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The present study presents a Monte Carlo evaluation of the application of variance 

partitioning to the assessment of the construct-related validity of assessment center (AC) post 

exercise dimension ratings (PEDRs). Data was produced by creating sixteen population models 

representing a variety of AC models by varying dimension factor loadings, exercise factor 

loadings, dimension intercorrelations, and exercise intercorrelations. Analyses demonstrated that 

variance partitioning differentiated among all sixteen varieties of AC models. Variance 

partitioning also detected other sources of variance including person effects, person by 

dimension effects, and person by exercise effects. These findings suggest that variance 

partitioning may be a more appropriate method for analyzing AC multitrait-multimethod 

(MTMM) data instead of the traditional confirmatory factor analysis (CFA) method. 
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CHAPTER 1: INTRODUCTION 

 Over the past 50 years, assessment centers (ACs) have emerged as one of the most 

popular tools for evaluating individual differences related to managerial performance (Chen, 

2006; Joiner, 2002; Spychalski, Quinones, Gaugler, & Pohley, 1999). Designed for use with both 

employee selection and development, ACs are used to evaluate an individual’s performance on a 

set of job-related dimensions via using multiple high-fidelity situational exercises. Despite their 

popularity, as well as their fundamental content validity (Binning & Barrett, 1989; Schmitt & 

Chan, 1998) and demonstrated criterion-related validity (Arthur, Day, McNelly, & Edens, 2003), 

the construct-related validity of AC post-exercise dimension ratings (PEDRs) continues to be 

problematic (cf. Lance, Foster, Gentry, & Thoresen, 2004; Lievens & Conway, 2001). 

Specifically, the prevailing view of the nature of AC PEDRs, the fundamental measuring block 

of ACs, is that they substantially reflect the effect of the exercises from which they are obtained 

rather than cross-exercise stability in candidate behavior on the dimensions being assessed (cf. 

Bycio, Alvarees, & Hahn, 1987; Fleenor, 1996; Lance, 2008; Lance, Lambert, Gewin, Lievens, 

& Conway, 2004; Lance et al., 2004; Lance, Newbolt, Gatewood, Foster, French, & Smith, 

2000; Schneider & Schmidt, 1992). However, most studies that make this conclusion utilize 

analyses that are based on a confirmatory factor analysis (CFA) of a multitrait-multimethod 

(MTMM) matrix. Recent research has identified potential problems associated with this 

particular application of CFA (Lance, Woehr, & Meade, 2007; Lievens & Conway, 2001). 

 In their Monte Carlo study, Lance, Foster, and colleagues (2004) demonstrated that the 

application of CFA to the evaluation of MTMM data is problematic. Specifically, they noted that 

this analytical method frequently fails to generate an admissible solution. Moreover, when it 

does, even if the model is not the correct representation of the data (i.e., the sample data does not 
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match the population data from which it was drawn), the fit statistics will indicate a good fit. 

Subsequently, they concluded that CFAs are problematic in that they can produce results that 

conflict with the true nature of the data. Furthermore, CFA examinations of AC PEDRs do not 

take into account the candidate being rated, the individuals conducting the rating, and various 

interactions (Bowler & Woehr, 2009). Thus, research into the internal structure of ACs should 

most likely not rely on CFAs to evaluate their construct-related validity of ACs. 

Recently, Woehr, Putka, and Bowler (2011) have identified a novel method for assessing 

the construct-related validity of MTMM data. Specifically, the application of variance 

partitioning (i.e., G-theory), which involves modeling person, trait, and exercise effects, helps to 

circumvent the issues with CFA. Moreover, this method has direct analogues with the facets of 

construct-related originally identified by Campbell and Fiske (1959). This method will be 

utilized to assess the construct-related validity of AC PEDRs. The present study will evaluate a 

series of Monte Carlo simulations representing a variety AC models. Specifically, analyses will 

focus on whether variance partitioning differentiates among varieties of AC models and if 

variance partitioning diagnoses additional aspects of ACs beyond dimension and exercise effects. 

Assessment Center Design 

 Assessment centers are used for both selection and career development purposes 

(Thornton, 1992). When utilized for selection, ACs are used to determine which applicants have 

the necessary knowledge, skills, and abilities (KSAs) to be successful in the relevant position. 

When utilized for career development, an AC is used to determine behaviors that a participant 

does well and which behaviors need improvement, with training being based on the later. 

Regardless, all assessment centers are comprised of a varying series of high-fidelity exercises, 

such as an in-basket, a leaderless group discussion, a one-on-one role play, and a case analysis. 
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Applicants’ performances on these exercises are observed and rated independently by trained 

assessors. These exercises are intended to serve as stimulus materials for the measurement of the 

relevant job-related skills. Dimensions vary widely across ACs, from oral communication to 

decisiveness (Thornton, 1992). As noted by Arthur, Day, et al. (2003) there are over 138 

dimensions in the AC literature with a typical AC being comprised of eleven dimensions and 

five exercises (Woehr & Arthur, 2003). Ideally, these dimensions are the foundation of AC 

functioning. Specifically, ACs are designed to evaluate the participant’s standing on a dimension 

and are based on the assumption that his or her performance on the dimension will be stable 

across exercises (Lievens & Conway, 2001).  

 A typical assessment center involves several assessors, comprised of HR staff members 

and managers, and assessees who participate in the various exercises (Thornton & Mueller-

Hanson, 2004). Prior to the assessment center, the assessors are thoroughly trained in the 

assessment process. During the AC, the assessors observe and rate participant behaviors in 

various situation exercises (Thornton & Mueller-Hanson, 2004). The assessors rate each assessee 

on the specified dimensions after each exercise is completed. Once the assessment center is 

complete, the assessors meet and discuss their reports on each participant. The assessors then rate 

each assessee on each performance dimension (e.g. on a five or seven point scale). If the purpose 

of the AC was promotion, the assessors discuss each assessee’s probability of success if given 

the promotion, and the assessors make a recommendation of which candidate they believe is 

suitable for the position. Typically, each participant is also provided a report of their 

performance on each specified dimension. 

Convergent and Discriminant Validity 
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 In order for AC PEDRs to be considered to be construct-valid, a multitrait-multimethod 

(MTMM) matrix needs to demonstrate convergent and discriminant validity. Evaluation of 

MTMM matrices is nothing new as it was first discussed by Campbell and Fiske (1959). In ACs, 

MTMM matrices are often used to demonstrate the relationship between dimension and exercise 

factors. It is assumed that dimension factors will be observed in multiple exercises. Large trait 

factor loadings indicate support for convergent validity and large trait correlations indicate a lack 

of discriminant validity. Specifically, trait factor loadings are comprised of dimension scores 

across multiple exercises. A typical MTMM matrix is comprised of three types of correlations: 

(a) correlations among PEDRs sharing the same dimension, but different exercises, (b) 

correlations among PEDRs sharing the same exercise, but different dimensions, and (c) 

correlations among PEDRs that share neither dimensions nor exercises (Woehr et al., 2011). The 

purpose of a CFA is to evaluate the fit between the observed correlations among the PEDRs and 

a reproduced correlation matrix, and provide parameter estimates. However, recent meta-

analyses have demonstrated a problem using CFA to determine model fit. 

