µM palmitate when compared with control cells. This study 

demonstrated that ACSL-5 overexpression can lead to an increase in complete and incomplete 

fatty acid oxidation in HSKM (data courtesy of Dr. H.B. Kwak, Appendix H). The increase of 

ACSL-5 role in fatty acid oxidation suggested to us that this particular isoform is a likely 

candidate to respond when ACSL-1 is underexpressed or demonstrates reduced activity. Future 

studies are required to investigate the protein expression of ACSL-5 in myotubes that 

underexpresses ACSL-5. These experiments would provide for intriguing insights into the 

regulation of mitochondrial fatty acid oxidation by the ACSL family and their effects of skeletal 

muscle lipid dynamics not only in the normal/health condition but also under circumstances of 

pathology such as evidenced with the obese and diabetic state. Co-expression studies might also 

provide a fruitful avenue to pursue with regard to gene therapy approaches toward resolving 

decrements in lipid oxidation in skeletal muscle from obese and/or type 2 diabetic patients.  

Given the above unexpected findings with our fatty acid oxidation experiments following 

knockdown of ACSL-1, the next logical approach was to assess potential alterations in the lipid 

synthesizing arm of fatty acid partitioning in our cell model. Despite the potential for 

compensation of ACSL-1 KD by ACSL-5 on fat oxidation, it still may be that either or both 

isoforms could potentiate the partitioning of activated acyl-CoA units toward lipid synthesis. 

Results however did not support this possibility. Our model system and approach reported no 

alterations of total lipid synthesis. Similarly, despite the high content of exogenous lipids 

supplied to the ACSL-1 KD transfected cells, esterification of MAG, DAG, and TAG were 

unchanged. This suggested that ACSL-1 and/or increases in compensatory expression of 

additional isoforms may not be a major regulator(s) for activation of fatty acids towards lipid 

synthesis in the skeletal muscle from healthy, lean individuals. Alternatively, although ACSL-1 
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and/or ACSL-5 appears to be involved in mitochondrial fatty acid oxidation, it may be that that 

mitochondrial regulation of fatty acid oxidation is at the level of CPT-I as supported by the 

majority of the literature (J.Y. Kim et al., 2000; Wolfgang et al., 2008). Perhaps, as observed in 

skeletal muscle of obese AAW, ACSL may only be limiting for fatty acid oxidation in the 

pathological condition and perhaps only in certain racial subpopulations.  

To end our discussion, It was reasonable to speculate on an additional pathway which could 

serve as a compensatory mechanism during conditions of skeletal muscle ACSL-1 reductions in 

activity; namely peroxisome handling of fatty acid oxidation. Studied most extensively in the 

liver using rodent models, it is conclusive that peroxisomes play an intimate and essential role in 

cellular lipid dynamics. For example, the peroxisome is the only organelle capable of oxidizing 

very long-chain fatty acids (>22 C). In contrast to the mitochondria however, the β-oxidative 

system of the organelle is incomplete. Accordingly, peroxisomal oxidative products are chain 

shortened down to C6 units but not lower (Reddy & Hashimoto, 2001). Interestingly, evidence 

exists that fatty acids oxidized by the peroxisomal pathway are exported as acyl-carnitine units. 

This may have significant implications for mitochondrial fatty acid oxidation as these lipid 

products can enter into the mitochondria independent of ACSL and/or CPT-I. Once arriving in 

the matrix, exposure to CPT-II would reestablish these lipid peroxisomal export products as acyl-

CoA substrates for oxidation. In this regard, the first evidence for the existence of a peroxisomal-

mitochondrial interactive pathway to handle long-chain fatty acid metabolism in skeletal muscle 

was established by our laboratory. Noland et al. (2007) demonstrated that the peroxisome 

organelle can contribute to complete lipid disposal in skeletal muscle by interacting with the 

mitochondria. However, an interesting caveat emerged from this study. When skeletal muscle 

from lean rats was assessed for peroxisomal oxidation of long-chain or very-long chain fatty 

acids, no evidence for their activity was realized. In stark contrast, when the obese counterpart 
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the lean Zucker (the insulin resistant fatty fa/fa 
-/-

