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The present study presents a Monte Carlo evaluation of the application of variance
partitioning to the assessment of the construct-related validity of assdssenter (AC) post
exercise dimension ratings (PEDRs). Data was produced by creategnspopulation models
representing a variety of AC models by varying dimension factor loadirgs;ise factor
loadings, dimension intercorrelations, and exercise intercorrelations. Andis®nstrated that
variance partitioning differentiated among all sixteen varieties of AGefs. Variance
partitioning also detected other sources of variance including person effests pg
dimension effects, and person by exercise effects. These findings shgy@sriance
partitioning may be a more appropriate method for analyzing AC multtnaiimethod

(MTMM) data instead of the traditional confirmatory factor analysisAlomethod.
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CHAPTER 1: INTRODUCTION

Over the past 50 years, assessment centers (ACs) have emerged abenwst
popular tools for evaluating individual differences related to managerial perfoeni@hen,
2006; Joiner, 2002; Spychalski, Quinones, Gaugler, & Pohley, 1999). Designed for use with both
employee selection and development, ACs are used to evaluate an individualimaec®on a
set of job-related dimensions via using multiple high-fidelity situationadotses. Despite their
popularity, as well as their fundamental content validity (Binning & Barté89; Schmitt &
Chan, 1998) and demonstrated criterion-related validity (Arthur, Day, McNellyehg 2003),
the construct-related validity of AC post-exercise dimension rating3RBEcontinues to be
problematic (cf. Lance, Foster, Gentry, & Thoresen, 2004; Lievens & Conway, 2001).
Specifically, the prevailing view of the nature of AC PEDRSs, the fundamentaurieg block
of ACs, is that they substantially reflect the effect of the exeréisaswhich they are obtained
rather than cross-exercise stability in candidate behavior on the dimensiupasmessed (cf.
Bycio, Alvarees, & Hahn, 1987; Fleenor, 1996; Lance, 2008; Lance, Lambert, Gewimd,ieve
& Conway, 2004; Lance et al., 2004; Lance, Newbolt, Gatewood, Foster, French, & Smith,
2000; Schneider & Schmidt, 1992). However, most studies that make this conclusion utilize
analyses that are based on a confirmatory factor analysis (CFA) ofiaitutiultimethod
(MTMM) matrix. Recent research has identified potential problems atedaivith this
particular application of CFA (Lance, Woehr, & Meade, 2007; Lievens & Con2aHi).

In their Monte Carlo study, Lance, Foster, and colleagues (2004) demah#iedtthe
application of CFA to the evaluation of MTMM data is problematic. Specificalyy tioted that
this analytical method frequently fails to generate an admissible solM@waover, when it

does, even if the model is not the correct representation of the data (i.e., thedaaploes not



match the population data from which it was drawn), the fit statistics witatela good fit.
Subsequently, they concluded that CFAs are problematic in that they can produsehasul
conflict with the true nature of the data. Furthermore, CFA examinations &fEARs do not
take into account the candidate being rated, the individuals conducting the radingriaus
interactions (Bowler & Woehr, 2009). Thus, research into the internal struct&@sashould
most likely not rely on CFAs to evaluate their construct-related validi®yGsf.

Recently, Woehr, Putka, and Bowler (2011) have identified a novel method for assessing
the construct-related validity of MTMM data. Specifically, the applocabf variance
partitioning (i.e., G-theory), which involves modeling person, trait, and exercesgfhelps to
circumvent the issues with CFA. Moreover, this method has direct analoguekenfiticets of
construct-related originally identified by Campbell and Fiske (1959). This metitidzew
utilized to assess the construct-related validity of AC PEDRs. The pstadgtwill evaluate a
series of Monte Carlo simulations representing a variety AC modelcifiSaity, analyses will
focus on whether variance partitioning differentiates among varieties of AC sranuteif
variance partitioning diagnoses additional aspects of ACs beyond dimension anseesi@ecis.
Assessment Center Design

Assessment centers are used for both selection and career development purposes
(Thornton, 1992). When utilized for selection, ACs are used to determine which applicents ha
the necessary knowledge, skills, and abilities (KSAs) to be successful inetventgbosition.
When utilized for career development, an AC is used to determine behaviors triatigapa
does well and which behaviors need improvement, with training being based on the later.
Regardless, all assessment centers are comprised of a varyisgsaigh-fidelity exercises,

such as an in-basket, a leaderless group discussion, a one-on-one role play, aadaysise



Applicants’ performances on these exercises are observed and rated indepéydeatied
assessors. These exercises are intended to serve as stimulusaiatehalmeasurement of the
relevant job-related skills. Dimensions vary widely across ACs, frohtoramunication to
decisiveness (Thornton, 1992). As noted by Arthur, Day, et al. (2003) there are over 138
dimensions in the AC literature with a typical AC being comprised of eleven donsremd

five exercises (Woehr & Arthur, 2003). Ideally, these dimensions are the faamdbAC
functioning. Specifically, ACs are designed to evaluate the participaatidiaty on a dimension
and are based on the assumption that his or her performance on the dimension will be stable
across exercises (Lievens & Conway, 2001).

A typical assessment center involves several assessors, comprisedtaffiHimbers
and managers, and assessees who participate in the various exercises (Thhtuétiers
Hanson, 2004). Prior to the assessment center, the assessors are thoroughly trened in t
assessment process. During the AC, the assessors observe and ragtargdvgbiaviors in
various situation exercises (Thornton & Mueller-Hanson, 2004). The assesse@ctatssessee
on the specified dimensions after each exercise is completed. Once theessesster is
complete, the assessors meet and discuss their reports on each particgpassegsors then rate
each assessee on each performance dimension (e.g. on a five or seven pitit theapurpose
of the AC was promotion, the assessors discuss each assessee’s probahititessd if given
the promotion, and the assessors make a recommendation of which candidate theysbelie
suitable for the position. Typically, each participant is also provided a repibeiof
performance on each specified dimension.

Convergent and Discriminant Validity



In order for AC PEDRSs to be considered to be construct-valid, a multitraitametiiod
(MTMM) matrix needs to demonstrate convergent and discriminant validityu&ian of
MTMM matrices is nothing new as it was first discussed by Campbell akd @i859). In ACs,
MTMM matrices are often used to demonstrate the relationship between dimensicerarste
factors. It is assumed that dimension factors will be observed in multipleseeercarge trait
factor loadings indicate support for convergent validity and large traitlabores indicate a lack
of discriminant validity. Specifically, trait factor loadings are comsguliof dimension scores
across multiple exercises. A typical MTMM matrix is comprised of thypes of correlations:
(a) correlations among PEDRs sharing the same dimension, but differensexgib)
correlations among PEDRs sharing the same exercise, but different dimensibft3, a
correlations among PEDRSs that share neither dimensions nor exercises (Wabel204tl). The
purpose of a CFA is to evaluate the fit between the observed correlations amonDReedPH
a reproduced correlation matrix, and provide parameter estimates. Howeset meta-
analyses have demonstrated a problem using CFA to determine model fit.

