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The maintenance of skeletal muscle mass is vital for life, and elucidation of the molecular 

mechanisms that control this process is a critical first step towards the development of 

pharmaceutical treatments for muscle wasting disorders.  Intracellular Ca2+ is a regulator of 

muscle growth, yet surprisingly the signaling proteins by which Ca2+ regulates this function 

remain largely unknown.  The serine/threonine kinase, Ca2+/calmodulin-dependent protein 

kinase II (CaMKII), is one of the Ca2+-regulated proteins found in muscle. The goal of this study 

was to determine whether the phosphorylation or protein expression of any of the CaMKII 

isoforms present in skeletal muscle (i.e. CaMKIIβM, γ or δ) is altered in response to muscle 

atrophy or hypertrophy.   Male, CD-1 mice (~6-8 weeks old) underwent unilateral denervation of 

the hindlimb to induce atrophy, and the plantaris muscles removed 1, 3, 7, 10 and 14 days later.  

In addition, mice underwent unilateral ablation of the gastrocnemius and soleus muscles to 

induce hypertrophy and the plantaris muscles removed 1, 3, 7 and 10 days later.  Consistent with 

previous studies, denervation induced a time-dependent decrease in muscle weight after 3 days, 

and ablation induced a time-dependent increase in muscle weight after 3 days.  To assess 

alterations in CaMKII (Thr286/287) phosphorylation and expression western blot analyses were 

performed.  Denervation elicited a significant decrease in CaMKIIβM expression after 3 days, but 



an increase in CaMKIIγ and CaMKIIδ after 10 days.  Phosphorylation of CaMKIIγ was 

decreased after 7 days, while there were no alterations in CaMKIIβM or CaMKIIδ.  Ablation 

induced a significant decrease in CaMKIIβM expression after 7 days, an increase in CaMKIIδ 

after 7 days, but no change in CaMKIIγ.  Phosphorylation of CaMKIIγ was significantly 

decreased after 1 day, while there were no changes in CaMKIIβM or CaMKIIδ. Collectively, 

these results suggest a differential and complex regulation of CaMKII isoforms during alterations 

in muscle mass. In summary, this study demonstrated that in mouse skeletal muscle CaMKII 

isoforms are differentially phosphorylated and expressed during denervation-induced atrophy 

and synergist ablation-induced hypertrophy.  These findings underscore the necessity of 

examining each CaMKII isoform separately in order to determine its possible role in regulating 

muscle mass. 
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 
 

Skeletal muscle plays an important role in a number of critical functions in the human 

body including locomotion, respiration, and metabolism; and a decrease in muscle mass can 

impair all of these functions leading to decreased quality of life and increased mortality.  Loss of 

muscle mass can occur for many reasons and from various circumstances, including the 

following conditions:  1) living a sedentary lifestyle or muscle disuse (Yan et al., 2010; Evans, 

2010; Lecker et al., 2004);  2) cancer cachexia  (Muscaritoli et al., 2006; Lecker et al., 2003; 

Barber et al., 1999; Evans, 2010);  3) aging-induced  sarcopenia (Evans, 2010; Thompson and 

Gordon, 2006); and  4) loss/deficits in nerve function (Castro et al., 1999; Giangregorio and 

McCartney, 2006).  Due to the large number of individuals affected by decreases in muscle mass 

and the severe consequences incurred when muscle wasting is not reversed, determination of the 

cellular and molecular factors underlying the regulation of skeletal muscle mass is a critical 

undertaking that could lead to the development of pharmaceutical treatments for muscle wasting 

disorders. 

 

Hypertrophy and Skeletal Muscle 

 The size of skeletal muscle increases via hypertrophy, a process characterized by an 

increase in the cross-sectional area of muscle fibers.  This should not be confused with 

hyperplasia which is an increase in the number of muscle fibers.  Conditions or events that may 

lead to muscle hypertrophy include resistance exercise, anabolic steroids, hormones (e.g. growth 

hormone, testosterone, epinephrine), growth factors (human growth factor, insulin-like growth 

factor (IGF-1)), functional overload induced by surgical ablation of synergist muscles, etc. 

(Baechle and Earle, 2008).  In this study, we will induce hypertrophy through synergist ablation.  
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Synergist muscles are defined as a group of muscles working together to perform a common 

movement about a joint.  We will stimulate functional overload in the plantaris muscle of mice 

through ablation of the soleus and gastrocnemius.  By surgically removing these two muscles, 

the functional load on the plantaris is increased, thus inducing hypertrophy (Roy and Edgerton, 

1995).  This procedure will be described in detail in the “Materials and Methods” section. 

 

Atrophy and Skeletal Muscle 

 In a general sense, muscle atrophy could be considered the opposite of muscle 

hypertrophy.  Skeletal muscle atrophy is defined as a decrease in muscle mass.  It is caused by an 

increase in protein degradation and a decline in protein synthesis (Jones et al., 2004).  Atrophy 

can have detrimental effects on the human body due to the involvement of skeletal muscle with 

movement (Thomson and Gordon, 2006), glucose and protein metabolism (Lightfoot, 2009)  

respiration (Muscaritoli, 2006) and immune response (McArdle et al., 2004; Hartl, 1996; Juretic 

et al., 1994; Spittler et al., 1995).  In this study, muscle atrophy will be induced through resection 

of the sciatic nerve.  The sciatic nerve is a very large spinal nerve that innervates a large number 

of muscles in the posterior leg, including the gastrocnemius, soleus, and plantaris muscles.   This 

procedure will be described in detail in the “Materials and Methods” section. 

 

Intracellular Signaling Proteins Regulating Skeletal Muscle Protein Synthesis 

Skeletal muscle mass is regulated by the balance between protein synthesis and protein 

degradation.  Under steady-state conditions, the rate of protein synthesis equals the rate of 

protein breakdown.  One cellular pathway that is a major contributor for the maintenance of 

protein synthesis is the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway (Sandri, 2008) 
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(Figure 1).  It begins with the growth promoting factor insulin-like growth factor 1 (IGF-1), 

which has been linked to muscle hypertrophy when overexpressed (Musaro et al., 2001) and 

following functional overload in mice (McCall et al., 2003).  IGF-1 stimulates PI3K which then 

phosphorylates Akt, a serine/threonine protein kinase that plays a role in many cellular 

processes.  Once activated, Akt phosphorylates and activates the mammalian target of rapamycin 

(mTOR).  Studies have shown that when rapamycin (an inhibitor of mTOR) is introduced to the 

muscle, hypertrophy is downregulated (Bodine et al., 2001b; Pallafacchina et al., 2002).  Studies 

have also shown that mTOR induces the phosphorylation of eIF4E binding protein (4E-BP1), 

which promotes translation initiation of 5’-cap mRNAs (Shah et al., 2000; Takata et al., 1999).  

mTOR also phosphorylates the 70 kDa ribosomal protein S6 kinase (p70S6K1) which promotes 

the translation of various ribosomal proteins and elongation factors (Terada et al., 1994) and, 

when p70S6K1 is knocked out in mice, the response to Akt and IGF1 is downregulated (Ohanna 

et al., 2005).    
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Figure 1: Cell Signaling Model Representing Intracellular Proteins and Their Roles in 
Protein Degradation and/or Protein Synthesis.    The dashed lines going to and coming from 
CaMKII show that the role of CaMKII in protein synthesis and protein degradation is unclear. 
[Legend: CaM=calmodulin; CaMKII=Ca2+/calmodulin-dependent protein kinase; 
PI3K=phosphatidylinositol 3 kinase; Akt=protein kinase B; mTORC1=mammalian target of 
rapamycin; 4EBP1=4E-binding protein-1; S6K1=S6 kinase 1; eIF4E=eukaryotic translation 
initiation factor 4E; FoxO=forkhead box type O; MuRF 1=muscle RING-finger protein-1;  
IGF-1=insulin-like growth factor-1] 
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Intracellular Signaling Proteins Regulating Skeletal Muscle Protein Degradation 

Similar to hypertrophy, muscle atrophy is also regulated by many molecular and cellular 

mechanisms.  One of these is through the ubiquitin-ligases atrogin-1 and muscle RING-finger 

protein-1 (MuRF1) and activity of the proteasome (Figure 1).  When atrogin-1 and MuRF1 are 

upregulated, they are both associated with an increase in protein degradation through the 

ubiquitin-proteasome system (Bodine et al., 2001a; Gomes et al., 2001).  When these genes are 

knocked out in mice, denervation-induced muscle atrophy is limited (Bodine at al., 2001a). 

