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CHAPTER 1: Introduction

From reference [1], we define the d’Alembertian on Rn+1:

�2 ≡ ∇2 − 1

v2

∂2

∂t2
=

n∑
j=1

∂2

∂x2
j

− 1

v2

∂2

∂t2
, (1.1)

where ∇ is the gradient, and where v is the speed of the wave in the material being

studied. The gradient of a function f in R2 is defined as

∇f(x, y) =
∂f

∂x
+
∂f

∂y
= fx(x, y) + fy(x, y) .

The gradient of a function is simply a vector having coordinate components that

are partial derivatives of that function with respect to its variables. The gradient is

described in physics as the rate at which a physical quantity, such as temperature or

pressure, increases or decreases relative to changes in a given variable.

In this thesis we study the wave equation, which is an important partial differ-

ential equation that describes propagation of wave amplitudes ψ with speed v:

∇2ψ =
1

v2

∂2ψ

∂t2
or equivalently

∂2ψ

∂t2
= v2∇2ψ .

A more compact form of the wave equation is given by:

�2ψ = 0 , (1.2)

where �2 is the d’Alembertian defined in (1.1). Eqn.(1.2) represents the wave equa-

tion in n dimensional space. In a medium with constant speed v, it is invariant under

space-time translations and rotations, and thus it is a naturally occuring equation.



CHAPTER 2: Derivation of the wave equation

The wave equation in n dimensions is known to model many types of vibrations found

in physics [1]. In order to explain some of the concepts covered later, we will present

various derivations of the wave equations. We will begin with the simplest case in

order to build a good foundation for understanding wave propagation. This leads us

to a discussion of the one-dimensional wave equation on a string. Here, our goal is to

find some function u(x, t) that satisfies the wave equation utt = v2uxx [2] where we

use the notation

uxx ≡
∂2u

∂x2
and utt =

∂2u

∂t2
.

2.1 1D Wave Equation

Consider a tightly stretched string along the x-axis with an inconsequential thickness.

Any force exerted on the string will cause displacement in the (x, y) plane. Say u(x, t)

is our displacement in the y direction from its equilibrium position. We think of u

as the amplitude of the wave. Now we will let T be the equilibrium tension on the

string, and consider neighboring points x and x + dx (see Figure 1); note that the

forces at these two points is usually different. Now, we want to assume there is no

net sideways acceleration. Hence, the sum of our horizontal forces will be 0 at any

time t, leading to the equality:

T (x, t) · cos(θ(x, t)) = T (x+ dx, t) · cos(θ(x+ dx, t)) . (2.1)

Thus the force in the upward direction is T (x+dx)·sin(θ(x+dx)), while the downward

component of force is given by T (x) · sin(θ(x)) (suppressing the t dependence).
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Figure 1: Tension T , angle θ, height du and width dx

at a fixed moment of time t, on a linear interval [x, x+ dx].

Thus the sum of forces in the vertical direction is given by

dF = T (x+ dx) · sin(θ(x+ dx)) − T (x) · sin(θ(x)) . (2.2)

Thus there is a net vertical force dF on the string element on the interval [x, x+ dx].

Now if we make a small amplitude approximation (|u| << 1, |θ| << 1):

T (x) · (1− θ2(x)/2) ≈ T (x+ dx) · (1− θ2(x+ dx)/2) ,

using a Taylor expansion. Then our sum of forces is now approximately

dF ≈ T (x+ dx) · θ(x+ dx)− T (x) · θ(x) .

This allows us to make yet another assumption about the sum of our forces:

dF ≈ T (x+ dx) · tan(θ(x+ dx)) − T (x) · tan(θ(x)) . (2.3)
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Notice that from (2.2) to (2.3) we have replaced sines with tangents. The key to the

possibility of this lies in the definition of the tangent function:

tan(θ) =
sin(θ)

cos(θ)

In order for tan(θ) to be approximately equal to sin(θ), then cos(θ) would have to be

very close to 1. On the interval [0, 2π), this only happens when θ is near zero. So for

our approximation, the vibrations on the string would have to be very small. This

actually makes sense. Think about a guitar string. When a guitar string is plucked,

the vibrations that travel through it are nearly imperceptible.

We know that tan(θ(x)) is the slope of our string at x. From calculus, we know

that the slope of a tangent line at a point is a derivative; thus (suppressing the t

dependence):

ux(x) =
du

dx
= tan(θ(x)) .

From this observation, our force now looks like:

dF ≈ T (x+ dx) · u(x+ dx) − T (x) · u(x) .

If we multiply the right hand side by dx/dx, we get:

dF ≈ d (T (x) · u(x)) /dx = (T (x) · u(x))x .

Now that we have an equation for the sum of our forces, we can utilize Newton’s

second law: F = ma, which means that the sum of forces on the string element is

equal to its mass times its acceleration. This can also be reexpressed as a = F/m,

which says that the acceleration of the string element is equal to the sum of forces on
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it divided by its inertial mass.

We will use ρ(x) for the mass density, also referred to as the mass per unit length.

Then the mass of the string element on [x, x+dx] is dm ≈ ρ(x) ·dx. In addition, f(x)

is used for the body-force density, ie. dF ≈ f(x) · dx. Putting it all together yields:

(T (x) ux) dx + f(x) dx = (ρ(x) dx) · utt , (2.4)

Now if we divide everything by the mass ρ dx, we end up with

T

ρ
uxx +

f

ρ
= utt . (2.5)

Define the functions v(x) ≡
√
T/ρ and g(x) ≡ f/ρ. Substituting these into Eq.(2.5)

yields the following expression for the acceleration of the string experienced at position

x and time t:

utt = v2 uxx + g . (2.6)

Rearrangment gives

utt − v2 uxx = g . (2.7)

which represents a forced wave equation in one (space) dimension.

The methods used to derive the equation in Eq.(2.7) can be applied to a slightly

more complex wave system; thus we proceed to our derivation of the wave equation

in two dimensions.

2.2 2-D Wave Equation

Assume that we are working with a rectangular elastic sheet rather than a string this

time. Just like we did with our string, we are going to apply Newton’s Law (F = ma)
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to a small square of elastic material; here we will assume the sides are parallel with

the x and y axes. Recall that in our string derivation, we assigned a function to

our vertical displacement; here we can do so again in this case. Say u(x, y, t) is the

displacement in the y direction. Also, say our left and right hand edges have length

dy while the top and bottom sides have length dx. We will assume the displacement

is small enough so as not to vary the tension, and that the sheet oscillates strictly up

and down, while not being tugged to any one side. The total force on the left edge,

at any fixed moment t in time, is T (x, y, t) dy, perpendicular to the edge dy; similar

to before, we are using T for the tension per unit cross-section length, meaning that

the longer a section taken, the more force is exherted by the material. Now, factoring

in the slope of the sheet in the direction of the force, Tdy
∂u(x, y, t)

∂x
is the vertically

downward component of the force. By a similar argument, we can say that the total

force acting on the right hand edge must also be T (x+ dx, y, t) dy; now factoring in

the slope of the sheet in the direction of the force, we arrive at Tdy
∂u(x+ dx, y, t)

∂x
,

which is the vertically upward component of our force.

Figure 2: Forces on an area element of a flat membrane.