Meta-analyses of Model Fit using CFA

Lievensand Conway (2001). In their review of AC construct-related validity, Lievens
and Conway (2001) reanalyzed 34 MTMM matrices from 24 assessment centaranahses
focused on fitting six different models to each of the 34 MTMM matrices using a @FA
correlated dimension model, (2) a correlated exercise model, (3) a carcifagnsion-
correlated exercise model, (4) a single dimension-correlated exemis, ifd) a direct product
model, and (6) a correlated uniqueness model. A correlated dimension model ref&Ctsvdh
PEDRSs that are solely the function of the dimensions being rated, whereasla@edexercise

model reflects an AC with PEDRS that are only a function of the exercisgsousealuate the



dimensions. The correlated dimension-correlated exercise model plgueasesron both the
dimensions being rated and exercise in which they are being rated. The singisiaime
correlated exercise model reflects an AC with PEDRs that are cothpfigesingle dimension
factor (e.g. a “g” factor or a “person” factor) as well as the exexcidee direct product model
and the correlated uniqueness model are both statistical variations of thatedrdahension-
correlated exercise model. In the direct product model the correlations bd?&BdRs are a
multiplicative function between dimensions and exercises, and in the correlatechesgjue
model the exercise effects are not explicitly differentiated fromdhelations among the
uniquenesses.

Results from the Lievens and Conway (2001) analyses indicated the dimension-only
model and the exercise-only model showed poor fit. The percentage of matrices that
demonstrated an acceptable fit for these two models were 3% and 29% relgpddtasgingle
dimension-correlated exercise model performed somewhat more favorably,ipgoaioic
acceptable fit for 53% of the matrices. In contrast, the correlated doneswrelated exercise
model and the direct product model demonstrated acceptable fit with 85% and 81%tivelgpe
However, the correlated uniqgueness model demonstrated the best fit, fitting 88% diivé M
matrices. Based on these results, Lievens and Conway concluded that a mqdisiecbof
correlated dimensions and exercises modeled as correlated uniquenessmass tppropriate
to use when analyzing AC MTMM matrices. Following this, Lievens and Constayaed the
impact dimension and exercise factors had on each model. Overall, they noted thestrthe m
proportion of variance that was attributable to dimensions was .34 and the mean proportion of
variance attributable to exercises was .34. Lievens and Conway also noted thedlthese

varied greatly (from .17 to .62 for dimensions and .07 to .69 for exercises) with sepdedé m



having high intercorrelated dimensions (e.g., .71). Nonetheless, they concluded thatatime
have more of an effect on AC ratings than was previously suspected but thatithefebtshort
of demonstrating that dimensions actually do have a greater impact theisese

Lance, Foster, et al. (2004). Due to several problematic statistical issues with the
Lievens and Conway (2001) results — specifically that the correlated unigueadsl| used by
Lievens and Conway can often lead to overestimated dimension effects —Fastee, and
colleagues (2004) replicated the study conducted with a different set of CFAsn{ajia
correlated dimension, correlated exercise (CDCE) model, (2) a singlasianecorrelated
exercise model (1DCE), and (3) a correlated exercise model. Two additiodelsmvere also
estimated in which “exercise effects were modeled as covariances amqugness for PEDRs
measured in the same exercise” (pg. 379). These models were: (1) a moderrkelated
dimensions and correlated uniqueness (CDCU), and (2) a model with one dimension and
correlated uniqueness (1DCU).

Results indicated that the CDCE model was a poor fit for all data sets ugsgd fexc
two. Both the correlated exercises model and the 1DCE model provided good fits, with the
1DCE model providing a better fit for the data overall (Lance, Foster, et al., 2004)st€onsi
with the Lievens and Conway (2001) findings, bias in dimension factor loadings f0D@OE
and CDCU models were present when exercise factor correlations andefactor loadings
were not zero. In addition, more bias in dimension effects were found in the 1DCU model
compared to the 1DCE model (Lance, Foster, et al., 2004). The correlated uniqueness models
yield upward-biased estimates of dimension effects and are potentially a tfoo@Waluating
AC PEDRs. Furthermore, Lance et al.’s study provided more evidence thasexactors

explain more variance in PEDRs than dimension factors. Based on this finding,dtamic



assert that ACs lack construct validity. Since AC PEDRs are dominated ynexergise effects,
candidate traits (dimension factors) are not rated the same acrossesxerc

Instead of AC performance being represented as scores of participarssidrass
various exercises, Lance, Foster, et al. (2004) proposed the idea that AGaecis
comprised of two factors: (a) a general yet situation-specific pegioce representing
performance on each exercise task and, (b) a stable overall perforn@achfat is consistent
across exercises. Lance et al. also questioned the current method for providinggreré
feedback in assessment centers. Currently, feedback is based on dimensiopdbPBRRs
are substantially influenced by exercise effects instead of dimenssatseResearchers instead
proposed that developmental feedback with a focus on exercise performance may be more
appropriate.

Bowler and Woehr (2006). With the conflicting viewpoints of Lievens & Conway
(2001) and Lance, Foster, et al. (2004), Bowler and Woehr attempted to provide additional
evidence on the impact of exercise and dimensions ratings. Specificallypét@-analytically
combined the previously analyzed MTMM matrices to form a single summarixnidte single
summary matrix was then evaluated on model fit and the impact of dimension andeexerci
effects. Bowler and Woehr also examined the impact of specific dimension andefactors
on AC ratings as opposed to combining results across various dimension constructscsel exer
types. Specifically, their analyses indicated that specific dimensapscommunication) had
higher construct-related validities than other dimensions. Similarly,f&pexercises (e.g. in-
basket) had higher construct-related validities than other exercises.

Twenty-four studies resulting in 35 MTMM matrices were used and analgzétdn

six different models (Bowler & Woehr, 2006). The six models were (a) a naoithesix



correlated dimensions, (b) a model with six correlated exercise factpasiodel with one
dimension factor and 6 uncorrelated exercise factors, (d) a model with one dimaosohd

six correlated exercise factors (LDCE), (e) a model with 6 correlatezhdiam factors and 6
uncorrelated exercise factors, and (f) six correlated dimension factorx aadrelated exercise
factors (CDCE). Results showed that 1DCE model and the CDCE model both failed to converge
These models were modified because of poor parameter estimates. Aftecatiodifiboth

models converged to a proper solution.

