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Coastal evolution is an increasingly important area of study, especially with the projected 

rise in sea level, increase in storm intensity, and population increases along the nation’s coasts. 

In order to predict how the coastal environment will respond to these changes in the future, we 

need to first understand the evolution of coastal systems in the past. Here I address the late 

Holocene evolution of Currituck Sound, North Carolina, by examining time periods with 

different barrier island and inlet configurations interpreted from core data. 

Chirp seismic data and 13 vibracores have been used to interpret the Holocene 

development of this region. Four depositional units have been defined, based on lithofacies, 

biofacies, geophysical, and geochronologic data. The lowermost depositional unit (Unit I) is 

represented by quartz sand, barren of foraminifera, and is Pleistocene in age based on an OSL 

age estimate of 33.7 ka. Unit II consists of slightly muddy sand that fines upward to slightly 

sandy mud; it is barren of foraminifera, contains rooted horizons in several cores, and is 

interpreted as a fresh water swamp forest deposit (radiocarbon dating provide age estimates of 

ca. 4000 to 2800 cal y BP). Unit III is characterized by slightly sandy mud to mud containing a 

calcareous foraminiferal assemblage and oyster bioherms; these characteristics indicate a back-

barrier estuarine environment with high salinity (ca. 25 to 35) due to open inlets in the barrier 

islands to the east. Radiocarbon age estimates for Unit IV range from ca. 1700 to 500 cal y BP. 



The topmost unit (Unit IV) is composed of sediment with variable composition, ranging from 

clean quartz sand to mud, and contains foraminiferal assemblages that are generally mixed 

calcareous/agglutinated at the base overlain by entirely agglutinated assemblages. This unit 

represents the modern (post- ca. 1827), mid- to low salinity (less than 10), back-barrier lagoon 

with no inlets open in the barrier island. 

Sediment and microfossil-based paleoenvironmental and geomorphic reconstructions, 

including variable numbers of inlets, have been used as input into the Delft3D hydrodynamic 

model to understand inlet related changes to tides and currents within the Sound. This modeling 

indicates that impacts of inlets are very localized and only inlets in the direct vicinity of 

Currituck Sound (i.e., between historic Caffey’s Inlet and Kill Devil Hills) have a significant 

impact on the water levels and currents in the study area. 
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I. Introduction  

Coastal systems are extremely dynamic; as such it is challenging to forecast how 

changes in sea level and storm patterns will affect such an active and evolving 

environment.  The coastal geologic record offers the opportunity to refine forecasts as it 

allows assessment of process response that occurred in the past; i.e. the actual response of 

a coastal system to processes such as storm energy and sea-level rise. A number of papers 

have been published which attempt to relate the geologic character of estuaries to 

variances in process, particularly sea-level rise and storm impacts (Boothroyd et al. 1985; 

Ritchie and Penland, 1988; Oertel et al., 1992; Dalrymple et al., 1992; McBride et al., 

1995; Davis et al., 2003; Fritz et al., 2007). 

Early models explaining barrier island and lagoonal evolution were based upon 

sedimentary basins and epeiric seas (Oertel et al., 1992; Köykkä and Lamminen, 2011). 

Due to Holocene sea-level rise, a large percentage of coastal barrier lagoons are affected 

by the transgressed landscape topography, thus creating a need for a landscape 

topography model for lagoon evolution as opposed to the previous models based on 

sedimentary basins (Oertel et al., 1992).  

Microtidal coastlines, such as North Carolina, have wave-dominated inlets (Davis 

et al., 2003). Boothroyd et al. (1985) proposed that, for a microtidal lagoon, the rate of 

sea-level rise as compared to the rate of sedimentation and island retreat must be 

balanced for the continued existence of lagoons. A higher rate of sedimentation than 

inundation will result in a decrease in lagoon size. McBride et al. (1995) concluded that 

along the coastlines of Louisiana, Mississippi, southern Georgia and northern Florida, the 

controlling factor on geomorphic response types for barrier islands (i.e., lateral 
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movement, advance, dynamic equilibrium, retreat, in-place narrowing, landward rollover, 

breakup and rotational instability) is the sediment supply and, to a larger extent, the rate 

of relative sea-level rise. 

Dalrymple et al. (1992) provided a comprehensive model of estuary type and 

evolution in response to sea level rise. His model provides a template for understanding 

the geomorphology and evolution of drowned river valley estuaries depending on the 

relative strength of wave, tidal, and fluvial energy. Although this model proved useful in 

understanding the evolution of Albemarle Sound in NC (Mallinson et al., 2005), it has 

not been shown to apply to shallower, back-barrier lagoons (the subject of this study). 

Culver et al. (2007) and Grand Pre et al. (2011) found that the low-lying barrier 

islands that comprise the North Carolina coast have partially “collapsed”  (i.e., large 

sections have been reduced to submarine shoals) and been rebuilt at least twice during the 

late Holocene, affecting the evolution of Pamlico Sound (Figure 1). The mechanism of 

barrier erosion and rebuilding is not entirely clear, but their data illustrate that the process 

of barrier and estuarine evolution is more complex than simple models would suggest.  

The study area for this investigation, Currituck Sound an open-water-type lagoon 

(Oertel, 1985), is the northern end of the Albemarle-Pamlico Sound system of North 

Carolina (Figure 1) and is currently hydraulically isolated from the Atlantic Ocean by the 

Outer Banks barrier island system. The closest connection to the ocean and marine water 

is Oregon Inlet, approximately 40 km to the south. Due to the lack of inlets in the Sound, 

the salinity is very low, between ~1 and 4 on average. Rare instances of barrier island 

overwash during extreme storm events result in salinities reaching 10 (Robinson and 

McBride, 2003).  
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Figure 1: Map showing all known historical inlets and their opening/closing dates in 
northeastern North Carolina. Top left is the outline of the continental United States and top right 
shows eastern North Carolina with important geographic areas labeled. The dashed box indicates 
the location of the study area in southern Currituck Sound and the dashed circle in southern 
Croatan Sound is the location of the paleo-Roanoke Marshes that existed until the mid-19th 
century. 
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Low-lying, narrow barrier islands with limited tidal flats are susceptible to inlet 

formation during storm events (Pierce, 1970). Throughout the Holocene evolution of 

Currituck Sound several inlets have opened and closed in the barrier island system 

allowing for changing salinity and tidal influence over time (Stick, 1958; Fisher, 1962; 

Robinson and McBride, 2006; and USACE, 2010). These Holocene sediments provide a 

record of the impacts of increased island segmentation due to sea-level change and 

increased storm intensity. Using geophysics, biofacies, stratigraphy, and geochronology, 

coupled with hydrodynamic modeling, this study enables an understanding of the 

evolution of Currituck Sound (Figure 1). This interpretation of the paleoshoreline, 

paleoinlets and tidal ranges, in response to Holocene regional climate events and sea-

level change, is then compared with other studies (e.g., Riggs et al., 1992; Dalrymple et 

al., 1992; Oertel et al., 1992; Mallinson et al., 2005, 2010; and Culver et al., 2008, 2011). 

 

 

 

 

 

 

 

 



II. Previous work 

Previous studies using seismic-reflection data, foraminiferal distribution, and 

lithofacies analysis have been fundamental in understanding the stratigraphy and 

evolution of the North Carolina coastal system (eg., Riggs et al., 1992; Boss et al., 2002; 

Mallinson et al., 2005, 2010; Culver et al., 2008). 

Riggs et al. (1992) found as many as 18 Quaternary sea-level highstand events 

within the 60 m of preserved Quaternary deposits in northeastern North Carolina. That 

study used high-resolution seismic data, coupled with detailed litho-, bio-, and 

aminostratigraphic drillhole data, which indicates the presence of imbricated coastal 

deposits with similar, but discontinuous lithostratigraphic units (Riggs et al., 1992). Boss 

et al. (2002) looked at single-channel, high-resolution, seismic reflection profiles offshore 

of North Carolina. Comparing the data to the existing stratigraphic data from the lagoon 

and barrier island system, they were able to define six Quaternary seismic reflection 

horizons and five stratigraphic units (Boss et al., 2002). These studies provide the initial 

geologic framework, both behind the barrier islands and offshore, which several other 

studies have since built upon. Mallinson et al. (2005) used seismic surveys throughout the 

eastern Albemarle Sound as well as lithostratigraphic and geochronologic data recovered 

from drill locations, both on the Outer Banks and in the Sound, to show that the incised, 

channel-fill facies of the Quaternary unconformably overlie Pliocene deposits. Holocene 

bay-mouth sands occur within the incised valley indicating the modern continuous barrier 

island system was not present during much of the Holocene. 

Culver et al. (2008) further studied the Albemarle Sound area using 

micropaleontological data (i.e., foraminifera, pollen, and diatoms). The study showed that 
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the Albemarle Sound and barrier island system has a complex Holocene evolutionary 

history including periods of open-marine influence followed by progressive isolation 

from marine waters as inlets closed down. Mallinson et al. (2010) later employed 

techniques similar to their 2005 study to the Pamlico Sound region and concluded that the 

geomorpholog(relict drainage patterns, paleotopographic highs/lows, and the locations of 

fluvial systems, relict inlets, and interstream divides)y and stratigraphy of the area is 

largely affected by the antecedent topography (relict drainage patterns, paleotopographic 

highs/lows, and the locations of fluvial systems, relict inlets, and interstream divides), 

relative sea-level change and coastal oceanographic processes.  

The modern, normal marine, inner shelf and nearshore foraminiferal assemblage 

off northeastern North Carolina is dominated by Elphidium excavatum (Schnitker 1971). 

Similarly, Robinson and McBride (2008) found a Pleistocene shoreface assemblage off 

False Cape, in northern Currituck Sound, predominantly comprised of Elphidium 

excavatum with some Elphidium gunteri, Quinqueloculina seminula and Elphidium 

poeyanum. There is a large variation in foraminiferal species found in flood tide deltas 

due to the dynamic nature of deltas. Some studies, such as Vance et al. (2006) and Smith 

et al. (2009) found that modern flood tide deltas have low foraminiferal species richness 

and abundance. However, other studies, such as Grossman and Benson (1967) who 

looked at flood tide delta deposits from Ocracoke and Drum Inlets, found higher species 

richness than Vance et al. (2006) and Smith et al. (2009). Flood tide delta deposits in the 

Outer Banks have been characterized as having the following species of foraminifera 

present: Elphiduim excavatum, Quinqueloculina seminula. Cibicides lobatulus, and 

Hanzawaia concentrica (= Hanzawaia strattoni) (Grossman and Benson, 1967; Robinson 



7	  	  

and McBride, 2006; Abbene et al., 2006; Vance et al., 2006) all of which are part of a 

normal salinity, marine assemblage.  

