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The ability to adjust substrate oxidation according to nutrient availability has been termed 

‘metabolic flexibility’ and is a critical factor in overall metabolic health.   In respect to fatty acid 

oxidation (FAO) metabolic flexibility appears to be compromised with severe obesity (BMI > 

40kg/m
2
). When given a high-fat diet, healthy lean individuals increase their FAO, which is 

accompanied by increased expression of lipid-oxidizing genes. We observed an impairment in 

the ability to increase FAO in response to a high-fat diet in the skeletal muscle of obese 

individuals, which was accompanied by little or no change in the transcriptional upregulation of 

genes involved in FAO.  These data indicate a differential response to lipid oversupply with 

obesity which could contribute to positive lipid balance and weight gain.      

The molecular mechanisms contributing to this metabolic inflexibility with severe obesity 

are not evident. Acute epigenetic modifications of the genome, such as DNA methylation and 

histone acetylation, may provide a connection between nutritional factors, gene expression, and 

metabolic health. The purpose of the present study was therefore to determine if the expression 

of genes linked with FAO differed in a manner indicative of a lack of metabolic flexibility with 



 
 

 
 

obesity and to what extent the differential responses to lipid oversupply were linked with the 

chromatin environment and/or the methylation signature of these genes.   

By utilizing human skeletal muscle cultures (HSkMC) we were able to study the 

molecular adaptations to a lipid stimulus in the skeletal muscle of lean and obese humans.  The 

main findings were that: 1) the coordinated activation of genes linked with FAO among lean 

individuals in response to lipid oversupply is largely absent with obesity as evidenced by a 

blunted upregulation of several vital transcriptional regulators and 2) that changes in CpG 

methylation, increased histone acetylation, and transcription factor binding accompanied this 

response, suggesting that acute epigenetic modifications play a role in the lipid-induced 

upregulation of these genes.  These data provide the novel information that with severe obesity 

the metabolic inflexibility evident in response to lipid exposure may be linked with an inability 

to upregulate transcriptional regulators caused by differential epigenetic modifications.  
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CHAPTER 1: LITERATURE REVIEW 

PREVALENCE AND IMPACT OF SEVERE OBESITY 

In recent decades, the steady increase in the prevalence of obesity across all sex and age 

groups was significant (1). Some reports indicate that the increase in prevalence of obesity over 

the last decade has slowed, however as of 2008 32.2% of US adults are class I obese (BMI ≥ 30 

kg/m
2
), 14.3% are class II obese (BMI ≥ 35 kg/m

2
), and 5.6% are class III obese (BMI ≥ 40 

kg/m
2
), which is also referred to as “severely” or “extremely” obese (1, 2). When the prevalence 

trends for the higher classes of obesity are examined, it is clear that the prevalence of extreme 

obesity is increasing at alarming rates. According to national Behavioral Risk Factor Survey 

(BRFS) results, from 2000 to 2005 the prevalence of BMI ≥ 40 kg/m
2
 increased by 52%, while 

the prevalence of BMI ≥ 50 kg/m
2
 increased 75% (3).  

The increase in prevalence of extreme cases of obesity is associated with increased health 

care economic burden. This economic burden is disproportionately large for the most obese. For 

example, compared to an individual with a healthy weight status (BMI 18.5-24.9 kg/m
2
), 

individuals with a BMI between 35-40 kg/m
2
 spend 50% more, while individuals with a BMI 

greater than 40 kg/m
2
 doubled health care spending relative to an individual with a healthy 

weight status (4). Increased health care spending is a combination of more expensive office and 

emergency department visits as well as prescription medication costs. For example, medical 

treatment of extremely obese individuals often requires specialized equipment, supplies, and 

additional support staff (5).  

In addition to increased economic burden, it is well known that severe obesity is 

associated with an increased mortality rate and a variety of chronic diseases including 
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cardiovascular and metabolic diseases (i.e. insulin resistance, type 2 diabetes, etc.) (2). There is 

accumulating evidence that these metabolic diseases are associated with a defect in the ability of 

skeletal muscle to oxidize lipids (6) and an inability to adjust substrate oxidation according to 

nutrient availability, which has been termed ‘metabolic flexibility’ and is a critical factor in 

overall metabolic health (7).  

METABOLIC INFLEXIBILITY WITH SEVERE OBESITY 

In respect to fatty acid oxidation (FAO) metabolic flexibility appears to be compromised 

with obesity.  For example, several studies have reported an impairment in the ability to increase 

FAO in response to a 3-5d high-fat diet in the skeletal muscle of obese individuals (8, 9); this 

phenotype was also apparent with lipid incubation in primary human skeletal muscle cells raised 

in culture (HSkMC) (10). When given a high-fat diet, healthy lean individuals increase their 

FAO (9, 11), which is accompanied by increased expression of mitochondrial and lipid-oxidizing 

genes (e.g. peroxisome proliferator-activated receptor (PPAR)α and PPARγ coactivator-1α 

(PGC-1α)) (8, 10-14), while a high fat diet resulted in little to no change in the expression of 

these genes in obese subjects (8). These data indicate a differential response to lipid oversupply 

with obesity which likely contributes to positive lipid balance, ectopic lipid accumulation, 

intramuscular lipid accumulation associated with insulin resistance, weight gain, and weight 

regain after weight loss (15, 16).  

The molecular mechanisms contributing to this metabolic inflexibility with severe obesity, 

however, are not evident. Epigenetic modifications provide a potential molecular basis for the 

interaction between genetic and environmental factors and have been implicated in metabolic 

diseases, stroke, and cardiovascular disease (17-20). Acute epigenetic modifications of the 
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genome, such as DNA methylation and histone acetylation, may provide a connection between 

nutritional factors, gene expression, and metabolic health and could help explain the differential 

responses in the coordinated gene expression in the skeletal muscle of lean vs. severely obese 

individuals. DNA methylation is generally accepted to regulate gene transcription by directly 

impeding the binding of transcriptional factors to their target sites and through the recruitment of 

methyl-binding proteins (21). Histone acetylation affects both chromatin structure as well as the 

interaction of transcription-regulatory proteins with target DNA in chromatin (22). For example, 

an increase in the acetyl groups on histones will result in an open chromatin structure to facilitate 

accessibility of transcriptional machinery to DNA templates in chromatin, in turn increasing the 

expression of a gene. There is a large body of evidence on the functional significance of both 

histone acetylation and DNA methylation levels and their correlation with gene expression as 

well as their importance in integrating environmental stimuli, such as diet, in the control of gene 

expression (21, 22). For example, with a 5 d high fat diet Jacobsen et al. (23) observed 

widespread DNA methylation changes in human skeletal muscle and Barres et al. (17) reported 

increased non-CpG methylation of the PGC-1α promoter region in HSkMC with a 48hr 500µM 

palmitate incubation. However, these studies (9,10,11) examined skeletal muscle from lean 

individuals; it is not evident if differences in DNA methylation patterns may explain, at least in 

part, the divergent  responses to lipid of genes involved with mitochondrial biogenesis and FAO 

in the skeletal muscle of obese vs. lean individuals (3).  
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ARE EPIGENETIC MODIFICATIONS CONTRIBUTING TO METABOLIC 

INFLEXIBILITY?  

This dissertation focused on determining whether the differential responses to lipid 

oversupply of genes linked with mitochondrial content and FAO with severe obesity are linked 

with epigenetic modifications, including DNA methylation and histone acetylation, in a manner 

indicative of a lack of metabolic flexibility. The nuclear respiratory factors (NRFs) and 

peroxisome proliferator-activated receptors (PPARs) and are provocative candidates for 

explaining the metabolic inflexibility in response to lipid oversupply with obesity as they 

activate gene expression programs critical to mitochondrial function and FAO (24-27).  

The NRFs are required for the expression of the respiratory apparatus in mammalian cells 

and vital for mitochondrial biogenesis and maintenance as indicated by early mortality of NRF-

1-null embryos (24). The PPARs are ligand-activated transcription factors that play essential 

roles in lipid homeostasis by modulating the expression of genes that regulate fatty acid 

catabolism. One particularly attractive PPAR-regulated candidate is carnitine 

palmitoyltransferase (CPT1) which mediates the transfer of long chain fatty acids across the 

outer mitochondrial membrane which is a rate-limiting step in FAO (28). The activity of the 

muscle-type CPT1 (encoded by the CPT1B gene) is reduced in skeletal muscle with obesity, 

contributing to a decrease in FAO (29). In relation to metabolic flexibility, in the skeletal muscle 

of lean subjects a high fat diet increased the expression of CTP1B and the peroxisome 

proliferator-activated receptors (PPARs) which are upstream regulators of CPT1B expression (8).  

Conversely, a high fat diet resulted in little to no change in the expression of these genes in the 
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skeletal muscle of severely obese subjects indicating a differential response to lipid oversupply 

with severe obesity (8).   

Therefore, the specific purpose of this dissertation was to determine if the expression of 

PPAR- and/or NRF-regulated genes linked with FAO and mitochondrial content differed in a 

manner indicative of a lack of metabolic flexibility with severe obesity and to what extent the 

differential responses to lipid oversupply were linked with the chromatin environment and/or the 

methylation signature of these genes. By utilizing HSkMC we were able to study the molecular 

adaptations to a lipid stimulus in an environment void of in-vivo hormonal and neural stimuli and 

thus intrinsic to skeletal muscle itself.  
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CHAPTER 2: SKELETAL MUSCLE FROM THE SEVERELY OBESE IS 

METABOLICALLY INFLEXIBLE IN TERMS OF GENE REGULATION AND DNA 

METHYLATION IN RESPONSE TO LIPID OVERSUPPLY  

ABSTRACT 

Objective: The skeletal muscle of severely obese individuals (BMI ≥ 40 kg/m
2
) is characterized 

by a failure to upregulate fatty acid oxidation (FAO) in response to increased lipid availability, 

which is associated with a failure to coordinately upregulate genes involved in FAO.  The 

present study was undertaken to determine if the differential responses to lipid oversupply of 

genes linked with mitochondrial content and FAO with severe obesity are linked with the 

methylation signatures of these genes.   

Research design and methods: RNA and DNA were isolated in human skeletal muscle cell 

cultures from 9 lean and 10 severely obese women following lipid incubation. mRNA content 

was measured using RT-PCR. Methylation was quantified using the Illumina 

HumanMethylation450 BeadChip. 

Results: The upregulation of several vital transcriptional regulators of FAO and mitochondrial 

content were depressed in the severely obese compared to their lean counterparts in response to 

lipid oversupply and there is evidence that the expression of PPARδ, which regulates a broad 

transcriptional program related to energy metabolism, is controlled by changes in CpG 

methylation.  

Conclusions: With severe obesity, the metabolic inflexibility evident with lipid exposure is 

linked with an inability to upregulate several transcriptional regulators and methylation may play 

a role in this transcriptional regulation.  
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INTRODUCTION 

The ability to adjust substrate oxidation according to nutrient availability has been termed 

‘metabolic flexibility’ and is a critical factor in overall metabolic health (7).  In respect to fatty 

acid oxidation (FAO), metabolic flexibility appears to be compromised with obesity.  For 

example, several studies have reported an impairment in the ability to increase FAO in response 

to a 3-5d high-fat diet in the skeletal muscle of obese individuals (8, 9); this phenotype was also 

apparent with lipid incubation in primary human skeletal muscle cells raised in culture (HSkMC) 

(10).  Additionally, in the skeletal muscle of lean subjects a high-fat diet increased the expression 

of genes involved in mitochondrial biogenesis and FAO (i.e. peroxisome proliferator-activated 

receptor (PPAR)α and PPARγ coactivator-1α (PGC-1α)) (8, 10-14), while a high-fat diet resulted 

in little to no change in the expression of these genes in obese subjects (8).   These data indicate 

a differential response to lipid oversupply with obesity which could contribute to positive lipid 

balance and ectopic lipid accumulation (15, 16, 30, 31).     

