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Mitochondrial respiratory capacity and oxidative stress have been implicated in 

the development of insulin resistance (IR) and type II diabetes. A causative role of 

mitochondrial oxidative stress in the etiology of diet-induced IR has been suggested. 

Metabolic oversupply causes mitochondrial oxidative stress and leads to IR; however, 

how the other side of the metabolic balance equation, energy expenditure, may 

compensate for oversupply is less appreciated. Based on the principles of bioenergetics, 

in the condition of substrate oversupply without sufficient energy expenditure, the 

mitochondrial membrane potential (ΔΨm) is high and an exponential increase in 

superoxide generation occurs within a small range of ΔΨm exceeding about -160mV. 

The inverse occurs when the mitochondrial energy expenditure rises. In this context, it 
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was hypothesized that a mild increase in energy expenditure can sufficiently attenuate 

the over-nutrition caused H2O2 emission and IR. 

To examine this hypothesis acutely, Sprague-Dawley (S-D) rats received a lipid 

oral gavage with or without 1h of subsequent low intensity exercise. Mitochondria of 

permeabilized skeletal muscle fibers were studied. The results show that, without a 

change in respiratory capacity, a single lipid loading quickly elevated ΔΨm, 

mitochondrial H2O2 emitting potential (mEH2O2) and reduced calcium retention capacity 

(an index of the resistance of mitochondrial permeability transition) in state IV and/or 

under ―clamped‖ physiological state III respiration conditions. These effects can be 

quickly and sufficiently attenuated by a single bout of postprandial low intensity exercise. 

These findings provide evidence that mitochondrial H2O2 production/emission and 

related effects, but not respiratory capacity, are acutely and dynamically regulated by 

the metabolic status of skeletal muscle. 

Further, to examine this hypothesis chronically, S-D rats were high fat diet (HFD, 

60%) fed for 7 weeks with or without either low intensity exercise or 

β-guanidinopropionic acid (β-GPA), which chronically elevates mitochondrial energy 

turnover. The results show that HFD decreased insulin action and increased mEH2O2, 

whereas both were preserved by either exercise or β-GPA. The treatment effects of 

HFD, exercise or β-GPA were mitochondrial respiratory function and fatty acid oxidation 

rate independent. However, 5‘-AMP-activated protein kinase (AMPK) activity, an energy 

sensing kinase that increases glucose uptake, was also increased by β-GPA treatment. 

To determine whether AMPK mediated the β-GPA-induced improvements in insulin 

action, skeletal and cardiac muscle-specific AMPK α2 catalytic subunit dominant 

negative mutated (non-functional) mice and their wild-type littermates were fed a HFD 
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with or without β-GPA for 10 weeks. β-GPA treatment again prevented the increase in 

mEH2O2 and IR in both wild-type and AMPKα2 dominant negative mice fed a HFD. These 

findings indicate that AMPKα2 does not mediate the effects of β-GPA on insulin action, 

supporting the hypothesis that the reduction in mitochondrial H2O2 emission is a primary 

mechanism by which exercise and β-GPA attenuate HFD-induced IR. 

In the context of both acute and chronic manipulation of positive (oversupply) and 

negative (expenditure) cellular energy balance, together these findings support the 

concept that the governance of mitochondrial oxidant production is a primary factor 

regulating insulin sensitivity in skeletal muscle. Following the principles of bioenergetics, 

these data demonstrate that a mild increase in energy expenditure can sufficiently 

attenuate the HFD-induced H2O2 emission and IR. On the mitochondrial level, the 

balance of substrate supply and energy expenditure on a daily basis is critical for 

maintaining a proper cellular redox environment, function and whole body metabolic 

status.  

 



IV 

 

The Influence of Energy Expenditure on Mitochondrial Functions, Oxidative Stress and 

Insulin Resistance under Metabolic Oversupply Conditions 

 

 

 

 

A DISSERTATION 

Presented To 

The Faculty of the Department of Kinesiology 

East Carolina University 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in Bioenergetics and Exercise Science 

 

 

 

 

by 

Chien-Te Lin 

July, 2011 

 



V 

 

 

 

 

 

 

 

 

 

 

 

©Copyright 2011 

The Influence of Energy Expenditure on Mitochondrial Functions, Oxidative Stress and 

Insulin Resistance under Metabolic Oversupply Conditions 

 

 

 

 

 

 

 

 

 

 

 



VI 

 

The Influence of Energy Expenditure on Mitochondrial Functions, Oxidative Stress and 

Insulin Resistance under Metabolic Oversupply Conditions 

By 

Chien-Te Lin 

APPROVED BY: 

DIRECTOR OF DISSERTATION:___________________________________________  

P. Darrell Neufer, Ph.D. 

  

 

COMMITTEE MEMBER:__________________________________________________ 

Joseph A. Houmard, Ph.D. 

 

 

COMMITTEE MEMBER:__________________________________________________ 

Ronald N. Cortright, Ph.D. 

 

 

COMMITTEE MEMBER:__________________________________________________ 

David A. Brown, Ph.D. 

 

CHAIR OF THE DEPARTMENT OF KINESIOLOGY: 

 

 

    ________________________________________________ 

Stacey R. Altman, J.D. 

 

DEAN OF THE COLLEGE OF HEALTH AND HUMAN PERFORMANCE: 

 

 

    ________________________________________________ 

Glen G. Gilbert, Ph.D. 

DEAN OF THE GRADUATE SCHOOL: 

 

 

    ________________________________________________ 

Paul J. Gemperline, Ph.D. 

 



VII 

 

DEDICATION 

 

I dedicate this dissertation to my wonderful families,   

父: 林聰憬 Cong-Jing Lin,  母: 鄭莟笑 Han-Xiao Zheng,     

妻: 洪睿聲 Jui-Sheng (Ann) Hung, & 子: 林宏恩 Owen Lin. 

 

– 林建得 Chien-Te (Peter) Lin.  

 

 

 
 

  

 



VIII 

 

 
ACKNOWLEDGEMENTS  

The completion of this dissertation was made possible through the 

support of many individuals.  I am tremendously grateful for the 

enthusiastic encouragement and guidance of my mentor, Dr. Darrell Neufer.  

I also want to thank my committee members, Drs. Joseph Houmard, 

Ronald Cortright, and David Brown, for their direction and assistance in 

completing this project.  I gratefully acknowledge the essential role of all 

my colleagues from Dr. Neufer‘s lab, and from the collaborative labs in 

assisting with the experiments, helping me learn my way around the lab, 

and developing confidence in my research skills.  Lastly, I tenderly 

express my love and gratitude to my family members, who have provided 

me with unconditional love, motivation and support.   

 

I also gratefully acknowledge 臺灣 TAIWAN Ministry of Education 

[09411221US015] for the majority of my personal financial support and U.S. 

National Institute of Health grants R01 [073488] (PDN) for the financial 

support of these studies.  

 



IX 

 

TABLE OF CONTENTS 

 

LIST OF FIGURES XIV 

LIST OF SYMBOLS AND ABBREVIATIONS XVII 

CHAPTER 1: REVIEW OF LITERATURE 1 

 Lipid Metabolism and IR in Skeletal Muscle 1 

 Mitochondrial Dysfunction Recently Implicated in the Pathogenesis of T2D 1 

 No Clear Cause–Effect Relationship between Mitochondrial Dysfunction 

and IR. 

2 

 The Cause–Effect Relationship between Mitochondrial Oxidative Stress and 

IR 

5 

 Mitochondrial Electron Transport System (ETS) 7 

 Mitochondrial Respiration States 8 

 The Fundamental Bioenergetic Control of ROS Production 10 

 Redox-Sensitive Protein Modification – Potential Mechanism linking ROS to 

IR 

11 

 Redox-Sensitive Protein Modification in Insulin Signaling Pathway 13 

  IRS 14 

  Ras 15 

  PKC 15 

  PI3K 15 

 



X 

 

  Akt (PKB) 15 

  GLUT4 16 

  PTP1B 16 

  PTEN 16 

  PKA 17 

  PP2A 17 

  AMPK 17 

  Others 18 

 Conclusion of Literature Review 18 

 Central Hypothesis 19 

  Specific Aim 1 20 

  Specific Aim 2 20 

 Significance 22 

CHAPTER 2: LOW INTENSITY EXERCISE IS SUFFICIENT TO ATTENUATE 

ACUTE LIPID LOADING-INDUCED ELEVATIONS IN MITOCHONDRIAL 

MEMBRANE POTENTIAL, H2O2 EMITTING POTENTIAL, AND REDUCTION 

IN MITOCHONDRIAL CALCIUM RETENTION CAPACITY IN RAT SKELETAL 

MUSCLE. 

24 

 Abstract 24 

 Introduction 25 

 Methods 28 

 



XI 

 

  Animals 29 

  Design 29 

  Tissue Sampling and Permeabilized Myofibers (PmFBs) Preparation 30 

   Tissue sampling 30 

   Myofiber separation 30 

   Myofiber permeabilization and washing 31 

  Measuring Mitochondrial Respiration Rate (JO2) or JO2 Simultaneously 

with Mitochondrial Membrane Potential (ΔΨm) in PmFBs 

31 

  Measuring Mitochondrial H2O2 Emitting Potential in PmFBs 33 

  Measuring Mitochondrial Calcium Retention Capacity (mCa2+
RC) in 

PmFBs 

34 

  Statistics 35 

 Results 35 

  Neither Single Lipid Loading nor Low Intensity Exercise Affect 

Mitochondrial Respiration Capacity 

35 

  Low Intensity Exercise Attenuates Elevated State IV mEH2O2 Associated 

with Single Lipid Loading 

36 

  Low Intensity Exercise Attenuates the Single Lipid Loading-Induced 

Increase mEH2O2 and Reduction in mCa2+
RC with Slight Increase in JO2 

and Reduction in ΔΨm in State III Condition 

36 

   JO2 and ΔΨm in both state IV and III conditions 36 

   mEH2O2 in both state IV and III conditions 37 

 



XII 

 

   mCa2+
RC in both state IV and III conditions 37 

 Discussion 37 

 Conclusion 46 

CHAPTER 3: MILDLY INCREASED ENERGY EXPENDITURE BY EITHER 

EXERCISE OR Β-GPA SUFFICIENTLY PREVENT INCREASED 

MITOCHONDRIAL H2O2 EMISSION POTENTIAL AND INSULIN RESISTANCE 

INDUCED BY HIGH FAT DIET IN RODENTS 

55 

 Abstract 55 

 Introduction 55 

 Methods 58 

  Rat Study 58 

  AMPKα2-DN Mouse Study 59 

  Permeabilized Myofibers (PmFBs) Preparation 60 

  Measuring JO2 in PmFBs 61 

  Measuring mEH2O2 in PmFBs  61 

  Indirect Calorimetry and Locomotor Activity 62 

  Body Composition 62 

  3H-2-DOG Uptake 63 

  Preparation of Skeletal Muscle Homogenates and Western Blotting 64 

  Muscle and Liver Fatty Acid Oxidation 65 

  Statistical Analysis 65 

 



XIII 

 

 Results 66 

  HFD-Induced Insulin Resistance is Attenuated by β-GPA and Exercise 

in Rats Independent of Changes in Fatty Acid Oxidation 

66 

  β-GPA and Exercise Improve Mitochondrial OXPHOS Capacity in Rats 67 

  β-GPA and Exercise Prevent HFD-Induced mEH2O2 and mFRL% in Rats 67 

  β-GPA effects on Body Composition, Metabolic State and Locomotor 

Activity in Mice are independent of AMPKα2 Genotype 

68 

  β-GPA Maintains Insulin Sensitivity in Mice Fed a HFD Independent of 

AMPKα2 Genotype 

69 

  β-GPA Prevents HFD-Induced mEH2O2 and mFRL% Regardless of 

AMPKα2 Genotype 

69 

 Discussion 69 

 Conclusion 77 

CHAPTER 4: INTEGRATED DISCUSSION 100 

REFERENCES 104 

APPENDIX: INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE ANIMAL 

USE PROTOCOL APPROVAL LETTERS 

119 

 
 
 

  

 



XIV 

 

 LIST OF FIGURES 

 

Figure 1-1. The ETS showing electron flow, proton export, and proton reentry 

driving ATP synthesis 

8 

Figure 1-2. Typical experimental trace of mitochondrial respiration in vitro and 

defined mitochondrial respiration states 

9 

Figure 1-3. Summary of potential redox regulation in insulin signaling pathway 14 

Figure 1-4. Central hypothesis 22 

Figure 2-1. Experiment design 30 

Figure 2-2. A single lipid loading or low intensity exercise has no effect on 

muscle mitochondrial respiration capacity 

47 

Figure 2-3. Low intensity exercise attenuates the single lipid loading-induced 

increase in mitochondrial H2O2 emitting potential (mEH2O2) during state IV 

respiration 

48 

Figure 2-4. TPP+ (1.5μM) has no affect on mitochondrial respiration but provides 

high TPP+ electrode sensitivity 

49 

Figure 2-5. Representative experimental trace of ΔΨm & JO2 50 

Figure 2-6. Low intensity exercise attenuates the single lipid loading-induced 

increase in mEH2O2 and reduction in mCa2+
RC, with increasing JO2 and reducing 

ΔΨm 

51 

Figure 2-7. Mitochondrial membrane potential, OXPHOS and H2O2 emission 

kinetics 

53 

Figure 2-8. Schematic illustration showing predicted fluctuations in ΔΨm 54 

 



XV 

 

Figure 3-1. β-GPA and exercise prevent insulin resistance induced by HFD in 

rats without affecting body weight 

78 

Figure 3-2. β-GPA treatment attenuated HFD impairment in insulin signaling but 

also activate AMPK pathway 

80 

Figure 3-3. No HFD or acute glucose loading caused FAO defect in either 

skeletal muscle or liver of rats 

82 

Figure 3-4. Little effect of β-GPA and exercise on mitochondria respiration 

kinetics in response to ADP titration in rats 

83 

Figure 3-5. β-GPA and exercise increase mitochondria respiration capacity in 

response to multiple substrates in rats 

85 

Figure 3-6. Little effect of β-GPA and exercise on mitochondria respiratory 

control indices of rats 

86 

Figure 3-7. β-GPA and exercise attenuated HFD caused mEH2O2 challenged by 

complex I reverse electron flux in rats 

88 

Figure 3-8. β-GPA and exercise attenuated HFD caused mEH2O2 challenged by 

multiple substrates in rats 

90 

Figure 3-9. β-GPA and exercise attenuated HFD caused mitochondria mFRL% 

in rats 

91 

Figure 3-10. AMPKα2 genotype did not affect the β-GPA effect on body 

composition, metabolic state and locomotor activity in mice 

92 

Figure 3-11. β-GPA prevented HFD caused IR regardless of the AMPKα2 

genotype in mice 

94 

Figure 3-12. β-GPA prevented the HFD caused mEH2O2 and mFRL% regardless 

of AMPKα2 genotype in mice 

96 

 



XVI 

 

Figure 3-13. No clear HFD, β-GPA or AMPKα2 genotype effect on mitochondria 

respiratory control indices of mice 

98 

 
 

 



XVII 

 

LIST OF SYMBOLS AND ABBREVIATIONS 
 
 
ACR Adenylate control ratio, uncoupled respiration/ state III respiration 

1O2 Singlet oxygen 

2-DOG 2-deoxyglucose 

3H-2-DOG 3H-2-deoxyglucose 

31P MRS 31P -Magnetic resonance spectroscopy, can be used as a 

non-invasive tool for measuring the relative intracellular 

concentrations of several phosphorus metabolites in different organs 

4-HNE 4-Hydroxynonenal, an α,β-unsaturated hydroxyalkenal which is 

produced by lipid peroxidation in cells 

acyl-CoAs A coenzyme involved in the metabolism of fatty acids 

ADP     Adenosine diphosphate 

AICAR 5-aminoimidazole-4-carboxamide-ribonucleoside 

AIF Apoptosis inducing factor 

Akt    Protein kinase B 

AMPK 5‘-adenosine monophosphate-activated protein kinase 

AMPKα1 AMPK alpha 1 catalytic subunit dominant 

AMPKα2 AMPK alpha 2 catalytic subunit dominant 

AMPKα2-DN Mice express a dominant negative mutant (non-functional) form of the 

AMPK alpha2 catalytic subunit specifically in both skeletal and 

cardiac muscle 

Amplex Red N-acetyl-3,7-dihydroxyphenoxazine, a redox-sensitive fluorescent dye 

Amplex 

Ultra-Red 

Improved amplex reagent, offering brighter fluorescence and 

enhanced sensitivity on a per-mole basis in peroxidase or 

peroxidase-coupled enzyme assays 

ANOVA Analysis of variance 

 



XVIII 

 

ANT Adenine nucleotide translocase 

Antimycin A Inhibitor of the cytochrome c reductase portion of complex III 

AS160 Akt substrate of 160 kda 

ATP Adenosine triphosphate 

AU Arbitrary units 

AUC Area under curve 

BCA Bicinchoninic acid, used to determine total level of protein in solution 

Bleb Blebbistatin, an inhibitor of myosin II 

BMI Body mass index, kg/(m)2 

BSA Bovine serum albumin   

BTS N-Benzyl-p-toluene sulphonamide, an inhibitor of myosin II 

C/EBPα Transcription factor CCAAT enhancer binding protein α 

Ca5N Fluorescence probe calcium green 5N salt 

CK-M Muscle creatine kinase 

CoA Coenzyme A 

Complex I NADH:ubiquinone oxidoreductase 

Complex II Succinate dehydrogenase 

Complex III Coenzyme Q : cytochrome c — oxidoreductase 

Complex IV Cytochrome c oxidase 

Complex V Mitochondrial ATP synthase 

COX-IV Cytochrome C oxidase, isoform IV   

CuZn-SOD CuZn-superoxide dismutase 

Cys Cysteine 

 



XIX 

 

Cyto C Cytochrome C, a small heme protein loosely bound to the outer 

surface of the inner mitochondrial membrane which transfers 

electrons from complex III to IV 

DAG Diacylglycerol, also called diglyceride 

ddH2O Double distilled water 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DN-HF Ampkα2-DN mice fed with HFD 

DN-HF-GPA Ampkα2-DN mice fed with HFD plus β-GPA oral gavage 

DTT Dithiothreitol, a strong chemical reductant 

ECL Enhanced chemiluminescence 

EDL Extensor digitorum longus muscle, mostly fast-twitch fibers 

EDTA 

Ethylenediaminetetraacetic acid, a polyamino carboxylic acid used as 

a chelating agent 

EGTA  Ethylene-bis(oxyethylenenitrilo)tetraacetic acid   

ELISA Enzyme-linked immunosorbant assay 

ETC Electron transport chain 

ETF Electron transfer flavoprotein, involved in transferring electrons from 

β-oxidation of fatty acids to the mitochondrial electron transfer 

flavoprotein dehydrogenase 

ETS Mitochondrial electron transport system (a.k.a. Electron transport 

chain, ETC) 

EX group Fast + water oral gavage + exercise 

FADH2 Flavin adenine dinucleotide, a redox cofactor 

FALDH Fatty aldehyde dehydrogenase 

FAO Fatty acid oxidation 

 



XX 

 

FCCP Carbonylcyanide-p-trifluoromethoxyphenylhydrazone, a lipophilic 

iononophore used to experimentally uncouple oxidative 

phosphorylation in mitochondria 

FFA Free fatty acid 

FMN Flavin mononucleotide, a prosthetic group in the mitochondrial 

complex I 

G Glutamate 

G3P Glycerol-3-phosphate 

GapDH Glyeraldehyde-3-phosphate dehydrogenase 

GK rat Diabetic Goto-Kakizaki rat 

GLUT4 Glucose transporter protein 4 

Grx Glutaredoxin 

GSH Reduced glutathione 

GSSG Oxidized glutathione 

H2O2 Hydrogen peroxide 

HEPES 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, an organic 

chemical buffering agent 

HF High fat diet fed animals group 

HFD High fat diet 

HF-EX The animals given a high fat diet were also administered with low 

intensity exercise 

HF-GPA The animals given a high fat diet were also administered with β-GPA 

HK Hexokinase 

HO• Hydroxyl radical, the neutral form of the hydroxide ion 

HOCl Hypochlorous acid 

 



XXI 

 

HR Heart rate 

HRP Enzyme horseradish peroxidase 

Hsp33 Heat shock protein 33 

IKK IκB kinase 

IKKβ Iκb kinase β 

in situ Is a Latin phrase which translated literally as ―In position‖ or ―on-site‖ 

iNOS Inducible nitric oxide synthase 

IP Immunoprecipitation 

IPGTT Intraperitoneal glucose tolerance test 

IR Insulin resistance 

IRS Insulin receptor substrate protein 

IRS1 Insulin receptor substrate protein 1 

ISE Ion selective electrode 

IκB Inhibitor of κb 

JH2O2 Mitochondrial H2O2 emission rate 

JO2 Mitochondrial oxygen respiration rate 

kDa, Kilodalton 

KHB Krebs-Henseleit buffer 

KO Specific gene knock out model 

LCACoA Long chain acyl coenzyme A 

Lipid group Fast + lipid oral gavage 

Lipid+Ex  Fast + lipid oral gavage + exercise 

LKB1 

A kinase capable of phosphorylating 5'-adenine 

monophosphate-activated protein kinase (AMPK) 