The proteasome is the primary site of intracellular protein degradation and regulates the 

levels of proteins in our bodies by breaking them down (Ciechanover, 1994).  Molecules called 

ubiquitin are used to tag the proteins that are to be degraded (Bodine et al., 2001a).  Under 

normal circumstances, this chain of events is a necessary component for the degradation and 

recycling of old or misfolded proteins (Ciechanover, 1994).  When these proteolytic pathways 

become hyperactivated due to disease or other abnormal conditions, excessive muscle 

degradation may occur (Muscaritoli et al., 2006).   

Another important molecule associated with atrophy is FoxO, a member of the forkhead 

family of transcription factors.  One study has shown that mice with upregulated FoxO1 had 

decreased muscle mass (Kamei et al., 2004; Southgate et al., 2007) and an upregulation of 

FoxO3 has been shown to promote atrogin-1 and MuRF1 activity and protein degradation 

(Sandri et al., 2004).  Whereas FoxO has been shown to upregulate atrogin-1 and MuRF1, Akt 

negatively regulates the function of FoxO (Lee et al., 2004; Sandri et al., 2004).  Therefore, Akt 

is not only associated with hypertrophy but is also believed to help downregulate atrophy.   
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Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) 

Intracellular Ca2+ is a key regulator of numerous processes in skeletal muscle, including 

metabolism and growth (Djakovic et al., 2009; Al-Shanti and Stewart, 2009; Chin, 2004), yet 

surprisingly, the intracellular signaling mechanisms by which Ca2+ regulates these critical 

functions still remain largely unknown. The multi-functional Ca2+/calmodulin-dependent protein 

kinases (CaMKs) are a group of serine/threonine protein kinases that are dependent on 

Ca2+/calmodulin for activation (DeKoninck and Schulman, 1998).  Numerous isoforms of CaMK 

have been identified in mammalian cells including Ca2+/calmodulin-dependent protein kinase 

kinase α and β (CaMKKα and CaMKKβ), Ca2+/calmodulin-dependent protein kinase I α, β, γ, 

and δ (CaMKIα, CaMKIβ, CaMKIγ, and CaMKIδ), Ca2+/calmodulin-dependent protein kinase II 

α, β, γ, and δ (CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ) and Ca2+/calmodulin-dependent 

protein kinase IV (CaMKIV) (Braun and Schulman, 1995; Fluck et al., 2000; Hudman and 

Schulman, 2002; Kamata et al., 2007; Soderling et al., 2001).  All of these isoforms are 

categorized as multi-functional CaMKs due to their ability to phosphorylate multiple substrates.  

Not all of the CaMK isoforms are found in skeletal muscle.  For example, CaMKIV is not 

present in skeletal muscle (Akimoto et al., 2004).  However, the isoforms CaMKKα, CaMKIα, β, 

δ and CaMKIIβM, γ, and δ  have been detected in skeletal muscle (Chin, 2004; Fluck et al., 2000; 

Hudman and Schulman, 2002; Stephens et al., 2010; Witczak et al., 2007).  

 Each isoform of CaMK is differentially regulated by increases in intracellular Ca2+ and 

the binding of the Ca2+/calmodulin complex.  Figure 2 depicts how the Ca2+/calmodulin complex 

directly activates CaMKK which in turn phosphorylates CaMKI and CaMKIV (Ishikawa, 2003; 

Tokumitsu, 2004).  For complete activation of CaMKI and CaMKIV, Ca2+/calmodulin must also 

bind to these two isoforms. In contrast, CaMKII relies solely on Ca2+/calmodulin for activation 
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(Saucerman and Bers, 2008; Stefan, 2008).  Figure 3 illustrates the autophosphorylation cycle of 

CaMKII.  Once Ca2+/calmodulin binds to CaMKII, the kinase can activate downstream effectors 

through phosphorylation.  This process is known as Ca2+/calmodulin-dependent activity 

(Hudmon and Schulman, 2002).  From here, CaMKII may then be autophosphorylated at the 

threonine-286/287 residue.  After autophosphorylation occurs, CaMKII can now remain active 

independent of the Ca2+/calmodulin complex (Anderson et al., 1994; Fluck et al., 2000; Shiaffino 

and Reggiani, 1996) which also enables it to signal to downstream effectors. This process is 

known as Ca2+/calmodulin-independent activity.  Deactivation of CaMKII is mediated through 

Ca2+/calmodulin dependent protein kinase phosphatase (CaMKPase) (Ishida et al., 1998). 
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Figure 2: Differential Regulation of the Ca2+/Calmodulin-Dependent Kinase (CaMK) 
Isoforms by Ca2+/Calmodulin (Ca2+/CaM).  Ca2+/calmodulin-dependent protein kinase kinase 
α and β (CaMKK), Ca2+/calmodulin-dependent protein kinase I α, β, γ, and δ (CaMKI), 
Ca2+/calmodulin-dependent protein kinase II α, β, and γ (CaMKII) and Ca2+/calmodulin-
dependent protein kinase IV (CaMKIV).  The “P” in the yellow oval illustrates that 
phosphorylation is taking place. 
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Figure 3: Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) Autophosphorylation 
Cycle.  Figure adapted from Hudmon A, Schulman H.  Structure-function of the multifunctional 
Ca2+/calmodulin-dependent  protein kinase II.  Biochem J.  364(Pt. 3): 593-611, 2002. 
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Intriguingly, a few studies have now suggested that CaMKII may play a key role in the 

regulation of skeletal muscle mass and protein degradation (Chin, 2004; Djakovic et al., 2009; 

Witczak unpublished findings, 2010 ).  As shown in Figure 4, skeletal muscle taken from aged 

rats (27 months) shows a ~2.5-fold increase in the protein expression of CaMKIIγ when 

compared to the skeletal muscle of young rats (4 months) (Chin, 2004). Since Thomson and 

Gordon (2005 and 2006) have previously shown that aging is accompanied with a decrease in 

muscle mass (sarcopenia), these findings may indicate that CaMKIIγ is involved in aging-

induced muscle atrophy.  In another study performed by Chin et al. (2004), CaMKIIγ protein 

expression was measured in the soleus muscle of young rats 20 days after denervation surgery 

(i.e. unilateral severing of sciatic nerve).  Figure 5 shows that CaMKIIγ expression increased 

nearly 3-fold in the denervated soleus when compared to control. These findings may suggest a 

role for CaMKIIγ in denervation-induced muscle atrophy.  To date, no studies have been 

performed to suggest a role for CaMKIIβM or CaMKIIδ in skeletal muscle atrophy.  