Based on fit values, all of the models fit the data well except for the dimemdipn-
model (Bowler & Woehr, 2006). The modified CDCE model had the best fit value and was the
best representation of the data. The CDCE model was then analyzed for the indpaetnsfon
and exercise ratings. Results indicated that both dimension and exercisecaatapsite to
PEDRs. Across all models, Bowler and Woehr discovered that dimension factuuatadcfor
less variance than exercise factors. However, the variance accourtgdiforension factors
was higher than that found by Lance et al. (2004). Therefore, Bowler and Vgselted that
both dimension and exercise factors contribute to AC PEDRS.

Overall, these three aforementioned reviews produced notably differens régndireas
results from the Lance, Foster, et al. (2004) analysis concluded that astsesmmer PEDRS
are a function of exercises and not dimensions, Lievens and Conway (2001) and Bdwler a
Woehr (2006) produced results to the contrary. Specifically, both analyses concluded tha
exercise effects do not necessarily take precedence over dimension éftecestingly, the
findings of all of these studies were based on the same statistical techiaigLiéA of an
MTMM matrix. Unfortunately, the suitability of this method has recently bedladtinto

guestion.



Generalizability Theory

Since previous research has demonstrated many problems with using conyifattor
analysis to analyze AC MTMM data (e.g. Lance et al., 2007), Woehr, Putka, and G2o#)
discussed another method for modeling MTMM matrices, the Generalizahddytor variance
partitioning. Three primary sources of variance are assessed usengcegpartitioning: the
person being rated (p), the dimension being rated (t), and the exercise frdnthvehiating was
made (m). Written in variance partitioning shorthand, this concept can be désgipex t x m.
Each person completes a number of trait measures and each trait meassgessd using the
same number of measurement methods. Subsequently, each person’s observigl.gamme(
given trait-method unit is a simple additive function:

Xptm = W+ Vp + Vi + Vi + Vpt + Vpm + Vim + Vptmr, (1)
wherep is the grand mean score across all persons, traits and methisd$ievperson main
effect and the expected value of a person’s score across the population ahtraitethods;\vs

the trait main effect and the expected value of the trait’s effect abm®g®pulation of persons

and methods;yis the method main effect and the expected value of the method’s effect across

the population of persons and traits;ig the person x trait interaction effect and reflects the
differences in the ordering of the persons’ expected scores (averagedethreds) across traits;
Vpm IS the person x method interaction effect and reflects differences indévéngrof the
persons’ expected scores (averaged over traits) across methadshe trait x method
interaction effect and reflects the differences in the ordering oé’teaipected scores (averaged
over persons) across methods; and lasghy, Vs the remaining residual after accounting for alll
other effects in the model.

Assumptions



The assumptions of the above model are the same as the common random-effects
ANOVA assumptions. All effects are assumed to be independent of each othareaits of
zero and variances 6fp, 6%, 6°m, 6°pt, 0 pms 6°tm, AN pm » respectively. These variance
components are the focus of estimation in G-theory (Woehr et al., 2011). The expetted tot
variance in scores across all p x t x m combinations in the population is exjpasss

G expected totaF O-p + Gt + 0°m + G pt + G2pm + Gt + G ptmyr (2)
However, to model MTMM data, researchers are interested in expected obseiaecevia
scores across persons, not expected total variance. The expected observeslinames
across persons is expressed as:

G expected observed O p + O pt + G pm + G ptmyr (3)
Thus, the variance components involving solely traits and methods and the trait x method
interaction effect are not included in calculating the expected observadoeasince these
components are constant across persons.

RelationtoMTMM Modeling

Variance partitioning also relates to variance components in the MTMMxmatri

(Brennan, 2001). As noted by Woehr et al. (2011), relationships exist between variance

components and the average correlations among trait-method units. Specifically,

Average monotrait-heteromethod (MTHM¥ 6%, + 6%y, (4)
Average heterotrait-monomethod (HTMM¥ 6%, + 6°pm, and (5)
Average heterotrait-heteromethod (HTHMy cszp. (6)

For examplet;szp can also be explained as shared variance, or covariance, among trait-method
units that is not trait or method specific. In additiefy; can also be explained as covariance

among trait-method units that is specific to a given trait (Woehr et al., 201 Ep Tdrenulas can
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be rearranged to generate standardized variance components as a functicagef &M

correlations:

o°p = Average HTHM, 7)
o°pt = Average MTHMr — Average HTHM, (8)
o°om = Average HTMMr — Average HTHM, (9)
Gzptm’r =1- 62p + Gzpt + Gzpm. (20)

Subsequently, the expected correlation between two different traits meagaredrbmon
method (e.g. HTMM) is general person effects. Method speeflig)(and trait specificd’y)
effects can also be derived from expected heterotrait-heteromethoa@toonsel
Evidencefor AC Construct-related Validity

In terms of AC construct-related validity, the person by dimension effeaiss m
indicative of proper AC functioning. This effect represents variance in the PEBRS t
attributable to an individual’'s performance on a particular dimension irregpettihe exercise
in which it was measured. Thus, this effect addresses the question of whether ihdividua
differences in dimensions are being measured. In contrast, the persomdiyeeskect is an
important indicator of the situational specificity issue addressed by Lseeéolt, et al.
(2000). This effect represents variance in the PEDRs that is attributablenthvadual’s
performance in an exercise irrespective of the dimensions being measuseaddieisses the
guestion of whether individuals perform better in some situations than in others. Addijtionall
the dimension by exercise effect is an indicator of the dimension observisisilieyaddressed by
Lievens et al. (2006). This effect represents variance in the PEDRs ttiabigable to the
specific dimension being measured in a particular exercise. Thus, thisaelfieesses the

guestion of whether some dimensions more are observable (i.e., easier to rataiin ce
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exercises than in others. In addition to the direct information provided by the sedend-o
effects, their presence in the model helps to clarify the meaning of therfiestfactors. The
person effect addresses the question of whether a general performémcenisacts PEDRs
irrespective of the person by dimension effect or the person by exereise €ffe dimension
effect addresses the issue in which some dimensions are rated more |leniesglye(ely) than
others. Finally, the exercise effect address the issue of whether PEDifRRgleer or lower
simply based on the exercise from which they are drawn (i.e., are sorosexanore difficult
than others?).