 



XXII 

 

LOOH Lipid hydroperoxide 

M Malate 

mCa2+
RC Mitochondrial calcium retention capacity 

MDA Malondialdehyde, an often-measured end product of lipid peroxidation 

mEH2O2 Mitochondrial H2O2 emission potential. The H2O2 produced by the 

mitochondria minus that which is scavenged by the mitochondria 

mFRL% Mitochondrial free radical leak percentage 

MnSOD Manganese-containing superoxide dismutase, a mitochondrial 

enzyme catalyzing the dismutation of superoxide (O2¯•) to H2O2 

MnSOD+/-  Manganese superoxide dismutase heterozygous knockout 

mPTP Mitochondrial permeability transition pore 

mRNA Messenger ribonucleic acid 

mtDNA Mitochondrial deoxyribonucleic acid 

NADH Reduced nicotinamide adenine dinucleotide 

NEFA Non-esterified fatty acid 

NF1 Neurofibromatosis type 1 

NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NRF-1 Nuclear respiratory factor 1 

O2¯• Superoxide anion, the product of one-electron reduction of dioxygen 

O2K Oroboros oxygraph-2 k 

OAA Oxaloacetate 

OGTT Oral glucose tolerance test 

OH• Hydroxyl radical 

Oligo  Oligomycin , inhibitor of mitochondrial ATP synthase (complex V) 

 



XXIII 

 

ONOO¯ Peroxynitrite 

OXPHOS Oxidative phosphorylation 

OxyR a peroxide sensor and transcription regulator, which can sense the 

presence of reactive oxygen species and induce antioxidant system 

P13K Phosphatidylinositol 3-kinase 

PC Palmitoyl-L-carnitine 

PCR Polymerase chain reaction   

PDH Pyruvate dehydrogenase  

PDK Phosphoinositi-dedependent kinase 

PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1 alpha 

PGC-1β Peroxisome proliferator-activated receptor gamma coactivator 1 beta 

PI3K Phosphoinositide 3-kinase, an enzyme involved in the insulin 

signaling pathway 

PIP3 Phosphatidylinositol 3,4,5-trisphosphate 

pKa The acid dissociation constant at logarithmic scale 

PKA Camp-dependent protein kinase 

PKC Protein kinase C 

PmFB Saponin-permeabilized skeletal muscle fiber 

PPAR Peroxisome proliferator-activated receptor 

PTEN Phosphatase and tensin homolog, a protein tyrosine phosphatase 

PTP1B Protein tyrosine phosphatase 1B 

PVDF Polyvinylidene fluoride, a highly non-reactive and pure thermoplastic 

fluoropolymer 

Pyr Pyruvate 

 



XXIV 

 

QNMR The Quantitative Neuroscience with Magnetic Resonance 

RCR Respiratory control ratio, quotient of state III to state IV respiration 

RER Respiratory exchange ratio (VCO2/ VO2 ) 

RG Red gastrocnemius 

RNA Ribonucleic acid 

RNS 

Reactive nitrogen species, reactive molecules primarily derived from 

nitric oxide 

ROS Reactive oxygen species, reactive molecules derived from dioxygen 

RS- Thiolate anions 

S Succinate 

-S- Thioether 

S.D. Standard deviation 

S.E.M. Standard error mean 

S-D Sprague-Dawley rat 

SDS Sodium dodecyl sulfate   

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis   

S.E. Standard error 

Ser Serine, an amino acid 

-SH Thiol, protonated thiol 

Sir2 Silent information regulator 2 

-SNO Nitrosothiols 

-SO¯ Sulfenate 

-SO2¯ Sulfinate 

-SO2H Sulfinic acid 

 



XXV 

 

-SO3¯ Sulfonate 

-SO3H Sulfonic acid 

SOD Superoxide dismutase 

-SOH Sulfenic acid 

SR Sarcoplasmic reticulum 

-SS-  Disulfide 

State I Respiration supported by mitochondria alone 

State II Respiration supported by ADP alone 

State III 

Respiration supported by substrates and ADP, actively 

phosphorylating respiration 

State IV Non-phosphorylating respiration 

T2D Type II diabetes 

TAG Triacylglycerol, also called triglyceride (TG) 

TBARS Thiobarbituric acid reactive substances 

TCA cycle Tricarboxylic acid cycle, also known as the Krebs cycle or the citric 

acid cycle 

Thr Threonine, an amino acid 

TNF-α Tumor necrosis factor-alpha 

TPP+ Tetraphenylphosphonium cation 

Triton X-100 A nonionic surfactant 

TZD Thiazolidinedione 

UCP3 Uncoupling protein isoform 3   

UCR 

Uncoupling control ratio, the quotient of FCCP-uncoupled respiration 

to oligomycin-inhibited state IV respiration 

 

http://www.3dchem.com/moremolecules.asp?ID=320&othername=triacylglycerol


XXVI 

 

VDAC 

Voltage dependent anion channel, maybe a component of the 

mitochondrial permeability transition pore 

Vmax The maximum reaction velocity of an enzyme or enzymes 

VO2max The maximal velocity of oxygen uptake 

WG White gastrocnemius 

WT Wild-type  littermates 

WT-Chow WT mice were fed standard chow 

WT-HF WT mice were fed with HFD 

WT-HF-GPA WT mice were fed with HFD plus β-GPA oral gavage 

β-GPA Beta-Guanidinopropionic acid 

ΔμH+ Mitochondrial proton electrochemical gradient 

ΔΨm Mitochondrial membrane potential 

 
 

 



 

 

 

 

The Influence of Energy Expenditure on Mitochondrial Functions, Oxidative Stress and 

Insulin Resistance under Metabolic Oversupply Conditions 

 

CHAPTER 1: Review of Literature 

 

Lipid Metabolism and IR in Skeletal Muscle 

A progressive reduction of insulin sensitivity, particularly in skeletal muscle (the 

major insulin-mediated glucose disposal organ1), is an initial and principle feature in the 

etiology of type II diabetes (T2D)2. The development of insulin insensitivity is associated 

with elevated intramyocellular lipid content and circulating free fatty acid concentration. 

It was suggested that the accumulation of fatty acid metabolites such as fatty acyl-CoAs 

and diacylglycerols (DAG) and/or ceramides directly or indirectly alters insulin 

signaling3-5. One of the main hypotheses is that DAG activates protein kinase C-θ 

(PKC-θ) (or other PKC families) which in turn activates a serine kinase cascade such as 

IKK and cJNK-1 and further phosphorates IRS-1 on one or more serine/threonine 

residues and therefore blocks IRS-1 tyrosine phosphorylation by insulin receptor6-12. In 

turn, insulin-stimulated glucose transport signaling pathway is suppressed and 

ultimately leads to insulin resistance (IR). Chronically, elevated intracellular fatty 

acyl-CoAs may affect the expression and/or activity of PPAR family, PGC-1α and/or the 

NRF-1, in turn altering the expression of some key metabolic related signaling 

proteins13-16. 

 

Mitochondrial Dysfunction Recently Implicated in the Pathogenesis of T2D 
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The precise cause of IR and T2D is still unknown and should be multi-factorial. 

However, a strong association between IR, lipid accumulation and mitochondrial 

dysfunctions has been frequently reported. Insulin resistant populations have elevated 

intramyocellular lipid content17,18. Reduced mitochondrial functions have been shown to 

associate with IR or T2D19-22. These include reduced mitochondrial content23, size23, 

enzyme activity24-26, electron transport system (ETS) complexes and oxidative 

phosphorylation (OXPHOS) activity or respiration16,17,27,28, TCA cycle flux rates29, ATP 

production25,26, decreased expression of OXPHOS related genes15,30,31. Furthermore, 

mitochondrial dysfunction was associated with IR at the early development stage of 

T2D31,32. Thus, it is speculated that mitochondrial dysfunction and associated 

mal-regulation of fatty acid metabolism, particularly in skeletal muscle, is a causal factor 

linked to the development of IR6,33,34. 

 

No Clear Cause–Effect Relationship between Mitochondrial Dysfunction and IR 

Mounting evidence suggests that mitochondrial dysfunction is not the only one, at 

least, primary etiological factor in the development of IR or T2D, but rather represents a 

secondary event. Asian Indians displayed higher mtDNA content, OXPHOS genes 

expression and enzyme activity and ATP production rates in muscle, despite being 

more insulin resistant than age-, sex- and BMI-matched North Americans35. Moreover, 

Asian-Indian individuals with T2D and higher muscle lipid levels have similar 

mitochondrial oxidative capacity compared with Asian Indians without T2D35. 

Post-exercise mitochondrial capacity of phospho-creatinine and ADP recovery kinetics 

measured by in vivo 31P MRS found no differences between sedentary normal controls 

and obese patients in either early or advanced stages of T2D36. A longitudinal Zucker 
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diabetic fatty rat study showed that the development of diabetes is associated with 

increased intramyocellular lipid content, whereas skeletal muscle complex II activity, 

citrate synthase activity remain comparable to the lean heterozygote littermates and 

mitochondrial fatty acid oxidation (FAO) activity was increased compared with lean 

littermates37. Other reports from animal and human studies have also shown high-fat 

diet may not affect38-40, or may even promote41-45 skeletal muscle mitochondrial function.  

It has been reported that skeletal muscle-specific knockout mouse model with 

progressive reduction in each ETS complex I~IV activities does not result in either T2D 

or IR but instead display an increased peripheral glucose uptake46. Mice with either 

muscle-specific PGC-1α KO or with a loss-of-function mutation of PGC-1β also show 

reduction in OXPHOS genes‘ expression and defects in muscle mitochondrial function; 

however, in these animals, muscle insulin sensitivity is slightly improved compared to 

control mice47,48. On the other hand, muscle-specific PGC-1α transgenic overexpression 

mice exhibit no alteration in glucose tolerance or insulin sensitivity under standard chow 

diet feeding condition despite improved exercise capacity and increased mitochondrial 

gene expression, mtDNA and mitochondrial enzyme activity compared with wild-type 

littermates49. Other animal models of mitochondrial dysfunction including skeletal 

muscle specific PGC-1α KO mice50 do not show IR. Overall, altering mitochondrial 

function using various gene-manipulation models has failed to demonstrate a consistent 

association between mitochondrial dysfunction and insulin action.  

In fact, a decrease in mitochondrial function observed in insulin-resistant humans 

may not limit muscle fatty acids oxidation nor lead to lipid accumulation22. Recent 

studies in which reduced rates of FAO or total mitochondrial oxidation capacity 

observed in muscle from elderly individuals, family offspring of diabetics, or 
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obese/diabetic have been interpreted as indicative of a diminished FAO capacity17,18,23. 

However, the muscle mitochondrial FAO capacity, such as during maximal exercise, is 

far in excess of the rate measured under resting conditions when energy demand, and 

thus the rate of FAO, is low. In other words, it is questionable whether mitochondrial 

deficiencies would have a considerable limitation on the rate of FAO under normal 

resting conditions when energy demand is low22. Moreover, although short-term or early 

stage of HFD feeding could promote mitochondrial density and FAO activity due to a 

prompt adaptive response19,44,51, oversupply of fuel can over-ride mitochondrial 

compensation19. In this context, the imbalance of substrate supply and consumption 

capacity (i.e., energy demand) of healthy mitochondria, but not dysfunctional 

mitochondria, may be a primary factor leading to lipid accumulation and IR 19,42,45. Most 

importantly, and perhaps most germane, it is imperative to recognize that the rate 

of mitochondrial respiration (i.e., oxidative metabolism) in cells is governed 

mainly by energy demand (basal + ADP-driven)52,53. In tissues that mainly rely on 

FAO such as cardiac muscle, it has been shown that the key regulator of FAO is energy 

demand, not substrate supply53. In other words, based on principles of mitochondrial 

bioenergetics, the underlying problem thought to be responsible for the development of 

IR (i.e., intramyocellular lipid accumulation) is created whenever the supply of lipids 

exceeds the energy needs of the cell, independent of mitochondrial content. A reduction 

in mitochondrial density, if it does occur, will reduce overall basal non-ADP driven state 

IV respiration (i.e., basal energy demand) since mitochondria account for approximately 

25% of basal metabolic rate54,55, but the underlying problem if lipid accumulates is still 

supply outpacing demand. 
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The Cause–Effect Relationship between Mitochondrial Oxidative Stress and IR 

It was recently reported that global (80%) as well as tissue specific (muscle- and 

liver-specific) knockout of apoptosis inducing factor (AIF) ablation caused a pattern of 

progressive OXPHOS deficiency (decreased OXPHOS gene expression and complex 

activity but no increased reactive oxygen species (ROS) accumulation due to increased 

respiratory chain coupling) that closely mimicked that of human IR but resulted in 

increased glucose tolerance, a reduced fat mass and increased insulin sensitivity after 

HFD56. In addition, there is much evidence indicating that short-term starvation (up to 36 

h) increases FFA utilization and causes IR, mitochondrial dysfunction57, lower ATP/ADP 

ratio and oxidative stress in tissues58,59 while it is attenuated by small amounts of 

carbohydrate loading57. Recently, it was identified that reduced mitochondrial OXPHOS 

is a consequence rather than a cause of lipid-induced IR in the condition of prolonged 

fasting (60 h)22. These reports lead to the speculation that FAO triggered ROS 

production60,61 maybe a key factor linked to IR. 

Elevated ROS production was found in dexamethasone and TNF-α induced 

insulin-resistant cells while IR in cell and animal models was attenuated when ROS 

production was suppressed by diverse treatments62. A recent study in mice also found 

that skeletal muscle mitochondrial dysfunction (i.e., reduced structure and function) 

does not occur until after several months on a high fat diet, well after the appearance of 

IR63. In this study, C2C12 myotubes cultured with high [lipid] or high [glucose] also 

increased ROS production but was prevented by antioxidant treatment. Addition of H2O2 

in cell culture caused decreased mtDNA levels and citrate synthase activity in C2C12 

myotube while co-culture of H2O2 with N-acetylcysteine, a general antioxidant, 

counteracted these H2O2 effects63. These data suggest that mitochondrial dysfunction 
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does not precede the onset of IR but results from increased mitochondrial ROS 

production63. Furthermore, our previous work has shown in both rodents and humans 

that high dietary fat intake increases skeletal muscle mitochondrial H2O2 emitting 

potential (mEH2O2) and shifts the cellular redox environment to a more oxidized state (i.e., 

reduced GSH/GSSG ratio) in the absence of any change in mitochondrial respiratory 

function64. Moreover, attenuated mEH2O2, either by treating rats with a 

mitochondrial-targeted antioxidant or by genetically engineering the overexpression of 

catalase in muscle mitochondria of mice, completely preserves insulin sensitivity in 

animal model despite a high-fat diet64. In line with this, acute induction of mitochondrial 

O2¯• production by complex III antagonist antimycin A caused a decreased insulin 

action independent of canonical PI3K/Akt pathway in a cell model. HFD induced IR was 

partially prevented in MnSOD transgenic mice model while MnSOD+/- mice were 

glucose intolerant even on a standard chow diet65. 

Additional evidence supporting a potential role for mitochondrial ROS production 

comes from recent studies with metformin. Metformin is one of the most widely 

prescribed insulin-sensitizing drugs for the treatment of IR and T2D although the 

mechanism is still under debate. Several previous reports have suggested that the 

antidiabetic actions of metformin are mediated, at least in part, by directly reducing 

energy charge66 due to the inhibition of ETS complex I67,68. However, the key 

information that was missed is ROS production. A partial inhibition of complex I may 

alter ROS production by at least two mechanisms: 1) by decreasing the efficiency of 

coupling between respiration and ATP synthesis, resulting a lower ΔΨm and an increase 

in electron flux downstream of complex I, or 2) by reducing reverse electron flux back 

into complex I. Indeed, we recently found that metformin inhibits reverse electron 
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flux-mediated mEH2O2 at ETS complex I in skeletal muscle under therapeutic doses 

approximately 2 orders of magnitude lower than that required to inhibit electron flux in 

the forward direction (respiratory O2 flux)69. Collectively, these findings suggest that 

reducing oxidative stress is crucial for treating T2D and can be accomplished by 

metformin or reduced energy charge. 

The evidence above places the etiology of IR in the context of mitochondrial 

bioenergetics by demonstrating that mitochondrial oxidative stress serves as both a 

gauge of energy balance and a regulator of cellular redox environment, linking 

intracellular metabolic balance to the control of insulin sensitivity. 

 

Mitochondrial Electron Transport System (ETS) 

Mitochondria electron transport system (ETS) (or more frequently termed as 

mitochondria electron transport chain (ETC)) consists of several multi-polypeptide 

protein complexes (I~V) embedded in the inner mitochondrial membrane (Fig. 1-1) that 

receive electrons from soluble matrix dehydrogenases. These electrons from reducing 

equivalent, NADH and FADH2, with high redox potential (tendency to give up electrons) 

are then transferred through a series of electron carriers in the respiratory system in the 

order of high to low redox potential progressively. Eventually theese electrons are 

transferred to O2 (low redox potential, high tendency to accept electrons), ultimately 

reducing 1/2O2 to H2O. In three of these complexes (I, III and IV), the energy from the fall 

in redox potential across the oxidation-reduction reactions is sufficient to drive the 

translocation of protons from the matrix to the inter-membrane space of the 

mitochondria. This creates a proton gradient across the inner membrane that is 

composed of both the electrical potential (ΔũH
+) and the chemical concentration 
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difference (ΔpH) . Conventionally, ΔũH
+ is converted to units of electrical potential, i.e., 

mV, and commonly referred to as the mitochondrial membrane potential (ΔΨm). 

Although ΔpH and ΔΨm together comprise the total proton motive force (Δp), ΔΨm is by 

far the dominant component and often used synonymously with Δp. The essence of the 

chemiosmotic theory is that the electrical-chemical potential created by the 

accumulation of ΔΨm is sufficient to drive the synthesis of ATP as protons flow back 

through the ATP synthase (complex V) into the matrix. Proton leak constitutes another 

means of re-entry for protons which is more important during basal respiration. In 

non-phosphorylating or very low phosphorylating mitochondria, the rate of proton leak is 

directly proportional to the respiratory rate. 

 

Figure 1-1. The ETS showing electron flow, proton export, and proton reentry driving 

ATP synthesis. Courtesy of P. Darrell Neufer, Ph.D.. 

 

Mitochondrial Respiration States 

As depicted in figure 1-2, the background rate of mitochondria respiratory oxygen 

flux (JO2) is termed state I respiration when oxygen content is sufficient but no any 
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substrate presented. The basal JO2 is termed state II respiration and is defined as the 

JO2 generated in the presence of respiratory substrates (i.g., glutamate, malate, 

succinate, glycerol-3-phosphate, palmitoyl-L-carnitine) but not ADP. If ADP is then 

added into the system, respiration significantly increases to match the drop in ΔΨm that 

occurs as a consequence of rapid proton re-entry via ATP synthesis (complex V). The 

high JO2 that is achieved upon addition of ADP is termed state III respiration. Once all of 

the ADP is converted to ATP, a new basal JO2 will be achieved and is termed as state 

IV respiration. States II and IV respiration are often used synonymously to refer to basal 

(non-phosphorylating) respiration condition. When the oxygen in the system is 

exhausted (anoxia condition), the respiration is stopped and termed as state V 

respiration. 

 

Figure 1-2. Typical experimental trace of mitochondrial respiration in vitro and defined 

mitochondrial respiration states. See text for detail. 
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The Fundamental Bioenergetic Control of ROS Production 

ROS are successive one unpaired electron reduction products of molecular 

oxygen en route to the production of water70-73. Mitochondrial respiration is the major 

source of ROS and ETS was believed to leak about 0.15%74 or even 1~2%73,75 of its 

electrons as superoxide (O2¯•) by the addition of one electron to the outer orbital of 

diatomic oxygen. Although the mechanism is still unclear, the majority of mitochondrial 

O2¯• production occurred in the matrix face of complex I, particularly triggered by 

reverse electron flux, and the minority of mitochondrial O2¯• production occurred in the 

inter-membrane space face of complex III. O2¯•, one of the most destructive ROS, is 

very short-lived and rapidly undergoes dismutation either spontaneously or through 

reactions catalyzed by O2¯• dismutase (SOD) to form H2O2. H2O2 may in turn undergo 

further reduction to water by glutathione peroxidase. Other ROS include hydroxyl radical 

(OH•), peroxynitrite (ONOO¯), hypochlorous acid (HOCl) and singlet oxygen (1O2)
76. In 

order for O2 to become reduced by one electron, the reducing potential of the molecule 

donating the electron non-enzymatically needs to be close to or exceed about -160mV 

(the ΔE for conversion of O2 to O2¯•) in physiological condition in vivo77. Not only do a 

number of redox couple components within the ETS meet this thermodynamic 

requirement, many steps involve single electron reactions.  

As depicted in figure 1-4 (proved in figure 2-7) that under state IV and low state 

III respiration condition, the rate of mitochondrial ROS production is highly dependent 

on ΔΨm and inversely related to the availability of ADP used to drive ATP synthesis78-80. 