CaMKII has also been implicated as an intracellular player in proteasome activity in non-

muscle cells (Djakovic et al., 2009).  Although the focus of this project is on CaMKII in skeletal 

muscle, it is worth noting the data linking CaMKII activity and protein degradation in non-

muscle cells.  In Figure 6, there is a 30% decrease in protein levels in GFP-tagged cells 

expressing constitutively active CaMKII (i.e. CaMKII T286D) when compared to control protein 

levels (31% to 61%, respectively).  The decreases in protein levels were due to an increase in 

proteasome activity.  In Figure 7, constitutively active CaMKII in rat hippocampus neurons 

provides similar results to that of Figure 6.  The bar graph in Figure 7 shows a 14% increase in 

proteasome activity in neurons expressing constitutively active CaMKII when compared to 

control levels.  To confirm that CaMKII was solely causing the increase in proteasome activity, 
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western blots were performed on the proteasomes (Figure 7).  The results indicate that total 

proteasome levels were very similar in both control neurons and neurons with constitutively 

active CaMKII, demonstrating that CaMKII increases proteasome activity.  

In contrast to the growing amount of data suggesting a role for CaMKII in the regulation 

of skeletal muscle atrophy and proteasome activity, to date there is no published evidence 

suggesting a role for CaMKII in the regulation of skeletal muscle hypertrophy.  However, 

preliminary results from our lab now show an initial decrease in the levels of CaMKIIβM, γ, and 

δ in the plantaris muscle of male mice after synergist ablation surgery (i.e. unilateral functional 

overload) (Figure 8).  When the overloaded plantaris muscle of mice 1 and 3 days post-surgery 

were compared to the sham-operated plantaris from the same mice, the levels of CaMKII were 

50% and 25% lower in the overloaded plantaris, respectively.  These results show that 

hypertrophic conditions in skeletal muscle cause a decrease in the expression of CaMKII.  

Collectively, these results show that the intracellular protein kinase CaMKII is affected by 

muscle atrophy and muscle hypertrophy, suggesting that CaMKII could be a key regulator of 

protein synthesis, protein degradation and/or muscle mass in skeletal muscle. 
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Figure 4: CaMKIIγ Protein Expression Is Increased in Aged Rat Skeletal Muscle.  The 
figure was adapted from Chin ER. The Role of Calcium and Calcium/Calmodulin-Dependent 
Kinases in Skeletal Muscle Plasticity and Mitochondrial Biogenesis.  Proceedings of the 
Nutrition Society.  63(2): 279-287, 2004. The “*” indicates a statistically significant difference 
(P<0.05) compared to 4 months. 
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Figure 5: CaMKIIγ Protein Expression is Increased in Rat Soleus Muscle Following 
Denervation.  The figure was adapted from Chin ER. The Role of Calcium and 
Calcium/Calmodulin-Dependent Kinases in Skeletal Muscle Plasticity and Mitochondrial 
Biogenesis.   Proceedings of the Nutrition Society.  63(2): 279-287, 2004. The “*” indicates a 
statistically significant difference (P<0.05) compared to control muscles. 
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Figure 6: Overexpression of Constitutively Active CaMKII in HEK293T cells Increases 
Protein Degradation.   Cells were labeled with GFP and an ubiquitin-proteasome reporter and 
co-transfected with constitutively active CaMKIIα.  Total protein levels were measured and 
compared to control levels.  Cells expressing CaMKII T286D contained about 30% lower protein 
levels.  The protein synthesis inhibitor cycloheximide (CHX) was introduced to the cells to 
prevent increases in protein synthesis. The figure was taken from Djakovic SN et al. Regulation 
of the proteasome by neuronal activity and calcium/calmodulin protein kinase II.  J Biol. Chem. 
284(39): 26655-26665, 2009. The “*” indicates a statistically significant difference (P<0.05) 
compared to control cells. 
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Figure 7: Overexpression of Constitutively Active CaMKII in Rat Hippocampal Neurons 
Stimulates Proteasome Activity.  The figure was taken from Djakovic SN et al. Regulation of 
the proteasome by neuronal activity and calcium/calmodulin protein kinase II.  J Biol. Chem.  
284(39): 26655-26665, 2009.  The “*” indicates a statistically significant difference (P<0.05) 
compared to control cells. 
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Figure 8: Overload-Induced Skeletal Muscle Hypertrophy in Mice Induces a Time-
Dependent Decrease in CaMKIIββββM, γγγγ, and δδδδ Protein Expression.  Witczak CA. Unpublished 
observations, 2010. (N = 2-3 muscles/group). 
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Hypothesis 
 

 Previous studies in rats have shown that the protein expression of CaMKIIγ increases 

and remains elevated following denervation-induced muscle atrophy (Chin, 2004).  In addition, 

preliminary experiments in mice have shown that CaMKII protein expression initially decreases 

when muscle hypertrophy is induced by ablation surgery (Witczak CA, unpublished 

observations, 2010).  Therefore, we hypothesize that following muscle denervation, as protein 

degradation increases and protein synthesis decreases, CaMKII protein expression and 

phosphorylation (activation) will increase and remain elevated.   In addition, we hypothesize that 

following muscle overload, as protein degradation decreases and protein synthesis increases, 

CaMKII protein expression and phosphorylation (activation) will decrease and then return to 

baseline levels as protein synthesis slows.  

 

Objectives 

The overall goal of this project is to determine whether one or more of the CaMKII 

isoforms present in skeletal muscle is altered in response to hypertrophic or atrophic stimuli and 

the possible time dependency of those changes.  To address this goal, we propose to stimulate 

mouse skeletal muscle to hypertrophy via unilateral synergist ablation surgery and examine 

CaMKII (Thr286/287) phosphorylation and protein expression 1, 3, 7, and 10 days later.  In 

addition, we will also stimulate mouse skeletal muscle to atrophy via unilateral hindlimb 

denervation and examine CaMKII (Thr286/287) phosphorylation and protein expression 1, 3, 7, 

10, and 14 days later.   
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Expected Results 

 The results from previous studies performed on CaMKII allow us to make 

predictions about CaMKII protein expression and phosphorylation in skeletal muscle and how 

they are affected by conditions that cause muscle atrophy (denervation) and muscle hypertrophy 

(overload).  We expect a decline in plantaris muscle weight 3, 7, 10 and 14 days after 

denervation surgery.  Since we expect CaMKII activity to increase during atrophic conditions, 

we should see CaMKII (Thr286/287) phosphorylation and expression increase initially 1 day 

after denervation and then increase to levels much higher than control 3,7,10,and 14 days 

following denervation surgery.    

Following synergist ablation surgery, we expect a significant increase in plantaris muscle 

weight after 3, 7, and 10 days.  During conditions of hypertrophy, we expect CaMKII 

(Thr286/287) phosphorylation and expression to significantly decrease in overloaded muscle 1 

day following surgery.  Following day 1, we expect a gradual increase in CaMKII 

phosphorylation and expression in 3, 7 and 10 day overloaded muscle following synergist 

ablation surgery.  By days 7 and 10, we do not expect CaMKII expression and phosphorylation 

in overloaded muscle to be significantly different than sham muscle on the same days.



 

 

CHAPTER 2: METHODS AND MATERIALS 
 

Animals 

All experimental procedures were approved by the East Carolina University Institutional 

Animal Care and Use Committee (IACUC), and are in accordance with the National Institutes of 

Health guidelines for the care and use of laboratory animals. Male mice of the CD-1 strain with a 

starting weight of 35 to 40 grams were purchased from Charles River Laboratories (Raleigh-

Durham, NC) and then housed in cages at 21-22°C with a 12 hr light/dark cycle.   Rodent chow 

(ProLab RMH300, Lab Diet, Brentwood, MO) and water were available ad libitum.  

 

Unilateral Denervation Surgery 

Denervation is defined as the loss of nerve supply to a tissue in the body.  In this study, a 

section of the sciatic nerve was removed from the hind leg of mice, resulting in atrophy of the 

denervated skeletal muscles (Shavlakadze et al., 2005).  The following procedure for unilateral 

hindlimb denervation was adapted and modified from Shavlakadze et al.  Mice were weighed 

then anesthetized with 2-3% isoflurane.  The upper portion of the hindlimb was shaved and an 

incision made on the proximal thigh.  A blunt dissection was performed on the quadriceps 

muscles to expose the sciatic nerve.  A ~0.5 cm segment of the sciatic nerve bundle was 

removed, and thus, the lower leg no longer received nerve impulses. Removal of at least 0.5 cm 

of the nerve was sufficient to prevent any rejoining of the sciatic nerve.  The incision was closed 

with surgical glue (Vetbond, 3M). 

