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 A taxon is defined as polyphyletic when it does not include the last common ancestor of 

all true members of the taxon, resulting in a number of subgroups not united by a common 

ancestor. Previous work has suggested Pueraria (Fabaceae) to be polyphyletic. Although several 

taxonomic treatments have recognized Pueraria as an unnatural grouping since its creation in 

1825, and two have put forth taxonomic hypotheses, the polyphyly has never been resolved.  The 

need for further biosystematic research has always been cited as the reason no changes were 

proposed. This project attempted to address this issue by sampling broadly across phaseoloid 

legumes with an initial target goal of 156 species including 15 species of Pueraria.  Ultimately, 

104 species across 69 genera were sampled for AS2 and 116 species across 64 genera for matK.  

Phylogeny reconstruction was carried out using maximum likelihood and Bayesian inference.  

Both analyses yielded congruent tree topologies and similar support values.  Both previous 

taxonomic hypotheses show some congruence with the data, but discrepancies do occur.  This 

work provides strong support for the existence of five separate clades within the genus Pueraria, 

requiring the resurrection of the genus Neustanthus for P. phaseoloides along with the need to 

create a new genus each for P. stricta, P. peduncularis, and P. wallichii.    
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INTRODUCTION 

Pueraria montana var. lobata (Fabaceae), commonly known as kudzu, is a notoriously 

invasive species in the Southeast U.S.  Kudzu was first introduced in the U.S. in 1876 during the 

Philadelphia Centennial Exposition as an ornamental vine (Britton et al., 2002; Shurtleff and 

Aoyagi, 1977; Ward, 1999) and then later displayed at the New Orleans Exposition in 1883 (Hill, 

1985; Ward, 1999).  The first person to experience and document the choking power of P. 

montana was David Fairchild, a botanist and field explorer for the USDA (Hill, 1985; Britton, 

2002).  The second major person to interact with and document P. montana was a Mr. C.E. 

Pleas, who championed kudzu as fodder.  After observing local livestock aggressively eating P. 

montana he became convinced of its usefulness and proceeded to plant all 35 acres he owned 

with it in 1910 (Hill, 1985).  For the next 40 years he would preach its redeeming qualities even 

going so far as to write a pamphlet extolling its virtues in 1925 (Hill, 1985; Britton et al., 2002).   

Mr. Pleas was not the only one to jump on the proverbial bandwagon.  Kudzu’s high rate 

of photosynthesis, the ability to fix atmospheric nitrogen, and the ability to root at nodes in 

contact with the soil allows kudzu to grow and spread quickly (Forseth and Innis, 2004), making 

it an ideal candidate for soil erosion prevention.  During the 1930’s and 1940’s the Soil 

Conservation Service promoted its planting to prevent soil erosion by distributing 73-85 million 

seeds and giving money to farmers to plant it (Britton et al., 2002; Hill, 1985; Ward, 1999).  

Eventually people would come to realize what an invasive monster kudzu could be.  In 1953, the 

Soil Conservation Service removed it from the list of permissible cover crops (Britton et al., 

2002; Hill, 1985) and then finally, in 1970 it was classified as a weed (Corley et al., 1997; Hill, 

1985).  The traits that had made it so ideal for soil erosion prevention had also made it an 

aggressive pest. 
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Invasive species are often introduced for good reasons ranging from use as a forage crop 

to being used for timber plantations (Sakai et al., 2001; Baker 1974, 1986).  No mater how good 

the intentions, its important to remember that invasive species threaten biodiversity, ranking 

second only to habitat destruction in cause of biodiversity loss (Simberloff 2000). Invasive 

species can impact native biota through competitive exclusion as well as through hybridization 

with native species.  This kind of event can lead to reduced fitness and potential extinction of 

native species (Mooney and Cleland, 2001; Rhymer and Simberloff 1996).  The closest relative 

to kudzu here in the U.S. is Glycine max (Britton et al., 2002), the soybean.  The soybean, like 

kudzu, is not a native plant but rather an introduced one from Asia.  In terms of native North 

American relatives, the closest are Amphicarpaea bracteata and several species of Cologania 

(Britton et al., 2002).  

Invasive species can affect more than just other organisms.  Kudzu has been coined as a 

“polluting plant” due to its contributions to ozone pollution.  Kudzu emits isoprene (Forseth and 

Innis, 2004), a photochemically reactive hydrocarbon that forms ozone and smog in the presence 

of nitrogen oxides.  Kudzu also has the capability to fix nitrogen, 2/3 the rate of soybeans, which 

causes an increase in soil emission of nitrous oxide (Hickman et al., 2010). Coupled with its 

isoprene emissions, kudzu seems to be working to change the climate it inhabits by raising 

summer temperatures in the areas it resides. This process would allow it to push climate borders 

blocking its expansion further north.  Therefore it is important we try to control its expansion by 

any means necessary.  

Thanks to soil erosion-prevention planting, herbicide treatment is often difficult due to 

the closeness of waterways (Frye et al., 2012; Everest et al., 1999) and other means of control 

such as herbivory must be analyzed (Frye et al., 2012).  Even with treatment of some kind, 
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complete removal may take many applications and many years along with cooperation between 

landowners to prevent kudzu reinvasion from neighboring land (Everest et al., 1999; Forseth and 

Innis, 2004). 

 Kudzu has been shown to have high levels of genetic diversity (Pappert et al., 2000), 

perhaps because of the combination of genotypes from separate sources, China and Japan, for the 

multiple introductions believed to have occurred (Pappert et al., 2000) with kudzu (Sun et al., 

2005).  It has been posited that species may not show the same level of susceptibility to 

biocontrol agents due to this high level of genetic diversity (Sun et al., 2005).  Also of concern is 

making sure that biocontrol agents do not affect native plants such as soybean or native animals 

as well (Forseth and Innis, 2004).  It is therefore important to carry out studies on kudzu 

specifically to determine what will safely work.  

However, kudzu is not considered invasive in its natural habitat of Southeast Asia (Figure 

1).  A potential explanation for this is the presence of natural predators and diseases not found 

here in the U.S.  In a previous study numerous insects were found feeding on the plant along 

with the presence of unknown rust and what researchers believed to be a mosaic virus of some 

sort on the lead blades (Pemberton, 1988).  Some predation does occur here in the U.S. but 

mostly on the seeds (Forseth and Innis, 2004) which can number up to 20 per pod (Lackey, 1977; 

Van der Maesen, 1985; Ward, 1999; Britton, 2002).  Unfortunately that is not the only way 

kudzu spreads.  Kudzu can grow out from just one root crown (Ward, 1999; Britton, 2002) and 

then spread vegetatively (Pappert, 2000) across the ground and up any structure it can find.  It is 

also capable of both sexual and asexual reproduction through underground runners, helping to 

maintain genetic variation within the species. 
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Pappert (2000) has proposed two possible explanations for the higher than average level 

of genetic diversity. The first, discussed previously, is that many individuals from multiple 

different sources established some populations. The second possible explanation is that 

populations start with a few founders but due to the pollen movement and seed dispersal new 

genetic material is introduced into the population.  Based on his findings Pappert (2000) came to 

the conclusion that evolution may be favoring heterozygous plant expansion.  It still remains a 

possibility that U.S. populations are the product of multiple introductions since previous studies 

have only focused on P. montana and P. phaseoloides, the two species most commonly referred 

to as kudzu. 

 Here in the U.S. the species Pueraria montana var. lobata and its varieties are commonly 

referred to as kudzu.  In reality it is part of a much larger kudzu species complex that consists of 

P. montana and P. edulis and their varieties.  The usage of the name kudzu can often times be 

confusing.  It is used to reference different species depending on what part of the world you 

reside in.  Here in the U.S. kudzu is the common name used for Pueraria montana var. lobata, 

whereas Pueraria phaseoloides is known as tropical kudzu, often shortened to kudzu.  Confusion 

over the proper name for the species has also caused issue.  Van der Maesen originally 

incorrectly referred to the species as Pueraria lobata in his monograph (1985).  Upon review of 

literature he later corrected this based on the fact that Dolichos montana was merged into 

Pueraria in 1935 while Pueraria lobata was not until 1947 (Van der Maesen 1988).  The name 

Pueraria lobata was originally used to refer to the presence of lobed leaflets while Pueraria 

montana was the designation for specimens collected in modern day Vietnam (Ward, 1998).  

Thus, the correctly designated species name is Pueraria montana var. lobata. 
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 The genus Pueraria has been in existence since 1825 when De Candolle first described 

and named it after a colleague and friend (De Candolle, 1825).  At its outset it consisted of only 

2 species, Pueraria tuberosa and P. wallichii. Since that time, other species have been described, 

reduced to the variety level, or had their removal from the genus advocated. There are 20 

currently accepted species today: P. alopecuroides, P. bella, P. bouffordii, P. calycina, P. 

candollei, P. edulis, P. garhwalensis, P. imbricata, P. lacei, P. maclurei, P. montana, P. 

peduncularis, P. phaseoloides, P. pulcherrima, P. sikkimensis, P. stracheyi, P. stricta, P. 

tuberosa, P. wallichii, and P. xyzhui.  Traditionally, Pueraria species are generally described as 

twining vines or shrubs that have trifoliate leaves, and inflorescences in a pseudoraceme 

(Lackey, 1977; Van der Maesen, 1985; Ward, 1999; Pappert 2000).  Its initial separation from 

Hedysarum, into P. tuberosa and P. wallichii, was based on non-articulating pods and 

monodelphous stamens.  Remaining characteristics are variable in terms of appearance and 

taxonomically diagnostic importance. 

A member of one of the most economically important subtribes, Glycininae, Pueraria is 

a genus whose versatility and range of uses throughout history knows almost no bounds.  It has 

served as a simple ornamental to having important uses within the realms of medicine and 

agriculture.  Pueraria phaseoloides is still used and advocated today in the use of soil loss 

prevention during crop rotation in some areas of the world (Salako et al., 2006).   Pueraria 

montana can even be used as a high protein forage crop for livestock and baled as hay although 

harvesting can be difficult (Everest et al., 1999). Pueraria montana even shows potential as a 

valuable biofuel resource better than corn because of its high carbohydrate levels (Sage et al., 

2009), fast growth, and high biomass.  Extracts from kudzu have been shown to curb alcohol 

cravings while avoiding the dangerous side effects of more conventional medications (Keung et 
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al., 1995; Keung and Vallee, 1993).  The large tubers of P. tuberosa can even be used as a food 

source for both humans and cattle during times of famine (Van der Maesen, 1994).  For a genus 

that has so many uses, it’s a mystery as to why so little is known about its true taxonomy. 