Woehr et al. (2011) further noted the direct relationship between these G-theory
formulations and the traditional components of convergent and discriminant valasid Bn
Campbell and Fiske’s (1959) definitions, convergent validity is represented asermnsist
among different measures of a trait (&sé,t). This person x trait interaction represents common
variance for measures that share common traits. Evidence for convergdity isatietermined
by the sum o&°, ands?y, which is the proportion of expected observed variance in trait-method
units attributable to (a) person main effects and (b) shared variance parsngs specific to a
given trait.

According to Campbell and Fiske (1959), three conditions must be met in order to
determine discriminant validity. In Condition 1, person x trait interactions shoulchtgthan
zero. Specifically, multiple exercises are intended to determine a pessoréson the specified
dimensions. In Condition 2, person x trait interactions should be larger than person x method
interactions. Ideally, PEDRs are determined by a person’s dimension staesexercises
(person x trait interaction). The third condition cannot be easily tested andnseaist be met

under the G-theory model (Woehr et al., 2011).
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Woehr and colleagues (2011) presented the flexibility of variance gairtgi when
analyzing MTMM matrices. This flexibility is useful in analyzing dg® that involve multiple
measurement entities such as using several exercises in ACs. Bafddigseonvergence
problems associated with MTMM CFA models, Woehr et al. proposed the need to refocus
attention on variance partitioning models when analyzing MTMM data.

Utilization of Variance Partitioning

As previously noted, recent Monte Carlo research has identified potential psoblem
associated with applying CFA models to MTMM data (Lance, Woehr, & Meade,.2007)
particular, Lance et al. (2007) presented a Monte Carlo investigation in Wwkickimulated
data representing three potential “true” models of AC PEDRs. The modelsduil) a
correlated dimensions and correlated exercises model (CDCE), (2)eadimginsion, correlated
exercises model (1DCE), and (3) an uncorrelated dimensions, correlatedessgrlug model
(UDCE+g). The CDCE model most closely matches the original conceptualization of the
MTMM matrix (Kenny & Kashy, 1992). In this model, AC PEDRs are a function of hath t
dimensions being measured and the exercises used to measure the dimensionsEThedddC
is based upon the findings of numerous empirical studies (e.g., Lance, Foster, et al.ag684; L
et al., 2000; Schneider & Schmidt, 1992). In this model, AC PEDRs are primarily efuoft
the exercises utilized by the AC and a single general performance gimdnsontrast, the
UDCE+g model holds AC PEDRs as a function of the dimensions, exercises, and a general
performance factor. Thus, this model incorporates the basic features of bGIhGRemodel
and the 1DCE model.

For each of these three population models, Lance et al. (2007) generated 5@0 sampl

MTMM matrices. These 1500 sample matrices were then separatelyethalg CFA with each
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population model being applied to each sample matrix. Thus, Lance et al. were aldethyp dir
evaluate whether a CFA could produce convergent and admissible solutions when the
appropriate population model was applied to the respective sample matrix (e.gredGBCE
model fit the CDCE data?). Moreover, they were able to evaluate what would happea whe
particular population model was applied to a differing sample matrix (e.g., doEB@te model
fit the CDCE data?).

In their simulations, when the CDCE model was applied to the CDCE data (i.e., the
appropriate model for the data), the CFA converged to an admissible solution for only 61% of
the matrices (Lance et al., 2007). However, when the 1DCE model was applied to the CDC
data (i.e., an improper model for the data), the CFA converged to an admissible solution for
100% of the matrices. Thus, it is highly likely that AC data conforming to the Qb&tel
would be misidentified as conforming to the 1DCE model due to a lack of admissible model
convergence. Similarly, when the UDCgmodel was applied to the UDCg+#ata (i.e., the
proper model for the data), the CFA converged to an admissible solution for only 52% of the
matrices. However, when the 1DCE model was applied to the UDG&# (i.e., an improper
model for the data), the CFA converged to an admissible solution for 99% of theemaisc
with the CDCE data, there is a strong possibility that AC data that truly cosmforthe
UDCE+g model would be misidentified as conforming to the 1DCE model. In stark contrast,
when the 1DCE model was applied to the 1DCE data (i.e., the proper model for the data), the
CFA converged to an admissible solution for 100% of the matrices. Moreover, whan is e
more striking is that, for all models that reached an admissible solutiorjlesgaof whether or
not the fitted model matched the population model from which data was based, traditiodal mode

fit statistics (e.g., RMSEA, CFI, NNFI, ECVI, etc.) indicated that the moolettituted a good
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fit for the data. Based on these results, Lance et al. concluded that CFA oMl Matrix is a
problematic analytical technique due to its propensity to produce results tHatt et the
true nature of the data.

In addition to the difficulties with model identification, Lance et al. (2007)zetlia
relatively simple model of AC PEDRs. Their results were based on a simulatdthA
measured five performance dimensions with three exercises. This apgrdah@nimum
number required for a CFA of MTMM matrix (Marsh & Grayson, 1995). More complex models
(those with more dimensions and exercises) are even more likely to expezsimation and
convergence issues (Kenny & Kashy, 1992; Marsh, 1989), which is problematic bibeauast
majority of operational ACs include a relatively large number of dimensions arcdsese In
their review of AC design features relevant to construct-related vallibghr and Arthur
(2003) indicated than AC feature an average of almost 11 dimension4Q.60,SD = 5.11)
and 5 exercisesV[ = 4.79,9D = 1.47) per AC. Thus, if a more realistic number of dimensions
and exercises were to be used, the models tested by Lance et al. would hydshvke
displayed far greater estimation problems. In fact, these issuesflaoted in previous AC
studies. As discussed previously, Lance, Lambert, et al. (2004) applied both then@Id€IE
and the 1DCE model to 39 unique AC MTMM matrices drawn from the literature. They found
that the CDCE and 1DCE models converged to a proper solution in only 5% and 56% of the
cases, respectively.