A sham operation was performed on the opposite leg of each mouse.  The sham operation 

was performed exactly the same as the denervation surgery except that the sciatic nerve was not 

severed or removed.  Mice were euthanized and the plantaris removed from the mice 1, 3, 7, 10, 
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and 14 days after surgery.  The muscles were immediately frozen in liquid nitrogen, and then 

weighed. 

 

Unilateral Synergist Ablation Surgery 

Synergist ablation surgery requires the removal of one or more muscles from a synergist 

group.  The remaining muscle of the synergist group is not removed and functional overload 

(hypertrophy) of the muscle is observed.   The following procedure for synergist ablation has 

been adapted from those described by Thomson and Gordon (2006.) 

Mice were weighed and anesthetized with 2-3% isoflurane solution.  The fur on the back 

of the leg was removed with a shaver, and the skin sterilized with betadine solution.  An incision 

was made on the posterior portion of one leg and the distal 60-70% of the gastrocnemius and 

soleus muscles removed, leaving the plantaris muscle intact.  Removing only the distal two-

thirds prevented any complications dealing with the knee capsule and its surrounding muscles 

and nerves.  After removal of the gastrocnemius and soleus muscles, the incision was closed with 

sutures. 

Critical to this surgery was the sham (control) operation performed on the opposite leg.  

This included creating an incision on the control leg and isolating the gastrocnemius and soleus 

but not removing these muscles.  After surgery, the mice were monitored every day for signs of 

stress or infection until euthanasia.  Euthanasia occurred 1, 3, 7 or 10 days after surgery and the 

plantaris muscles removed.  Plantaris muscles were immediately frozen in liquid nitrogen, and 

then weighed.   
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Tissue Homogenization 

 Frozen muscles were processed for Western blot analyses as described by Witczak et al. 

(2006).  Muscles were pulverized and then homogenized in bullet blender tubes with 1.4 mm 

diameter stainless steel beads and 200 µl of buffer solution containing 20 mM Tris-HCl, pH 7.5, 

5 mM EDTA, 10 mM Na4P2O7.10H2O, 1% Nonidet P-40, 100 mM NaF, 10 µg ml-1 leupeptin, 10 

µg ml-1 aprotinin and 2 mM Na3VO4, 3 mM benzamidine, and 1 mM phenylmethylsulfonyl 

fluoride (PMSF).  The homogenate was rotated end over end for 1 hour at 4°C and then 

centrifuged at 13,000 x g for 30 min.  The supernatant (lysate) was removed and stored at -80°C.  

Concentrations of the total protein content were determined by the Bradford method (Bradford, 

1976) with BSA as a reference protein.  

 

Western Blotting 

Muscle lysates (20 µg total protein) were placed in 5 µl of 4x Laemmli’s buffer and 

heated for 5 minutes at 95°C.  The samples were loaded onto 1.5 mm, 15-well, 8% SDS-

polyacrylamide gels and separated using a Mini-Protean Tetra cell electrophoresis apparatus 

(Bio-Rad) at 180 volts for 45-50 minutes (or until the dye runs off).  The gels were put on 

nitrocellulose membranes and placed between two filter papers and two transfer sponges within a 

plastic transfer cassette.  Proteins were then transferred onto the nitrocellulose membranes for 

immunodetection using a Mini Trans-Blot cell apparatus (Bio-Rad) at 100 volts for 1 hour.  The 

membranes were placed in 20 ml of a blocking solution composed of 5% bovine serum albumin 

(BSA) dissolved in 1x Tris-buffered saline (1x TBS) + 0.1% Tween-20 for 1 hour.  Primary 

antibodies that detect total CaMKIIβM, γ, and δ (Santa Cruz Biotechnology, catalog#sc-9035) or 

phospho-CaMKII (Thr 286/287) (Cell Signaling Technology, catalog#3361) were utilized to 
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detect total and phosphorylated CaMKII, respectively.  For total CaMKII, a 1:4000 dilution of 

the primary antibody was made in 20 ml of 5% BSA in 1x TBS + 0.1% Tween + 0.01% NaN3.  

For the phospho-CaMKII primary antibody, a 1:2000 dilution was made in 20 ml of 5% BSA in 

1x TBS + 0.1% Tween + 0.01% NaN3. The membranes were incubated with rocking overnight at 

4 °C.  Membranes were washed 5 times in 20 ml each of 1x TBS + 0.1% Tween to remove any 

unbound primary antibody and incubated with a horseradish peroxidase (HRP)-conjugated 

secondary antibody for one hour at room temperature.  For total CaMKII detection, a 1:5000 

dilution of anti-mouse (IgG)-HRP (Millipore Corp, catalog#12-349) was made in 20 ml of 5% 

BSA in1x TBS + 0.1% Tween.  For phospho-CaMKII detection, a 1:2000 dilution of anti-rabbit 

(IgG)-HRP (ThermoScientific, catalog#31460) was made.  The membrane was washed 5 times 

with 20 ml of 1x TBS + 0.1% Tween. 

The membranes were dried by dabbing the sides against paper towels and then placed on 

plastic wrap.  Western Lightning Plus-ECL reagents (Perkin Elmer, catalog#NEL105001) were 

combined into a 50 ml BD Falcon Tube (1:1 ratio) and 1 ml of the solution was pipetted onto 

each membrane.  The luminescence intensity of the bands was quantified using a ChemiDoc 

XRS+ imaging system and Image Lab™ software (Bio Rad). Band intensity was normalized to 

the intensity of internal control samples as described below.  Within a set of Western blots, every 

blot contained the exact same muscle sample, which was defined as the internal control.  The 

intensity of the internal control on one gel was compared to the internal control on the other gels, 

and utilized to calculate a normalization factor.  For example, if the intensity of the internal 

control sample on gel 2 was 1.5x greater than the intensity of the internal control sample on gel 

1, then all of the samples on gel 2 would be divided by 1.5 to normalize the apparent gel-to-gel 
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variability in the western blotting procedures.  The normalized intensity values were then 

grouped based on treatment, and the mean and standard error of the mean calculated. 

 

Statistical Analysis 

 The data are presented as the mean ± standard error of the mean.  Statistical significance 

was defined as P < 0.05 and determined by paired t-tests or by two-way analysis of variance 

(ANOVA) and Student-Newman-Keuls post hoc analysis.  The number of mice utilized to 

determine significance is indicated in the figure legend.