Assemblages containing primarily calcareous foraminifera that represent both 

marine and brackish environments, with a high species richness were found in Old 

Currituck Inlet deposits near the North Carolina/Virginia border by Robinson and 

McBride (2006) and on the modern flood tide deltas of Hatteras and Ocracoke inlets by 

Abbene et al. (2006). These deposits contained species such as Buccella frigida, 

Cibicides lobatulus, Hanzawaia strattoni, Quinqueloculina seminula, Elphidium 

galvestonense, Elphidium mexicanum, Elphidium subarcticum and Elphidium excavatum. 

Nichols and Norton (1969) described biofacies containing Elphidium species as 

higher brackish conditions (> 14) in the James River Estuary of southern Virginia and 

Cronin et al. (2003) noted that Elphidium species were only found when the salinity was 

greater than 10 in the Chesapeake Bay. Abbene et al. (2006) demonstrated that a higher 

relative abundance of Elphidium excavatum and Ammonia parkinsoniana is indicative of 

a high salinity, brackish biofacies in Pamlico Sound. 

Vance et al. (2006) conducted a study in the Albemarle and adjacent sounds and 

defined estuarine shoal, and estuarine biofacies, both dominated by Ammobaculites 

crassus and Ammotium salsum. The surface samples collected in Currituck Sound were 

largely dominated by Ammobaculites crassus, Ammontium salsum and Miliammina fusca 

with smaller proportions of Ammobaculites subcatenulatus and Miliammina petila 

present. Grossman and Benson (1967) noted that Ammobaculites species are typical of 

low salinity waters and Nichols and Norton (1969) stated that, in the James River 
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Estuary, biofacies dominated by Ammobaculites are typical of low brackish conditions 

(e.g., 0.5 – 14). 

Foraminiferal and sedimentological data are commonly used for Holocene 

paleoenvironmental reconstruction (e.g., Hippensteel and Martin, 1999; Abbene et al., 

2006; Culver et al., 2006; Robinson and McBride, 2006; Vance et al., 2006; Smith et al., 

2009; Mallinson et al., 2010; Grand Pre et al., 2011; Leorri and Cearreta, 2004). 

Foraminiferal assemblages are indicative of specific environments within the coastal 

system. Modern foraminiferal assemblages can be compared to those found down-core in 

order to interpret the depositional environment. Several studies focusing on the Outer 

Banks have employed this methodology (Culver and Horton, 2005; Abbene et al., 2006; 

Culver et al., 2006, 2007; Robinson and McBride, 2006; Mallinson et al., 2010; Grand 

Pre, 2011). 

a. Hydrodynamic Modeling 

Hydrodynamic models are important tools used to analyze erosion problems, 

assess morphological impacts of human interference and to aid in the design of coastal 

defenses (Lesser et al., 2004). Lesser et al. (2004) show that the DELFT3D model 

performs well in several theoretical, laboratory, and realistic situations and recounts 

several other validation studies. This modeling package is capable of calculating the 

hydrodynamics of the water as well as the fate and transport of variables in the water 

column such as sediment, salinity, heat, etc. 

DELFT3D has been used to model the Texel Inlet in the Dutch Wadden Sea after 

drastic changes occurred to the tidally influenced inlet (Elias et al., 2006). In quasi real-

time simulation of the dominant flow and transport patterns over a three-month period, 
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Elias et al. (2006) concluded that the model was able to simulate the dominant features in 

the flow and transport patterns in the ebb-tidal delta domain. The ADCIRC coastal 

circulation and storm surge model has also been used to look at the North Carolina coast 

(Luettich et al., 2002) to simulate tidal and wind-driven flows for present-day 

bathymetry. The findings indicate that astronomical tides have very little impact on the 

Albemarle and Pamlico Sounds, due to the Outer Banks, and cite wind forcing as the 

major control over the tidal forcing in the system. Lentz (2001) used modeling to look at 

the wind-driven, cross-shelf circulation off of the coast of North Carolina. The study 

concluded that when the water column was stratified, as in summer months, up- and 

down welling occur within 10 km of the coast. In the winter months, when the water 

column is not stratified, up- and down welling occurs ca. 40 km off the coast, near the 

shelfbreak. Leorri et al. (2011) used Delft3D modeling to look at the impacts of sea-level 

rise on tidal range. The model, while quite basic as far as inputs (modern bathimetry with 

a uniform tidal forcing), shows that a tidal range of 0.5 m over the late Holocene impacts 

local trends in tidal range.



III. Study Area 

  The coastal zone of northeast North Carolina is characterized by a thick 

Quaternary sequence that fills a regional depositional basin called the Albemarle 

Embayment; this embayment runs under the northern Pamlico Sound through the eastern 

Albemarle Sound (Riggs et al., 1995; Mallinson et al., 2005, 2010) (Figure 1).  

North of Cape Lookout, the North Carolina barrier island system is generally low, 

narrow, and extends for about 300 km along the northeast North Carolina coast with only 

four inlets dissecting the barrier island system (Stick, 1958; Fisher, 1962; and Culver et 

al., 2007). Culver et al. (2007) and Grand Pre et al. (2011) suggested that over the history 

of the barrier island system there have been times when parts of the barrier island system 

have eroded below sea level and other times when they run the entire length of the North 

Carolina coast with few inlets. Mallinson et al. (2011) showed a relationship between the 

number of inlets and paleoclimate events (i.e., the Medieval Warm Period and the Little 

Ice Age). These studies indicate that there were times in the past that the Albemarle and 

Pamlico Sounds were open to the ocean, resulting in very different environmental 

conditions within the estuaries. 

Currituck Sound is the northernmost estuarine component of the Albemarle-

Pamlico Sound system of North Carolina (Figure 1). It is approximately 58 km long and 

5 to 13 km wide with a mean depth of 1.5 m (USACE, 2010) and is separated from the 

Atlantic Ocean by the Outer Banks, a narrow barrier island system. 

Historically, (post AD 1585), several inlets connected Currituck Sound to the 

Atlantic Ocean: Old Currituck Inlet, New Currituck Inlet, Musketo Inlet, Trinity Inlet and 
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Caffey’s Inlet (Figure 1) (Stick, 1958; Fisher, 1962; Robinson and McBride, 2006; 

USACE, 2010). The opening and closing of these inlets occurred from the early 1600’s 

through the late 1820’s when the last naturally occurring inlet, New Currituck Inlet, 

closed around 1828 (Stick, 1958; Fisher, 1962; and USACE, 2010). Roanoke Inlet, 

further south (Figure 1), was also open until 1811 and may have influenced 

hydrodynamics within the Currituck Sound region. Furthermore, Culver et al. (2008) 

showed relict inlets occurring in the Nags Head region, which were likely open between 

5000 cal y BP and 1000 cal y BP. 

The waters in Currituck Sound have varied from fresh to saline depending on inlet 

formation (Stick, 1962), storm events, and human interactions such as the construction of 

the intracoastal waterway (USACE, 2010).  At present, hydraulic connections between 

Currituck Sound and the Atlantic Ocean are remote and limited to Oregon Inlet 

approximately 40 km to the south. Thus, Currituck Sound currently has very low salinity 

ranging from 2-3 in the northern end and 4-5 in the southern end and up to 10 during 

large storm events with overwash (Robinson and McBride, 2006). Coastal North Carolina 

is a microtidal, wave-dominated system. The mean tidal range is 1.0 m (Moslow and Tye, 

1985) significant wave height is 1 m ± 0.6 m (Moslow and Tye, 1985). 

The field area of collected data, both geophysical and sedimentological, was 

confined to the southern end of Currticuk Sound, just south of the flood tide delta created 

by historic Caffey’s Inlet and just north of the Kill Devil Hills/ Nags Head area. The 

modeled area was much larger than the area of collected data. It ranged from the North 

Carolina/Virginia boarder in the north, including the northern end of Currituck Sound, to 
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just south of modern day Oregon Inlet in the south. The models included the entire 

Albemarle Sound and extended to the shelfbreak in the east.



IV. Methods  

a. Geophysics 

  In the fall of 2010 and the spring of 2011, seismic data were collected in 

Currituck Sound (Figure 2) using an EdgeTech Chirp 2-16 kHz sub-bottom profiling 

system.  Data were analyzed using Seismic Micro-Technology (SMT) Kingdom Suite 

Software (v. 8.2 and 8.6). Reflections were digitized to provide the late Pleistocene and 

Holocene seismic stratigraphic framework including paleovalleys, fluvial channels, tidal 

channels and the westward extent and characteristics of the Holocene transgressive-

ravinement surface and associated shoreline.  The seismic data provide a framework for 

vibracore correlations and paleoenvironmental reconstruction.  

b. Coring 

Thirteen vibracores (8.9 cm in diameter and 1.9 m to 6.1m in length) were 

collected throughout the study area during the spring and summer of 2011 (Figure 2).  

Coring locations were chosen along the chirp seismic transects in strategic places to 

target specific seismically-defined horizons and facies.   

c. Lithofacies 

Vibracores were split, photographed and logged using a method set adapted from Folk 

(1974). Descriptions of the cores included color, grain size, composition, sorting, and 

sedimentary structures. Seventy-seven and sixty-four two-cm samples for foraminiferal 

and grain size analyses, respectively, were collected at depths of major lithological 

changes within the cores. Standard sieve and Rotap methods were used to give detailed 

analysis of grain size of distinctive lithofacies.  Samples were extracted from the cores, 

dried at 40° C for 24 hours, and dry-sieved for 15 minutes using a Rotap and stacked 
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sieves ranging from -2.0 to 4.0 phi with intervals of 0.5 phi. Weight percentages and 

statistics were then calculated using GRADISTAT software (Blott and Pye, 2001) to 

determine sorting, skewness, mean and median grain size data. 

d. Biofacies 

Sediment samples for foraminifera were collected from each lithofacies of the 

core; the samples were dried at 60°C, weighed and then dispersed in beakers using water 

and sodium hexametaphosphate to disaggregate the samples. After wet sieving over 63 

and 710-micron sieves to remove the silt and clay, the remaining sand and gravel 

fractions were dried and re-weighed to determine the gravel-sand-mud ratio. The sodium 

polytungstate sink-float method described by Munsterman and Kerstholt (1996) was used 

to concentrate the foraminifera in the sand fractions. Approximately 100 specimens per 

sample were randomly picked and then identified to the species level by comparison with 

images of foraminifera in the published literature. Identifications were confirmed via 

comparisons with type specimens held in the Smithsonian Institution’s Cushman 

Collection in Washington, D.C. Foraminiferal biofacies were determined using cluster 

analysis (Mello and Buzas 1968). 

e. Hydrodynamic Modeling 

Using DELFT3D, a modern geomorphic grid with 100 m resolution was 

developed for the coastal region of North Carolina and was modified to include only 

Currituck Sound and Albemarle Sound (Figure 3) ending just south of Roanoke Island. 