Meta-analyses of Model Fit using CFA 

Lievens and Conway (2001). In their review of AC construct-related validity, Lievens 

and Conway (2001) reanalyzed 34 MTMM matrices from 24 assessment centers. Their analyses 

focused on fitting six different models to each of the 34 MTMM matrices using a CFA: (1) A 

correlated dimension model, (2) a correlated exercise model, (3) a correlated dimension-

correlated exercise model, (4) a single dimension-correlated exercise model, (5) a direct product 

model, and (6) a correlated uniqueness model. A correlated dimension model reflects an AC with 

PEDRs that are solely the function of the dimensions being rated, whereas a correlated exercise 

model reflects an AC with PEDRs that are only a function of the exercises used to evaluate the 
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dimensions. The correlated dimension-correlated exercise model places emphasis on both the 

dimensions being rated and exercise in which they are being rated. The single dimension-

correlated exercise model reflects an AC with PEDRs that are comprised of a single dimension 

factor (e.g. a “g” factor or a “person” factor) as well as the exercises. The direct product model 

and the correlated uniqueness model are both statistical variations of the correlated dimension-

correlated exercise model. In the direct product model the correlations between PEDRs are a 

multiplicative function between dimensions and exercises, and in the correlated uniqueness 

model the exercise effects are not explicitly differentiated from the correlations among the 

uniquenesses. 

Results from the Lievens and Conway (2001) analyses indicated the dimension-only 

model and the exercise-only model showed poor fit. The percentage of matrices that 

demonstrated an acceptable fit for these two models were 3% and 29% respectively. The single 

dimension-correlated exercise model performed somewhat more favorably, producing an 

acceptable fit for 53% of the matrices. In contrast, the correlated dimension-correlated exercise 

model and the direct product model demonstrated acceptable fit with 85% and 81%, respectively. 

However, the correlated uniqueness model demonstrated the best fit, fitting 88% of the MTMM 

matrices. Based on these results, Lievens and Conway concluded that a model comprised of 

correlated dimensions and exercises modeled as correlated uniqueness was the most appropriate 

to use when analyzing AC MTMM matrices. Following this, Lievens and Conway estimated the 

impact dimension and exercise factors had on each model. Overall, they noted that the mean 

proportion of variance that was attributable to dimensions was .34 and the mean proportion of 

variance attributable to exercises was .34. Lievens and Conway also noted that these values 

varied greatly (from .17 to .62 for dimensions and .07 to .69 for exercises) with several models 
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having high intercorrelated dimensions (e.g., .71). Nonetheless, they concluded that dimensions 

have more of an effect on AC ratings than was previously suspected but that their study fell short 

of demonstrating that dimensions actually do have a greater impact than exercises. 

 Lance, Foster, et al. (2004). Due to several problematic statistical issues with the 

Lievens and Conway (2001) results – specifically that the correlated uniqueness model used by 

Lievens and Conway can often lead to overestimated dimension effects – Lance, Foster, and 

colleagues (2004) replicated the study conducted with a different set of CFA models: (1) a 

correlated dimension, correlated exercise (CDCE) model, (2) a single dimension-correlated 

exercise model (1DCE), and (3) a correlated exercise model. Two additional models were also 

estimated in which “exercise effects were modeled as covariances among uniqueness for PEDRs 

measured in the same exercise” (pg. 379). These models were: (1) a model with correlated 

dimensions and correlated uniqueness (CDCU), and (2) a model with one dimension and 

correlated uniqueness (1DCU). 

Results indicated that the CDCE model was a poor fit for all data sets used except for 

two. Both the correlated exercises model and the 1DCE model provided good fits, with the 

1DCE model providing a better fit for the data overall (Lance, Foster, et al., 2004). Consistent 

with the Lievens and Conway (2001) findings, bias in dimension factor loadings for the CDCE 

and CDCU models were present when exercise factor correlations and exercise factor loadings 

were not zero. In addition, more bias in dimension effects were found in the 1DCU model 

compared to the 1DCE model (Lance, Foster, et al., 2004). The correlated uniqueness models 

yield upward-biased estimates of dimension effects and are potentially a good fit for evaluating 

AC PEDRs. Furthermore, Lance et al.’s study provided more evidence that exercise factors 

explain more variance in PEDRs than dimension factors. Based on this finding, Lance et al. 
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assert that ACs lack construct validity. Since AC PEDRs are dominated more by exercise effects, 

candidate traits (dimension factors) are not rated the same across exercises. 

Instead of AC performance being represented as scores of participants’ traits across 

various exercises, Lance, Foster, et al. (2004) proposed the idea that AC performance is 

comprised of two factors: (a) a general yet situation-specific performance representing 

performance on each exercise task and, (b) a stable overall performance factor that is consistent 

across exercises. Lance et al. also questioned the current method for providing performance 

feedback in assessment centers. Currently, feedback is based on dimension factors yet PEDRs 

are substantially influenced by exercise effects instead of dimension effects. Researchers instead 

proposed that developmental feedback with a focus on exercise performance may be more 

appropriate. 

 Bowler and Woehr (2006). With the conflicting viewpoints of Lievens & Conway 

(2001) and Lance, Foster, et al. (2004), Bowler and Woehr attempted to provide additional 

evidence on the impact of exercise and dimensions ratings. Specifically, they meta-analytically 

combined the previously analyzed MTMM matrices to form a single summary matrix. The single 

summary matrix was then evaluated on model fit and the impact of dimension and exercise 

effects. Bowler and Woehr also examined the impact of specific dimension and exercise factors 

on AC ratings as opposed to combining results across various dimension constructs and exercise 

types. Specifically, their analyses indicated that specific dimensions (e.g. communication) had 

higher construct-related validities than other dimensions. Similarly, specific exercises (e.g. in-

basket) had higher construct-related validities than other exercises. 

 Twenty-four studies resulting in 35 MTMM matrices were used and analyzed for fit on 

six different models (Bowler & Woehr, 2006). The six models were (a) a model with six 
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correlated dimensions, (b) a model with six correlated exercise factors, (c) a model with one 

dimension factor and 6 uncorrelated exercise factors, (d) a model with one dimension factor and 

six correlated exercise factors (1DCE), (e) a model with 6 correlated dimension factors and 6 

uncorrelated exercise factors, and (f) six correlated dimension factors and six correlated exercise 

factors (CDCE). Results showed that 1DCE model and the CDCE model both failed to converge. 