The net upward force acting on the left and right sides of our sheet now is the

difference between our upward and downward vertical forces:
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dFx = Tdy
∂u(x+ dx, y, t)

∂x
− Tdy

∂u(x, y, t)

∂x

= Tdy

(
∂u(x+ dx, y, t)

∂x
− ∂u(x, y, t)

∂x

)
= Tdydx

(
∂2u

∂x2

)
.

But what about the other two sides of the elastic sheet element? Say we keep our

tension force at T . Then our total force on, say, the upper edge would be T (x, y)dx,

perpendicular to the edge dx. If we factor the slope of the sheet in the direction

of the force, Tdx
∂u(x, y, t)

∂y
is the vertically downward component of our force while

Tdx
∂u(x, y + dy, t)

∂y
is the vertically upward component of our force. Our net force

now is as follows:

dFy = Tdx
∂u(x, y + dy, t)

∂y
− Tdx

∂u(x, y, t)

∂y

= Tdx

(
∂u(x, y + dy, t)

∂y
− ∂u(x, y, t)

∂y

)
= Tdydx

(
∂2u

∂y2

)
.

Say the mass of our little square elastic sheet is dm ≈ ρ dxdy, where ρ is the mass

per unit area. Also note that our upward acceleration is a = ∂2u/∂t2. Now, using

F = ma, in the form: dFx + dFy = dm · a, we have,

Tdydx

(
∂2u

∂x2

)
+ Tdydx

(
∂2u

∂y2

)
= ρ dxdy

(
∂2u

∂t2

)
⇒ T

(
∂2u

∂x2

)
+ T

(
∂2u

∂y2

)
= ρ

(
∂2u

∂t2

)
⇒

(
∂2u

∂x2

)
+

(
∂2u

∂y2

)
=

ρ

T

(
∂2u

∂t2

)
⇒

(
∂2u

∂x2

)
+

(
∂2u

∂y2

)
=

1

v2

(
∂2u

∂t2

)
.

Here v2 = T/ρ. Thus we have the wave equation in the second dimension!
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2.3 3D Wave Equation restricted to a sphere

We are now going to derive the wave equation in three dimensions where propagation

occurs only on a sphere of radius r. Our approach will use spherical coordinates

instead of Cartesian. Let us consider elastic waves on the surface of a sphere. Here

we use θ to measure latitude (with 0 as the north pole and π as the south pole) and

φ to measure our longitude. Take a small elastic area element from on the sphere. It

will be bounded by longitude lines φ and φ+dφ as well as latitude lines θ and θ+dθ.

We are setting dr = 0 in these cases.

For a sphere of radius r, the lengths of the sides of an elastic volume element

are: rdθ and r sin θ dφ. Let T be the tension per unit cross-sectional area. With our

longitude side, length rdθ, we need to figure out the deviation from the horizontal. Let

us suppose that ψ(r, θ, φ, t) is a function describing the displacement of the material

from its equilibrium.

Figure 3: Forces on an area element of a sphere of radius r.

We start by considering the effect of increasing φ by dφ. Then the material

would move an actual distance of r sin θdφ on the surface, so our deviation from the
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horizontal would be (1/r) sin θ(∂ψ/∂φ). Now we can write down the vertical force

from tension on the two longitude sides. The downward force from our tension on the

longitudinal edge is Trdθ∂ψ(r, θ, φ, t)/∂φ, while the upward force is Trdθ∂ψ(r, θ, φ+

dφ, t)/∂φ. If we combine these in the usual method, we end up with a contribution

to the force, experienced by the volume element, to be

dFr,θ = Trdθdφ

(
∂

∂φ

)
1

r sin θ

(
∂ψ

∂φ

)
.

Next we need to find the force on the two latitude sides. If we look at the

top one first, our slope is 1/r∂ψ/∂θ. Hence, our force for the top one would be

Tr sin θdφ(1/r)(∂ψ/∂θ). It is important to note that sinθ varies with θ as well as ψ,

so the sum of the forces on this side is

dFr,φ = Trdφdθ

(
∂

∂θ

)
sin θ

(
1

r

)(
∂ψ

∂θ

)
.

As with the other previous derivations of the wave equation, we will now be able to
write our equation using Newton’s Law (F = ma). The mass of the volume element
of the material is ρ r2 sin θdθdφ, where ρ denotes the mass per unit volume. We now
have the following expression using the condition that dFr,θ + dFr,φ = dm · a:

Trdθdφ

(
∂

∂φ

)
1

r sin θ

(
∂ψ

∂φ

)
+ Trdφdθ

(
∂

∂θ

)
sin θ

(
1

r

)(
∂ψ

∂θ

)
= ρr2 sin θdθdφ

(
∂2ψ

∂t2

)
.

Dividing by dθdφ and using the rules of partial derivatives, gives

T

(
∂

∂φ

)
1

sin θ

(
∂ψ

∂φ

)
+ T

(
∂

∂θ

)
sin θ

(
∂ψ

∂θ

)
= ρr2 sin θ

(
∂2ψ

∂t2

)
⇒ T

1

sin2 θ

(
∂2ψ

∂φ2

)
+ T

1

sin θ

(
∂

∂θ

)
sin θ

(
∂ψ

∂θ

)
= ρr2

(
∂2ψ

∂t2

)
⇒ 1

sin2 θ

(
∂2ψ

∂φ2

)
+

1

sin θ

(
∂

∂θ

)
sin θ

(
∂ψ

∂θ

)
=

r2

v2

(
∂2ψ

∂t2

)
,

where v =
√
T/ρ. Converting the above wave equation into Cartesian coordinates
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yields another form of the wave equation, and in all actuality is the one that will be

referenced when necessary in the remainder of the text:

∂2ψ

∂t2
= v2

(
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2

)
r=constant

.

This equation is analogous to the one stated in the introduction but has the somewhat

different expression:

∆S2 ψ =
r2

v2

∂2ψ

∂t2
,

where ∆S2 is the Laplace-Beltrami operator on the unit sphere S2 in R3, defined to

be

S2 =
{

(x, y, z) ∈ R3 | x2 + y2 + z2 = 1
}
.

For ocean waves that travel on the surface of the earth, it is reasonable to take the

radial distance from the center r to be a constant.

2.4 Non-linear water wave equations

In this section we examine the equations that govern the motion of the surface of a

large body of water. A necessary equation for our designs here is the Korteweg-De

Vries, or KdV, equation. Traveling waves that are the solutions of this equation,

have been of some interest for over 150 years. It all started with a Scottish engineer

named John Scott Russell and his observations of a mass of water pushed through a

channel by a boat [7]. This mass of water did not follow the models of the results

of the standard differential equations used to represent traveling waves. The mass

of water in question is what we call a soliton; a soliton is a solitary wave. A paper

was published in 1895 that contained an equation that described small-amplitude

long-wavelength waves on the surface of water [7]. This paper was submitted by
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Diederik Korteweg and Gustav de Vries, who had been studying the phenomenon. It

wasn’t until the mid 1960’s, however, that this idea began to be appreciated. Applied

scientists began using digital computers to study nonlinear wave propogation around

this time. This paper will contain a derivation of the KdV equation.