In low state III condition, decreasing of ADP levels (i.e., ↑ ATP and ↓ energy demand) 

induces an increase in the ΔΨm, which, in turn, decreases the respiratory rate and 
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further leads to stimulation of O2¯• generation due to the relatively higher reduced state 

of the ETS components. In state IV condition, without ADP supply, the ΔΨm is very high 

and an exponential increase in O2¯• generation occurs within a small range of ΔΨm 

values exceeding about -160mV79,81-84. The inverse occurs when the mitochondrial ADP 

levels rise (↑ energy expenditure) which lead to the reduction of the ΔΨm through F1F0 

ATP synthase complex activity85,86. 

From the preceding discussion, it is clear that a chronic increase in metabolic 

substrate oversupply without a corresponding increase in energy demand results in 

elevated ROS production and IR19,63,87. It follows from the principles of bioenergetics 

that, when close to state IV respiration condition, a small increase in energy expenditure 

can reduce ΔΨm and may be sufficient to lower ROS production and prevent IR under 

metabolic substrate oversupply condition. This is the central question of this proposal.  

 

Redox-Sensitive Protein Modification – Potential Mechanism linking ROS to IR 

As detailed above, compelling evidence is accumulating suggesting a cause and 

effect relationship between mitochondrial ROS production and IR under HFD and T2D 

conditions in cell, animal, and human models62-65. However, the detailed molecular 

pathway as to how ROS leads to IR is still not clear. Other than causing oxidative 

damage (e.g., lipids, proteins or DNA), ROS have been implicated in several serine 

kinases that target and disrupt IRS-1 signaling88. ROS activates a number of 

stress-sensitive signaling pathways such as the NFκB/IKB/IKKβ signaling pathway 

which can lead to the phosphorylation and inactivation of IRS-1. Pharmacologically or 

genetically blocking this pathway has been shown to protect against HFD-induced IR89. 

To go one step further, what is the mechanism that makes signaling pathways 
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redox-sensitive and insulin sensitivity potentially redox-regulated? Both mitochondrial 

proteins and insulin signaling proteins appear to be regulated by redox-sensitive protein 

modification which alters protein function and insulin sensitivity. 

The thioether (-S-) of methionine (Met) and the better studied thiol (-SH) of 

cysteines (Cys) are the two common functional groups that undergo reversible 

oxidation-reduction reactions mediated by ROS, reactive nitrogen species (RNS), lipid 

hydroperoxides, aldehydes, quinones, disulfides (e.g. GSSG) and others90. What makes 

Cys residues particularly redox-sensitive and proteins potentially redox-regulated? The 

reactivity of regulatory Cys thiol modification is mainly determined by the Cys‘s 

structural environment and its pKa value91. Most cytoplasmic protein thiols have pKa 

values of greater than 8.0, which render the thiol groups predominantly protonated and 

largely nonreactive at intracellular pH91,92. On the other hand, thiol groups of 

redox-sensitive cysteines have much lower pKa values, ranging from as low as ~3.5 in 

thiol transferase to ~5.1 to 5.6 in protein tyrosine phosphatases91. These thiols are 

therefore present as deprotonated, highly reactive thiolate anions (RS-), under 

physiological cellular pH conditions91,93,94. The low pKa values of redox-sensitive 

cysteines are primarily due to the charge-charge interactions between the thiolate anion 

and neighboring positively charged or aromatic side chains91,95,96. In contrast to their 

protonated counterparts, thiolate anions can easily undergo a diverse spectrum of 

oxidative modifications upon oxidation by ROS or RNS91,97. These thiolate anions 

include disulfide (-SS-), sulfenate (-SO¯)/ sulfenic acid (-SOH), sulfinate (-SO2¯)/ sulfinic 

acid (-SO2H), and sulfonate (-SO3¯)/ sulfonic acid (-SO3H), or nitrosothiols (-SNO) and 

others90,98-100. Fortunately, most common forms in cells are the more reduced 

protonated thiol (-SH) and disulfide (-SS-) species90 while cysteine sulfenic acids and 
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their deprotonated cysteine-sulfenates are remarkably reactive and versatile oxidation 

products, which are frequently formed91.  As detailed by Jones90, the regulation of 

biological functions by redox-sensitive thiols occurs in three general ways: 1) chemically 

alter active site Cys residues (―on-off‖ switch), 2) alter macromolecular interactions, and 

3) regulate protein activity through modification of allosteric Cys. Furthermore, individual 

proteins often contain multiple Cys residues. Different redox-sensitive elements within a 

single protein allow its function to be simultaneously regulated by multiple independent 

redox signals/ mechanisms90. When in response to ROS or RNS, the thiol-based redox 

switches are used as molecular tools in many proteins to regulate their activity including 

either their activation (e.g., OxyR, Hsp33)101,102 or inactivation (e.g., PTEN, 

GapDH)103,104. Reversible oxidative thiol modifications have been found to modulate the 

biological function of proteins involved in many different pathways including receptor 

activation, signal transduction, transcription factor activation, gene expression, 

epigenetic control, cell proliferation, differentiation, senescence and apoptosis, 

metabolism, angiogenesis, protein trafficking, protein synthesis and degradation, 

immune response, cytoskeletal structure and other processes90,91,105-120. 

 

Redox-Sensitive Protein Modification in Insulin Signaling Pathway 

Based on the evidence described below, oxidation of redox-sensitive proteins 

might lead to suppression of insulin signaling via Ras, PKC PI3 kinase, and Akt. 

Conversely, oxidation of a number of redox modified proteins (PTP1B, PTEN, PKA and 

PP2A) could promote improved insulin signaling. 
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Figure 1-3. Summary of potential redox regulation in insulin signaling pathway. See text 

for detail. 

 

IRS 

Both increased degradation and impaired insulin-induced tyrosine 

phosphorylation (activation) of Insulin-Receptor-Substrate protein (IRS) have been 

implicated in oxidant-mediated decrease in insulin action121. In 3T3-L1 adipocytes, H2O2 

incubation induced increased IRS-1 degradation and Ser307 phosphorylation 

(inactivation)122. Incubation with lipid peroxidation product 4-HNE at nontoxic 

concentrations exhibited enhanced IRS-1 and IRS-2 degradation and increased serine 
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phosphorylation of IRS-1 which is alleviated by HNE detoxify enzyme, fatty aldehyde 

dehydrogenase (FALDH)123. In vascular smooth muscle cells, angiotensin II decreased 

IRS-1 protein levels via ROS-mediated IRS-1 Ser307 phosphorylation and subsequent 

proteasome-dependent degradation124.  

Ras 

Even though Ras activates P13K (phosphatidylinositol 3-kinase), which should 

increase insulin action, peroxynitrite mediated glutathionylation on Cys118 and 

consequent activation of Ras resulted in endothelial IR while insulin signaling was 

restored with Glutaredoxin (Grx) overexpression125. 

PKC 

Many PKC isoforms appear to be sensitive to redox inhibition by 

S-glutathionylation or unknown protein modification114,126-128. Among them, atypical PKC 

λ/ζ (aPKC λ/ζ) are the isoforms that link to insulin-stimulated GLUT4 translocation and 

glucose uptake. Purified human recombinant aPKC- ζ is subject to oxidative inactivation 

by S-glutathiolation induced by the concentration-dependent thiol-specific oxidant 

diamide, which induces disulfide bridge formation129. 

PI3K 

High glucose- or peroxynitrite-treated cells showed significant increases in 

tyrosine nitration on the p85 subunit of PI3 kinase and cause its dissociation from the 

catalytic p110 subunit which further blocked PI 3-kinase and Akt-1 kinase activity130. 

Inhibiting peroxynitrite formation or blocking tyrosine nitration of p85 restored the activity 

of PI3 kinase and Akt-1 kinase130. 

Akt (PKB) 
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H2O2 exposure resulted in impaired Akt activation in both 3T3-L1 adipocytes and 

L6 muscle cells131,132, while lipoic acid, by its capacity to maintain intracellular redox 

state, protects against oxidative stress induced impairment in Akt activity133. A link 

between Akt activity and glutathione reductase 1 status was indirectly suggested134, 

although the Akt glutathionylation has not been directly demonstrated. Furthermore, Akt 

is reversibly inactivated by S-nitrosylation135 specifically in Cys224136 or Cys296137. 

Treating with exogenous NO resulted in S-nitrosation of insulin receptor β subunit (IR-β), 

Akt and IRS-1 which led to either decreased enzyme activity or expression. These 

effects were reversed by reduced iNOS expression138 or acute exercise139 yielded an 

improvement in insulin action.  

GLUT4 

Studies suggest that oxidants appear to reduce GLUT4 gene expression by 

either oxidation of transcription factor NF1 or suppression of transcription factor C/EBPα 

expression6,121,140-142. 

PTP1B 

PTP1B (Protein tyrosine phosphatase 1B) negatively regulates both insulin 

signaling pathway and leptin sensitivity91,143-147. The catalytic site Cys215 is reduced in 

active PTP1B148-151. Upon mild oxidative stress (100μM H2O2), a reversible cyclic 

sulfenyl-amide is formed in the Cys215 and leads to PTP1B inhibition by changing the 

conformation of the active site, while the conformational and phosphatase activity 

change can be restored by reducing agents such as GSH or DTT152,153. Similar 

oxidative inhibition of PTP1B has also shown in other studies154-158. 

PTEN 
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The active site Cys residues of PTEN (tumor suppressor phosphatase with 

sequence homology to tensin), which regulates the activity of the PI3 kinase 

signaling91,159, is reversibly oxidized and inactivated by either ROS or RNS. Oxidative 

inactivation of PTEN leads to increased phosphatidylinositol (3,4,5)-trisphosphate (PIP3) 

level and increased Akt–phosphorylation159, which will potentially increase insulin action. 

Further study shown ROS inactivate PTEN by thiol-glutathionylation 

(S-Glutathionylation) and lead to Akt pathway activation160. Inhibition of PTEN by 

peroxynitrite activated the PI3K/Akt pathway161. 

PKA 

PKA (cAMP-dependent protein kinase) acts counter to insulin effect by inhibiting 

lipogenesis and promoting net gluconeogenesis and other effects. PKA is inhibited by 

oxidative glutathionylation162-164 and can be reactivated by thioredoxin165.  

PP2A 

B56 regulatory subunit of the PP2A inactivates insulin signaling through the 

dephosphorylation of Akt166 and AMPK167-170. PP2A is inhibited by H2O2 in a process 

that involves reversible glutathionylation171.  

AMPK 

Although not necessarily due to direct redox-sensitive protein modification, recent 

evidence has suggested that ROS may activate skeletal muscle AMPK activity172,173. 

However, this effect may not directly relate to glucose uptake and other signaling 

proteins may be involved174. In rat skeletal muscle incubated with H2O2, the AMPKα1 

activity was dose-dependently increased, and it was prevented by treatment with the 

antioxidant, Nacetyl-L-cysteine173. Further, contraction-induced increases in mouse 

skeletal muscle AMPK activity were inhibited (~50%) by N-acetyl-L-cysteine 
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treatment172. However, although skeletal muscle incubated with H2O2 increased AMPK 

α1, α2174 and Akt activities174,175, the glucose uptake did not differ between wild type 

and either whole body AMPK α1 knock out or muscle specific AMPK α2 kinase-dead 

mice174. These results suggest that H2O2 stimulated skeletal muscle glucose uptake 

does not require AMPK catalytic activity, activation of other signal proteins may be 

involved. 

Others 

In addition to the above redox sensitive proteins, other key enzymes or 

transcription factors involved in metabolism or insulin action such as Sirtuin 1176, Silent 

information regulator 2 (Sir2)177, NF-kappaB and AP-1178 were also reported to be 

redox-sensitive although no direct evidence has shown specific redox-sensitive active 

site cysteine residues yet. Other metabolic enzymes inculding, muscle creatine 

kinase-M (CK-M)179, glyeraldehyde-3-phosphate dehydrogenase (GapDH)180 and 

carbonic anhydrase 3181 also contain redox-sensitive Cys in their active sites. 

 

Conclusion of Literature Review 

Mitochondrial FAO/OXPHOS capacity and oxidative stress have been implicated 

in the development of IR and T2D. Based on the literature, the reduced mitochondrial 

FAO/OXPHOS capacity may be secondary to the development of IR. Conversely, 

mounting evidence favors a causative role of mitochondrial oxidative stress in the 

etiology of diet induced IR. Metabolic oversupply causes mitochondrial oxidative stress 

and leads to IR; however, how the other side of the metabolic balance equation, energy 

expenditure, may compensate and/or protect against energy oversupply is less 

appreciated. Furthermore, the molecular mechanism of how oxidative stress causes IR 
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is still largely unknown. Redox-sensitive protein modifications may be a crucial 

mechanism for determining how oxidative stress regulates the insulin signaling 

cascade. 

  

Central Hypothesis  

Whole body metabolic imbalance is the underlying cause of metabolic diseases. 

At the cellular level, metabolic balance is a function of how well substrate supply 

matches metabolic demand, and vice versa. Recent research has provided evidence 

that the oversupply of fuel to cells induced by high dietary fat intake elevates 

mitochondrial oxidative stress which, in turn, causally leads to the loss of insulin 

sensitivity62-65. Mitochondrial O2¯• production is directly related to the ΔΨm which, at any 

given time, reflects the balance between 1) the local intracellular rate of ATP utilization 

(metabolic demand) and 2) the rate at which reducing equivalents (NADH and FADH2) 

are presented to the mitochondria; (e.g., ∆Ψm is high, O2¯• or H2O2 emission is favored 

when ATP demand is low and intracellular metabolic supply is high). As such, mEH2O2 

has been proposed to serve as both a gauge of energy balance (i.e., reducing potential 

of the electron transport system) and regulator of redox state within cells, ultimately 

linking cellular metabolic balance to the control of insulin sensitivity64. Our previous 

work64 however tested the impact of nutritional oversupply only under very low demand 

(state IV) respiratory conditions. The interplay between metabolic supply and mEH2O2 

under conditions of ATP turnover (state III) more typical of the conditions present in vivo, 

and the extent to which metabolic expenditure can compensate for over nutrition in 

terms of mEH2O2, cellular redox state and insulin sensitivity is unknown. The objective of 

this study was to examine both chronic and acute influence of energy expenditure as 
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well as the interplay of factors governing mitochondrial function under metabolic 

oversupply conditions on the control of mEH2O2 and IR. It was hypothesized that both 

chronic and acute increases in energy expenditure normalize energy 

oversupply-induced elevated mEH2O2 and IR.  

Specific Aim 1 

To determine if a mild increase in energy expenditure (low intensity 

exercise) is sufficient to attenuate the increase in mitochondrial membrane 

potential, oxidant emitting potential, and the reduction in calcium retention 

capacity in skeletal muscle of rats induced by a single lipid loading. 

Previous findings from our lab provide evidence that state IV mEH2O2 in muscle is 

acutely increased by a single glucose or lipid meal. To further examine the potential 

acute impact of lipid oversupply and low intensity exercise on the interplay between 

energetic expenditure and cellular metabolic supply on the control of ΔΨm, mEH2O2, and 

mitochondrial calcium retention capacity (mCa2+
RC) particularly under state III condition, 

the following were addressed: 

a) How does substrate supply relative to metabolic demand (i.e., state III 

respiration rate) impact mEH2O2 in permeabilized red gastrocnemius of rats?  

b) How is the governance of mitochondrial OXPHOS capacity and state III ΔΨm, 

mEH2O2, mCa2+
RC affected by single lipid loading? 

c) Does a single bout of low intensity exercise sufficient to normalize the 

governance of mitochondrial OXPHOS capacity and state III ΔΨm, mEH2O2, 

mCa2+
RC affected by single lipid loading?  

Specific Aim 2 
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To determine if a chronically modest increase in energy expenditure is 

sufficient to prevent the increase in mitochondrial oxidant emitting potential and 

decrease in insulin sensitivity induced by a high fat diet.  

Increasing physical activity (energy expenditure) represents one of the most 

effective means for reversing IR in skeletal muscle of overweight/obese patients at high 

risk for developing T2D. Beta-Guanidinopropionic acid (β-GPA), an 

antidiabetic/antihyperglycemic agent182-184, is a non-metabolized creatine analog that 

reduces cellular creatine phosphate and ATP content and compensatorily increases 

energy expenditure and mitochondrial biogenesis in rodent skeletal muscle185. It is 

hypothesized that only a small increase in cellular ATP turnover is sufficient to relieve 

the ―reducing pressure‖ (i.e., potential of the respiratory system to leak electrons) and 

thus normalize mEH2O2 and IR in a HFD setting. To test this hypothesis, the following 

were addressed:  

a) Is low intensity daily treadmill exercise sufficient to normalize mEH2O2 and 

preserve insulin sensitivity in rats consuming a HFD?  

b) Is daily treatment with β-GPA sufficient to normalize mEH2O2 and preserve 

insulin sensitivity in rats consuming a HFD? 

Both exercise186-188 and β-GPA185,189-191 have also been shown to activate AMPK, 

and AMPK-mediated signaling is known to stimulate glucose uptake independent of 

insulin192. This suggests that any metabolic effects induced by β-GPA, if occurring, may 

be mediated by AMPK and/or mEH2O2. To distinguish between these two possibilities, the 

following was addressed:   

c) Does β-GPA treatment normalize mEH2O2 and IR in AMPKα2 dominant 

negative mice consuming a HFD?   
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Figure 1-4. Central hypothesis. Mitochondria respiration status in the regulation of ROS 

production rate and redox-sensitive protein modification. HFD causes increases in 

membrane potential and ROS production, which leads to redox-sensitive protein 

modifications within mitochondria and insulin signaling proteins and ultimately leads to 

IR. Increased energy expenditure, however, decreases the membrane potential and 

ROS production, further preserving insulin sensitivity. 

 

Significance 

The interplay between substrate supply and metabolic demand is at the heart of 

cellular metabolic balance and the consequences of metabolic imbalance. These 
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studies provide mechanistic insights on the impact of cellular substrate supply relative to 

energy demand on the control of mEH2O2 and insulin sensitivity. 

 



 

 

 

 

CHAPTER 2: Low Intensity Exercise is Sufficient to Attenuate Acute Lipid 

Loading-Induced Elevations in Mitochondrial Membrane Potential, H2O2 Emitting 

Potential, and Reduction in Mitochondrial Calcium Retention Capacity in Rat Skeletal 

Muscle 

 

Abstract 

Postprandial lipidemia causes acute oxidative stress. Whether it also acutely 

affects other related mitochondrial parameters is unknown. Based on the principles of 

bioenergetics, mildly increasing mitochondrial respiration (energy expenditure) from 

very low state III respiration condition reduces mitochondrial membrane potential (ΔΨm) 

and exponentially reduces O2¯• generation, and vice versa when substrate supply is 

high. The objective of this study was to determine if a mild increase in energy 

expenditure, by low intensity exercise, is sufficient to attenuate the increases in ΔΨm, 

mitochondrial H2O2 emitting potential (mEH2O2), the potential reduction in mitochondrial 

calcium retention capacity (mCa2+
RC, an index of the resistance of the permeability 

transition) and oxidative phosphorylation capacity (OXPHOS) in the skeletal muscle of 

rats after a single lipid loading. Sprague-Dawley rats received a lipid oral gavage (20% 

intralipid at 45 Kcal/kg lean body mass, ~12% of the daily total caloric intake) followed 

by either 2h of rest or 1h of exercise (treadmill, 15m/min, 0 grade) after 1h of rest. Red 

gastrocnemius permeabilized myofibers were prepared for measures of mitochondrial 

function. The results show that, without a change in OXPHOS, a single lipid load quickly 

elevates ΔΨm, mEH2O2 and reduces mCa2+
RC in state IV and/or ―clamped‖ physiological 

state III respiration condition. These effects can be sufficiently attenuated by a single 
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bout of postprandial low intensity exercise. These findings provide evidence that 

several aspects of mitochondrial function, including oxidant production, are very 

sensitive to and dynamically regulated by metabolic status. It further suggests ΔΨm and 

oxidative stress are the preceding factors acutely caused by lipid loading, and may be 

responsible for the loss in mitochondrial density observed in long-term substrate 

oversupply conditions, ultimately leading to mitochondrial dysfunction (reduced 

OXPHOS) and metabolic diseases (e.g. diabetes). The balance of substrate supply and 

energy demand on a daily basis is critical for maintaining a proper cellular redox 

environment and therefore cellular function. 

 

Introduction 

Postprandial lipidemia (hypertriglyceridemia particularly)193-195 and 

hyperglycemia196,197 have been proposed to have acute deleterious effects on metabolic 

regulation and cardiovascular function. In addition to hypertriglyceridemia, circulating 

markers of oxidative stress are elevated following a single high-fat meal193,198-200. Other 

studies also show oxidative stress levels positively correlate with postprandial 

circulating triacylglycerol (TAG) levels193,201. Furthermore, previous findings from our 

group provide direct evidence showing that skeletal muscle mitochondrial H2O2 emitting 

potential (mEH2O2), under state IV respiration, is acutely increased by a single lipid meal, 

and the intracellular redox environment (GSH/GSSG) is shifted to a more oxidized state 

by an acute glucose injection or long-term high-fat feeding64. However, whether a single 

lipid load acutely increases skeletal muscle mitochondria membrane potential (ΔΨm) 

and mEH2O2 particularly under state III respiration, which is a more physiological 

condition, is still unknown. Moreover, it is still under debate whether mitochondrial 
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dysfunction (i.e., oxidative phosphorylation (OXPHOS) capacity), content reduction or 

oxidative stress elevation is the preceding/primary cause of diet-induced insulin 

resistance and type II diabetes. While it has been long observed that a single high-fat 

meal193,198-200,202 acutely induces postprandial oxidative stress, there is limited evidence 

on the effect of postprandial OXPHOS capacity. By examining the effect of an acute 

lipid load on OXPHOS capacity, oxidative stress, and other metabolic parameters, the 

initiating factor leading to diet-induced insulin resistance (mitochondrial dysfunction or 

oxidative stress) may be revealed.  