These models were modified because of poor parameter estimates. After modification, both 

models converged to a proper solution.  

 Based on fit values, all of the models fit the data well except for the dimension-only 

model (Bowler & Woehr, 2006). The modified CDCE model had the best fit value and was the 

best representation of the data. The CDCE model was then analyzed for the impact of dimension 

and exercise ratings. Results indicated that both dimension and exercise factors contribute to 

PEDRs. Across all models, Bowler and Woehr discovered that dimension factors accounted for 

less variance than exercise factors. However, the variance accounted for by dimension factors 

was higher than that found by Lance et al. (2004). Therefore, Bowler and Woehr asserted that 

both dimension and exercise factors contribute to AC PEDRs.  

 Overall, these three aforementioned reviews produced notably different results. Whereas 

results from the Lance, Foster,  et al. (2004) analysis concluded that assessment center PEDRs 

are a function of exercises and not dimensions, Lievens and Conway (2001) and Bowler and 

Woehr (2006) produced results to the contrary. Specifically, both analyses concluded that 

exercise effects do not necessarily take precedence over dimension effects. Interestingly, the 

findings of all of these studies were based on the same statistical technique – a CFA of an 

MTMM matrix. Unfortunately, the suitability of this method has recently been called into 

question. 
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Generalizability Theory 

 Since previous research has demonstrated many problems with using confirmatory factor 

analysis to analyze AC MTMM data (e.g. Lance et al., 2007), Woehr, Putka, and Bowler (2011) 

discussed another method for modeling MTMM matrices, the Generalizability theory or variance 

partitioning. Three primary sources of variance are assessed using variance partitioning: the 

person being rated (p), the dimension being rated (t), and the exercise from which the rating was 

made (m). Written in variance partitioning shorthand, this concept can be described as p x t x m. 

Each person completes a number of trait measures and each trait measure is assessed using the 

same number of measurement methods. Subsequently, each person’s observed score (Xptm) on a 

given trait-method unit is a simple additive function: 

 Xptm = µ + vp + vt + vm + vpt + vpm + vtm + vptm,r,     (1) 

where µ is the grand mean score across all persons, traits and methods; vp is the person main 

effect and the expected value of a person’s score across the population of traits and methods; vt is 

the trait main effect and the expected value of the trait’s effect across the population of persons 

and methods; vm is the method main effect and the expected value of the method’s effect across 

the population of persons and traits; vpt is the person x trait interaction effect and reflects the 

differences in the ordering of the persons’ expected scores (averaged over methods) across traits; 

vpm is the person x method interaction effect and reflects differences in the ordering of the 

persons’ expected scores (averaged over traits) across methods; vtm is the trait x method 

interaction effect and reflects the differences in the ordering of traits’ expected scores (averaged 

over persons) across methods; and lastly, vptm,r is the remaining residual after accounting for all 

other effects in the model.  

Assumptions 
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 The assumptions of the above model are the same as the common random-effects 

ANOVA assumptions. All effects are assumed to be independent of each other with means of 

zero and variances of σ2
p, σ

2
t, σ

2
m, σ2

pt, σ
2
pm, σ2

tm, and σ2
ptm,r, respectively. These variance 

components are the focus of estimation in G-theory (Woehr et al., 2011). The expected total 

variance in scores across all p x t x m combinations in the population is expressed as: 

 σ
2
expected total = σ2

p + σ2
t + σ2

m + σ2
pt + σ2

pm + σ2
tm + σ2

ptm,r    (2) 

However, to model MTMM data, researchers are interested in expected observed variance in 

scores across persons, not expected total variance. The expected observed variance in scores 

across persons is expressed as: 

 σ
2
expected observed = σ2

p + σ2
pt + σ2

pm + σ2
ptm,r      (3) 

Thus, the variance components involving solely traits and methods and the trait x method 

interaction effect are not included in calculating the expected observed variance since these 

components are constant across persons. 

Relation to MTMM Modeling 

 Variance partitioning also relates to variance components in the MTMM matrix 

(Brennan, 2001). As noted by Woehr et al. (2011), relationships exist between variance 

components and the average correlations among trait-method units. Specifically, 

 Average monotrait-heteromethod (MTHM) r = σ2
p + σ2

pt,    (4) 

 Average heterotrait-monomethod (HTMM) r = σ2
p + σ2

pm, and   (5) 

 Average heterotrait-heteromethod (HTHM) r = σ2
p.     (6) 

For example, σ2
p can also be explained as shared variance, or covariance, among trait-method 

units that is not trait or method specific. In addition, σ
2
pt can also be explained as covariance 

among trait-method units that is specific to a given trait (Woehr et al., 2011). These formulas can 
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be rearranged to generate standardized variance components as a function of average MTMM 

correlations: 

 σ
2
p = Average HTHM r,        (7) 

 σ
2
pt = Average MTHM r – Average HTHM r,     (8) 

 σ
2
pm = Average HTMM r – Average HTHM r,     (9) 

 σ
2
ptm,r = 1- σ2

p + σ2
pt + σ2

pm.        (10) 

Subsequently, the expected correlation between two different traits measured by a common 

method (e.g. HTMM) is general person effects. Method specific (σ
2
pm) and trait specific (σ2

pt) 

effects can also be derived from expected heterotrait-heteromethod correlations. 

Evidence for AC Construct-related Validity 

In terms of AC construct-related validity, the person by dimension effect is most 

indicative of proper AC functioning. This effect represents variance in the PEDRs that is 

attributable to an individual’s performance on a particular dimension irrespective of the exercise 

in which it was measured. Thus, this effect addresses the question of whether individual 

differences in dimensions are being measured. In contrast, the person by exercise effect is an 

important indicator of the situational specificity issue addressed by Lance, Newbolt, et al. 

(2000). This effect represents variance in the PEDRs that is attributable to an individual’s 

performance in an exercise irrespective of the dimensions being measured. This addresses the 

question of whether individuals perform better in some situations than in others. Additionally, 

the dimension by exercise effect is an indicator of the dimension observability issue addressed by 

Lievens et al. (2006). This effect represents variance in the PEDRs that is attributable to the 

specific dimension being measured in a particular exercise. Thus, this effect addresses the 

question of whether some dimensions more are observable (i.e., easier to rate) in certain 
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exercises than in others. In addition to the direct information provided by the second-order 

effects, their presence in the model helps to clarify the meaning of the first-order factors. The 

person effect addresses the question of whether a general performance factor impacts PEDRs 

irrespective of the person by dimension effect or the person by exercise effect. The dimension 

effect addresses the issue in which some dimensions are rated more leniently (or severely) than 

others. Finally, the exercise effect address the issue of whether PEDRs are higher or lower 

simply based on the exercise from which they are drawn (i.e., are some exercises more difficult 

than others?). 

