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In model eukaryotes, the C-terminal domain (CTD) of the largest subunit (RPB1) of 

DNA-dependent RNA polymerase II is composed of tandemly repeated heptads with the 

consensus sequence YSPTSPS. Both the core motif and tandem structure generally are 

highly conserved across many model taxa, including animals, yeasts and higher plants. 

Broader investigations quickly revealed that the CTDs of many organisms deviate 

substantially from this canonical structure; however, limited sampling made it difficult to 

determine whether disordered sequences represent the CTD’s ancestral state, or reflect 

degeneration from an originally repetitive structure. Therefore, I undertook the broadest 

investigation to date of the evolution of the RNAP II CTD across eukaryotic diversity. 

The results indicate that a tandem heptad CTD-structure existed in the ancestors of each 

major taxon, and that degeneration and reinvention of this ordered structure are common 

features of CTD evolution. Lineage specific modifications of heptads that were amplified 

initially appear to be associated with greater developmental complexity in multicellular 

taxa. The pattern has been taken to an extreme in both fungi and red algae. Overall, loss 



 
 

and reinvention of varied repeats have punctuated CTD evolution, occurring 

independently and sometimes repeatedly in various groups.  

 Although present in simple, ancestral red algae, CTD tandem repeats have 

undergone extensive modifications and degeneration during the evolutionary transition to 

developmentally complex rhodophytes. In contrast, CTD repeats are conserved in both 

green algae and their more complex land plant relatives. Understanding the mechanistic 

differences that underlie these variant patterns of CTD evolution requires knowledge of 

CTD-associated proteins in these two lineages. To provide an initial baseline comparison, 

potential phospho-CTD associated proteins (PCAPs) were bound to artificially 

synthesized and phosphorylated CTD repeats from the unicellular green alga 

Chlamydomonas reinhardtii and red alga Cyanidioschyzon merolae. My results indicate 

that red and green algae share a number of PCAPs, including kinases and proteins 

involved in mRNA export. There also are important taxon-specific differences, including 

mRNA splicing-related PCAPs recovered from Chlamydomonas but not 

Cyanidioschyzon, consistent with the relative intron densities in green and red algae. This 

work also offers the first experimental indication that different proteins bind the two 

types of repeats in Cyanidioschyzon, suggesting a division of function between the 

proximal and distal CTD, similar to patterns identified in more developmentally complex 

model organisms.   
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Chapter 1: Introduction 

 

DNA-dependent RNA polymerase, found in all prokaryotic and eukaryotic organisms, is 

essential for life based on its role in transcribing RNAs from DNA templates (Hurwitz 

2005). Prokaryotes, both Eubacteria and Archaea, only contain one type of RNA 

polymerase, which is responsible for all RNA transcriptions (Ebright 2000; Werner 2007). 

During the evolution from prokaryotes to eukaryotes, RNA polymerase diverged into 

several family members with different roles. Mainly, there are three basic types of 

eukaryotic RNA polymerases, I, II, and III. RNA polymerase I is responsible for 

transcribing 28S, 18S and 5.8S rRNAs (Grummt 1999); RNA polymerase II is in charge 

of synthesizing mRNAs, most snRNAs and microRNAs (Lee, Kim et al. 2004); RNA 

polymerase III takes on the role of synthesizing tRNAs, 5S rRNAs and some other small 

RNAs (Willis 1993). In land plants, however, there are another two specific RNA 

polymerases, IV and V, which are involved in non-coding RNA-mediated gene silencing 

processes (Haag and Pikaard 2011).  

Among the three eukaryotic RNA polymerases, RNA polymerase II is the one 

that has been most studied because of its role mRNA synthesis and processing. RNA 

polymerase II is a large, ~ 550 kDa, complex containing 12 subunits, named RPB1 

through RPB12 based on subunit sizes (Myer and Young 1998). Interestingly, the largest 

subunit of RNA polymerase II (RPB1) has a special C-terminal extension, which is 

absent from all other types of RNA polymerases. This C-terminal extension was first 

discovered in 1985 both in yeast (Allison, Moyle et al. 1985) and mouse cells (Corden, 
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Cadena et al. 1985).  The yeast C-terminal extension contains 26 tandemly repeated 

heptapeptides (heptads), and the mouse contains 52, both with a consensus sequence of 

Y1S2P3T4S5P6S7 (Tyrosine-Serine-Proline-Threonine-Serine-Proline-Serine). The RPB1 