) animal was studied, a great abundance of 

activity was noted. In fact, when the very long-chain fatty acid, lignoceric acid, was radiolabeled 

with [1-
14

C] oxidation to [1-
14

]
 
CO2 was observed only in the skeletal muscle of the fatty (fa/fa 

+/+
) animal. Furthermore, [1-

14
C] palmitate oxidation was also observed despite incubating with 

malonyl-CoA, the natural inhibitor of CPT-I. Thus, under conditions of elevated lipid supply, as 

occurs in the obese insulin resistant condition, or in our model following 48 h of lipid incubation, 

results demonstrated that the peroxisomal β-oxidation of long-chain fatty acids in the presence 

and absence of malonyl-CoA can enter mitochondria independently of CPT-I. Given these recent 

findings, we proposed the following testable hypothesis. In the presence of reduced ACSL 

activity (ACSL-1 or otherwise), the overflow of fatty acids following reduced uptake by the 

mitochondria (due to the reduction of acyl-CoA substrate from ACSL), the peroxisome would 

accept long-chain acyl fatty acids and chain shorten them for ACSL/CPT-I independent 

oxidation by the mitochondria. As such, in the present experiments, it may be that with reduced 

activity of ACSL-1, a compensatory mechanism emerged in that peroxisomal activity was 

elevated (perhaps with or without increased ACSL-5 compensation) and thereby neutralized the 

negative effects of ACSL-1 underexpression. This could at least explain the absence of an effect 

of ACSL-1 KD on fatty acid oxidation of palmitate. True, this may not necessarily explain why 

we failed to visualize differences in lipid synthesis. However, it may be that other ACSL 

isoforms more specific for synthetic pathways were upregulated. Clearly, many additional 

studies are needed to verify either or both of our alternative explanations for our findings. 

Nonetheless, they do represent intriguing possibilities that will likely render fruitful toward our 

understanding of lipid dynamics in skeletal muscle under the healthy and pathological condition. 

In the context of the above findings, it is important to discuss potential limitations of our 

study. First, common to all cell culture transfection studies, there is the potential for unequal 
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transfection among all of the myotubes in our model. We admit this possibility because we did 

not investigate the actual transmission of ACSL-1. We assumed that the efficiency would be 

similar to that observed for GFP. Future studies should be conducted to directly measured 

transfection efficiency of our target protein using the AMAXA electroporation technology. In the 

worst case scenario, we may have had only underexpressed our protein in a portion of the 

myoblast that were studied in our assay. To address this issue, additional studies would be 

necessary using a greater content of shRNA plasmid during our transfection procedures. Thus, 

we suggest assays to assess a run a dose respond series of experiments using increasing amounts 

of shRNA to observe whether the 2 ug employed in the current research design was the optimal 

amount to gain the maximum underexpression obtainable. In this regard however, the trade off of 

greater underexpression of the target protein may not mimic the true physiological condition as it 

is highly unlikely that full loss of ACSL-1 activity exists in human skeletal muscle, even in the 

pathological condition. 

A second limitation in our study was that our cells in ACSL-1 underexpression were not in 

state III respiration when energy demand is at its highest (e.g., during muscle contractions such 

as that which occurs with physical exertion/exercise). In our model, cells where studied under 

state IV condition when adenosine triphosphate (ATP) requirements are low. Therefore, we 

suggest additional future studies to examine mitochondrial respiration under conditions of 

elevated, state III respiration. In this regard, we suggested the use of the newer experimental 

approaches using the permeabilized fiber assay where mitochondrial function can be observed 

under state III conditions. In this regard, we were able to induce a 30% KD for ACSL-1 in the 

present study which may have little consequences under low energy demand near state IV 

respiration. However, if we had be able to elevate energy demand to that required by the cell 

during contractions, a significant effect of ACSL-1 KD on cellular bioenergetics and rates of 
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respiration/synthesis may have emerged. Therefore, at present it may be erroneous to conclude 

that ACSL-1 is not important for fatty acid oxidation in situations of high energy demand. An 

additional approach could also include a cell model in which contractions could be induced such 

as would occur under conditions of electrical stimulation. This technology is being work out in 

our laboratory and may demonstrate to be very fruitful in the future to understand the role of 

ACSL-1 in lipid metabolism during state III respiration (physical activity).  