 Woehr et al. (2011) further noted the direct relationship between these G-theory 

formulations and the traditional components of convergent and discriminant validity. Based on 

Campbell and Fiske’s (1959) definitions, convergent validity is represented as consistency 

among different measures of a trait (i.e. σ
2
pt). This person x trait interaction represents common 

variance for measures that share common traits. Evidence for convergent validity is determined 

by the sum of σ2
p and σ2

pt, which is the proportion of expected observed variance in trait-method 

units attributable to (a) person main effects and (b) shared variance among persons specific to a 

given trait.  

According to Campbell and Fiske (1959), three conditions must be met in order to 

determine discriminant validity. In Condition 1, person x trait interactions should be greater than 

zero. Specifically, multiple exercises are intended to determine a person’s score on the specified 

dimensions. In Condition 2, person x trait interactions should be larger than person x method 

interactions. Ideally, PEDRs are determined by a person’s dimension scores across exercises 

(person x trait interaction). The third condition cannot be easily tested and is assumed to be met 

under the G-theory model (Woehr et al., 2011). 
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 Woehr and colleagues (2011) presented the flexibility of variance partitioning when 

analyzing MTMM matrices. This flexibility is useful in analyzing designs that involve multiple 

measurement entities such as using several exercises in ACs. Because of the convergence 

problems associated with MTMM CFA models, Woehr et al. proposed the need to refocus 

attention on variance partitioning models when analyzing MTMM data. 

Utilization of Variance Partitioning 

 As previously noted, recent Monte Carlo research has identified potential problems 

associated with applying CFA models to MTMM data (Lance, Woehr, & Meade, 2007). In 

particular, Lance et al. (2007) presented a Monte Carlo investigation in which they simulated 

data representing three potential “true” models of AC PEDRs. The models utilized (1) a 

correlated dimensions and correlated exercises model (CDCE), (2) a single dimension, correlated 

exercises model (1DCE), and (3) an uncorrelated dimensions, correlated exercises, plus g model 

(UDCE+g). The CDCE model most closely matches the original conceptualization of the 

MTMM matrix (Kenny & Kashy, 1992). In this model, AC PEDRs are a function of both the 

dimensions being measured and the exercises used to measure the dimensions. The 1DCE model 

is based upon the findings of numerous empirical studies (e.g., Lance, Foster, et al., 2004; Lance 

et al., 2000; Schneider & Schmidt, 1992). In this model, AC PEDRs are primarily a function of 

the exercises utilized by the AC and a single general performance dimension. In contrast, the 

UDCE+g model holds AC PEDRs as a function of the dimensions, exercises, and a general 

performance factor. Thus, this model incorporates the basic features of both the CDCE model 

and the 1DCE model. 

For each of these three population models, Lance et al. (2007) generated 500 sample 

MTMM matrices. These 1500 sample matrices were then separately analyzed via CFA with each 
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population model being applied to each sample matrix. Thus, Lance et al. were able to directly 

evaluate whether a CFA could produce convergent and admissible solutions when the 

appropriate population model was applied to the respective sample matrix (e.g., does the CDCE 

model fit the CDCE data?). Moreover, they were able to evaluate what would happen when a 

particular population model was applied to a differing sample matrix (e.g., does the 1DCE model 

fit the CDCE data?). 

In their simulations, when the CDCE model was applied to the CDCE data (i.e., the 

appropriate model for the data), the CFA converged to an admissible solution for only 61% of 

the matrices (Lance et al., 2007). However, when the 1DCE model was applied to the CDCE 

data (i.e., an improper model for the data), the CFA converged to an admissible solution for 

100% of the matrices. Thus, it is highly likely that AC data conforming to the CDCE model 

would be misidentified as conforming to the 1DCE model due to a lack of admissible model 

convergence. Similarly, when the UDCE+g model was applied to the UDCE+g data (i.e., the 

proper model for the data), the CFA converged to an admissible solution for only 52% of the 

matrices. However, when the 1DCE model was applied to the UDCE+g data (i.e., an improper 

model for the data), the CFA converged to an admissible solution for 99% of the matrices. As 

with the CDCE data, there is a strong possibility that AC data that truly conforms to the 

UDCE+g model would be misidentified as conforming to the 1DCE model. In stark contrast, 

when the 1DCE model was applied to the 1DCE data (i.e., the proper model for the data), the 

CFA converged to an admissible solution for 100% of the matrices. Moreover, what is even 

more striking is that, for all models that reached an admissible solution, regardless of whether or 

not the fitted model matched the population model from which data was based, traditional model 

fit statistics (e.g., RMSEA, CFI, NNFI, ECVI, etc.) indicated that the model constituted a good 
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fit for the data. Based on these results, Lance et al. concluded that CFA of an MTMM matrix is a 

problematic analytical technique due to its propensity to produce results that conflict with the 

true nature of the data. 

In addition to the difficulties with model identification, Lance et al. (2007) utilized a 

relatively simple model of AC PEDRs. Their results were based on a simulated AC that 

measured five performance dimensions with three exercises. This approaches the minimum 

number required for a CFA of MTMM matrix (Marsh & Grayson, 1995). More complex models 

(those with more dimensions and exercises) are even more likely to experience estimation and 

convergence issues (Kenny & Kashy, 1992; Marsh, 1989), which is problematic because the vast 

majority of operational ACs include a relatively large number of dimensions and exercises. In 

their review of AC design features relevant to construct-related validity, Woehr and Arthur 

(2003) indicated than AC feature an average of almost 11 dimensions (M = 10.60, SD = 5.11) 

and 5 exercises (M = 4.79, SD = 1.47) per AC. Thus, if a more realistic number of dimensions 

and exercises were to be used, the models tested by Lance et al. would most likely have 

displayed far greater estimation problems. In fact, these issues are reflected in previous AC 

studies. As discussed previously, Lance, Lambert, et al. (2004) applied both the CDCE model 

and the 1DCE model to 39 unique AC MTMM matrices drawn from the literature. They found 

that the CDCE and 1DCE models converged to a proper solution in only 5% and 56% of the 

cases, respectively. 

 Beyond the serious analytic issues demonstrated by Lance et al. (2007), conceptual 

problems with the MTMM model of AC PEDRs also exist. Typical CFA examinations of AC 

PEDRs are limited in that they focus on the variance associated with AC dimensions and 

exercises while ignoring potential variation attributable to other sources such as the individual 
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being rated (i.e., a person effect), the individuals assigning the ratings (i.e., a rater effect), and the 

numerous interactions. For example, the extent to which individuals demonstrate different 

patterns of performance across dimensions (i.e., a person by dimension interaction) is not 

included in the MTMM model. Similarly, the extent to which some dimensions might be more 

effectively assessed in particular exercises rather than in others (i.e., a dimension by exercise 

interaction) is not included. Thus, even to the extent that CFA approaches are able to provide 

appropriate estimates of dimension and exercise effects, these estimates are likely misleading in 

that they represent an overly simplistic model of AC PEDRs. 