C-terminal extension that contains tandemly repeated heptads was named the C-terminal 

domain (CTD) by these early researchers. The N-terminal sequence of the CTD is a 

linker region with about 90 amino acids in both budding yeast and mouse connecting the 

tandem repeats with the universally conserved H domain of RPB1, and the C-terminal 

sequence of the CTD is a tip region with about 20 amino acids in budding yeast and 

about 10 in mouse. Although a C-terminal extension exists in all sequenced eukaryotic 

RPB1 genes, the cumulative data soon revealed that not all organisms contain noticeable 

CTD tandem repeats in their C-terminal extensions.  This was especially true for a 

number of parasitic protists, such as Giardia and Entamoeba, whose C-terminal 

extensions do not have any identifiable heptads. However, evidence emerged that, despite 

the absence of tandem repeats, the C-terminal extension is still essential in these 

eukaryotes (Das and Bellofatto 2009). Therefore, for convenience, more and more of the 

published literature tended to mention the CTD as the whole C-terminal extension, with 

the three regions: the linker region, the central region containing heptads when present, 

and the tip region (Corden 2013). In this dissertation, I also will use the term “CTD” to 

describe the whole RPB1 C-terminal extension, regardless of its structure. In this first 

chapter, I would like to review some basic knowledge about the CTD. Chapters 2 and 3 

contain details of the two CTD-associated projects that I have finished during my Ph.D. 

study period. Chapter 4 provides some overall conclusions from the complete study. 
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The consensus sequence of the CTD 

The earliest CTD sequences came mainly from animals and unicellular fungi, and the 

most common (>50% in yeast and vertebrates) heptad in their CTDs is YSPTSPS. 

Consequently, this sequence was considered to be the consensus sequence of the CTD, 

and most CTD-related studies over the past few decades basically have focused on 

investigating the functions of the consensus CTD heptad repeats. An increasing 

availability of CTD sequences revealed that ratios of this consensus sequence are very 

low in many taxa, for example multicellular fungi. In addition, for certain eukaryotic taxa, 

for example, Stramenopiles (or Heterokonts), the most common heptad is YSPTSPA, and 

YSPTSPS is rarely seen. Even so, as CTD research has basically focused on vertebrates 

and unicellular yeasts, and YSPTSPS is still commonly considered as the consensus 

sequence of the CTD.  

 

The CTD is essential for life 

The discovery of the CTD, and especially its unique heptad repeats, inspired the interest 

of many scientists to investigate its functions. The first CTD functional investigations 

were carried out immediately following the domain’s discovery and involved creating 

truncation mutants in both budding yeast and mouse to determine their effects on 

viability. The studies showed that removal of all or most of the CTD resulted in death, 

and partial deletions showed variable results (Nonet, Sweetser et al. 1987; Allison, Wong 

et al. 1988). For budding yeast, mutants with fewer than 11 heptads failed to support 
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viability; and for mouse, the minimum heptad number required for viability was shown to 

be 29 (Nonet, Sweetser et al. 1987). A latter study with improved methods for mutant 

development showed that viability in budding yeast requires as less as 8 CTD heptads, 

although the mutants with fewer than 13 repeats are sensitive to temperature and other 

stresses (West and Corden 1995). CTD truncation investigations were carried out in 

fission yeast several years ago, and revealed that, of the 29 heptads present in the CTD, 

only the proximal 16 ones are required for viability (Schneider, Pei et al. 2010). Further 

mammalian CTD truncation mutants also were conducted and showed that fewer than 23 

consensus heptads result in death (Bartolomei, Halden et al. 1988; Meininghaus, 

Chapman et al. 2000). An interesting CTD truncation study was even conducted in 

Trypanosome, an ancient unicellular parasite without any heptads at all, and showed that 

complete truncation of the CTD is lethal (Das and Bellofatto 2009). All these studies 

showed that the CTD is essential for life, and that complete truncations are lethal. 

Moreover, the fact that partial truncations, with a number of consensus repeats remaining, 

supported viability suggested that CTD heptads are functionally redundant.  