Beyond the serious analytic issues demonstrated by Lance et al. (200&pteahc
problems with the MTMM model of AC PEDRs also exist. Typical CFA examinatbA<
PEDRs are limited in that they focus on the variance associated with AC tingeasd

exercises while ignoring potential variation attributable to other sostum#sas the individual
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being rated (i.e., a person effect), the individuals assigning the ratinga (a¢er effect), and the
numerous interactions. For example, the extent to which individuals demonstexendif
patterns of performance across dimensions (i.e., a person by dimension interacidn)
included in the MTMM model. Similarly, the extent to which some dimensions might k@& mor
effectively assessed in particular exercises rather than in otleers @imension by exercise
interaction) is not included. Thus, even to the extent that CFA approaches are atwé® pr
appropriate estimates of dimension and exercise effects, these estmlikely misleading in
that they represent an overly simplistic model of AC PEDRs.
Purpose of Present Paper

The primary goal in the present paper will be to extend the Lance et al. (2007)
simulations to evaluate the appropriateness of utilizing variance partitioniagn@), 1994;
Cronbach, Glesser, Nanda, & Rajaratanm, 1972; Shavelson & Webb, 1991) for assessing the
construct-related validity of AC PEDRs. Despite being recommended agaratilte method
for dealing with AC data (Brannick, Michaels, & Baker, 1989), to date only thudeesthave
utilized this approach (i.e., Arthur, Woehr, & Maldegen, 2000; Jackson, Stillman, & Atkins,
2005; Woehr et al., 2011). The present study will focus on whether variance partitim@isg gi
accurate results. In addition, the present study will focus on diagnosing additioaace
components such as the person effect and interaction effects. SpecificallyggMariance
partitioning differentiate between different models of AC functioning, and (&riance
partitioning able to determine different aspects of AC functioning beyond diomezisd

exercise effects?
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CHAPTER II: METHOD

Population Models

In order to evaluate the appropriateness of applying variance partitionirg) RERRS,
sixteen population models were generated to serve as the basis of the simutekieesing
with the Lance et al. (2007) study, the models represented an AC with fivesitme that are
each measured in three exercises (i.e., a fully crossed design). HowékerthenLance et al.
simulations, the population models were chosen to represent a greater rnpogsldé AC
functioning than the models that are predominant in the literature (and often based on the
fallacious CFA of an MTMM matrix).

Population models were based on varying four parameters: (a) dimension fatitagdpa
(b) exercise factor loadings, (c) dimension intercorrelations, and (digsxantercorrelations.
Fifty percent of the dimension factor loadings had a loading of .70 and the othpefiégnt had
loadings of .35. These two variations represented optimal AC functioning (high dimeaction f
ratings) and poor AC functioning (low dimension factor ratings). Additionally,dfdtie
exercise factor loadings had loadings of .70 and the other half had loadings of .35. Dhese tw
variations also represented optimal AC functioning (low exercise factonlggdand poor AC
functioning (high exercise factor loadings). The dimension and exerciseomggations were
also altered. Ideally, these factors should have relatively low intetabons. However, there
are several instances of surprisingly high dimension factor intercaynslamn the AC literature
(e.g., Bowler & Woehr, 2006). Subsequently, fifty percent of the dimension factor
intercorrelations had loadings of .70 and the other fifty percent had loadings of .35trRaréh)e
half of the exercise intercorrelations had factor loadings of .70 and the otherchlldtiengs of

.35.



Within these sixteen population models, one model was considered ideal. Based on the
theoretical design of ACs (Bray & Grant, 1966; Thornton, 1992; Thornton & Mueller-Hanson,
2004), this model was comprised of high dimension factor loadivigs (70), low exercise
factor loadingsNl, = .35), low dimension intercorrelationg{ = .35), and low exercise
intercorrelationsNlg = .35). In contrast, although several models represent poor functioning, one
was considered the worst case model. This model was comprised of low dimension factor
loadings M, = .35), high exercise factor loadinddy(= .70), high dimension intercorrelations
(M. =.70), and high exercise intercorrelatioht € .70). Specifically, the dimensions had very
little effect on PEDRs and the dimension and exercises highly correthtera another making
it very difficult to discriminate between dimensions and exercises. Evesibfmsombination
was created among the four parameters. Table 1 provides the initial frdmesgdrto generate

the sixteen models.
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Table 1
Population Factor Loadings for Dimension and
Exercise Factors and Intercorrelations

Facet Population Factor Loadings

M a .70 .70 .70 .70
Mp .35 .35 .35 .35
M .35 .70 .70 .35
M g .35 .35 .70 .70
M a .35 35 .35 .35
Mp .70 .70 .70 .70
M .35 .70 .70 .35
M g .35 .35 .70 .70
M a .35 .35 .35 .35
My .35 .35 .35 .35
M .35 .70 .70 .35
M g4 .35 .35 .70 .70
M a .70 .70 .70 .70
My .70 .70 .70 .70
M .35 .70 .70 .35
M g .35 35 .70 .70

Note. a = dimension factor loading; b = exercise factor
loading; ¢ = dimension intercorrelation; d = exgeci
intercorrelation.

Data Analyses

For each of the sixteen population models noted above, 500 sample data sets were
generated and each data set had a sample size of 200. These data setatedresing SPSS
software via the utilization of a Cholesky matrix. Each data set wasatiayzed via the
MIVQUEO method via the SAS VARCOMP procedure. The MIVQUEO method makes no
assumptions regarding the normality of the data and can be utilized for agalgb@anced

(i.e., ACs that do not fully cross dimensions and exercises) designs (Haetg\& Ramotte,
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1978). Additionally, MIVQUEUQO is one of the most efficient computational methods awailabl
(Bell, 1985; Brennan, 2001). This study included analyses on 8,000 individual data sets — thus,

analytical efficiency was of paramount concern.
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CHAPTER 3: RESULTS
The results for the sixteen population models are displayed in Tables 2 to 5. &xpecte

values were calculated using the following formulas:

Average MTHM r = &+ (& x d), (11)
Average HTMM r = B+ (& x c), and (12)
Average HTHM r = (ax c) + (f x d), (13)

where a is the dimension loading, b is the exercise loading, c is the dimensiarrietations,
and d is the exercise intercorrelations. As predicted, the Monte Carlo meaatestior the
sixteen models are almost identical to the expected values. The very minendéfeare due to
the small sample size € 200) that was utilized as being indicative of typical AC research.
However, even with the small sample size all sixteen models had very smdHlrst deviations
indicating little variance among the samples. Thus, overall, the variarite®peng of all

sixteen models appears to have provided accurate results.

As previously discussed, variance partitioning can indicate values of comeerge
discrimination, and method variance using variance components of person effsctis lpyer
dimension effects, and person by exercise effects (Woehr et al., 2011). \éaloesviergence,
two conditions of discrimination, and method variance for each population model were

calculated using the following formulas derived by Woehr and colleagues:

Cl :(52p + Gzpt, (14)
D1 =c°y, (15)
D2 :GZpt - Gzpm, and (16)

MV = Gzpm (17)



and are also displayed in Tables 2 to 5. For ideal AC models, values of C1, D1, and D2 should be
high and method variance should be low.