Previous taxonomic treatments have recognized Pueraria as an unnatural grouping and 

suggested different hypotheses on how the genus should be divided up. In 1977, Lackey 

separated 20 recognized Pueraria species into four tentative groups (Figure 2) based on number 

of flowers per node, stipule type, calyx type, the presence of callosities on the vexillum, and the 

pod type (Lackey, 1977) (Table 1).  Based on these morphological characteristics he argued that 

P. wallichii should be excluded from Pueraria.  He also put forth the idea that P. colletii Prain, 

P. brachycarpa, P. bella, and P. stricta Kurz should be removed from Pueraria and coupled with 

Neonotonia and related genera such as Shuteria.  He also suggested that the species P. 

subspicata Benth. and P. phaseoloides Benth. bore enough morphological differences from 

others that they should be given their own genus.  However, he did not revise the genus in any 

way based on the groupings he came up with, noting the genus has not been the subject of a 

modern monograph since Benth’s 1867 study. 

Van der Maesen recently did monographic work based on Lackey’s revision and outlined 

17 species over the course of several botanical treatments (van der Maesen,1985; van der 

Maesen, 1995; van der Maesen, 2002; van der Maesen and Almeida, 1988).  Instead of four 

groups, van der Maesen ended up with five, P. pulcherrima and P. phaseoloides each getting 

their own (Figure 2). It was the first time it had been the subject of a monograph since 1867.  

Van der Maesen also stated that “Pueraria has served more or less as a receptacle for species not 

easily classified elsewhere” but did not make any changes to the genus based on Lackey’s 
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groups, claiming “further biosystematic research” was needed to relate Pueraria with other 

Glycininae taxa.   

Previous phylogenetic studies have shown Pueraria to be polyphyletic (Doyle et al., 

2003; Lee and Hymowitz, 2001; Stefanovic et al., 2009; Egan et al., unpublished data). A 

polyphyletic taxon is one that does not include the last common ancestor of all true members of 

the taxon, resulting in a number of subgroups not united by a common ancestor.   Lee and 

Hymowitz (2001) found five species of Pueraria separating out into four distinct groups during 

the course of their analysis of the subtribe Glycininae.  They found P. stricta to be allied with 

Teyleria, P. montana and P. pulcherrima allied with Nogra, and P. phaseoloides with 

Pachyrhizus.  They agreed more with the classifications of Lackey (1977) than Van der Maesen 

(1985), though the results of their study pointed to Pueraria not being sister to Glycine (Lee and 

Hymowitz, 2001).   

Five species is a poor sample with which to reconstruct the complete story of Pueraria.  

In order to obtain the full story behind the evolutionary relationships of Pueraria, we need to 

sample across the vast evolutionary and taxonomic landscape of legumes in the phaseoleae tribe.  

To do this we increased the taxonomic sampling of Pueraria and phaseoloid legumes in order to 

place the species of Pueraria in their proper evolutionary and taxonomic context.  Understanding 

these relationships will provide the context necessary to begin examining the trait of 

invasiveness in kudzu. 

 Through the use of phylogenetic analysis we have strived to accomplish the following 

objectives.  Firstly, we sought to determine the number of distinct evolutionary lineages in 

Pueraria and how those lineages are dispersed among phaseoloid legumes.  Next, we compared 

the previous taxonomic hypotheses of Lackey (1977) and Van der Maesen (1985) concerning the 
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interspecific relationships within Pueraria.  Finally, we use this information to inform future 

taxonomic revisions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATERIALS AND METHODS 

Taxon Sampling—To understand the evolutionary history of Pueraria, we attempted to 

sample all currently recognized species of Pueraria. We were able to sample 14 of the 20 species 

recognized by Van der Maesen (1985).  To place Pueraria lineages within the evolutionary 

context of related taxa, we sampled widely across core phaseoloid legumes. We need both a 

nuclear (maternally and paternally inherited) and chloroplast (maternally inherited) gene region 

for analysis in order to track lineages across more than one inheritance.  For AS2, we included 69 

genera (including Pueraria) representing 104 species with 64 Pueraria accessions. For matK we 

included 64 genera representing 116 species with 81 Pueraria accessions. Plant material was 

obtained from multiple sources:  various herbaria located in Europe (Royal Botanic Gardens, 

KEW (K); Royal Botanic Garden Edinburgh (E), and the Muséum national d'Histoire naturelle 

(P) in Paris, France) and Asia (Botanical Survey of India (CAL) and the Herbarium of Thailand ) 

as well as here in the U.S. (New York Botanical Garden and Missouri Botanical Garden), from 

field collections performed by Dr. Egan (China, and the U.S.), and from the previously extracted 

DNA generously shared by Jeff J. Doyle of Cornell University. Voucher specimens, source, and 

DNA accession numbers can all be found in Appendix A.   

DNA Extraction, Amplification, and Sequencing—DNA extraction was carried out 

using the Qiagen DNeasy Plant Mini Kit (Qiagen, Valencia, CA) for both herbarium and 

collected samples (dried in silica gel) following manufacture’s instructions.  Because AS2 is a 

new marker for phylogenetic use, a brief description of it is provided below. 

AS2 is a low copy nuclear gene region capable of being alternatively transcribed, 

allowing it to code for multiple proteins.  Within the region there exist two motifs; one is a 

leucine-zipper –like motif while the other is a cysteine repeat that has been dubbed the C-motif 
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(Iwakawa et al., 2002) (Figure 3). AS2 is expressed in all above ground portions of the plant 

except for the stem (Iwakawa et al., 2002, Xu et al., 2002).  Its primary function is in the 

establishment of leaf polarity where it regulates the adaxial-abaxial axis, resulting in planar 

leaves.  Iwakawa also suggested, based on his observations, that AS2 might be involved in the 

development of the entire venation system.  AS2 is found in the plant nuclei even though it does 

not include an obvious nuclear localization signal implying that it could also be controlling the 

transcription of certain genes in the nucleus (Iwakawa et al., 2002).  It is composed of one exon 

(the AS2 domain; 1-293 bp), followed by the alternatively transcribed intron (position 305-534) 

and then ending with a 24 bp exon (Egan, unpublished data).  This project is the first to use AS2 

as a phylogenetic marker, the primers for which were created by A.N. Egan based on comparison 

of multiple legume genomes and homoeologues (Egan and Doyle, 2010).  The nuclear marker 

AS2 was chosen for its ease and quality of amplification. Primers are presented here for the first 

time.  AS2 was amplified using primers AS2F (5’-CAC CAT GTG CAG CAT GCA AGT TCT-

3’) and AS2R (5’-AGT TGC CCT AAG CTG GCG GAT ATG-3’) and the following conditions 

of 5 min at 94º followed by 35 cycles of 40 s at 94º, 1 min at 57º, 2 min at 72º and then ending 

with a final elongation of 7 min at 72º. 

MatK has long been used as a molecular marker in plants, with wide application across 

angiosperms (Hilu et al, 2003). The matK region amplified in this study is a modified version of 

only 722 base pairs (roughly from position 1210-1932 in the full matK gene) to ensure consistent 

amplification in Pueraria and phaseoloid legumes. We shortened this region because we have 

many samples derived from herbarium material, where the DNA is often degraded.  Short 

regions have been shown to work better with degraded DNA (Sarkinen et al 2012). The 

chloroplast marker matK was chosen for its ongoing usage in legume systematics so that our 
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work could contribute to global efforts to build the legume tree of life. The PCR protocol used 

followed the same conditions as those set in Hu et al (2000) using the primers 1210F (5’-CTA 

TCC ATC TGG AAA TCT TGG TTC-3’) and 1932R (5’-CAG ACC GGC TTA CTA ATG GG-

3’).   

Primers were added to a master mix that came in two varieties.  The first was a premade 

master mix made by Promega that requires only 1 uL of forward and reverse 10 uM primers for 

each sample.  The second consists of: 5 uL 5x Buffer, 1.5 uL 50mM MgCl2, 1.5 uL 10 mM 

dNTP, .15 uL DMSO, 1 uL 10 uM forward primer, 1 uL 10 uM reverse, and .125-.25 uL Taq.  

Four different types of taq were used during the course of this study: GoTaq Flexi DNA 

Polymerase (Promega, Fitchburg, Wisconsin), Maser Mix Taq DNA polymerase (Promega, 

Fitchburg, Wisconsin), Mango Taq (Bioline USA, Taunton, Massachusetts), and Platinum Taq 

(Life Technologies – Invitrogen, Carlsbad, California).  

PCR products deemed worthy of sequencing, based on band quality, were purified using 

the QIAquick PCR Purification Kit (Qiagen, Valencia, CA).  Sequencing was performed on 

the 3130 Genetic Analyzer from Applied Biosystems using BigDyeTerminator v3.1 chemistry.  

Some sequences were taken from GenBank and were downloaded (Appendix B) while others are 

available from past research (Dr. Ashley Egan, personal communication).  Forward and reverse 

sequences were edited and aligned into contigs with Sequencher 4.7 (Gene Codes Corp., Ann 

Arbor, MI).  All sequences for both matK and AS2 will be uploaded to NCBI.   

We initially attempted to sample 156 species across phaseoloid legumes, which included 

the following 15 species of Pueraria (not counting varieties): P. alopecuroides, P. calycina, P. 

candollei, P. edulis, P. imbricata. P. lacei, P. montana, P. peduncularis, P. phaseoloides, P. 

pulcherrima, P. sikkimensis, P. stricta, P. tuberosa, and P. wallichii.  Ultimately we were only 
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able to amplify 14 of the 15 Pueraria species, P. rigens being the one exception.  We were able 

to amplify three different species to serve as a consistent outgroup: Clitoria ternatea, Clitoria 

mexicana, and Centrosema virginianum.  In the end 103 species and 60 genera for AS2, and 115 

species and 65 genera for matK were actually sampled across phaseoloid legumes.   

DNA Alignment, Phylogeny Reconstruction, and Network Analyses—Alignment of 

DNA sequences was carried out in MUSCLE (Edgar 2004) through the EMBL-EBI website.  

Alignments from MUSCLE were checked by eye in SE-AL (Rambaut, 2006). In order to ensure 

quality of alignment the amino acid alignment was honed and then matched to the DNA 

alignment.  Both maximum likelihood and Bayesian inference analyses were performed. 

Maximum likelihood based methods have been shown to be more efficient at picking the right 

tree over both parsimony and distance based methods (Hasegawa, Kishino, and Saitou, 1991).  

Maximum likelihood can be defined as the probability of the data given a model of evolution 

(Posada and Buckley, 2004).   

Because models play such an important role it is key that we select the best one.  The two 

most often used methods of doing so are the Likelihood Ratio Test (LRT) and the Akaike 

Information Criterion (AIC).  The goal is to pick the best fitting model, without under or over 

parameterizing.  The LRT allows only the testing of nested models due to its reliance upon 

comparing across parameter distributions (Sullivan and Joyce, 2005).  This is done by 

performing a pairwise comparison of log likelihoods to determine which of the two nested 

models is better (Posada and Buckley, 2004).  AIC, on the other hand, does not require 

comparison between nested models, but instead measures the loss of information between two 

models through approximation (Joyce and Sullivan, 2005; Posada and Buckley, 2004). AIC is 

often considered to be the better of the two (Posada and Buckley, 2004).  Modeltest 3.7 (Posada 
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and Crandall, 1998) was used to estimate models of evolution for each of our data sets or data 

partitions, with the best model chosen using AIC (Tables 2-5), where delta is the AIC score of 

the model minus the lowest AIC score and weight is the relative likelihood of the model.  