It may seem unlikely that a single high calorie meal will have detectable 

deleterious effects on metabolic control and that a single bout of mild exercise will 

benefit the overall metabolic condition. However, both may have acute effects at the 

cellular and/or molecular level. It is our hypothesis that chronic diseases associated with 

chronic metabolic imbalance are rooted in the cellular conditions that exist during and 

between meals. Based on the rationale that oxidative stress levels positively correlate 

with postprandial circulating TAG levels193,201 and a single bout (>30 minutes) of aerobic 

exercise can promote fatty acid utilization and activate antioxidant defense pathways 

hours after exercise, many investigators have focused on the effects of prior exercise on 

postprandial lipidemia and oxidative stress. A growing body of evidence indicates that a 

single session of low-moderate intensity aerobic exercise of sufficient energy 

expenditure performed hours before a fat meal reduces postprandial lipidemia193,203-207. 

The energy expenditure level of prior exercise appears to be the major factor influencing 

postprandial lipidemia208. Although a single session of low-moderate intensity exercise 

(walking exercise performed at 50% V
‧

O2max for 90 minutes) decreases postprandial 

hypertriglyceridemia irrespective of the timing of the exercise relative to a high-fat meal 
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(i.e., premeal versus postmeal)205, a single session of prior aerobic exercise seems to 

have limited effect on attenuating postprandial oxidative stress measured by circulating 

oxidative stress biomarkers (trolox equivalent antioxidant capacity, xanthine oxidase 

activity, hydrogen peroxide, and malondialdehyde (MDA))209,210. Contrarily, a single 

session of moderate exercise (1 h of 60% max HR exercise) performed 2 hours  

following a high fat meal (69% kcal% fat) can ameliorate the elevation of postprandial 

oxidative stress markers. Circulating serum lipid hydroperoxides (LOOH) O2¯• 

dismutase (SOD) were decreased immediately after exercise, with LOOH levels 

remaining depressed up to 1 hour post exercise session193. Collectively, it appears that 

significant activation of antioxidant defense pathways may not be required under a 

balanced energetic state (i.e., balanced cellular redox status in the pre-meal exercised 

condition). On the other hand, in the metabolically challenged state (i.e., substrate 

oversupply, post-meal exercise condition), aerobic exercise of sufficient energy 

expenditure theoretically can prevent ROS production due to the increase in 

mitochondrial respiration (i.e., ↑ energy expenditure causing state IV → state III 

respiration shift which markedly lowers the ―reducing pressure‖) and/or the rapid 

activation of antioxidant defense pathways. However, evidence that a mild increase in 

energy expenditure (mild exercise) can attenuate acute lipid loading induced high 

oxidative stress (postprandial lipidemia status) is still indirect and limited193. 

Based on the principles of bioenergetics, the rate of mitochondrial ROS 

production, in close to state IV respiration condition, is highly dependent on ΔΨm and 

inversely related to the availability of ADP used to drive the ATP synthesis78-80. In low 

state III condition, decreasing ADP levels (i.e., ↑ ATP and ↓ energy demand) induces an 

increase in the ΔΨm, which, in turn, decreases the respiratory rate and increases 
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superoxide (O2¯•) generation due to the relatively more reduced state of the ETS 

components. In state IV or very low state III condition, without sufficient ADP supply or 

energy expenditure, the ΔΨm is very high and an exponential increase in O2¯• 

generation occurs within a small range of ΔΨm values exceeding about -160mV 

(method dependent)79,81-84. The inverse occurs when the mitochondrial ADP levels rise 

(↑ energy expenditure) which lead to the reduction of the ΔΨm through F1F0 ATP 

synthase complex activity85,86. It follows the principles of bioenergetics that a small 

increase in mitochondrial energy expenditure from idling should reduce ΔΨm and 

thereby exponentially decrease ROS production under metabolic substrate overload. 

Based on this premise, we hypothesized that mild energy expenditure (low intensity 

exercise) can reduce ΔΨm and mEH2O2 under acute metabolic substrate overload (single 

lipid loading).  

To address this hypothesis, we determined the rate of mEH2O2 as well as ΔΨm and 

mitochondrial calcium retention capacity (mCa2+
RC) under both state IV and ―clamped‖ 

physiological state III respiration conditions in saponin-permeabilized rat skeletal muscle 

fibers (PmFBs, in situ) harvested after acute lipid ingestion with or without a single 

session of mild exercise. The mCa2+
RC is an index of the resistance of the permeability 

transition pore (mPTP) opening following matrix Ca2+ accumulation211. The purpose of 

this study was to determine if mild exercise is sufficient to attenuate the potential 

increase in ΔΨm and mEH2O2, and the potential reduction in mCa2+
RC in skeletal muscle of 

rats after receiving a single lipid load. The results show that, without a change in 

OXPHOS, a single lipid load quickly elevates ΔΨm, mEH2O2 and reduces mCa2+
RC. These 

effects can be prevented or attenuated by a single bout of low intensity exercise. 
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Methods 

Animals 

Animal studies were approved by the East Carolina University Institutional 

Animal Care and Use Committee. Young male Sprague-Dawley rats (n=8-10/group; 

300~325g; Charles River Laboratories, Inc.) were randomly assigned to each group. 

Rats were maintained on a standard 12h/12h light/dark cycle (7:00 am light) and fed 

with standard chow diet ad libitum. 

Design 

All rats were acclimated to the treatment condition for 3 days. Rats from all 

groups received one single water gavage orally and exercised on a treadmill (20 min of 

15m/min) 2-3 days before receiving the treatment. The day before treatment all rats 

received one single water gavage orally and were not exercised. The day of treatment, 

rats received the following treatment at the times indicated in figure 2-1: 1) Control 

group: fast + water oral gavage; 2) Lipid group: fast  + lipid oral gavage; 3) Ex group: 

fast + water oral gavage + exercise; 4) Lipid+Ex group: fast + lipid oral gavage + 

exercise. The exercise protocol was 60 minutes of moderate walking on the treadmill 

(15m/min and 0 grade). The lipid gavage consisted of a 20% intralipid emulsion (8.37 

MJ/L, Sigma I141) which is an aqueous emulsion of 20% soybean oil (containing 50% 

linoleic acid, 26% oleic acid, 10% palmitic acid, 8% linolenic acid and 3.5% stearic acid), 

2.25% glycerin, and 1.25% egg yolk phospholipids in water. The oral gavage volume 

was 25ml/kg lean body mass for either water or intralipid gavage which yields 45 

Kcal/kg lean body mass. The Charles River Laboratories volume guideline for gastric 

gavage in rats is 20ml/kg whole body mass. Body composition analysis (Echo Magnetic 

Resonance Imaging (EchoMRI-900™), Echo Medical System, Houston, TX) of rats  
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revealed a lean body mass of 79.25±1.087% (M±SD, n=24). After considering the 

energy content and lean to whole body mass ratio, the maximal lipid the animals 

received by a single oral gavage was 45 Kcal/kg lean body mass. This was equivalent 

to only 11.9% of average total daily energy intake in rats fed a regular pellet form of 

60%HFD (Research Diets D12492) as determined by an indirect calorimetry module 

(CaloSys V2.1, TSE Systems) for 48h after a 3-4 day of acclimation period (data not 

shown). 

 

 

Figure 2-1. Experiment design. 

 

Tissue Sampling and Permeabilized Myofibers (PmFBs) Preparation 

Tissue sampling. Immediately after the treatment, the rats were anaesthetized 

(~5 minutes) by IP injection of ketamine & xylazine mixture. Gastrocnemius muscle was 

dissected out within 10 minutes after the treatment was completed. The same portion of 

fresh red gastrocnemius from each rat was immediately trimmed, 

saponin-permeabilized, and maintained (4oC) in buffer to determine ΔΨm, mEH2O2, JO2 

and mCa2+
RC.  

Myofiber separation. Briefly, after dissection, connective tissue was removed and 

fresh fiber bundles were separated to maximize the exposure surface using fine forceps 
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under a binocular dissecting microscope in ice-cold buffer X containing (in mM) 60 

K-Mes, 35 KCl, 7.23 K2EGTA, 2.77 CaK2EGTA, 20 imidazole, 20 taurine, 5.7 ATP, 15 

phosphocreatine 6.56 MgCl2·6H2O (pH adjusted to 7.10) plus 0.5 glutamate (G) and 0.2 

malate (M). 

Myofiber permeabilization and washing. After separation, cytosolic membrane of 

myofiber bundles were permeabilized in buffer X plus 0.5mM G, 0.2mM M and 40 μg/ml 

saponin gently shaken on a rocker at 4oC for 30 min. To washout the 

extra-mitochondrial components, the PmFBs were further washed (3 x 5~8 min) in 

buffer Z containing (in mM) 105 K-Mes, 30 KCl, 10 K2HPO4, 5 MgCl2·6H2O and 

0.5mg/ml bovine serumalbumin (pH adjusted to 7.40) plus freshly added 1 EGTA, and 

gently shaken on a rocker at 4°C. 25µM blebbstatin (myosin II inhibitors, inhibition of 

contraction212-215) was added into the buffer of 3rd washing. 

Measuring Mitochondrial Respiration Rate (JO2) or JO2 Simultaneously with 

Mitochondrial Membrane Potential (ΔΨm) in PmFBs 

Washed PmFBs (~0.5mg after freeze-dried) ΔΨm and/or JO2 was measured by 

high-resolution respirometry (Oroboros Oxygraph-2 K (O2K), Innsbruck, Austria) at 

25°C in assay buffer containing buffer Z plus 1mM EGTA, 25μM blebbistatin and 20mM 

creatine under the following protocols. JO2 protocol: 2mM M + 25µM 

palmitoyl-L-carnitine (PC) + 2mM ADP + 5mM G + 10mM succinate (S) + 10µM 

cytochrome C (Cyto C) (as a quality control of the PmFB preparation) + 10µg/ml 

Oligomycin (Oligo, inhibitor of mitochondrial ATP synthase) + 2µM FCCP 

(carbonylcyanide-p-trifluoromethoxy-phenylhydrazone, a potent protonophoric 

uncoupler of OXPHOS). In another protocol, JO2 & ΔΨm were simultaneously measured 

from the same PmFBs. The newly developed Oroboros tetraphenylphosphonium (TPP+) 
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-selective electrode is an ion selective electrode (ISE) that integrates into the O2K 

chamber for simultaneous recording of oxygen and TPP+. TPP+ accumulates in the 

mitochondrial matrix as a function of the ΔΨm. 2U/ml hexokinase (HK)/ 5mM 

2-deoxyglucose (2-DOG)/ 10mM G/ 15mM pyruvate (Pyr)/ 2mM M/ 10mM 

Glycerol-3-Phosphate (G3P)/ 10mM S were added into the chamber in the beginning. 

After the pTPP+ signal reaches a steady status, the TPP+-selective electrode was 

calibrated by a 5 point titration range from 1.1 to 1.5µM TPP+. The sensitivity was 

calculated from the actual TPP+ working range. PmFB was added into the chamber to 

obtain the maximal state IV ΔΨm and JO2. An ADP titration (25, 50, 100, 250, 500, 1000, 

2000μM) was followed to obtain the kinetics of state III ΔΨm and JO2. Finally, 2µM 

FCCP was added to collapse ΔΨm driven TPP+ uptake. The criteria of steady state 

pTPP+ signal (gain of 10) in each condition is defined as below: raw pTPP+ slope = 0 to 

0.003 mpTPP+/s during TPP+ titration; 0 to -0.002 mpTPP+/s in 0-250µM ADP; 0 to 

-0.003 mpTPP+/sec in 500µM ADP; 0 to -0.006 mpTPP+/sec in 1000 and 2000µM ADP. 

The mathematics of ΔΨm is based on classical Nernst equation with binding correction 

factors and assumed mitochondrial protein content to freeze dried muscle fiber weight 

ratio. Oroboros TPP+-ΔΨm calculation template (http://www.oroboros.at for detail) was 

used with minor modifications in order to apply the internal chemical background 

correction factor. This correction factor is defined as the instantaneous difference of 

stable signal between immediately before and 4-8 seconds following the chemical 

addition, which causes an artificial signal spike. It is based on 2 observations: 1) Due to 

the structure nature of PmFB, it appears that the re-distribution of TPP+ upon substrate 

addition is much slower (than cell or isolated mitochondria) although the change in ΔΨm 

may occur sooner, 2) ADP instantly causes a dose-dependent steady chemical 

http://www.oroboros.at/
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background effect (small reduction) on pTPP+ signal in a system without biological 

sample. Equation as below:   

 

 nadd: total amount of probe ions added to the system. 

 Cext,free: free concentration of probe ion outside mitochondria. 

 Vext: external volume: total solution volume outside mitochondria. 

 Vmt(spec): mass specific mitochondrial matrix volume (per mass of mitochondrial 

protein) = 1µl/mg216-218. 

 Ki': apparent partition coefficient describing internal binding = 7.9µl/mg216.  

 Ko': apparent partition coefficient describing external binding = 14.3µl/mg216.  

 Pmt: total mitochondrial protein content (as a marker for mitochondrial membrane 

content). Assumed to be 15% of freeze dried muscle fiber weight.  

 Pc: total cellular protein content (as a marker for cellular membrane and other 

material content) = freeze dried muscle fiber weight. 

Measuring Mitochondrial H2O2 Emitting Potential in PmFBs  

The mEH2O2 of PmFBs (~0.3mg after freeze-dried) was measured by continuously 

monitoring fluorescence probe Amplex Ultra-Red (Invitrogen, A36006; 

excitation/emission: 568/581nm) using Fluorolog-3 (Horiba Jobin Yvon, Edison, NJ) 

spectrofluorometers with temperature control at 25°C and magnetic stirring. mEH2O2 

protocol 1 is a parallel protocol of JO2 & ΔΨm protocol. The assay buffer condition is the 
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same with additional 2U/ml HK/ 5mM 2-DOG/ 6 U/ml HRP/ 25 U/ml CuZn-SOD/ 50µM 

Amplex Ultra-Red. After establishing a background fluorescence rate in the presence of 

a PmFB, the reaction is initiated by the addition of sequential substrates, 

G/Pyr/M/G3P/S+ADP titration (same concentration as in JO2 & ΔΨm protocol). For 

mEH2O2 protocol 2 and 3 the assay buffer condition is the same as JO2 & ΔΨm protocols 

with additional 6U/ml HRP/ 25U/ml CuZn-SOD/ 50µM Amplex Ultra-Red. After 

establishing a background fluorescence rate in the presence of a PmFB, the reaction is 

initiated by either 10mM G3P + 25µM PC in protocol 2 or 10mM S + 10mM G3P in 

protocol 3. mEH2O2 production rate is calculated from the slope of ΔF/min, after 

subtracting background, using a standard curve established for each reaction condition. 

Measuring Mitochondrial Calcium Retention Capacity (mCa2+
RC) in PmFBs 

The PmFBs (~0.2mg after freeze-dried) mCa2+
RC were measured by continuously 

monitoring fluorescence probe calcium green 5N salt (Ca5N, Invitrogen, C3737; 

excitation/emission: 506/532 nm) using Spex Fluoromax 3 (Horiba Jobin Yvon, Edison, 

NJ) spectrofluorometers with temperature control at 25°C and magnetic stirring. The 

assay buffer condition is the same as JO2 & ΔΨm protocol with only 40µM EGTA and 

additional 2U/ml HK/ 5mM 2-DOG/ 1µM Ca5N/ 1.5 µM thapsigargin (sarco/endoplasmic 

reticulum Ca2+-ATPase inhibitor). The assays were started with the G/Pyr/M/G3P/S 

(same concentration as in JO2 & ΔΨm protocol) plus 0, 25 or 500µM ADP in each 

individual experiment. After a steady background fluorescence intensity is obtained 

(~5min), the first pulse CaCl2 of 75µM is added followed by 50µM pulses of CaCl2 at the 

time interval of 15-30min/pulse based on the Ca2+ uptake rate. The fluorophore 

fluoresces in the presence of extra-mitochondrial Ca2+, so that a decline in fluorescence 

intensity is indicative of mitochondrial Ca2+ uptake. PTP opening is evident when 



 

- 35 - 

 

mitochondria start to no longer take-up or rapidly release Ca2+. In the end, 2.5mM CaCl2 

was added followed by 1~2 additions of 0.67mM CaCl2 to obtain fluorescence of the 

calcium-saturated probe in order to quantify the total Ca2+ uptake.   

At the conclusion of each experiment, PmFB were washed in ddH2O to remove salts 

and then freeze-dried in a lyophilizer (LabConco). JO2, mEH2O2 and mCa2+
RC were 

normalized to dry tissue weight. 

Statistics 

All statistical analysis was performed using GraphPad Prism 5.02 (GraphPad 

software, San Diego, California). Unless specified otherwise, data are presented as 

mean ± S.E.M. from n=8~10/group. The statistical differences among groups under the 

same substrate or ADP concentration condition in each experiment was analyzed using 

the independent one-way ANOVA with Tukey post-hoc test. Statistical significance 

power was set at p<0.05. Since the ―ceiling effect‖ was observed, independent T-tests 

were used for ΔΨm data with statistical significance power set at p<0.1. 

 

Results 

Neither Single Lipid Loading nor Low Intensity Exercise Affect Mitochondrial Respiration 

Capacity 

To determine if a single lipid loading or exercise has an effect on mitochondrial 

respiration (JO2) capacity in skeletal muscle of rats, we measured JO2 in PmFBs from 

the red gastrocnemius muscle. Neither single lipid loading nor exercise had a significant 

effect on palmitoyl-carnitine-supported maximal JO2 capacity in combination with 

complex I (malate/ glutamate) or complex II substrate (succinate), nor maximal 

uncoupled FCCP-stimulated JO2 (Fig. 2-2).  
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Low Intensity Exercise Attenuates Elevated State IV mEH2O2 Associated with Single Lipid 

Loading 

It is not clear if single lipid loading induced ROS production potential can be 

attenuated by a post-meal low intensity exercise, although indirect data from single 

moderate exercise are available193. In this study, state IV ROS production mediated by 

succinate-induced reverse electron flux and/or lipid based substrates including 

glycerol-3-phosphate and palmitoyl-L-carnitine were measured from PmFBs. As shown 

in figure 2-3, single lipid loading caused a two fold increase in mEH2O2 versus untreated 

rats (P<0.05) in each substrate condition. This effect was nearly or completely 

normalized under all substrate conditions when low intensity exercise was performed 

after lipid ingestion. 

Low Intensity Exercise Attenuates the Single Lipid Loading-Induced Increase mEH2O2 

and Reduction in mCa2+
RC with Slight Increase in JO2 and Reduction in ΔΨm in State III 

Condition 

To further test whether low intensity exercise attenuates the single lipid 

loading-induced mEH2O2 under more physiological respiratory conditions, a series of 

kinetic experiments were performed in PmFBs across a wide range JO2 levels (clamped 

state III). 

JO2 and ΔΨm in both state IV and III conditions. The control experiment, figure 

2-4 (A), showed no inhibition of 1.5µM TPP+ on PmFB JO2 under the same substrate 

protocols as in figure 2-5 or 2-6 (A). The TPP+ electrode used showed a relatively high 

sensitivity (53.56±3.03mV/Decade, mean±SD, n=36; 59.13mV/Decade in theory) under 

our experimental conditions (Fig. 2-4 (B)). Shown in figure 2-5 are the representative 

traces from the control experiment. We simultaneously measured JO2 and ΔΨm 
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supported by multiple substrates across a wide range of state III respiration levels (ADP 

titration). The quantified data (Fig. 2-6. (A)) show a single lipid loading slightly increases 

ΔΨm with very little effect on JO2 while low intensity exercise performed after lipid 

loading causes a mild increase in JO2 and normalizes the single lipid loading-induced 

increase in ΔΨm across multiple [ADP] conditions. It appears mitochondria are operating 

in a relatively tight ΔΨm range (-145 to -170mV) across different JO2 states.  

mEH2O2 in both state IV and III conditions. As expected, mEH2O2 decreased rapidly 

in the transition from State IV to State III respiration. In addition, consistent with the ∆Ψm 

data (Fig. 2-6. (A)), mEH2O2 was highest after lipid loading but was normalized to at or 

below control rates when low intensity exercise was performed after the lipid loading 

(Fig. 2-6. (B)). A slightly higher JO2 with the similar ΔΨm may explain the observation of 

lower mEH2O2. 

mCa2+
RC in both state IV and III conditions. The mitochondrial permeability 

transition pore is sensitive to various cellular stresses including calcium219-221 and 

ROS222,223. Figure 2-6 (C) shows low intensity exercise partially attenuated the single 

lipid loading-induced reduction in mCa2+
RC under state III but not state IV conditions.  