Purpose of Present Paper 

 The primary goal in the present paper will be to extend the Lance et al. (2007) 

simulations to evaluate the appropriateness of utilizing variance partitioning (Brennan, 1994; 

Cronbach, Glesser, Nanda, & Rajaratanm, 1972; Shavelson & Webb, 1991) for assessing the 

construct-related validity of AC PEDRs. Despite being recommended as an alternative method 

for dealing with AC data (Brannick, Michaels, & Baker, 1989), to date only three studies have 

utilized this approach (i.e., Arthur, Woehr, & Maldegen, 2000; Jackson, Stillman, & Atkins, 

2005; Woehr et al., 2011). The present study will focus on whether variance partitioning gives 

accurate results. In addition, the present study will focus on diagnosing additional variance 

components such as the person effect and interaction effects. Specifically, (1) does variance 

partitioning differentiate between different models of AC functioning, and (2) is variance 

partitioning able to determine different aspects of AC functioning beyond dimension and 

exercise effects?



 

 

CHAPTER II: METHOD 

Population Models 

In order to evaluate the appropriateness of applying variance partitioning to AC PEDRs, 

sixteen population models were generated to serve as the basis of the simulations. In keeping 

with the Lance et al. (2007) study, the models represented an AC with five dimensions that are 

each measured in three exercises (i.e., a fully crossed design). However, unlike the Lance et al. 

simulations, the population models were chosen to represent a greater range of possible AC 

functioning than the models that are predominant in the literature (and often based on the 

fallacious CFA of an MTMM matrix). 

Population models were based on varying four parameters: (a) dimension factor loadings, 

(b) exercise factor loadings, (c) dimension intercorrelations, and (d) exercise intercorrelations. 

Fifty percent of the dimension factor loadings had a loading of .70 and the other fifty percent had 

loadings of .35. These two variations represented optimal AC functioning (high dimension factor 

ratings) and poor AC functioning (low dimension factor ratings). Additionally, half of the 

exercise factor loadings had loadings of .70 and the other half had loadings of .35. These two 

variations also represented optimal AC functioning (low exercise factor loadings) and poor AC 

functioning (high exercise factor loadings). The dimension and exercise intercorrelations were 

also altered. Ideally, these factors should have relatively low intercorrelations. However, there 

are several instances of surprisingly high dimension factor intercorrelations in the AC literature 

(e.g., Bowler & Woehr, 2006). Subsequently, fifty percent of the dimension factor 

intercorrelations had loadings of .70 and the other fifty percent had loadings of .35. Furthermore, 

half of the exercise intercorrelations had factor loadings of .70 and the other half had loadings of 

.35.  
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Within these sixteen population models, one model was considered ideal. Based on the 

theoretical design of ACs (Bray & Grant, 1966; Thornton, 1992; Thornton & Mueller-Hanson, 

2004), this model was comprised of high dimension factor loadings (Ma = .70), low exercise 

factor loadings (Mb = .35), low dimension intercorrelations (Mc = .35), and low exercise 

intercorrelations (Md = .35). In contrast, although several models represent poor functioning, one 

was considered the worst case model. This model was comprised of low dimension factor 

loadings (Ma = .35), high exercise factor loadings (Mb = .70), high dimension intercorrelations 

(Mc = .70), and high exercise intercorrelations (Md = .70). Specifically, the dimensions had very 

little effect on PEDRs and the dimension and exercises highly correlate with one another making 

it very difficult to discriminate between dimensions and exercises. Every possible combination 

was created among the four parameters. Table 1 provides the initial framework used to generate 

the sixteen models. 
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Data Analyses 

 For each of the sixteen population models noted above, 500 sample data sets were 

generated and each data set had a sample size of 200. These data sets were created using SPSS 

software via the utilization of a Cholesky matrix. Each data set was then analyzed via the 

MIVQUE0 method via the SAS VARCOMP procedure. The MIVQUE0 method makes no 

assumptions regarding the normality of the data and can be utilized for analyzing unbalanced 

(i.e., ACs that do not fully cross dimensions and exercises) designs (Hartley, Rao, & Lamotte, 

Table 1

Facet

M a .70 .70 .70 .70

M b .35 .35 .35 .35

M c .35 .70 .70 .35

M d .35 .35 .70 .70

M a .35 .35 .35 .35

M b .70 .70 .70 .70

M c .35 .70 .70 .35

M d .35 .35 .70 .70

M a .35 .35 .35 .35

M b .35 .35 .35 .35

M c .35 .70 .70 .35

M d .35 .35 .70 .70

M a .70 .70 .70 .70

M b .70 .70 .70 .70

M c .35 .70 .70 .35

M d .35 .35 .70 .70

Population  Factor Loadings

Population Factor Loadings for Dimension and 
Exercise Factors and Intercorrelations

Note.  a = dimension factor loading; b = exercise factor 
loading; c = dimension intercorrelation; d = exercise 
intercorrelation.
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1978). Additionally, MIVQUE0 is one of the most efficient computational methods available 

(Bell, 1985; Brennan, 2001). This study included analyses on 8,000 individual data sets – thus, 

analytical efficiency was of paramount concern.



 

 

CHAPTER 3: RESULTS 

 The results for the sixteen population models are displayed in Tables 2 to 5. Expected 

values were calculated using the following formulas: 

  Average MTHM r = a2 + (a2 × d),      (11) 

  Average HTMM r = b2 + (a2 × c), and     (12) 

  Average HTHM r = (a2 × c) + (b2 × d),     (13) 

where a is the dimension loading, b is the exercise loading, c is the dimension intercorrelations, 

and d is the exercise intercorrelations. As predicted, the Monte Carlo mean estimates for the 

sixteen models are almost identical to the expected values. The very minor differences are due to 

the small sample size (n = 200) that was utilized as being indicative of typical AC research. 

However, even with the small sample size all sixteen models had very small standard deviations 

indicating little variance among the samples. Thus, overall, the variance partitioning of all 

sixteen models appears to have provided accurate results. 

 As previously discussed, variance partitioning can indicate values of convergence, 

discrimination, and method variance using variance components of person effects, person by 

dimension effects, and person by exercise effects (Woehr et al., 2011). Values for convergence, 

two conditions of discrimination, and method variance for each population model were 

calculated using the following formulas derived by Woehr and colleagues: 

  C1 = σ2
p + σ2

pt,        (14) 

  D1 = σ2
pt,         (15) 

  D2 = σ2
pt - σ

2
pm, and        (16) 

  MV = σ2
pm         (17) 
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and are also displayed in Tables 2 to 5. For ideal AC models, values of C1, D1, and D2 should be 

high and method variance should be low. 