As shown in Table 2, for population models with low dimension and low exercise
intercorrelations, the first model in which both dimension and exercise loading® atiee
person effect, person by dimension effect, and person by exercise effachagh with
variance components of .342, .322, and .317 respectively. The second model in which dimension
loadings are .70 and exercise loadings are .35 represents the overall ideallimogerson
effect and person by dimension effect are relatively high with variancparents of .215 and
.320 indicating convergence. Additionally, the person by exercise component is vér§46yv
Moreover, variance components for convergence (.535) and discrimination (D1 = .320 and D2 =
.244) are high and the variance component for method variance (.076) is very low. This is what
would be expected in an appropriately functioning AC. The third model in which dimension
loadings are .35 and exercise loadings are .70 indicates a bad model. The perisisn effec
relatively large at .215; however, the person by dimension effect is very |082aindicating
low convergence which is seen in the value of C1. The person by exercise effeatvisry high
(.321) thus producing a large amount of method variance. The final model in which both
dimension and exercise loadings are .35, the person effect, person by dimensiparefféwe
person by exercise effects all fall below .077 with the error variancpawent very high at

.753.
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Table :

Simulation Resultsfor Population Matrices Demonstrating Low Dimension Intercorreations
(.35) and Low Exercises Intercorrelations (.35)

Expected Population

Monte Carlo Estimatés

Dimension Exercise Facet Values Matrix M SD
.70 .70 p .343 .343 .342 .028
pd .319 .319 322 .028
pX .319 .319 .317 .035
pdxr .020 .020 .019 .002
C1 .662 .662 .664
D1 .319 .319 .322
D2 .000 .000 .005
MV .319 .319 317
.70 .35 p 214 214 .215 .024
pd .319 .319 .320 .038
pX .080 .080 .076 .009
pdxr .388 .388 .385 .039
C1 .533 .533 535
D1 .319 .319 .320
D2 .239 .239 244
MV .080 .080 .076
.35 .70 p 214 214 .215 .024
pd .080 .080 .082 .008
pX .319 .319 321 .027
pdxr .388 .388 .386 .033
C1 .294 .294 .296
D1 .080 .080 .082
D2 -.239 -.239 -.239
MV .319 .319 321
.35 .35 p .086 .086 .086 .008
pd .080 .080 .077 .008
pX .080 .080 .077 .007
pdxr .755 .755 .753 .073
C1 .165 .165 .163
D1 .080 .080 .077
D2 .000 .000 .000
MV .080 .080 .077

Note. p = person; pd = person xdimension; px = persexercise; pdxr = errofAll Monte Carlo
estimates are frofn = 500 samples with =200 and analyzed via the MIVQUE(0) model in SAS

9.3.



In Table 3 for population models with low dimension intercorrelations and high exercis
intercorrelations, the first model indicates a high person effect, high persméysion effect,
and high person by exercise effect with variance components of .513, .322, and .143
respectively. The second model with high dimension loadings and low exercise $oading
indicates an acceptable AC functioning model. The person effect and person byaimensi
effects are high with variance components of .258 and .316 respectively, indicatinggeonee
Moreover, further evidence of convergence is seen in C1 with a large varianoenemof
.574. Additionally, the person by exercise effect is very low (.040) indicating snealy
amount of method variance. The third model with low dimension loadings and high exercise
loadings demonstrates a model with low convergence. The person effect is high (.3&8grhow
the person by dimension effect is very low (.083). Additionally, the person by sxeféect is
somewhat large (.150). Additionally, D1 and D2 variance components demonstrate almost
nonsignificant evidence of discrimination. The fourth model with both low dimension and
exercise loadings demonstrates a horrible model with a relativelydargen effect (.132) and
very large error (.756). The person by dimension effect (.080) was very smaltimglitardly

any convergence.
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Table 3

Simulation Resultsfor Population Matrices Demonstrating Low Dimension Intercorreations
(.35) and High Exercises Intercorrelations (.70)

Monte Carlo Estimatés

BExpected Population
Dimension Exercise Facet Values Matrix M sD
.70 .70 p .515 .515 .513 .057
pd 319 .319 .322 .027
pX 147 .147 .143 .015
pdxr .020 .020 .022 .002
Ci .833 .833 .836
D1 .319 .319 .322
D2 172 172 179
MV 147 147 .143
.70 .35 p .257 .257 .258 .028
pd 319 .319 316 .028
pX .037 .037 .040 .003
pdxr .388 .388 .387 .032
Ci 576 576 574
D1 .319 .319 .316
D2 .282 .282 276
MV .037 .037 .040
.35 .70 p .386 .386 .383 .034
pd .080 .080 .083 .008
pX 147 .147 150 .013
pdxr .388 .388 .388 .037
C1 .466 .466 .466
D1 .080 .080 .083
D2 -.067 -.067 -.067
MV 147 147 150
.35 .35 p 129 129 132 .014
pd .080 .080 .080 .009
pX .037 .037 .037 .004
pdxr .755 .755 .756 .079
C1 .208 .208 211
D1 .080 .080 .080
D2 .043 .043 .043
MV .037 .037 .037

Note. p = person; pd = person xdimension; px = persexercise; pdxr = errofAll Monte Carlo
estimates are froln = 500 samples with =200 and analyzed via the MIVQUE(0) model in SAS
9.3.
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As shown in Table 4, with high dimension intercorrelations and low exercise
intercorrelations, the first model in which both dimension and exercise loadingglaréhki
person effect, person by dimension effect, and person by exercise e#dtighamwith variance
components of .512, .144, and .320, respectively. The second model with high dimension
loadings and low exercise loadings indicates an acceptable AC model. Tore [pedimension
effect is relatively large (.145) indicating convergence and the person lmysexeffect is very
small (.080) indicating low method variance. There is also a very large personoéfi384.
Further evidence of convergence is demonstrated by the C1 variance componentelfidenc
discrimination is problematic since D2 is very low with a value of .065. The third madttiel w
low dimension loadings and high exercise loadings indicates a poor AC functiondigd. mhe
person by dimension effect is very small (.035) indicating very poor convergenaowdnrthe
C1 variance component is relatively low and evidence of discrimination is noméxiste
Additionally, the person by exercise effect is very large (.316) indicatigg laethod variance.
The final model with both low dimension and exercise loadings indicates a rigléige
person effect and very small person by dimension effects and person byeeaHedts with
variance components of .131, .038, and .084 respectively. This results in a very large error

variance component of .754.
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Table 4
Simulation Resultsfor Population Matrices Demonstrating High Dimension Intercorreations
(.70) and Low ExercisesIntercorrelations (.35)