 

The smallest functional units of the CTD 

Because of the repeated nature and redundancy of heptads, the CTD must contain a 

number of functional units. Stiller and co-workers conducted a study that inserted amino 

acid(s) between every heptad or every other heptad in budding yeast. This work showed 

that insertions between every heptad were lethal, whereas insertions between every other 

heptad supported viability (Stiller and Cook 2004). Therefore, their study revealed that in 
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budding yeast the smallest functional units of the CTD lies within pairs of heptads (Stiller 

and Cook 2004). Similar results also were obtained later in fission yeast study (Schwer 

and Shuman 2011; Schwer, Sanchez et al. 2012). Thus, research into CTD function in 

divergent unicellular fungi all suggested that the smallest functional unit of the CTD 

requires two tandemly repeated heptads.  

 Studies also were carried out to investigate the essential amino acids in each 

consensus heptad by creating various substitution mutants. In budding yeast, these 

substitution investigations showed that, for each consensus heptad, the substitutions of 

Tyr1, Ser2 and Ser5 with Ala or Glu were lethal, but that substitutions of Thr4 and Ser7 

with Ala supported viability, while the substitution of Ser7 with Glu turned out to be 

lethal (West and Corden 1995; Stiller, McConaughy et al. 2000; Liu, Greenleaf et al. 

2008; Liu, Kenney et al. 2010). Further research combining amino acid substitutions 

together with insertions revealed that, for each smallest or “core” functional unit, “Y1-

Y8’’ and ‘‘S2-S5-S9” are the two essential elements that must be conserved in di-heptads 

in budding yeast (Liu, Kenney et al. 2010). However, similar studies conducted in fission 

yeast showed that substitutions of Tyr1 with Phe supported viability, as were 

substitutions of Ser2 with Ala (Schwer and Shuman 2011; Schwer, Sanchez et al. 2012). 

Thus, cumulative genetic studies in yeast suggest that core the relative size and spacing 

of CTD functional motifs is conserved, but that their sequences can vary across 

organisms. 

 The studies also have been carried out in mammalian cells. Substitutions of Ser7 

with Ala in human cells supported viability, but were lethal for the mutants containing 
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substitutions of Ser7 with Glu or Thr (Egloff, O'Reilly et al. 2007). In chicken DT40 cells, 

substitutions of all Tyr1 with Phe were lethal (Hsin, Li et al. 2014). Moreover, although 

chicken CTD mutants with 26 consensus heptads are viable, substitutions of Ser2 or Ser5 

with Ala in all 26 repeats were lethal, while universal substitutions of Ser7 with Ala were 

viable but were lethal with other amino acids, including Glu, Thr and Lys (Hsin, Xiang et 

al. 2014). Substitutions of Thr4 were also conducted in chicken cells and showed that 

Thr4 to Val substitutions did not support viability (Hsin, Sheth et al. 2011). All these 

studies suggest that Tyr1 and two Ser-Pro pairs are the core amino acids of each 

consensus heptad, and the Thr4 and Ser7 have more important functions in animals, 

whereas substitution in these two positions are more tolerated in yeasts, especially fission 

yeast.  

 

The CTD Post-Transcriptional Modifications and Associated Functions 

Cumulative studies revealed that CTD heptads adopt different modification patterns to 

interact with different transcription factors during transcription cycles, and viable 

phosphorylations are the main modification patterns of the CTD (Corden 2013; Eick and 

Geyer 2013). For each CTD heptad, there are five amino acid positions that can be 

phosphorylated, including Tyr1, Ser2,5,7, and Thr4. Besides phosphorylations, the two 

prolines can adopt cis or trans isoforms (Zhang, Rodriguez-Molina et al. 2012). Given 

the large number of heptads and varied modification possibilities of each heptad, it was 

proposed that the CTD might have codes that use different post-transcriptional 

modifications to interact with different proteins, and that these codes could be conserved 
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somewhat from yeast to animals (Buratowski 2003). CTD functional studies during the 

past decade revealed that, although a strict CTD code does not really exist, CTDs do have 

some very common modification patterns that are conserved from yeast to animals 

(Corden 2013; Eick and Geyer 2013). Therefore, in this section the different CTD post-

transcriptional patterns and associated functions will be reviewed.  

 

Tyr1 Phosphorylation and Associated Functions 

Phosphorylation of Tyr1 was first identified in HeLa nuclear extracts using phospho-

Tyrosine antibodies, and the kinase c-abl was shown to be associated with Try1 

phosphorylation (Tyr1P) (Baskaran, Dahmus et al. 1993).  Two years ago, Dirk Eick’s 

laboratory generated a specific monoclonal antibody (3D12) against Tyr1P, and used this 

antibody to conduct chromatin immunoprecipitation (ChIP) studies. Their work revealed 

Tyr1P profiles during transcriptional cycle, which showed that Tyr1P levels gradually 

increased from the transcription start site and began to decrease from ~180bp upstream of 

polyadenylation (pA) site (Heidemann and Eick 2012; Mayer, Heidemann et al. 2012). 