 

Discussion 

Although postprandial systemic oxidative stress has long been observed 

following a lipid rich meal202, the potential acute impact of lipid rich meals on 

mitochondrial function has not been studied.  Furthermore, the benefits of regular 

exercise on metabolism, as well as mitochondria related effects, have been greatly 

acknowledged. Whether post-meal mild exercise may ameliorate the lipid induced 

postprandial oxidative stress and related defects is still not clear. More direct and 
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physiological evidence from mitochondria in working skeletal muscle is required to 

establish this relationship. In this context, our results provide evidence that, in the 

absence of mitochondrial dysfunction (in terms of JO2 kinetics and maximal capacity) 

skeletal muscle mEH2O2, ΔΨm and mCa2+
RC are acutely sensitive to changes in metabolic 

status. There are several important and novel findings from the present study. First, 

acute lipid overloading induced by oral gavage of ~12% of daily total caloric intake 

(when fed with high fat diet) increased state IV mEH2O2 under multiple substrate 

conditions. This change in mEH2O2 occurred in the absence of any change in respiratory 

function. Second, mild exercise performed after the lipid load completely prevented the 

increase in mEH2O2. Third, consistent with the mEH2O2 data, state IV ΔΨm was highest 

after acute lipid loading and lowest when exercise was performed after lipid loading. 

State IV JO2 was also slightly elevated in the lipid plus exercise group. Fourth, as 

expected, transitioning to state III respiration sharply decreased both ΔΨm and mEH2O2. 

However, the greater ΔΨm and mEH2O2 induced by lipid load and apparent protection 

afforded by exercise present under state IV was also evident under mild to moderate 

state III respiratory conditions. Fifth, also under mild to moderate state III conditions, 

acute lipid load decreased mCa2+
RC, indicative of altered permeability transition pore 

function. Together, these findings provide strong evidence that mitochondrial 

oxidant production and related effects are very sensitive and dynamically regulated by 

metabolic status. It suggests an increase in ΔΨm for a given substrate condition may be 

a primary factor driving the downstream cellular consequences of lipid loading, and that 

the increase in ΔΨm is attenuated by mild exercise. Although further work is certainly 

required, it is tempting to speculate that the cumulative effects of transient increases in 

oxidant production following lipid meals may be responsible for the loss of mitochondria 
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density observed in long-term substrate oversupply conditions, ultimately leading to the 

mitochondrial dysfunction associated with metabolic diseases (e.g. diabetes). At the 

mitochondrial level, the balance of substrate supply and energy demand on a daily 

basis is likely critical for maintaining proper cellular redox environment and therefore 

cellular function and whole body health. 

Several studies have observed an increase in oxidative stress with obesity, 

diabetes21,63,64,224, and a number of other diseases225-227. The common mEH2O2
62-64,228-230, 

ΔΨm
231 and mCa2+

RC
232-235 measurements are frequently performed under state IV 

respiration conditions. However, experimental state IV mitochondrial respiration does 

not exist in vivo, as different levels of state III respiration, based on metabolic status, are 

closer to the physiological condition in vivo. Thus, further evidence from state III 

respiration is required to examine the potential link between metabolic disease and 

mitochondrial ROS production, as well as ΔΨm and mCa2+
RC in a more physiological 

manner. With the newly developed hexokinase dependent ADP regeneration 

system81,85,86,236,237 in PmFBs64,228,229, in situ state III ―clamp‖ technique was successfully 

developed in our laboratory236. A second ADP regeneration system (endogenous 

mitochondrial creatine kinase and additional creatine81,86,238) was also applied in this 

study to maximize efficiency. We used this technique to investigate the relationship 

between substrate supply and metabolic demand on ΔΨm and ROS production across 

different JO2 levels which mimic different metabolic/physical activity states. Contrary to 

the widely held belief that electron leak and O2¯• formation occur only under state IV 

conditions, our findings (Fig. 2-6. (B)) reveal relatively low but appreciable mEH2O2 even 

under moderate-high state III conditions. These findings suggest that ROS production 

does occur in vivo and studies should be conducted under state III more typical of the 
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condition present in vivo. Based on the kinetics‘ relationship (Fig. 2-6), by clinically 

manipulating different mitochondrial respiratory levels, the energy expenditure level 

required to normalize the over nutrition induced oxidative stress can be revealed at the 

mitochondrial level.  

The present data shows that acute lipid loading had no clear effect on 

mitochondrial OXPHOS capacity, while it elevated the ΔΨm, mEH2O2 and reduced 

mCa2+
RC. These findings suggest that reduced OXPHOS capacity is less likely the 

preceding factor of long-term HFD induced mitochondrial defect and related metabolic 

diseases. Evidence for reduced mitochondrial OXPHOS activity or respiration16,17,27,28 

has been shown to associate with long-term substrate oversupply such as occurs with 

IR or T2D. However, mounting evidence also suggests that mitochondrial dysfunction 

represents a secondary event in the development of IR or T2D35-37,63,64. In fact, 

short-term or early stage HFD feeding could actually promote mitochondrial density and 

fatty acid oxidation activity due to a prompt adaptive response19,42,44,51. Our 

mitochondrial respiration data support this idea in which significantly reduced 

mitochondrial OXPHOS capacity is less likely to occur in the beginning, at least, of lipid 

loading. Instead, our data further indicate that oxidative stress and related parameters 

can be elevated very quickly by lipid overloading and could be the preceding or among 

the primary factors that leads to metabolic diseases.  

The treatment effect on mEH2O2 is clear. However, whether the mEH2O2 change 

was contributed by the treatment effect on mitochondrial oxidant production and/or 

anti-oxidant scavenging/buffering system (i.e., GSH/GSSG, thioredoxin and others) is 

unknown. Previous findings from our group provide evidence showing that skeletal 

muscle intracellular redox environment was acutely shifted to a more oxidized state 
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(reduced GSH/GSSG ratio) by an acute glucose injection64 with a lower caloric loading 

compare with this study. In addition, it was shown that lipid rich meal acutely cause 

more oxidative stress than iso-caloric CHO rich meal202. With these, the GSH/GSSG 

ratio after lipid loading may be reduced and indicates a reduced anti-oxidant 

scavenging/buffering capacity. Further, since the ΔΨm was affected by the treatments, 

this may indicate a change in oxidant production potential as well. Further study is 

required to confirm it. 

Although ROS production and OXPHOS capacity have been well studied, the 

impact of metabolic imbalance on ΔΨm, which is the fundamental control of ROS 

production, is relatively less understood. Despite data from cell or isolated mitochondria 

using fluorescent imaging and/or flow cytometry, the evidence from in situ or even in 

vivo experiments show the metabolic intervention on ΔΨm under state III condition 

without using any mitochondrial complex inhibitor is still very limited. In this study, the 

ΔΨm and the rate of oxygen consumption were simultaneously measured by Oroboros 

oxygraph with newly developed TPP+-selective electrode. Not only does the TPP+ 

method provide better sensitivity and quantification, the ΔΨm data in this study also has 

higher physiological relevance since it was measured from PmFBs in situ, the first such 

data reported under state IV-III respiration kinetic conditions.  

Prior research shows that a 6hr lipid infusion decreases ΔΨm by 33% of 

non-energized resting human intact skeletal muscle fibers by using TMRE stain and 

confocal239. However the better quantified ΔΨm under energized status is unknown. The 

present data show slightly increased energized state III ΔΨm in acute lipid loaded rats 

which was prevented by exercise. Interestingly, ΔΨm during low JO2 states was not 

affected by lipid loading but tended to be lower when followed with exercise. The lipid 
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group had the highest ΔΨm without affecting JO2. The state III ΔΨm was similar between 

control, exercise, and lipid+exercise groups, but JO2 tended to be higher in the exercise 

group. Our data indicate higher ΔΨm and ROS production can be caused in a short time 

by lipid loading if no increased in energy demand. Although it was shown that skeletal 

muscle uncoupling protein 2 (UCP2) and UCP3 mRNA levels was enhanced in lean 

Zucker rats after 24h intralipid continuously infusion240, the protein level is unlikely be 

different within 2h after the lipid loading in our study. Further, it was shown that fatty 

acid promote UCP2 and 3 activity241,242 which should attenuate the mEH2O2, ΔΨm and 

maybe even reduce JO2 in some degree. In our study, however it seems that 

uncoupling protein (UCP) activity is less likely a significant contributing factor since both 

mEH2O2 and ΔΨm are still high while JO2 is unaffected. On the other hand, it seems 

exercise activates respiratory enzymes which make the mitochondria more coupled and 

therefore more able to maintain ΔΨm when subjected to a given substrate stress under 

state III condition. Similar lipid effects were found from other laboratories. A trend for an 

increase in succinate supported state IV ΔΨm or proton leak kinetics (the kinetic 

relationship of H+ flux to ΔΨm through simultaneous recording of oxygen consumption 

and potential) has been reported in isolated skeletal muscle mitochondria of C57BL/6 

mice243 and S-D rats244 on a long term HFD. Isolated liver mitochondria from diabetic 

Goto-Kakizaki (GK) rats show higher ΔΨm under both energized state IV245,246 and low 

state III245 respiration when compared with control Wistar rats245, although no ΔΨm 

difference was found in isolated brain, kidney, skeletal muscle mitochondria in the same 

animal model246 or isolated cardiac mitochondria from streptozotocin-induced diabetic 

rat model247. However, some neutral or opposite results were also found. Isolated liver 

mitochondria from rats fed a HFD for 7 weeks show no change in succinate supported 
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state IV ΔΨm, proton leak rate/kinetics, and maximal state III ΔΨm, although increased 

oxidative stress and impaired glucose tolerance were observed237. In addition, despite 

increased oxidative or nitrosative stress, high glucose and/or high FFA cultured 

adipocytes248 and isolated liver mitochondria from 16 weeks HFD fed mice249 both show 

decreased ΔΨm in an energized state248. Collectively, the development of oxidative 

stress is very consistent, but the impact of lipid loading on ΔΨm is less predictable 

depending on the: energy status or substrate condition, duration of the metabolic 

intervention, and method of ΔΨm measurement. Even though inconsistent data has 

been found, ΔΨm appears to operate within a small range in a given substrate condition 

and is less easily affected by a metabolic intervention (i.e., a ceiling effect). In the 

short-term, when substrate supply is high without an increase in energy expenditure, it 

tends to cause high ΔΨm. However, if the high lipid is continued, ΔΨm and ROS may 

cause lipid-enriched mitochondrial membrane composition modifications and structural 

damage, which could impair the ability of mitochondria to develop a sufficient ΔΨm and 

eventually cause reduced ΔΨm, OXPHOS capacity and mitophagy although ROS 

production is still high.  

Reduced mitochondrial density is a prominent characteristic of skeletal muscle 

from obese/diabetic individuals. The implication is that prolonged nutritional overload 

leads to mitochondrial degeneration and loss of mitochondrial content due to mitophagy 

and/or mitoptosis. The mPTP is a large conductance channel in the mitochondrial inner 

membrane comprised of multiple proteins which have not been fully identified. mPTP is 

sensitive to various cellular stresses, including calcium219-221,250 and ROS222,223,250. The 

opening of the mPTP triggers the collapse of ΔΨm, release of pro-apoptotic factors, and 

mitochondrial degeneration. mCa2+
RC is a negative indicator of the susceptibility of 
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permeability transition pore opening, or apoptosis upon matrix Ca2+ accumulation. An 

increase in ΔΨm and reduced cell viability have been shown in cells either cultured with 

high glucose or fructose233. However, the direct evidence of substrate acute or over 

supply on mCa2+
RC is limited, not to mention in vivo or in situ conditions. Although partial 

negative effects have been reported251, both single bout endurance exercise218 and 

long-term regular endurance training252 have been shown to improve mCa2+
RC under 

different stress states. Our data further show that under clamped state III respiratory 

conditions, supported by multiple substrates, low intensity exercise attenuates the single 

lipid loading mediated reduction (~35%) in skeletal muscle mCa2+
RC in situ. This is the 

condition predominantly stressed by Ca2+. During state IV, however, there is no clear 

treatment effect on mCa2+
RC. It may be due to the synergized effect of the Ca2+ stress 

and relatively high state IV ΔΨm and mEH2O2 that exceed a certain threshold regardless 

of the treatment effect. In addition, a striking mCa2+
RC difference between state IV and 

state III respiration condition was also observed. Under low state III condition (50µM 

ADP), mCa2+
RC is dramatically increased when compared with state IV. However, there 

was only a minimal difference in mCa2+
RC between low and high state III respiration 

conditions. It has been previously reported that the sensitivity of the mPTP opening to 

matrix Ca2+ accumulation can be greatly reduced by ATP and ADP due to their ability to 

act as substrates of the adenine nucleotide translocase (ANT)250,253,254. By default, 

reduction in ΔΨm and ROS production under state III respiration also plays a role. This 

exponential relationship between ADP levels (or JO2 levels) and Ca2+-induced mPTP 

opening sensitivity brings up the physiological concern of experimental conditions 

similar to the ROS production measurements. Similar mCa2+
RC experiments were often 

performed under state IV condition supported with multiple substrates or even solely 



 

- 45 - 

 

with high superoxide-causing succinate. However, a more preferred condition to 

evaluate the mCa2+
RC should be performed under ―clamped‖ moderate state III condition 

supported with multiple substrates which mimic the more physiological substrate 

condition and the levels of JO2, ΔΨm and mEH2O2. It is well known that both high ΔΨm 

and ROS trigger mitochondrial permeability transition although the mechanism is still 

largely unknown. Recent advances in redox biology identified the structure and 

enzymatic activity of proteins within the mPTP complex that are capable of undergoing 

reversibe redox modification could be responsible for mPTP opening255-257. Collectively, 

these findings suggest that exercise may ameliorate the higher level of mitophagy 

and/or mitoptosis normally associated with long-term substrate oversupply (e.g., obesity 

and diabetes) by preserving the reduced redox status of the mPTP complex due to the 

exercise-induced increase in JO2 and the associated reduction in ΔΨm and ROS 

production. 

It has been shown long-term over nutrition, particularly lipid, is associated with 

oxidative stress and could causally lead to insulin resistance and mitochondrial 

dysfunction63,64. It is less appreciated how a single metabolic challenge could 

dynamically affect the control of mitochondria, (e.g. JO2, ΔΨm, ROS production and 

apoptosis susceptibility). Our data suggest that ΔΨm is in a constant state of flux during 

the day, depending on 1) the local intracellular rate of ATP utilization and 2) the rate at 

which reducing equivalents are presented to the mitochondria relative to energy 

demand (e.g., low ATP demand and high intracellular energy supply raise ΔΨm, high 

ATP demand lowers ΔΨm). Keeping in mind that the ΔΨm at which superoxide begins to 

form significantly is fairly high (i.e., more negative than about -160mV), we envision (Fig. 

2-8) that ΔΨm oscillates above and below this threshold during the course of the day, 
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particularly in skeletal muscle. The more time spent inactive and under a positive 

energy balance, the more time ΔΨm is likely to exceed the threshold, thus favoring 

mitochondrial ROS production and apoptosis susceptibility. Conversely, the more time 

spent active and in metabolic balance, the less ΔΨm will rise above the threshold at 

which electrons leak to oxygen. 

 

Conclusion 

The interplay between substrate supply and metabolic demand is at the heart of 

cellular metabolic balance and the consequences of metabolic imbalance. This study 

provides mechanistic insights on the acute impact of cellular energy supply relative to 

demand on the control of ΔΨm, ROS production, and apoptosis susceptibility. Our data 

emphasize the deleterious effects of acute lipid oversupply at the mitochondrial and 

cellular level can occur rapidly, but can be sufficiently counterbalanced by mild increase 

in energy demand (low intensity exercise). Increased energy expenditure is fundamental 

to the preservation of mitochondrial function/integrity and/or for preventing oxidative 

stress on a daily basis. 
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Figure 2-2. A single lipid loading or low intensity exercise has no effect on muscle 

mitochondrial respiration capacity. PmFBs mitochondrial respiration capacity was 

supported by: 2mM malate/ 25µM palmitoyl-L-carnitine (M/PC) + 2mM ADP + 5mM 

glutamate (G) + 10mM succinate (S) + 10µM cytochrome C (Cyto C) + 10µg/ml 

oligomycin (Oligo) + 4µM FCCP. 
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Figure 2-3. Low intensity exercise attenuates the single lipid loading-induced increase in 

mitochondrial H2O2 emitting potential (mEH2O2) during state IV respiration. (A) Muscle 

mEH2O2 in response to lipid based substrates 10mM glycerol-3-phosphate (G3P) + 25µM 

palmitoyl-L-carnitine (PC). G3P stresses the system by feeding electron into Q cycle via 

mitochondrial glycerol-3-phosphate dehydrogenase in the form of FADH2. PC provides 

electrons in the form of NADH and FADH2 via β-oxidation. * p<0.05 vs Control & 

Lipid+Ex. # p<0.05 vs Control. (B) Muscle mEH2O2 in response to complex I reverse 

electron flux by complex II substrate 10mM succinate (S). 10mM G3P was further 

added to provide additional strain. * p<0.05 vs Control. # p<0.05 vs Control & Ex. 
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Figure 2-4. TPP+ (1.5μM) has no affect on mitochondrial respiration but provides high 

TPP+ electrode sensitivity. (A) In PmFBs, a control experiment shows no inhibition of 

mitochondrial respiration by 1.5 µM TPP+ using the same substrate protocol as in figure 

2-5 or figure 2-6 (A). n= 8-10/condition evenly obtain from 2 rats. (B) The TPP+ 

electrode sensitivity obtained from the experiment in figure 2-6 (A) is 53.56±3.034 

mV/Decade (mean±SD, n=36).   
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Figure 2-5. Representative experimental trace of ΔΨm & JO2. Reagents added at the 

start of the experiment include State III respiration ―clamping‖ reagents: 2U/ml 

hexokinase and 5mM 2-deoxyglucose; mitochondrial substrates: 10mM glutamate/ 

15mM pyruvate/ 2mM malate/ 10mM glycerol-3-phosphate/ 10mM succinate. After the 

pTPP+ signal reaches a steady state, the TPP+-selective electrode was calibrated by a 5 

point TPP+ titration range from 1.1 to 1.5µM TPP+. The calibration and sensitivity 

calculation was based on the actual TPP+ working range. PmFBs were added into the 

chamber to obtain the maximal state IV ΔΨm and JO2. An ADP titration (25, 50, 100, 

250, 500, 1000, 2000μM) followed to obtain the kinetics of state III ΔΨm and JO2. 2µM 

FCCP was added in the end to prove the concept that TPP+ uptake is ΔΨm driven. The 

calculated steady state ΔΨm and JO2 is indicated. The experiment was performed at 

25ºC. Blue line: pTPP+. Red line: JO2. Black line: [O2].  
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Figure 2-6. Low intensity exercise attenuates the single lipid loading-induced increase in 

mEH2O2 and reduction in mCa2+
RC, with increasing JO2 and reducing ΔΨm. To determine if 

low intensity exercise is sufficient to attenuate the potential negative effect on JO2, ΔΨm, 

mEH2O2 and mCa2+
RC by single lipid loading in skeletal muscle from rats, the kinetics of 

these parameters under state IV-III conditions from PmFBs mitochondria were 

measured. Each experiment was performed essentially in parallel under similar 

buffering conditions supported with the same substrate protocol. 2U/ml hexokinase and 

5mM 2-deoxyglucose were included in the system to ―clamp‖ different level 
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physiological state III respiration states. Multiple substrates including10mM glutamate/ 

15mM pyruvate/ 2mM malate/ 10mM glycerol-3-phosphate/ 10mM succinate were 

added in the beginning of the protocol to obtain a maximal state IV response. An ADP 

titration (25, 50, 100, 250, 500, 1000, 2000µM) followed to obtain the state III kinetics 

response in panel (A) and (B). In panel (C), data from each ADP concentration 

represents each individual experiment/PmFB under the same buffer and substrate 

background as panel (A) and (B). (A) JO2 and ΔΨm. JO2 and ΔΨm were simultaneously 

measured from the same PmFB. Single lipid loading has very little effect on JO2 while 

low intensity exercise causes a mildly increased JO2 across different [ADP] conditions. 

In JO2: * p<0.05 Lipid+Ex vs Control at 0 and 25µM ADP. Slightly increased ΔΨm by 

single lipid loading was normalized by exercise. A less conservative statistics method 

was applied and significance power was set at p<0.05 or p<0.1. ΔΨm at 2000µM was 

not reported since many of the raw pTPP+ signal above 1000µM ADP were not very 

steady and did not meet the steady status criteria. In ΔΨm: $ p<0.05 Lipid vs Lipid+Ex; # 

p<0.1 Lipid vs Lipid+Ex; x p<0.1 Lipid vs control; T-test. (B) Low intensity exercise 

maintain lower mEH2O2 after rats received single lipid loading in both state IV and state III 

condition. * p<0.05 Lipid vs Lipid+Ex. (C) Exercise attenuate the single lipid 

loading-induced reduction in calcium retention capacity under state III but not state IV 

condition. * p<0.05 Lipid vs Control & Ex. Each data set was examed by one-way 

ANOVA + Tukey in each [ADP] condition expect panel (A) ΔΨm data was examed by 

t-test. 
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Figure 2-7. Mitochondrial membrane potential, OXPHOS and H2O2 emission kinetics. 