Monte Carlo Estimatés

BExpected Population

Dimension Exercise Facet Values Matrix M SD
.70 .70 p 515 515 512 .047
pd 147 147 144 .013
pX .319 .319 .320 .034
pdxr .020 .020 .020 .002
C1 .662 .662 .655
D1 147 147 144
D2 =172 -172 =177
MV .319 .319 .320
.70 .35 p .386 .386 .384 .034
pd 147 147 145 .012
pX .080 .080 .080 .007
pdxr .388 .388 .391 .042
C1 .533 .533 .528
D1 147 147 .145
D2 .067 .067 .065
MV .080 .080 .080
.35 .70 p .257 .257 .256 .028
pd .037 .037 .035 .003
pX .319 .319 .316 .036
pdxr .388 .388 .390 .037
C1 .294 .294 291
D1 .037 .037 .035
D2 -.282 -.282 -.281
MV .319 .319 .316
.35 .35 p 129 129 131 .012
pd .037 .037 .038 .004
pX .080 .080 .084 .009
pdxr .755 .755 .754 .090
C1 .165 .165 .169
D1 .037 .037 .038
D2 -.043 -.043 -.045
MV .080 .080 .084

Note. p = person; pd = person xdimension; px = persexercise; pdxr = errofAll Monte Carlo
estimates are froln = 500 samples with =200 and analyzed via the MIVQUE(0) model in SAS
9.3.
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In Table 5, which shows population models with high dimension and high exercise
intercorrelations, the first model with both high dimension and exercise loadingst@sdecvery
high person effect, and relatively large person by dimension effects and pgesardise
effects, with variance components of .689, .147, and .147, respectively. Furthermore, the model
demonstrates very high convergence (C1 = .836), but low discrimination. Additionally, the
model demonstrates relatively large method variance (MV = .147). The second mbdebbvit
dimension loadings and low exercise loadings indicates an acceptable AC Tinedpérson
effect is very high (.429), but there is also a relatively large person by doneifect (.145)
which indicates some convergence. Further evidence of convergence is seen im&1 wit
variance component of .576. Additionally, the person by exercise effect is vetystimal
variance component of .033, indicating very low method variance. The third model with low
dimension loadings and high exercise loadings is considered the overall werst@ael out of
all sixteen models. The person effect is very large (.429) with a relatargly person by
exercise effect (.144). Additionally, the person by dimension effect issveajl (.033),
indicating little convergence. Moreover, very little discrimination can be e and D2 as
well as a relatively large amount of method variance. The last model withowothrhension
and exercise loadings indicates a relatively high person effect (.174) angltagh error
variance component of .753. Both the person by dimension effect and the person by exercise
effect are very small with variance components of .034 and .036, respectively imitté

convergence, very little evidence of discrimination, and little method variance
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Table !
Simulation Results for Population Matrices Demonstrating High Dimension Intercorreations

(.70) and High Exercises Intercorrelations (.70)

Monte Carlo Estimatés

Expected Population

Dimension Exercise Facet Values Matrix M SD
.70 .70 p .686 .686 .689 .079
pd 147 147 147 .014
pX 147 147 147 .012
pdxr .020 .020 .021 .002
C1 .833 .833 .836
D1 147 147 147
D2 .000 .000 .000
MV 147 147 147
.70 .35 p 429 429 431 .036
pd 147 147 145 .015
pX .037 .037 .033 .004
pdxr .388 .388 .391 .036
C1 576 576 576
D1 147 147 .145
D2 110 110 112
MV .037 .037 .033
.35 .70 p 429 429 429 .038
pd .037 .037 .033 .004
pX 147 147 144 .017
pdxr .388 .388 .386 .042
C1 466 466 463
D1 .037 .037 .033
D2 -.110 -.110 -111
MV 147 147 144
.35 .35 p 172 172 174 .018
pd .037 .037 .034 .003
pX .037 .037 .036 .004
pdxr .755 .755 .753 .071
C1 .208 .208 .208
D1 .037 .037 .034
D2 .000 .000 -.002
MV .037 .037 .036

Note. p = person; pd = person xdimension; px = persexercise; pdxr = errofAll Monte Carlo
estimates are frofn = 500 samples with =200 and analyzed via the MIVQUE(0) model in SAS

9.3.
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In summary, across all sixteen models variance partitioning produced aleguiance
components regardless of the type of model. All models produced variance components very
similar, if not identical, to the expected values derived from MTMM matrictésshight
differences due to sample size. Moreover, variance partitioning was abtxéssfully
differentiate among person effects, person by dimension effects, personrdgesgfiects, and
error for all 16 models. Variance partitioning correctly distinguished artiengources of
variance in PEDRs that would be expected based upon the population models from which they
were drawn. Specifically, population models that represented adequate AiGrungcproduced
variance components that demonstrated adequate levels of construct-reldigd val
Furthermore, convergence, discrimination, and method variance criterions drasiigonal

evidence for construct-related validity.
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CHAPTER 1V: DISCUSSION

The primary goal of the present study was to determine whether vapanit®ning
differentiates among varieties of AC models and diagnoses additionalsaspA€s beyond
basic dimension and exercise effects. The results of this study provide soppiogtidse of
variance partitioning. This method clearly differentiated among sixteegtiesrof AC models
ranging from an ideal model to a worst case model. In addition to being able touis$ting
among models, variance partitioning was also able to detect person effestis, [pedimension
effects, and person by exercise effects. When the ideal model was anab/eggected, the
person by dimension effect was the primary source of variance, indicating camwveaiidity.
When the worst case model was analyzed, error was the primary sourcantedoilowed by
the person by exercise effect, as expected. Moreover, dimension facori@tions made a
considerable impact on the person effect, with greater intercorrelatiodsgial more
substantial person effect.

Another benefit of variance partitioning is that it can disregard the iisategrise with
CFA model fit and admissible solutions. Variance partitioning only focuses onditheced
variance components; however, CFA involves assessing the model’s fit and wHeE#ercan
produce an admissible solution for the data. Lance et al. (2007) portrays the prolbl€Di Avit
producing appropriate model fit. As previously mentioned, traditional fit statistiLance et
al.’s research indicated that their various models constituted a good fit for ahegatdless of
whether or not the fitted model matched the population model from which the data was based.
Variance partitioning is not plagued by such serious analytic issues. Natamdyariance
partitioning separate explained variance into more variance components egragp@FA, but it

also can demonstrate a model’'s convergence without using model fit statistics.