We begin with the conservation equations, per unit volume, for fluid motion:

Conservation of Mass: ∂tρ+∇ · (ρ~v) = 0 , (2.8)

Conservation of Momentum: ρ(∂t + ~v · ∇)~v = −∇P + ~f . (2.9)

where ρ is the density and ~v is the velocity of the fluid, P is the internal pressure

of the fluid and ~f is the external force per unit volume in R3. We have defined the

gradient earlier. If we assume our fluid is both irrotational and incompressible, we

are given additional constraints:

Irrotational Flow: ∇× ~v = ~0 , (2.10)

Incompressibility: ∇ρ = 0 , ∂tρ = 0 . (2.11)

We now analyze these conditions. The statement in (2.10) means there are no

vortices in the fluid. Thus the curl, which is related to the rotation or angular

momentum of a velocity field, is zero. The statements in (2.11) mean that its volume

is not changed by an increase or decrease in pressure. As a result, the density of the

fluid does not change. Hence ∂xρ = 0, ∂yρ = 0, ∂zρ = 0 and ∂tρ = 0.

The irrotationality condition (2.10) is of particular significance since it implies

that the velocity ~v can be expressed in terms of a velocity potential φ, so that

~v = u x̂ + v ŷ + w ẑ =

(
u
v
w

)
=

(
∂xφ
∂yφ
∂zφ

)
= ∇φ . (2.12)

From Calculus [12], we know this potential must exist since its curl vanishes as a
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result of being irrotational. This potential will satisfy Laplace’s equation,

∆φ ≡ ∇2φ = 0 , (2.13)

where ∆ is the Laplace operator on R3. These will be inserted into the first of

our hydrodynamic equations. With this, equations (2.8) and (2.9) still have to be

satisfied. If we consider the case where the external force is caused by gravity, we set

~f = −ρ g ẑ = −

(
0
0
ρ g

)
, ẑ ≡

(
0
0
1

)
,

which is the force per unit volume due to gravity. Now we can use a triple vector

identity, as the fluid was assumed to be irrotational:

~v × (∇× ~v) = −(~v · ∇) ~v +
1

2
∇(~v)2 .

In order to verify this identity, we need the product rule for a gradient multiplying

to the dot product of two vectors:

∇(A ·B) = (A · ∇)B + (B · ∇)A+ A× (∇×B) +B × (∇× A).

When A = B, we have

∇(A · A) = (A · ∇)A+ (A · ∇)A+ A× (∇× A) + A× (∇× A)

⇒ ∇(A · A) = 2(A · ∇)A+ 2A× (∇× A)

⇒ 2A× (∇× A) = ∇(A · A)− 2(A · ∇)A

⇒ A× (∇× A) = −(A · ∇)A+
1

2
∇(A · A) .

When A = ~v, we get our 3-vector identity, where (~v)2 = ~v · ~v. We already mentioned

that ∇ × ~v = ~0, as our fluid is irrotational; this allows us to simplify our 3-vector
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identity as such:

~v × (∇× ~v) = −(~v · ∇)~v +
1

2
∇(~v)2

⇒ ~v ×~0 = −(~v · ∇)~v +
1

2
∇(~v)2

⇒ 0 = (~v · ∇)~v +
1

2
∇(~v)2, as ~v ×~0 = ~0 ,

which, due to Eq.(2.12), can be written as,

(~v · ∇)~v =
1

2
∇(~v)2 = ∇

(
(u2 + v2 + w2)/2

)
. (2.14)

Now, since ~v = ∇φ, equation (2.9) becomes:

∂t∇φ+ (~v · ∇) ~v = −∇P
ρ

+
~f

ρ
.

Substituting the triple vector identity into Eq.(2.14) and recalling ~f = −ρgẑ yields:

∂t∇φ+
1

2
∇(~v)2 +∇P

ρ
+ gẑ = 0 .

Finally, the simple fact that ∇z = ẑ allows us to factor out the ∇ operator to obtain

∇
(
∂tφ+

1

2
(~v)2 +

P

ρ
+ gz

)
= 0 . (2.15)

Observe that the quantity under ∇ must depend solely on time. Integrating Eq.(2.15)

gives an arbitrary constant that can be absorbed into the pressure term. Indeed, the

quantity P/ρ is a type of potential energy, so adding a constant term to it will not

affect its role in determining the velocities. Thus we conclude with the equation

∂tφ + (u2 + v2 + w2)/2 + P/ρ + gz = 0 , (2.16)
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Summing up, we now have two non-linear coupled partial differential equations

for determining velocities;

∆φ = 0 , (2.17)

∂tφ+
1

2
(∇φ)2 +

P

ρ
+ gz = 0. (2.18)

In general these equations are very difficult to solve for φ(x, y, z, t). To attempt a

solution, the quatities ρ, P and g must be known, and initial conditions, along with

any boundary conditions, must be specified.

2.5 KdV equation for 1-D Channel Flow

We are interested in the flow of the water down a long channel which is narrow enough

to be considered one-dimensional. Remember, the water here is both incompressible

and irrotational. Now we can set up an x̂-axis along the length of the channel and

a ẑ-axis vertically; the nature of our assumptions allows us to ignore the ŷ direction.

We will assign h to the value of the depth of the water at rest; a characteristic length

of the waves to be searched for is given by l, called the wavelength, and we assume

l >> h. On the other hand, we still want our flow to be irrotational; as such, we

want to avoid any turbulence in motion. Let us have a well–a cavity in which we can

contain a liquid–to restrain the waves we are searching for. Now we can assign the

constant a to their maximum amplitude, and we want a << h.
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Figure 4: Relative sizes of parameters ` >> h> a > 0.

Thus we can define a pair of variables to the quantities created by these require-

ments:

ε =
a

h
, δ =

(
h

l

)2

For example, if the depth h = 1000 m, then l ≈ 1000 km and a ≈ 1 m. Note

that both of these values will be small. Now, suppose the surface of the water at

rest corresponds to z = h (the zero for the vertical direction), and that we take the

pressure to vanish at (and near) the surface. Since the bottom is fixed in such a way

that the water cannot move it, we are able to use it as a boundary. Hence we have

the following boundary condition:

(~v)z|bottom = v|bottom =
∂φ

∂z
(x, 0) = 0 (2.19)

Let us define as our variable amplitude of the traveling waves η = η(x, t), where

|η| ≤ a, so that the surface of the fluid with waves traveling on it will be given by

z|surface = h + η(x, t) (2.20)

⇒ v|surface =
dz

dt
|surface = ∂tη + ∂xη

dx

dt
|surface

⇒ φz|surface = ∂tη + φx|surface ∂xη
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Now recall that pressure vanishes at the surface. This allows us to simplify the

equation (2.18) with the triple vector identity, equation (2.14), plugged in. We can

simplify it at the surface now. Recall that u and w are coefficients of ~v, ignoring the

ŷ coefficient, ie. v = 0:

∂tφ+
1

2
(∇φ)2 +

P

ρ
+ gz = ∂tφ+

1

2
(u2 + w2) +

P

ρ
+ gz = 0

and since the pressure vanishes at the surface,

φt|surface +
1

2
(u2 + w2)|surface + gη = 0 . (2.21)

Now consider the above equations for the following conditions:

∇2φ = 0, φz(x, z = −h) = 0 (very small amplitude)

∂tη − ∂zφ = 0 (at the surface)

∂tφ+ gη = 0 (at the surface) (2.22)

We can eliminate the wave amplitude function η from all but equation (2.22) by

differentiating and substituting:

∂

∂t
(∂tφ+ gη) = ∂ttφ+ g∂tη = ∂ttφ+ g∂zφ, as ∂tη = ∂zφ (2.23)

Now when we can find a potential φ in (2.23), this last equation allows us to solve

for η. Now, we know we are interested in some sort of a wavelike solution. To that

end, let us attempt something from a differential equations class: assume a solution

and see if it works. Let’s say for φ we have the sinusoidal function

φ = Z(z) · sin(kx− ωt) (2.24)
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The requirements from our Laplace equation, (2.13), necessitate that

Z(z) = Aekz + Be−kz .