Maximum likelihood analysis was carried out using RAxML (Stamatakis, 2006) through the 

RAxML BlackBox server (Stamatakis, 2008) using the model of evolution allowed on the server 

that closely approximates the model chosen by AIC.  1000 bootstrap replicates were performed 

to estimate nodal support.   

We performed Bayesian inference using MrBayes v3.1.2 (Ronquist and Huelsenbeck, 

2003) for both matK and AS2.  For the AS2 dataset we coded our alignments with and without 

gaps into the following: gap coded introns, gap coded exons, full AS2 partitioned into its intron 

and exon, and a total evidence alignment. Evolutionary models were determined for each 

partition and implemented in the accompanying data set’s partitioned Bayesian analysis.  

Previous research has suggested that alignment gaps can be a valuable source of phylogenetic 

signal (Egan and Crandall, 2008; Simmons et al., 2007). In order to code for gaps we treated 

each indel as a simple binary character (Simmons and Ochoterena, 2000). The binary matrix was 

created using IndelCoder (Muller, 2006), a program wrapped inside SeqState (Muller, 2005). 

Bayesian Inference was carried out on each data set with gaps treated as missing data and 

the variable model for gap coding used.  All analyses started with a random tree.  Bayesian 

inference runs consisted of four Markov chain Monte Carlo chains run for 10-25 million 

generations with trees sampled every 1000 generations.  Priors for analyses were of equal 

probability.  The amount of burnin was determined based on log likelihood scores found using 

the program Tracer (Rambaut and Drummond, 2004).  Convergence was assessed by checking if 

the standard deviation of split frequencies was below 0.01, the Potential Scale Reduction Factor 
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(PSRF) approached 1, and the effective sample size (ESS) is above 100.  Trees were summarized 

in a consensus tree with posterior probabilities as nodal support.  However our matK analyses did 

not converge within 25 million generations and the best run was used in its place.  Tracer was 

used to ensure that the best run had a good mixing of parameters and was heading towards 

convergence without any large jumps in the trace file.   

Results from our analyses for different data sets were compared to determine whether we 

could combine data sets into a total evidence analysis.  For those topologies with comparable 

taxa sets, we looked for strongly supported nodes (>70 bp or > 0.95 pp) in conflict between 

topologies (Mason-Gamer and Kellogg, 1996).  

The historically used test for tree topology was the K-H test developed by Kishino and 

Hasegawa in 1989.  This test is good for testing topologies from different data sets, but not for 

topologies derived from the same dataset; a common mistake in early phylogenetics (Goldman et 

al., 2000).  For this reason, the Shimodaira-Hasegawa (SH) test was developed.  By including a 

prior topology in the same set as the tree topology outputs of ones analysis (Goldman et al., 

2000) we can compare tree topologies across genes.  The SH test was instituted in PAUP 4.0 

(Swofford, 2002). 

Phylogenies assume bifurcation, resulting in completely resolved topologies.  However, 

when speciation is ongoing, species may still be able to hybridize, resulting in a loop in the 

topology.  Network analyses do not assume bifurcation, but allow the visualization of 

multipleunderlying evolutionary trajectories.  This could be especially helpful in visualizing 

insipient species and those where hybridization may have occurred in the recent past.  A split 

network allows us to separate taxa along parallel lines that represent the information that “splits” 

the taxa apart from each other into groups.  These parallel lines signify the difference that divides 
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groups of taxa apart from others.  Because of this, not all nodes will represent ancestral species, 

providing us with only an “implicit” view of the evolutionary history (Huson and Bryant, 2006).  

Network analysis was carried out using Splitstree 4 (Huson and Bryant, 2006) for the large 

Pueraria clade.  Nogra was included to act as outgroup, but later removed to improve 

visualization due to its long branch length that condensed the shorter branches during 

visualization.  P. lacei was removed due to shortness of sequence length that contributed to a 

lack of phylogenetic signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

The results of the maximum likelihood analyses were largely congruent with our results 

from Bayesian inference analyses.  Therefore, relationships are illustrated through Bayesian 

inference trees only. AS2 saw better resolution with gaps coded than with gaps coded as missing. 

Coding gaps did not improve resolution for matK, likely because there were only 18 gaps in the 

alignment.  All analyses show strong support for polyphyly in Pueraria and failure of Pueraria 

to produce a monophyletic clade.  Both our AS2 and matK trees suggest five distinct clades 

within the genus, spread all across the phaseoloid legumes.  P. phaseoloides, P. stricta, P. 

peduncularis, and P. wallichii all represent their own distinct lineages.  The clade containing 

multiple Pueraria species consists mainly of P. montana and its varieties along with 

pulcherrima, P. alopecuroides, P. candollei, P. imbricata, P. sikkimensis. P. edulis and P. 

calycina.   

A total evidence analysis for AS2 and matK was unable to be performed.  This was 

because of strongly supported incongruence surrounding the inclusion of tribe Psoraleeae within 

subtribe Glycininae for matK but not for AS2. In order to test whether or not this was a 

significant difference in the topology we used the SH test.  The SH test found the AS2 and matK 

trees to be significantly different with p < 0.05 

 AS2 Results—Of the 156 AS2 sequences included in our study, all 156 will be newly 

published.  Unaligned sequences ranged from 325 base pairs (Pueraria lacei) to 568 base pairs 

(Vigna radiata). Length differences were due to variation in actual sequence length as well as to 

truncated sequences due to poor sequence quality.  The alignment of these 156 accessions 

contained 669 base pairs in length due to the alignment of gaps.  Coding for indels resulted in 81 

binary characters. The alignment was also partitioned into an exon running from position 1-311 
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and an intron running from 312-669.  AIC chose unequal-frequency Kimura 3-parameter plus 

Gamma (K81uf+G) for AS2 intron, however MrBayes does not support this model.  The next 

highest model supported is Hasegawa-Kishino-Yano plus Gamma (HKY+G).  For the AS2 exon, 

AIC chose the Tamura-Nei plus Invariance of Sites plus Gamma model.  This too is unsupported 

by MrBayes thus we chose the highest scoring supported model, which was the General Time 

Reversible plus Invariance of Sites plus Gamma.  AS2 total evidence’s highest scoring model 

was the same as the exon’s.  However, its next highest supported scoring model was the 

HKY+I+G.  

 In the Bayesian inference analysis of a partitioned AS2 with gaps coded (Figures 4 & 5) 

we see support for a Pueraria clade consisting of many species of Pueraria in addition to a 

separate clade consisting of only accessions belonging to P. phaseoloides and its varieties; both 

are strongly supported with posterior probability (PP) of 1.0. However, some accessions of P. 

phaseoloides come out in the large Pueraria clade.  These sequences are being rechecked for 

quality and error.  The P. phaseoloides clade is shown to be sister to the genus Sinodolichos with 

moderate support (PP=0.92).  P. peduncularis is allied with Dumasia, Neorautanenia, 

Pachyrhizus, and Calopogonium.  It too sees a couple of its members scattered throughout the 

tree, these sequences and vouchers are being reviewed as well.  P. stricta is strongly allied with 

Teyleria as well as Neonotonia with PP=1.0. Finally we see the P. wallichii clade coming out 

separate from everything else around it with posterior nodal support of 1, supporting it as a new 

genus. 

 Network analysis of the large Pueraria clade reveals a cluster of species undergoing an 

incipient speciation (Figure 6).  Strongly supported species clusters are still conserved.  Both P. 

alopecuroides and P. pulcherrima cluster along their own separate split partitions.  P. edulis also 
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sees two of its four species clustering along another split partition.  P. montana and its varieties 

along with P. sikkimensis and the other two P. edulis lie scattered around the network.  

 matK Results—Of the 184 matK sequences included in our study, 138 will be newly 

published.  Unaligned sequences ranged from 365 base pairs (Otholobium glandulosum) to 736 

base pairs (Pueraria peduncularis).  The alignment of these 184 taxa was made up of 1128 

positions due to the inclusion of GenBank accessions that are significantly longer than our 

truncated region.  Coding for indels resulted in only 18 binary characters.  This is due to our 

amplification of a truncated version of matK (1210-1932) and the conserved nature of this 

marker.  Using the AIC, modeltest computed the highest scoring model for total matK to be GTR 

+ gamma. 

  In the MrBayes consensus tree (Figures 7 & 8) the large Pueraria clade is structured  

similarly as in the AS2 tree (inclusive of Nogra) however it does see a lower nodal support of 

PP=0.9.  The P. phaseoloides clade comes out closely related to Sinodolichos again with a PP= 

0.91.  However, it is not the closest branch to our large Pueraria clade.  The P. stricta clade has 

a posterior of 1 and shows close relationship with the genus Teyleria as well as Neonotonia.  P. 

peduncularis and P. yunnanensis come out in a clade with a posterior of 1 allied with Shuteria 

hirsuta.  P. wallichii also keeps its conserved clade with a posterior of 1 and a posterior of 0.98 

separating it from other nearby tribal clades, once again presenting strong evidence for the need 

of it’s own genus.       

 Network analysis of the large Pueraria clade sees a strong partitioning of species across 

network splits for both AS2 (Figure 6) and matK (Figure 9).  P. montana and its varieties lie 

grouped together in a split partition separate from the rest of clade.  Their sequences contain a 

conserved area missing from the rest of the other species.  P. pulcherrima partitions strongly as 
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well.  P. candollei, P. calycina, P. alopecuroides, P. imbricata, and P. sikkimensis all partition 

separately from the rest of the clade along a common split.  While still having unique enough 

sequences to justify separation of their species they all share sequence information that sets them 

apart from P. montana and its varieties. P. calycina is the most similar to the rest of the clade 

with a branch at the base of the split.  P. candollei serves as a point of origin for the splits of the 

other members of the clade with two members of P. alopecuroides splitting off from the rest.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION  

Phylogenetics can provide the means with which to reclassify and clean up the taxonomic 

quagmire that is Pueraria.  By sampling genetic information we can backtrack across the 

evolutionary lineages currently classified within the genus. Our results paint a more complex 

picture of Pueraria with greater polyphyly than previously suggested (Lee and Hymowitz, 2001; 

Egan et al, unpublished data), with five distinct evolutionary lineages instead of four.   

The subtribe Glycininae has been shown to not be monophyletic (Kajita et al., 2001).  

Polyphyletic members such as Pueraria can be strong contributors to polyphyly of a subtribe.  