In conclusion, we are the first to successfully underexpress ACSL-1 in human skeletal 

muscle. Contrary to our hypothesis however, the results of the current research did not support 

our prediction that ACSL-1 KD would reduce fatty acid oxidation in primary HSKM cells. 

However, recent data from our laboratory showed that ACSL-1 overexpression in primary 

HSKM cells do demonstrate an increased on fatty acid oxidation (data courtesy of Dr. 

H.B.Kwak, Appendix H). This indicates that ACSL-1 isoform has a role in fatty acid oxidation 

in skeletal muscle but that role could not be identified in our model and research design of 

ACSL-1 KD. Several alternatives have been proposed which require further investigation such as 

an additional isoform induced upregulation and compensation for underexpression of ACSL-1. 

For studies to test the possibility of this alternative hypothesis, co-expression experiments would 

be one logical approach. In addition, we propose based on reports from our own laboratory that 

the peroxisome may act as in an inducible and dynamic fashion in response to changes in lipid 

dynamics following reduction in ACSL-1 activity. Finally, we also propose future studies using 

permeabilized fiber and high resolution oximetry to determine the effects of ACSL-1 

underexpression under state III condition which may serve to “unmask” the repercussions of 

lowered skeletal muscle ACSL-1 activity during times of heightened energy demand. Therefore, 

we close with the following; although much is understood about lipid regulation in skeletal 

muscle, it still represents a new and exciting frontier for understanding the role of lipid biology 
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in health and disease, and as such provides hope for devising new approaches toward the 

treatment of metabolic diseases as observed in the obese and diabetic condition.  
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PERSONAL HISTORY FORM 

 

 Technician_____________ Contract____________ ID______________ 

 

   PLEASE PRINT AND FILL OUT COMPLETELY  
 

1. Name: ______________________________  Date: ___________________ 

 Phone#: (home) ____________________ (work) ________________________ 

 Address: __________________________________________________________ 

 City: _______________________ State ___________  Zip ______________ 

 e-mail address (if available):___________________________________________ 

2. Employer: ________________________________________________________ 

 Occupation: _______________________________________________________ 

 

3. Date of Birth: ________________ Sex: _______   Age: _______ Race:  _______ 

 

4.  General Medical History          

Circle one 

Any medical  complaints presently?    (if yes, explain) ....            yes    no 

____________________________________________________________ 

____________________________________________________________ 

____________________________________________________________ 

 

Any major illnesses in the past?  (if yes, explain) .....(date) ______ yes   no 

____________________________________________________________ 

____________________________________________________________ 

____________________________________________________________ 

 

Any hospitalization or surgery?  (if yes, explain)  ......   (date)  ____yes    no 

____________________________________________________________ 

____________________________________________________________ 

____________________________________________________________ 

 

Have you ever had an EKG (electrocardiogram) ? .....   (date)      ______   yes    no 

 

Are you diabetic?  ....If yes, at what age did you develop diabetes: _____  yes    no 

 

Are you currently taking any medications? .............................            yes    no 

 

Medication  Dosage Reason   Times taken per day 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

______________________________________________________________________ 

 

Have you ever been exposed to Lidocaine or Novocaine?    yes    no 

   

Have you ever had an allergic reaction to Lidocaine or Novocaine?   yes    no 
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5.  Family History 

  Age if    Age of   Cause of 

  alive    death   death 

Father  ______   ________  ____________________ 

Mother  ______   ________  ____________________ 

 

Do you have a family history of: (Blood relatives only: give age of occurrence if applicable) 

       Relationship   Age of 

           occurrence 

--High blood pressure ...... yes    no   ______________________________ 

--Heart attack.....................yes    no   ______________________________ 

--By-pass surgery...............yes   no   ______________________________ 

--Stroke..............................yes    no   ______________________________ 

--Diabetes...........................yes   no             

 --Gout.................................yes  no   ______________________________ 

--Obesity.............................yes   no                         ______________________________ 