 As shown in Table 2, for population models with low dimension and low exercise 

intercorrelations, the first model in which both dimension and exercise loadings are .70, the 

person effect, person by dimension effect, and person by exercise effect are all high with 

variance components of .342, .322, and .317 respectively. The second model in which dimension 

loadings are .70 and exercise loadings are .35 represents the overall ideal model. The person 

effect and person by dimension effect are relatively high with variance components of .215 and 

.320 indicating convergence. Additionally, the person by exercise component is very low (.076). 

Moreover, variance components for convergence (.535) and discrimination (D1 = .320 and D2 = 

.244) are high and the variance component for method variance (.076) is very low. This is what 

would be expected in an appropriately functioning AC. The third model in which dimension 

loadings are .35 and exercise loadings are .70 indicates a bad model. The person effect is 

relatively large at .215; however, the person by dimension effect is very low at .082 indicating 

low convergence which is seen in the value of C1. The person by exercise effect is also very high 

(.321) thus producing a large amount of method variance. The final model in which both 

dimension and exercise loadings are .35, the person effect, person by dimension effect, and the 

person by exercise effects all fall below .077 with the error variance component very high at 

.753. 
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Table 2

Dimension Exercise Facet M SD

.70 .70 p .343 .343 .342 .028
pd .319 .319 .322 .028
px .319 .319 .317 .035

pdx,r .020 .020 .019 .002

C1 .662 .662 .664
D1 .319 .319 .322
D2 .000 .000 .005
MV .319 .319 .317

.70 .35 p .214 .214 .215 .024
pd .319 .319 .320 .038
px .080 .080 .076 .009

pdx,r .388 .388 .385 .039

C1 .533 .533 .535
D1 .319 .319 .320
D2 .239 .239 .244
MV .080 .080 .076

.35 .70 p .214 .214 .215 .024
pd .080 .080 .082 .008
px .319 .319 .321 .027

pdx,r .388 .388 .386 .033

C1 .294 .294 .296
D1 .080 .080 .082
D2 -.239 -.239 -.239
MV .319 .319 .321

.35 .35 p .086 .086 .086 .008
pd .080 .080 .077 .008
px .080 .080 .077 .007

pdx,r .755 .755 .753 .073

C1 .165 .165 .163
D1 .080 .080 .077
D2 .000 .000 .000
MV .080 .080 .077

Monte Carlo Estimates
a

Note.  p = person; pd = person x dimension; px = person x exercise; pdx,r = error. 
a
All Monte Carlo 

estimates are from k = 500 samples with n = 200 and analyzed via the MIVQUE(0) model in SAS 
9.3.

Expected 
Values

Population 
Matrix

Simulation Results for Population Matrices Demonstrating Low Dimension Intercorreations 
(.35) and Low Exercises Intercorrelations (.35)
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 In Table 3 for population models with low dimension intercorrelations and high exercise 

intercorrelations, the first model indicates a high person effect, high person by dimension effect, 

and high person by exercise effect with variance components of .513, .322, and .143 

respectively. The second model with high dimension loadings and low exercise loadings 

indicates an acceptable AC functioning model. The person effect and person by dimension 

effects are high with variance components of .258 and .316 respectively, indicating convergence. 

Moreover, further evidence of convergence is seen in C1 with a large variance component of 

.574. Additionally, the person by exercise effect is very low (.040) indicating a very small 

amount of method variance. The third model with low dimension loadings and high exercise 

loadings demonstrates a model with low convergence. The person effect is high (.383); however 

the person by dimension effect is very low (.083). Additionally, the person by exercise effect is 

somewhat large (.150). Additionally, D1 and D2 variance components demonstrate almost 

nonsignificant evidence of discrimination. The fourth model with both low dimension and 

exercise loadings demonstrates a horrible model with a relatively large person effect (.132) and 

very large error (.756). The person by dimension effect (.080) was very small indicating hardly 

any convergence. 
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Table 3

Dimension Exercise Facet M SD

.70 .70 p .515 .515 .513 .057
pd .319 .319 .322 .027
px .147 .147 .143 .015

pdx,r .020 .020 .022 .002

C1 .833 .833 .836
D1 .319 .319 .322
D2 .172 .172 .179
MV .147 .147 .143

.70 .35 p .257 .257 .258 .028
pd .319 .319 .316 .028
px .037 .037 .040 .003

pdx,r .388 .388 .387 .032

C1 .576 .576 .574
D1 .319 .319 .316
D2 .282 .282 .276
MV .037 .037 .040

.35 .70 p .386 .386 .383 .034
pd .080 .080 .083 .008
px .147 .147 .150 .013

pdx,r .388 .388 .388 .037

C1 .466 .466 .466
D1 .080 .080 .083
D2 -.067 -.067 -.067
MV .147 .147 .150

.35 .35 p .129 .129 .132 .014
pd .080 .080 .080 .009
px .037 .037 .037 .004

pdx,r .755 .755 .756 .079

C1 .208 .208 .211
D1 .080 .080 .080
D2 .043 .043 .043
MV .037 .037 .037

Simulation Results for Population Matrices Demonstrating Low Dimension Intercorreations 
(.35) and High Exercises Intercorrelations (.70)

Monte Carlo Estimates
a

Population 
Matrix

Note.  p = person; pd = person x dimension; px = person x exercise; pdx,r = error. 
a
All Monte Carlo 

estimates are from k = 500 samples with n = 200 and analyzed via the MIVQUE(0) model in SAS 
9.3.

Expected 
Values
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 As shown in Table 4, with high dimension intercorrelations and low exercise 

intercorrelations, the first model in which both dimension and exercise loadings are high, the 

person effect, person by dimension effect, and person by exercise effects are high, with variance 

components of .512, .144, and .320, respectively. The second model with high dimension 

loadings and low exercise loadings indicates an acceptable AC model. The person by dimension 

effect is relatively large (.145) indicating convergence and the person by exercise effect is very 

small (.080) indicating low method variance. There is also a very large person effect of .384. 

Further evidence of convergence is demonstrated by the C1 variance component. Evidence of 

discrimination is problematic since D2 is very low with a value of .065. The third model with 

low dimension loadings and high exercise loadings indicates a poor AC functioning model. The 

person by dimension effect is very small (.035) indicating very poor convergence. Moreover, the 

C1 variance component is relatively low and evidence of discrimination is nonexistent. 

Additionally, the person by exercise effect is very large (.316) indicating large method variance. 