Acute epigenetic modifications of the genome, such as DNA methylation, may provide a 

connection between nutritional factors, gene expression, and metabolic health.  For example, 

with a 5d high-fat diet Jacobsen et al. (23) observed widespread DNA methylation changes in 

human skeletal muscle and Barres et al. (17) reported increased non-CpG methylation of the 

PGC-1α promoter region in HSkMC with a 48hr 500µM palmitate incubation.  However, these 

studies (17, 23) examined skeletal muscle from lean individuals; it is not evident if differences in 

DNA methylation patterns may explain, at least in part, the divergent responses to lipid of genes 

involved with mitochondrial biogenesis and FAO in the skeletal muscle of obese vs. lean 

individuals.  The purpose of the present study was therefore to determine if the differential 
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responses to lipid oversupply of genes linked with mitochondrial content and FAO with obesity 

are linked with the methylation signatures of these genes.  By utilizing HSkMC we are able to 

study the molecular adaptations to a lipid stimulus in an environment void of in-vivo hormonal 

and neural stimuli and thus intrinsic to skeletal muscle itself. 
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RESEARCH DESIGN AND METHODS 

Study Design 

The design of the study was to compare the responses of genes linked with FAO and 

mitochondrial biogenesis to lipid oversupply in lean vs. obese subjects.  Skeletal muscle was 

obtained from the vastus lateralis and used to derive primary human skeletal muscle cell cultures 

(HSkMC).  After differentiation into myotubes, HSkMC were incubated in a physiologically 

relevant lipid mixture (32) (250µM oleate:palmitate) for 48hr and mRNA content and DNA 

methylation determined. The mRNA content of the peroxisome proliferator-activated receptors 

(PPARs) and nuclear respiratory factors (NRFs) were selected to be analyzed because of their 

importance in activating gene expression programs critical to mitochondrial function and FAO 

(24-27). Additionally, downstream PPAR and NRF-regulated genes that play vital roles in 

mitochondrial content and FAO were analyzed as well.  

Materials 

All chemical reagents and substrates were purchased from Sigma (St. Louis, MO, USA) 

unless otherwise stated. Dulbecco’s Phosphate-Buffered Saline (DPBS), fetal bovine serum, 

heat-inactivated horse serum, gentamicin, 0.05% trypsin EDTA, and Hanks’s balanced salt 

solution were obtained from Invitrogen.  Growth media and differentiation media consisted of 

low glucose (5 mmol/L) Dulbecco’s Modified Eagles Medium from Invitrogen.  Type I collagen-

coated tissue culture plates were obtained from Becton Dickinson (Franklin Lakes, NJ, USA).  

PCR reagents were purchased from Applied Biosystems (Foster City, CA, USA).  
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Human Subjects 

Muscle biopsies were obtained using the percutaneous needle biopsy technique (33) 

under local anesthesia (0.01% lidocaine) from the vastus lateralis of 9 lean (BMI= 22.8 kg/m
2
 

±2.2; Age= 23.4yrs ±4.6) and 10 obese (Class II to III) (BMI= 41.3 kg/m
2
 ±4.9; Age= 

30.2yrs±8.3) Caucasian women.  Characteristics are presented in Table 1.  Participants were 

relatively young, free from overt disease, nonsmokers and not taking medications known to alter 

metabolism.  All procedures were approved by the East Carolina University Institutional Review 

Board.  

Primary HSkMC 

Satellite cells were isolated from ~50-100mg of fresh muscle tissue and cultured as 

previously described (34).  For experiments cells were sub-cultured into T-150 flasks and 10cm 

dishes.  Upon reaching ~80-90% confluence, differentiation was induced by switching the 

growth media to low-serum differentiation media containing 2% heat-inactivated horse serum, 

0.05 mg/ml fetuin, and 5 µg/ml gentamicin.  On day 5 of differentiation, myotubes were given 

fresh differentiation media supplemented with 1) 0.1% bovine serum albumin (BSA) + 1mM 

carnitine (CONTROL) or 2) 250µM oleate:palmitate (1:1 ratio) bound to 0.1% BSA + 1mM 

carnitine (LIPID) for a total incubation period of 48 hours.  Myotubes were harvested on day 

seven similar to previous work (35).  There were no obvious differences in the extent of 

differentiation or myotube morphology between lean and obese HSkMC.  
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RNA Isolation and mRNA quantification 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA) with on-

column DNase digestion using the RNase-Free DNase Set (Qiagen, Valencia, CA) to remove 

residual DNA.  RNA was quantified using the NanoDrop 1000 Spectrophotometer Version 3.7.1 

from Thermoscientific (Wilmington, DE, USA) and concentration was determined by measuring 

the absorbance at 260nm.  2ug of RNA was reverse transcribed into cDNA using the High 

Capacity cDNA Reverse Transcription Kit from Applied Biosystems (Foster City, CA, USA).  

PCR was performed in triplicate using the Applied Biosystems ABI 7900HT sequence detection 

instrument and software with Taqman Universal PCR Master Mix and TaqMan gene expression 

assays (Applied Biosystems, Foster City, California) in accordance with manufacturer’s 

instructions.  Using standard techniques, reactions were run with the following thermal cycling 

conditions: 50˚C for 2 min; 95˚C for 10 min; and 40 cycles of 95˚C for 15 s; followed by 60˚C 

for 1 min.  mRNA content was measured using the comparative Ct method with a multiplexed 

endogenous control (18S) and converted to a linear function by using a base 2 antilog 

transformation.  

DNA Isolation  

Cells were washed with DPBS and trypsinized with trypsin-EDTA (0.05% trypsin and 

0.25% EDTA). Total DNA (mitochondrial and nuclear) was extracted from cells using a 

QIAamp DNA mini kit (Qiagen, Valencia, CA), and total DNA quantified using the NanoDrop 

1000 Spectrophotometer Version 3.7.1 from Thermoscientific (Wilmington, DE, USA).  
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Bisulfite Conversion and DNA Methylation Profiling  

500ng of DNA was bisulfate converted using the EZ DNA Methylation Kit (Zymo 

Research, Orange, CA) following the manufacturer’s protocol, with the alternative incubation 

conditions recommended when using the Illumina Infunium Methylation Assay.  Genome-wide 

DNA methylation analysis was conducted on bisulfate treated DNA samples using the Illumina 

Infinium HumanMethylation 450K BeadChip, which allows the quantitative monitoring of 

485,764 cytosine positions (36).  12uL of each bisulfate-converted sample was amplified and 

fragmented, following the manufacturer’s protocol, hybridized to arrays in a balanced design and 

scanned on an Illumina iScan System.  Data were output and analyzed using Illumina’s Genome 

Studio software. 

Statistical analysis 

Statistical analyses were performed using PASW Statistics 19 Software (SPSS Inc., 

Chicago, IL, USA) on raw or log-transformed data.  Comparisons between HSkMC from lean 

and obese donors were performed with repeated measures ANOVA, with emphasis on a “weight 

status” (lean, severely obese) X “treatment” (control, lipid-treated) interaction indicating that 

lean and severely obese individuals responded differently to lipid oversupply.  All data met 

assumptions of sphericity and homogeneity of variance.  Data are presented as the mean ± SEM. 
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RESULTS 

Participant Characteristics 

Participant characteristics are presented in Table 1.  By design, the obese subjects were 

heavier and most had a body mass index (BMI) classified as Class III (severe) obesity (≥40 

kg/m
2
).  Fasting blood glucose, cholesterol, and triglyceride values did not differ between 

groups.  However fasting HDL values were significantly lower, while insulin and homeostatic 

model assessment values were significantly higher in the obese subjects.  Both groups consisted 

of relatively young individuals, however, the age of the obese group was higher compared to the 

lean group (P=0.05). 

Gene Expression 

Under the control condition (i.e. pre-lipid exposure), there were no differences between 

the groups in PPARα, NRF-1, and NRF-2 mRNA content; however, PPARδ mRNA content was 

significantly lower (P=0.04) in the obese individuals compared to the lean (Fig. 2.2).  In 

response to the  48h 1:1 oleate:palmitate lipid treatment, there were  significant (P≤0.05) 

interaction effects for PPARα, PPARδ, NRF-1, and NRF-2 where mRNA content was elevated in 

the lipid-treated state in HSkMC from the lean, but not obese subjects (Fig. 2.1 and 2.2).  There 

were no differences in the mRNA content between groups in either condition for PGC-1α, PGC-

1β, and peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PPRC1) 

(Fig. 2.1).  

In an effort to determine whether the differential expression of these transcriptional 

regulators had a downstream effect, four PPAR-responsive genes that play a vital role in FAO 
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were analyzed (Table 2.2) angiopoieten-like 4 (ANGPTL4), 2) citrate synthase (CS), 3) pyruvate 

dehydrogenase kinase 4 (PDK4), and 4) mitochondrial uncoupling protein 3 (UCP3).  There was 

a significant interaction effect for PDK4 (P≤0.05) with the lipid-induced change in mRNA being 

significantly lower (P≤0.05) in the HSkMC from the obese (20.4 ±3.8 fold increase) compared to 

the lean (42.0±8.1 fold increase) subjects (Fig. 2.3A).  Similarly, the lipid-induced increase in CS 

and UCP3 mRNA content in HSkMC from the obese (1.2 ±0.2 and 1.2±0.1 fold increase) 

compared to the lean (1.6±0.1 and 0.9±0.1 fold increase) exhibited a trend (P=0.1 and P=0.09) 

for being suppressed with obesity.  Six NRF regulated genes were analyzed (Table 2.2): 1) 

cytochrome c oxidase subunit VIc (COX6c), 2) cytochrome c (CYCS), 3) mitochondrial 

elongation factor G 1 (GFM1), 4) mitochondrial ribosomal protein L2 (MRPL2), 5) 

mitochondrial transcription factor A (TFAM), and 6) mitochondrial transcription factor B2 

(TFB2M).  The lipid-induced increase in CYCS mRNA content was significantly (P=0.05) lower 

in the obese (0.9±0.1 fold increase) compared to the lean (1.3±0.2 fold increase) subjects (Fig. 

2.3B).  

DNA Methylation 

Overall, DNA methylation was determined on 485,764 cytosine positions.   In terms of 

genes exhibiting differential responses with obesity (Fig. 2.2) within the PPARδ gene DNA 

methylation was determined in 23 sites (Fig. 2.4A), with nine cytosines being within 1000 base 

pairs (bp) of the transcription start site (TSS).  In response to the lipid oversupply, there were 

significant (P≤0.05) interaction effects for cytosines at positions 6 and 7 (-71 and -61bp relative 

to the TSS) in PPARδ where methylation increased in the lipid-treated state in HSkMC from the 

lean, but not obese subjects.  From baseline, lipid oversupply resulted in a significant (P≤0.05) 
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increase in the methylation of three cytosines (at positions 6, 7, and 23) in HSkMC from lean but 

not obese women (Fig. 2.4B and C).  Lipid oversupply resulted in a similar, significant (P≤0.05) 

increase in the methylation of the cytosine at position 14 (41,044bp relative to the TSS) in both 

the lean and obese subjects (Fig. 2.4B and C).  When the absolute methylation percentage of the 

PPARδ gene with lipid treatment was compared between the lean and obese subjects, lipid 

oversupply resulted in a significantly lower (P≤0.05) percentage of methylation among two 

cytosines at positions 6 and 7 in HSkMC from the obese compared to the lean (Fig. 2.5).  