The southern boundary of Roanoke Island was chosen due to the presence of the Roanoke 

Marshes, which connected southern Roanoke Island to the mainland until the mid 1800’s 

(Stick, 1958) when the marshes were breached and Croatan Sound was formed (Figure1).   
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 Figure 2: Map showing Chirp survey lines in Southern Currituck Sound. The bold lines 
are seismic sections presented in Figures 4, 5 and 6. The circles are locations of 
vibracores (VC). 
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Prior to the formation of Croatan Sound, Albemarle Sound and Pamlico Sound were 

essentially unconnected estuarine systems. A M2 microtidal amplitude of 0.5 m was 

implemented at the eastern boundary the geomorphic grid (Lentz, 2001), which is located 

offshore along the shelf break, and default model parameters were used (Delft 

Hydraulics, 2006).  

All model scenarios were run at a time step of 1 minute for a duration of 18 days. 

This was done to allow for 13 days of model spin-up, and the final 5 days of steady-state 

tidal flow were used in the analysis. A modern scenario was run, with modern bathymetry 

data as well as the modern configuration of the barrier islands and associated inlets.  The 

simulated water level elevations were compared to real-time data collected by the Duck 

Research Facility and the USACE in Currituck Sound, North Carolina.   

Time slices (~ 5000–3000 cal y BP, ~ 3000–1000 cal y BP, ~1000–500 cal y BP, 

< 500 (Modern Scenario), and 1590 (White–deBry Map) were chosen based on the 

geologic and paleoenvironmental interpretations of the Sound as well as an early map of 

North Carolina. The grid was then modified for each of the pre-determined time slices to 

include the inlets. Ophelia Inlet on Core Banks, the southernmost part of the Outer 

Banks, was used as a modern analog for the paleoinlets due to its abrupt formation during 

storm activity (Mallinson et al., 2011). The dimensions of Ophelia Inlet were used as 

input for the model reconstruction. All inlets were a uniform width of 0.5 km and a depth 

of 6 m with the exception of the inlet in the ~5000–3000 cal y BP time slice, which is 1 

km wide with a depth of 6 m (based on data from Mallinson et al. (2005, 2010) and 

Culver et al. (2008)). All time slices were run with the same parameters and once the runs 

were complete, data from each core location was exported from Delft3D for use in  
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Figure 3: The extent and shape of the geomorphic grid show overlain a map of Currituck 
and Albemarle Sounds. The grid has a resolution of 100 m. 
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Matlab. Current velocity data were exported in vector format and imported into Matlab. 

The root mean square (rms) current velocity in m/s was determined using the following 

equation: 	  

[(VCx) y comp]2 + [(VCx) x comp]2 = [(VCx)rms]2 	  

where (VCx) x comp is the current velocity in the x direction at the vibracore (VC) x, 

(VCx) y comp is the current velocity in the y direction at the vibracore (VC) x and 

(VCx)rms is the magnitude of  the current velocity measured at the vibracore (VC)x. The 

tidal amplitude at each vibracore was determined for each model run, and was expressed 

as a percentage of the tidal forcing at the model boundary. 

f. Age Analysis 

Radiocarbon and optically stimulated luminescence (OSL) data provided the 

chronostratigraphic framework for the cores and geophysical data. Radiocarbon ages 

were determined from roots and articulated bivalve shells. Seven samples were analyzed 

at Beta Analytic and calibrated to produce calendar years data (cal yr BP), and are 

presented as 2-sigma ranges throughout this manuscript (Stuiver and Reimer, 1993; 

Stuiver et al., 1998).  

Samples were collected for OSL analyses by cutting, splitting, and sampling a 

core section under dark-room conditions (low energy red light).  Two quartz sand-

dominated samples were sent to Utah State University Luminescence Laboratory for OSL 

analysis using the single aliquot regenerative (SAR) method.  Preparation followed the 

general procedures outlined in Mallinson et al. (2011).  OSL ages are converted to cal yr 
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BP by subtracting 62 years (samples were analyzed in 2012).  All OSL data are presented 

as 1-sigma age ranges.



V. Results  

a. Age Analysis 

Seven samples were taken from six different cores and were analyzed by Beta 

Analytic. Five of the seven samples consist of articulated oyster shells and two were 

pieces of wood from large (several cm) roots giving a range in ages from a maximum of 

4080 to a minimum of 540 cal y BP (Table 1). Samples from CUR11 VC4 and CUR11 

VC12 were analyzed for OSL age estimates; the ages recovered were Pleistocene (33.7 ± 

3.81 ka) and Holocene (4.5 ± 0.43 ka) respectively (Table 2).  

 

Table 1: Radiocarbon age estimates. 

 

 

Table 2:  Optically Stimulated luminescence age estimates. 

Sample ID Lab 
# 

Depth in 
core 
(cm) 

Lat. Long. U 
(ppm) 

Th 
(ppm) 

K (%) Dose rate 
(Gy/ka) 

Paleodos
e (Gy) 

Age (ka) 
2-sigma 
error 

CUR11VC4 Sec1 
121-141 cm 

USU
-976 

315 36.19569 -75.79712 0.5±0.1 3.4±0.3 0.52±0.01 0.20±0.02 27.94 ± 
2.243 

33.73 ± 
3.81 

CUR11VC12 Sec1 
108-128 cm 

USU
-977 

273 36.12565 -75.76301 0.6±0.1 2.0±0.2 0.66±0.02 0.08±0.01 3.67± 
0.204 

4.54 ± 
0.43 

 

Core 
Location Depth in Core 

Depth Below 
MSL Material Dated 14C age ± 2σ δ13C 

2σ Calibrated 
Age Range 

CUR11 
VC2 160 cm 

 
3.20 m Oyster 1330 ± 30 BP 

-3.0 
o/oo 

1290 to 960 
cal y BP 

CUR11 
VC3 51 cm 

 
3.25 m Oyster 830 ± 30 BP 

-0.5 
o/oo 

840 to 550  cal 
y BP 

CUR11 
VC3 66 cm 

 
3.40 m Wood 2780 ± 30 BP 

-24.9 
o/oo 

2950 to 2790 
cal y BP 

CUR11 
VC4 100 cm 

 
3.75 m Oyster 1570 ± 30 BP 

-1.3 
o/oo  

1580 to 1260 
cal y BP 

CUR11 
VC6 320 cm 

 
5.90 m Wood 3680 ± 30 BP 

-26.7 
o/oo 

4080 to 3890 
cal y BP 

CUR11 
VC8 163 cm 

 
5.20 m 

Oyster 1690 ± 30 BP 
-1.2 
o/oo 

1720 to 1350 
cal y BP 

CUR11 
VC12 99 cm 

 
3.90 m Oyster 850 ± 30 BP 

-2.7 
o/oo 

820 to 540 cal 
y BP 
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g. Geophysics 

Within the seismic data seven regionally continuous to semi-continuous 

reflections were recognized (P1, P2, P3, H0MRS, HSF, H0 and H1) (Table 3; Figure 4). P1 

and P2 are medium to high amplitude, semi-continuous reflections. P1, ranging from 13 

m below sea level in the west and 16 m below sea level in the east, is a strong reflection 

indicating a contact within Pleistocene sediment. The seismic reflection P1, as presented 

here, correlated to Q50 of Mallinson et al. (2010) and Culver et al. (2011) which is a 

Pleistocene marine ravinement surface produced by sea-level rise associated with the 

marine isotope stage 6 to 5 transition (i.e. Termination 2). P2, ranging from 9 m below 

sea level in the west and 13 m below sea level in the east, is interpreted as a Pleistocene 

ravinement surface due to its truncation of P1 (Figure 4). P3 occurs in the center of 

Currituck Sound and is a Pleistocene fluvial channel ranging from 6 to 12 m below sea 

level. H0, ranging from 2 to 8 m below sea level, is a high amplitude, discontinuous 

reflection. Based on the geophysical data and correlations to core data (e.g., CUR11 

VC12), H0 is interpreted as a bay ravinement surface incised to depths of ca. 10 mbsl, 

and represents the Holocene/Pleistocene contact. HSF is confined to the eastern edge of 

Currituck Sound and is a tidally ravined surface into a sand flat or flood tide delta 

(Figures 4 and 5). Channelization ranges from 2 m to 10 m below sea level. HMRS, also 

confined to the eastern edge of the Sound, is the marine ravinement surface and shows 

the westward extent of the Pleistocene shoreface. H1 is a medium amplitude, continuous 

reflection that appears to correlate to a widespread mostly articulated oyster shell layer 

within the Holocene section; this shell layer is found in several cores throughout the 
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sound, including CUR11 VC6, and indicates the transition from a high brackish 

environment (Unit III) to a mid/low brackish environment (Unit IV) (Figure 4).  

 

Table 3: Seismic reflections and interpretations 

Reflection 
Name 

Description 

H1 A regionally continuous reflection that correlates to the transition between high 
(Unit III) and low Unit IV) brackish environments 

HSF A reflection confined to the eastern edge of Currituck Sound that correlates to a 
tidally ravined sand flat or flood tide delta 

H0MRS A reflection confined to the eastern edge of Currituck Sound that correlates to the 
marine ravinement surface 

H0 A reflection found in the center and west of Currituck Sound correlating to bay 
ravinement 

P3 A reflection in the center of Currituck Sound that correlates to Pleistocene 
channelization 

P2 A regionally continuous Pleistocene reflection that truncates P1 implying a 
ravinement surface 

P1 A regionally continuous Pleistocene reflection 
 

Figures 4A and 4B are west-east seismic transects displaying an eastward dipping 

P1 truncated by P2. P3 shows incised channels, only in the center of the Currituck Sound, 

that are then truncated by H0. HSF exhibits extensive channelization on the eastern edge 

of Currituck Sound while HMRS is the Holocene marine ravinement surface displaying the 

westward extent of the shoreline. H1 tends to be present in the center of the Sound and is 

very close to the surface. Figure 5 shows the correlation between CUR11 VC 12 and the 

seismic chirp data CUR2010-5.  There is a probable oyster bioherm in the center of a 

channel with on- and off-lapping clinoforms that in-fill the channel. Figure 6 shows the 

correlation between CUR11 VC 6 and the seismic chirp data CUR2010-15. H0 creates a 

channel which is in-filled with tidally influenced, southwest trending clinoforms of 

interbedded slightly muddy sand and sand. 
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h. Lithofacies and Biofacies 

In general, all thirteen vibracores display a moderately- to well-sorted fine sand 

unit at the bottom with a general fining-up sequence. These sand units, however, are not 

all coeval. There is also a widespread oyster unit throughout the Sound, ranging from 

large in situ oysters to shell hash, with a maximum age of ca. 1720 cal y BP and a 

minimum age of ca. 540 cal y BP. Table 4 lists nine lithofacies and their characteristics.  