The control group ΔΨm, JO2 and JH2O2 kinetics data from figure 2-6 was further plotted. 

Mitochondria of permeabilized rat red gastrocnemius muscle was supported by 10mM 

Glutamate/ 15mM Pyruvate/ 2mM Malate/ 10mM Glycerol-3-Phosphate/ 10mM 

Succinate. It was followed by ADP titration. Assays were performed in 25ºC with 25uM 

blebbstatin to prevent muscle contraction and with 2U/ml hexokinase/ 5mM 

2-deoxyglucose/ 20mM creatine to ―clamp‖ the [ADP] level. This proves the concept of 

bioenergetics principle that mild increase in mitochondrial respiration (energy 

expenditure) from idling reduces mitochondrial membrane potential (ΔΨm) and 

exponentially reduces H2O2 emission rate. N = 8.
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Figure 2-8. Schematic illustration showing predicted fluctuations in ΔΨm. (A) An 

individual out of metabolic balance due to excess caloric intake, particularly HFD, and 

sedentary lifestyle. (B) An individual in metabolic balance due to appropriate caloric 

intake and active lifestyle. Dotted line indicates approximate threshold ΔΨm at which 

electrons begin to leak to from superoxide significantly. Arrows signify calorie intake. 

Red indicates progressively increasing mitochondrial H2O2 emission. Blue indicates 

progressively increasing mitochondrial O2 consumption. 



 

 

 

 

CHAPTER 3: Mildly Increased Energy Expenditure by either Exercise or β-GPA 

Sufficiently Prevent Increased Mitochondrial H2O2 Emission Potential and Insulin 

Resistance Induced by High Fat Diet in Rodents 

 

Abstract 

High fat diet (HFD)-induced mitochondrial H2O2 emission has been suggested as 

a primary factor linking excess fat intake to the development of insulin resistance (IR). 

Mitigating HFD-induced H2O2 emission may be a potential strategy to treat and/or 

prevent type II diabetes. Mitochondrial reactive oxygen species production is favored 

when cellular substrate supply is high and energy demand is low, and vice versa. The 

objective of this study was to determine if a daily mild increase in energy expenditure by 

either low intensity exercise or treatment with β-guanidinopropionic acid (β-GPA), a 

creatine analogue, is sufficient to prevent the increase in skeletal muscle mitochondrial 

H2O2 emitting potential (mEH2O2), and the decrease in insulin sensitivity induced by HFD 

in rodents. HFD increased mEH2O2 and decreased insulin action whereas both were 

preserved by either exercise or β-GPA. The protective effects of exercise or β-GPA 

were independent of mitochondrial respiratory function, fatty acid oxidation rate and 

AMPKα2 genotype. These data demonstrate that a small increase in energy 

expenditure prevents the increase in mEH2O2 potential and development of insulin 

resistance, supporting the concept that the governance of mitochondrial H2O2 emission 

is a primary factor regulating insulin sensitivity in skeletal muscle. 

 

Introduction 



 

- 56 - 

 

A considerable body of research has reported consistent elevations in oxidative 

stress in both animal and human models of obesity and type II diabetes (T2D)21,63,64,224. 

Furthermore, a cause and effect relationship between mitochondrial reactive oxygen 

species (ROS) production and insulin resistance (IR) has recently been suggested62-65. 

In this context, mitigating oxidative stress may be a potential strategy to treat and/or 

prevent diabetes. Disruptions in whole body metabolic balance, in which substrate 

supply far exceeds energy demand on a consistent basis is believed to be the driving 

force behind this aforementioned relationship between mitochondrial ROS and 

metabolic disease. Previous work by our group has demonstrated that acute and 

chronic nutritional oversupply increases muscle mitochondrial H2O2 emitting potential 

(mEH2O2), a phenomenon that is causally linked to IR64. The interplay between metabolic 

supply and ROS production is well established, yet the extent to which energy 

expenditure can compensate for the deleterious effects of over-nutrition on ROS 

production, cellular redox state and insulin sensitivity is currently unknown. Based on 

fundamental principles of bioenergetics, when the rate of ADP supply to mitochondria is 

very low (state IV or close to state IV respiration), the mitochondrial membrane potential 

(ΔΨm) is high and an exponential increase in superoxide (O2¯•) generation occurs within 

a small range of ΔΨm values exceeding about -160mV79,81-84. The inverse occurs when 

the mitochondrial ADP levels rise (i.e., ↑energy turnover or ↑energy expenditure) which 

lead to a reduction in ΔΨm through F1F0 ATP synthase complex activity85,86 and 

dramatically reduced O2¯• generation. Therefore, increased energy expenditure 

(↑ADP/ATP) or reduced substrate supply (↓NADH/NAD+) can reduce O2¯• generation, 

decrease oxidative damage, and potentially attenuate IR. Therefore, we hypothesized 

that chronic mild increases in energy expenditure by either low intensity exercise or 
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β-guanidinopropionic acid (β-GPA) treatment could sufficiently prevent the increase in 

mitochondrial oxidant emitting potential and the decrease in insulin sensitivity that is 

normally induced by a high fat diet (HFD). 

Increasing physical activity represents one of the most effective means of 

reversing IR in skeletal muscle of overweight/obese patients at high risk for T2D. 

However, it is generally believed that moderate-high intensity aerobic exercise is 

required to have a positive outcome on IR. However, if oxidative stress is a primary 

factor causing insulin resistance, then even a mild increase in energy expenditure 

should be sufficient to prevent diet induced IR as it should, in theory, reduce O2¯• 

generation significantly. 

β-GPA is a non-metabolized creatine analog that cannot be used to regenerate 

ATP. β-GPA feeding in rodents chronically decreases skeletal muscle ATP, 

phosphocreatine, creatine and total creatine content by about 50%, 90%, 80% and 85%, 

respectively185. In other words, cellular energy charge is decreased, which causes an 

increase in cellular metabolic demand (ATP synthesis) to compensate for the decrease 

in energy availability. Consistent with work showing an increase in mitochondrial 

biogenesis during conditions of high metabolic demand, β-GPA feeding has also been 

shown to induce mitochondrial biogenesis in rodent skeletal muscle189,258, while 

attenuating IR and T2D182-184 although the exact mechanism is unclear. The overriding 

hypothesis of this project is that a mild increase in energy expenditure in cells will 

significantly decrease mEH2O2 and thereby prevent the development of IR induced by a 

HFD. However, an increase in energy expenditure and associated decrease intracellular 

energy charge (i.e., ATP/ADP ratio) may also activate 5‘-AMP-activated protein kinase 

(AMPK). AMPK-mediated signaling is known to stimulate glucose uptake independent 
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of insulin192. Both exercise186-188 and β-GPA185,189-191 have also been shown to activate 

AMPK. This suggests any metabolic effects induced by exercise or β-GPA, if occurring, 

may be mediated by AMPK and/or mH2O2. AMPKα2 is the main AMPK catalytic subunit 

dominant in skeletal muscle, heart, and liver259-261. Therefore, to better define the role of 

AMPKα2 signaling under β-GPA feeding, we tested whether β-GPA treatment 

normalized HFD induced IR and elevated mEH2O2 in the AMPKα2-DN mice. The 

AMPKα2-DN mice262 express a dominant negative mutant (non-functional) form of the 

AMPK alpha2 catalytic subunit specifically in both skeletal and cardiac muscle.  

The results show that a daily mild increase in energy expenditure, independent of 

AMPK activation, is sufficient to prevent the increase in skeletal muscle mEH2O2, and 

decrease in insulin sensitivity induced by metabolic oversupply (HFD). 

 

Methods 

Rat Study 

Young male Sprague-Dawley rats (4 groups, n=10/ group, ~200g bodyweight) 

were maintained on a standard 12h/12h light/dark cycle (7:00 am light). Rats were fed a 

standard chow (Chow) or high fat diet (HF, rodent diet with 60% of total calorie from fat, 

Research Diets D12492) for seven weeks. The animals given a high fat diet were also 

administered either low intensity exercise (HF-EX, treadmill, 15m/min, 0 grade, 2h/d, 

3-5pm, 7d/wk, 7wks) or β-GPA (HF-GPA, 2 times of 200mg/kg whole body mass/day, 

8:30am & 5:00pm, 7d/wk, the final 5 wks only, by oral gavage). β-GPA was 

administered twice a day to account for the metabolic clearance. A water gavage (1ml) 

control was performed in Chow, HF and HF-EX groups every 3 days. Body weight was 

recorded weekly. The rats were acclimated to procedure conditions every 2 weeks 
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including restraining/handling. A 10h fasting blood sample from the tail vain followed for 

blood glucose and serum insulin level determination. There was no difference in fasting 

glucose and insulin level over the time course of treatment or between groups (data not 

shown). Oral glucose tolerance tests (OGTT, 2g/ kg whole body mass) were conducted 

during week 6 in the morning following an overnight fast (10h). Blood samples from 

OGTT were analyzed for glucose using a handheld glucometer (OneTouch Ultra) and 

serum insulin levels using a commercially available ELISA kit (Millipore). In the morning 

during week 7, five rats from each group were sacrificed after either a 4h fast (n=5/ 

group) or 1h after a glucose gavage (2g/ kg whole body mass) performed after a 3h fast 

to examine mitochondrial function, oxidative stress and insulin signaling in muscle.  

Insulin sensitivity index was calculated as the inverse of the area under the curve for 

glucose x area under the curve for insulin263. Muscle fiber samples from fresh red 

gastrocnemius (RG) were obtained and trimmed of connective tissue. A portion of 

muscle (~20mg) was immediately used for the preparation of small fiber bundles (each 

~0.8-1.5mg wet weight, ~100 muscle fibers/bundle) under a dissecting scope. Fiber 

bundles were immediately saponin-permeabilized and maintained in buffer at 4ºC until 

used to assess mitochondrial oxygen respiration (JO2) and mEH2O2. Fresh mixed 

gastrocnemius muscle and liver tissue were also obtained to determine FAO rate. The 

remainder of the fresh RG was frozen by liquid nitrogen and stored in -80oC for later 

analysis of AMPK and insulin signaling proteins (total and phosphorylated AMPKThr172 

and AktSer473 by Western Blot).  

AMPKα2-DN Mouse Study 

AMPKα2-DN mice were kindly provided by Morris Birnbaum262. Male 

AMPKα2-DN mice and their wild-type (WT) littermates (5 groups, n=9-18/group) were 
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fed standard chow diet or HFD with or without β-GPA started at 13-18 weeks of age. 

Mice were maintained on a standard 12h/12h light/dark cycle (7:00 am light). WT mice 

were fed standard chow (WT-Chow) or HFD for 10 weeks (Research Diets D12492) 

(WT-HF), or HFD plus β-GPA oral gavage for 10 weeks (WT-HF-GPA, 2 times of 

250mg/ kg whole body mass/day, 8:30am & 5:00pm, 7d/wk). AMPKα2-DN mice were 

fed HFD for 10 weeks (DN-HF), or HFD plus β-GPA oral gavage for 10 weeks 

(DN-HF-GPA). A water gavage (0.4ml) was performed on all non-β-GPA fed groups 

every 3 days. Body weight was recorded weekly. In week 8, whole body metabolic state 

was assessed via an indirect calorimetry system. Body composition was determined 

immediately after the mice came out of the calorimetry system. In week 9, after the mice 

acclimated to surgery room and restrainers/handling for 2 days, intraperitoneal glucose 

tolerance tests (IPGTT, 1.5g dextrose/kg whole body mass) were performed following a 

4h fast that began at 4:00 am (last 3h of dark cycle). Blood samples from the IPGTT 

were analyzed for blood glucose and plasma insulin level (fasting and 30 minutes after 

the glucose injection). Mice were sacrificed on the 10th week after a 4h fast in the 

morning. Soleus & EDL muscle strips from both legs were obtained for the 

measurement of basal and insulin stimulated 3H-2-deoxyglucose (3H-2-DOG) uptake. A 

portion of fresh RG was immediately saponin-permeabilized and maintained (4ºC) in 

buffer for the determination of JO2 and mEH2O2. Body composition was determined again 

the day prior to sacrifice. 

Permeabilized Myofibers (PmFBs) Preparation 

Animals were anaesthetized by IP injection of ketamine/xylazine (9:1) mixture. 

The same portion of fresh RG muscle from each animal was harvested, trimmed of 

connective tissue, and fresh muscle fiber bundles (~2 x 7mm, 2-3mg wet weight) were 
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gently separated to maximize the exposure surface using fine forceps under a binocular 

dissecting microscope in ice-cold buffer X containing (in mM) 60 K-MES, 35 KCl, 7.23 

K2EGTA, 2.77 CaK2EGTA, 20 imidazole, 0.5 dithiothreitol, 20 taurine, 5.7 ATP, 15 

phosphocreatine 6.56 MgCl2·6H2O (pH adjusted to 7.10) plus 0.5 glutamate (G) and 0.2 

malate (M). After separation, the plasma membrane of myofiber bundles were 

permeabilized in buffer X with 0.5mM G, 0.2mM M and 50μg/ml saponin while gently 

shaking on a rocker at 4ºC for 30min. To wash out the extra-mitochondrial components, 

the PmFBs were subsequently washed in buffer Z containing (in mM) 105 K-Mes, 30 

KCl, 10 K2HPO4, 5 MgCl2·6H2O and 5mg/ml bovine serum albumin (pH adjusted to 

7.40) plus freshly added 1 EGTA, 0.5 G and 0.2 M with gently shaking on a rocker at 

4ºC for 15 min. 

Measuring JO2 in PmFBs 

JO2 was measured in PmFBs (~0.4mg after freeze-dried) using high-resolution 

respirometry (Oroboros Oxygraph-2 K (O2K) Innsbruck, Austria) at 30ºC in assay buffer 

containing buffer Z plus 1mM EGTA, 20mM creatine (to saturate endogenous creatine 

kinase) and 50µM N-benzyl-p-toluene sulphonamide (a muscle contraction inhibitor264). 

After establishing a background JO2 rate in the presence of a PmFB, the reaction was 

initiated by the addition of sequential substrates. 

Measuring mEH2O2 in PmFBs  

Washed PmFBs (~0.2mg after freeze-dried) were rinsed with 10mM sodium 

pyrophosphate in ice-cold Buffer Z for three minutes prior to mEH2O2 measuring to 

deplete the fibers of endogenous adenine nucleotides and to prevent 

calcium-independent contraction of the fibers during the assay. mEH2O2 was measured 

by continuously monitoring the fluorescence probe Amplex Red (Invitrogen, A22188; 
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excitation/emission: 563/587nm) using spectrofluorometers (In rat study: Spex 

Fluoromax 3, Horiba Jobin Yvon; in mice study: Fluorolog-3, Horiba Jobin Yvon) with 

temperature control at 30ºC and magnetic stirring. The assay buffer contained buffer Z 

plus 10U/ml CuZn-superoxide dismutase, 10µM Amplex Red, 1.5U/ml horseradish 

peroxidase and 10µg/ml oligomycin (state IV respiration condition). After establishing a 

background fluorescence rate in the presence of a PmFB, the experiment was initiated 

by the addition of sequential substrates. mEH2O2 rate was calculated from the slope of 

ΔF/min, after subtracting background, using a standard curve established for each 

reaction condition. 

At the conclusion of each experiment, PmFBs were washed in ddH2O to remove 

salts and then freeze-dried in a lyophilizer (LabConco). JO2 and mEH2O2 were normalized 

to dry tissue weight since a functional index of mitochondria density (FCCP uncoupled 

JO2, figure 3-4, 3-5 (non glucose challenged state) & figure 3-12) was not significantly 

different between groups in either rat or mouse study. 

Indirect Calorimetry and Locomotor Activity 

Mouse whole body metabolic state at week 8 of treatment was measured in a 

Calorimetry Module (CaloSys V2.1, TSE Systems) with the relevant software (ActiMot2, 

TSE Systems) for two complete light-dark cycles (48h) after 4 days of acclimation. 

Parameters measured included whole body oxygen consumption, CO2 expiration, 

respiratory exchange ratio (RER), food intake and X+Y+Z axis locomotor activity. 

Body Composition 

Whole body composition of live mice was determined using the Echo Magnetic 

Resonance Imaging (EchoMRI-900™, Echo Medical System, Houston, TX), a QNMR 

system used to precisely measure whole body composition parameters including total 
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body fat, lean mass, body fluids, and total body water in live rats/mice without the need 

for anesthesia or sedation. 

3H-2-DOG Uptake 

Muscle strip 3H-2-DOG uptake assay was modified from previously described 

methods265,266. Immediately after excision from the animal, muscle samples were placed 

in a sealed container with 1.5ml of oxygenated (95% O2 & 5% CO2) Krebs-Henseleit 

buffer (KHB), containing (mM): 2.52 CaCl2, 4.73 KCl, 1.18 MgSO4, 118 NaCl, 1.17 

KH2PO4 and 25 NaHCO3 with 25µM blebbistatin (Bleb, an inhibitor of  myosin II 

crossbridge formation212-215) in room temperature for transport. Each experiment was 60 

min in total duration. Muscle strips were first pre-incubated for 30min under basal 

conditions (oxygenated KHB+Bleb). Where appropriate, muscle strips were 

pre-incubated with insulin (100nM) for the last 10min of this pre-incubation period. 

Following the pre-incubation period, muscle strips were then transferred to incubation 

wells containing identical conditions with the exception that the incubation media 

contained 10mM 2-DOG, 40mM mannitol, 2.0µCi/ml 3H-2-DOG (to quantify glucose 

transport), 0.1µCi/ml 14C-D-mannitol (as an extracellular space marker), and with or 

without insulin (100nM) where appropriate. Pre-incubation and incubation volumes were 

2ml. Samples were continuously gassed with 95% O2 & 5% CO2. Incubation 

temperature was maintained at 29ºC in a gentle shaking water bath. After incubation 

period, muscle strips were washed in ice-cold KHB gently twice for 5 minutes each to 

wash off excess 2-DOG and mannitol from the samples. After washing, muscle strips 

were blotted, weighed, and then solubilized in 0.5ml of 0.5N NaOH. Solubilized muscle 

strips and incubation media samples (specific activity determination) were then 
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stabilized in scintillation fluid for 7 days before being counted in a Beckman LS 5000 TD 

liquid scintillation counter preset to count 14C and 3H channels simultaneously. 

Preparation of Skeletal Muscle Homogenates and Western Blotting 

Frozen muscles were powdered under liquid N2 and 50-80mg of powdered tissue 

was homogenized in ice-cold lysis buffer [50mM HEPES, 50mM Na+ pyrophosphate, 

100mM Na+ fluoride, 10mM EDTA, 10mM Na+ orthovanadate, 1% Triton X-100, and 

protease and phosphatase (1 and 2) inhibitor cocktails (Sigma, St. Louis, MO)]. 

Homogenates were sonicated for 10sec then rotated for 2h at 4ºC. After centrifugation 

for 25min at 15,000g, supernatants were extracted and protein content was detected 

using a BCA protein assay (Pierce, Rockford, IL) and individual homogenate volumes 

were separated into 50µg of protein before being frozen in liquid nitrogen and stored at 

-80ºC until used for immunoblotting. Conventional immunoblotting techniques were 

employed using antibodies specific for total AMPK, phosphorylated AMPKThr172, total Akt 

and phosphorylated AktSer473 (Cell Signaling 2532, 2531, 9272 and 9271, respectively). 

Homogenates were subjected to monoclonal IP antibody overnight then coupled to 

protein A sepharose beads and rotated for 2 hours (Amersham Biosciences, Uppsala 

Sweden) and eluted with sample buffer. Samples were separated by SDS-PAGE using 

7.5% or 10% Tris-HCl gels and then transferred to PVDF membranes for probing by 

appropriate antibodies. Following incubation with primary antibodies, blots were 

incubated with appropriate horseradish peroxidase-conjugated secondary antibodies. 

Horseradish peroxidase activity was assessed with ECL solution (Thermo Scientific, 

Rockford, IL), and exposed to film. The image was scanned and band densitometry was 

assessed with Gel Pro Analyzer software (Media Cybernetics, Silver Spring, MD). 

Content of phospho-proteins (using phosphor-specific antibodies) was calculated from 
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the density of the band of the phospho-protein divided by the density of the protein 

using the appropriate antibody. 

Muscle and Liver Fatty Acid Oxidation 

With minor modifications from previous267, experiment utilizing [1-14C]palmitate 

was performed to study the mitochondrial fatty acid oxidation rate of fresh liver and 

mixed gastrocnemius muscle tissue homogenate. Palmitate (200µM) was bound to 

0.5% bovine serum albumin (3.3 molar ratio of fatty acid:albumin). Specific activities for 

[1-14C]palmitate (200µM) were ~8,000-10,000dpm/nmol (0.5µCi/ml). Once solubilized, 

fatty acid substrate were brought up in reaction buffer to yield the following final 

concentrations (mM): 100 sucrose, 10 Tris·HCl, 10 KPO4, 100 KCl, 1 MgCl2·6H2O, 1 

L-carnitine, 0.1 malate, 2 ATP, 0.05 coenzyme A, and 1 dithiothreitol (pH adjusted to 

7.40). Oxidation studies measured 14C-labeled CO2 and acid-soluble metabolite (ASM) 

production over the course of 30 min. Radioactivity of CO2 and ASM fractions was 

determined by liquid scintillation counting using 4ml of Uniscint BD (National 

Diagnostics, Atlanta, GA). Fatty acid oxidation was quantified using the following 

formula: 60 min/h x [(dpm – BL)/SA]/[g of tissue wet wt/well x time (min) of reaction 

incubation], where BL is dpm of blank wells and SA is fatty acid-specific radioactivity. 