Additionally, there was a trend for the methylation of two additional cytosines at positions 4 

(P=0.08) and 5 (P=0.06) (-78 and -75bp relative to the TSS) to be lower in the lean compared to 

the obese in the lipid-treated condition.  With lipid treatment methylation of the cytosine at 

position 6 (-71bp from TSS) significantly increased by an average of 1.5±0.6% in the lean and 

decreased an average of 0.6±0.3% in the obese, which was positively correlated (r=0.64, P=0.01) 

with the relative change in PPARδ mRNA content in response to lipid treatment (Fig. 2.6A).  

With lipid treatment the methylation of the cytosine at position 6 was 6.4±0.7% in the lean and 

4.3±0.3% in the obese (Table S2.1), which positively correlated (r=0.53, P=0.03) with PPARδ 

mRNA content measured in the lipid-treated condition (Fig. 2.6B).  Methylation did not change 

significantly in any of the other differentially expressed genes examined in this study.  
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 DISCUSSION 

With obesity, there are impairments in the ability to adjust substrate utilization to changes 

in substrate availability (37-39).  In respect to lipid metabolism, we reported that obese 

individuals lacked the ability to increase fat oxidation with either a high fat diet (9) or in HSkMC 

upon lipid incubation (10).   In the present study, we examined if the expression of genes linked 

with FAO and mitochondrial content also differed in a manner indicative of a lack of metabolic 

flexibility with obesity and if these differences in gene expression could be explained by 

methylation signatures.  The main findings were that: 1) the upregulation of several vital 

transcriptional regulators of FAO and mitochondrial content were depressed in the severely 

obese women compared to their lean counterparts in response to lipid oversupply and 2) that the 

expression of PPARδ, which regulates a broad transcriptional program related to energy 

metabolism, may be controlled by changes in CpG methylation.  These data provide the novel 

information that with severe obesity the metabolic inflexibility evident with lipid exposure may 

be linked with an inability to upregulate some transcriptional regulators via methylation.   

The peroxisome proliferator-activated receptors (PPARs) and nuclear respiratory factors 

(NRFs) are provocative candidates for explaining the metabolic inflexibility in response to lipid 

oversupply with obesity as they activate gene expression programs critical to mitochondrial 

function and FAO (24-27).  The PPARs are ligand-activated transcription factors that play 

essential roles in lipid homeostasis by modulating the expression of genes that regulate fatty acid 

catabolism.  There are three PPAR subtypes: 1) PPARα, which mediates lipid-induced activation 

of FAO genes and is expressed predominately in tissues that are characterized by high rates of 

FAO (ie. liver, heart, muscle, kidney); 2) PPARγ, which is highly enriched in adipocytes and 
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macrophages and is involved in adipocyte differentiation, lipid storage, and glucose homeostasis; 

and 3) PPARδ, which is ubiquitously expressed and has the least defined function, but has 

recently been characterized as being highly expressed in skeletal muscle and playing a lipid-

metabolizing role similar to PPARα (25, 26, 40).  Their critical role in energy homeostasis is 

supported by the observation that PPARα knockout mice exhibit a dramatic inhibition of fatty 

acid uptake and oxidation, abnormal accumulation of lipids in oxidative tissues, and a failure to 

induce beta-oxidation in response to physiological challenges such as a high-fat diet (35).  The 

NRFs are required for the expression of the respiratory apparatus in mammalian cells and vital 

for mitochondrial biogenesis and maintenance, as indicated by early mortality of NRF-1-null 

embryos (24).  In the current study, broad transcriptional regulators, including PPARα, PPARδ, 

NRF-1, and NRF-2, exhibited similar patterns of increasing mRNA content with lipid exposure 

in the lean, but decreasing or not changing mRNA in HSkMC from the severely obese (Fig. 1).  

Additionally, several NRF- and PPAR-responsive genes including CYCS, CS, UCP3, and PDK4 

showed trends for being upregulated more robustly in HSkMC from lean but not obese subjects.  

We cannot discount the possibility that these findings may have been influenced by the time we 

chose to obtain the samples, i.e. that similar mRNA responses in lean and obese subjects could 

have occurred at earlier or later time points during lipid incubation.  However, the present data 

remain indicative of a coordinated lipid-induced activation of genes linked with FAO and 

mitochondrial content among lean individuals in response to lipid oversupply that is largely 

absent with obesity  

Of the PPAR-responsive genes that were differentially regulated by the 48hr lipid 

oversupply pyruvate dehydrogenase kinase 4 (PDK4) is of particular interest as it suppresses 

glucose and promotes fat oxidation in the presence of lipids (41).  We have previously shown 
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that a high-fat diet increased PDK4 mRNA content in lean, but not obese individuals; in the 

current study utilizing HSkMC, the lipid-induced increase in PDK4 mRNA content in the lean 

was more than 2-fold greater than the response in the obese (42.0±8.1 vs. 20.4±3.8 fold increase) 

(Fig. 3).  Other data have reported a significant interaction effect in response to a high fat diet 

where the increase in PDK4 mRNA content was more pronounced in obese individuals relative 

to lean (42).  A possible reason for these divergent findings is that the current study utilized 

HSkMC from severely obese women (Class II to III) (BMI= 41.3 kg/m
2
 ±4.9), while the analysis 

in Bergouignan et al. (42) measured skeletal muscle mRNA content isolated from men and 

women with a lower mean BMI (35.1 kg/m
2
 ±4.1).  This suggests that the ability to adjust to 

substrate availability may depend on the level of excess adiposity (42), which is in agreement 

with other data indicating that disturbances in lipid metabolism are evident in the skeletal muscle 

of extremely obese, but not moderately obese individuals (43).  PDK4 protein content is 

primarily regulated via transcription (44); thus although PDK4 content was not determined, such 

a lack of metabolic flexibility could contribute to detrimental conditions such as positive fat 

balance (30), ectopic lipid accumulation (31), and weight gain (39).  

Epigenetic processes (ie. DNA methylation) may provide a mechanism for the regulation 

of gene expression in response to lipid and/or could help explain the differential responses in 

gene expression in the skeletal muscle of lean vs. severely obese individuals.  The extent to 

which methylation changed in response to lipid oversupply tended to be lower in the obese 

subjects (Fig. 4).  This finding is in accordance with previous work showing that individuals at a 

greater risk of developing metabolic disease tended to have a lower sensitivity to environmental 

challenges (ie. high-fat feeding) in terms of the ability to regulate changes in DNA methylation 

(45).  With lipid oversupply we observed significant increases in PPARδ methylation at two 
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cytosines positioned within 100bp of the TSS in the lean, however, there were no significant 

changes in the methylation status of these two cytosines in the obese (Fig. 4).  A cluster of 

cytosines -78 to -61bp relative to the TSS increased in the lean in response to lipid oversupply 

suggesting the increase in methylation was targeted to the promoter region of PPARδ (Fig. 4).  

Of the cytosines within the cluster, the central one (-71bp from the TSS at position 6) was highly 

related to PPARδ mRNA content (Fig. 6).  

DNA methylation is generally accepted to regulate gene transcription by directly 

impeding the binding of transcriptional factors to their target sites and through the recruitment of 

methyl-binding proteins (21).  However, our findings indicate a positive relationship between the 

extent of PPARδ promoter methylation and PPARδ mRNA content in response to lipid 

oversupply (Fig. 6).  In support of our findings, in human skeletal muscle Barres et al. (46) 

identified a subset of genes with positive relationships between gene expression and promoter 

methylation and suggested that DNA methylation at a transcriptional repressor binding site could 

subsequently induce gene expression.  Pipaon et al. (47) found that increased methylation of p73, 

a gene related to the p53 tumor suppressor protein, blocked the binding of the zinc finger 

transcription factor repressor protein ZEB in human fibroblasts, in turn promoting the expression 

of p73; treatment with an inhibitor of DNA methyltransferase significantly also reduced the 

expression levels of p73 (47).  Similarly, Ando et al.(48) found that demethylation of a repressor 

binding site elicited a concomitant decrease in gene expression (48).  Although speculative at 

this point, our findings indicate a potential mechanism regulating the lipid-induced increase in 

PPARδ gene expression in the lean could be the blockage of a repressive factor from binding to 

the PPARδ promoter via DNA methylation.  
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In the present study there were no baseline differences in PGC-1α and PDK4 mRNA 

content and promoter methylation between the lean and severely obese women which is 

inconsistent with a recent report (46) where mRNA content of PGC-1a was significantly lower 

and PDK4 mRNA content was significantly higher in muscle biopsies obtained from obese 

subjects.  A possible reason for these divergent findings is that the current study utilized 

HSkMC, where hormonal and/or neural input that could differ with obesity and potentially 

influence gene expression are eliminated.  In terms of promoter methylation, in Barres et al. (46) 

the majority of methylated cytosines in the PGC-1α and PDK4 promoter regions were found 

within non-CpG sites whereas the present study only examined CpG sites, which have been 

previously demonstrated to regulate gene expression (22).  Additionally, the composition of lipid 

incubation media has differed between studies; an increase in PGC-1a promoter methylation was 

evident with a 48hr 500µM palmitate incubation whereas we did not observed changes with a 

48hr 250µM 1:1 oleate:palmitate lipid mixture.  It is well-known that different fatty acids impart 

specific and unique effects, or even opposing actions, on cellular functions (32), which likely 

explains why findings differ between studies.  We chose to utilize the oleate:palmitate mixture as 

it more closely mimics physiological conditions (32). 

In summary, primary human skeletal muscle cell cultures (HSkMC) were utilized to 

study adaptations to a lipid stimulus in the skeletal muscle of lean and severely obese humans.  

Our findings indicate a coordinated lipid-induced activation of genes linked with FAO and 

mitochondrial content among lean individuals in response to lipid oversupply that is largely 

absent with obesity.  In HSkMC from severely obese individuals, PPARδ displayed differential 

methylation patterns in the promoter region compared to cells derived from lean subjects; 

changes in the methylation signature may thus play a role in controlling gene expression.  



 

24 
 

GRANTS 

Funding for this work was provided by a grant from the National Institutes of Health (DK 

056112, JAH). 

 

DISCLOSURES 

 The authors have nothing to declare.  



 

25 
 

REFERENCES 

1. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: 

a reexamination. Diabetes. 2000;49(5):677-83. 

2. Boyle KE, Canham JP, Consitt LA, Zheng D, Koves TR, Gavin TP, et al. A high-fat diet 

elicits differential responses in genes coordinating oxidative metabolism in skeletal 

muscle of lean and obese individuals. J Clin Endocrinol Metab. 2011;96(3):775-81. Epub 

2010 Dec 29. 

3. Battaglia GM, Zheng D, Hickner RC, Houmard JA. Effect of exercise training on 

metabolic flexibility in response to a high-fat diet in obese individuals. Am J Physiol 

Endocrinol Metab. 2012;303(12):E1440-5. doi: 10.152/ajpendo.00355.2012. Epub 2012 

Oct 9. 

4. Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA. Mitochondrial lipid 

oxidation is impaired in cultured myotubes from obese humans. Int J Obes. 

2011;25(10):201. 

5. Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, et al. A short-

term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal 

muscle. Am J Clin Nutr. 2003;77(2):313-8. 

6. Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, Espinoza D, et al. 

Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in 

obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated 

protein kinase activation. J Biol Chem. 2007;282(21):15439-50. Epub 2007 Apr 6. 

7. Hancock CR, Han DH, Chen M, Terada S, Yasuda T, Wright DC, et al. High-fat diets 

cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci 

U S A. 2008;105(22):7815-20. Epub 2008 May 28. 

8. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. 

Annu Rev Physiol. 2009;71:177-203. 

9. Consitt LA, Bell JA, Koves TR, Muoio DM, Hulver MW, Haynie KR, et al. Peroxisome 

proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid 

oxidation in myocytes from extremely obese individuals. Diabetes. 2010;59(6):1407-15. 

Epub 2010 Mar 3. 

10. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, et al. Low ratio 

of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J 

Physiol. 1990;259(5 Pt 1):E650-7. 



 

26 
 

11. Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. Am J 

Physiol Endocrinol Metab. 2008;295(5):E1009-17. doi: 10.152/ajpendo.90558.2008. 

Epub 2008 Sep 2. 

12. Thomas CD, Peters JC, Reed GW, Abumrad NN, Sun M, Hill JO. Nutrient balance and 

energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in 

humans. Am J Clin Nutr. 1992;55(5):934-42. 

13. Jacobsen SC, Brons C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of 

short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle 

of healthy young men. Diabetologia. 2012;55(12):3341-9. doi: 10.1007/s00125-012-

2717-8. Epub 2012 Sep 8. 

14. Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, et al. Non-CpG methylation of 

the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 

2009;10(3):189-98. 

15. Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in 

cellular processes: implications for interpreting and reporting experiments. Am J Physiol 

Endocrinol Metab. 2012;302(1):E1-3. doi: 10.1152/ajpendo.00418.2011. 

16. Evans WJ, Phinney SD, Young VR. Suction applied to a muscle biopsy maximizes 

sample size. Med Sci Sports Exerc. 1982;14(1):101-2. 

17. Berggren JR, Tanner CJ, Houmard JA. Primary cell cultures in the study of human 

muscle metabolism. Exerc Sport Sci Rev. 2007;35(2):56-61. 

18. Muoio DM, Way JM, Tanner CJ, Winegar DA, Kliewer SA, Houmard JA, et al. 

Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in 

primary human skeletal muscle cells. Diabetes. 2002;51(4):901-9. 

19. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. 

Validation of a DNA methylation microarray for 450,000 CpG sites in the human 

genome. Epigenetics. 2011;6(6):692-702. Epub 2011 Jun 1. 

20. Astrup A, Buemann B, Christensen NJ, Toubro S. Failure to increase lipid oxidation in 

response to increasing dietary fat content in formerly obese women. Am J Physiol. 

1994;266(4 Pt 1):E592-9. 

21. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin 

Invest. 2005;115(7):1699-702. 

22. Ravussin E. Metabolic differences and the development of obesity. Metabolism. 

1995;44(9 Suppl 3):12-4. 



 

27 
 

23. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial 

biogenesis and function. Genes Dev. 2004;18(4):357-68. 

24. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, et al. Fatty acid 

homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome 

proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory 

regulation by PPAR delta. J Biol Chem. 2002;277(29):26089-97. Epub 2002 May 6. 

25. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and 

peroxisome proliferator-activated receptors. Endocrinology. 2003;144(6):2201-7. 

26. Muoio DM, Koves TR. Skeletal muscle adaptation to fatty acid depends on coordinated 

actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol 

Nutr Metab. 2007;32(5):874-83. 

27. Wagner KD, Wagner N. Peroxisome proliferator-activated receptor beta/delta 

(PPARbeta/delta) acts as regulator of metabolism linked to multiple cellular functions. 

Pharmacol Ther. 2010;125(3):423-35. doi: 10.1016/j.pharmthera.2009.12.001. Epub  Dec 

22. 

28. Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and 

activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem. 

2006;112(3):139-49. 

29. Bergouignan A, Gozansky WS, Barry DW, Leitner W, MacLean PS, Hill JO, et al. 

Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle 

oxidative capacity in lean and obese humans. PLoS One. 2012;7(1):e30164. doi: 

10.1371/journal.pone.0030164. Epub 2012 Jan 12. 

30. Hulver MW, Berggren JR, Cortright RN, Dudek RW, Thompson RP, Pories WJ, et al. 

Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab. 

2003;284(4):E741-7. Epub 2002 Dec 27. 

31. Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase 

kinase expression by peroxisome proliferator-activated receptor-alpha ligands, 

glucocorticoids, and insulin. Diabetes. 2002;51(2):276-83. 

32. Brons C, Jacobsen S, Nilsson E, Ronn T, Jensen CB, Storgaard H, et al. 

Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle 

is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin 

Endocrinol Metab. 2010;95(6):3048-56. doi: 10.1210/jc.2009-413. Epub 10 Apr 21. 

33. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell 

Physiol. 2007;213(2):384-90. 



 

28 
 

34. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, et al. Weight Loss 

after Gastric Bypass Surgery in Human Obesity Remodels Promoter Methylation. Cell 

Rep. 2013;10(13):00125-3. 

35. Pipaon C, Real PJ, Fernandez-Luna JL. Defective binding of transcriptional repressor 

ZEB via DNA methylation contributes to increased constitutive levels of p73 in Fanconi 

anemia cells. FEBS Lett. 2005;579(21):4610-4. 

36. Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2'-deoxycytidine) decreased DNA 

methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia. 

2000;14(11):1915-20. 

37. Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and 

DNA methylation in gene silencing. Mutat Res. 2008;659(1-2):40-8. Epub 2008 Feb 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

TABLES AND FIGURES 

Table 2.1. Subject characteristics. 

 Lean (n=12) Obese (n=10) 

Age (y) 23.4±1.5 30.2±2.6* 

Stature (cm) 164.7±1.8 165.5±2.2 

Mass (kg) 62.6±1.3 113.7±6.3* 

BMI (kg/m
2
) 22.8±0.7 41.3±1.5* 

Fasting glucose (mmol/L) 4.6±0.1 4.9±0.1 

Fasting insulin (uU/L) 4.3±1.2 17.3±5.0* 

HOMA-IR 0.9±0.3 3.8±1.1* 

Plasma cholesterol (mg/dl) 179±8.2 171±10.1 

Plasma triglycerides (mg/dl) 102±7.4 121±21.0 

HDL (mg/dl) 56±4.0 40±3.4* 

 

Results are expressed as mean±SEM 

*Significantly different (P < 0.05) from lean. 
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Table 2.2. Genes regulated by the NRFs and PPARs.   

 

 Response Element  

Gene NRF PPAR Description 

ANGTPL4  X angiopoietin-like 4 

CS  X citrate synthase 

PDK4  X pyruvate dehydrogenase kinase 4 

UCP3  X mitochondrial uncoupling protein 3 

COX6C X  cytochrome c oxidase subunit 6 C 

CYCS X  somatic cytochrome c 

GFM1 X  mitochondrial elongation factor G 1 

MRLP2 X  mitochondrial ribosomal protein L 2 

TFAM X  mitochondrial transcription factor A 

TFB2M X  mitochondrial transcription factor B 2 
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Figure 2.1. Relative change in mRNA content in response to 48hr 250µM oleate:palmitate 

treatment in cultured myotubes (HSkMC) from lean (open bars) and severely obese (solid bars) 

donors. Data are expressed as the fold change (lipid-treated divided by baseline) (mean± SEM). 

No change is a value of 1, which is represented by the dashed line, with values > 1.0 indicative 

of an increase in respective mRNA content with the lipid-treatment. *, Significant difference 

(P≤0.05) between lean and obese individuals.  
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Figure 2.2.  Effect of lipid oversupply (48hr 250µM oleate:palmitate treatment) on mRNA 

content of PPARδ in cultured myotubes (HSkMC) from lean (open bars) and severely obese 

(solid bars) donors. Data are expressed as mean±SEM. *, Significant difference (P≤0.05) 

between lean and obese individuals. Φ, Significant difference (P≤0.05) between control and 

lipid-treated.  
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Figure 2.3.  Relative change in the mRNA content of PPAR-regulated genes (A) and NRF-

regulated genes (B) in response to 48hr 250µM oleate:palmitate treatment in cultured myotubes 

(HSkMC) from lean (open bars) and severely obese (solid bars) donors. Data are expressed as 

the fold change (lipid-treated divided by baseline) (mean± SEM). No change is a value of 1, 

which is represented by the dashed line, with values > 1.0 indicative of an increase in respective 

mRNA content with the lipid-treatment. *, Significant difference (P≤0.05) between lean and 

obese individuals. #, Difference between lean and obese individuals approached significance 

(P≤0.1).  
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Figure 2.4. PPARδ gene methylation. Visualization of the 23 measured CpG sites within the 

PPARδ gene (A). DNA methylation changes in response to lipid oversupply (methylation value 

in the lipid-treated condition minus the baseline methylation value) at each of the 23 measured 

CpG sites among the lean individuals (B) and the severely obese individuals (C). *, Significant 

difference (P≤0.05) between the baseline and lipid-treated condition. TSS is indicated by the 

arrow.  
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Figure 2.5. Methylation of 23 cytosines within the PPARδ gene in the lipid-treated condition. 

Data are presented as obese methylation values relative to lean  (the obese lipid-treated 

methylation value divided by the lean lipid-treated methylation) (mean± SEM). No  differences 

in the methylation of cytosines in the lipid-treated condition between lean and obese is a value of 

1, which is represented by the dashed line, with values < 1.0 indicative of lower methylation 

levels among the obese compared to the lean.*, Significant difference (P≤0.05) between lean and 

obese individuals. #, Difference between lean and obese individuals approached significance 

(P≤0.1).  
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Figure 2.6. The association of PPARδ methylation and PPARδ mRNA content. The change in 

methylation in response to lipid oversupply (methylation value in the lipid-treated condition 

minus the baseline methylation value) of the cytosine at position 6 was positively related to the 

relative change in PPARδ mRNA content (lipid-treated divided by baseline) (A). Methylation of 

the cytosine at position 6 in the lipid-treated condition was positively related to PPARδ mRNA 

content in the lipid-treated condition (B).    
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Supplementary Table 2.1. Baseline and lipid-treated methylation values for 23 CpG sites within 

the PPARδ gene. 