The final model with both low dimension and exercise loadings indicates a relatively large 

person effect and very small person by dimension effects and person by exercise effects with 

variance components of .131, .038, and .084 respectively. This results in a very large error 

variance component of .754. 
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Table 4

Dimension Exercise Facet M SD

.70 .70 p .515 .515 .512 .047
pd .147 .147 .144 .013
px .319 .319 .320 .034

pdx,r .020 .020 .020 .002

C1 .662 .662 .655
D1 .147 .147 .144
D2 -.172 -.172 -.177
MV .319 .319 .320

.70 .35 p .386 .386 .384 .034
pd .147 .147 .145 .012
px .080 .080 .080 .007

pdx,r .388 .388 .391 .042

C1 .533 .533 .528
D1 .147 .147 .145
D2 .067 .067 .065
MV .080 .080 .080

.35 .70 p .257 .257 .256 .028
pd .037 .037 .035 .003
px .319 .319 .316 .036

pdx,r .388 .388 .390 .037

C1 .294 .294 .291
D1 .037 .037 .035
D2 -.282 -.282 -.281
MV .319 .319 .316

.35 .35 p .129 .129 .131 .012
pd .037 .037 .038 .004
px .080 .080 .084 .009

pdx,r .755 .755 .754 .090

C1 .165 .165 .169
D1 .037 .037 .038
D2 -.043 -.043 -.045
MV .080 .080 .084

Simulation Results for Population Matrices Demonstrating High Dimension Intercorreations 
(.70) and Low Exercises Intercorrelations (.35)

Monte Carlo Estimates
a

Population 
Matrix

Note.  p = person; pd = person x dimension; px = person x exercise; pdx,r = error. 
a
All Monte Carlo 

estimates are from k = 500 samples with n = 200 and analyzed via the MIVQUE(0) model in SAS 
9.3.

Expected 
Values
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 In Table 5, which shows population models with high dimension and high exercise 

intercorrelations, the first model with both high dimension and exercise loadings indicates a very 

high person effect, and relatively large person by dimension effects and person by exercise 

effects, with variance components of .689, .147, and .147, respectively. Furthermore, the model 

demonstrates very high convergence (C1 = .836), but low discrimination. Additionally, the 

model demonstrates relatively large method variance (MV = .147). The second model with high 

dimension loadings and low exercise loadings indicates an acceptable AC model. The person 

effect is very high (.429), but there is also a relatively large person by dimension effect (.145) 

which indicates some convergence. Further evidence of convergence is seen in C1 with a 

variance component of .576. Additionally, the person by exercise effect is very small with a 

variance component of .033, indicating very low method variance. The third model with low 

dimension loadings and high exercise loadings is considered the overall worst case model out of 

all sixteen models. The person effect is very large (.429) with a relatively large person by 

exercise effect (.144). Additionally, the person by dimension effect is very small (.033), 

indicating little convergence. Moreover, very little discrimination can be seen in D1 and D2 as 

well as a relatively large amount of method variance. The last model with both low dimension 

and exercise loadings indicates a relatively high person effect (.174) and a very high error 

variance component of .753. Both the person by dimension effect and the person by exercise 

effect are very small with variance components of .034 and .036, respectively indicating little 

convergence, very little evidence of discrimination, and little method variance. 
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Table 5

Dimension Exercise Facet M SD

.70 .70 p .686 .686 .689 .079
pd .147 .147 .147 .014
px .147 .147 .147 .012

pdx,r .020 .020 .021 .002

C1 .833 .833 .836
D1 .147 .147 .147
D2 .000 .000 .000
MV .147 .147 .147

.70 .35 p .429 .429 .431 .036
pd .147 .147 .145 .015
px .037 .037 .033 .004

pdx,r .388 .388 .391 .036

C1 .576 .576 .576
D1 .147 .147 .145
D2 .110 .110 .112
MV .037 .037 .033

.35 .70 p .429 .429 .429 .038
pd .037 .037 .033 .004
px .147 .147 .144 .017

pdx,r .388 .388 .386 .042

C1 .466 .466 .463
D1 .037 .037 .033
D2 -.110 -.110 -.111
MV .147 .147 .144

.35 .35 p .172 .172 .174 .018
pd .037 .037 .034 .003
px .037 .037 .036 .004

pdx,r .755 .755 .753 .071

C1 .208 .208 .208
D1 .037 .037 .034
D2 .000 .000 -.002
MV .037 .037 .036

Simulation Results for Population Matrices Demonstrating High Dimension Intercorreations 
(.70) and High Exercises Intercorrelations (.70)

Monte Carlo Estimates
a

Population 
Matrix

Note.  p = person; pd = person x dimension; px = person x exercise; pdx,r = error. 
a
All Monte Carlo 

estimates are from k = 500 samples with n = 200 and analyzed via the MIVQUE(0) model in SAS 
9.3.

Expected 
Values
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 In summary, across all sixteen models variance partitioning produced adequate variance 

components regardless of the type of model. All models produced variance components very 

similar, if not identical, to the expected values derived from MTMM matrices with slight 

differences due to sample size. Moreover, variance partitioning was able to successfully 

differentiate among person effects, person by dimension effects, person by exercise effects, and 

error for all 16 models. Variance partitioning correctly distinguished among the sources of 

variance in PEDRs that would be expected based upon the population models from which they 

were drawn. Specifically, population models that represented adequate AC functioning produced 

variance components that demonstrated adequate levels of construct-related validity. 

Furthermore, convergence, discrimination, and method variance criterions provided additional 

evidence for construct-related validity.



 

 

CHAPTER IV: DISCUSSION 

 The primary goal of the present study was to determine whether variance partitioning 

differentiates among varieties of AC models and diagnoses additional aspects of ACs beyond 

basic dimension and exercise effects. The results of this study provide support for the use of 

variance partitioning. This method clearly differentiated among sixteen varieties of AC models 

ranging from an ideal model to a worst case model. In addition to being able to distinguish 

among models, variance partitioning was also able to detect person effects, person by dimension 

effects, and person by exercise effects. When the ideal model was analyzed, as expected, the 

person by dimension effect was the primary source of variance, indicating convergent validity. 

When the worst case model was analyzed, error was the primary source of variance followed by 

the person by exercise effect, as expected. Moreover, dimension factor intercorrelations made a 

considerable impact on the person effect, with greater intercorrelations yielding a more 

substantial person effect. 

 Another benefit of variance partitioning is that it can disregard the issues that arise with 

CFA model fit and admissible solutions. Variance partitioning only focuses on the produced 

variance components; however, CFA involves assessing the model’s fit and whether a CFA can 

produce an admissible solution for the data. Lance et al. (2007) portrays the problem with CFA 

producing appropriate model fit. As previously mentioned, traditional fit statistics in Lance et 

al.’s research indicated that their various models constituted a good fit for the data regardless of 

whether or not the fitted model matched the population model from which the data was based. 