Further ChIP investigations were conducted to investigate the relationships between 

Tyr1P and transcriptional factors, and the results suggested that Tyr1P impairs recruitment 

of termination factors such as Nrd1, Pcf11, and Rtt103, but stimulates the interaction with 

the transcriptional elongation factor Spt6 (Mayer, Heidemann et al. 2012). This study 

suggested that Tyr1P might be used to avoid early transcript termination by impairing the 

CTD ability to interact with termination factors during transcriptional elongation (Mayer, 

Heidemann et al. 2012). In vitro kinase analysis was also performed in this study and 
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provided further support that c-abl acts as the kinase for Tyr1 phosphorylation. A more 

recent study showed that Tyr1 functions in protecting the CTD from proteolysis, and that 

Tyr1 phosphorylation is responsible for regulating uaRNA (upstream antisense RNA) 

accumulation by ensuring uaRNA turnover (Hsin, Li et al. 2014). Another study 

published nearly at the same time showed that Tyr1P is associated with antisense 

promoter and enhancer transcription (Descostes, Heidemann et al. 2014). As for the 

phosphatase of Tyr1P, a recent in vitro study showed Tyr1P might be erased by Rtr1, 

which is a dual specificity phosphatase capable of dephosphorylating both Tyr1P and 

Ser5P (Hsu, Yang et al. 2014).  

 

Ser2 and Ser5 Phosphorylations and Associated Functions 

The most thoroughly investigated CTD modification patterns are Ser2 and Ser5 

phosphorylations. Cumulative ChIP assays have shown the common Ser2 and Ser5 

phosphorylation profiles during transcription cycle. Ser5P reaches the highest level 

immediately after RNAP II clears the transcription start site, and decreases gradually 

during the transcription elongation process. In contrast, Ser2P level is very low early in 

transcription, but gradually increases during elongation and reaches its highest level when 

the polymerase is close to the 3’ UTR starting site, and that relative high levels even last 

until RNAP II reaches the pA site (Tietjen, Zhang et al. 2010).  Thus, Ser5P usually is 

dominant early in RNAP transcription, whereas Ser2P is dominant when transcription is 

close to ending.  During the middle stages of transcription elongation, the most common 

pattern is bi-phosphorylation of Ser2 and Ser5.  
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The main kinase responsible for Ser5 phosphorylations is cyclin-dependent kinase 

7 (CDK7) in mammalian cells and its counterpart in budding yeast, Kin28 (Bartkowiak 

and Greenleaf 2011). For kinases that phosphorylate Ser2, cumulative studies showed 

that, in mammalian cells, the major players are members of the CDK9 subfamily 

including CDK9, and CDKs12, 13 (Bartkowiak and Greenleaf 2011). In budding yeast 

there are two CDK9 subfamily members, Bur1 and Ctk1, and studies showed they are in 

charge of phosphorylations of Ser2 (Bartkowiak and Greenleaf 2011). The main 

phosphatase that erases Ser5P is Ssu72 (Corden 2013). Recent research showed Rtr1 also 

serves as a Ser5P phosphatase in yeast (Mosley, Pattenden et al. 2009), however, and 

suggested that Rtr1 is responsible for removing the phosphate from Ser5 early in 

transcription elongation, whereas Ssu72 is responsible for erasing the phosphate closer to 

the transcription termination site (Krishnamurthy, He et al. 2004). For Ser2P, the main 

phosphatase is Fcp1, which performs its function late in transcription elongation and 

termination (Ghosh, Shuman et al. 2008). 

The best established Ser5P function is to promote addition of a m7GpppN cap 

structure to the 5’ end of new message RNA transcripts by physically interacting with 

capping enzymes (Ghosh, Shuman et al. 2011). This 5’capping involves three enzymes in 

yeast, RNA 5’-triphosphatase (RT), Guanylyltransferase (GT) and RNA (guanine-N7) 

Methyltransferase (MT) (Cho, Takagi et al. 1997; McCracken, Fong et al. 1997). In 

animals, however, the two enzymes RT and GT have been fused into one enzyme, which 

is called capping enzyme (CE) (Ho, Sriskanda et al. 1998). Studies showed that in 

budding yeast, GT (Cet1) and MT (Abd1) both bind directly to the Ser5P CTD (Cho, 
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Rodriguez et al. 1998), and the GT domain of Mammalian CE physically interacts with 

the Ser5P CTD (Ho and Shuman 1999; Fabrega, Shen et al. 2003; Schroeder, Zorio et al. 