 

Lean vs. obese *P≤0.05 

Lean vs. obese #P≤0.10 

 

 

 

 

 

 



CHAPTER 3: EPIGENETIC MODIFICATIONS PLAY A ROLE IN THE 

DIFFERENTIAL TRANSCRIPTIONAL REGULATION OF CPT1B IN LEAN AND 

SEVERELY OBESE WOMEN IN RESPONSE TO LIPID OVERSUPPLY 

ABSTRACT 

The skeletal muscle of severely obese individuals cannot increase fatty acid oxidation 

(FAO) in response to dietary lipid, which is associated with a failure to coordinately upregulate 

genes involved in FAO, termed metabolic inflexibility.  While the molecular mechanisms 

contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine 

palmitoyltransferase 1B (CPT1B), which is a rate-limiting step in FAO.  The present study was 

undertaken to determine if the differential response to lipid oversupply of the CPT1B gene in 

skeletal muscle with severe obesity is linked to epigenetic modifications (ie. DNA methylation 

and histone acetylation) that impact transcriptional activation.  In primary human skeletal muscle 

cultures the expression of CPT1B was blunted in severely obese women compared to their lean 

counterparts in response to lipid oversupply, which was accompanied by changes in CpG 

methylation, H3/H4 histone acetylation, and PPARδ and hepatocyte nuclear factor 4α (HNF-4α) 

transcription factor binding to the CPT1B promoter.  Our findings shed new light on the 

epigenetic modifications that play important roles in the transcriptional upregulation of CPT1B 

in response to a physiologically relevant lipid mixture in human skeletal muscle, which is a 

major site of fatty acid catabolism.  In terms of identifying mechanisms that contribute to the 

metabolic inflexibility with severe obesity, it is likely that differential DNA methylation partially 

explains the depressed expression of CPT1B among the obese women in response to lipid 

oversupply.  



 

42 
 

INTRODUCTION 

Mounting evidence indicates that metabolic diseases (i.e. obesity, type 2 diabetes, insulin 

resistance) are associated with an inability to oxidize lipids (1) and adjust substrate oxidation 

according to nutrient availability, termed ‘metabolic flexibility’ (2).  These impairments are 

particularly evident in the severely obese (Class III; BMI > 40kg/m
2
) where there is an impaired 

ability to oxidize lipid (fatty acid oxidation, FAO) in skeletal muscle and an inability to increase 

skeletal muscle FAO in response to a 3-5d high-fat diet (3, 4).  These decrements likely 

contribute to intramuscular lipid accumulation associated with insulin resistance, weight gain (5), 

and weight regain after weight loss (6).  

The molecular mechanisms contributing to this inability to oxidize lipid with severe 

obesity, however, are not evident.  A possible candidate is carnitine palmitoyltransferase (CPT1), 

which mediates the transfer of long chain fatty acids across the outer mitochondrial membrane 

and is a rate-limiting step in FAO (7).  The activity of the muscle-type CPT1 (encoded by the 

CPT1B gene) is reduced in skeletal muscle with obesity, contributing to a decrease in FAO (4). 

In relation to metabolic flexibility, in the skeletal muscle of lean subjects a high-fat diet 

increased the expression of CTP1B and the peroxisome proliferator-activated receptors (PPARs) 

which are upstream regulators of CPT1B expression (8).  Conversely, a high-fat diet resulted in 

little to no change in the expression of these genes in the skeletal muscle of severely obese 

subjects (8).  These data indicate a differential response to lipid oversupply with obesity which 

could contribute to positive lipid balance and ectopic lipid accumulation.   

Acute epigenetic modifications of the genome, such as DNA methylation and histone 

acetylation, may provide a connection between nutritional factors, gene expression, and 
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metabolic health.  Histone acetylation affects both chromatin structure as well as the interaction 

of transcription-regulatory proteins with target DNA in chromatin (9).  For example, an increase 

in the acetyl groups on histones will result in an open chromatin structure to facilitate 

accessibility of transcriptional machinery to DNA templates in chromatin, in turn increasing the 

expression of a gene.  Conversely, histone deacetylation may induce other epigenetic 

modifications (i.e. DNA methylation) leading to a decrease in gene expression.  There is a large 

body of evidence on the functional significance of both histone acetylation and DNA 

methylation levels and their correlation with gene expression as well as their importance in 

integrating environmental stimuli, such as diet, in the control of gene expression (9, 10).  

CPT1B is the predominant CPT1 isoform expressed in skeletal muscle (7).  While CPT1B 

plays an important role in human skeletal muscle lipid metabolism and has been shown to be 

differentially regulated in the skeletal muscle of severely obese individuals in response to a high-

fat diet (8), the transcriptional regulation of this gene in response to lipid oversupply has not 

been extensively examined.  The purpose of the present study was to determine if the differential 

response to lipid oversupply of the CPT1B gene in skeletal muscle with severe obesity is linked 

to epigenetic modifications (i.e. DNA methylation and histone acetylation) that impact 

transcriptional activation.  To our knowledge this is the first study to examine the transcriptional 

regulation of CPT1B in response to a physiologically relevant lipid oversupply, in terms of 

concentration and ratios of saturated to unsaturated fatty acids, in primary human skeletal muscle 

cell cultures (HSkMC).  By utilizing HSkMC we were able to study the molecular adaptations to 

a lipid stimulus in an environment void of in-vivo hormonal and neural stimuli and thus intrinsic 

to skeletal muscle itself. 
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EXPERIMENTAL PROCEDURES 

Study Design 

Briefly, the design of the study was to compare the mRNA response of the rate-limiting 

enzyme CPT1B to lipid oversupply in lean vs. severely obese subjects.  Skeletal muscle was 

obtained from the vastus lateralis and used to derive primary human skeletal muscle cell cultures 

(HSkMC).  After differentiation into myotubes, HSkMC were incubated in a physiologically 

relevant lipid mixture (250µM oleate:palmitate) for 48hr and mRNA content, DNA methylation, 

histone acetylation, and transcription factor binding to the CPT1B promoter region were 

determined. 

Materials 

All chemical reagents and substrates were purchased from Sigma (St. Louis, MO, USA) 

unless otherwise stated. Dulbecco’s Phosphate-Buffered Saline (DPBS), fetal bovine serum, 

heat-inactivated horse serum, gentamicin, 0.05% trypsin EDTA, and Hanks’s balanced salt 

solution were obtained from Invitrogen.  Growth media and differentiation media consisted of 

low glucose (5 mmol/L) Dulbecco’s Modified Eagles Medium from Invitrogen.  Type I collagen-

coated tissue culture plates were obtained from Becton Dickinson (Franklin Lakes, NJ, USA). 

PCR reagents were purchased from Applied Biosystems (Foster City, CA, USA).  

Human Subjects 

Muscle biopsies were obtained using the percutaneous needle biopsy technique (11) 

under local anesthesia (0.01% lidocaine) from the vastus lateralis of 9 lean (BMI= 22.8 kg/m
2
 

±0.7; Age= 23.4yrs ±1.5) and 9 severely obese (BMI= 41.3 kg/m
2
 ±1.5; Age= 29.9yrs±2.9) 
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Caucasian women.  Characteristics are presented in Table 1.  Participants were relatively young, 

free from disease, nonsmokers and not taking medications known to alter metabolism.  All 

procedures were approved by the East Carolina University Institutional Board.  

Primary HSkMC 

Satellite cells were isolated from ~50-100mg of fresh muscle tissue and cultured into 

myoblasts as previously described  (12).  For experiments cells were sub-cultured into T-150 

flasks and 10cm dishes.  Upon reaching ~80-90% confluence, differentiation was induced by 

switching the growth media to low-serum differentiation media containing 2% heat-inactivated 

horse serum, 0.05 mg/ml fetuin, and 5 µg/ml gentamicin.  On day 5 of differentiation, myotubes 

were given fresh differentiation media supplemented with 1) 0.1% bovine serum albumin (BSA) 

+ 1mM carnitine (CONTROL) or 2) 250µM oleate:palmitate (1:1 ratio) bound to 0.1% BSA + 

1mM carnitine (LIPID) for a total incubation period of 48 hours.  Myotubes were harvested on 

day seven similar to previous work (13).  There were no obvious differences in the extent of 

myotube morphology or differentiation between lean and obese HSkMC.  

RNA Isolation and mRNA quantification 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA) with on-

column DNase digestion using the RNase-Free DNase Set (Qiagen, Valencia, CA) to remove 

residual DNA.  RNA was quantified using the NanoDrop 1000 Spectrophotometer Version 3.7.1 

from Thermoscientific (Wilmington, DE, USA) and concentration was determined by measuring 

the absorbance at 260nm.  2ug of RNA was reverse transcribed into cDNA using the High 

Capacity cDNA Reverse Transcription Kit from Applied Biosystems (Foster City, CA, USA).  

PCR was performed in triplicate using the Applied Biosystems ABI 7900HT sequence detection 
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instrument and software with Taqman Universal PCR Master Mix and TaqMan gene expression 

assays (Applied Biosystems, Foster City, California) in accordance with manufacturer’s 

instructions.  Using standard techniques, reactions were run with the following thermal cycling 

conditions: 50˚C for 2 min; 95˚C for 10 min; and 40 cycles of 95˚C for 15 s; followed by 60˚C 

for 1 min.  mRNA content was measured using the comparative Ct method with a multiplexed 

endogenous control (18S) and converted to a linear function by using a base 2 antilog 

transformation.  

DNA Isolation  

Cells were washed with DPBS and trypsinized with trypsin-EDTA (0.05% trypsin and 

0.25% EDTA).  Total DNA (mitochondrial and nuclea) was extracted from cells using a 

QIAamp DNA mini kit (Qiagen, Valencia, CA) and total DNA quantified using the NanoDrop 

1000 Spectrophotometer Version 3.7.1 from Thermoscientific (Wilmington, DE, USA).  

Bisulfite Conversion and DNA Methylation Profiling  

500ng of DNA was used to perform bisulfate conversion using the EZ DNA Methylation 

Kit (Zymo Research, Orange, CA) following the manufacturer’s protocol, with the alternative 

incubation conditions recommended when using the Illumina Infunium Methylation Assay.  

Genome-wide DNA methylation analysis was conducted on bisulfate treated DNA samples using 

the Illumina Infinium HumanMethylation 450K BeadChip, which allows the quantitative 

monitoring of 485,764 cytosine positions (14).  12uL of each bisulfate-converted sample was 

amplified and fragmented, following the manufacturer’s protocol, hybridized to arrays in a 

balanced design and scanned on an Illumina iScan System. Data were output and analyzed using 

Illumina’s Genome Studio software. 
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Chromatin Immunoprecipitation (ChIP) Assay  

Cellular chromatin was cross-linked by adding 1% formaldyhyde.  The cross-linking 

reaction was stopped by adding 0.125M glycine and cells were then scrapped from the cell 

culture dishes, washed with PBS, centrifuged, and resuspended in lysis buffer (5mM Pipes [pH 

8.0], 85mM KCl, 0.4% NP40, Complete Mini EDTA-free protease inhibitor cocktail tablet 

[Roche, Branchburg, NJ]).  Pelleted nuclei were resuspended in a sonication solution (50mM 

Tris-HCl [pH 8.1], 1% SDS, 10mM EDTA, Complete Mini protease inhibitor cocktail tablet 

[Roche, Branchburg, NJ]) and sheared by sonication to an average size of 1 kb.  The sonicated 

chromatin was centrifuged and resuspended in IP buffer (16.7 mM Tris-HCl [pH 7.9], 167 mM 

NaCl, 0.01% SDS, 1.1% Triton-X, 1.2 mM EDTA, Complete Mini protease inhibitor cocktail 

tablet [Roche, Branchburg, NJ]).  An aliquot of each sample was removed as “input” and used in 

PCR analysis.  The soluble chromatin was incubated overnight at 4˚C in a rotating shaker with 

the following antibodies: 1) anti-PPAR alpha monoclonal (ab2779, Abcam, Cambridge, MA), 2) 

anti-PPAR delta polyclonal (ab125290, Abcam, Cambridge, MA), 3) anti-HNF-4 alpha 

monoclonal (ab41898, Abcam, Cambridge, MA), or 4) anti-acetyl-Histone H3 polyclonal (#06-

599, Millipore, Billerica, MA) and anti-acetyl-Histone H4 polyclonal (#06-866, Millipore, 

Billerica, MA).  Normal Rabbit IgG polyclonal antibody (#2729, Cell Signaling, Danvers, MA) 

was used as control for the ChIP assays.   Immune complexes were isolated by incubation with 

60 μl of ChIP-Grade Protein G Agarose Beads (Cell Signaling, Danvers, MA) for 1hr at 4°C.  