Polyphyly is not a problem confined to the members of Pueraria, its subtribe, or even the legume 

family.  Previous research has found polyphyly within other genera such as Pleurospermum 

(Apiaceae; Valiejo-Roman et al., 2012 ), Polycarpon (Caryophyllaceae; Kool et al., 2007), 

Saxifraga (Saxifragaceae; Soltis et al., 1996) and Rhodomyrtus (Myrtaceae; Snow et al., 2011), 

among others.  

Chloroplast and nuclear genes have been shown to give slightly different topologies 

(Soltis and Kuzoff, 1995; Zhang et al., 2010) in previous studies of other taxa.  Our chloroplast 

matK tree strongly favors the nesting of the Psoraleeae tribe within the Glycininae subtribe 

whereas our nuclear marker, AS2, supports a large Glycininae clade which excludes Psoraleeae. 

A potential explanation for this is chloroplast capture.  Chloroplast capture is replacement of one 

plant’s chloroplast genome with another (Tsitrone et al., 2003; Acosta and Premoli, 2010).  

Chloroplast capture is often the result of hybridization (Soltis and Kuzoff, 1995; Tsitrone et al., 

2003), although recent research has shown capture through horizontal gene transfer via grafting 

(Stegemann et al, 2011).  The exact mechanics of chloroplast capture has been one of much 

speculation.  Regardless of mechanics, what we do have is a potential hypothesis that Psoraleeae 
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underwent an ancient hybridization event with Glycininae.  Future works will attempt to look 

into this hypothesis further.  

Both nuclear (AS2) and chloroplast (matK) markers gave similar trees, both indicating the 

presence of five clades of Pueraria.  This congruence is key to our interpretation of how many 

separate evolutionary lineages are currently circumscribed within the genus Pueraria.  The SH 

test found the two separate gene trees to be significantly different, likely due to the placement 

difference of the tribe Psoraleeae within Glycininae in the matK tree.  Other than the placement 

of this one tribe all other tribes and subtribes see congruence across both gene regions.  Because 

chloroplast DNA is maternally inherited while nuclear is a mix of paternal and maternal, 

congruence across both sets of data provides strong support for our parsing of a polyphyletic 

Pueraria.  

As for previous hypotheses, the results of our analyses do agree with some of the 

observations of both Lackey (1977) and van der Maesen (1985) (Figure 10).  The greatest 

agreement between their hypotheses and our research is the congruence with Lackey’s largest 

grouping of Pueraria.  His largest grouping matches our largest Pueraria clade.  Van der 

Maesen on the other hand saw only partial congruence with our clade, specifically the species of 

P. montana, P. imbricata, P. edulis. P. calycina, and P. lacei.  He instead places P. pulcherrima 

in its own group and separates P. tuberosa, P. sikkimensis, P. candollei, and P. mirifica into their 

own group within the genus Pueraria.  Van der Maesen did however match our results with the 

separation of P. phaseoloides out from the rest of Pueraria, as did Lackey.  Lackey was of the 

opinion however, that P. subspicata was a sister species rather than a variety of P. phaseoloides.  

Both did agree on a defining character that set P. phaseoloides apart, which was the presence of 

barrel shaped seeds. Van der Maesen grouped P. peduncularis, P. stricta, and P. wallichii 
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together as species that should be removed from the genus.  Lackey’s hypothesis agrees that P. 

wallichii and P. stricta should be removed from the genus.  However, he does not call for the 

removal of P. peduncularis, even though he groups it with P. wallichii.     

 While these morphological analyses can give us some information on how species are 

related and divided within their own genus, the bigger picture cannot be achieved without the 

inclusion of molecular data as well.  Morphological characteristics are important for 

identification in the field and the identification of fossil relationships (Wiens, 2004). Once we get 

the field sample back to the lab molecular data can allow us to see past morphological 

similarities that convergent evolution has given rise to in nonrelated species.   

Morphological analyses can also be subjective, leading to differing opinions on what the 

proper classification of an organism is.  Molecular data can allow us to validate and clarify these 

taxonomic hypotheses and help ascertain the diagnostic morphology (Martin et al., 2008).  This 

is evident in the similarities and dissimilarities seen between the results of our research and the 

research of both Lackey and van der Maesen.  We propose the need for taxonomical revision 

based on both our molecular data and the morphological descriptions of Lackey and van der 

Maesen. 

Pueraria Clade— In 1867 when Bentham performed his monograph he described the 

constituents of Pueraria as being united by having the habit and pod of Phaseolus with a flower 

more like Dioclea (Bentham, 1867).  At the time of his writing, the genus consisted of only nine 

members, and, despite ranges in morphological characteristics that he recognized as 

considerable, all of them were “most conveniently considered as congeners” (Bentham, 1867).  

Polyphyly within the genus Pueraria has arisen due to the use of variable convergent traits to 

justify the incorporation of a species into its genus.  These traits include the presence of trifoliate 
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leaves, regardless of shape and other characteristics, a non-articulating seedpod, elongate 

ovaries, and leguminous inflorescences born in a pseudoraceme.  An illustration tracing these 

traits among our five clades shows how they share and contract between the clades (Figure 11), 

providing evidence that their variability should not be ignored when distinguishing the correct 

members of Pueraria.  Those finer differences within these variable categories have often been 

ignored due to the difficulty of placing the specimen being described to begin with.   

Regardless of this polyphyly, one clade must retain the genus name Pueraria.  When De 

Candolle first described Pueraria in 1825 he removed Hedysarum tuberosum from its genus and 

established it as Pueraria tuberosa. His defining character was the lack of an articulating pod 

(De Candolle 1825), which is a defining characteristic of Hedysarum.  He also created the 

species Pueraria wallichii during the course of his morphological studies. He went on to 

describe the genus as having “a calyx bell somewhat elongated, five short obtuse teeth, the two 

upper more or less joined together forming a lip sometimes entire, sometimes two small teeth.  

Corolla much longer than the calyx, petals have short tabs, standard is obovate, with very small 

ear; wings oblong, with a headset, and parts of the hull welded except at their base.  Stamens are 

10 in number, all fertile, welded into a sheath, filament more or less split on the upper side, 

sometimes the tenth stamen is half separated, the anthers are small, oval.  The ovary is linear.  

Style filiform. Stigma is finished as small, rounded, hairy, when viewed under the microscope.  

The fruit is a compressed pod, planar, linear or oblong, tapering at the base, slightly stalked, 

tapering from the base of the style, in continuous two valves.  Stems are woody, climbing and 

cylindrical, their stipules are deciduous, non-welded petiole the stipels are sharp, very small, 

with winged leaves are odd, three leaflets, broad, oval, pointed, veined.  Clusters of flowers are 

axillary, branched, almost paniculate, their pedicels born germinal or dull, each responsible for a 
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single flower, the petals appear yellowish after they dry.” (Translated from French to English 

using Google Translate).  De Candolle then goes on to say that the two species he relates this to 

are Pueraria tuberosa and Pueraria wallichii.  Pueraria tuberosa is generally accepted as the 

type species (Hutchinson, 1964). 

Pueraria tuberosa falls within the large Pueraria clade, which includes most of the 

species historically classified as Pueraria. For these two reasons we propose that these species 

should retain and define the genus Pueraria.  The following general description of the genus is 

based of the most recent morphological descriptions of van der Maesen (van der Maesen, 1985). 

This general description fits all species within our large Pueraria clade: .  

 

Pueraria is a perennial woody climber with pubescent bark.  Peltate stipules are 

conserved, with other varying characteristics.  Leaves have striate to canaliculate or 

ribbed petioles, with leaflets being ovate, orbicular, rhomboid or lanceolate, lobed or not.  

However, side leaflets always obliquely express the general leaflet shape with the apex 

being long to acuminate and the leaflet being pubescent below.  Every flower has only 2 

bracteoles and stamens are monodelphous with the exception of P. imbricata and P. 

calycina, whose are diadelphous.  The flattened seed pods always contain flattened-ovoid 

rarely reniform seeds. 

 

 The Splitstree network analysis allows us to look at the species in question in an unrooted 

tree with no forced bifurcation or assumption of no recombination or hybridization events.  

Nodes within the network are considered to be ancestral species, where nodes that originate from 

two lines correspond to hybridization or recombination events (Huson and Bryant, 2006).  
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Parallel lines serve as the indicators of splitting and collapse of those lines can be seen as 

removing the data that splits species.  In both the AS2 (Figure 6) and matK (Figure 9) networks 

we see a large cluster of all the varieties of P. montana.  This points to a frequent occurrence of 

hybridization and recombination in ancestral species, some of which may still be extant.  Our 

conserved clusters of species show a high level of robustness for their continued separation at the 

species level, an observation that is unattainable within the normal confines of our phylogenetic 

trees that assume a tree-like evolutionary history (Bryant and Moulton, 2004), which can 

oversimplify the evolutionary view (Lo et al., 2010).  The tight grouping of reticulate events 

within varieties of P. montana also provides confidence in the their designation as varieties 

rather than separate species through the sharing of the same lineage.   

P. phaseoloides Clade—P. phaseoloides comes out close to the large Pueraria clade and 

shares many characteristics with its members.  Both our Pueraria clade species and P. 

phaseoloides are perennial climbers with pinnately trifoliate leaves with ovate to rhomboid 

leaflets that are pubescent below.  Ribs are prominent with petiolules barely thickened.  Both 

have elongated pubescent ovaries with terminal stigmas that are globular and pencillate at the 

base.  There are a few key morphological differences between the two that forms the basis for 

their separation.  Chief among them is the difference in pod and seed structure.  Pods tend to be 

flattened and oblong in Pueraria.  However P. phaseoloides has round cylindrical pods with 

rounded barrel shaped seeds as opposed to the flattened ovoid seeds found in Pueraria.  P. 

phaseoloides also prefers a tropical low humidity and altitude environment while species like P. 

montana prefer warm to temperate high altitude environments (Heider et al., 2007).  Pueraria 

phaseoloides started as Roxburgh’s Dolichos phaseoloides (Bentham, 1867), however Bentham 

established the genus Neustanthus for Dolichos phaseoloides (Bentham, 1852).  His rational for 
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creating the new genus Neustanthus rather than merging Dolichos phaseoloides with Pueraria 

was the presence of non-articulating pods on D. phaseoloides.  In 1867 upon further review of 

many specimens of P. tuberosa he concluded that the original specimen drawing must have had 

the non-articulating pod added by the artist. Because of the lack of a non-articulating pod 

Bentham later merged his genus of Neustanthus into Pueraria (Bentham, 1867).   