 

6.  Tobacco History  (check one) 

_____   None       Cigarette history 

_____   Quit months/years ago    _____   1-10 daily 

_____   Cigarette      _____    11-20 “ 

_____   Snuff                  _____    21-30 “ 

_____   Chewing tobacco      _____    31-40   “ 

_____   Pipe       _____    more than 40 

Total years of tobacco use? _______     

 

Snuff history       Chewing history  

______   < 0.5 cans daily     _____   < 0.5 pouches daily 

______   0.5-2.5 cans  “     _____   0.5-2.5 pouches  “ 

______   > 2.5 cans     “                 _____   > 2.5 pouches     “ 

 

7. Weight History  

What do you consider a good weight for you? ________ Weight at age 21? _________ 

Weight since age 21? ________    Weight one year ago? ______ 

Weight now? ________ 

 

 

8. Cardio-Respiratory History 

Any heart disease now?...........................................................................................  yes   no 

Any heart disease in the past?.................................................................................   yes   no 

Heart murmur?.........................................................................................................  yes   no 

Occasional chest pains?...........................................................................................    yes   no 

Chest pains on exertion?..........................................................................................   yes   no 

Fainting?..................................................................................................................    yes   no 

Daily coughing?.......................................................................................................  yes   no 

Cough that produces sputum?..................................................................................  yes   no 

High blood pressure?...............................................................................................   yes   no 

Shortness of breath -- 



77 

 at rest.......................................................................................................   yes      no 

 lying down..............................................................................................    yes      no 

 sleeping at night.....................................................................................    yes      no 

 after 2 flights of stairs...........................................................................     yes      no 

 

9.  Muscular  History 

Any muscle injuries or illnesses now?................................................................    yes      no 

Any muscle injuries in the past?.........................................................................    yes      no 

Muscle pain at rest?............................................................................................    yes      no 

Muscle pain on exertion?...................................................................................    yes      no 

 

10.  Bone-Joint History 

Any bone or joint (including spinal) injuries or illnesses now?........................    yes      no 

Any bone or joint (including spinal) injuries or illnesses in the past?..............    yes      no 

Ever had painful joints?....................................................................................   yes      no 

Ever had swollen joints?..................................................................................    yes      no 

Flat feet?...........................................................................................................   yes      no 

 

11.  Nutritional Survey 

How many times do you usually eat per day?                                                   ________ 

 

What time of day do you eat your largest meal?                                               ________ 

 

How many times per week do you usually eat...     

 ____ Hamburger  ____ Sausage  ____ Bacon 

 ____ Beef   ____ Pork  ____ Cheese 

 ____ Shellfish (shrimp, oysters, scallops, clams, etc.) 

 ____ Fish   ____Poultry  ____ Fried Foods 

 ____ Breads   ____ Cereals  ____ Vegetables 

 ____ Eggs   ____ Desserts  ____ Ice Cream 

 ____ Other 

 

How many servings per week do you usually consume? 

____ Whole milk   ____ Coffee 

____ Low-fat milk (2% milk fat) ____ Tea 

____ Skim milk (non-fat)  ____ Soft drinks 

____ Buttermilk   ____ Other 

 

12.  Physical Activity Survey 

a.  Compared to a year ago, how much regular physical activity do you currently get?  (Check 

One) 

 ____  much less  ____  somewhat less  ____  about the same 

 ____  somewhat more  ____  much more 

 

b.  For the last three months, have you been exercising on a regular basis? 

 ____ yes ____ no 
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c.  What type of exercise or physical activity do you currently do or have done regularly in the 

past three months?   

     (For example:  walking, swimming, weight lifting, gardening, etc.)  

______________________________________________________________________________

______________________________________________________________________________

____________________________________________________________ 

d.  On the average, how many days per week do you exercise? _______ 

 

e.  How long do you exercise each time?  For how many minutes?  __________________ 

 

 

f.  How hard do you exercise on a scale from 1 to 5:  with 1 being easy and 5 being very hard? 