When this is inserted into equation (2.19), we get this:

v|bottom =
∂φ

∂z
(x, 0) =

∂

∂z
(Aekz +Be−kz) · sin(kx) = 0

⇒ Akekz sin(kx) − Bke−kz sin(kx) = 0

⇒ Akekz sin(kx) = Bke−kz sin(kx)

⇒ A
kekz sin(kx)

ke−kz sin(kx)
= B

⇒ B

A
= e2kz .

But, recalling that at t = 0, z = h, we conclude that

B

A
= e−2kh,

which, when substituted into (2.24) yields:

φ(x, y, z, t) = 2Aekh cosh[k(z + h)] sin(kx− ωt) (2.25)

Substituting this result into equation (2.23) yields:

∂tt(2Ae
kh cosh(kz + kh) sin(kx− ωt)) + g∂z(2Ae

kh cosh(kz + kh) sin(kx− ωt)) = 0

⇒ −2Aω2ekh cosh(kz + kh) sin(kx− ωt) + 2gkAekh sinh(kz + kh) sin(kx− ωt) = 0
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⇒ 2Aω2ekh cosh(kz + kh) sin(kx− ωt) = 2gkAekh sinh(kz + kh) sin(kx− ωt)

⇒ ω2 = gk
sinh(kz + kh)

cosh(kz + kh)

This gives us an equation for the frequency:

ω2 = gk tanh(kz + kh)|surface = gk tanh(kh) . (2.26)

This allows us to determine our wave amplitude:

η(x, t) = (1/g) φt = A
√

(2k/g) sinh(2kh) sin(kx− ωt) .

As we can see here, our wave has an amplitude that is dependent on the wavelength.

Additionally, our wave has a dispersion relation for its frequency saying that ω is

directly proportional to k with something between them. In effect, this factor is the

speed v0 where v0 ≡
√
gh when k is near 0 (very long wavelength) but is more like√

g/k = v0/
√
kh = 2πv0

√
λ/h as the wavelength shortens, where λ = kh2/(4π2).

This tells us what it means for the wavelength to be longer or shorter; the important

factor is the ratio of the wavelength to the depth of the channel. Moreover, waves

with longer wavelength travel faster and with less dispersion than shorter wavelength

waves.

Now we can move forward to look at higher levels of disruption. If we differentiate

equation (2.18) along the channel (in effect, with respect to x), and evaluating it at

the surface, we end up with the following for the velocity potential:

φxt +
1

2
(2)(φxφxx + φzφxz) + gηx = ut + uux + vvx + gηx = 0 .
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A standard sort of approach to small amplitude deviations is to expand φ into a power

series of the height variable z. If we were to expand φ into such a power series, we

would end up with the following:

φ(x, z, t) =
∞∑
0

znφn(x, t) .

Now, taking the partial derivative wrt z gives,

φz =
∞∑
0

nzn−1φn = 0 +
∞∑
1

nzn−1φn =
∞∑
1

nzn−1φn .

From equation (2.19) we have

φ1 = 0,

a very important result. Hence, inserting into Laplace’s equation ∆φ = 0 yields:

∞∑
0

zn[φn,xx + (n+ 2)(n+ 1)φn+2] = 0 ⇒ φn,xx + (n+ 2)(n+ 1)φn+2 = 0 ,

which establishes a recursion relationship for each nN among the coefficients!

Now, with φ1 = 0, all of the odd terms of the series must vanish. Thus we are

able to simplify φ to:

φ(x, z, t) =
∞∑
0

(−1)mz2m

(2m)!
α2m,

where α ≡ φ0(x, t). Now we can say:

⇒
{
u = φx = αx − 1

2!
z2αxxx + 1

4!
z4αxxxxx + ...

w = φz = −zαxx + 1
3!
z3αxxxx − 1

5!
z5αxxxxxx + ...

where the notation α2m refers to the (2m)th derivative of α with respect to x.
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At this point, we are dealing with a nonlinear problem. It’d be useful for us to

instantiate some new, dimensionless variables so we can introduce quantities of small

order already mentioned. For example, we will use l for the characteristic length to

which we will scale the horizontal distance. Our time will be scaled to the simplest

linear speed of the v0’s from earlier, namely v0 =
√
gh, and amplitude in terms of its

maximum a. Recall that our potential has such dimensions that its derivative with

respect to either x or y should be a velocity. Observe:

x̄ ≡ x/l, z̄ ≡ z/h, t̄ ≡ t/(l/v0)

η̄ ≡ η/a, φ̄ ≡ hφ/(alv0) = φ/(εlv0), ε = a/h.

Now we can see that the surface will be at z̄ = 1 + εη̄. As a result, we have:

⇒

{
ū = u/εv0

w̄ = (δ/εv0) w
ᾱ = α/εlv0

It is useful to write out the equations for the dimensionless velocity components

first. It helps to have them written from lowest to highest order; for instance, ε and

δ are of the same order. We introduce the symbol On to denote terms of nth order in

these quantites. For instance, terms of second order would fall under the blanket of

O2, and would contain anything attached to a term of ε2, δ2, or εδ.

φ̄ = ᾱ− 1

2
(1 + εη)2δᾱxx +O2

ū = ᾱx̄ −
1

2
δᾱxxx +O2

w̄ = −δ[(1 + εη̄)ᾱxx −
1

6
δᾱxxxx +O2]
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We can now rewrite our vertical constraints from equation (2.20) with our dimen-

sionless variables, yielding the following results:

z̄|surface = 1 + εη̄

φ̄z̄|surface = δη̄t̄ + δεφ̄x̄η̄x̄.

We also discussed series expansions previously. When these are applied to the

quantities we have here, we get:

η̄ + εη̄x̄ᾱx̄ + (1 + εη̄)ᾱxx −
1

6
δᾱxxxx +O2 = 0. (2.27)

Using our other boundary condition from (2.21) yields

φ̄t̄ +
1

2
ε[(φ̄z̄)

2 + (φ̄x̄)
2/δ] + η̄ = 0

Again, we will utilize our series expansions here to produce:

ᾱt̄ −
1

2
[δᾱxxt + ε(ᾱx̄)

2] + η̄ +O2 = 0 . (2.28)

Since we are now looking at dimensionless variables, we need to once again evaluate

how the equation changes along the channel. To that end, we differentiate our equa-

tion with respect to x. Hence we are going to define yet another new variable, say

ω ≡ ᾱx̄. As an added bonus, we can start writing our variables without the bars. If

we do need to convert them back, we have the equivalence relations above to get that

done. Differentiating (2.28) by x and replacing αx with β:

∂

∂x
[αt −

1

2
δαxxt +

1

2
ε(αx)

2 + η +O2 = 0]
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⇒ αxt −
1

2
δαxxxt + (2)

1

2
ε(αx)(αxx) + ηx = 0

⇒ βt −
1

2
δβxxt + εββx + ηx = 0 (2.29)

and taking equation (2.27) allows for:

ηt + εηxαx + (1 + εη)αxx −
1

6
δαxxxx +O2 = 0

⇒ ηt + εηxβ + (1 + εη)βx +
1

6
δβxxx = 0 (2.30)

Notice that we didn’t write that these equations are correct only to second order. We

don’t need to anymore. However, it’d be nice if we could clean these up a bit. They

do look a touch complicated. Let’s make sure these equations are satisfied to zero-th

order; that is, for equations that have no ε or δ. Therefore, ignoring both the ε and

δ-terms, we get to reduce our equations. Beginning with (2.30):

ηt + βx = 0 (2.31)

and for (2.29):

βt + ηx = 0. (2.32)

Now, as both of these equations equal zero, we can set them equal to each other.