 

 

CHAPTER 3: RESULTS 
 

Denervation Surgery 
 
Mouse Body Weights 
 

To determine the effects of skeletal muscle atrophy on CaMKII (Thr286/287) 

phosphorylation and CaMKII protein expression, mice underwent unilateral denervation of the 

hind limb via sciatic nerve resection. Mice were weighed just prior to surgery and then every day 

until euthanasia.  All 30 mice that underwent sciatic denervation surgery were euthanized on the 

same day.  As shown in Table 1, none of the mice that underwent denervation surgery exhibited 

a significant decrease in body weight from the time of surgery to the time of euthanasia. 
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Duration of 
Denervation 

Number of 
Mice 

Body Weight on 
Surgery Day(g) 

Body Weight on 
Euthanasia Day (g) 

P-Value 

1 Day 6 33.0 ± 0.3 32.9 ± 0.7 p= 0.566 
3 Days 6 35.2 ± 1.1 35.0 ± 1.2 p= 0.067 
7 Days 6 31.8 ± 0.7 33.1 ± 0.6 p< 0.001 
10 Days 6 30.8 ± 0.6 32.8 ± 0.8 p< 0.001 
14 Days 6 29.1 ± 0.3 33.1 ± 0.9 p= 0.003 

 

Table 1: Body Weights on Surgery Day and the Day of Euthanasia for Mice that 
Underwent Denervation Surgery.  Data are presented as the mean ± standard error of the 
mean.  Statistical significance between body weights on the day of surgery vs. the day of 
euthanasia was assessed by paired t-test.  
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Mouse Plantaris Muscle Weights 

Plantaris muscles were collected 1, 3, 7, 10 or 14 days after the denervation surgery, 

frozen in liquid nitrogen and then weighed.  The effect(s) of muscle denervation were 

determined by examination of raw muscle weights as well as the calculation of the percent 

change in muscle weight from the denervated muscle to the sham muscle within the same 

animal.  At 1 day and 3 days after the denervation surgery, there was no significant muscle 

atrophy observed in the denervated plantaris muscles compared to the sham-operated control 

muscles of the same day (Fig 9).  Denervated plantaris muscles from the 7 day, 10 day and 14 

day mice all showed a significant decrease in weight when compared to their respective sham 

muscles (Fig 9).  None of the sham plantaris muscle weights were statistically different from 

each other (Fig 9). 

 Consistent with the data for muscle weights, the average percent change in muscle 

weights following 1 day of denervation was not different than 0% demonstrating no muscle 

atrophy at this time point.  Following 3, 7, 10 and 14 days of denervation, the average percent 

change in plantaris muscle weight was significantly decreased compared to day 1 (Fig 10). 
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Figure 9: Effect of Denervation on Mouse Plantaris Muscle Weights.  Data are presented as 
the mean ± standard error of the mean.  Statistical significance was assessed by Two-way 
ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05 with ‘*’ vs. Day 
1 and ‘#’ vs. sham muscles from the same day.  For all experimental groups, N= 6 muscles. 
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Figure 10: Percent Change in Mouse Plantaris Muscle Weights Following Denervation.  
Data are presented as the mean ± standard error of the mean.  Statistical significance was 
assessed by One-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 
0.05, with ‘*’ vs. Day 1.  For all experimental groups, N= 6 muscles. 
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Western Blot Analyses for CaMKII Phosphorylation and Expression 

The frozen plantaris muscles were processed for Western blot analyses to assess CaMKII 

(Thr 286/287) phosphorylation and protein expression.  Both the phospho-CaMKII antibody and 

the total CaMKII antibody detect all known isoforms of CaMKII found in skeletal muscle (i.e. 

CaMKIIβM, γ, and δ), and the initial intent of this study was to quantify all of the CaMKII 

isoforms together.  However, due to noticeable differences in the intensity of the bands for the 

phosphorylation and protein expression blots, the three separate isoforms of CaMKII in skeletal 

muscle were quantified separately. 

Based on amino acid sequence and composition, the predicted molecular weights of the 

different CaMKII isoforms are ~72 kDa for the CaMKIIβM isoform, ~62 kDa for the CaMKIIγ 

isoform, and ~57 kDa for the CaMKIIδ isoform.  Thus, for clarity in this thesis, the bands 

detected by the phospho- and total CaMKII antibodies will be referred to as CaMKIIβM, 

CaMKIIγ, and CaMKIIδ based on molecular weight. 

CaMKII Phosphorylation.  Figures 11 through 13 contain representative blots and the 

quantification of CaMKIIβM, CaMKIIγ and CaMKIIδ (Thr286/287) phosphorylation.  There 

were no significant differences in CaMKIIβM phosphorylation induced by the denervation 

surgery at any of the time points examined (Fig 11).  The phosphorylation of CaMKIIγ was 

significantly decreased in the denervated muscles by days 7, 10 and 14 compared to day 3 (Fig 

12).  Similar to the results obtained for CaMKIIβM phosphorylation, there were no significant 

differences in CaMKIIδ (Thr286/287) phosphorylation induced by denervation at any of the time 

points examined (Fig 13).  Phosphorylation of the sham plantaris muscles for all three isoforms 

was not statistically different at any time following denervation surgery (Fig 11,12,13).   
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Figure 11: Effect of Denervation on CaMKIIββββM (Thr286/287) Phosphorylation in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05.  All other groups, N=5-6 muscles/group. 
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Figure 12: Effect of Denervation on CaMKIIγγγγ (Thr286/287) Phosphorylation in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05, with ‘#’ vs. Day 3.  N=4-6 muscles/group.   
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Figure 13:  Effect of Denervation on CaMKIIδδδδ (Thr286/287) Phosphorylation in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05.  N=5-6 muscles. 
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CaMKII Protein Expression.  Figures 14 through 16 show representative blots and the 

quantification of band intensity for CaMKIIβM, CaMKIIγ and CaMKIIδ protein expression from 

the plantaris muscles of denervated and sham mouse legs.  The denervated plantaris muscles on 

days 3, 7, 10 and 14 have significantly lower CaMKIIβM expression when compared to their 

sham plantaris muscles (Fig 14).  In contrast, following 10 and 14 days of denervation, there was 

a significant increase in CaMKIIγ protein expression compared to the sham-operated control 

muscles as well as denervated muscles on days 3 and 7 (Fig 15).  Figure 16 shows a significant 

increase (~200%) in CaMKIIδ expression in the denervated plantaris muscles on day 10 and day 

14 when compared to their sham muscles.  In addition, CaMKIIδ expression in the denervated 

muscles from 10 day and 14 day mice was also significantly higher than CaMKIIδ expression at 

1, 3, and 7 days after denervation (Fig 16).  CaMKIIβM, γ, and δ  protein expression was not 

statistically different in any of the sham muscles at any time point following denervation surgery 

(Fig 14,15,16). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 14:  Effect of Denervation on CaMKII
Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical significance 
was assessed by Two-way ANOVA and Student
as p< 0.05, with ‘#’ vs. Day 1 and ‘*’ vs. sham muscles from the same day.  N=5
muscles/group. 
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:  Effect of Denervation on CaMKIIββββM Protein Expression in Mouse Plantaris 
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Figure 15:  Effect of Denervation on CaMKIIγγγγ Protein Expression in Mouse Plantaris 
Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical significance 
was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined 
as p< 0.05, with ‘#’ vs. Day 3 and Day 7 and ‘*’ vs. sham muscles from the same day.  N=5-6 
muscles/group.   
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Figure 16:  Effect of Denervation on CaMKIIδδδδ Protein Expression in Plantaris Muscles.  
Data are presented as the mean ± standard error of the mean.  Statistical significance was 
assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 
0.05, with ‘#’ vs. Day 1, Day 3 and Day 7 and ‘*’ vs. sham muscles from the same day.  N=5-6 
muscles/group. 
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Ratio of Phosphorylated CaMKII to Total CaMKII.  The ratio of phosphorylated 

CaMKII to CaMKII protein expression (phospho:total) was determined for each isoform in order 

to gain a better perspective on how expression and phosphorylation together effect the overall 

activation of CaMKII throughout the denervation time course. 

Figures 17 through 19 show the phospho:total ratios of each isoform (CaMKIIβM, 

CaMKIIγ and CaMKIIδ ) from the plantaris muscles of denervated and sham mouse legs.  The 

ratio of phosphorylated CaMKIIβM to CaMKIIβM protein expression was significantly increased 

in the denervated plantaris muscles at day 7, but unchanged at any other time point (Fig 17). 