 ____ 1  ____ 2  ____ 3  ____ 4  ____ 5 

 

g.  Do you ever check your heart rate (pulse) to determine how hard you are exercising? 

 ____ yes ____ no 

 

h.  What aerobic activity or activities would you prefer in a regular exercise program for 

yourself? 

____ Walking and/or running  ____ Tennis   ____ Bicycling 

____ Racquetball   ____ Swimming  ____ Basketball 

____ Aerobic dance   ____ Stationary cycling ____ Soccer  

____ Stair climbing   ____ Rowing   ___________Other 

  

13.  Alcohol History 

Do you ever drink alcoholic beverages?    Yes ____  No ____  

If yes, what is your approximate intake of beverages per week?   

Beer _____ Wine _____ Mixed Drinks _____   

 

14.  Sleeping Habits 

Do you ever experience insomnia (trouble sleeping)? Yes ____ No ____ 

If yes, approximately how often?___________________________________________________ 

How many hours of sleep do you usually average per night?_____________________________ 

 

15.  Education 

Please indicate the highest level of education completed. 

____ Grade School  ____ Junior High  ____ High School  

____ College   ____ Graduate  ____ Postgraduate 

Please indicate degree earned (i.e. B.A., M.S., Ph.D.)___________________________  

 

16. Menopausal status (for women) 

Date of most recent menstrual cycle?___________________________ 

Have you missed more than one period in the last year? Yes  ___  No___ If yes, how many?____ 

Birth control?  Yes  ___  No____ If yes, what type? ____________________How long?_______ 

Have you had a hysterectomy? Yes  ______  No______ If so, when?  _______________  

Are you post-menopausal? Yes  ________  No________ If so, for how long?______________ 

If you are on estrogen therapy, for how many years have you been on? _____________ 
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17.  Family Physician 

Name:  _________________________________________________________ 

Address:________________________________________________________ 

Phone:  _________________________ 

Should it be necessary, may we send a copy of your results to your physician? 

 

Signature:  ________________________________ 

Date:  ____________________________________ 
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FOOD DIARY 

 

Department of Exercise and Sport Science 

East Carolina University 

Greenville, NC 27858 

252-328-2575 

 

Name_______________________________  DOB:_____________________ 

 

Instructions: 

1. Choose 3 days immediately prior to the start of the study to record. 

 

2. Record all foods and beverages (including water) that are consumed. 

 

3. List portion size of all foods and beverages. Be as specific as possible. For example: 2 

ounces of chicken breast, ¼ cup of mashed potatoes with milk, 8 ounces of orange juice. 

Estimate portion size after cooking. 

 

4. If you are not sure about what the portion size is, give another descriptor such as a deck 

of cards or the size of a baseball. 

 

5. List brand names of foods if known. 

 

6. Describe how each food is prepared. For example: fried chicken, scrambled eggs, and 

steamed cabbage. 

 

7. Record any “extras” or condiments used and their amounts. For example: 1 tablespoon of 

mayonnaise, 1 teaspoon butter, 2 tablespoons Italian salad dressing. 

 

8. List any snacks-foods, beverages and candy consumed in between meals.  

 

9. If a combination food was consumed, such as a casserole, salad, or stew, please list all 

ingredients and the amount consumed. 

 

10. Please return this to the above address as instructed. 

 

11. Please call at 252-328-2575 if you have any questions. 
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MENSTRUAL CYCLE RECALL 

 

Please answer these questions as best you can and return them with any other appropriate 

paperwork. 

 

Are you taking birth control pills? _________yes _________no 

If yes, which kind______________________________ 

 

Are you on another form of birth control? _____________yes ____________no 

 If yes, please specify_________________________________________ 

 

What was the first day of your last menstrual cycle? ______________________ 

 

How many days is your cycle? _______________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 

 

Appendix F 

Time Course Green Fluorescent Protein with Transfection 

Data courtesy of H.B. Kwak, Ph.D. (personal communication, June 29, 2011) 
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Primary human skeletal myoblasts were transfected by GFP plasmid DNA and showed 

approximately 50% of transfection efficiency at 24 hours after transfection (A). GFP 

fluorescence showed initiation of differentiation at 48 hours of differentiation by switching 

growth media by differentiation media (B).  At day 7 of differentiation period, GFP fluorescence 

was still expressed strongly, suggesting fully differentiation in primary human skeletal muscle 

cells (C).  