 P. phaseoloides exhibits a close alliance with the genus Sinodolichos.  It is interesting to 

note that Sinodolichos means “China”-Dolichos (Allen et al., 1981) because Pueraria 

phaseoloides was originally Dolichos phaseoloides (Roxburgh, 1832).  Sinodolichos can be 

described as a perennial twining herb, with axillary racemes, ovate bracts, a campanulate calyx, 

an orbicular standard, an obovate-oblong keel, and linear-oblong legumes.  P. phaseoloides on 

the other hand is an herbaceous vine, with solitary racemes, linear-lanceolate bracts, a pilose 

calyx, a suborbicular standard, a falcate keel, and cylindrical legumes.  Based on these 

morphological differences and considerable molecular distance based on the fairly long branch 

lengths on the phylogenies (Figures 5 & 8), which separate these two clades, we propose the 

creation of a separate genus for P. phaseoloides.  The work of Bentham sets the precedence for 

the name of that genus to be Neustanthus.  This genus will accommodate N. phaseoloides, N. 

phaseoloides var. subspicata, and N. phaseoloides var. javanica.   

P. stricta Clade—Kurz first described Pueraria stricta in 1873 along with two other 

Pueraria specimens P. hirsuta and P. brachycarpa.  Both of the latter epithets are now 

recognized as synonyms of P. stricta.  P. stricta is unique within Pueraria because it is a 

straggling shrub with flattened pods containing 5-10 seeds per pod, with soft hooked bracts that 

are more or less pubescent.  It is thought that P. colletii might be the closest relative (Prain, 

1897), however, under the most recent treatment by van der Maesen (2002), it too is recognized 
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as a synonym of P. stricta.  Lackey proposed that P. colletii may be allied to Neonotonia based 

on the presence of Canavanine (Lackey, 1977), and as a synonym this would mean the same for 

P. stricta.  However it differs in the areas of calyx shape, flower size and shape, pod size and 

shape, and inflorescence size (van der Maesen, 1985).  In P. stricta inflorescences are axillary, 

many flowered with one main branch.  It bears 4-6 flowers supported by soft bracts.  Pods are 

flattened, oblong like Pueraria with failed ovules rarely constricting, diagonally striate, with 5-

10 seeds and valves curling when ripe, with an interior lined with a thin papery layer.   

 P. stricta at the molecular level, appears to have a close relationship for Teyleria.  

However, there are morphological differences that would point to keeping them apart.  P. stricta 

is a shrub while Teyleria is considered an herb, P. stricta also has a single branch axial 

inflorescence as opposed to having irregular branches at the lower parts of the inflorescence.  P. 

stricta also has elongated ovaries instead of sessile.  Based on the morphology and the nodal 

support values for P. stricta we propose the creation of an entirely new and separate genus.  

Since the P. stricta type was initially described in Pueraria, there is no precedence for the genus 

name.  

P. peduncularis Clade—Bentham first described Pueraria peduncularis in 1867.  In 

figures 5 & 8, P. peduncularis is shown as strongly grouping with P. yunnanensis, a species long 

recognized as a synonym of P. peduncularis (e.g. Lackey 1977 and van der Maesen 1985) while 

others support its rank as a species (Le and Zhu, 2009) based on microscopic analyses of leaves 

and seeds. Like the rest of Pueraria it is a woody perennial climber with peltate stipules, striated 

petioles, ovate to rhomboid leaflets with the side ones obliquely so and an apex that is long to 

acuminate.  It also has 2 bracteoles per flower, flattened oblong pods and flattened ovoid seeds.  

By all means it looks very much like a Pueraria, yet it forms its own clade with a long branch 
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length and very strong nodal support near the base of subtribe Glycininae.  What does set it apart 

from its former peers is a corolla that is 2-3 times as long as the calyx, with slender and long 

pedicels.  The flowers are not crowded with 4-7 per node and inflorescences unbranched with 1-

2 per axil and seedpods that are flat and papery.  P. peduncularis does have diadelphous stamens, 

a morphology only found in P. imbricata and P. calycina.   There are other characteristics that 

combined with the small morphological differences begins to clarify the separation.  Unlike other 

Pueraria species P. peduncularis lacks paraveinal mesophyll, a trait it shares with P. wallichii 

another species separate from Pueraria (Lackey, 1977). This suite of morphological differences 

relegate P. peduncularis be classified as a new genus. 

P. wallichii Clade—Pueraria wallichii was first described in 1825 during the creation of 

Pueraria as the second member of the genus.  P. wallichii shares with Pueraria striated petioles,  

leaflets that are pubescent below and whose apex are long-acuminate.  It also has 2 bracteoles 

per flower, with monodelphous stamens.  Chief among its differences is the fact that P. wallichii 

is a shrub instead of a climbing vine.  Its stipules are very caducous rather than peltate.  The 

corolla is less than twice as long as the calyx with the calyx lobes short to obtuse.  Inflorescences 

can be either axillary or terminal and seedpods have a somewhat S shape.  Like P. phaseoloides 

it has a distinctly different seed shape, having brown with black mosaic reniform shaped seeds.   

 P. wallichii is morphologically distinct from Pueraria, and it’s interesting how things 

might have been if de Candolle had designated it as the type rather than P. tuberosa.  The 

removal of P. wallichii along with P. stricta from Pueraria helps to reinforce the description that 

Pueraria is strictly a climbing vine genus.  Seed shape also serves as a reliable distinguishable 

characteristic as it is one of the main differences between P. wallichii and P. phaseoloides.  P. 

wallichii also sees what is probably the strongest clade among our Pueraria species.  Across all 
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trees it sees maximum nodal support for both RAxML and MrBayes.  Coupled with 

morphological data, it becomes the strongest example for revision.  Due to its creation stemming 

from the differences between Hedysarum and what would become Pueraria along with the 

results of our research we propose the creation of a new genus for this one species.   

Thoughts on missing species—It is unfortunate that we were unable to sample all the 

species of Pueraria.  P. bella is a very rare specimen found only in hard to reach places.  Lackey 

suggested possibly transferring it to Neonotonia (Lackey 1977b) but van der Maesen (1985) 

presumed an alliance with P. candollei even though he stated that it keyed out with P. montana.  

Because of these diverging hypotheses, we reserve judgment as to the placement of P. bella.  P. 

bouffordiii is a relatively new species described only recently (Ohashi, 2005), that shares a 

considerable number of morphological traits with members of the Pueraria clade where we are 

confident that it would be placed phylogenetically. P. xyzhui was also recently described in the 

Journal of Japanese Botany (Ohashi et al, 2006); pollen morphology places it within the 

Pueraria clade.   Pueraria maclurei was first described in a Technical Bulletin of the U.S. 

Department of Agriculture (Hermann, 1962).  Based on the fact that its basionym is Glycine 

maclurei, it seems likely that it would stay a member of Pueraria.  P. stracheyi is described as 

herbaceous, flower pedicels nearly or quite as long as the calyx, having branches with short 

deciduous hairs, flowers in a raceme, leaflets membranous and very thin, and a reddish corolla 

that is distinctly spurred (Hooker, 1876). Lackey considered the possibility of it being a Shuteria 

(Lackey, 1977) while van der Maesen simply noted Lackey’s consideration (van der Maesen, 

1985). Due to the brevity of the description and the lack of resources, we reserve judgment on 

where this species might place in our tree. P. garhwalensis was described in the Journal of the 

Bombay Natural History Society (Dangwal and Rawat, 1996).  Specimens of this taxon were 
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formerly united with Pueraria ferruginea, a synonym of Shuteria hirsuta.  Because of this, it is 

possible that this species could be united with either Shuteria or the P. phaseoloides clade.  We 

reserve judgment as to its placement until we can examine specimens therefrom.  

Conclusion—In conclusion, our phylogenetic study shows strong support for the 

polyphyly of the genus Pueraria as it is currently described.  Lackey and van der Maesen both 

had some of their classifications correct, but ultimately neither one was entirely accurate (Figure 

10).  Lackey did correctly classify the relatedness of the species that would come to form what 

we propose is the correct makeup of the genus Pueraria.  We propose the need to resurrect 

Neustanthus to include P. phaseoloides and its varieties, and to create three new genera to 

accommodate P. stricta, P. peduncularis, and P. wallichii.  The newly circumscribed Pueraria 

will contain P. montana and its varieties along with P. pulcherrima, P. alopecuroides, P. 

candollei, P. imbricata, P. sikkimensis, P. edulis and P. calycina.  
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Table 1. Recognized Pueraria species from 3 treatments; varietal epithets are not listed.  

 

Classification according to Lackey (1977b) with spelling and authorships therefrom: 

Group A: P. calycina Franchet; P. mirifica Airy Shaw & Suvatabandhu; P. lobata (Willd.) 

Ohwia; P. edulus Pampan; P. montana (Lour.) Merr.; P. candollei Grah.; P. tuberosa DC.; P. 

lacei Craib; P. alopecuroides Craib; P. sikkimensi Prain; P. pulcherrima (Merr.) Merr.  

Group B: P. subspicata Benth. P. phaseoloides (Roxb.) Benth.  

Group C: P. colletii Prain; P. brachycarpa Kurz; P. bella Prain; P. stricta Kurz  

Group D: P. wallichii DC.; P. peduncularis Grah.; P. stracheyi Bak. 

 

Additional species recognized by either van der Maesen (1994) or Wu & Thulin (2010) (some 

may be synonyms): P. imbricata van der Maesen; P. rigens Craib; P. maesenii Niyomdham; P. 

bouffordii H. Ohashi; P. xyzhui H. Ohashi & Iokawa. 
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Table 2. Modeltest results for the AS2 exon partition.  
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Table 3.  Modeltest results for the AS2 intron partition. 
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Table 4.  Modeltest results for the AS2 total gene region.  Model selected for analysis 

highlighted.   
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Table 5.  Modeltest results for the matK total gene region.  Model selected for analysis 

highlighted.   
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Figure 1.  Native (black) and introduced (green; primarily P. lobata and P. phaseoloides) range 

of Pueraria. Modified from van der Maesen 1985. 
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Figure 2. Lackey’s (1977) morphologically based groups (left) vs. van der Maesen’s (1985) 

(right). 
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Figure 3: Domain organization and characteristic features of AS2. The exons are color coded in 
green, the intron in red, the C-motif in blue, and the zipper-like-motif in purple. 
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Figure 4.  Phylogenetic relationships of Pueraria in the context of phaseoloid legumes based on 

Bayesian Inference with simple indel coding and partitioning for the AS2 exon and intron.  

Posterior probabilities shown near each node.  P. wallichii clade highlighted in blue. Subtribe 

Glycininae (Figure 5) connects to the top of this figure.  
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Figure 5.  Phylogenetic relationships of Pueraria in the context of phaseoloid legumes based on 

Bayesian Inference with simple indel coding and partitioning for the AS2 exon and intron.  

Subtribe Glycininae is shown here with posterior probabilities shown near each node. The 

phylogeny continues by connecting at the bottom to Figure 4.  The Pueraria clade is highlighted 

in green, the P. phaseoloides clade in teal, P. stricta clade in red, and the P. peduncularis clade 

in purple.  
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Figure 6.  Network analysis via Splitstree of the AS2 Pueraria clade. 
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Figure 7.  Phylogenetic relationships of Pueraria within the context of phaseoloid legumes 

based on Bayesian Inference of the best matK run with total evidence and no gap coding. 