Data are expressed as nano moles of substrate oxidized per gram tissue wet weight per 

hour. 

Statistical Analysis 

A monoexponential fitting of the Michaelis-Menten kinetic curve was computed 

using GraphPad Prism software 5.02 (San Diego, CA) to determine the Km and Vmax 

of the respirometric substrate titration data. Independent student‘s t-tests, one way 

ANOVA + Tukey or two-way ANOVA + Bonferroni (as appropriate) were performed as 



 

- 66 - 

 

dictated by the design of the study. All values are reported as Mean ± SEM. Statistical 

significance was set at p<0.05. 

  

Results 

HFD-Induced Insulin Resistance is Attenuated by β-GPA and Exercise in Rats 

Independent of Changes in Fatty Acid Oxidation 

Body weight increased over the duration of the study but did not differ among 

treatment groups (Fig. 3-1F). To determine if daily treatment with β-GPA or low intensity 

daily treadmill exercise is sufficient to preserve insulin action in rats consuming a HFD, 

whole body glucose tolerance and skeletal muscle insulin signaling were measured. As 

expected, the areas under the curve for both glucose and insulin were elevated in 

HFD-fed rats. Both β-GPA treatment and exercise preserved whole body insulin 

sensitivity (Fig. 3-1A-E). Interestingly, the increase in Akt phosphorylation, a marker of 

insulin signaling, 1h following a glucose challenge was blunted in animals fed the HFD, 

consistent with the development of insulin resistance. However, Akt phosphorylation 

was partially restored only in the β-GPA treated animals (Fig. 3-2A). Interestingly, the 

improved glucose clearance in the β-GPA-, but not low intensity exercise-, treated 

animals occurred concurrent with increased AMPK phosphorylation ratio, an index of 

AMPK activation (Fig. 3-2B). To determine if potential treatment effects on insulin 

sensitivity paralleled changes in FAO, palmitate oxidation was measured from fresh 

mixed gastrocnemius muscle and liver tissue homogenates. HFD did not cause any 

change in FAO in either skeletal muscle or liver homogenates. In fact, a trend of 

increased FAO in HFD fed rats was observed in muscle (Fig. 3-3). 
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β-GPA and Exercise Improve Mitochondrial OXPHOS Capacity in Rats 

To determine if HFD alone or coupled with daily β-GPA treatment or low intensity 

exercise alters mitochondrial respiratory sensitivity and capacity, JO2 in PmFBs was 

assessed under both basal (4h fast) and 1h after glucose challenge. Mitochondrial 

respiratory control indices which indicate the quality of mitochondria OXPHOS capacity 

were also calculated. During respiration supported only by the complex I substrates 

glutamate + malate, no differences were detected in either mitochondrial respiratory 

sensitivity or capacity under basal (no glucose challenge) or glucose challenge 

conditions with the exception of a decrease in sensitivity to ADP (increased Km) in 

HF-GPA rats in the basal state (Fig. 3-4). During respiration supported by multiple 

substrates, maximal ADP-stimulated respiration was increased by HF-GPA in the basal 

condition. Interestingly, in the glucose challenged condition, maximal respiration was 

elevated by HFD treatment and further elevated in HF-GPA and HF-EX (Fig. 3-5). The 

mitochondrial respiratory control indices showed no treatment effect on the ADP titration 

protocol in both basal and glucose challenged states or basal states using multiple 

substrates (Fig. 3-6). Under glucose challenged state in multiple substrate condition, 

HFD induced improvements in both respiration control ratio (increased) and adenylate 

control ratio (decreased) independent of β-GPA or exercise treatment (Fig. 3-6F). 

β-GPA and Exercise Prevent HFD-Induced mEH2O2 and mFRL% in Rats 

To determine if daily treatment with β-GPA or low intensity exercise may 

attenuate or prevent HFD induced elevations in mEH2O2
64, mEH2O2 was assessed under 

both basal and glucose challenge conditions. During succinate-supported respiration 

which induces high rates of H2O2 emission due to reverse electron flux back through 

complex I, HFD-induced a >2-fold increase in mEH2O2 under basal conditions that was 
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prevented by both β-GPA and exercise treatments (Fig. 3-7). Nearly identical responses, 

including protection by β-GPA and exercise treatments, were seen during respiration 

supported by multiple substrates (Fig. 3-8). In the glucose challenged condition, mEH2O2 

was increased in the chow fed animals during both succinate and multi-substrate 

conditions, illustrating the acute impact of metabolic overload on mitochondrial H2O2 

emission. Mitochondrial free radical leak percentage (mFRL%), an index of H2O2 

emission per O2 consumed, was also increased in HF animals and in chow fed animals 

in response to the glucose challenge (Fig. 3-9). Interestingly, the glucose challenge did 

not induce a further increase in mFRL% in HF animals, implying a ceiling effect. Both 

β-GPA and exercise treatments prevented the HFD-induced increase mFRL% in both 

the basal and glucose challenge conditions.  

β-GPA effects on Body Composition, Metabolic State and Locomotor Activity in Mice 

are independent of AMPKα2 Genotype 

To further test whether improvements in whole body metabolic profile, cellular 

oxidative stress and insulin sensitivity in response to β-GPA treatment during a HFD 

may be mediated by AMPK (suggested in Fig. 3-2B), young male AMPKα2-DN and their 

wild-type (WT) littermates were fed a HFD with or without β-GPA. The whole body 

metabolic state of these mice was monitored. Regardless of AMPKα2 genotype, β-GPA 

prevented HFD-induced body weight gain while both food intake and energy 

expenditure were significantly increased (Fig. 3-10). Importantly, total locomotor activity 

was not affected by β-GPA treatment, indicating that the increase in energy expenditure 

with β-GPA treatment was likely due to an increase in basal oxidative metabolism due 

to creatine depletion. Furthermore, respiratory exchange ratio was lower in β-GPA fed 

mice indicating a greater reliance on lipid metabolism. All metabolic parameters were 
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normalized to lean body mass to eliminate bias introduced by differences in total body 

weight between groups.  

β-GPA Maintains Insulin Sensitivity in Mice Fed a HFD Independent of AMPKα2 

Genotype 

IPGTT and muscle 3H-2-DOG uptake were conducted to determine if the effects 

of β-GPA on insulin sensitivity may be mediated by AMPK (Fig. 3-11). β-GPA treatment 

completely normalized both whole body glucose and insulin responses to the IPGTT 

and muscle-specific insulin-stimulated glucose uptake rates regardless of AMPKα2 

genotype. These findings indicate that the protective effects of β-GPA on HFD-induced 

insulin resistance are not mediated by AMPKα2. Interestingly, insulin-stimulated glucose 

uptake was higher in the EDL muscle of HF β-GPA treated as compared with chow fed 

wild-type mice. 

β-GPA Prevents HFD-Induced mEH2O2 and mFRL% Regardless of AMPKα2 Genotype 

As expected, HFD significantly increased mEH2O2 under multiple substrate 

conditions (Fig. 3-12). By contrast, neither mitochondrial respiratory capacity nor various 

indices of respiratory control were affected by the dietary regimen (Fig. 3-12 and 3-13), 

indicating ―normal‖ mitochondrial respiratory function. Regardless of AMPKα2 genotype, 

β-GPA treatment completely prevented the HFD-induced increase in mEH2O2 and 

mFRL% (Fig. 3-12), again in the absence of any change in respiratory function. In fact, 

β-GPA treated mice on HFD displayed lower mEH2O2 and mFRL% compared with the 

standard chow diet fed mice.   

 

Discussion 
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In the present study, chronic elevations in energy expenditure by either low 

intensity exercise or β-GPA treatment in both rats and AMPKα2-DN mice, resulted in 

the following major findings. First, aside from conventional wisdom that moderate-high 

energy expenditure is required, our results indicate a mild increase in energy demand 

by daily low intensity exercise or β-GPA treatment is sufficient to attenuate the 

HFD-induced mEH2O2 and IR. It follows from the principles of bioenergetics that a small 

reduction in ΔΨm caused by a mild increase in respiration from idling (close to state IV 

respiration condition) can sufficiently lower ―the reducing pressure of electron transport 

system (ETS)‖ and oxidant production that is otherwise causally linked to IR. Second, 

these data provide further support for the idea that elevated mitochondrial mEH2O2 

(and/or downstream oxidative stress) is likely to be one of the primary factors 

contributing to HFD-induced IR. Importantly, these findings demonstrate that the 

protective effects induced by an increase in energy expenditure are not mediated by 

activation of AMPKα2. Third, skeletal muscle mEH2O2 and mFRL%, but not OXPHOS 

capacity, are acutely sensitive to metabolic state. Glucose loading caused a 30~108% 

increase in mEH2O2 and mFRL%, even in chow fed rats. Acute glucose loading however 

did not further increase mEH2O2 and mFRL% in HF fed animals, providing evidence of a 

ceiling effect of metabolic overload on factors governing mitochondrial oxidant emission. 

Collectively, these findings provide clear evidence that metabolic oversupply induces 

elevated mEH2O2 and IR while the other side of the balance equation, energy expenditure, 

reduces both. These findings are consistent with the hypothesis that mitochondrial 

H2O2 production is very sensitive to cellular metabolic state, the emission of which 

under metabolic overload is at least one of the preceding/primary factors ultimately 

leading to IR. The balance of substrate supply and energy expenditure is critical for 
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maintaining proper cellular redox environment and therefore cellular function and whole 

body health. 

The benefits of regular moderate-high intensity aerobic exercise on metabolic 

diseases, as well as mitochondria related effects, are well known. The higher the 

aerobic exercise intensity, the greater the adaptive response (e.g. cardiovascular 

adaptation). However, the idea that a threshold level of activity may exert a protective 

effect against metabolic imbalance has not been previously explored. A ―minimal‖ 

mitochondrial respiratory activity stimulus was selected by the design in the present 

study based on the bioenergetics principle that only a slight increase in mitochondria 

respiratory activity from idling should be sufficient to alleviate the pressure leading to 

elevated mitochondrial H2O2 emission caused by HFD-induced metabolic overload. Our 

data show that only a mild increase in energy expenditure is sufficient to prevent the 

development of insulin resistance in the setting of a HFD. This protective effect occurred 

with minimal increase in energy expenditure, as none of the adaptations typically 

associated regular higher intensity exercise training (e.g., mitochondrial biogenesis, 

cardiovascular adaptations, etc.) were found. However, whether the mEH2O2 change was 

contributed by the treatment effect on mitochondrial oxidant production and/or 

anti-oxidant scavenging/buffering system (i.e., GSH/GSSG, thioredoxin and others) is 

unknown although it was shown that HFD reduce skeletal muscle GSH/GSSG ratio 

acutely and chronically64,268. 

β-GPA is an antidiabetic/antihyperglycemic agent182-184 with unclear mechanism. 

In a dose and duration dependent manner, β-GPA induces a chronic reduction in 

cellular energy level and therefore activation of AMPK which is thought in turn to 

coordinate the activation of catabolic pathways and inactivation of anabolic pathways, 
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as well as activate pathways leading to the transcriptional activation of mitochondria 

biogenesis. These same effects were believed to mediate the improvements in insulin 

sensitivity induced by β-GPA182-184. However, many of these observations were from 

animals fed with 1~2% of β-GPA in the diet. Since eating behavior can potentially be 

changed by the drug, it is difficult to evaluate the effective β-GPA dose and its potential 

relationship to the metabolic outcomes in these studies. In the present study, β-GPA 

was administered by oral gavage, thus insuring stable and consistent dosing. Our data 

show in mice β-GPA treatment caused an increase in energy expenditure and 

compensatory increase in food intake despite no change in locomotor activity or 

HFD-induced weight gain, providing evidence of a decrease in metabolic efficiency as a 

consequence of the treatment. These findings are therefore consistent with the 

interpretation that β-GPA accelerated energy synthesizing demand in muscle, thereby 

relieving the elevated mitochondrial reducing pressure and mEH2O2 created by a HFD. 

However, β-GPA treatment also elicited an increase in muscle AMPKα2 activity, raising 

the possible alternative interpretation that the protective effects of the drug may be 

mediated simply by the activation of this energy sensing kinase. AMPKα2 is well known 

to stimulate muscle glucose uptake. However, when repeated in AMPKα2-DN mice, 

β-GPA treatment protected against the HFD-induced increase in mEH2O2 and loss of 

insulin sensitivity in both AMPKα2-DN and wild-type mice, suggesting the effects of 

β-GPA are not mediated by AMPKα2 activation. However, we cannot exclude a 

potential compensatory increase in AMPKα1 activity in response to β-GPA treatment. In 

a different muscle-specific AMPKα2-DN line of mice however, no compensatory 

increase in α1 was found under either basal or 

5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) -stimulated conditions269.  



 

- 73 - 

 

β-GPA also activates mitochondrial biogenesis, and an increase in mitochondrial 

content could account for an increase in basal energy requirements and thus energy 

expenditure. However, β-GPA treatment increased OXPHOS capacity in the rat study 

but not in the mouse study while both mice and rats were protected from HFD-induced 

IR. We also found no clear increase in the functional index of mitochondrial content 

(FCCP uncoupled respiration) in both mice and rats treated with β-GPA. Similarly, low 

intensity exercise maintained the insulin sensitivity under the HFD condition without an 

increase AMPK phosphorylation ratio or consistent increase in OXPHOS capacity. Thus, 

neither AMPK activity nor OXPHOS/mitochondrial content tracked consistently with 

insulin sensitivity in both rat and mouse studies. In contrast, the increase in energy 

expenditure and decreases in mEH2O2 and mFRL% induced by β-GPA treatment, in the 

absence of any change in locomotor activity, consistently tracked with protection from 

HFD-induced insulin resistance. Although these findings cannot establish cause and 

effect, they support the concept that mitochondrial H2O2 is a major sensor of 

intracellular energy balance and a primary signal regulating insulin sensitivity64.  

Studies in which reduced FAO rates or mitochondrial OXPHOS capacity 

observed in muscle from elderly individuals, family offspring of diabetics, or 

obese/diabetic have been interpreted as indicative of a diminished FAO capacity17,18,23. 

The diminished FAO or OXPHOS capacity has been suggested to be a primary cause 

of IR due to the inappropriate cellular lipid accumulation which activates DAG-PKC-IRS 

pathway and results in the blockage of insulin signaling cascade8,9,11,17,270. Evidence for 

reduced mitochondrial function has been shown to associate with long-term substrate 

oversupply such as occurs with IR or T2D19-22. These include reduced mitochondrial 

content23, size23, enzyme activity24-26, ETS complexes and OXPHOS activity or 
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respiration16,17,27,28, TCA cycle flux rates29, ATP production25,26, and decreased 

expression of OXPHOS related genes15,30,31. However in the present study, IR was 

induced by 7-10 weeks of HFD in rodents in the absence of any change in mitochondrial 

FAO/OXPHOS capacity. It should be appreciated that mitochondrial H2O2 production 

and emission are extremely sensitive to acute metabolic balance as evidenced by the 

impact of acute glucose ingestion on mEH2O2 and GSH/GSSG ratios in muscle (Fig. 3-7, 

3-8 and Anderson et al64). Elevated mEH2O2 and consequent shifting to a more oxidized 

redox environment has been linked to development of IR and, under persistent 

metabolic oversupply states, is likely contributing to mitochondrial OXPHOS deficiencies 

and eventual mitoptosis63. 

Mounting evidence also suggests that mitochondrial dysfunction represents a 

secondary event in the development of IR or T2D35-37,63,64. Reports from animal and 

human studies have shown long-term HFD may not affect38-40,64 or may even 

promote41-45 skeletal muscle mitochondrial function while IR may already exist. Although 

oversupply of fuel can over-ride mitochondrial compensation19, short-term or early stage 

HFD feeding could actually promote mitochondrial density and FAO activity due to a 

prompt adaptive response19,42,44,51. Our data support this idea in which significantly 

reduced FAO and mitochondrial OXPHOS capacity are unlikely the only primary cause 

of over-nutrition induced IR. In fact, a decrease in mitochondrial function observed in 

insulin-resistant humans may not even limit muscle FAO and lead to lipid 

accumulation22. It is of importance to recognize the muscle mitochondrial 

FAO/OXPHOS capacity, such as during maximal exercise, is far in excess of the rate 

measured under resting conditions when energy demand, and thus the rate of 

FAO/OXPHOS, is low. In other words, it is questionable whether mitochondrial 
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FAO/OXPHOS deficiencies would have a considerable limitation on the rate of 

FAO/OXPHOS under normal resting conditions when energy demand is low22. In this 

context, the imbalance of substrate supply and consumption capacity (i.e., energy 

demand) of mitochondria should be the primary factor leading to IR and lipid 

accumulation. Most importantly, and perhaps most germane, it is imperative to 

recognize that the rate of mitochondrial respiration (i.e., oxidative metabolism) in cells is 

governed mainly by energy demand (basal + ADP-driven)52,53. Thus, based on 

principles of mitochondrial bioenergetics, intramyocellular lipid accumulation will occur 

whenever the supply of lipids exceeds the energy needs of the cell, independent of 

mitochondrial content or capacity. A reduction in mitochondrial density, if it does occur, 

will reduce overall basal non-ADP driven state IV respiration (i.e., basal energy demand) 

since mitochondria account for approximately 25% of basal metabolic rate54,55, but the 

underlying mechanism accounting for lipid accumulation is still supply outpacing 

demand. 

Compelling evidence is also accumulating to suggest a cause and effect 

relationship between mitochondrial H2O2 emission/oxidative stress and IR62-65. However, 

the detailed molecular pathway as to how ROS leads to IR is still largely unknown. 

Other than causing oxidative damage (e.g., lipids, proteins or DNA), what is the 

mechanism makes signaling pathways redox-sensitive and insulin sensitivity potentially 

redox-regulated? Both mitochondrial proteins and insulin signaling proteins appear to be 

regulated by redox-sensitive protein modification which alters protein activity/function. 

Redox regulation of cell function is mainly mediated by thiol (-SH) redox circuits, which 

normally reversibly control the intracellular localization and activity of many cell 

signaling and physiological regulation proteins90,105,114,115. Protein thiols are rich in 
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mitochondrial ETS proteins271,272 and the reactive/regulatory protein thiols that are 

believed to have physiological functions are mainly found within complex I273-277. 

Oxidative stress causes multiple types of redox-sensitive protein modifications in 

complex I proteins274,276-278. This could further lead to complex I O2¯• production 

increase276,279 and oxidative activity reduction274,278,279. These data raise the possibility 

that the metabolic oversupply induced increase in mEH2O2 may be related to a change of 

redox state of mitochondria proteins in a vicious cycle manner. Further, oxidation of 

some insulin signaling proteins might lead to suppression of insulin signaling. These 

proteins include IRS121-124, Ras125, PI3 kinase130, PKC and Akt (PKB). Many PKC 

isoforms appear to be sensitive to redox inhibition by S-glutathionylation or unknown 

protein modification114,126-128. Purified human recombinant aPKC-ζ is subject to oxidative 

inactivation by S-glutathiolation induced by the concentration-dependent thiol-specific 

oxidant diamide, which induces disulfide bridge formation129. In addition, H2O2 exposure 

results in impaired Akt activation131,132, while lipoic acid, by its capacity to maintain 

intracellular redox state, protects against oxidative stress induced impairment in Akt 

activity133. Akt is reversibly inactivated by S-nitrosylation135 specifically in Cys224136 or 

Cys296137. Nevertheless, sirtuin 1176, a key protein involved in metabolism, is also 

redox-sensitive although no direct evidence has shown active site specific 

redox-sensitive cysteine residues yet. Together, the redox-sensitive protein modification 

mechanism of IR is circumstantially compelling. However, most of the redox-sensitive 

protein modification studies on mitochondrial or insulin signaling were performed based 

on in vitro treatment. How does over-nutrition actually affect it and link to the 

development of IR in an animal or human model in vivo has not been determined and is 

of future directions. 
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Conclusion 

These data demonstrate that a daily mild increase in energy expenditure induced 

by either low intensity exercise or β-GPA treatment sufficiently prevents the increase in 

mEH2O2 and the development of IR induced by HFD, supporting the idea that the 

governance of mEH2O2 is a primary factor regulating insulin sensitivity in skeletal muscle. 
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Figure 3-1. β-GPA and exercise prevent insulin resistance induced by HFD in rats 

without affecting body weight.  