ηt + βx = βt + ηx

Now, separating the unknown functions in these equations implies that

βtt = βxx and ηxx = ηtt (2.33)
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This tells us that at the lowest order, both β and η necessarily satisfy wave

equations with a speed of 1. Now, β and η seem fairly similar. Their difference

may be somewhere in, say, first-order terms. Thus we can assume that a solution

exists for ω in terms of η plus some small terms:

β ≡ η + ε · F + δ ·G+O2 (2.34)

for some F (x, t) and G(x, t). We know the physical meanings of ε and δ are different,

but they have the same approximate size. But since they have different meanings,

we write an additional first-order term for the difference. We still need to satisfy

equations (2.31), (2.32), and (2.33). Say we plug our assumed solution into (2.31)

and (2.32). We get:

ηt + εFt + δGt + ηx = 0 = ηx + εFx + δGx + ηt,

which implies ηx + ηt is of first order in ε and δ. It also shows us that to lowest order

we need βx + βt to vanish. As such, we must impose on our new functions (F and G)

the following property:

Fx + Ft = O1, and Gx +Gt = O1

Now we can plug these into equations (2.29) and (2.30) with the goal of determin-

ing F and G:

βt − 1
2
δβxxt + εββx + ηx = 0

ηt + εηxβ + (1 + εη)βx + 1
6
δβxxx = 0

⇓

ηt + εFt + δGt − 1
2
δηxxt + εηηx + ηx = 0
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ηt + εηηx + ηx + εFxδGx + εηηx − 1
6
δηxxx

⇓

ηt + ηx + ε(Ft + ηηx) + δ(Gt − 1
2
ηxxt) = 0

ηt + ηx + ε(Fx + 2ηηx) + δ(Gx − 1
6
ηxxx) = 0.

Now utilizing the techniques of solving a system of equations, we will subtract

these two equations in order to solve for F and G. From that, we get

ε(Fx − Ft − ηηx + 2ηηx) + δ(Gx −Gt +
1

2
ηxxt −

1

6
ηxxx) = 0

⇒ Fx − Ft + ηηx = 0 and Gx −Gt − 2
3
ηxxx = 0

⇒ 2Fx = −ηηx = −1
2
(η2)x, and 2Gx = 2

3
ηxxx

as Fx = −Ft and Gx = −Gt. This implies

Fx = −1
4
(η2)x, and Gx = 1

3
ηxxx

⇒
∫
Fxdx =

∫
−1

4
(η2)xdx, and

∫
Gxdx =

∫
1
3
ηxxxdx

⇒ F = −1
4
η2, and G = 1

3
ηxx

⇒ ω = η − 1
4
εη2 + 1

3
δηxx +O2

Now if you plug this into either of the equations from the system we just solved,

we get the following equation:

ηt + ηx +
3 ε

2
η ηx +

δ

6
ηxxx = 0. (2.35)

This is one form of the KdV equation. It shows that the nonlinearity (ε term) and

dispersion (δ term) are small corrections to the 1-D wave equation.
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2.6 Modified KdV Equation for 2-D Water Waves

As it turns out, we cannot always rely on the KdV to model our solitons. Sometimes

circumstances are such that the KdV no longer fits, as it is. For this, we need a

KdV that works for a two-dimensional case. However, to produce an equation that

is predominately a balance between weak dispersion and weak non-linearity in the

direction of propogation and is two dimensional, we need to assume a nearly-plane

wave. For this, we will use a two-dimensional case of the KdV equation. Now, say

our KdV equation is as follows:

ηt + ηx +
3ε

2
ηηx +

δ

6
ηxxx = f , (2.36)

where f is some forcing on the KdV. For this, we choose f(x, y, t) as a solution of

fx = −v(x, y) · ηyy , (2.37)

for our y-coupling equation [7]. This provides a way to program the 2-D KdV; using

a leapfrog method. The numerical approach involves solving for f using η in (2.37).

Then η is solved using equation (2.36) now that f has been obtained, etc.

A single nonlinear PDE can be obtained by differentiating both sides of (2.36)

and using (2.37) to give

(
2ηt + v · ηx + 3ηηx +

1

3
ηxxx

)
x

+ v · ηyy = 0 ,

which extend the KdV to 2-D surface waves. This allows us to model more complex

soliton propogation and runup. In our model of the North Carolina coast in a later

chapter, we will see this equation have a great deal of value to our research.



CHAPTER 3: Wavelet basics

The various wavelet types used in this thesis are discussed in detail in the class

handouts from the graduate level Numerical Analysis course.

Consider the functions f : R→ R to be actually observed entities. We will say

f ∈ Lp ⇐⇒
∫ ∞
−∞
|f(x)|pdx <∞, p ≥ 1 ,

f ∈ L∞ ⇐⇒ supx∈R|f(x)| <∞ ,

Now, the Lp norm of a function f is defined as

||f ||p =

(∫ ∞
−∞
|f(x)|pdx

)1/p

, ||f(x)||∞ = sup
x∈R
|f(x)| .

For our next observation, we will need to know what a Cauchy sequence is. So,

for a sequence {xn} to be Cauchy, we must have:

∀ε > 0 ∈ R ∃ N ∈ N 3 ∀m,n ∈ N, m, n > N ⇒ |xn − xm| < ε .

We observe that the completion of Lp under Cauchy sequences in the Lp norm is a

Banach space. The case that p = 2 is special, because we can define an inner product

∀f, g ∈ L2 < f, g >=

∫ ∞
−∞

f(x) · g(x)dx .

Then f ⊥ g, i.e. f is orthogonal to g, iff < f, g >= 0. Thus,

||f ||2 =
√
< f, f >
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Now, a little more about L2. L2 is a Hilbert space, which is a closed Euclidean

space. But what exactly do we mean by that? Well, a Hilbert space is a vector space

H with an inner product < f, g > such that the norm defined by ||f || =
√
< f, f >

turns H into a complete metric space; that is, a metric space in which every Cauchy

sequence is convergent. As it turns out, L2 has many properties:

| < f, g > | ≤ ||f ||2||g||2 (Cauchy-Schwarz inequality)

af + bg ∈ L2 if a, b ∈ R and f, g ∈ L2 (Linearly closed)

||f + g||p ≤ ||f ||p + ||g||p (Triangle inequality)

∃{Ψk}∞k=1 ⊂ L2 so that

1) ||Ψx||2 = 1

2) Ψk ⊥ Ψj for k 6= j

3) span{Ψk} = L2.