The complexes were serially washed in 1 ml low salt buffer (0.1% SDS, 1% Triton X-100, 0.2 M 

EDTA, 20 mM Tris-HCl [pH 8.1], 20% glycerol, 0.5 mM DTT, 100 mM NaCl) (twice), 1 ml of 

the same buffer but with high salt (500 mM NaCl) (twice), 1 ml of LiCl buffer (250 mM LiCl, 

1% NP-40, 100 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl [pH 8.0]) (twice), and four times with 
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TE (10 mM Tris-HCl [pH 7.5] and 1 mM EDTA).  The complexes were eluted with two 250μl 

aliquots of elution buffer (1% SDS and 0.1 M NaHCO3) at RT for 15min.  The cross-linking was 

reversed by adding 200mM NaCl and incubated at 56˚C overnight then subsequently  digested 

with 4ul RNase A (100 mg/ml)(Qiagen, Germantown, MD)  and 2ul of proteinase K (10mg/ml) 

at 45˚C for 1hr.  After reversing the cross-linking, DNA was isolated using the QIAquick PCR 

Purification Kit (Qiagen, Germantown, MD) according to the manufacturer’s instructions.  The 

input and bound DNA fractions were subjected to PCR and analyzed by with specified primer 

pairs.  The following primer set was used to assess HNF-4α binding and H3/H4 lysine 

acetylation in the CPT1B promoter region: 5’ primer 5-GGAACCTGACACCTACTCCC-3’ and 

the 3’ primer 5- ACATCGGTGACCTTTTCCCT-3’.  PPARα and PPARδ binding to the CPT1B 

promoter region was assessed using the EpiTect ChIP qPCR primer assay GPH1022780(-)01A 

(Qiagen, Germantown, MD).   

Statistical analysis 

Statistical analyses were performed using PASW Statistics 19 Software (SPSS Inc., 

Chicago, IL, USA) on raw or log-transformed data.  Comparisons between HSkMC from lean 

and obese donors were performed using independent samples t-tests.  All data met assumptions 

of sphericity and homogeneity of variance.  Data are presented as the mean ± SEM. 
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RESULTS 

Participant Characteristics 

Participant characteristics are presented in Table 3.1.  By design, the obese subjects were 

heavier and most had a body mass index (BMI) classified as Class III (severe) obesity (≥40 

kg/m
2
) (P<0.05).  Fasting blood glucose, cholesterol, and triglyceride values did not differ 

between groups.  However fasting HDL values were significantly lower, while insulin and 

homeostatic model assessment values were significantly higher in the obese subjects (P<0.05).  

Both groups consisted of relatively young individuals, and were age- and race-matched. 

Lipid Oversupply Increases CPT1B Gene Expression 

In response to the 48h 1:1 oleate:palmitate lipid treatment, there was a significant 

(P<0.001) increase in CPT1B mRNA content in both groups (Fig. 3.1); however, in the lipid-

treated condition CPT1B mRNA content was significantly lower (P<0.05) in the obese 

individuals compared to the lean (Fig. 3.1).  Under the control condition (i.e. pre-lipid exposure), 

there were no differences between the groups in CPT1B mRNA. 

Lipid Oversupply Remodels DNA Methylation 

DNA methylation was determined among 18 cytosines within the CPT1B gene (Fig. 

3.2A), 16 of which are located within 1000 base pairs (bp) of the transcription start site (TSS).  

There were no significant differences in basal methylation between the lean and obese 

individuals. However, in response to the lipid oversupply, there were significant (P<0.05) lipid-

treatment effects for cytosines at positions 3, 4, 7, 8, 12, 13, and 14 (-299, -295, -152, -134, 

+211, +223, and +229bp relative to the TSS) where methylation was lower in the lipid-treated 
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state relative to control.  Among the lean individuals (Fig. 3.2B), lipid oversupply resulted in a 

significant decrease in the methylation of six cytosines at positions 3, 4, 7, 8, 9, and 13 (-299, -

295, -152, -134, -83, and +223bp relative to the TSS) and a decrease in methylation of the 

cytosine at position 14 (+229bp relative to the TSS) which approached significance (P=0.10).  In 

addition, there was a significant increase in methylation at position 2 (-565bp from TSS) and a 

trend for an increase in methylation at cytosines 17 and 18 (+1,496 and +4321bp from the TSS; 

P=0.10 and P=0.06) in response to lipid oversupply among the lean women.  Among the obese 

women (Fig. 3.2C), lipid oversupply resulted in a significant decrease in the methylation of 

cytosines at positions 2, 4, 6, and 14 (-565, -295, -200, and +229bp relative to the TSS) and a 

trend for a decrease in the cytosine at position 13 (+223bp relative to the TSS; P=0.06).  There 

were no significant increases in methylation at any of the cytosines measured among the obese 

subjects in response to lipid oversupply.  

In terms of CPT1B exhibiting differential responses to lipid oversupply with obesity, the 

change in methylation of the cytosine at position 7 was significantly (P=0.05) different between 

groups (lean -12.3±4.6% vs. obese -1.5±1.9%) while the change in methylation of the cytosine at 

position 8 approached significance (lean -8.8±3.5% vs. obese -1.6±1.0%; P=0.07).  Additionally, 

there were significant interactions for cytosines at positions 2 and 6 (-565 and -200bp relative to 

the TSS) where methylation significantly decreased in the lipid-treated state in HSkMC from the 

obese, but not the lean subjects.  In fact, the lipid-induced change in methylation of the cytosine 

at position 6 was positively related to the lipid-induced relative change in CPT1B gene 

expression (r=0.71; P<0.01) (Fig. 3.3A).  Similarly, the methylation of cytosine 6 in the lipid-

treated condition was positively related with the mRNA content of CPT1B in the lipid-treated 

condition (r=0.52; P=0.03) (Fig. 3.3B).  
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Lipid Oversupply Increases Histone Acetylation and Transcription Factor Binding  

In searching for transcriptional regulators of CPT1B gene expression in response to lipid 

oversupply, we focused on promoter associated histone acetylation and transcription factor 

binding.  Overall, in response to the lipid oversupply, there were significant (P<0.05) increases 

in H3/H4 lysine acetylation (Fig. 3.4A) as well as increased HNF-4α (Fig. 3.4B) and PPARδ 

(Fig. 3.4D) transcription factor binding to the promoter region of CPT1B as assessed by 

chromatin immunoprecipitation (ChIP) assay.  There was a significant correlation between the 

relative change in histone acetylation and the relative changes in PPARδ (Fig. 3.5B) and HNF4-α 

(Fig. 3.5C) binding to the CPT1B promoter region.  Lipid oversupply failed to significantly 

increase PPARα transcription factor binding to the CPT1B promoter region (Fig. 3.4C) and there 

was no correlation between the relative change in histone acetylation and the relative change in 

PPARα (Fig. 3.5C) binding to the CPT1B promoter region.  There were no significant 

differences between lean and obese in terms of CPT1B promoter associated histone acetylations 

and transcription factor binding at baseline or in response to lipid oversupply. 



 

52 
 

DISCUSSION 

In lean individuals, whole-body lipid oxidation increases in response to a high-fat diet, 

however with obesity, there is an impairment in the ability to adjust to lipid exposure in a similar 

manner (3, 15).  The goal of the present study was to determine if the expression of a rate-

limiting enzyme in skeletal muscle mitochondrial FAO, CPT1B, differed in a manner indicative 

of a lack of metabolic flexibility with obesity and if the transcriptional regulation of CPT1B 

could be explained by epigenetic modifications.  The main findings of the current study were 

that: 1) the expression of CPT1B was blunted in the severely obese women compared to their 

lean counterparts in response to lipid oversupply and 2) that changes in CpG methylation, H3/H4 

histone acetylation, and transcription factor binding accompanied this response suggesting that 

CPT1B is, at least in part, regulated by epigenetic modifications in human skeletal muscle.  

  CPT1 exists as three isoforms encoded by separate genes: liver-type (encoded by 

CPT1A), muscle-type (encoded by CPT1B), and brain-type (encoded by CPT1C).  The CPT1B 

gene consists of ~11kb and contains 19 introns and 19 exons, the first of which is non-coding 

and alternatively transcribed into either: 1) exon 1A (also called U) that is expressed ubiquitously 

or 2) exon 1B (also called M) that is expressed abundantly in heart and skeletal muscle (16, 17).   

Long chain fatty acids can regulate CPT1B gene expression (16, 18) via PPARα activation and 

subsequent binding to the peroxisome proliferator response element (PPRE) within the CPT1B 

promoter region (16, 19).  Data from Muoio et al. indicates that PPARα and PPARδ play 

redundant roles in the activation of CPT1B gene expression in skeletal muscle (20), while other 

data suggests that CPT1B is preferentially regulated by PPARδ, and not PPARα in skeletal 

muscle (21).  Our findings also suggest that PPARδ may play a more important role in the 
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transcriptional activation of CPT1B compared to PPARα, in response to lipid exposure as we 

observed a significant increase in PPARδ binding to the CPT1B promoter region, but failed to 

see an increase in PPARα binding (Fig. 3.4). 

HNF-4α is a nuclear transcription factor that regulates the expression of several genes 

involved with energy metabolism and other nuclear receptors, including the PPARs, and HNF-4α 

mutations have been associated with metabolic diseases such as type 2 diabetes and 

hyperlipidemia (22).  The proposed mechanisms by which HNF-4α exerts transcriptional 

regulation include chromatin structure modulation via histone acetyltransferase recruitment as 

well as interactions with other transcription factors such as HNF-1, HNF-6, GATA 4, GATA6, 

p21, PGC-1α and SREBP2 (23).  It has been suggested that the transcriptional regulation of some 

genes involved with lipid metabolism (ie. ACOT, ACOX, CD36, CPT, and ThB) relies on 

interactions between the PPARs and HNF-4α (23).  For example, Martinez-Jimenez et al. 

reported that fasting-mediated transcriptional activation of CPT1 required the synergism of 

HNF-4α and PPARα (24). While our findings do not definitely show that the lipid-induced 

transcriptional regulation of CPT1B requires the synergism of HNF4α and PPARδ, our data 

supports a recently described model of CPT1B transcriptional regulation proposed by 

Chamouton and Latruffe (23) where HNF-4α, bound to the PPRE, recruits a ligand-activated 

PPAR to the promoter in response to altered substrate availability, suggesting that these two 

receptors act in a crosstalk manner.  Additionally, both HNF4-α and PPARδ binding to the 

CPT1B promoter were positively correlated with increased histone acetylation (Fig. 3.5) in 

response to lipid oversupply which is consistent with the concept that histone acetylation opens 

the chromatin structure to facilitate accessibility of transcriptional machinery to the promoter 

regions of genes, thereby regulating activation.  
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DNA methylation is considered to be a major regulator of transcriptional activity where 

increased DNA methylation inhibits promoter activity by directly impeding the binding of 

transcriptional factors to their target sites, consequently reducing gene expression (10).  In 

response to lipid oversupply, there was a significant (P<0.05) increase in CPT1B mRNA content 

(Fig. 3.1), which was accompanied by significant decreases in methylation among seven out of 

eighteen cytosines measured.  Among the obese women only two of the seven cytosines 

exhibited a lipid-induced decrease in methylation, compared to five out of seven among the lean 

women (Fig. 3.2).  This suggests the overall lipid-induced decrease in methylation was driven by 

the lean individuals, which is in agreement with CPT1B mRNA content being significantly 

higher in muscle cells derived from lean compared to obese subjects (Fig. 3.1).  In addition, the 

overall extent to which methylation changed in response to lipid oversupply tended to be lower 

in the obese subjects (Fig. 3.2), which is in accordance with individuals at a greater risk of 

developing metabolic disease tending to have a lower sensitivity to environmental challenges (ie. 

high-fat feeding) and acutely regulating DNA methylation (25).  