There was no change in the CaMKIIβM phospho to total ratio in the sham-operated muscles at 

any time point (Fig 17). The ratio of phosphorylated CaMKIIγ to total CaMKIIγ on day 10 was 

significantly lower than the respective sham ratio (Fig 18).  The denervated muscles on day 3 

contain a significantly higher CaMKIIγ phospho:total ratio when compared to the other 

denervated phospho:total ratios on day 1, 7, 10 and 14 (Fig 18).  For CaMKIIδ, there were no 

significant differences in the denervation phospho:total ratios compared to sham ratios at any day 

during the time course except on day 10 (Fig 19).  Also, the sham-operated muscles on day 14 

contain a significantly lower CaMKIIδ phospho:total ratio compared to day 7 sham-operated 

control muscles (Fig 19). 
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Figure 17:  Effect of Denervation on the Ratio of CaMKIIββββM (Thr286/287) Phosphorylation 
to CaMKIIββββM Protein Expression in Mouse Plantaris Muscles.  Data are presented as the 
mean ± standard error of the mean.  Statistical significance was assessed by Two-way ANOVA 
and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05, with ‘#’ vs. Day 1, Day 3 
and Day 10 and Day 14 and ‘*’ vs. sham muscles from the same day.  N=5-6 muscles/group.   
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Figure 18:  Effect of Denervation on the Ratio of CaMKIIγγγγ (Thr286/287) Phosphorylation 
to CaMKIIγγγγ Protein Expression in Mouse Plantaris Muscles.  Data are presented as the mean 
± standard error of the mean.  Statistical significance was assessed by Two-way ANOVA and 
Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05, with ‘#’ vs. Day 1, Day 7, 
Day 10 and Day 14 and ‘*’ vs. sham muscles from the same day.  N=5-6 muscles/group.   
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Figure 19:  Effect of Denervation on the Ratio of CaMKIIδδδδ (Thr286/287) Phosphorylation 
to CaMKIIδδδδ Protein Expression in Mouse Plantaris Muscles.  Data are presented as the mean 
± standard error of the mean.  Statistical significance was assessed by Two-way ANOVA and 
Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05,  with ‘#’ vs. Day 7 sham and 
‘*’ vs. sham muscles from the same day.  N=5-6 muscles/group.   
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Synergist Ablation Surgery 

Mouse Body Weights 

To determine the effects of skeletal muscle hypertrophy on CaMKII (Thr286/287) 

phosphorylation and CaMKII protein expression, mice underwent unilateral synergist ablation 

surgery of the hind limb via removal of the gastrocnemius and soleus muscles.  This surgery 

induces hypertrophy of the remaining synergist muscle, i.e. the plantaris muscle.  Mice were 

weighed just prior to surgery and then every day until euthanasia.  All 31 mice that underwent 

synergist ablation surgery were euthanized on the same day.  As shown in Table 2, none of the 

mice that underwent synergist ablation surgery exhibited a significant decrease in body weight 

from the time of surgery to the time of euthanasia. 
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Duration of 
Ablation 

Number of 
Mice 

Body Weight on 
Surgery Day(g) 

Body Weight on 
Euthanasia Day (g) 

P-Value 

1 Day 8 32.8±0.4 32.2±0.5 p=0.027 

3 Days 8 32.4±0.5 31.8±0.5 p=0.011 

7 Days 8 28.0±0.6 30.6±0.5 p<0.001 

10 Days 7 25.8±0.5 30.4±0.9 p<0.001 
 

Table 2: Mouse Body Weights on Surgery Day and the Day of Euthanasia for Mice that 
Underwent Synergist Ablation Surgery.  Data are presented as the mean ± standard error of 
the mean.  Statistical significance between body weights on the day of surgery vs. the day of 
euthanasia was assessed by paired t-test.  
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Mouse Plantaris Muscle Weights 

Plantaris muscles were collected 1, 3, 7 or 10 days after the synergist ablation surgery, 

frozen in liquid nitrogen and then weighed.  The effect(s) of functional overload on muscle mass 

were determined by examination of raw muscle weights as well as the calculation of percent 

change in muscle weight from the overloaded muscle to the sham-operated muscle within the 

same animal.  At 1 day following the ablation surgery, plantaris muscles showed no significant 

change in weight in comparison to their sham muscles (Fig 20).  The plantaris muscles from the 

3 day, 7 day and 10 day ablated legs exhibited significant increase in weight when compared to 

their respective sham-operated plantaris muscles (Fig 20).  None of the sham plantaris muscle 

weights were statistically different from each other (Fig. 20). 

Plantaris muscles from the 1 day and 3 day ablated legs showed a 20-25% increase in 

weight compared the sham muscles from the same mice, and were not statistically different from 

each other (Fig 21).  Following 7 and 10 days of overload, the percent change in plantaris muscle 

weights increased 75% and 150%, respectively (Fig 21). 
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Figure 20: Effect of Synergist Ablation on Mouse Plantaris Muscle Weights.  Data are 
presented as the mean ± standard error of the mean.  Statistical significance was assessed by 
Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05, with 
‘*’ vs. Day 1, ‘#’ vs. Day 3, ‘$’ vs. Day 7 and ‘&’ vs. sham muscles from the same day.   N= 7-8 
muscles/groups.   
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Figure 21: Percent Change in Experimental Plantaris Muscle Weights Following Synergist 
Ablation.  Data are presented as the mean ± standard error of the mean.  Statistical significance 
was assessed by One-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined 
as p< 0.05, with ‘*’ vs. Day 1, ‘#’ vs. Day 3 and ‘$’ vs. Day 7.  N= 7-8 muscles/group.   
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Western Blot Analyses for CaMKII Phosphorylation and Expression 

The frozen plantaris muscles were processed for Western blot analyses to determine 

CaMKII (Thr 286/287) phosphorylation and total CaMKII protein expression.  Both the 

phospho-CaMKII antibody and the total CaMKII antibody detect all known isoforms of CaMKII 

found in skeletal muscle (i.e. CaMKIIβM, γ, and δ), and the initial intent of this study was to 

quantify all of the CaMKII isoforms together.  However, due to noticeable differences in the 

intensity of the bands for the phosphorylation and protein expression blots, the three separate 

isoforms of CaMKII in skeletal muscle were quantified separately. 

As previously mentioned in the “Denervation Surgery” section of the Results, the 

predicted molecular weights of the different CaMKII isoforms are ~72 kDa for the CaMKIIβM 

isoform, ~62 kDa for the CaMKIIγ isoform, and ~57 kDa for the CaMKIIδ isoform.  Thus, the 

bands detected by the phospho- and total CaMKII antibodies will be referred to as CaMKII βM, 

CaMKIIγ, and CaMKIIδ. 

CaMKII phosphorylation.  Figures 22 through 24 contain representative blots and the 

quantification of CaMKIIβM, CaMKIIγ and CaMKIIδ (Thr286/287) phosphorylation from 

overloaded and sham plantaris muscles.  CaMKIIβM phosphorylation was not significantly 

altered by the synergist ablation surgery at any of the time points examined (Fig 22).  In Figure 

23, the overloaded plantaris muscles at 1, 3, 7 and 10 days after synergist ablation surgery all 

contained significantly lower CaMKIIγ phosphorylation compared to the sham muscles on the 

same days.  Consistent with the results for CaMKIIβM phosphorylation, there were no significant 

alterations in CaMKIIδ phosphorylation induced by the ablation surgery at any of the time points 