 
Table 4: Summary characteristics of lithofacies recorded in thirteen vibracores. 
 
 

 

 

 

 

 

 

 

The foraminiferal data (Table 5) indicate that there are three assemblages based 

primarily on salinity: purely calcareous foraminifera (high brackish; salinity of 25-35), 

purely agglutinated foraminifera (low brackish; salinity of <10) and an assemblage that is 

a mixture of calcareous and agglutinated foraminifera (mid-brackish; salinity of 10-25).  

The low brackish assemblage contains eight species and is primarily comprised of 

Ammotium salsum (46.5%), Genus A sp. A [organic] (26.4%) and Ammobaculites crassus 

Lithofacies Name Color Description Sedimentary Features 
Sand 
(S) 

Pinkish gray 
 

Very well sorted, 
subangular, 

fine grained sand 

Massive 

Muddy sand (mS) Brownish yellow; 
dark gray 

Poorly to moderately sorted,  
subrounded to subangular, 
fine to very fine grained sand 

Bioturbated 

Slightly muddy 
sand 

(smS) 

Grayish brown; 
light brownish 

gray 
 

Poor to moderately sorted, 
subrounded to subangular, 

fine grained sand 

Minor bioturbation, 
heavy mineral laminations 

(1-4 cm) 

Sandy mud 
(sM) 

  Medium dark 
gray; dark gray 

Poorly sorted, 
subrounded to subangular, 
very fine grained sand to silt 

Bioturbated 

Shelly sandy mud 
(shsM) 

Dark reddish 
brown 

Poorly sorted, 
subrounded to subangular, 

very fine grained sand to silt with shells 

Shell hash 

Oyster bioherm 
(O) 

   Medium dark 
gray; dark gray 

Very poorly sorted, 
subrounded to subangular, 

large oyster pieces with very fine grained 
sand to silt matrix 

Large articulated oyster shells 

Mud 
(M) 

   Very dark 
grayish brown 

 

Well  to moderately sorted, 
silt 

Roots and some woody debris 
common; rare, large (~2 cm) 

burrows 
Slightly gravely 

muddy Sand 
(sgmS) 

Dark gray; 
light gray 

Moderately sorted 
slightly very fine gravelly very coarse silty 

fine sand 

Bioturbated 

Slightly gravely 
sand 
(sgS) 

Dark Gray; 
Light Gray 

 

Poorly to moderately sorted, 
 slightly gravelly fine sand 

Roots (mm scale) with 
infrequent larger roots (cm 

scale) 
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(23.4 %). These taxa are typical of modern low brackish estuarine conditions in Currituck, 

Albemarle, and Pamlico Sounds (Grossman and Benson, 1967; Abbene et al., 2006; 

Vance et al., 2006) (Table 5). The mid-brackish assemblage contains 11 species and is 

primarily comprised of Ammonia parkinsoniana (26.7%), Ammotium salsum (25.0%), and 

Genus A sp. A [organic] (13.5%). Similar assemblages inhabit mid-brackish estuarine 

environments in North Carolina and other coastal estuaries (Grossman and Benson, 1967; 

Culver and Buzas, 1980; Vance et al., 2006; Abbene et al. 2006) (Table 5). The third 

assemblage contains seven species and is primarily comprised of the calcareous taxa 

Elphidium excavatum (50.0%), Ammonia parkinsoniana (31.4%) and Haynesina 

germanica (7.8%). Similar assemblages characterize high brackish estuaries (Grossman 

and Benson, 1967; Culver and Buzas, 1980; Abbene et al., 2006; Culver et al. 2008) 

(Table 5). Raw census data are presented in Table 6. 

Table 5: Mean percentage of foraminiferal species in three salinity-related estuarine 
assemblages. The three most common species in each assemblage are in bold text. 

 

 

 

 

 

 

 

 

 

 

 

 

Species Low Brackish Mid Brackish High Brackish 
Ammobaculites crassus 23.4% 10.1%   
Ammonia parkinsoniana  26.7% 31.4% 
Ammotium salsum 46.5% 25.0%   
Deuterammina ochracea 2.8%   
Elphidium excavatum   6.2% 50.0% 
Elphidium galvestonense  6.1% 3.0% 
Elphidium gunteri   2.4% 3.4% 
Elphidium transluscens  0.3% 4.1% 
Genus A sp. A [organic]  26.4% 13.5% 0.3% 
Hanzawaia strattoni  2.0%  
Haynesina germanica   6.3% 7.8% 
Indeterminate agglutinated 0.1%   
Jadammina macrescens   1.4%   
Miliammina fusca 0.03%     
Polysaccammina ipohalina 0.1%     
Trochammina inflata 0.7%     
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Table 6: Foraminiferal census data for surface (SS) and vibracore (VC) samples from Currituck 
Sound, NC. Surface samples were taken at same location as similarly numbered vibracores. 

 
 
 

Sample 

SS
1 

V
C

1 
2-

4 
cm

 

V
C

1 
25

-2
7 

cm
 

SS
2 

V
C

2 
35

-3
7 

cm
 

V
C

2 
77

-7
9 

cm
 

V
C

2 
   

13
8-

14
0 

cm
 

V
C

2 
  1

69
-1

71
 c

m
 

V
C

2 
  1

95
-1

97
 c

m
 

SS
3 

V
C

3 
9-

11
 c

m
 

V
C

3 
21

-2
3 

cm
 

V
C

3 
39

-4
1 

cm
 

SS
4 

V
C

4 
13

-1
5 

cm
 

V
C

4 
47

-4
9 

cm
 

V
C

4 
  1

43
-1

45
 c

m
 

SS
5 

V
C

5 
40

-4
2 

cm
 

V
C

5 
78

-8
0 

cm
 

V
C

5 
  2

17
-2

19
 c

m
 

SS
6 

V
C

6 
38

-4
0 

cm
 

V
C

6 
64

-6
6 

cm
 

V
C

6 
  1

26
-1

28
 c

m
 

Ammobaculites 
crassus 17 35  38 60 9    27  3 10 19 24   42 7 8  39 17 16  

Ammonia 
parkinsoniana     2   41 37    3   50 4         

Ammotium 
salsum 98 78 2 74 39 35    75 4 11 25 75 45 4  66 25 17  92 64 80 2 

Deuterammina 
ochracea                          

Elphidium 
excavatum        40 40  1  1   23 5         

Elphidium 
galvestonense       1 2     2   4 1         

Elphidium gunteri        7 7       18          

Elphidium 
transluscens        7 8       3          

Genus A sp. A 
[organic]   2 1 4 65 1  1  1 1 3  37    51  1  32 4  

Hanzawaia 
strattoni   1                       

Haynesina 
germanica       1 15 6    1   12          

Indeterminate 
agglutinated          1         1       

Jadammina 
macrescens                          

Miliammina fusca    1                      

Polysaccammina 
ipohalina  2    1                    

Trochammina 
inflata                          

Total 
Foraminifera 

 
115 

 
115 

 
5 

 
114 

 
105 

 
110 

 
3 

 
112 

 
99 

 
103 

 
6 

 
15 

 
45 

 
94 

 
106 

 
114 

 
10 

 
108 

 
84 

 
25 

 
1 

 
131 

 
113 

 
100 

 
2 
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Table 6 (continued) 

 

   

 

 

 

 

 

 
 
 

Sample 

SS
7 

V
C

7 
17

-1
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SS
8 

V
C

8 
26

-2
8 
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V
C

8 
95
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V
C
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  1

67
-1

69
 c
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V
C

8 
  2

37
-2

39
 c
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V
C

8 
  3

20
-3

22
 c

m
 

SS
9 

V
C

9 
37

-3
9 

cm
 

V
C

9 
   

22
0-

22
2 

cm
 

SS
10

 

V
C

10
 1

8-
20

 c
m

 
V

C
10

 8
2-

84
 c

m
 

SS
11

 

V
C

11
 5

7-
59

 c
m

 

V
C

11
   

13
8-

14
0 

cm
 

SS
12

 

V
C

12
 6

-8
 c

m
 

V
C

12
 6

6-
88

 c
m

 

V
C

12
   

12
3-

12
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cm
 

SS
13

 

V
C

13
 7

1-
73

 c
m

 

V
C

13
   

13
8-

14
0 

cm
 

V
C

13
   

23
5-

23
7 

cm
 

Ammobaculites 
crassus 28  25 11 1    56 2 1 68   68   53  34  74 49   

Ammonia 
parkinsoniana  6    19           23    40    2 

Ammotium salsum 94  121 72 9    67  2 62   74 2  104  33 7 50 6   

Deuterammina 
ochracea        1                  

Elphidium 
excavatum      97           43    31     

Elphidium 
galvestonense      3           1    28     

Elphidium gunteri      5               11     

Elphidium 
transluscens      5           2         

Genus A sp. A 
[organic]    33  1 4      2 2  54   2 28   31 3  

Hanzawaia strattoni                          

Haynesina 
germanica      11           9    24     

Indeterminate 
agglutinated                          

Jadammina 
macrescens  1                        

Miliammina fusca                          

Polysaccammina 
ipohalina                          

Trochammina inflata                        1  

Total Foraminifera 122 7 146 116 10 141 4 1 123 2 3 130 2 2 142 56 78 157 2 95 141 124 86 4 2 
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Transects were create from the cores, one running from north to south (Figure 7) 

throughout the sound and three running from west to east and intersecting the north-south 

transect (Figures 8A and B).  All cores in Figure 7 show a clean sand unit at the bottom 

with an overall fining- and then coarsening-upward sequence. Five units are recognized, 

Units I and Ib though IV. 

The bottom sand unit (Unit I) is Pleistocene in age, based on the OSL age 

estimate of 33.7 ka in core VC 4. The sand is barren of foraminifera, as is modern beach 

sand in North Carolina (Abbene et al., 2006; Vance et al., 2006; Culver et al., 2006, 

2008) and is interpreted to be lower shoreface sand associated with the Pleistocene 

paleoshoreline to the west (Mallinson et al., 2008; Culver et al., 2011). One specimen of 

the very delicate Deuterammina ochracea in VC8 is considered to be a contaminant. The 

bottom sand unit (Unit Ib) in cores 7, 9, 12 and 13 is interpreted to be an intertidal to a 

shallow sub-tidal sand flat incised by HSF; two specimens of Ammonia parkinsoniana 

from the bottom of the sand unit in CUR11 VC 13 (Figure 7) indicate a probable mid- to 

high brackish environment. The likely sand source is the ridges in the Kitty Hawk area 

(Figure 1). The OSL age estimate for Unit Ib in VC 12 is 4.5 ka.  