Thus, L2 has an orthogonal basis, which is countable. We refer to this as a

Separable Hilbert Space. The first published basis of L2 was by Haar in 1910. Back

then, it was not called a wavelet; this has only happened within the past 30-40 years.

If we define what we call the Mother Wavelet Function as

h(x) =

 −1/
√

2, 0 < x < 1
1/
√

2, 1 < x < 2
0, otherwise,

then we can define the wavelet basis frame as

Λh ≡ {hj,k(x) = 2j/2h(2jx− k) | j, k ∈ Z}. (3.1)

Note that if we set j = 0, k = 0 we end up with

h0,0(x) ≡ 20/2h(20x− 0) = h(x)
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Now, any function f ∈ L2 can be expressed as a linear combination from (3.1).

As such, ∃{Cj,k}, j, k ∈ Z so that

f(x) =
∞∑

j=−∞

∞∑
k=−∞

Cj,khj,k(x)

In order to find the coefficients of the wavelet expansion, notice the inner product

< hj,k, hj′,k′ >= δj,j′δk,k′ , where δi,j denotes the Kronecker Delta function

δi,j =

{
1, j = j′

0, j 6= j′

Thus, multiplying the expression for f(x) on the right by hj′,k′(x) and integrating

on R yields ∫ ∞
−∞

f(x)hj′,k′(x) =

∫ ∞
−∞

∑
j

∑
k

Cj,khj,k(x)hj′,k′(x)dx

⇒< f, hj′,k′ >=
∑
j,k

Cj,k < hj,k, hj′,k′ >= Cj′,k′

This gives the Haar wavelet transform of the function f ∈ L2(R) to the infinite

sequence of constant coefficients {Cj,k} ∈ l2(Z2). We will now describe how the

filtering process proceeds through a wavelet transform. Say we have a function f ∈

L2. We send it through a wavelet transform (this is the analysis step) and get l2

(discrete form of L2) coefficients {Cj,k}. Then we sort out the coefficients, yielding

{CJ(l),K(l)}, l ∈ N with |CJ(l),K(l)| ≥ |CJ(l+1),K(l+1)|. Now in order to filter them, set

CJ(l),K(l) = 0 for l ≥ L ∈ N. This enables us to rebuild an approximation of our

function as a finite sum

f̃(x) =
L∑
l=1

CJ(l),K(l)hJ(l),K(l)

In this way, f̃(x) is an L2-approximation of f(x). The size of the difference is measured
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by the RMS (Root Mean Square) value

dist2(f, f̃) =

√∫ ∞
−∞
|f(x)− f̃(x)|2dx = ||f − f̃ ||2

The Fourier transform of f ∈ L2(R) is defined to be

f̂(ξ) = F [f ](ξ) =
1√
2π

∫ ∞
−∞

e−ixξf(x)dx

The function f(x) is reconstructed from its transform f̂(ξ) using the inverse Fourier

transform

F−1[f̂ ](x) =
1√
2π

∫ ∞
−∞

eixξf̂(ξ)dξ

This works because of the following:

∫ ∞
−∞

e−ix
′ξeixξdξ =

∫ ∞
−∞

ei(x−x
′)ξdξ = 2πδ(x− x′)

where δ(x− x′) is the Dirac Delta function, which satisfies

∫ ∞
−∞

g(x′)δ(x− x′)dx′ = g(x)

As a side note, let’s review our discussion of the delta function. δ(x− x′) isn’t really

a function. It’s actually a distribution, and so it only makes sense when used with

integration.

Now, a Fourier transform has many properties. It is a linear transformation, and

it is unitary on L2. It being linear means it is operation-preserving with respect to

addition and scalar multiplication, while the unitary property refers to the fact that

a Fourier transform rotates the function, but does not change its size. As a result,
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the L2 norm of the transformed function equals that of the original function. The

properties look like this:

1) F [af + bg] = aF [f ] + bF [g] (linearity)

2) ||f̂ ||2 = ||F(f)||2 = ||f ||2 (norm-preserving)

The power spectrum of f ∈ L2 is the non-negative real function |f̂(ξ)|2. Where

the power is large, there will be a frequency ξ in the function f . To measure or detect

frequencies in a data set, use the Fast Fourier Transform. This is a way to program

a Fourier transform in something like the C++ programming language. Say we have

real data in vector form with length 2N . Once we take the Fast Fourier Transform

of the data we have, our result will be complex coefficients in vector form of length

2 · 2N = 2N+1.

As with wavelets, the modulus of the coefficients can be sorted, then the list can

be chopped or filtered and an approximation constructed. Unfortunately, the recon-

struction is often compex-valued, even though the data set was real-valued. Still, Fast

Fourier Transforms are useful. As a Fourier transform is a unitary transformation,

we have the Plancherel property:

< f, h > = < f̂, ĥ > ,

which shows that the Fourier transform is merely a rotation.

A mother wavelet Ψ(x) is a function with the following properties:

1)
∫∞
−∞ |Ψ(x)|dx = ||Ψ||1 <∞ Ψ is integrable

2)
∫∞
−∞ |Ψ(x)|2dx = ||Ψ|| 22 <∞ Ψ is square integrable

3)
∫∞
−∞Ψ(x)dx = 0 the average of Ψ is 0

4)
∫∞
−∞
|Ψ̂(ξ)|2

|ξ|
dξ < 0 (Ψ is admissible),

where admissible means the wavelet transform has an inverse.
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Once a mother wavelet Ψ(x) has been found/constructed/designed, two parame-

ters are chosen:

a ≡ scale > 1 b ≡ shift > 0 .

The corresponding wavelet frame is

ΛΨ
a,b ≡ {Ψj,k(x) ≡ aj/2Ψ(ajx− bk)}j,k∈Z .

For the wavelets we use to analyze both tsunamis and rogue waves, this is a good

place to institute some variables. We have mentioned the speed of the wave, which

we can also refer to as celerity. We set the function v(t, x, y) as the speed, which is

dependent on the acceleration due to gravity (near constant on the earth’s surface)

and the depth function H(t, x, y). Remember that we said v0 ≡
√
gh, so now we want

v2 = gH. We will use v0 as the speed when the ocean floor is constant. Tsunamis and

rogue waves are created by a forcing, which we will define as the function F (t, x, y).

When we see a forcing, it is expected to be short-lived.

We will also define a few special functions that we will be using throughout this

paper. One of the most important is Kq(t), the function which satisfies the Mul-

tiplicatively Advanced Differential Equations (MADE) that we use throughout the

work. We will set Kq(t) ≡ 0 for t ≤ 0 and define from [8]

Kq(t) ≡
∞∑

j=−∞

(−1)jeq
jt/qj(j+1)/2, for t > 0, q > 1

Kq is the solution of:

K ′q(t) = Kq(qt), ∀t ∈ R, q > 1 .
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Now, Kq satisfies the properties of a wavelet, as mentioned above. Furthermore, the

reproducing kernel of Kq(t) gives the following functions [9]:

The qCos function from [10]:

qCos(t) = Nq ·
∫ ∞

0

Kq(u)Kq(u− t)du = Nq

∞∑
j=−∞

(−1)je−q
2j|t|

/qj
2

(3.2)

And the qSin function from [10]:

qSin(t) = −Nq ·
∫ ∞

0

Kq(u)Kq(qu− qt)du =
t

|t|
Nq

∞∑
j=−∞

(−1)je−q
2j|t|

/qj(j−1) (3.3)

Here, Nq is a normalizing constant:

Nε =

∫ ∞
0

K 2
ε du = ||Kε|| 2

2

from [10]. Additionally, it can be shown that

qCos
′′(t) = −q · qCos(qt), qSin

′′(t) = −q2 · qSin(qt) (3.4)

It is shown in [9] that qCos(t) → cos(t) and qSin(t) → sin(t) pointwise for t ∈ R

as q → 1+ and uniformly on compact sets. Therefore, qCos(t) and qSin(t) can be

viewed as L2 approximations of cos(t) and sin(t), and we discussed L2 approximations

earlier.