Young male S-D rats fed (7 weeks) with standard chow (Chow group), 60% HFD (HF 

group), HFD plus β-GPA for the final 5 weeks (HF-GPA, 2x200 mg/kg/d, 8:30am & 

5:00pm, 7d/wk, by oral gavage), or HFD plus low intensity treadmill exercise (HF-EX 

group, 15m/min, 0 grade, 2 h/d). To determine if daily treatment with β-GPA or low 

intensity daily treadmill exercise are sufficient to preserve insulin sensitivity in rats 

consuming a HFD, OGTT (2g/ kg whole body mass) were conducted during week 6 in 

the morning following an overnight fast (10h). Rats were studied ~16 hours after the 

final β-GPA or exercise treatment. (A) Serum glucose level from OGTT. (B) Area under 

the curve (AUC) of serum glucose level from OGTT. * p<0.05 vs Chow (C) Serum 

insulin level from OGTT. (D) AUC of serum insulin level from OGTT. * p<0.05 vs 

HF-GPA or HF-EX (E) Insulin Sensitivity Index = 1/(glucose AUC x insulin AUC) from 

OGTT. * p<0.05 vs all other groups. (F) Rats‘ body weight over the treatment duration. 

Mean ± SEM. N=10/ group. one-way ANOVA, Tukey.  
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Figure 3-2. β-GPA treatment attenuated HFD impairment in insulin signaling but also 

activate AMPK pathway.  

To determine the treatment effect on insulin signaling and AMPK pathway, 

phosphorylated/total Akt or AMPK were examined by western blotting. Rats were 

studied ~16 hours after the final β-GPA or exercise treatment at week 7. After either a 

4h fast or 1h after a glucose gavage (2g/ kg body weight) performed after a 3h fast, rats' 

red gastrocnemius were harvested for western blotting. β-GPA treatment attenuated 

HFD impairment in insulin signaling. However, unlike the low intensity exercise group, 

AMPK pathway may be involved in the β-GPA mediated effect in glucose clearance. (A) 

The ratio of phosphorylated (Ser473) and total Akt protein level. * p<0.05 vs no glucose 

challenged condition within the same treatment. # P<0.05 vs Chow in glucose 

challenged condition. (B) The ratio of phosphorylated (Thr172) and total AMPK protein 

level. * P<0.05 vs Chow or HF-EX in no glucose challenge condition. # P<0.05 vs all 

other groups in glucose challenged condition. Mean ± SEM. N=5/ group. Glucose(2) X 

Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-3. No HFD or acute glucose loading caused FAO defect in either skeletal 

muscle or liver of rats.  

To determine if HFD or acute high glucose intake influences FAO rate, 7 weeks treated 

rats were sacrificed after a 4h fast or 1h after a single glucose challenge (2g/ kg body 

weight) performed after a 3h fast. Fresh mix gastrocnemius muscle and liver tissue 

homogenate were obtained for palmitate oxidation rate measurement utilizing 

[1-14C]palmitate. The data indicate no HFD or acute glucose loading caused FAO defect. 

Mean ± SEM. N=5/ group. Glucose(2) X Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-4. Little effect of β-GPA and exercise on mitochondria respiration kinetics in 

response to ADP titration in rats.  

Rats‗ PmFBs mitochondria respiration kinetics in response to ADP titration was 

measured in the presence of 5mM glutamate + 2mM malate. Oligomycin and FCCP 

were added subsequently in the end of the ADP titration protocol. Michaelis-Menten 

enzyme kinetics curve was fitted. Other than the decreased sensitivity (increased Km) 

by β-GPA, little treatment effect on the respiration kinetics was found. (A) The quantified 

kinetics trace. (B) Maximal mitochondria respiration capacity from panel A. (C) 

Mitochondria respiration sensitivity (Km) in response to ADP obtained from 

Michaelis-Menten enzyme kinetics. (D) 10µg/ml Oligomycin-inhibited and 4µM 

FCCP-uncoupled respiration rate. *P<0.05 vs Chow or HF-EX. Mean ± SEM. N=5/ 

group. Glucose(2) X Treatment(4) two-way ANOVA, Bonferroni.  



 

- 85 - 

 

 

 

Figure 3-5. β-GPA and exercise increase mitochondria respiration capacity in response 

to multiple substrates in rats.  

Rats‗ PmFBs mitochondria respiration capacity was measured in response to sequential 

addition of the following substrates. 1mM malate + 25µM palmitoyl-L-carnitine (M+PC) + 

2mM ADP + 2mM glutamate (+Gluta) + 3mM succinate (+Succ) + 10µg/ml oligomycin 

(+Olg) + 4µM FCCP. The data indicate β-GPA and exercise increase mitochondria 

respiration capacity in response to multiple substrates. # P<0.05 vs Chow. @ P<0.05 vs 

Chow-Glucose. *P<0.05 vs HF-Glucose. x P<0.05 vs HF-EX. Mean ± SEM. N=5/ group. 

Glucose(2) X Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-6. Little effect of β-GPA and exercise on mitochondria respiratory control 

indices of rats.  

Mitochondria respiratory control indices which indicate the quality of mitochondria 

OXPHOS capacity were calculated from ADP titration protocol (Fig. 3-4) or multiple 

substrates protocol (Fig. 3-5). Respiration control ratio (RCR) is the quotient of maximal 

state III to oligomycin-inhibited state IV respiration. Uncoupling control ratio (UCR) is the 

quotient of FCCP-uncoupled respiration to oligomycin-inhibited state IV respiration. 

Andenylate control ratio (ACR) is the quotient of FCCP-uncoupled respiration to 

maximal state III respiration. No treatment effect was found expect that, under glucose 

challenged state in multiple substrate condition, an improvement in both RCR 

(increased) and ACR (decreased) by HFD independent of β-GPA or exercise treatment.  

(A) RCR from ADP titration protocol. (B) UCR from ADP titration protocol. (C) ACR from 

ADP titration protocol. (D) RCR from multiple substrates protocol. * P<0.05 vs all other 

groups in glucose challenged condition. (E) UCR from multiple substrates protocol. (F) 

ACR from multiple substrates protocol. * P<0.05 vs Chow in no glucose challenge 

condition. # P<0.05 vs Chow in glucose challenged condition. Mean ± SEM. N=5/ group. 

Glucose(2) X Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-7. β-GPA and exercise attenuated HFD caused mEH2O2 challenged by complex 

I reverse electron flux in rats.  

To determine if high caloric intake acutely and chronically influences mEH2O2, 7 week 

treated rats were sacrificed after a 4h fast or 1h after a single glucose challenge (2g/ kg 

body weight) performed after a 3h fast. The kinetics of PmFBs state IV mEH2O2 in 

response to succinate titration was measured in the presence of 5µM glutamate + 2µM 

malate. Michaelis-Menten enzyme kinetics curve was fitted. The results indicate β-GPA 

and exercise attenuated HFD caused mEH2O2. Further, mEH2O2 are remarkably sensitive 

to acute high glucose intake. (A) The kinetics response. (B) Maximal mEH2O2 (at 3mM 

succinate) from panel A. * P<0.05 vs Chow or HF-GPA. p=.0806 main factor effect with 

vs without glucose challenge. Note that a single glucose challenge on chow diet fed rats 

1h before sacrifice increase 64% of mEH2O2 although it does not reach statistical 

significance. (C) mEH2O2 sensitivity (Km) in response to succinate titration obtained from 

Michaelis-Menten enzyme kinetics. Mean ± SEM. N=5/ group. Glucose(2) X 

Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-8. β-GPA and exercise attenuated HFD caused mEH2O2 challenged by multiple 

substrates in rats. 

Rats‗ PmFBs state IV mEH2O2 in oxidizing 25µM palmitoyl-L-carnitine + 1mM malate + 

2mM glutamate (PCMG), + 3mM succinate (+Succ), and + 10mM Glycerol-3-Phosphate 

(+G3P). The result indicate both β-GPA and exercise treatment sufficiently normalize 

the HFD caused mEH2O2 under multiple substrate conditions. Note that a single glucose 

challenge (2g/ kg body weight) on chow diet fed rats 1h before sacrifice increase 

30-108% of mEH2O2 * P<0.05 vs HF in each substrate condition either with or without 

glucose challenge. Mean ± SEM. N=5/ group. Glucose(2) X Treatment(4) two-way 

ANOVA, Bonferroni. 
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Figure 3-9. β-GPA and exercise attenuated HFD caused mitochondria mFRL% in rats. 

Mitochondrial mFRL% was calculated from H2O2 generated per O2 consumed. H2O2 

generation (Fig. 3-8) and O2 consumption (Fig. 3-5) were under the condition 

mitochondria oxidizing 25µM palmitoyl-L-carnitine + 1mM malate + 2mM glutamate + 

3mM succinate in state IV (with oligomycin). * P<0.05 vs HF-EX. # P<0.05 vs Chow or 

HF. Mean ± SEM. N=5/ group. Glucose(2) X Treatment(4) two-way ANOVA, Bonferroni. 
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Figure 3-10. AMPKα2 genotype did not affect the β-GPA effect on body composition, 

metabolic state and locomotor activity in mice.  

To determine if AMPKα2 genotype influences the β-GPA effects on metabolism, 

AMPKα2-DN mice and its WT littermates were monitored for two complete light-dark 

cycles (48h) via an indirect calorimetry system after 4 days of acclimation during week 8 

of diet treatment. Body composition was determined right after the calorimetry system 

using the Echo Magnetic Resonance Imaging system. The data of metabolic state had a 

very similar trend when normalized to either lean body mass (shown) or whole body 

mass. Regardless of the AMPKα2 genotype, β-GPA treatment increases energy 

expenditure without affecting locomotor activity, and prevents HF-induced body weight 

gain despite higher food intake. (A) Body weight over the 10 weeks of diet treatment. * 

P<0.05 vs Chow, WT-HF-GPA or DN-HF-GPA. (B) Body composition. # P<0.05 vs 

Chow, WT-HF-GPA or DN-HF-GPA in lean body mass. * P<0.05 vs Chow, WT-HF-GPA 

or DN-HF-GPA in fat body mass. The total body mass percentage of lean or fat was 

indicated. (C) Food intake (48h total). * P<0.05 vs WT-Chow, WT-HF or DN-HF. (D) 

Energy expenditure rate (48h average). * P<0.05 vs WT-Chow, WT-HF or DN-HF. (E) 

Oxygen consumption rate (48h average). * P<0.05 vs WT-Chow, WT-HF or DN-HF. (F) 

RER (48h average). * P<0.05 vs WT-Chow. # P<0.05 vs WT-HF or DN-HF. (G) 

Locomotor activity (sum of X, Y, Z axis count/activity, 48h total). * P<0.05 vs WT-Chow. 

Mean ± SEM. N=9~18/ group. One-way ANOVA + Tukey. 



 

- 94 - 

 

 



 

- 95 - 

 

Figure 3-11. β-GPA prevented HFD caused IR regardless of the AMPKα2 genotype in 

mice. 

To determine if mice AMPKα2 genotype affect the effects of β-GPA on insulin sensitivity 

after HFD, IPGTT (1.5g/ kg body weight) was conducted in the morning following a 4h 

fasting in mice at week 9 of treatment. Plasma for [insulin] measurement was collected 

from the tail vein in the basal state and 30min after the glucose injection. Mice were 

further sacrificed in the morning following a 4h fasting at week 10 of treatment. Soleus 

(slow twitch) and EDL (fast twitch) muscle were harvested for in vitro determination of 

muscle 3+H-2-DOG uptake. Mice were studied ~16 hours after the last β-GPA treatment 

in both IPGTT and 3+H-2-DOG uptake experiments. The data indicate there was no 

AMPKα2 genotype effect. (A) [Glucose] from IPGTT. (B) Area under the curve (AUC) of 

[Glucose] from IPGTT. * P<0.05 vs WT-Chow, WT-HF-GPA or DN-HF-GPA. (C) [Insulin] 

from baseline and 30 min after glucose injection. * P<0.05 vs WT-Chow, WT-HF-GPA or 

DN-HF-GPA. (D) Muscle 3+H-2-DOG uptake. * P<0.05 vs WT-Chow or DN-HF. # 

P<0.05 vs WT-Chow or WT-HF-GPA. ∆ P<0.05 vs all other groups. ᶱ P<0.05 vs DN-HF. 

+ P<0.05 vs all other groups but not the other HF without GPA treated group. $ P<0.05 

vs all other groups but not the other GPA treated group. Mean ± SEM. N=9~18/ group. 

One-way ANOVA + Tukey. 
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Figure 3-12. β-GPA prevented the HFD caused mEH2O2 and mFRL% regardless of 

AMPKα2 genotype in mice. 

To determine if AMPKα2 genotype affect the β-GPA treatment effect in mitochondrial 

respiration and state IV mEH2O2 of HFD fed mice, assays were performed in PmFBs 

prepared from 4h fasted AMPKα2-DN mice and its wild type littermates after 10 weeks 

of HFD feeding. The data indicated, without affecting mitochondria respiration capacity, 

β-GPA prevents the HFD-induced increase in mEH2O2 and mFRL% regardless of 

AMPKα2 genotype. (A) Muscle mEH2O2 in response to 1mM malate + 25µM 

palmitoyl-L-carnitine (M+PC) + 2mM glutamate (+Gluta), + 9mM succinate (+Succ), and 

+ 10mM Glycerol-3-Phosphate (+G3P). * P<0.05 vs W-Chow, WT-HF-GPA or 

DN-HF-GPA. # P<0.05 vs WT-HF-GPA or DN-HF-GPA. + P<0.05 vs WT-HF-GPA. (B) 

Muscle mEH2O2 in response to 9mM succinate. # P<0.05 vs WT-HF or DN-HF. * P<0.05 

vs WT-Chow. (C) mFRL% was calculated from H2O2 generated per O2 consumed. H2O2 

generation (panel A) and O2 consumption (panel D) were under the condition 

mitochondria oxidizing M+PC+Gluta+Succ under state IV condition (with oligomycin). * 

P<0.05 vs WT-Chow, WT-HF-GPA or DN-HF-GPA. # P<0.05 vs WT-HF-GPA or 

DN-HF-GPA. + P<0.05 vs WT-Chow. (D) Muscle mitochondria respiration capacity in 

response to 1mM malate + 25µM palmitoyl-L-carnitine (M+PC) + 2mM ADP + 2mM 

glutamate (Gluta) + 9mM succinate (Succ) + 10µg/ml oligomycin (Oligo) + 4µM FCCP. 

Mean ± SEM. N=9~18/ group. One-way ANOVA + Tukey. 
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Figure 3-13. No clear HFD, β-GPA or AMPKα2 genotype effect on mitochondria 

respiratory control indices of mice.  

Mitochondria respiratory control indices (as explained in figure 3-6) were calculated 

from mitochondrial respiration capacity (Fig. 3-12 (D)). Overall, no treatment or 

genotype effect was found indicating no mitochondrial OXPHOS defect. (A) RCR. (B) 

UCR. * P<0.05 vs WT-HF. (C) ACR. Mean ± SEM. N=9~18/ group. One-way ANOVA + 

Tukey. 



 

 

 

 

CHAPTER 4: Integrated Discussion 

 

The roles of mitochondrial FAO/OXPHOS capacity and oxidative stress in the 

development of diabetes have recently gained considerable attention, and more 

specifically how insulin action is regulated in skeletal muscle (the main glucose disposal 

organ). In Chapter 1, review of the literature suggests a causative role of mitochondrial 

oxidative stress in the etiology of diet induced IR. It has been demonstrated that acute 

and chronic nutritional oversupply increases skeletal muscle mEH2O2, a phenomenon that 

is causally linked to IR64. Whole body metabolic imbalance is the underlying cause of 

metabolic diseases, and within cells metabolic balance is a function of how well 

substrate supply matches energy demand and vice versa. The interplay between 

metabolic supply and ROS production is well established, yet the extent to which energy 

expenditure can compensate for the deleterious effects of over-nutrition on ROS 

production, cellular redox state and insulin sensitivity is currently unknown. The studies 

described in chapter 2 and 3 were all conducted with hypotheses governed by the same 

theme: to examine the impact of a mild increase in energy expenditure on over-nutrition 

induced skeletal muscle mitochondrial oxidative stress and IR. 

In chapter 2, an acute effect of metabolic oversupply (lipid loading) and energy 

expenditure (low intensity exercise) on the regulation of rat skeletal muscle 

mitochondria was examined. This study examed mEH2O2, ΔΨm and mCa2+
RC under state 

IV and more physiological state III respiration conditions using a novel ―clamp‖ 

technique. These data revealed a number of important findings. First, without affecting 

OXPHOS capacity, skeletal muscle mEH2O2, ΔΨm and mCa2+
RC were extremely 
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sensitive to metabolic status. The lipid overloading of ~12% of the daily total caloric 

intake (when in HFD conditions) acutely caused an adverse effect of these 3 

parameters of mitochondria while post-meal low intensity exercise nearly completely 

attenuated the response. This supports the idea that mitochondrial mEH2O2 emission is 

more likely the preceding and possibly primary underlying cause of IR. OXPHOS 

capacity, on the other hand, may play a secondary role. Furthermore, it is notable that 

low intensity exercise is sufficient to attenuate the acute lipid loading induced defects on 

mEH2O2, ΔΨm and mCa2+
RC. It follows the principle of bioenergetics that a reduction in 

ΔΨm by mildly increasing energy demand and therefore JO2 from idling (close to state 

IV) can significantly reduce ―the reducing pressure of electron transport system (ETS)‖ 

and oxidant production.  

In chapter 3, the impact of a mild daily increase in energy expenditure on mEH2O2 

and the development of insulin resistance were examined in the context of chronic HF 

intake. The findings of this study provide further support for a causative role of 

mitochondrial H2O2 emission in the development of diet induced IR. This study again 

shows that a long term HFD causes an increased skeletal muscle mEH2O2, albeit state IV 

data only, in conjunction with the development of IR in rodents. Mildly increased energy 

expenditure by either exercise or β-GPA attenuated HFD caused both mEH2O2 elevation 

and IR development. The treatment effects of HFD, exercise or β-GPA appeared to be 

mitochondrial density, respiratory function, fatty acid oxidation rate and AMPKα2 

genotype independent, leaving the reduction in mitochondrial oxidative stress as the 

most likely primary mechanism of exercise and β-GPA on attenuating HFD caused IR. 

In the context of both acute and chronic manipulation of positive (oversupply) and 

negative (expenditure) cellular energy balance, together, these findings support the 
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mounting evidence favoring the causative role of skeletal muscle mitochondrial H2O2 

emission/oxidative stress in the development of diet induced IR. These data 

demonstrated a mild increase in energy expenditure can sufficiently attenuate the HFD 

caused oxidative stress and IR. This is important because it not only supports the 

causative role of oxidative stress based on the known inverse exponential relationship 

of superoxide production and JO2 under low respiration condition, but also provides a 

clinical and practical strategy (i.e., mild physical activity) to treat/prevent over-nutrition 

caused IR. These findings also provide evidence that mitochondrial oxidative stress 

and related effects are very sensitive and dynamically regulated by the metabolic status. 

ΔΨm and oxidative stress are likely among the preceding factors acutely elevated by 

lipid loading and ultimately could lead to the development of IR and mitochondrial 

dysfunction (reduced density and respiration capacity). A shift in respiratory activity from 

idling to mild increase in state III respiration is sufficient to prevent/attenuate the oxidant 

production and related risks. 

Given that the literature and the presenting data favor the causative role of 

mitochondrial oxidant production in the etiology of diet induced IR, the molecular 

mechanism of how mitochondrial H2O2 causes IR is still largely unknown and is of 

important direction of future studies. Redox-sensitive protein modifications may be a 

crucial mechanism of how oxidative stress regulates the insulin signaling cascade and 

causes IR. The reversible prosperity of redox-sensitive protein modifications may 

therefore allow increased energy expenditure (reduced oxidative stress) to dynamically 

compensate for the metabolic oversupply caused IR. 

In the present studies, the potential influence of DAG-PKC-IRS pathway was not 

examined. Intracellular accumulation of DAG due to mitochondrial dysfunction has been 
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widely suggested as a primary cause of insulin resistance in skeletal muscle280. In the 

present study, HFD induced insulin resistance did not affect mitochondrial OXPHOS or 

content. Moreover, the improvements in insulin sensitivity found in HFD animals that 

were subjected to exercise or β-GPA treatment occurred in the absence of any change 

in ―mitochondrial function‖. It is certainly possible that cytosolic lipid levels, and thus 

activity of DAG-induced signaling, decreased in the muscle of exercise and β-GPA 

treated animals due to the increase in energy demand. This would be entirely consistent 

with our hypothesis that the metabolic defect induced by a HFD is triggered by the 

imbalance in energy supply relative to demand and that increasing energy demand 

relieves this imbalance. Although the exercise and β-GPA treatment effect on mEH2O2 

and IR is clear and supports our hypothesis that mEH2O2 is a key factor regulating insulin 

sensitivity, we cannot exclude the potential influence of the DAG-PKC-IRS pathway. 

However, arguing against a primary role for DAG-PKC-IRS pathway is the study by 

Finck et al281 who found that muscle lipid accumulation was completely dissociated from 

muscle insulin sensitivity in transgenic mice with targeted PPARα knockout or 

overexpression. Nevertheless, whether the DAG-PKC-IRS pathway or ROS are the 

more dominate primary factor leading to the over-nutrition caused IR is still unknown, 

our data support the idea that the ROS-mediated effect is a primary factor controling 

insulin sensitivity in skeletal muscle. 
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