2004). Structure investigations of interactions between the CTD and capping enzymes 

were carried out both in yeast and mammalian cells, and showed that different CTD 

conformations interact with capping enzymes (Burley and Sonenberg 2011). 

Ser2 and Ser5 bi-phosphorylation is the most common CTD pattern during 

transcription elongation, and is responsible for interacting with varied elongation factors, 

chromatin remodeling factors (e.g., set1 and set2), and mRNA splicing factors, such as 

prp40, U2AF65 (Corden 2013). Based on the large number of transcriptional mRNA 

processing factors that interact with Ser2 and Ser5 bi-phosphorylated CTD, studies that 

use a phospho-CTD to pull down CTD associated proteins in vitro are mainly performed 

by using a Ser2 and Ser5 bi-phospho-CTD (Carty and Greenleaf 2002; Phatnani, Jones et 

al. 2004). So that my results would be comparable to such previous and ongoing research, 

I also used this method to identify phospho-CTD associated proteins in green and red 

algae (see Chapter 3). 

Ser2 phosphorylation is barely seen early in transcription. It achieves its highest 

level during late transcript elongation. Cumulative studies show that Ser2P is mainly 

responsible for interacting with mRNA 3’ end processing factors, such as Rtt103 and 

Pcf11 (Corden 2013).  Pcf11 is one of the most important termination factors. In vitro 

assays carried out in early 2000s and revealed that the binding between Pcf11 and the 

CTD requires Ser2 phosphorylation (Licatalosi, Geiger et al. 2002). Further structure 
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analyses confirmed the presence of a specific CTD interaction domain in Pcf11 and the 

Ser2 phosphorylated CTD (Lunde, Reichow et al. 2010). 

 

Thr4 phosphorylation and associated functions 

Several years ago, James Manley’s laboratory constructed three types of CTD mutants 

using DT40 chicken cells with Rpb1 gene conditional knock-outs (Hsin, Sheth et al. 

2011). The mutants were as follows: DT40-Rpb1, which contains a tet-repressive cDNA 

encoding HA-tagged wild-type human Rpb1; DT40-26r, which contains 26 consensus 

heptads along with the most C-terminal residues; and DT40-T4V, which contains 30 

heptads with all Thr4 residues mutated to Valines. Primary viability analyses of the three 

types of mutants revealed that DT40-Rpb1 and DT40-26r were both viable, but DT40-

T4V was not. Overall transcriptional comparisons conducted among the three mutants 

showed no significant differences; however, levels of histone mRNAs were significantly 

reduced for DT40-T4V compared with the other two mutants. Further investigations 

demonstrated that Thr4 phosphorylation is required specifically for histone mRNA 3’ end 

processing, and also that CTD kinase CDK9 could be responsible for Thr4 

phosphorylations (Hsin, Sheth et al. 2011). Another study carried out by Dirk Eick’s 

group further revealed that Thr4 phosphorylation is conducted by Polo-like kinase 3, and 

also suggested Thr4P is required in transcription elongation (Hintermair, Heidemann et al. 

2012). A more recent study from Manley’s laboratory showed that Thr4 genetically links 

with the histone variant Htz1, showed a functional connection between transcription and 

chromatin remodeling via CTD Thr4 (Rosonina, Yurko et al. 2014). 
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Ser7 phosphorylation and associated functions 

The first study that discovered Ser7 phosphorylation was carried out in Dirk Eick’s 

laboratory several years ago using monoclonal antibodies, and Ser7 phosphorylation was 

found on polymerase actively transcribing genes (Chapman, Heidemann et al. 2007). 