3.1 A one-sided Tsunami-like wavelet

A tsunami is a fast moving, low amplitude wave caused by a forcing event at or

near the seabed. To model a tsunami, a one-sided, non-symmetric profile is used. In
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modeling these, we utilize the following q-advanced model

Hq(t, x) ≡ A·Kq

(
t

τ

)
qSin(γ ·x), Fq(t, x) ≡ ∂2Hq

∂t2
=

A · q
τ 2

Kq

(
q2t

τ

)
qSin(γ ·x)

(3.5)

where Fq(t, x) is the initial forcing. After the initial forcing, we can see creation

and propagation of tsunami waves going outward in both the positive and negative

x directions from the point of the incident. This enables us to get a unique solution

Φ(t, x) to the forced wave equation. [9] shows us that we can define two phase

functions that correspond to the left and right propagation, where the parameters

are related by v0γτ = qµ.

Figure 3: The 2011 Japaneese tsunami wave measured by DART 46411

(Left) Starting March 11, 1:30pm local time, to March 11, 5:40pm local time;

(Right) Tsunami wavefront over one hour period.

Figure 3 shows a wavelet approximation of a tsunami. Note that it is not sym-

metric. The model of a rogue wave, shown later, is symmetric by necessity. We will

compare this approximation to the actual data obtained from the tsunami that hit

Japan in 2011 in a later chapter.
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3.2 A symmetric two-sided rogue-like wavelet

What is needed for rogue waves are functions that have a large peak in the middle, but

damp down quickly. The reason for this is the structure of a rogue wave. Remember,

a tsunami is a fast-moving, low-amplitude wave. A rogue wave is opposite that; it is

a slower moving, high amplitude wave whose forcing is brought about by resonance

instead of a sharp and immediate forcing. As a result (and we will see this in later

images), the wavelet profile of a rogue wave closely resembles a damped cosine function

and is very symmetrical, whereas a tsunami’s profile will be asymmetric. As there

have been so very few of these measured, debate still rages about their cause. If we

use a MADE-generated solution to construct a localized plane wave for A > 0, we

arrive at

Ψq(t, x) = A · qCos
(
t

τ

)
· qCos(γ · x) (3.6)

Substitution of this into the forced wave equation yields a small but persistent

forcing. In this case, γ and τ are parameters that satisfy vγτ = 1 for a constant

speed v > 0.

Figure 4: The 1995 Draupner rogue wave, or New Year’s freak wave

(Left) 15 minute recording of the rogue wave;

(Right) Rogue wave closeup.

Figure 4 is a wavelet approximation of a rogue wave. This will be compared to
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data from the Draupner rogue wave, one of very few that have been measured, from

New Year’s Day 1995 [9]. We will also be able to see the model of a resonance triad,

the force we theorize is responsible for creating such waves, in the next chapter.



CHAPTER 4: Numerical modeling

In this section we will give the details of which equations were used to obtain numerical

solutions

4.1 The Forced Wave Equation

Now, up to this point we have heard about forcing, but have given no actual infor-

mation on exactly what we are talking about. In the tsunami case, it can be an

earthquake or landslide, while in the case of a rogue wave it is a resonance triad.

But how do we explain it mathematically? We can answer this question with the

forced wave equation. Consider the forced one-dimensional wave equation for the

water-level function Ψ:

∂2
t Ψ(t, x)− v2

0∂
2
xΨ(x, t) = F (t, x), and Ψ(x, t) = 0 ∀t < 0, x ∈ R (4.1)

We can see that the equation on the right will account for the boundary and initial

conditions. Thus we have a one-dimensional wave equation that can account for the

forcing of our waves.

4.2 The one-dimension Tsunami Models

A tsunami is physically the consequence of a spontaneous event on the seabed. The

inciting event causes the creation of a variable pressure field throughout the volume of

the water; this sets up forces at the surface of the ocean that causes local oscillations

[9]. We are not as concerned with the behavior of the tsunami towards the shore as

we are with its creation. Now, a tsunami wave can start as a result of earthquakes

or landslides at or near the ocean floor. These displace the surface of the water due
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to a forcing field F (t, x, y) caused by a variability of H(t, x, y). Here we will choose

a model that considers a short-lived earthquake along a fault line defined by x = 0.

The height and forcing depend on a parameter q > 1. For the forcing that creates

the tsunami, we use the following equation:

∂2η

∂t2
− v2

0

∂2η

∂x2
= F (t, x) (4.2)

This equation allows us to get a graphical representation of the forcing that creates

a tsunami.
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Figure 3 Figure 4

In Figure 3, an initial forcing has registered. We can see from Figure 4 that this

has resulted in two waves being propagated from the center. From here, we will follow

one wave, as the motion of the other will be similar. There was a tsunami wave that

propogated out in the other direction, but we need only follow the motion of one. So

as the wave propagates, it maintains a constant speed as long as the seafloor remains

relatively constant. We use the following equation to model the propagation of a

tsunami wave after t seconds:

∂η

∂t
+ v0

∂

∂x

(
η +

β

v0

η2 +
γ

v0

∂2η

∂x2

)
= 0 (4.3)

This is an equation that models the behavior of a soliton as it propagates away

from its forcing! This equation is used for one-dimensional motion, so we don’t have

to go into the 2D one we mentioned earlier. That one would come in to play during



38

the runup of the NC coast we have a model of in the next section. So, now we can

see forcing and propagation.
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Figure 5

In Figure 5 we have modeled the propagation of the tsunami wave at t = 5000s.

As it comes into shallower waters, the bottom, unseen part of the wave contacts the

immovable seafloor, resulting in the bottom of the wave encountering a stark drop in

speed. So now all of the lower portion of the wave is bunching up due to the encounter

with the immovable seafloor, but the top of the wave does not lose celerity. Thus, the

wave height increases and it crests over. The equation we use to model our runup is

∂η

∂t
+ v

∂η

∂x
+
η

2

dv

dx
+ β

∂(η2)

∂x
+ v0

∂3η

∂x3
= 0 (4.4)

This gets more complicated when H depends on both x and y. That would be a

situation where we would utilize the 2-Dimensional Water Wave Equation.
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4.2.1 Wavelet analysis of the tsunami model

To detect, analyze, store, and recover a tsunami waveform, we will utilize a wavelet

analysis. This is a very common approach [9] to this issue. We start by identifying a

wavelet frame, a concept mentioned in the previous chapter:

ΛΨ ≡ {qj/2Ψ(qjt− kb)/||Ψ|| : j, k ∈ Z}.