Variance partitioning is not plagued by such serious analytic issues. Not only does variance 

partitioning separate explained variance into more variance components compared to CFA, but it 

also can demonstrate a model’s convergence without using model fit statistics. 
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Implications 

 The results of Lance et al. (2007) highlight the necessity of finding a new method of 

evaluating the construct-related validity of ACs. For almost 30 years, a substantial amount of AC 

research has been based upon the application of CFA techniques to the analysis of AC MTMM 

matrices (e.g. Lance, Foster, et al., 2004; Lance, Lambert, et al., 2004; Lance et al., 2000; 

Schneider & Schmidt, 1992). As previously discussed, the CFA approach to analyzing MTMM 

matrices is problematic in numerous ways (Lance et al., 2004). The convergence problems with 

CFA have led researchers to believe ACs do not function as intended and therefore have little 

construct validity (Lance et al., 2007; Lievens and Conway, 2001). Because of the flaws 

associated with CFA, it is critical for AC researchers to begin utilizing alternative methods in 

evaluating AC functioning. The present study provides support for such a method to be an 

effective way to analyze AC MTMM matrices.  

This new method also determines additional variance components (e.g. person effects) to 

assess the effects of individual AC raters as well as the individuals being assessed. Even more 

critical are the interactions between facets. The ability to differentiate between a person effect, a 

dimension effect, and a person by dimension interaction provides substantially more information 

than a dimension effect alone. Variance partitioning distinguishes among several sources of 

variance whereas CFA only has the ability to distinguish between dimension and exercise effects 

which may be an overly simplistic view of AC functioning. Similarly, numerous researchers 

have claimed that exercise effects represent valid performance-related information. This may 

indeed be the case; however, previous research has provided little information regarding these 

effects. Are these exercise effects indicative of general exercise difficulty or of something more 

along the lines of situational specific? Although some research has attempted to address this 
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issue (e.g. Lance et al., 2000), most has simply focused on “exercise effects.” The traditional 

dichotomy between dimensions and exercises is incapable of answering questions such as 

whether exercise effects are due to general exercise difficulty or due to situational specificity. 

However, variance partitioning can provide answers to these questions. 

Convergence, discrimination, and method variance can also be easily assessed in variance 

partitioning by using the standardized methodology described by Woehr et al. (2011). Ideally, 

the convergence criterion and the two conditions of discrimination should have large variance 

components whereas the method variance criterion should have a small variance component. As 

previously mentioned, ACs should ideally demonstrate variance attributable to the same 

dimension measured across several exercises (convergence) and not variance attributable to 

within exercises (method variance). It would be impossible to assess all possible population 

model combinations; however, inferences can be made based on the correlation matrix of Woehr 

et al.’s convergence, discrimination, and method variance criterions (2011). As seen in Table 6, 

C1 has a significant positive relationship with both conditions of discrimination which is to be 

expected. More importantly, C1, D1, and D2 are all negatively related to method variance. Thus, 

these three criterions can be manipulated without increasing the level of method variance. 

Specifically, one can increase the convergence criterion and subsequently decrease method 

variance. 
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Future Research 

Future research should determine cut off values for the various variance components 

similar to those established for alpha and the .05 criterion for p values. Currently, researchers 

determine the appropriateness of variance component values by comparing them to each other. 

For example, a person by dimension effect adequately demonstrates construct-related validity 

when it is larger than the person by exercise effect. There are currently no established variance 

component values to determine construct-related validity thresholds. Such a value would signify 

the threshold that differentiates adequate construct-related validity from poor construct-related 

validity. Future research should establish such threshold or cut off values to ensure that all 

researchers have the same interpretation of the different variance component values.  

Additionally, future research should also investigate the use of variance partitioning in 

other areas that use MTMM data. For example, 360 degree feedback currently uses the 

traditional CFA approach to analyze MTMM data. Since CFA clearly has problems analyzing 

MTMM data, it may be useful if 360 degree feedback data was analyzed using variance 

partitioning instead of the traditional CFA method. Researchers in the school psychology field 

also currently use CFAs to analyze the appropriateness of scales. Specifically, Hill and Hughes 

(2007) examined the convergent and discriminant validity of the Strengths and Difficulties 

Table 6

1 2 3 4

Convergence 1.00
Discrimination 1 .82** 1.00
Discrimination 2 .70** .90** 1.00
Method Variance -.09* -.19* -.61** 1.00

Correlational Relationship Between Convergence, 
Discrimination, and Method Variance

Notes.  *p < .05; **p < .01
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Questionnaire (SDQ) to determine its factor structure. Each of the constructs was examined by 

students, teachers, and parents. A CFA was used to analyze the MTMM data to determine the 

convergent and discriminant validity of the SDQ. Since the present study presented problems 

using the CFA method, Hill and Hughes could potentially have incorrect results. Additionally, 

variance partitioning enables researchers to disregard various goodness-of-fit indices to 

determine the if the model demonstrated an adequate fit for the data, since the use of variance 

partitioning only focuses on the produced variance components. Moreover, variance partitioning 

has the ability to differentiate among numerous facets of variance. Other research areas that use 

MTMM data can benefit from the additional variance components identified in variance 

partitioning. 

Study Limitations 

 The primary limitation of the present study is the use of Monte Carlo data to determine 

the usefulness of variance partitioning. The data analyzed was not produced from real 

participants in ACs, but rather from sixteen population models with predetermined parameters. 

However, the analysis techniques used in this study are considered some of the most efficient 

methods available to researchers. Furthermore, an additional limitation involves the complexity 

of the models evaluated. As previously mentioned, it is impossible to evaluate all possible 

combinations of the population models. In order to align with the typical AC framework, sixteen 

models were used to represent AC functioning. Numerous other combinations of population 

factor loadings and intercorrelations could have been utilized to generate countless other 

population models. Nonetheless, the sixteen population models that were analyzed represent the 

fundamental theoretical spectrum of AC functioning and many of the possible variants that are 

found in the literature. 
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Conclusion 

 Variance partitioning appears to be a fruitful approach for analyzing the construct-related 

validity of AC PEDRs. Unlike the traditional CFA method for analyzing MTMM matrices, 

variance partitioning correctly recognizes the sources of variance in PEDRs that is expected 

based on the corresponding population models. Furthermore, variance partitioning correctly 

identifies other sources of variance such as person effects and interactions between person, 

dimension, and exercise effects that the traditional CFA method is incapable of analyzing. 

Variance partitioning also allows the researcher to increase convergence and discrimination 

criterions while subsequently decreasing method variance, further demonstrating strong evidence 

of construct-related validity. Researchers should use this method when analyzing future MTMM 

matrices.
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