Among the mutants constructed in their study, those ones only containing 20 consensus 

repeats showed no Ser7 phosphorylation, suggesting functional differences between 

regions of the animal CTD. A study conducted at nearly the same time related Ser7P to 

snRNA gene expression based on the fact that mutants with all Ser7 substituted by 

Alanines were deficient in snRNA gene expression (Egloff, O'Reilly et al. 2007).  This 

study further revealed that phosphorylations of Ser7 facilitate CTD interactions with the 

snRNA gene-specific Integrator complex. A follow-up study showed that during 

transcription of snRNA genes, RPAP2 (RNA polymerase II associated protein 2) was 

recruited by Ser7P, and, in turn, facilitates the recruitment of Integrator (Egloff, O'Reilly 

et al. 2007). As for the kinases that phosphorylate Ser7 residues, a study in Bentley’s 

laboratory demonstrated that CDK7 functions as one of Ser7 kinases (Glover-Cutter, 

Larochelle et al. 2009). Another study conducted by Ansari’s group found that Ssu72 

serves as a Ser7P phosphatase in budding yeast (Zhang, Mosley et al. 2012)



 
 

Chapter 2: Evolutionary Diversity and Taxon-Specific Modifications of the RNA 

polymerase II C-Terminal Domain 

 

Background 

The largest subunit of RNA polymerase II (RPB1) has a unique C-terminal domain (CTD) 

that, in its canonical form, is composed mainly of tandemly repeated heptads with a 

consensus sequence YSPTSPS. It has been more than a quarter century since the CTD 

was first described in yeast (Allison, Moyle et al. 1985; Corden, Cadena et al. 1985), 

where both global functions and constraints on its evolution are most thoroughly 

understood (West and Corden 1995; Stiller and Hall 2002; Guo and Stiller 2004; Stiller 

and Cook 2004; Liu, Greenleaf et al. 2008; Buratowski 2009). In yeast and animals, the 

CTD mainly functions as a docking platform to recruit transcription and processing 

factors to RNAPII at appropriate stages of the transcription cycle (Phatnani and Greenleaf 

2006; Egloff and Murphy 2008; Buratowski 2009; Bartkowiak, Mackellar et al. 2011). 

To date, cumulative research has revealed that the factors recruited by the CTD are 

related to a variety of functions, such as mRNA 5’ capping, mRNA 3’ end processing, 

pre-mRNA splicing, histone modification and snRNA processing (Hsin and Manley 

2012; Corden 2013; Eick and Geyer 2013). Moreover, the CTD uses different codes to 

recruit different protein factors (Buratowski 2003; Egloff and Murphy 2008; Zhang, 

Rodriguez-Molina et al. 2012; Jasnovidova and Stefl 2013). Reversible phosphorylation 

of Ser2 and Ser5 residues are the primary CTD codes, and are crucial for regulating 

transcription and binding mRNA processing factors (Phatnani and Greenleaf 2006; 

Heidemann, Hintermair et al. 2013); the major kinases responsible for these 
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phosphorylations are conserved from yeast to metazoans (Bartkowiak and Greenleaf 

2011). The CTD adopts additional modifications to enrich its functions, including Tyr1 

(Baskaran, Dahmus et al. 1993; Mayer, Heidemann et al. 2012), Ser7 (Chapman, 

Heidemann et al. 2007), and Thr4 phosphorylations (Hsin, Sheth et al. 2011; Hintermair, 

Heidemann et al. 2012), as well as cis/trans isomerization of Pro3 and Pro6 (Egloff and 

Murphy 2008; Werner-Allen, Lee et al. 2011). 

Despite its essential nature and conservation of multiple core functions across 

model organisms, when and in what form the CTD originated remains unclear, as do 

reasons for the remarkable diversity in CTD sequences and structures across eukaryotic 

species. The last major explicitly phylogenetic treatment of broad scale CTD evolution 

was published over ten years ago and suggested the presence of a “CTD clade” of 

associated major taxa, all descended from a common ancestor, in which canonical CTD 

heptads and functions are invariably conserved (Stiller and Hall 2002; Stiller and Cook 

2004). This, in turn, suggested that a “critical mass” of CTD-protein interactions could 

have coalesced in the common ancestor of this group, after which the canonical CTD 

became indispensable to cellular function. With the acceleration of DNA sequencing over 

the last decade, the number of CTD sequences available from diverse organisms has 

grown substantially. It is now clear that evolutionary processes leading to conservation 

and degeneration of the CTD are far more complicated than suggested by early 

evolutionary studies (Chapman, Heidemann et al. 2008; Corden 2013; Stump and 

Ostrozhynska 2013). Moreover, a recent combined experimental and comparative 

analysis of mechanistic constraints on the yeast CTD revealed that many fungi have 
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experienced changes across the domain that are incompatible with functional 

requirements established in the yeast model Saccharomyces cerevisiae (Liu, Kenney et al. 