While fatty acids have been shown to increase the transcription of genes that play roles in 

the oxidation of lipids, glucose can induce the transcriptional response of glycolytic and 

lipogenic enzymes (26).  One transcription factor that has been implicated in the carbohydrate-

mediated regulation of glycolytic and lipogeneic genes is upstream stimulatory factor (USF) 

(27).  USFs are members of the basic-helix-loop-helix leucine zipper family of transcription 

factors, are ubiquitously expressed, and have been implicated in several metabolic diseases (26-

29).  Using MATCH
TM

 public version 1.0, which is a matrix search for transcription factor 

binding sites based on TRANSFAC® (30), we identified potential USF binding sites within the 

CPT1B promoter based on sequence analysis and identified two USF binding sites which 
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contained cytosines at positions 2 and 6.  Interestingly, of the cytosines measured in this analysis, 

these were the only two that showed a significant (P<0.05) interaction effect where methylation 

significantly decreased in the lipid-treated state in HSkMC from the obese, but not the lean 

subjects. In fact, methylation of the cytosine at position 2 significantly increased among the lean 

women in response to lipid treatment (Fig. 2), which would suggest a reduction in transcription 

factor binding at this site.  Additionally, the relative change in methylation of the cytosine at 

position 6 was positively related to the relative change in CPT1B mRNA content in response to 

lipid oversupply (Fig. 3.3).  USF has not been previously implicated in the regulation of CPT1B 

in response to lipid treatment.  However, data from Putt et al. uncovered a molecular relationship 

between several metabolic genes and USF in response to nutrient challenges, including a high-fat 

meal, and suggested that this relationship played a role in the transcriptional fine tuning of these 

metabolic genes (29).  Additionally, it has been suggested that USF may play a role in 

maintaining the chromatin structure environment at promoter sites and, similar to the PPARs, 

may switch from activator to repressor depending on which signal transduction pathways are 

operating (27).  While purely speculative at this point, the significant decrease in methylation at 

two possible USF binding sites among the obese women with lipid supports the notion that USF 

binding could be acting as a repressor and a partial brake on the lipid-induced upregulation of 

CPT1B.  This mechanism may, in part, explain the significantly reduced expression of CPT1B 

mRNA content in response to lipid treatment in skeletal muscle cells derived from obese women 

(Fig. 3.1).  

In summary, by utilizing primary human skeletal muscle cell cultures (HSkMC) we were 

able to study the transcriptional regulation of CPT1B in response to a lipid stimulus in the 

skeletal muscle of lean and severely obese humans.  Our findings indicate a dampened CPT1B 
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response to lipid, which likely contributes to the metabolic inflexibility evident in skeletal 

muscle with severe obesity.  A novel finding was that epigenetic modifications, including histone 

acetylation and DNA methylation, both of which were associated with transcription factor 

binding, play an important role in the transcriptional upregulation of CPT1B in response to a 

physiologically relevant lipid mixture (31) in humans and it is likely that differential DNA 

methylation partially explains the depressed expression of CPT1B among the severely obese 

women.   
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TABLES AND FIGURES 

Table 3.1 Subject Characteristics 

 Lean (n=12) Obese (n=10) 

Age (y) 23.4±1.5 29.9±2.9 

Stature (cm) 164.7±1.8 165.5±2.2 

Mass (kg) 62.6±1.3 113.7±6.3* 

BMI (kg/m
2
) 22.8±0.7 41.3±1.5* 

Fasting glucose (mmol/L) 4.6±0.1 4.9±0.4 

Fasting insulin (uU/L) 4.3±1.2 18.3±5.8* 

HOMA-IR 0.9±0.3 3.2±1.0* 

Plasma cholesterol (mg/dl) 179±8 169±11 

Plasma triglycerides (mg/dl) 102±7 105±16 

HDL (mg/dl) 56±4 40±4* 

 

Results are expressed as mean±SEM 

*Significantly different (P < 0.05) from lean. 
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Fig. 3.1 Effect of lipid oversupply (48hr 250µM oleate:palmitate treatment) on mRNA content 

of CPT1B in cultured myotubes (HSkMC) from lean (open bars) and severely obese (solid bars) 

donors. Data are expressed as mean±SEM. *, Significant difference (P≤0.05) between lean and 

obese individuals. Φ, Significant difference (P≤0.01) between control and lipid-treated. 
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Fig. 3.2 CPT1B gene methylation. Visualization of the 18 measured CpG sites within the CPT1B 

gene (A). DNA methylation changes in response to lipid oversupply (methylation value in the 

lipid-treated condition minus the baseline methylation value) at each of the 18 measured 

cytosines among the lean individuals (B) and the severely obese individuals (C). *, Significant 

difference (P≤0.05) between the baseline and lipid-treated condition. #, Difference between 

baseline and lipid-treated condition approached significance (P≤0.1). TSS is indicated by the 

arrow. 

A 

 

 

 

 

 

 

 



 

64 
 

B 

 

 

 

 

 

C 

 

 

 

 

 

 

 

 

 

 

 

Lean
M

e
th

y
la

ti
o

n
 C

h
a

n
g

e
 (

%
 p

o
in

t)

-20

-10

0

10

20

*
*

*

*

*

*

*
#

#

#

1      2     3      4     5      6      7      8     9    10    11    12    13   14    15    16    17    18

Obese

M
e

th
y

la
ti

o
n

 C
h

a
n

g
e

 (
%

 p
o

in
t)

-20

-10

0

10

20

* *
*

*
#

1      2     3      4     5      6      7      8     9    10    11    12    13   14    15    16    17    18



 

65 
 

Fig. 3.3 The association of CPT1B methylation and CPT1B mRNA content. The change in 

methylation in response to lipid oversupply (methylation value in the lipid-treated condition 

minus the baseline methylation value) of the cytosine at position 6 was positively related to the 

relative change in CPT1B mRNA content (lipid-treated divided by baseline) (A). Methylation of 

the cytosine at position 6 in the lipid-treated condition was positively related to CPT1B mRNA 

content in the lipid-treated condition (B).    

 

 

 

-6 

-4 

-2 

0 

2 

4 

6 

8 

0 10 20 30 40  C
h

a
n

g
e

 i
n

 M
e

th
y
la

ti
o

n
 

(%
) 

 

CPT1B Fold Change (Lipid/Control) 

r = 0.713; p = 0.001 
Lean  

Obese 

0% 

2% 

4% 

6% 

8% 

10% 

0 10 20 30 40 50 60 70 

 M
e

th
y
la

ti
o

n
 (

%
) 

 

Lipid-Treated CPT1B mRNA Content  

r = 0.521; p = 0.027 

A 

B 



 

66 
 

Fig. 3.4 Effect of lipid oversupply (48hr 250µM oleate:palmitate treatment) on CPT1B promoter 

associated  changes in H3/H4 histone acetylation (A) and HNF-4α (B), PPARα (C), and PPARδ 

(D) transcription factor binding in cultured myotubes (HSkMC) from lean (open bars) and 

severely obese (solid bars) donors. Data are expressed as mean±SEM. Φ, Significant difference 

(P≤0.05) between control and lipid-treated. 
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Fig. 3.5 The association of CPT1B promoter region H3/H4 histone acetylation and transcription 

factor binding to the CPT1B promoter region. The relative change (lipid-treated divided by 

baseline) in PPARα (A), PPARδ (B), and HNF-4α (C) transcription factor binding to the CPT1B 

promoter region in response to lipid oversupply was related to the relative change (lipid-treated 

divided by baseline) in H3/H4 histone acetylation of the CPT1B promoter region.  
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CHAPTER 4: SUMMARY OF FINDINGS 

With obesity, there are impairments in the ability to adjust substrate utilization to changes 

in substrate availability, referred to as metabolic inflexibility (1-3).  In respect to lipid 

metabolism, we reported that obese individuals lacked the ability to increase fat oxidation with 

either a high fat diet (4) or in HSkMC upon lipid incubation (5).  This dissertation examined if 

the expression of genes linked with FAO and mitochondrial content also differed in a manner 

indicative of a lack of metabolic flexibility with severe obesity and to what extent the differential 

responses to lipid oversupply were linked with the chromatin environment and/or the 

methylation signature of these genes.  The main findings were that: 1) the increased expression 

of genes that act as vital transcriptional and enzymatic regulators of FAO and mitochondrial 

content were blunted in the severely obese women compared to their lean counterparts in 

response to lipid oversupply and 2) that changes in CpG methylation, H3/H4 histone acetylation, 

and transcription factor binding were evident in this lipid-induced response suggesting that some 

genes (ie. CPT1B and PPARδ) are, at least in part, regulated by epigenetic modifications in 

human skeletal muscle.  These data provide the novel information that with severe obesity the 

metabolic inflexibility evident with lipid exposure may be linked with an inability to upregulate 

some transcriptional regulators via epigenetic modifications.   

The first study in this dissertation focused on the peroxisome proliferator-activated 

receptors (PPARs) and nuclear respiratory factors (NRFs) , which are provocative candidates for 

explaining the metabolic inflexibility in response to lipid oversupply with obesity as they 

activate gene expression programs critical to mitochondrial function and FAO (6-9).  The NRFs 

are essential for the expression several genes that are critical to FAO including genes that encode 

subunits of the five respiratory complexes of the mitochondrial inner membrane, genes which 

file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_1
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direct the expression and assembly of the respiratory apparatus, and genes which function in 

mitochondrial protein import and initiate mtDNA transcription and replication (10, 11).  NRF-1, 

and NRF-2, exhibited patterns of increasing mRNA content with lipid exposure in the lean, but 

not in HSkMC from the severely obese (Fig. 2.1).  Of the six NRF-regulated genes examined, 

cytochrome c (CYCS) exhibited a similar pattern of increasing mRNA content with lipid 

oversupply in the lean, but decreasing with obesity (Fig. 2.3).  We cannot discount the possibility 

that these findings may have been influenced by the time we chose to obtain the samples, i.e. that 

similar or more divergent mRNA responses in lean and obese subjects could have occurred at 

earlier or later time points during lipid incubation. 