Posterior probability shown near each node.  P. wallichii clade highlighted in blue. Subtribe 

Glycininae (Figure 8) connects to the top of this figure. 
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Figure 8.  Phylogenetic relationships of Pueraria in the context of phaseoloid legumes based on 

Bayesian Inference of the best matK run with total evidence and no gap coding.  Subtribe 

Glycininae and tribe Psoraleeae are shown here with posterior probabilities shown near each 

node.  The phylogeny continues by connecting at the bottom to Figure 7. The Pueraria clade is 

highlighted in green, the P. phaseoloides clade in teal, P. stricta clade in red, and the P. 

peduncularis clade in purple. 
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Figure 9.  Network analysis via Splitstree of the matK Pueraria clade. 
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Figure 10.  Graphical comparisons between the hypotheses of Lackey (1977), van der Maesen 

(1985), and our research results (shown from left to right in that order).  Clades from our tree are 

highlighted in their corresponding colors. 
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Fig 11.  A map of the distinct variable morphological characteristics within the current 

description of the genus Pueraria.  The top box lists the common characteristics that all 

members of our Pueraria analysis share.  Colored lines matching the species or clade they 

correspond to trace the shared convergent evolutionary traits that have helped pave the way to 

the polyphyly present in the genus today. 

 

 



 

LITERATURE CITED 

Acosta, M.C., Premoli, A.C. 2010. Evidence of chloroplast capture in south american 

 Nothofagus (subgenus Nothofagus, Nothofagaceae). Molecular Phylogenetics and 

 Evolution.  54: 235-242  

Allen, E.K., Allen, O.N. 1981. The Leguminosae: a source book of characteristics, uses and 

 nodulation.  Univeristy of Wisconsin. 

Bentham G. 1852. Neustanthus phaseoloides (Roxb.) in Plantae Junghuhnianae 2:235. Lugduni-

 Batavorum [i.e. Leiden, The Netherlands] 

Bentham, G. 1867. Notes on Pueraria, D.C., correctly referred by the author to Phaseoleae. 

Journal of the Linnean Society of London, Botany, 9:121-125. 

Britton, K. O., Orr D., Sun J. 2002.  “Pest status of weed.” in: Van Driesche, R., et al., 2002, 

biological control of invasive plants in the eastern united states, USDA Forest Service 

Publication FHTET-2002-04, 413 p.  

Bryant, D., Moulton, V. 2004. Neighbor-Net: an agglomerative method for the construction of 

phylogenetic networks. Molecular Biology and Evolution. 21(2): 255-265 

Corley, R. N.,Woldeghebriel, A., Murphy, M. R. 1997. Evaluation of the nutritive value of 

 kudzu (Pueraria lobata) as a feed for ruminants. Animal Feed Science and Techology 68:

 183-188 

Dangwal, L. R., Rawat, D. S. 1996. Pueraria garhwalensis. Journal of the Bombay Natural 

 History Society. 93(3): 570 

De Candolle, A. P. 1825. Mémoires sur les Légumineuses. Ann. Sci. Nat. 4:97. 



48 
 

Doyle, J. J., Doyle, J. L., Harbison, C. 2003. Chloroplast-expressed glutamine synthetase in 

 Glycine and related Leguminosae: phylogeny, gene duplication, and ancient polyploidy. 

 Systematic Botany 28:567-577. 

Edgar R.C. 2004. "MUSCLE: multiple sequence alignment with high accuracy and high 

 throughput". Nucleic Acids Research 32 (5): 1792–97. doi:10.1093/nar/gkh340. 

 PMC 390337. PMID 15034147 

Egan, A.N., Crandall, K.A. 2008. Incorporating gaps as phylogenetic characters across eight 

 DNA regions: ramifications for north american psoraleeae (Leguminosae). Molecular 

 Phylogenetics and Evolution 46: 532–546. 

Egan, A. N., Doyle, J.J. 2010. A comparison of global, gene-specific, and relaxed clock methods 

in a comparative genomics framework: dating the polyploid history of soybean (Glycine 

max). Systematic Biology, 59(5), 534-547. 

Everest, J.W., Miller, J.H., Ball, D.M., Patterson, M. 1999. Kudzu in Alabama history, uses, 

 and control. Alabama Cooperative Extension System. ANR-65. 

Forseth, I.N., Innis, A.F. 2004. Kudzu (Pueraria montana): history, physiology, and 

 ecology combine to make a major ecosystem threat. Critical Reviews in Plant 

 Sciences. 23(5): 401-413. 

Frye, M.J., Hough-Goldstein, J., Kidd, K.A. 2012. Response of kudzu (Pueraria montana var. 

 lobata) seedlings and naturalied plants to simulated herbivory. Invasive Plant Science 

 and Management. 5(4): 417-426. 

Goldman, N., Anderson, J.P., Rodrigo, A.G. 2000. Likelihood-based tests of topologies in 

 phylogenetics. Systematic Biology. 49(4): 652-670. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fnar%2Fgkh340
http://en.wikipedia.org/wiki/PubMed_Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337
http://en.wikipedia.org/wiki/PubMed_Identifier
http://www.ncbi.nlm.nih.gov/pubmed/15034147


49 
 

Hasegawa, M., Kishino, H., Saitou, N. 1991. On the maximum likelihood method in 

 molecular phylogenetics. Journal of Molecular Evolution. 32: 443-445. 

Heider, B., Fischer, E., Berndl, T., Schultze-Kraft, R. 2007. Analysis of genetic variation  among 

 accesions of Pueraria (Lour.) Merr. var. lobata and Pueraria phaseoloides 

 (Roxb.) Benth. based on RAPD markers.  Genetic Resources and Crop Evolution.  

 54(3): 529-542. 

Hermann, J.F.  1962. A revision of the genus Glycine and its immediate allies. United States 

Department of Agriculture. Technical Bulletin No. 1268 

Hickman, J.E., Wu, S., Mickley, L.J., Lerdau, M.T. 2010. Kudzu (Pueraria montana) 

 invasions doubles emissions of nitric oxide and increases ozone pollution.  Proceedings of 

 the National Academy of Sciences. 107(22): 10115-10119. 

Hill, J.H. 1985. Kudzu-vine, Pueraria lobata (Willd.) Ohwi Leguminosae (Fabaceae). 

 Regulatory Horticulture , Weed Circular No. 9.  

Hilu, K.W., Borsch, T., Muller, K., Soltis, D.E., Soltis, P.S., Savolainen, V., Chase, M.W.,

 Powell, M.P., Alice, L.A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T.A.B., Jens, 

 G.R., Campbell, C.S., Chatrou, L.W.. 2003. Angiosperm phylogeny based on matK 

 sequence information. American Journal of Botany 90: 1758-1776. 

Hooker, J.D. 1876. The flora of british India.  London :L. Reeve 

Hu, J.-M., Lavin, M., Wojciechowski, M.F., Sanderson, M.J., 2000. Phylogenetic systematics of 

 the tribe millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its 

 implications for evolutionary patterns in papilionoideae. Am. J. Bot. 87, 418–430. 

Huson, D.H., Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. 

 Molecular Biology and Evolution. 23(2): 254-267 



50 
 

Hutchinson, J. 1964. The genera of flowering plants. Oxford. 1:426. 

Iwakawa, H., Ueno, Y., Semiarti, E., Onouchi, H., Kojima, S., Tsukaya, H., Hasebe, M., Soma, 

 T., Ikezaki, M., Machida, C. and Machida, Y.2002. The ASYMMETRIC LEAVES2 gene 

 of Arabidopsis thaliana, required for formation of a symmetric flat lamina, encodes a  

 member of a novel family of proteins characterized by cystein repeats and a leucine 

 zipper. Plant Cell Physiology 43, 467-478.  

Kajita, T., Ohashi, H., Tateishi, Y., Bailey, C.D., Doyle, J.J. 2001. rbcL and legume phylogeny, 

  with particular reference to Phaseoleae, Millettieae, and allies.  Systematic Botany. 

  26(3):515-536. 

Kashemsanta, M. C., Lakshnakara, S. K., Airy Shaw, H. K. 1952. A new species of Pueraria 

 (Leguminosae) from Thailand, yielding an estrogenic principle. Kew Bull. 7:549-551. 

Keng, H. 1974. Economic plants of ancient north China as mentioned in Shih Ching (Book of). 

 Econ. Bot. 28:391-410. 

Keung, W. M., Vallee, B. L. 1993. Daidzin and daidzein suppress free-choice ethanol intake 

 by Syrian goden hamsters. Proceedings of the National Academy of Sciences. USA 

 90:10008-10012. 

Keung, W. M., Lazo, O., Kunze, L., Vallee, B. L. 1995. Daidzin suppresses ethanol 

 consumption by Syrian golden hamsters without blocking acetaldehyde metabolism. 

  Proceedings of the National Academy of Sciencies. USA 92:8990-8993. 

Kool, A., Bengston, A., Thulin, M. 2007. Polyphyly of Polycarpon (Caryophyllaceae) inferred 

 from dna sequence data. Taxon. 56(3): 775-782 

Lackey, J. A. 1977. A synopsis of Phaseoleae (Leguminosae, Papilionoideae). Ph.D. 

Dissertation, Ames, Iowa, U.S.A. 



51 
 

Lackey, J. A. 1977b. Neonotonia, a new generic name to include Glycine wightii (Arnott) 

Verdcourt (Leguminosae, Papilionoideae). Phytologia 37: 209-212. 

Le, Z.-F. and X.-Y. Zhu. 2009. Pueraria yunnanensis (Fabaceae) reinstated. Annales Botanici 

Fennici. 46:419-424.   

Lee, J., Hymowitz, T.  2001.  A molecular phylogenetic study of the subtribe Glycininae 

 (Leguminosae) derived from the chloroplast DNA rps16 intron sequences.  American 

 Journal of Botany.  88(11): 2064-2073. 

Lo, E.Y.Y., Stefanovic, S., Dickinson, T.A. 2010. Reconstructing reticulation history in a 

 phylogenetic framework and the potential of allopatric speciation driven by polyploidy 

 in an agamic complex in Crataegus (Rosaceae). Evolution. 64(12): 3593-3608 

Martin, C.V., Little, D.P., Goldenberg, R., Michelangeli, A. 2008. A phylogenetic evaluation of 

 Leandra (Miconieae, Melastomataceae): a polyphyletic genus where the seeds tell the 

 story, not the petals. Cladistics. 24: 315-327 

Mason-Gamer, R.J., Kellogg, E. A. 1996. Testing for phylogenetic conflict among molecular 

data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524-545. 

Miller, J. H. 1985. Testing herbicides for kudzu eradication on a piedmont site. Southern Journal 

 of Applied Forestry 9: 128-132. 