The ca. 1–5 m thick slightly muddy sand to mud (Unit II) above the 

Holocene/Pleistocene contact (H0) displays rooted horizons and lacks foraminifera. The 

roots within these units are thick (2 cm scale) and woody. They were used for two 

radiocarbon age estimates close to the bottom and top of Unit II; these age estimates are 

4080–3890 cal y BP and 2950–2790 cal y BP, respectively.  Unit II is interpreted as fresh 

water swamp forest due to the presence of large roots and the complete lack of 

foraminifera. 
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Figure 8B: Figures 8A and 8B are three east west transects of cores in Currituck Sound. The red 
lines indicate the location of radiocarbon age estimates in calibrated in years before present. The 
blue lines indicate optically stimulated luminescence age estimates. The dashed lines, delineating 
several depositional units, indicate correlations based on lithology, biofacies, and age. H1 and 
H0 correlate to the geophysics. H1 is the transition from high (Unit III) to low (Unit IV) brackish 
environments. H0 is the Holocene/Pleistocene contact. The transects show differences in 
lithology between the northern and southern ends of the Sound as well as a difference from east 
to west throughout the Sound.  
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Unit III contains foraminiferal assemblages dominated by Elphidium excavatum 

and Ammonia parkinsoniana indicating high (25-35) and mid (10-25) brackish 

environmental conditions (Grossman and Benson, 1967; Vance et al., 2006; Abbene et 

al., 2006; Culver et al., 1996, 2007). High brackish conditions are also indicated by the 

presence of oyster bioherms throughout the Sound. Age estimates on the oyster reefs 

range from a maximum of 1700 cal y BP to a minimum of 500 cal y BP. Two oyster reef 

building episodes are indicated. The older episode was widespread throughout the Sound 

and lasted from roughly 1700 cal years BP to 900 cal years BP. The younger, less 

widespread episode occurred around 800 to 500 cal years BP.  

A mid- to low brackish (Unit IV) estuarine unit ranges in thickness from 0.25 to 

2.95 m and varies in composition from mud to sand. Unit IV is generally mid-brackish 

lower in the section and becomes low brackish upward. Foraminiferal assemblages are 

dominated by Ammotium salsum, Ammobaculites crassus, and Ammonia parkinsoniana, 

typical of low salinity, back-barrier estuaries on the North American east coast (e.g., 

Grossman and Benson, 1967; Culver and Buzas, 1980; Culver et al., 1996, 2006, 2007; 

Woo et al., 1997; Abbene et al., 2006; Vance et al., 2006). 

i. Hydrodynamic Modeling 

Four paleoenvironmental maps (Figure 9) were created using the lithofacies, 

biofacies and radiocarbon and optically stimulated luminescence age estimates as well as 

the North Carolina sea-level curve (Horton et al., 2009) for the following time slices: ~ 

5000–3000 cal y BP, ~ 3000–1000 cal y BP, ~ 1000–500 cal y BP and < 500 cal y BP. 

The map drawn by White and deBry in 1590 supplemented these paleoenvironmental 

maps. Together they provide the basis for the model runs. The results are discussed below 
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in the context of the geologic evolution of the Currituck Sound system. Current velocity 

measurements were produced for each core location during each model run; the results 

are given in Table 7.  
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Figure 9: The evolution of Currituck Sound (interpreted from biofacies, lithofacies, and 
geochronologic data) for four time slices. The gray shaded land indicates the modern barrier 
island and mainland. A) ~ 5000 – 3000 cal y BP: an inlet occurs just south of the modern Kitty 
Hawk beach ridges (Culver et al. 2008). A second inlet was possibly located adjacent to VC8. 
The Roanoke Marshes were present at this time, separating the Albemarle Sound from Pamlico 
Sound. B) ~ 3000 – 1000 cal y BP: several inlets were open between Caffey’s Inlet and the Kitty 
Hawk beach ridges. Due to the number and location of the inlets the marine influence was 
highest at this time and most likely contributed to the extensive oyster bioherm building episodes 
of Unit III (Figures 5, 7 and 8). C) ~ 1000 – 500 cal y BP: only one inlet was open at the 
northern end of the study area and had an impact on the salinity of the Sound until it closed in 
1828 (Stick, 1958; Fisher, 1962) creating the transition from Unit III to Unit IV (Figures 7 and 
8). D) < 500 cal y BP (the modern scenario): There are no inlets and the salinity changes from 
mid- to low salinity over time (Unit IV) (Figure 7 and 8). 

 

Table 7: Table of tidal amplitude and current speed measured at each vibracore location for each 
of the modeled scenarios. 

Run700 ~5000–3000 cal y BP VC2 VC3 VC4 VC6 VC8 VC11 VC13 
Tidal amplitude (m) 0.25 0.25 0.26 0.26 0.25 0.27 0.28 
Current speed (RMS) (m/s) 0.10 0.15 0.15 0.13 0.23 0.34 0.47 
Run400 ~3000–1000 cal y BP               
Tidal amplitude (m) 0.52 0.53 0.53 0.52 0.51 0.46 0.40 
Current speed (RMS) (m/s) 0.19 0.10 0.21 0.14 0.28 0.42 0.49 
Run600 ~1000–500 cal y BP               
Tidal amplitude (m) 0.32 0.27 0.24 0.24 0.23 0.22 0.20 
Current speed (RMS) (m/s) 0.43 0.20 0.13 0.09 0.13 0.16 0.20 
Run300 1590 Map               
Tidal amplitude (m) 0.40 0.40 0.40 0.40 0.39 0.37 0.32 
Current speed (RMS) (m/s) 0.27 0.18 0.08 0.10 0.22 0.40 0.44 
Run100 < 500 cal y BP Modern               
Tidal amplitude (m) 0.10 0.10 0.10 0.10 0.09 0.09 0.09 
Current speed (RMS) (m/s) 0.02 0.02 0.02 0.02 0.03 0.04 0.07 



VI. Discussion 

Vibracores 2, 3, 4, 5, 6, 8, 10 and 11 penetrated Pleistocene sediments (Figures 7 

and 8). The elevation of the Pleistocene surface generally decreases from the northern 

end of Currituck Sound near VC3 to the south (Figure 7). Based on the Horton et al. 

(2009) sea-level curve for North Carolina the Pleistocene surface began to flood at the 

southern end of the Sound between 5000 and 6000 years ago and was completely flooded 

when the paleotopographic high in the north was submerged around 4000 years ago.  

a. ~ 5000–3000 cal y BP 

During the ~5000–3000 cal y BP time interval the shoreline transgressed rapidly 

to a position near VC12 and VC9. Seismic data reveal the position of the marine 

ravinement surface (H0MRS; Figure 4). Although the ocean shoreline was further west 

than present, the Sound was primarily a fresh water lagoon with a hardwood swamp 

forest perched on a paleotopographic high in the northern end (Figure 9A) based on the 

woody, rooted horizons found in cores VC3 and VC6 as well as the absence of 

foraminifera. The Kitty Hawk beach ridges were beginning their eastward progradation 

(Mallinson et al. 2008; Culver et al. 2008). During this time interval Culver et al. (2008) 

showed the Roanoke Marshes likely extending from the mainland to Roanoke Island 

(Figures 1, 9A) creating a barrier that divided Albemarle Sound from Pamlico Sound 

(Cumming, 1958).  

During this time interval (Figure 9A) a large inlet was open immediately to the 

south of the modern Kitty Hawk beach ridges (Riggs et al., 1992, 1995; Culver et al., 

2008). This allowed for greater hydraulic connectivity between the ocean and Albemarle 

Sound. By the end of the ~5000 to 3000 cal y BP interval, the inlet had been restricted 
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by the growth of a baymouth sand shoal (Colington Shoals) reducing the marine 

influence on Albemarle Sound (Mallinson et al., 2005; Culver et al., 2008).   

In the center of Currituck Sound is a single occurrence of a low brackish estuarine 

deposit (in VC8) indicating some hydraulic connection to higher brackish or marine 

water, either from Albemarle Sound or via a small inlet open in the vicinity of historic 

Trinity Inlet (Figure 1). An intertidal to shallow sub-tidal sand flat extends along the 

barrier island in eastern Currituck Sound (Figure 9A). Salinity information is lacking (the 

sand is barren of foraminifera) geophysical data, however, indicate tidal channels (HSF; 

Figures 4, 5) with oyster bioherms at the center, most likely a result of Trinity Inlet being 

open at this time. 

The Delft3D model run (Figure 10) suggests that having a large inlet open just 

south of Kitty Hawk, as suggested by Culver et al. (2008), has little effect on the tides 

and currents in Currituck Sound. Thus the inlet at the mouth of Albemarle Sound could 

have been quite large and the sediments and salinity levels in Currituck Sound could have 

remained largely unaffected. This also suggests that the source of the higher salinity 

water in the low salinity facies in VC8 a more proximal inlet, perhaps in the vicinity of 

historic Trinity Inlet (indicated by arrow in Figure 9A).  

b. ~ 3000–1000 cal y BP 

During the ~3000–1000 cal y BP interval, geologic data indicate that Currituck 

Sound was hydraulically connected to the ocean (Figure 9B). This is expressed by the 

presence of high salinity foraminifera and oyster reefs in vibracores VC2, VC4, VC6, 

VC8, and VC12. The prolific oyster reefs and highest salinity levels during this time 

interval suggest more than one inlet was open, all between historic Caffey’s Inlet and  
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Figure 10: ~ 5000 – 3000 cal y 
BP Delft3D model run with an 
inlet at the mouth of Albemarle 
Sound as indicated by Culver et 
al. (2008) and Figure 9A. 
Location of vibracores indicated 
in southern Currituck Sound by 
dots. A) High tide in the ocean 
(0.5 m) and its effects on the 
estuarine system. A maximum of 
0.25 m water level change is felt 
within Albemarle Sound and 
Currituck Sound remains largely 
unaffected. B) Low tide in the 
ocean (- 0.5 m) and its effects on 
the estuarine system. Currituck 
Sound experiences a lag and 
exhibits slightly elevated water 
levels (0.13 m) at this time. C) 
Water current magnitude, with a 
maximum velocity of 1 m/s 
directly in the inlet mouth and 
velocities up to 0.6 m/s in 
Albemarle Sound. Currituck 
Sound experiences current 
velocities up to 0.6 m/s in the 
southern end, near the location of 
vibracores VC 9 – VC 13. 
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Kitty Hawk (Figure 1); for the purposes of this paper they will be called the Caffey’s 

Inlet Complex. This created a high salinity estuary with significant marine influence in 

the east of the. The western sound was characterized by low salinity conditions and the 

deposits are primarily mud with some very find muddy sand. A small area of freshwater 

swamp still existed on the paleotopographic high to the northern end of the study area. 