(Fig 24). 
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Figure 22:  Effect of Synergist Ablation on CaMKIIββββM (Thr286/287) Phosphorylation in 
Mouse Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  
Statistical significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc 
analysis, and defined as p< 0.05.  N=6-8 muscles/group. 
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Figure 23: Effect of Synergist Ablation on CaMKIIγγγγ Phosphorylation in Mouse Plantaris 
Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical significance 
was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined 
as p< 0.05, with ‘*’ vs. sham muscles from the same day.  N=6-8 muscles/group. 
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Figure 24:  Effect of Synergist Ablation on CaMKIIδδδδ Phosphorylation in Mouse Plantaris 
Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical significance 
was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined 
as p< 0.05.  N=6-8 muscles/group.   
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CaMKII Protein Expression.  Figures 25 through 27 show representative blots and the 

quantification of band intensity for CaMKIIβM, CaMKIIγ and CaMKIIδ protein expression from 

the plantaris muscles of ablated and sham mouse legs.  The overloaded plantaris muscles at 3, 7 

and 10 days after the synergist ablation surgery had significantly lower CaMKIIβM protein 

expression compared to their sham plantaris muscles (Fig 25).  Additionally, CaMKIIβM protein 

expression was significantly lower in overloaded plantaris muscles at days 3, 7 and 10 compared 

to CaMKIIβM protein expression in day 1 overloaded muscle (Fig 25).  CaMKIIγ protein 

expression was not significantly altered by the synergist ablation surgery at any of the time 

points examined (Fig 26).  Interestingly, CaMKIIδ protein expression was significantly higher 

(160% and 150%, respectively) in overloaded muscles 7 and 10 days after ablation compared to 

the sham muscles on the same days (Fig 27).  Also, CaMKIIδ expression of day 7 overloaded 

plantaris muscles was significantly higher than the expression of day 1 overloaded muscles (Fig 

27).  CaMKIIβM , γ, and δ protein expression of the sham muscles was not significantly different 

at any time following synergist ablation (Fig 25,26,27).  
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Figure 25:  Effect of Synergist Ablation on CaMKIIββββM Protein Expression in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05, with ‘#’ vs. Day 1 ablation and ‘*’ vs. sham muscles on the same day.  
N=6-8 muscles/group. 
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Figure 26:  Effect of Synergist Ablation on CaMKIIγγγγ Protein Expression in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05.  N=7-8 muscles/group.   
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Figure 27:  Effect of Synergist Ablation on CaMKIIδδδδ Protein Expression in Mouse 
Plantaris Muscles.  Data are presented as the mean ± standard error of the mean.  Statistical 
significance was assessed by Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, 
and defined as p< 0.05, with ‘#’ vs. Day 1 ablation and ‘*’ vs. sham muscles on the same day.  
N=7-8 muscles/group.   
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Ratio of Phosphorylated CaMKII to Total CaMKII As previously mentioned in the 

“Denervation Surgery” section of this chapter, the ratio of phosphorylated CaMKII to CaMKII 

protein expression (phospho:total) was determined in order to gain a better perspective on overall 

activation of each CaMKII isoform. 

 Figures 28 through 30 show the ratios of CaMKII phosphorylation to CaMKII protein 

expression (phospho:total) for each isoform (βM, γ and δ) from the plantaris muscles of ablated 

and sham mouse legs.  In Figure 28, the ratio of phospho:total CaMKIIβM was significantly 

higher in overloaded plantaris muscles 10 days after ablation compared to the 10 day sham 

muscles.  The CaMKIIβM phospho:total ratio of overloaded plantaris muscles from day 10 was 

also significantly higher than overloaded plantaris muscles from day 1 (Fig 28).  In contrast, the 

ratio of phospho:total CaMKIIγ were significantly decreased at 1, 3, 7 and 10 days after ablation 

compared to the sham muscles on the same day (Fig 29).  Figure 30 shows no significant 

differences in the ratio of phospho:total CaMKIIδ. 
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Figure 28:  Effect of Synergist Ablation on the Ratios of CaMKIIββββM (Thr286/287) 
Phosphorylation to CaMKIIββββM Protein Expression in Mouse Plantaris Muscles.  Data are 
presented as the mean ± standard error of the mean.  Statistical significance was assessed by 
Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05, with 
‘#’ vs. Day 1 Ablation and ‘*’ vs. sham muscles from the same day.  N=6-8 muscles/group.   
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Figure 29:  Effect of Synergist Ablation on the Ratios of CaMKIIγγγγ (Thr286/287) 
Phosphorylation to CaMKIIγγγγ Protein Expression in Mouse Plantaris Muscles.  Data are 
presented as the mean ± standard error of the mean.  Statistical significance was assessed by 
Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05, with 
‘*’ vs. sham muscles on the same day.  N=6-8 muscles/group.   
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Figure 30:  Effect of Synergist Ablation on the Ratios of CaMKIIδδδδ (Thr286/287) 
Phosphorylation to CaMKIIδδδδ Protein Expression in Mouse Plantaris Muscles.  Data are 
presented as the mean ± standard error of the mean.  Statistical significance was assessed by 
Two-way ANOVA and Student-Newman-Keuls post-hoc analysis, and defined as p< 0.05.  N=6-
8 muscles/group.  
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CHAPTER 5: DISCUSSION 

Skeletal muscle is necessary for multiple vital functions in the human body, including 

movement, metabolism and respiration, and the ability of muscle to carry out these functions is 

dependent on the maintenance of skeletal muscle mass.  Although the cellular and molecular 

mechanisms that regulate skeletal muscle mass are not completely known, preliminary studies 

have suggested a role for the Ca2+-sensitive serine/threonine kinase, Ca2+/calmodulin-dependent 

protein kinase II (CaMKII), in this process.  In this study, we provide the first assessment of the 

time-dependent changes in CaMKIIβM, γ, and δ (Thr286/287) phosphorylation and protein 

expression in response to denervation-induced muscle atrophy and synergist ablation-induced 

muscle hypertrophy.  Not only do these findings provide insight into the mechanisms regulating 

muscle mass, but they also provide a fundamental basis for potential future studies designed 

towards targeting CaMKII for the treatment of muscle wasting diseases. 

In this study, polyclonal antibodies that are capable of identifying all known isoforms of 

CaMKII were utilized to examine CaMKII (Thr286/287) phosphorylation and CaMKII protein 

expression, with the CaMKIIβM, γ, and δ isoforms identified based on their expected molecular 

weights.  Since we did not immunoblot with a monoclonal antibody specific for each isoform, it 

is possible that the bands defined as CaMKIIβM, CaMKIIγ and CaMKIIδ in this thesis may not 

be these three distinct CaMKII isoforms, but may instead represent splice variants of one or two 

of the CaMKII isoforms.  Future experiments would need to be done to conclusively show that 

the bands detected by the polyclonal antibodies are indeed CaMKIIβM, CaMKIIγ and CaMKIIδ. 

This is the first study to date that individually examined the phosphorylation and protein 

expression of the three major CaMKII isoforms found in skeletal muscle during atrophy and 

hypertrophy.  Previous studies had either quantified the protein expression of the three isoforms 
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collectively (Witczak, unpublished observations, Fig 8), had focused on the expression of only 

one isoform (Chin, 2004; Fig 5), or had only examined CaMKII protein expression at one time 

point (Chin, 2004; Fluck et al., 2000; Stephens et al., 2010).  Excitingly, our results showed that 

there are major differences in the phosphorylation and protein expression of CaMKIIβM, γ and δ 

during skeletal muscle atrophy and hypertrophy.  For example, in our study, denervation induced 

a significant decrease in CaMKIIβM protein expression at 3, 7, 10 and 14 days (Fig 14), but an 

increase in CaMKIIγ and CaMKIIδ protein expression at 10 and 14 days (Figs 15 and 16).  This 

divergence in response of the CaMKII isoforms underscores the importance of examining each 

isoform separately, and at different time points, since quantifying all of the isoforms together at a 

single time point could have resulted in a final conclusion of no change in CaMKII protein 

expression following loss of nerve activity to the muscle.      