Mooney, H. A., Cleland, E. E. 2001. The evolutionary impact of invasive species. Proceedings of 

the National Academy of Sciences. USA 98:5446-5451. 

Moorhead, D. J., Johnson, K. D. 1996. Controlling kudzu in CRP stands. Georgia Forestry 

 Commission Conservation Reserve Program Note 15. 

Müller K. 2005. SeqState - primer design and sequence statistics for phylogenetic DNA data 

sets. Applied Bioinformatics. 4(1):65-69 



52 
 

Müller K. 2006. Incorporating information from length-mutational events into phylogenetic 

analysis.  Molecular Phylogenetics and Evolution 2006, 38:667-676 

Ohashi, H. 2005. A new species of Pueraria (Leguminosae) from Guizhou, China. Journal of 

Japanese Botany, 80(1), 9-13. 

Ohashi, H., Iokawa, Y. 2006. A new species, Pueraria xyzhuii (Leguminosae) from Yunnan, 

China, with pollen stainability and pollen morphology in comparison to related species. 

Journal of Japanese Botany, 81(1), 26. 

Pappert, R.A., Hamrich, J.L., Donovan, L.A. 2000. Genetic variation in Pueraria lobata 

 (Fabaceae), an introduced, clonal, invasive plant of the southeastern united states. 

 American Journal of Botany. 97(9): 1240-1245. 

Pemberton, R. W. 1988. Northeast Asia as a source for biological agents for american weeds. 

Pages 651-657 in Proceedings of the VII International Symposium on Biological Control 

of Weeds (E. S. Deflosse, ed.), Rome, Italy. 

Posada, D., Crandall, K. A. 1998. Modeltest: testing the model of DNA substitution. 

Bioinformatics, 14(9), 817-818. 

Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: 

 advantages of akaike information criterion and bayesian approaches over likelihood 

 ratio tests. Systematic Biology. 53(5):793-808. 

Prain, D. 1897. Noviciae Indicae 15. Some additional Leguminosae. J.Asiatic Soc. Bengal 

66:419-420. 

Rambaut, A., 2002. Se-Al: Sequence alignment editor, version 2.0. 

 http://tree.bio.ed.ac.uk/software/seal/ 

http://tree.bio.ed.ac.uk/software/seal/


53 
 

Ronquist, F., Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed 

models. Bioinformatics 19:1572-1574. 

Sage, R.F., Coiner, H.A., Way, D.A., Runion, G.B., Prior, S.A., Torber, A.T., Sicher, R.,  Ziska, 

 L. 2009.  Kudzu [Pueraria montana (Lour.) Merr. Variety lobata]: A new source of 

 carbohydrate for bioethanol production. Biomass and Bioenergy. 33(1): 57-61. 

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, 

R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O'Neil, I. M. Parker, J. N. 

Thompson, and S. G. Weller. 2001. The population biology of invasive species. Annual 

Review of Ecology and Systematics 32:305-332. 

Salako, F.H., Kirchhof, G., Tian, G. 2006.  Management of a previously eroded tropical  

 Alfisol with herbaceous legumes: soil loss and the physical properties under  

 mound tillage.  Soil and Tillage Research. 89(2):185-195. 

Särkinen T, Staats M, Richardson J.E., Cowan R.S., Bakker F.T. 2012. How to open the treasure 

 chest? optimising DNA extraction from herbarium specimens. PLoS   

 ONE 7(8): e43808. doi:10.1371/journal.pone.0043808 

Shochat, E., Lerman, S. B., Anderies, J. M., Warren, P. S., Faeth, S. H., Nilon, C. H. 2010. 

Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199-208. 

Shurtleff, W., Aoyagi, A. 1977. The book of kudzu, a culinary and healing guide. Autumn 

 Press, Brookline, MA. 

Simberloff, D. 2000. Introduced species: the threat to biodiversity and what can be done. 

http://www.actionbioscience.org/biodiversity/simberloff.htmlactionbioscience.org. 

Simmons, M.P., Muller, K., Norton, A.P. 2007. The relative performance of indel-coding 

methods in simulations. Molecular Phylogenetics and Evolution. 44(2): 724-740. 

http://www.actionbioscience.org/biodiversity/simberloff.htmlactionbioscience.org


54 
 

Smith, F. P. 1969. Chinese materia medica: vegetable kindgom. Ku T'ing Book House, Taipei, 

 Taiwan. 

Snow, N. McFadden, J., Evans, T.M., Salywon, A.M., Wojciechowski, M.F., Wilson, P.G. 2011. 

 Morphological and molecular evidence of polyphyly in Rhodomyrtus (Myrtaceae: 

 Myrteae). Systematic Botany. 36(2): 390-404 

Soltis, D.E., Kuzoff, R.K. 1995. Discordance between nuclear and chloroplast phylogenies in the 

 heuchera group (Saxifragaceae). Evolution. 49(4): 727-742 

Soltis, D.E., Kuzoff, R.K., Conti, E., Gornall, R., Ferguson, K. 1996. matK and rbcL gene 

 sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. American Journal 

 of Botany. 83(3): 371-382 

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 

thousands of taxa and mixed models. Bioinformatics 22:2688-2690. 

Stamatakis, A., Hoover, P., Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML 

web-servers. Systematic Biology, 75(5): 758-771. 

Stefanovic, S., Pfeil, B. E., Palmer, J. D., Doyle, J. J. 2009. Relationships among phaseoloid 

 legumes based on sequences from eight chloroplast regions. Syst. Bot. 34:115-128. 

Stegemann, S., Keuthe, M., Greiner, S., Bock, R. 2011. Horizontal transfer of chloroplast 

 genomes between plant species. Proceedings of the National Academy of Sciences. 

 109(7): 2434-2438 

Sullivan, J., Joyce, P. 2005. Model selection in phylogenetics.  Annual Review of  Ecology, 

 Evolution, and Systematics. 36: 445-446. 



55 
 

Sun, J.H., Li, Z-C, Jewett, D.K., Britton, K.O., Ye, W.H., Ge, X-J. 2005.  Genetic  

 diversity of Pueraria lobata (kudzu) and closely related taxa as revealed by inter- simple 

 sequence repeat analysis.  Weed Research. Vol 45(4): 255-260. 

Swofford, D.L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 

 Version 4. Sinauer Associates, Sunderland, Massachusetts. 

 

Tsitrone, A., Kirkpatrick, M., Levin, D.A. 2003. A model for chloroplast capture. Evolution. 

 57(8): 1776-1782. 

Valiejo-Roman, C.M., Terentieva, E.I., Pimenov, M.G., Kljuykov, E.V., Samigullin, T.H., 

 Tilney, P.M. 2012. Broad polyphyly in Pleurospermum s.l. (Umbelliferae-Apioideae) as 

 inferred from nrDNA ITS and chloroplast sequences. Systematic Botany. 37(2):573-581 

van der Maesen, L. J. G. 1985. Revision of the genus Pueraria with some notes on Teyleria 

Leguminosae. Wageningen Agricultural University Papers 85:1-130. 

van der Maesen, L. J. G. 1994. Pueraria, the kudzu and its relatives, an update of the taxonomy. 

Pages 55-86 in Proceedings of the First International Symposium on Tuberous Legumes, 

Gualdeloupe, F.W.I. (M. Sorensen, ed.) DSR Boghandel, Fredericksberg, Denmark. 

van der Maesen, L. J. G. 2002. Pueraria: botanical characteristics. Pages 1-28 in Pueraria: The 

genus Pueraria (W. M. Keung, ed.) Taylor & Francis, New York City, NY. 

van der Maesen, L. J. G., and S. M. Almeida. 1988. Two corrections to the nomenclature in the 

revision of Pueraria DC. Journal of the Bombay Natural History Society 85:233-234. 

Ward, D.B. 1998. Pueraria montana: The correct scientific name of the kudzu. Southern  

 Appalachian Botanical Society. Castanea. 63(1):76-77. 



56 
 

Wiens, J.J. 2004. The role of morphological data in phylogeny reconstruction. Systematic 

 Biology. 53(4): 653-661 

Xie, C. I., Lin, R. C., Antony, V., Lumeng, L., Li, T. K., Mai, K., Liu, C., Wang, Q. D., Zhao, Z. 

 H., Wang, G. H. 1994. Daidzin, an antioxidant isoflavonoid, decreases blood alcohol 

 levels and shortens sleep time induced by ethanol intoxication. Alcoholism: Clinical and 

 Experimental Research. 18:1443-1447. 

Xu, Y., Sun, Y., Liang, W., Huang, H. 2002. The Arabidopsis AS2 gene encoding a 

 predicted leucine-zipper protein is required for the leaf polarity formation. Acta Botanica 

 Sinica. 44: 1194-1202. 

Zhu, Y.-P., H.-M. Zhang, and M. Zeng. 2002. Pueraria (Ge) in traditional chinese herbal 

 medicine. Pages 59-69 in Pueraria: The genus Pueraria (W. M. Keung, ed.) Taylor & 

 Francis, New York City, NY. 

 

  



 
 

Appendix A.  Sample Collection Information. 

 

Genus Species Sample Voucher 

Adenodolichos bussei E746 E.A. Robinson 6064 

 
paniculatus E747 P.K. Rwaburindore 1500 

Alysicarpus vaginalis E750 D.H. Lorence 9830 

Amphicarpaea bracteata E05 ANE 326 

 
africana E751 D. Arusho 24654 

Apios  americana E755 Unknown 

 
priceana E755 A. Bruneau 254 

Arthroclianthus deplanchei E897 J.N. Labat 3911 

 
grandifolius E898 J.N. Labat 3918 

Bituminaria acaulis E817 W.T. Stearn (K) 

 
bituminosa E20 Unknown 

Bolusafra bituminosa E1554 Egan 
Butea monosperma E757 D. Neill 5220 

 
superba E23 Ho 77.639 

Cajanus scarabaeoides E658 ANE_11_57 

 
reticulatus E657 ANE_11_37 

Calopogonium caeruleum E27 Unknown 

 
mucunoides E28 Unknown 

Campylotropis hirtella E761 D.E. Boufford et al. 29343 

 
macrocarpa E763 Wang Zhon-tao et al. 375 

Centrosema virginianum E39 Unknown 
Clitoria ternatea E52 VZ-1 

 
mexicana E45 Bonet 53 

Cullen tenax E72 246747 
Dendrolobium umbellatum E650 ANE_11_48 
Desmodium floridanum E80 Unknown 

 
tortuosum E665 ANE_11_39  

Dipogon lignosus E94 Doyle 1297 
Dolichopsis paraguariensis E770 S.A. Renvoize 3552 
Dolichos falciformis E1552 ANE 13-7 

 
trilobus E1551 ANE 13-3 

Dumasia cordifolia E731 Unknown 

 
villosa E101 Unknown 

Dysolobium  grande TK226 Kajita 
Eminia antennulifera E1506 S. Bidgood et al. 5302(K) 
Eriosema diffusum E779 R. Aguilar 6667 