The Delft3D model run (Figure 11) suggests that opening many inlets creates a 1m tidal 

range in the southern end of Currituck Sound. Current velocities within the inlets reach 

up to 1 m/s but are very localized while velocities up to 0.3 m/s are associated with the 

areas directly adjacent to the inlets in the southern end of the Sound. However, high 

current velocities in the southern end of Currituck Sound seem improbable during this 

time interval as suggested by the occurrence of mud that dominates this area (Figure 9B). 

It is possible that the number and size of inlets opened during this model run is 

inaccurate. It is also possible that the discrepancy results from the distance of the barrier 

islands and inlet from the core sites. The model was run with the modern geographic 

configuration of the system but it is likely that the barriers were further offshore during 

this time period such that the core sites record deposits that are distal from the inlets and, 

therefore, finer. 

c. ~1000–500 cal y BP 

The ~1000–500 cal y BP time interval (Figure 9C) is characterized by two inlets, 

Caffey’s Inlet in the north and Trinity Inlet in the south. This reduction from several 

inlets during the previous time interval to two results in a contraction of high salinity 

estuarine conditions. The sediments and foraminiferal assemblages indicate an inlet in the 

northern end of the study area in the general location of Caffey’s Inlet (Figures 1, 9C). A  
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Figure 11: ~ 3000 – 1000 cal y 
BP Delft3D model run with 
Caffey’s Inlet complex open as 
indicated by Figure 9B; Roanoke 
Inlet is also open. A) High tide in 
the ocean (0.5 m) and its effects 
on the estuarine system. A 
maximum of 0.45 m water level 
change is felt within Currituck 
Sound. B) Low tide in the ocean 
(-0.5 m) and its effects on the 
estuarine system. Southern 
Currituck Sound exhibits a -0.45 
m water level at this time and a 
maximum tidal range of about 1 
m. C) Water current magnitude, 
with a maximum velocity of 1 
m/s directly in the inlet mouths 
and velocities from 0.3 m/s to 0.7 
m/s within Currituck Sound in 
localized areas surrounding 
inlets. 
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small area of high salinity conditions in southern Currituck Sound (Figure 9C) suggests 

that historic Trinity Inlet (Figure 1) was open during this time interval. The inlet scenario 

with Trinity and Caffey’s Inlets open was not modeled. The modeled inlet scenario 

(Figure 12) with Roanoke and Caffey’s Inlets open indicates that Roanoke Inlet is too far 

to the south to have an impact on Currituck Sound, thus confirming that Trinity Inlet was 

likely open during this time interval.  

Current velocities within inlets are up to 1 m/s with limited influence outside of 

their direct area; thus southern Currituck Sound was largely unaffected by strong current 

velocities during this time interval. The sediments recovered from the vibracores (Figure 

9C) indicate mud and oyster bioherms within inlet channels with very fine muddy sands 

flanking channels.  

d. < 500 (Modern Scenario) 

Sediments and foraminiferal assemblages (Figures 7, 8 and 9D) indicate, in low 

resolution, that southern Currituck Sound has had mid- to low- salinities throughout the 

past 500 years with a general trend to lower salinity over time. This reflects the 

historically documented closures of many inlets in the Outer Banks (Figure 1).  Mallinson 

et al. (2011) suggested that inlet closure could be related to fewer storm impacts during 

the past 300 years. New Currituck Inlet closed around 200 years ago (Stick, 1958; Fisher, 

1962) almost completely closing off Currituck Sound from any marine influence. The 

<500 cal y BP (modern) scenario indicates that southern Currituck Sound is entirely low 

salinity, although, some areas are sandier than others, perhaps reflecting the proximity of 

pre-existing sand deposits (Figure 9D).  
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Figure 12: ~ 1000 – 500 cal y BP 
Delft3D model run with Caffey’s 
Roanoke and paleo-Gunt/Oregon 
inlets open as indicated by Figure 
9C. A) High tide in the ocean (0.5 
m) and its effects on the estuarine 
system. A maximum of 0.5 m of 
water level change is felt in the 
immediate area of the inlets while 
a 0.25 m water level change is 
felt within a wider area in 
Currituck Sound. A large part of 
Currituck Sound displays limited 
tidal influence with a water level 
near 0.01 m. B) Low tide in the 
ocean (-0.5 m) and its effects on 
the estuarine system. Currituck 
Sound experiences little change 
between high and low tide at this 
time interval; the water level 
remains at about 0.1 m. C) Water 
current magnitude, with a 
maximum velocity of 1 m/s 
directly in the inlet mouths but 
little influence within Currituck 
Sound beyond that.
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Figure 13: < 500 cal y BP 
(modern) Delft3D model run 
with no inlet open north of 
Roanoke Island as indicated by 
Figure 9D. A and B) Currituck 
and Albemarle sounds largely 
maintain their respective water 
levels during this time slice 
while the water level in Pamlico 
Sound near Gunt/Oregon Inlet 
has a range of 0.1 m. C) Water 
current magnitude, with a 
maximum velocity of 1 m/s 
directly in the mouth of 
Gunt/Oregon Inlet and very little 
velocity found elsewhere 
throughout the system 
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The Delft3D models (Figure 13) show that interactions with Oregon Inlet both before 

and after the 19th century loss of Roanoke marshes and the formation of Croatan Sound, had, 

and still has, little to no impact on Currituck Sound.  

e. 1590 A.D. (White–deBry Map) 

Historical data provide a snap-shot in time from 1590 A.D. when the first European map 

of the area was created (White–deBry map, Figure 14). The map indicates that there were five 

inlets open in 1590. Delft3D models (Figure 15) suggest that this configuration of inlets results 

in areas of tidal range up to ca. 40 cm. This snap-shot, however, displays the most widely felt 

current velocities ranging from 0.3 to 0.7 m/s in Currituck Sound. 

The models described above suggest that, while tidal influence in southern Currituck 

Sound did occur, influence was limited to very localized areas. The models also show that there 

is a lag associated with the tides (i.e., they are hyposynchronous), which creates the currents 

found in the inlets. Current measurements were derived from the model at each core location for 

each time interval; these data were then compared to core logs. Some of these comparisons 

indicate a close correlation between current velocity and sediment characteristics – see 

vibracore VC8 (Figure 16A). However, not all current velocity plots match well with core logs 

as shown by vibracore VC2 (Figure 16B). This may be because the modeled inlets are too large, 

or wrongly located, thereby creating modeled currents stronger or weaker than actually existed 

at any point in time. 

 

 



	  47	  

 

 

 

!"
#$
%&
'(
)*
!"

#$
%&
'(
&)
*+
!,
-.
!/*
0,
!1
23
4!
5
67
6!7
&8
/%9
7
!,
0(
&8
!*:
;<
!=
&*
&!
.*
0(
:>
&(
!?
-<
&(
!0
;!
%#
&!
$;
8&
%!

>0
;/
$@
:*
-%
$0
;<
!$;
($
>-
%&
(!
?+
!%#
$<
!,
-.
6!A
&(
!?
0B
!$;
($
>-
%&
<!%
#&
!80
>-
%$0
;!
0/
!<&
>%
$0
;!
,
0(
&8
&(
!:
<$
;@
!7
&8
/%9
7

-;
(!
%#
&!
*&
(!
-*
*0
=
<!$
;(
$>
-%
&!
%#
&!
80
>-
%$0
;<
!0
/!%
#&
!,
0(
&8
&(
!$;
8&
%<
6



	  48	  

 

Figure 15: 1590 A.D. Delft3D 
model run with Old Currituck, 
Caffey’s, Trinity, Roanoke and 
paleo- Gunt/Oregon inlets open 
as indicated by the White–de 
Bry map (Figure 14). A) High 
tide in the ocean (0.5 m) and its 
effects on the estuarine system. 
A maximum of 0.25 m water 
level change is felt within 
Currituck Sound and water level 
changes of up to 0.5 m are felt 
close to the inlets in northern 
Currituck Sound and south of 
Roanoke Island. B) Low tide in 
the ocean (-0.5 m) and its effects 
on the estuarine system. 
Southern Currituck Sound 
experiences water level of -0.25 
m while northern Currituck 
Sound and Albemarle Sound 
experience water levels of 0.15 
m. C) Water current magnitude, 
with a maximum velocity of 1 
m/s directly in the inlet mouths 
and velocities ranging from 0.3 
to 0.7 m/s felt locally in 
Currituck Sound. This inlet 
configuration creates the largest 
magnitude and most widespread 
tidal impacts of all modeled 
scenarios. 
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VII. Comparison to Other Studies 

Data from this investigation may be used to confirm or modify existing models of 

barrier island and estuarine evolution in response to sea-level rise. For example, Oertel et 

al. (1992) provides a landscape topography model of estuarine evolution in response to 

the flooding of antecedent topography. As sea-level rise transgresses over the landscape 

initially, the rivers flood and become the bay area while the higher areas become marshes 

and tidal flats. As the system progresses the bay becomes larger and the barrier islands 

are perched upon the interfluves with inlets in the locations of paleoriver valleys. The 

model appears to be relevant for Currituck Sound, North Carolina in that it invokes 

strong antecedent controls on the stratigraphy and morphology of the modern lagoon. 

However, there are no paleoriver valleys through which stable inlets are located in 

Currituck Sound, as there are further south from my study area.  

The Dalrymple et al. (1992) model of the evolution of drowned river-valley 

estuaries is a well-referenced model. However, it does not apply to Currituck Sound, as 

there are no large drowned river-valley in the subsurface and the morphology of the 

Sound, and thus the relative influence of wave and tidal processes, is a function of the 

barrier island morphology, as opposed to river valley orientation. 

Stolper et al. (2005) produced a morphological-behaviour model specifically of 

the Currituck Sound study area that attempts to demonstrate the evolution of the barrier 

islands and Currituck Sound in response to sea-level rise. Their study used the 

GEOMBEST model of shoreface, barrier, and estuarine migration, which includes 

sediment supply, shelf slope and erodibility, and sea-level rise rates as inputs. The study 

produced three models based on variations in barrier volume, and the erodibility of the 
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underlying Pleistocene unit. All three models suggest that Currituck Sound should 

contain a stacked record of estuarine sediments of varying thickness which underlie the 

barrier islands. 

The findings of Stolper et al. (2005), although informative, do not agree well with 

the geological evolution of Currituck Sound as recognized in this study. Differences may 

be accounted for largely by the Stolper et al. assumptions that barrier volume and width 

remained constant during transgression, and that transgression along the Currituck 

coastline was continuous. It is clear that neither of these assumptions were satisfied along 

the Currituck coast. Data indicate that the initial rapid transgression, which likely 

produced a low volume barrier and eroded the Pleistocene substrate (producing HMRS), 

was followed by regression, producing a very high volume barrier, then a final phase of 

transgression. These data suggest that modifications to the GEOMBEST model, that 

include appropriate barrier island morphological changes based upon geological 

reconstructions, coupled with a hydrodynamic model, may improve modeling results. 