2010). Given the CTD’s centrality to the entire RNAP II transcription cycle, this degree 

of degeneration is surprising. Therefore, I undertook a comprehensive investigation of the 

evolution and diversity of the CTD, both within and among major eukaryotic phyla.   

 

Results 

The CTD Originated with Tandemly Repeated Heptads 

A global phylogenetic tree reflecting current best estimates of relationships among 

eukaryotic genera was constructed based on the Tree of Life Web Project and NCBI 

Taxonomy. The tree included all genera for which CTD sequences were available, and 

overall CTD structures were mapped onto the tree (Fig. 1). An interesting and consistent 

pattern emerged: in all major taxa, except the Ciliophora and “supergroup” Excavata, the 

most deeply branching taxa have the least modified CTD structures; that is, the most 

basal taxa contain CTDs consisting of simple, tandem repeats with few modifications. In 

contrast, indels, substitutions or even wholesale degeneration of the CTD’s repetitive 

structure tend to occur in later diverging taxa, particularly in more developmentally 

complex, multicellular forms. It is interesting to note that maximum-likelihood analyses 

(see below) inferred the ancestral presence of a repetitive CTD even in groups for which 

no well-organized CTD has yet been sequenced. For example, although no tandemly 

repeated CTDs have been found among the handful of ciliates examined to date, the 

evolutionary pattern still holds when the nearest major sister group to ciliates, the 
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apicomplexans, are considered (Fig. 1). The Excavata is another large super-taxon 

containing various eukaryotic groups with great diversity. Although the CTD sequences 

from most excavates sampled have no apparent CTD motifs, the Naegleria sequence 

displays a highly ordered tandem structure, whereas a single canonical heptad is present 

in the trichomonad Pentatrichomonas. Thus, it is reasonable that a tandemly repeated 

CTD structure was present in the ancestors of all major taxa currently recognized, and 

that degeneration of this initial tandem structure is a common feature of the CTD 

evolution.   

I addressed this hypothesis more rigorously through maximum-likelihood 

character evolution analysis, using four assigned states based on the overall structure of 

each CTD sequence (see methods). Analyses were performed using two commonly 

suggested roots of the eukaryotic tree, the Excavata and between the Unikonta and 

Bikonta (Stechmann and Cavalier-Smith 2003). With the former rooting, ML analysis 

indicated a 49.51% probability that the eukaryotic common ancestor had a CTD with 

tandemly repeated heptads, versus a 48.52% probability of a random CTD sequence; 

however, the common ancestors of all other taxa except Excavata had 99.96% or greater 

probabilities of containing tandemly repeated heptads (Fig. 2). The latter rooting resulted 

in a 99.79% likelihood that the CTD had a tandemly repeated structure in the eukaryotic 

common ancestor (Fig. 3). Therefore, contrary to early conclusions based on more limited 

sampling (Stiller and Hall 1998; Chapman, Heidemann et al. 2008), it appears that the 

CTD originated as tandemly repeated heptads before the divergence of all (or at least 
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most) extant eukaryotic taxa, and that those taxa with no recognizable CTD repeats have 

undergone degeneration rather than reflect the ancestral state of the CTD. 

 

The CTD Has Expanded and Diversified With Developmental Complexity in Animals 

and Plants 

Animals and land plants have achieved the greatest developmental diversity and 

complexity in the eukaryotic world, and interestingly, they have parallel patterns of CTD 

evolution. The CTD in animals is conserved to different degrees in different taxa. In the 

phylum Chordata, all 22 genera examined have almost identical CTD sequences with 52 

tandem repeats, although serine codon usage (TCx or AGC/T) is slightly different in 

proximal heptads among more distantly related organisms. Likewise, three nematodes 

(from Caenorhabditis to Loa, Fig. 1), two (Brugia and Loa) from the same family, all 

have same CTD structures and serine codon usage. Interestingly the two available 

choanoflagellates (Monosiga and Salpingoeca), which share the closest common ancestor 

with metazoans (Lang, O'Kelly et al. 2002), have similar tandemly repeated CTD 

structures with only subtle differences in codon use. In contrast, in the phylum 

Arthropoda (Ixodes to Solenopsis), levels of CTD conservation are variable across orders, 

families and even within the same genus; for example, Drosophila species have several 

slightly different CTD patterns. 