Previous work in rat skeletal muscle had shown that CaMKIIγ protein expression was 

increased ~2.5-fold following 20 days of denervation (Chin, 2004; Fig 5), suggesting that 

CaMKIIγ may play a  role in the regulation of muscle atrophy.  Consistent with that finding, in 

our study, we found that CaMKIIγ and CaMKIIδ protein expression increased following 10 and 

14 days of denervation (Figs 15 and 16).  Unfortunately, since these increases in CaMKII γ and δ 

expression were not evident until 10 days after the denervation surgery, the data suggest that 

these changes in CaMKII expression are not initiating muscle atrophy following denervation.  In 

Figures 15 and 16, the increase in CaMKIIγ and CaMKIIδ protein expression could be 

compensatory increases in order to offset the atrophic conditions (Chin, 2004; Stephens et al., 

2009).  

In contrast to the CaMKIIγ and δ isoforms, CaMKIIβM expression was significantly 

decreased following 3 days of denervation (Fig 14).  Although previous muscle denervation 
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studies had attempted to examine CaMKIIβM expression, CaMKIIβM was not detected by the 

commercially-available antibodies at the time (Chin, 2004).  Thus, this is the first report 

characterizing the time-dependent alterations in CaMKIIβM during denervation-induced muscle 

atrophy.  Our observed decrease in CaMKIIβM protein expression was in contrast to a study that 

demonstrated an increase in CaMKIIβ mRNA and CaMKII protein levels in skeletal muscle 

from patients with cancer cachexia (Stephens, 2010).  This difference in observed response of 

CaMKIIβM expression could be due to any of the following differences in model and/or 

methodology.  First, cancer cachexia is a systemic syndrome that causes not only muscle 

wasting, but organ and other tissue wasting.  While the exact mechanisms of cachexia are poorly 

understood, it is postulated that inflammation may be a major factor driving muscle atrophy 

(Stephens, 2010).  Secondly, although CaMKII protein levels in cachexic patients increased, the 

specific CaMKII isoform that increased in expression was never specified.  Finally, cachexia is a 

chronic syndrome in comparison to the 14 day atrophy time course performed in our research.  In 

Figure 14, CaMKIIβM expression of 3 day denervated muscle was significantly lower compared 

to sham and day 1 denervated muscle and remained significantly lower through 10 days.  

However, after 14 days of denervation, CaMKIIβM expression increased to a level that was not 

significantly different than day 14 sham (Fig 14).  Therefore, by the time CaMKII was quantified 

in the cachexic patients, expression could have significantly increased beyond control levels.  

Future studies that deal with muscle atrophy and CaMKIIβ expression could potentially benefit 

by increasing the duration of their time course.  

Previous work in rat hippocampal neurons showed that elevations in intracellular Ca2+ 

levels or expression of a constitutively active form of CaMKII stimulated protein degradation, 

and these effects could be inhibited with the CaMK inhibitor, KN-93 (Djakovic et al., 2009).  
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Thus, these results suggested that phosphorylation and activation of CaMKII would be increased 

by denervation-induced muscle atrophy. Contrary to this work and our expected results, there 

were no significant changes in CaMKIIβM or CaMKIIδ (Thr286/287) phosphorylation (Figs 

11,13), and CaMKIIγ phosphorylation was significantly decreased at 7, 10 and 14 days of 

denervation (Fig 12).  There were some differences between our research and the research 

performed by Djakovic et al. that may explain this discrepancy.  First, CaMKII βM,, γ and δ are 

the major CaMKII isoforms found in skeletal muscle, while CaMKIIα is the major CaMKII 

isoform expression in the brain.  Thus, perhaps there are isoform-specific functions in these two 

tissues that may account for the difference in finding.  Second, we measured the expression and 

phosphorylation of each CaMKII isoform at multiple time points while Djakovic et al. measured 

the activity of CaMKIIα at one single time point (Fig 6,7).  By observing changes in CaMKII at 

more than one time point, we were able to identify trends in expression and phosphorylation, 

thus allowing us to determine how each isoform differed from the other at multiple time points.    

To date, only preliminary studies by Witczak CA (unpublished observations) have 

examined changes in CaMKII expression during skeletal muscle hypertrophy (Fig 8).  These data 

showed that CaMKIIβM, γ and δ protein expression decreased 1 day after ablation and then 

increased to levels not significantly different from the sham muscles (Fig 8).  Strikingly, in our 

results, the expression of each CaMKII isoform was distinctly different following synergist 

ablation surgery (Figs 25,26,27).  CaMKIIγ protein expression did not change at any time point 

examined (Fig 26), CaMKIIβM expression significantly decreased after day 3 (Fig 25), and 

CaMKIIδ expression significantly increased after day 7 (Fig 27).  The methods and materials 

utilized by Witczak CA are identical to ours with the exception of the strain of mouse 

(C57BL/6J).  Therefore, the aforementioned differences between our CaMKII expression results 
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and the results from Witczak CA are confounding and may be attributed to the variation in 

mouse strain. 

Although there is a lack of publications that suggest a role for CaMKII in skeletal muscle 

hypertrophy, there have been numerous studies performed looking at the role of CaMKII in 

cardiac muscle hypertrophy.  Of particular interest to our research, studies have linked two splice 

variants of CaMKIIδ (CaMKIIδb and CaMKIIδc) to hypertrophy in cardiomyocytes (Anderson et 

al., 2011; Heineke and Molkentin, 2006; Huke et al., 2011; Maier, 2005; Pan et al., 2010).   One 

study showed that transgenic mice overexpressing CaMKIIδc in the heart exhibited significant 

increases in myocardial hypertrophy and ventricular dysfunction (Zhang, 2005) while CaMKIIδb 

overexpression in cardiomyocytes increased the gene expression of atrial natriuretic factor, a 

well-established marker of ventricular hypertrophy (Ramirez et al, 1997).  The increase in 

CaMKIIδ expression associated with cardiac hypertrophy is in agreement with our results 

showing that CaMKIIδ protein expression increased 7 and 10 days following synergist ablation-

induced muscle hypertrophy (Fig 27).   Furthermore, the increases in CaMKIIδ expression 

associated with both cardiac and skeletal muscle hypertrophy may indicate the muscle is 

attempting to increase protein synthesis following the introduction of a pathological or induced 

condition.  This statement supports the hypothesis that the increases in CaMKIIδ expression 

following denervation-induced atrophy (Fig 16) are potentially due to a compensatory 

mechanism which is attempting to stimulate an increase in  muscle mass and function (Chin, 

2004; Stephens et al., 2009). 

   Our results are the first to show that muscle overload induces an immediate and 

sustained decrease in CaMKIIγ (Thr286/287) phosphorylation (Fig 23).  Since neither 

CaMKIIβM nor CaMKIIδ (Thr286/287) phosphorylation was significantly altered in response to 



 

63 

 

the ablation surgery (Figs 22,24), these findings may indicate a change in CaMKIIγ intracellular 

localization during hypertrophy.  This speculation is in agreement with previous literature that 

found that CaMKIIγ splice variants are localized to nuclei in brain tissue (Takeuchi et al., 1999).  

Thus, in our study, it is possible that the significant decrease in CaMKIIγ phosphorylation seen 

following ablation was due to nuclear translocation.  In support of this speculation, our results 

have shown that CaMKIIγ in denervated skeletal muscle also displayed significant decreases in 

phosphorylation after 3 days (Fig 12).  While there is no research to date that has conclusively 

defined a role for CaMKIIγ in the regulation of muscle mass, future studies may benefit by 

determining the effects of CaMKIIγ overexpression or CaMKIIγ gene knockout on muscle 

atrophy and hypertrophy. 

In summary, the goal of this study was to determine whether one or more of the CaMKII 

isoforms present in skeletal muscle is altered in response to atrophic or hypertrophic stimuli and 

the possible time dependency of those changes.  Collectively, our results showed that the 

phosphorylation and the protein expression of CaMKIIβM, γ or δ are differentially regulated 

following denervation-induced muscle atrophy and synergist ablation-induced hypertrophy.  

These findings underscore the necessity of examining each CaMKII isoform separately in order 

to determine its possible role in regulating muscle mass.
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