Implications

The results of Lance et al. (2007) highlight the necessity of finding a névodnef
evaluating the construct-related validity of ACs. For almost 30 yearsstastial amount of AC
research has been based upon the application of CFA techniques to the analydi4TiVMC
matrices (e.g. Lance, Foster, et al., 2004; Lance, Lambert, et al., 2004 et ah¢c2000;
Schneider & Schmidt, 1992). As previously discussed, the CFA approach to analyzing MTMM
matrices is problematic in numerous ways (Lance et al., 2004). The convergenempraiih
CFA have led researchers to believe ACs do not function as intended and thereforttidnave li
construct validity (Lance et al., 2007; Lievens and Conway, 2001). Because of the flaws
associated with CFA, it is critical for AC researchers to begin uigiaiternative methods in
evaluating AC functioning. The present study provides support for such a method to be an
effective way to analyze AC MTMM matrices.

This new method also determines additional variance components (e.g. personteffects
assess the effects of individual AC raters as well as the individuals lssiegsad. Even more
critical are the interactions between facets. The ability to diffeterttietween a person effect, a
dimension effect, and a person by dimension interaction provides substantiallynfooreation
than a dimension effect alone. Variance patrtitioning distinguishes amonglsauaces of
variance whereas CFA only has the ability to distinguish between dimensioneoderffects
which may be an overly simplistic view of AC functioning. Similarly, numeressarchers
have claimed that exercise effects represent valid performantedreiformation. This may
indeed be the case; however, previous research has provided little informatiomeetisasie
effects. Are these exercise effects indicative of general egafitficulty or of something more

along the lines of situational specific? Although some research has addmptiress this
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issue (e.g. Lance et al., 2000), most has simply focused on “exercids.&ffee traditional
dichotomy between dimensions and exercises is incapable of answering queshass suc
whether exercise effects are due to general exercise difficulty oo ditedtional specificity.
However, variance partitioning can provide answers to these questions.

Convergence, discrimination, and method variance can also be easily assesseqdca varia
partitioning by using the standardized methodology described by Woehr et al. (2eally, |
the convergence criterion and the two conditions of discrimination should have largeevarianc
components whereas the method variance criterion should have a small variance corAgonent
previously mentioned, ACs should ideally demonstrate variance attributahle same
dimension measured across several exercises (convergence) and nog \atidnutable to
within exercises (method variance). It would be impossible to assess all p@sgphlation
model combinations; however, inferences can be made based on the correlatioofriédehr
et al.’s convergence, discrimination, and method variance criterions (2011). As sebleib,T
C1 has a significant positive relationship with both conditions of discrimination whictbes
expected. More importantly, C1, D1, and D2 are all negatively related to methaacearThus,
these three criterions can be manipulated without increasing the levelhafchvatriance.
Specifically, one can increase the convergence criterion and subsequentge ecethod

variance.
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Table 6
Correlational Relationship Between Convergence,
Discrimination, and Method Variance

1 2 3 4
Convergence 1.00
Discrimination 1 .82%* 1.00
Discrimination 2 70 90** 1.00
Method Variance -.09* -19*  -61* 1.00

Notes. *p < .05; **p < .0:
Future Research

Future research should determine cut off values for the various variance components
similar to those established for alpha and the .05 criteriom¥alues. Currently, researchers
determine the appropriateness of variance component values by comparing thdmotbeyac
For example, a person by dimension effect adequately demonstrates coptdtadtwalidity
when it is larger than the person by exercise effect. There are bunemstablished variance
component values to determine construct-related validity thresholds. Such a valueigvoiyld s
the threshold that differentiates adequate construct-related validitypfsonconstruct-related
validity. Future research should establish such threshold or cut off values toteatate
researchers have the same interpretation of the different variance compdunesnt va

Additionally, future research should also investigate the use of variandepargj in
other areas that use MTMM data. For example, 360 degree feedback currentiyeuses
traditional CFA approach to analyze MTMM data. Since CFA clearly hasgmsldnalyzing
MTMM data, it may be useful if 360 degree feedback data was analyzed usargea
partitioning instead of the traditional CFA method. Researchers in the sclolblugy field
also currently use CFAs to analyze the appropriateness of scales. fpgcHidl and Hughes
(2007) examined the convergent and discriminant validity of the Strengths arodilbd&$
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Questionnaire (SDQ) to determine its factor structure. Each of the cdsstragexamined by
students, teachers, and parents. A CFA was used to analyze the MTMM data tonddteem
convergent and discriminant validity of the SDQ. Since the present study prepesitlems
using the CFA method, Hill and Hughes could potentially have incorrect resultsiofdty,
variance partitioning enables researchers to disregard various gooéHfiegsdices to
determine the if the model demonstrated an adequate fit for the datahsinse tof variance
partitioning only focuses on the produced variance components. Moreover, variatics jpayt
has the ability to differentiate among numerous facets of variance. Otbaraleareas that use
MTMM data can benefit from the additional variance components identified imearia
partitioning.
Study Limitations

The primary limitation of the present study is the use of Monte Carlo dataetondes
the usefulness of variance partitioning. The data analyzed was not produced from real
participants in ACs, but rather from sixteen population models with predetermineckepersa
However, the analysis techniques used in this study are considered some of tHéaeost e
methods available to researchers. Furthermore, an additional limitation mtoéveomplexity
of the models evaluated. As previously mentioned, it is impossible to evaluate dlgossi
combinations of the population models. In order to align with the typical AC framevixiders
models were used to represent AC functioning. Numerous other combinations of population
factor loadings and intercorrelations could have been utilized to generate s otttier
population models. Nonetheless, the sixteen population models that were analyzeatrépees
fundamental theoretical spectrum of AC functioning and many of the possible vénetrdase

found in the literature.
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Conclusion

Variance partitioning appears to be a fruitful approach for analyzingptisruct-related
validity of AC PEDRs. Unlike the traditional CFA method for analyzing MTMM iues,
variance partitioning correctly recognizes the sources of varianceDR®&that is expected
based on the corresponding population models. Furthermore, variance partitioninifycorrec
identifies other sources of variance such as person effects and interbetisasn person,
dimension, and exercise effects that the traditional CFA method is incapailalyfing.
Variance partitioning also allows the researcher to increase conveayahdescrimination
criterions while subsequently decreasing method variance, further demaogsitedng evidence
of construct-related validity. Researchers should use this method when analy@iadTMM

matrices.
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