 



 

 

Appendix G 

Western Blotting Bands 
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Western blotting bands 

 Liver samples protein were loaded 1 µg, and 2.5 µg, HepG2, lung, Control (C), and 

knockdown (KD) samples were loaded 15 µg. A third Western was performed on samples 

number 33 due to a bubble on the band.  Each sample was normalized to liver (1µg). 

Western #1 

ACSL-1  ~75kDa 

                Liver Liver  HepG2  Lung          C#25   KD#25         C#14   KD#14      C#33     KD#33 

GAPDH ~36kDa 

                  HepG2    Lung          C#25    KD#25               C#14      KD#14                       C#33     KD#33 

Western #2 

ACSL-1 ~75 kDa 

            Liver  HepG2  Lung             C#37    KD#37         C#56   KD#56                C#16    KD#16 

GAPDH ~36 kDa  

                HepG2    Lung             C#37       KD#37           C#56      KD#56           C#16       KD#16 

Western #3 

ACSL-1  ~75 kDa  

                             Liver     Liver         Lung                                    C# 33           KD#33 

GAPDH ~36kDa 

                                           C# 33                   KD#33 

 

 



 

 

Appendix H 

ACSL-1 and ACSL-5 Overexpression Graphs 

Data courtesy of H.B. Kwak, P.h.D.(personal communication, June 29, 2011) 
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ACSL-1 Overexpression Data 

 

(A)                                           (B)                                                                     

 

 

 

 

 

 

 

 

Effect of ACSL-1 overexpression on fatty acid oxidation. Subjects are 6 obese AAW which were 

biopsied from the vastus lateralis muscle following an overnight fast. Satellite cells were cultured 

and differentiated into mature myotubes. Oxidation studies were performed according to methods 

described above. Fatty acid oxidation was measured by 
14

C-leveled radioactivity of CO2 (A) and 

ASM (B) by liquid scintillation counting (open bar, control cells; closed bar, ACSL-1 transfected 

cells). Palmitate complete CO2 oxidation was approximately 82% higher in ACSL-1 overexpression 

compared with control (A). Similarly, palmitate incomplete ASM (acid soluble metabolites; 

indicator of β-oxidation activity) oxidation significantly increased (+62%) by ACSL-1 

overexpression (B).  Data are presented as mean ± SEM (n=6).  * P<0.05 versus control.   These 

results provide proof of methods for transfection of human skeletal muscle myotubes with specific 

ACSL myotubes and indicate that alterations in ACSL-1 content results in predicted changes in 

fatty acid oxidation. Studies will be repeated with knockdown of ACSL-1 in lean CW.  
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ACSL-5 Overexpression Data 

 

(A) Palmitate CO2                    (B)   Palmitate ASM 

 

 

 

 

 

 

 

 

 

 

Effect of ACSL-5 overexpression on fatty acid oxidation and total lipid synthesis. Fatty acid 

oxidation was measured by 
14

C-labeled radioactivity of CO2 (A) and ASM (B) by liquid scintillation 

counting (open bar, control cells; closed bar, ACSL-5 transfected cells). Palmitate complete CO2 

oxidation was approximately 2 folds higher in ACSL-5 overexpression compared with control (A).  

Similarly, palmitate incomplete ASM oxidation significantly increased by ACSL-5 overexpression (B).   
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ACSL-1 knockdown and control Myoblast and Myotubes 
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A. Myoblast control     B. Myoblast ACSL-1 KD 

            

Pictures show myoblast 48 hours post transfection in growth media. A) Myoblast control cells 

transfected with scramble 2 ug of shRNA. B) Myoblast ACSl-1 KD cells transfected with 2 ug of 

ACSL-1 shRNA.  

 

C. Myotube Control          D. Myotube ACSL-1 KD 

    

Pictures show myotubes day 6 in differentiation media. C)Myotube control cells and D) myotube 

ACSL-1 KD. 
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