The presence of the open marine embayment at the eastern end of Albemarle 

Sound at ca. 5000–3000 cal y BP, as proposed in Culver et al. (2008), was not discounted 

by the modeling results. It appears possible, based on model reconstructions, that the 

open embayment could have occurred with little impact on current velocities and tides 

within Currituck Sound.



VIII. Summary 

1) This study reconstructs the late Holocene (~ 5000 cal y BP to present) evolution 

of Currituck Sound using geophysical, sedimentological, and 

micropaleontological data. These data were then used, in cooperation with 

Delft3D hydrpdynamic modeling, to understand the hydrodynamic and 

paleoenvironmental changes that occurred in response to barrier island 

morphologic change and sea level rise. 

2) Geophysical data display reflections that define a complex system of marine, bay 

and tidal ravinement beginning around 4500 cal y BP. 

3) The litho- and biofacies interpretations indicate a transition from fresh water to 

high brackish (with inlets) and then to low brackish (few to no inlets) over time.  

4) The paleoenvironmental reconstruction and modeling for ~5000–3000 cal y BP 

show that Currituck Sound was largely isolated from marine influence, despite 

Albemarle Inlet being open, with one small inlet open in the southern end of the 

Sound. Currituck Sound was predominantly a freshwater lagoon with a hardwood 

swamp perched on a paleotopographic high in the northern end of  the study area 

and a shallow subtidal sand shoal at the eastern edge of the Sound. 

5) Paleoenvironmental reconstructions for ~3000–1000 cal y BP indicate that a large 

number of inlets were open at this time allowing for exchange with marine waters 

and the presence of extensive oyster bioherms in the center and eastern edge of 

Currituck Sound. The western edge of the sound was characterized by fresh to 

low brackish conditions. There was still a hardwood swamp at the northern end of 

the study area and a shallow subtidal shoal in the eastern side of the Sound. 
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6) Paleoenvironmental reconstructions for ~1000–500 cal y BP indicate two inlets at 

this time, one in the northern end of the study area, near historic Caffey’s Inlet, 

and one in the southern end, near historic Trinity Inlet. In the vicinity of historic 

Caffey’s Inlet there was a gradational change from high salinity and oysters in the 

center of the Sound to mid- brackish to low brackish environments away from the 

inlet. The presence of an inlet near historic Trinity Inlet is indicated by high 

salinity foraminifera and oysters. The majority of the Sound was low salinity 

brackish at this time. 

7) Paleoenvironmental reconstructions for < 500 cal y BP (modern) together with 

modeling indicate, in low resolution, that southern Currituck Sound has had mid- 

to low salinities throughout the past 500 years with a general trend to lower 

salinity conditions over time. This reflects the historically documented closures of 

many inlets in the Outer Banks; there is currently no hydraulic connection to 

marine waters in Currituck Sound. The entire Sound is a low brackish lagoon with 

differences in sedimentology influenced by the presence of former inlets. 

8) The Delft3D models show that the impacts of open inlets in Currituck Sound are 

largely localized. In general, the models agree with the geological data. However, 

some model data mismatches the geologic data, this could be due to the size, 

shape, location, or number of the modeled inlets.
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I. Appendix 1: Foraminiferal species Reference list 
 

Original references to the taxa identified to the species level. 

 
Ammobaculites crassus Warren, 1957, p. 32, pl. 3, figs. 5–7. 
Ammonia parkinsoniana (d’Orbigny) = Rosalina parkinsoniana d’Orbigny, 1839, p. 99, 

pl. 4, figs. 25–27. 
Ammotium salsum (Cushman and Brönnimann) = Ammobaculites salsus Cushman and 

Brönnimann, 1948, p. 16, pl. 3, figs. 7–9. 
Deuterammina ochracea (Williamson) = Rotalina ochracea Williamson, 1858, p. 55, pl. 

4, fig. 112. 
Elphidium excavatum (Terquem) = Polystomella excavata Terquem, 1875, p. 20, pl. 2, 

figs. 2a, b. 
Elphidium galvestonense Kornfeld = Elphidium gunteri Cole var. galvestonensis 

Kornfeld, 1931, p. 87, pl. 15, fig. 1. 
Elphidium gunteri Cole, 1931, p. 34, pl. 4, figs. 9, 10. 
Elphidium transluscens Natland, 1938, p. 144, pl. 5, figs. 3, 4. 
Haynesina germanica (Ehrenberg): Nonionina germanica Ehrenberg, 1840, pl. 23; 

Ehrenberg, 1841, pl. 2, figs. 1 a–g. 
Hanzawaia strattoni (Applin) = Truncatulina americana (Cushman) var. strattoni Applin 

and others, 1925, p. 99, pl. 3, fig. 8. 
Jadammina macrescens (Brady) = Trochammina inflata (Montagu) var. macrescens 

Brady, in Brady and Robertson, 1870, p. 47, pl. 11, figs. 5a–c. 
Miliammina fusca (Brady) = Quinqueloculina fusca Brady, in Brady and Robertson, 

1870, p. 47, pl. 11, figs. 2, 3. 
Polysaccammina ipohalina Scott, 1976, p. 316, pl. 2, figs. 1-4. 
Trochammina inflata (Montagu): Nautilus inflatus	  Montagu,	  1808,	  p.	  81,	  pl.	  18,	  fig.	  3.



II. 	  	  	  	  	  	  	  	  	  	  	  	  	  Appendix:	  Foraminiferal	  Plates	  

	  

	  

Plate	  1	  

	  

Figures	  

1. Elphidium transluscens (Natland)  

2. Haynesina germanica (Ehrenberg)	  

3. Elphidium gunteri (Cole)	  

4. Elphidium galvestonense (Kornfeld)	  

5,	  6.	  	  Ammonia parkinsoniana (d’Orbigny); spiral and umbilical views	  

7. Ammotium salsum (Cushman and Brönnimann) 

8. Elphidium excavatum (Terquem) 	  

9. Ammobaculites crassus (Warren)	  
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Plate	  2	  

	  

Figures	  

 	  

1. Ammonia parkinsoniana (d’Orbigny); umbilical view 

2. Ammonia parkinsoniana (d’Orbigny); spiral view	  

3. Ammonia parkinsoniana (d’Orbigny); apertural view	  

4. Organic lining of Ammonia parkinsoniana (d’Orbigny); oblique umbilical view	  

5.	  Organic lining of Ammonia parkinsoniana (d’Orbigny); spiral view 

6. Organic lining of Ammonia parkinsoniana (d’Orbigny); oblique apertural view	  

7. Genus A sp. A (organic): umbilical view 

8. Genus A sp. A (organic): spiral view	  

9. Genus A sp. A (organic): apertural view 

10. Genus A sp. A (organic): aperturall view 

11. Genus A sp. A (organic): apertural view	  
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III. Appendix:	  Vibracore	  locations	  
	  
	  

Core	  Name	   Lat	   Long	   Water	  depth	  (m)	   Core	  length	  (m)	  
CUR11	  VC1	   36.244	   -‐75.847	   1.8	   1.93	  
CUR11	  VC2	   36.245	   -‐75.821	   1.2	   3.88	  
CUR11	  VC3	   36.218	   -‐75.823	   2.39	   2.95	  
CUR11	  VC4	   36.195	   -‐75.797	   2.28	   3.66	  
CUR11	  VC5	   36.174	   -‐75.820	   2.28	   3.85	  
CUR11	  VC6	   36.175	   -‐75.801	   2.13	   6.10	  
CUR11	  VC7	   36.181	   -‐75.769	   2.13	   2.10	  
CUR11	  VC8	   36.151	   -‐75.789	   2.89	   3.30	  
CUR11	  VC9	   36.136	   -‐75.752	   2.74	   2.30	  
CUR11	  VC10	   36.122	   -‐75.792	   2.44	   3.26	  
CUR11	  VC11	   36.129	   -‐75.774	   2.13	   3.90	  
CUR11	  VC	  12	   36.125	   -‐75.763	   2.44	   3.22	  
CUR11	  VC13	   36.112	   -‐75.770	   2.44	   2.43	  



	  

IV. Appendix:	  Vibracore	  Logs	  
	  

 
In the following 13 vibracore logs the blue lines represent optically stimulated 

luminescence age estimates. The red lines are radiocarbon age estimates. The symbols to 

the right of the cores represent the different foraminiferal biofacies at the depth the 

sample was taken from. 
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CUR 11 VC 9

Barren

Low Salinity (10 %o or less)

Mid Salinity (10 -25%o)

High Salinity (25-35%o)

Biofacies Key

Slightly Sandy
Mud

Mud Sandy Mud

Slightly Muddy
Sand

Muddy Sand

Sand

small-scale (mm) whole and broken shell hash.

larger-scale (mm-cm) whole and broken shell, 
mollusks mostly.

large root traces or elongate mottles (cm-dm).

undifferentiated burrows.
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CUR 11 VC 10

Barren

Low Salinity (10 %o or less)

Mid Salinity (10 -25%o)

High Salinity (25-35%o)

Biofacies Key

small-scale (mm) whole and broken shell hash.

larger-scale (mm-cm) whole and broken shell, 
mollusks mostly.

large root traces or elongate mottles (cm-dm).

undifferentiated burrows.
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Symbol Key

Slightly Sandy
Mud

Mud Sandy Mud

Slightly Muddy
Sand

Muddy Sand

Sand
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CUR 11 VC 11

Barren

Low Salinity (10 %o or less)

Mid Salinity (10 -25%o)

High Salinity (25-35%o)

Biofacies Key

Slightly Sandy
Mud

Mud Sandy Mud

Slightly Muddy
Sand

Muddy Sand

Sand

small-scale (mm) whole and broken shell hash.

larger-scale (mm-cm) whole and broken shell, 
mollusks mostly.

large root traces or elongate mottles (cm-dm).

undifferentiated burrows.
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Symbol Key
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CUR 11 VC 12

OSL Age 
4.5 ka

820- 540 cal y BP

Barren

Low Salinity (10 %o or less)

Mid Salinity (10 -25%o)

High Salinity (25-35%o)

Biofacies Key

small-scale (mm) whole and broken shell hash.

larger-scale (mm-cm) whole and broken shell, 
mollusks mostly.

large root traces or elongate mottles (cm-dm).

undifferentiated burrows.
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Symbol Key

Slightly Sandy
Mud

Mud Sandy Mud

Slightly Muddy
Sand

Muddy Sand

Sand
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CUR11 VC 13

Slightly Sandy
Mud

Mud Sandy Mud

Slightly Muddy
Sand

Muddy Sand

Sand

small-scale (mm) whole and broken shell hash.

larger-scale (mm-cm) whole and broken shell, 
mollusks mostly.

large root traces or elongate mottles (cm-dm).

undifferentiated burrows.