 
preptum E781 H.J. Venter&A. Venter 10237 

Erythrina speciosa E178 Anne Bruneau 
Flemingia rhodocarpa E189 Zaire 9-11-87 
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strobilifera E190 Unknown 

 
parviflora E666 PIF38257 - P.I. Forster 

Glycine max GmpH2 
 

 
max GmpH1 

 

 
tomentella GtdH1 

 Hardenbergia comptoniana E200 CHIL 664 
Hoita macrostachya E783 L. Ahart 10420 
Hylodesmum podocarpum E794 H. Ohashi & Y. Ohashi 61828 
Kennedia prostrata E219 CHIL740 

 
rubicunda E224 CBG-1 

Kummerowia stipulacea E784 Guocheng-yong 20065-436-4 

 
striata E785 W.P. Longbottom 14077 

Lablab purpurues E226 Unknown 
Ladeania lanceolata E451 Hartman 13554 
Lespedeza bicolor E795 Guocheng-yong 200065-404-4 

 
cuneata E1540 AN Egan 

Macroptilium atropurpureum E671 ANE_11_5 

 
lathyroides E672 ANE_11_58 

Macrotyloma africanum E774 Z.L. Magombo et al. 72 

 
biflorum E238 Seydel 2803 

Melliniella micrantha E798 J.E. Madsen 5875 
Mucuna gigantea E676 Holland_3002 
Mysanthus uleanus E789 N.G. Jesus 858 et al. 
Neonotonia wightii E264 VI 4 
Neorautanenia amboensis E790 R. Seydel 1328 a 

 
mitis E266 Belsky 505 

Nephrodesmus albus E957 J.N. Labat 3932 

 
ferrugineus E958 J.N. Labat 3910 

Nogra grahamii E270 Unknown 

Non Pueraria 
 

E1571 12-278 
Orbexilum lupinellus E279 Unknown 
Otholobium bracteolatum E296 LL-Tex. 

 
pubescens E1564 Salas 16136 

 
striatum E309 LL-Tex. 

Otoptera burchellii E311 Leistner 594 
Pachyrhizus erosus E321 AE 511 

 
sp. E1538 AN Egan 12-240 

Paracalyx scariosus E1557 V.d. Maesen 2357 
Periandra densiflora E1556 Jrwin et al 17057 

 
mediterranea E1555 Jrwin eta 30424 

Phaseolus vulgaris E419 CIAT 616798 

Pseudarthria confertiflora E942 Kenya Chyulu hills 
Pseudeminia comosa E430 Unknown 
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comosa E1502 Pocs, T. & Orban S. 89157/EK 

Pseudovigna argentea E435 Unknown 
Psophocarpus scandens E440 Unknown 
Pueraria alopecuroides E1481 Sorenson, Th. Et al. 1651 K 

 
alopecuroides E1524 PA1 AN Egan & Xubo JP1 

 
alopecuroides E1530 AN Egan 12_273 Xubo JP1 

 
alopecuroides E1562 JP10 

 
alopecuroides E1563 PA5 

 
calycina E1483 Forrest, G. 15312 K 

 
candollei E1415 Phengkhlai 361 P02752679 

 
candollei var. mirifica E1400 Maxwell 89-1075 1542*51 

 
edulis E736 J.F. Rock 5412 

 
edulis E1392 McLaren AA239 1542*48 

 
edulis E1393 Groerspm 2689 1542*47 

 
edulis E1548 ANE&Xubo 12*219 ML1 

 
edulis E1550 Egan&Xubo 12*229 

 
imbricata E1394 Maxwell 89-1349 1542*52 

 
imbricata E1395 Maxwell 89-1284 1542*53 

 
imbricata E1476 Larsen, K. & S.S. 34073 K 

 
montana E1134 Kajita 56 

 
montana E1219 Kajita 141 

 
montana E1297 Kajita 219 

 
montana var. lobata E622 ANE_11_108 

 
montana var. lobata E809 G.Z. Li 214 

 
montana var. lobata E975 ANE_12_15 

 
montana var. lobata E984 ANE_12_24 

 
montana var. lobata E1022 ANE_12_62 

 
montana var. lobata E1030 ANE_12-70 

 
montana var. lobata E1047 ANE_12-92 

 
montana var. lobata E1429 Larsen 43761 P03065960 

 
montana var. lobata E1518 Clark, R.P. 103  K 

 
montana var. thomsonii E1268 Kajita 190 

 
montana var. thomsonii E1561 DPS 

 
peduncularis E486 Kajita 

 
peduncularis E738 F. Kingdon-Ward 18838 

 
peduncularis E1549 12-220 

 
phaseoloides E468 Unknown 

 
phaseoloides E1211 Kajita 133 

 
phaseoloides E1278 Kajita 200 

 
phaseoloides E1401 Croat 18299 1542*2 

 
phaseoloides E1402 Pendry  DNEP2 B55 1542*26 

 
phaseoloides E1403 Mikage 9554138154225 

 
phaseoloides E1430 Rudd 3315 P02961678 
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phaseoloides E1447 Chan 124 P02961373 

 
phaseoloides E1533 AN Egan 12-254 

 
phaseoloides TK354 Kajita 

 
phaseoloides TK619 Kajita 

 
phaseoloides TK636 Kajita 

 
phaseoloides XXX Unknown 

 
phaseoloides var. javanica E1404 Unknown 

 
phaseoloides var. javanica E1405 Unknown 

 
phaseoloides var. javanica E1420 Matras 29 P02752658 

 
phaseoloides var. javanica E1446 Larsen 32862 P02961679 

 
phaseoloides var. javanica E1491 

Powell, D.A. & H'ng Kim Chey 655 
K 

 
phaseoloides var. javanica E1492 Cramer, L.H. 5257 K 

 
phaseoloides var. phaseoloides E1520 David et al. CL729K 

 
phaseoloides var. subspicata E1416 Jasima  s.n. P01733265 

 
phaseoloides var. subspicata E1407 Henry 13626 1542*6 

 
phaseoloides var. subspicata E1490 Yandall, T. 331 K 

 
pulcherrima E1389 Sayers 13281 1542*21 

 
pulcherrima E1390 Womersly 17807 1542*20 

 
pulcherrima E1487 Takeuchi, W. 7391 K 

 
pulcherrima E1488 Takeuchi, W. 7391 K 

 
pulcherrima E1489 

Forster, P.I. & Liddle, D.J. PIF8672 
K 

 
rigens E1385 Maxwell 91-700 1542*54 

 
sikkimensis E1386 Grierson 3625 1542*50 

 
sikkimensis E1473 

Grierson, A.J.C. & Long, D.G. 3328 
K 

 
sp. E1387 Poema 5839 1542*14 

 
sp. E1431 McKee 44875 P03065965 

 
sp. E1443 McKee 43488 P03065926 

 
sp. E1478 Sorenson et al. 5766 K 

 
sp. E1479 van Beusekom, C.F. et al 4183 K 

 
sp. E1523 Clark, R. P. 223 

 
sp. E1531 AN Egan 12-264 

 
sp. E1399 Cunningham 105 1542*39 

 
stricta E502 AE 509 

 
stricta E1534 AN Egan 12-255 

 
stricta E1409 Henry 10575 1542*30 

 
stricta E1484 McKee, H.S. 5891 K 

 
stricta E1485 Vogt, G.B. s.n. BU-445 K 

 
stricta E1522 Clark, R.P. 210 K 

 
stricta E1534 AN Egan 12-255 

 
tuberosa E741 (NY) 
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wallichii E1410 Stainton 8237 1542*35 

 
wallichii E1525 AN Egan & Xubo 12*270 

 
wallichii E1532 AN Egan 12-253 

 
wallichii E1536 AN Egan & Xubo 12-256 MK3 

 
yunnanensis E1529 AN Egan 12-262 

Pycnospora lutescens E678 R. Jensen 1920 
Rhynchosia clivorum E511 Unknown 

 
minima E679 ANE_11_56 

Shuteria hirsuta E744 F. Kingdon-Ward 17785 

 
sp.  E1519 Clark, R.P. 231 K 

Sinodolichos lagopus E1203 Kajita 125 

 
lagopus E1499 Collins, D.J. 1699 K 

 
lagopus E1500 Larsen, K & S.S. 34479 K 

 
lagopus E1501 Christensen, H. 481 K 

Sphenostylis angustifolia E827 H.J. Venter & A. Venter 9880 
Strongylodon macrobotrys E528 PTBG 

 
ruber E823 V.J. Krajina 611028251 

Strophostyles helvola E532 Doyle 1601 

 
umbellata E830 D.M. Ferguson et al. 1120 

Teramnus labialis E542 Unknown 

 
uncinatus E547 322671 01 SD 

Teyleria tetragona E1507 Garret, H.B.G. 1226 K 

 
koordersii E745 K.S. Chow et al. 78227 

 
sp. E549 CV-92 

Unknown sp. E1528 AN Egan 12-262 
Vandasina retusa E550 NWCL 602 

Wajira albescens E832 Pasquet 1057 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix B.  Sample information for matK sequences retrieved from GenBank. 

 

Genus  Species Genbank Acession # 

Apios  americana EU717426 
Bituminaria bituminosa EF550001 
Campylotropis  macrocarpa EU717418 

Cologania pallida JQ619980 
Cologania tenuis JQ619979 
Desmodium floridanum EF549994 
Dioclea reflexa HQ707540 
Dipogon lignosus AY582988 
Dolichopsis paraguariensis AY509943 

Eriosema diffusum JQ587627 
Glycine  canescens EF550006 

Glycine max AF142700 
Glycine  tomentella GU594697 
Hoita macrostachya EF549951 
Kumerowia stipulacea EU717417 
Lablab purpureus EU717408 

Lespedeza cuneata EU717416 
Macroptillium atropurpureum EU717409 
Macrotyloma axillare JN008266 
Neonotonia wightii EU717402 
Neorautanenia mitis JN008178 
Orbexilum  lupinellum EF549952 
Otholobium bracteolatum EF550005 

Otholobium striatum EF549949 
Otoptera burchellii JN008176 
Pachyrhizus erosus EU717401 

Pueraria candollei EU106106 
Pueraria candollei EU106107 
Pueraria candollei EU106108 
Pueraria candollei EU106109 

Pueraria candollei EU106110 
Pueraria montana GU134979 
Pueraria montana JN407131 
Pueraria montana JN407132 
Pueraria montana JN407133 
Pueraria montana JN407134 
Pueraria montana JN407135 

Pueraria montana JQ669576 
Shuteria vestita EU717423 
Spathionema kilimandscharicum AY582990 
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Sphenostylis stenocarpa AY582977 
Strophostyles helvola AY509948 
Strophostyles umbellata AY509944 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 