The PPARs are ligand-activated transcription factors that play essential roles in lipid 

homeostasis by modulating the expression of genes that regulate fatty acid catabolism.  There are 

three PPAR subtypes: 1) PPARα, which mediates lipid-induced activation of FAO genes and is 

expressed predominately in tissues that are characterized by high rates of FAO (ie. liver, heart, 

muscle, kidney); 2) PPARγ, which is highly enriched in adipocytes and macrophages and is 

involved in adipocyte differentiation, lipid storage, and glucose homeostasis; and 3) PPARδ, 

which is ubiquitously expressed and has the least defined function, but has recently been 

characterized as being highly expressed in skeletal muscle and playing a lipid-metabolizing role 

similar to PPARα (7, 8, 12).  Their critical role in energy homeostasis is supported by the 

observation that PPARα knockout mice exhibit a dramatic inhibition of fatty acid uptake and 

oxidation, abnormal accumulation of lipids in oxidative tissues, and a failure to induce beta-

oxidation in response to physiological challenges such as a high-fat diet (13).  In the first study, 

the mRNA content of PPARα and PPARδ increased with lipid exposure in the lean, but 

decreased in HSkMC from the severely obese (Fig. 2.1 and 2.2).  Additionally, several PPAR-
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responsive genes including citrate synthase (CS), mitochondrial uncoupling protein 3 (UCP3), 

and pyruvate dehydrogenase kinase 4 (PDK4) showed trends for being upregulated more 

robustly in HSkMC from lean but not obese subjects (Fig. 2.3).  

Of the PPAR-responsive genes that were differentially regulated by the 48hr lipid 

oversupply PDK4 is of particular interest as it suppresses glucose and promotes fat oxidation in 

the presence of lipids (14).  We have previously shown that a high fat diet increased PDK4 

mRNA content in lean, but not obese individuals (15); in the current study utilizing HSkMC, the 

lipid-induced increase in PDK4 mRNA content in the lean was more than 2-fold greater than the 

response in the obese (42.0±8.1 vs. 20.4±3.8 fold increase) (Fig. 2.3).  This data is consistent 

with an inability to switch from predominately glucose oxidation to FAO in the presence of a 

lipid challenge with obesity.  

In the second study of this dissertation, the response to another PPAR-responsive gene, 

the muscle-type carnitine palmitoyltransferase 1B (CPT1B), was evaluated. CPT1 mediates the 

transfer of long chain fatty acids across the outer mitochondrial membrane which is a rate-

limiting step in FAO (16).  The activity of the muscle-type CPT1 (encoded by the CPT1B gene) 

is reduced in skeletal muscle with obesity, contributing to a decrease in FAO (17).  In relation to 

metabolic flexibility, in the skeletal muscle of lean subjects a high fat diet increased the 

expression of CTP1B and the peroxisome proliferator-activated receptors (PPARs) which are 

upstream regulators of CPT1B expression (15).  Conversely, a high fat diet resulted in little to no 

change in the expression of these genes in the skeletal muscle of severely obese subjects (15).   

Our data showed that in response to lipid treatment, there was a significant increase in CPT1B 

mRNA content in both groups (Fig. 3.1); however, in the lipid-treated condition CPT1B mRNA 
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content was significantly lower in the obese individuals compared to the lean (Fig. 3.1).  Our 

findings indicate a dampened CPT1B response to lipid which likely contributes to the metabolic 

inflexibility evident in skeletal muscle with severe obesity.  

Taken together, our findings indicate a coordinated activation of genes linked with FAO 

and mitochondrial content among lean individuals in response to lipid oversupply that is largely 

absent with obesity.  In addition to our examination of the differential lipid-induced upregulation 

of genes linked with FAO and mitochondrial content among lean and obese women, we 

examined to what extent the differential responses to lipid oversupply were linked with the 

chromatin environment and/or the methylation signature of these genes.  Epigenetic 

modifications of the genome, including DNA methylation and histone acetylation, may provide a 

connection between nutritional factors, gene expression, and metabolic health.  

DNA methylation is considered to be a major regulator of transcriptional activity and 

may provide a mechanism for the regulation of gene expression in response to lipid and/or could 

help explain the differential responses in gene expression in the skeletal muscle of lean vs. 

severely obese individuals.  Our data, along with others (18, 19), supports the growing awareness 

that DNA methylation can be viewed as a dynamic signal that is associated with changes in 

substrate availability, such as lipid oversupply.  However, the relationship of gene expression 

with DNA methylation, as well as the precise functional relevance of differential methylation is 

not straightforward.   For example, Jacobsen et al. (19) observed that, in response to a high-fat 

diet, relatively immediate changes in DNA methylation can be slow to reverse, but the functional 

relevance of this slow reversibility is not known (19).  The authors suggest that perhaps the 

methylation changes induced by the high-fat diet actually prevented potentially detrimental 
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effects of the high-fat diet on gene expression (19).  In our study, the overall extent to which 

methylation changed in response to lipid oversupply tended to be lower in the obese subjects in 

both studies (Fig. 2.4 and 3.2).  This finding is in accordance with previous work showing that 

individuals at a greater risk of developing metabolic disease tended to have a lower sensitivity to 

environmental challenges (ie. high-fat feeding) in terms of the ability to regulate changes in 

DNA methylation (20).  We did not assess the reversibility of changes in methylation, but future 

studies addressing the functional relevance of lingering changes in methylation could give us 

additional insight into the lipid-induced regulation of the genes examined in this dissertation.  

DNA methylation is generally accepted to regulate gene transcription by directly 

impeding the binding of transcriptional factors to their target sites and through the recruitment of 

methyl-binding proteins (21).  However, our findings indicated a positive relationship between 

the extent of PPARδ promoter methylation and PPARδ mRNA content in response to lipid 

oversupply (Fig. 2.6).  Additionally, the extent of methylation of one cytosine -200bp relative to 

the TSS in the CPT1B promoter region was positively related with the mRNA content of CPT1B 

in the lipid-treated condition (Fig. 3.3).  While purely speculative at this point, the divergent 

methylation signatures between the lean and obese women of cytosines in the promoter regions 

of CPT1B and PPARδ, that are positively correlated with mRNA content, supports the notion 

that methylation may be impeding the binding of an unknown repressor.  Future studies aimed at 

identifying these potential repressors could shed light on the regulation of these genes, which 

play vital roles in lipid metabolism, and could provide additional insight into mechanisms 

responsible for the metabolic inflexibility evident with severe obesity.  With this in mind, it is 

intriguing to imagine if, in the future, therapeutic modalities to treat obesity and/or metabolic 

inflexibility might include approaches to manipulate the methylation status of a single nucleotide 

file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_19
file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_20
file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_21


 

74 
 

within the promoter region of a targeted gene, in an effort to modify promoter occupancy, in turn 

regulating the transcriptional activity of the gene.    

Another epigenetic modification, histone acetylation, also is considered to be a major 

regulator of transcriptional activity via modulation of chromatin structure which influences the 

interaction of transcription-regulatory proteins with target DNA in chromatin (22).  For example, 

an increase in the acetyl groups on histones will result in an open chromatin structure to facilitate 

accessibility of transcriptional machinery to DNA templates in chromatin, in turn increasing the 

expression of a gene.  Overall, in response to the lipid oversupply, there were significant 

increases among the lean and obese groups in H3/H4 lysine acetylation (Fig. 3.4) as well as 

increased HNF-4α (Fig. 3.4) and PPARδ (Fig. 3.4) transcription factor binding to the promoter 

region of CPT1B.  Additionally, both HNF4-α and PPARδ binding to the CPT1B promoter were 

positively correlated with histone acetylation (Fig. 3.5) in response to lipid oversupply which is 

consistent with the concept that increasing histone acetylation opens the chromatin structure to 

facilitate accessibility of transcriptional machinery to the promoter regions of genes, thereby 

regulating activation. 

HNF-4α is a nuclear transcription factor that regulates the expression of several genes 

involved with energy metabolism and other nuclear receptors, including the PPARs, and HNF-4α 

mutations have been associated with metabolic diseases such as Type II diabetes and 

hyperlipidemia (23).  The proposed mechanisms by which HNF-4α exerts transcriptional 

regulation include chromatin structure modulation via histone acetyltransferase recruitment as 

well as interactions with other transcription factors such as the PPARs (24).  For example, 

Martinez-Jimenez et al. reported that fasting-mediated transcriptional activation of CPT1 
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required the synergism of HNF-4α and PPARα (25).  Our findings did not definitely show that 

the lipid-induced transcriptional regulation of CPT1B requires the synergism of a PPAR and 

HNF4α, however our data supports a recently described model of CPT1B transcriptional 

regulation (24) where HNF-4α, bound to the Peroxisome Proliferator Response Element (PPRE), 

recruits a ligand-activated PPAR to the promoter in response to altered substrate availability.  

Our data suggests that PPARδ, not PPARα, is the ligand-activated PPAR recruited to the CPT1B 

promoter region in response to lipid oversupply, indicating that PPARδ may play a more 

important role in the lipid-induced transcriptional activation of CPT1B compared to PPARα.  

Together these data indicate that histone acetylation, which is associated with HNF-4α and 

PPARδ transcription factor binding, plays an important role in the transcriptional upregulation of 

CPT1B in response to a physiologically relevant lipid mixture (26) in humans.  

As mentioned previously, PPARδ has the least defined function of the three PPAR 

subtypes.  In light of this, it is particularly interesting that PPARδ was the only gene whose 

mRNA content was significantly lower in the obese individuals compared to the lean at baseline 

and in response to lipid oversupply (Fig. 2.2).  There was a significant interaction effect for 

PPARδ where mRNA content was elevated in the lipid-treated state in HSkMC from the lean, 

but decreased in HSkMC from the obese subjects (Fig. 2.2).  Additionally, PPARδ, not PPARα, 

binding to the CPT1B promoter region increased in response to lipid oversupply and was 

significantly correlated with CPT1B mRNA content in response to lipid exposure.  Together this 

data indicates that PPARδ may play a more important role in the transcriptional activation of 

CPT1B, and perhaps in skeletal muscle metabolic flexibility and lipid metabolism, than 

previously thought.  Not surprisingly, along with PPARα and PPARγ agonists, PPARδ agonists 

file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_25
file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_24
file:///C:/Users/Jill/Desktop/Comps/Dissertation/Manuscripts/Summary%20of%20Findings.docx%23_ENREF_26


 

76 
 

are currently under assessment in clinical trials and seem to be promising drugs for the 

improvement of parameters associated with dyslipidemia, insulin resistance, and obesity (27).  

In summary, by utilizing primary human skeletal muscle cell cultures (HSkMC) we were 

able to study the transcriptional regulation of mitochondrial and lipid-oxidizing genes in 

response to a lipid stimulus in the skeletal muscle of lean and severely obese humans in an 

environment void of in-vivo hormonal and neural stimuli and thus intrinsic to skeletal muscle 

itself.  The purpose of the present study was to determine if the expression of genes linked with 

FAO and mitochondrial content differed in a manner indicative of a lack of metabolic flexibility 

with obesity and to what extent the differential responses to lipid oversupply were linked with 

the chromatin environment and/or the methylation signature of these genes.  The main findings 

were that: 1) the coordinated activation of genes linked with FAO and mitochondrial content 

among lean individuals in response to lipid oversupply is largely absent with obesity and 2) that 

changes in CpG methylation, increased histone acetylation, and transcription factor binding 

accompanied this response, suggesting that epigenetic modifications play a role in the lipid-

induced upregulation of these genes.  These data provide the novel information that with severe 

obesity the metabolic inflexibility evident in response to lipid exposure may be linked with an 

inability to upregulate transcriptional regulators caused by differential epigenetic modifications. 
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