!"#$$%&''(%(&#)*!%'&%&''($*(!%+"",-

Symbol Key

Barren

Low Salinity (10 %o or less)

Mid Salinity (10 -25%o)

High Salinity (25-35%o)

Biofacies Key



V. Appendix: Grain-size Data 

Sample	  Name	   cm	  below	  
core	  top	  

Sorting	   Skewness	   Mean	   Median	   Sediment	  Type	  

CUR11	  VC1	  
GS	  77-79	   77	   0.799	   -‐0.342	   1.951	   2.077	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC1	  
GS	  184-186	   184	   0.488	   -‐0.014	   2.174	   2.178	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC2	  
GS	  39-41	   39	   0.999	   0.285	   2.702	   2.680	  

Slightly	  Very	  Fine	  Gravelly	  Very	  
Coarse	  Silty	  Fine	  Sand	  

CUR11	  VC2	  
GS	  354-356	   354	   0.570	   -‐0.186	   2.403	   2.465	  

Moderately	  Well	  Sorted	  Fine	  Sand	  

CUR11	  VC3	  
GS	  11-13	   11	   0.460	   -‐0.116	   2.591	   2.634	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC3	  
GS	  89-91	   89	   0.690	   -‐0.300	   2.225	   2.275	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC3	  
GS	  258-260	   258	   0.418	   -‐0.009	   2.541	   2.555	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC4	  
GS	  260-262	   260	   0.563	   0.050	   2.366	   2.344	  

Moderately	  Well	  Sorted	  Fine	  Sand	  

CUR11	  VC4	  
GS	  327-329	   327	   0.464	   0.094	   2.360	   2.320	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC5	  
GS	  80-82	   80	   0.415	   -‐0.072	   2.437	   2.428	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC5	  
GS	  219-221	   219	   0.480	   -‐0.014	   2.256	   2.259	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VS5	  
GS	  310-312	   310	   0.472	   -‐0.076	   2.704	   2.718	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC6	  
GS	  226-228	   226	   0.939	   -‐0.145	   3.080	   3.138	  

Slightly	  Very	  Fine	  Gravelly	  Very	  Fine	  
Sand	  

CUR11	  VC6	  
GS	  392-394	   392	   0.363	   0.046	   2.796	   2.767	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC6	  
GS	  532-534	   532	   0.446	   -‐0.039	   2.334	   2.332	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC7	  
GS	  47-49	   47	   0.376	   0.048	   2.841	   2.806	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC8	  
GS	  97-99	   97	   0.386	   0.098	   2.340	   2.288	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC8	  
GS	  322-324	   322	   0.513	   -‐0.014	   2.344	   2.351	  

Moderately	  Well	  Sorted	  Fine	  Sand	  

CUR11	  VC9	  
GS	  39-41	   39	   0.546	   -‐0.214	   2.558	   2.615	  

Moderately	  Well	  Sorted	  Fine	  Sand	  

CUR11	  VC9	  
GS	  117-119	   117	   0.477	   -‐0.148	   2.492	   2.528	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC9	  
GS	  222-224	   222	   0.464	   -‐0.110	   2.601	   2.636	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC10	  
GS	  225-227	   225	   0.642	   -‐0.259	   2.424	   2.532	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC10	  
GS	  310-312	   310	   0.553	   -‐0.200	   2.596	   2.644	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC11	  
GS	  219-221	   219	   0.647	   -‐0.218	   2.844	   2.931	  

Moderately	  Well	  Sorted	  Fine	  Sand	  

CUR11	  VC11	  
GS	  376-378	   376	   0.427	   0.103	   2.468	   2.433	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC12	  
GS	  183-185	   183	   0.389	   -‐0.051	   2.720	   2.732	  

Slightly	  Very	  Fine	  Gravelly	  Fine	  Sand	  

CUR11	  VC12	  
GS	  304-306	   304	   0.501	   -‐0.020	   1.978	   1.975	  

Moderately	  Well	  Sorted	  Medium	  
Sand	  

CUR11	  VC13	  
GS	  159-161	   159	   0.406	   -‐0.164	   2.539	   2.582	  

Well	  Sorted	  Fine	  Sand	  

CUR11	  VC13	  
GS	  237-239	   237	   0.395	   -‐0.118	   2.514	   2.540	  

Well	  Sorted	  Fine	  Sand	  



VI. Appendix: Percent mud, fine/medium sand and coarse sand/gravel 

 

 

 

	  

Core	  
Depth	  in	  core	  

(cm)	   %	  	  Mud	  
%	  Sand	  
	  (<	  710	  μ)	  

%	  	  Coarse	  
Sand/Gravel	  
(>	  710	  μ)	  

CUR11	  VC	  1	   2-‐4	   25.05	   74.37	   0.58	  
CUR11	  VC	  1	   25-‐27	   28.76	   71.05	   0.19	  
CUR11	  VC	  1	   75-‐77	   10.29	   89.37	   0.34	  
CUR11	  VC	  1	   182-‐184	   0.87	   98.99	   0.14	  
CUR11	  VC	  2	   35-‐37	   15.32	   84.68	   0.00	  
CUR11	  VC	  2	   77-‐79	   31.03	   68.97	   0.00	  
CUR11	  VC	  2	   138-‐140	   41.22	   58.77	   0.01	  
CUR11	  VC	  2	   169-‐171	   31.21	   59.50	   9.29	  
CUR11	  VC	  2	   195-‐197	   82.04	   16.56	   1.40	  
CUR11	  VC	  2	   232-‐234	   40.03	   59.90	   0.07	  
CUR11	  VC	  2	   278-‐280	   40.79	   58.87	   0.34	  
CUR11	  VC	  2	   352-‐354	   8.62	   91.38	   0.00	  
CUR11	  VC	  3	   9-‐11	   6.52	   93.48	   0.00	  
CUR11	  VC	  3	   21-‐23	   31.50	   68.50	   0.00	  
CUR11	  VC	  3	   39-‐41	   18.89	   80.19	   0.92	  
CUR11	  VC	  3	   87-‐89	   8.92	   91.07	   0.01	  
CUR11	  VC	  3	   256-‐258	   5.20	   94.80	   0.00	  
CUR11	  VC	  4	   13-‐15	   30.95	   68.11	   0.94	  
CUR11	  VC	  4	   47-‐49	   20.55	   73.72	   5.74	  
CUR11	  VC	  4	   143-‐145	   28.74	   71.04	   0.22	  
CUR11	  VC	  4	   200-‐202	   47.46	   52.54	   0.00	  
CUR11	  VC	  4	   258-‐260	   5.68	   94.25	   0.07	  
CUR11	  VC	  4	   325-‐327	   5.81	   94.18	   0.00	  
CUR11	  VC	  5	   40-‐42	   21.56	   78.39	   0.05	  
CUR11	  VC	  5	   78-‐80	   89.99	   9.55	   0.47	  
CUR11	  VC	  5	   217-‐219	   6.34	   93.66	   0.00	  
CUR11	  VC	  5	   308-‐310	   1.16	   98.84	   0.00	  
CUR11	  VC	  6	   38-‐40	   17.12	   82.13	   0.74	  
CUR11	  VC	  6	   64-‐66	   37.20	   62.80	   0.00	  
CUR11	  VC	  6	   126-‐128	   19.84	   80.16	   0.00	  
CUR11	  VC	  6	   224-‐226	   13.56	   86.44	   0.00	  
CUR11	  VC	  6	   318-‐320	   15.94	   83.90	   0.15	  
CUR11	  VC	  6	   390-‐392	   0.47	   99.35	   0.18	  
CUR11	  VC	  6	   530-‐532	   0.87	   99.13	   0.00	  
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Core	  
Depth	  in	  core	  

(cm)	   %	  Mud	  
%	  Sand	  
	  (<	  710	  μ)	  

%	  	  Coarse	  
Sand/Gravel	  
(>	  710	  μ)	  

CUR11	  VC	  7	   17-‐19	   30.59	   68.13	   1.28	  
CUR11	  VC	  7	   45-‐47	   7.47	   92.53	   0.00	  
CUR11	  VC	  7	   180-‐182	   1.81	   97.55	   0.65	  
CUR11	  VC	  8	   26-‐28	   34.02	   65.95	   0.03	  
CUR11	  VC	  8	   95-‐97	   10.20	   89.80	   0.00	  
CUR11	  VC	  8	   167-‐169	   65.85	   31.91	   2.24	  
CUR11	  VC	  8	   237-‐239	   68.64	   31.36	   0.00	  
CUR11	  VC	  8	   320-‐322	   1.54	   98.15	   0.31	  
CUR11	  VC	  9	   37-‐39	   0.30	   99.30	   0.40	  
CUR11	  VC	  9	   115-‐117	   -‐0.05	   98.58	   1.46	  
CUR11	  VC	  9	   220-‐222	   0.68	   99.15	   0.17	  
CUR11	  VC	  10	   18-‐20	   94.96	   5.04	   0.00	  
CUR11	  VC	  10	   82-‐84	   98.48	   0.71	   0.81	  
CUR11	  VC	  10	   180-‐182	   82.58	   17.34	   0.08	  
CUR11	  VC	  10	   223-‐225	   8.40	   90.27	   1.32	  
CUR11	  VC	  10	   308-‐310	   4.19	   95.43	   0.38	  
CUR11	  VC	  11	   57-‐59	   24.69	   75.31	   0.00	  
CUR11	  VC	  11	   138-‐140	   47.45	   52.09	   0.46	  
CUR11	  VC	  11	   217-‐219	   10.99	   88.77	   0.24	  
CUR11	  VC	  11	   273-‐275	   16.39	   83.61	   0.00	  
CUR11	  VC	  11	   374-‐376	   8.58	   91.42	   0.00	  
CUR11	  VC	  12	   6-‐8	   47.13	   52.87	   0.00	  
CUR11	  VC	  12	   66-‐68	   25.77	   74.21	   0.03	  
CUR11	  VC	  12	   123-‐125	   36.56	   63.23	   0.21	  
CUR11	  VC	  12	   181-‐183	   2.54	   97.43	   0.03	  
CUR11	  VC	  12	   302-‐304	   1.98	   97.47	   0.55	  
CUR11	  VC	  13	   71-‐73	   77.80	   22.20	   0.00	  
CUR11	  VC	  13	   138-‐140	   40.26	   38.20	   21.54	  
CUR11	  VC	  13	   157-‐159	   0.80	   99.19	   0.01	  
CUR11	  VC	  13	   235-‐237	   8.46	   91.54	   0.00	  



	  

	  

	  