From [9] we see this leads to a wavelet transform WΨ : L2(R)→ l2(Z2) where

WΨ[f ](j, k) ≡ < Ψj,k, f > =

∫
R

Ψ(qjt− kb)f(t) dt .

And thus for our wavelet frame, we have:

ΛKq =
{√

qj/CK ·Kq(q
jt− kb) | j, k ∈ Z

}
, CK ≡

∫ ∞
0

K2
q (t) dt . (4.5)

What we end up with is a fram of asymmetric wavelet profiles. The Haar wavelet is

also asymmetric. However, unlike the Haar basis, the frame in (4.5) is not orthonormal

in L2. Still, we will see in later sections the results of applying this wavelet frame to

NOAA data from an actual measured tsunami, and the outcome is quite reasonable.

4.3 The two-dimension Tsunami Models for the NC coast

Here we use a depth profile H(x, y) that is similar to Cape Hatteras in North Carolina

(see Figure 6).

The result indicates that water-wave heights would increase most at the capes, in

the event that a tsunami hit the NC coast. The possibility resides with an unstable,
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Figure 6: (Left) Seafloor profile model H(x, y) for the NC coast near Cape Hatteras;
(Right) Wave height as obtained from the 2-D numerical solution of the KdV equation
using speed v(x, y) =

√
Hg.

but dormant volcano in the Canary Islands.

4.4 Rogue wave models and resonances

The concept of a resonance triad is discussed in [5]. A resonance triad is when two

wave frequencies sum to a third. The resulting wave is larger than the two whose

frequencies combined. This is the natural outcome of rippling surface waves that

propogate in different directions creating a constructive interference. We believe this

to be a mechanism that causes rogue waves, though their origin is still under debate.

It can be shown, however, that small amplitude forces over a long period of time can

naturally produce large rogue waves [9]. If we substitute (3.6) into (4.1), we get:

∂2
t [A · qCos(t/τ) · qCos(γ · x)]− v2

0∂
2
x[A · qCos(t/τ) · qCos(γ · x)]

=
A

τ 2 qCos(q ·
t

τ
) · qCos(γ · x)− Av2

0γ
2
qCos(

t

τ
) · qCos(q · γ · x)
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And, as we have established that v0γτ = 1, we get the forcing equation for a rogue

wave being:

Fq(t, x) = Aγ2v2 · [qCos(q ·
t

τ
) · qCos(γ · x)− qCos(

t

τ
) · qCos(q · γ · x) (4.6)

 

 

Figure 7 Figure 8

In figure 7, we see two counter-propagating waves of similar frequency. Recall

that this is a factor in the resonance triad that we claim forces the creation of a rogue

wave. After these waves combine, they form a much larger wave. In figure 8, the

black graph models the counter propagating wave, while the red one is the resultant

rogue wave.

4.4.1 Wavelet analysis of the rogue model

Using the forcing equation from earlier, (4.6), we are able to model the resonance

triad that causes the rogue wave:

As we can see from the figures above, the two counter-propagating waves come

together, and their frequencies produce a much larger wave.

Recall what we discussed earlier about a rogue wave. Unlike a tsunami, which is
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a low-amplitude, high speed wave, a rogue wave is a high-amplitude, low speed wave.

There might be a speed s << v to the wave-height profile when a slight drift in the

rogue-generating current is present. A model for such a wave can be given, from [9],

by

Ψq,s(t, x) ≡ A · qCos(Γs · γ · vt) · qCos(γ · (x− st)) (4.7)

We’ll get an idea for how these are modeled in the Signal Analysis chapter.



CHAPTER 5: Signal analysis of data

Here we use the wavelet analysis techniques to consider the specialized situation

address in this thesis.

5.0.2 Tsunami data

We consider tsunami data obtained from NOAA in 2011. In order to model a tsunami,

a one-sided, non-symmetric profile is used. The resultant data yields the following

results. For the charts below, the discrete scale variable j is our vertical axis, while

the discrete shift variable k is our horizontal axis:

Figure 9 Figure 10

Figures 9 and 10, from [9], are wavelet analyses of the Japan tsunami of 2011.

Note that the balls in these charts are of varying size. Recall that in the wavelet

chapter, we covered using a wavelet transform to find discrete coefficients Cj,k of Ψ.

Well, the size of these coefficients is directly related to the size of the ball on the

graph. Here we have two different bubble charts, but only one tsunami. The only

difference in the two is the amount of coefficients chosen to graph. For Figure 9 we

see the 20 largest magnitude coefficients in a range of −1 ≤ j ≤ 1 and 1 ≤ k ≤ 12 ,

while the second chart is approximately 40 of the largest magnitude coefficients for

−1 ≤ j ≤ 3 and 1 ≤ k ≤ 20. In their article containing the analysis of this tsunami,
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Pravica, Randriampiry, and Spurr choose the wavelet frame,

ΛKq = {
√
qj/CK ·Kq(q

jt− kb)|j, k ∈ Z} for CK ≡
∫ ∞

0

K2
q (t) dt,

where q = 1.5 and b = 1.95. With this data, we can reconstruct the tsunami’s wavelet

profile and compare it to the actual data:

Figure 11 Figure 12

These two figures were obtained from [9]. The figure on the left is from the actual

wave profile of the actual tsunami. On the right, we have the two results graphed

together for comparison. The blue solid line is the actual data, while the red dotted

line is the result arrived at by [9]. For their result, they took only the 20 largest

ocefficients in magnitude; the normalized RMS error was 16% [9] They are, as can be

seen, very similar.

5.0.3 Rogue data

We consider rogue data obtained from the Draupner platform in 1995. We use the

symmetric q-Cosine function for the rogue wave profile.
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Figure 13 Figure 14

These two figures were also obtained from [9]. Like the bubble graphs of the tsunami

data, these show the largest magnitude coefficients from the discretized data. The

wavelet frame for the rogue wave utilizes the qCos function shown previously. The

frame used in [9] is,

ΛqCos = {
√
qj/CC · qCos(qjt− kb)|j, k ∈ Z} , for CC ≡

∫ ∞
0

qCos
2(t) dt,

where this time q = 1.5 and b = 2.44. Like the tsunami profile, these two charts show

the same data with different amounts of coefficients from the discretized data; Figure

13 shows approximately 20 coefficients in the range of 0 < j ≤ 2 and 0 < k ≤ 12,

while Figure 14 shows approximately 40 coefficients within 0 < j ≤ 5 and 0 < k ≤ 20.

Using the wavelet analysis modeled by the above figures, we can reconstruct the wave.

Figure 15 Figure 16
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These figures were obtained from [9]. The Draupner data is shown in Figure 15,

while the figure on the right is graphed with the wavelet analysis as the red dotted

line. 30 coefficients were used for the wavelet data, with a normalized RMS error of

18% [9].



CHAPTER 6: Comprisons and Conclusions

The wavelet analyses of Tsunami and Rogue waves show the connection between

numerical solutions and actual data. As shown in the figures, the wavelet analysis

matches very close with already established methods of measuring these phenomena.

The wavelet analysis is a very efficient way of modeling these data; it shows that using

only the largest coefficients from discretized data, one can still model a tsunami or

rogue wave within an acceptable error rate and arrive at a similar profile as the avail-

able data. Additionally, if one wants less error, one need only add more coefficients

to the profile and it will match that much more closely.
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