In general, the length of the CTD in animals appears positively correlated with 

greater evolutionary complexity, but this is not absolute since, for example, the more 

deeply branching and morphologically simple animal, Hydra, has the longest region of 
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heptads among all known CTDs (≈60 repeats). Given the generally dynamic nature of 

the CTD, however, it is likely that Hydra amplified extra repeats recently to acquire its 

surprisingly long heptad region, and has not yet lost them to a random mutation that 

could reset the CTD back to a more typical length. In fact, the extremely degenerated far 

distal region of the inferred Hydra CTD appears to reflect this very mutational process. I 

also found that the pattern of heptad variability first noted within mammalian CTDs, that 

is, the tendency toward canonical repeats in proximal regions with varied substitutions 

and/or indels in distal regions, is consistent across metazoan diversity, albeit most 

prominent in more developmentally complex animals like arthropods and chordates. 

Previous broad scale sampling suggested that, in groups like metazoans that 

require more complex and well-programmed gene expression, a multiplicity of CTD-

protein interactions prevent loss of an overall tandem CTD structure (Guo and Stiller 

2005); however, recently sequenced CTDs from two flatworms (Platyhelminthes), 

Clonorchis and Schistosoma, show this not to be the case. Neither displays almost any 

vestige of a canonical CTD, so far a unique condition within the Metazoa. Interestingly, 

the CTD of their nearest available relative, the flatworm Schmidtea, is more typical of a 

metazoan CTD. Both Clonorchis and Schistosoma are parasitic trematodes, whereas 

Schmidtea is a free-living turbellarian; this highlights another interesting but not absolute 

association of the CTD, that of parasitic lifestyles with extreme modifications of the 

ancestral tandem heptads in a given group (see section below). 

In general, CTD evolution in green plants has been analogous to that in animals. 

Five unicellular green algae available (from Chlamydomonas to Bathycoccus, Fig. 1) 
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show similar tandemly repeated heptads but with largely different serine codon use. 

Likewise, the CTDs of two early-diverging land plant genera, Physcomitrella and 

Selaginella, have few or no substitutions in their distal repeats. More derived and 

developmentally complex angiosperms (Sorghum to Ricinus), however, contain longer 

heptad regions with more frequent substitutions or indels in their distal heptad regions. 

There is general conservation of CTD structure and serine codon usage in both monocot 

(Sorghum to Hordeum) and dicot (Glycine to Ricinus) taxa, with subtle differences 

between them. Interestingly this pattern of CTD modification associated with 

developmental complexity even seems to be followed in more simple green algae; less-

derived chlamydomonad unicellular algae (e.g. Chlamydomonas) have canonical tandem 

heptads with nearly no substitutions or indels, whereas the colonial and more 

developmentally complex genus Volvox contains a more modified CTD, similar to 

derived land plants. 

 

Parallel CTD Evolution in Fungi and Red Algae 

Both fungi and red algae show parallel developmental evolution in that they have 

achieved complex, multicellular forms through the elaboration of filamentous rather than 

parenchymatous tissue differentiation. Interestingly, the two groups also display similar 

patterns of CTD evolution with remarkable deviations from the tandem heptad structure 

found in more developmentally complex forms (Fig. 1).  

The CTDs of available chytridiomycetes (e.g., Batrachochytrium) and 

zygomycetes (e.g., Mucor), representatives of the ancestors of true fungi, have tandemly 
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repeated heptads nearly without substitutions or indels (Fig. 4). The same is true for all 

microsporidian parasites (from Antonospora to Nosema, Fig. 4), although their 

classification as ancient fungi remains controversial (James, Kauff et al. 2006). In the 

more derived phylum Ascomycota (Schizosaccharomyces to Claviceps), unicellular 

yeasts in the Saccharomycotina display simple tandemly repeated CTDs. In the 

Pezizomycotina (Arthrobotrys to Claviceps), however, which form more complicated 

multicellular fruiting bodies, numerous alterations have occurred that result in regions 

that would be dysfunctional based on requirements known from mutational experiments 

in yeast (Liu, Greenleaf et al. 2008; Liu, Kenney et al. 2010). The pattern is especially 

striking in the Eurotiomycetes (Exophiala to Coccidioides), where few typical heptads 

and no CTD functional units (as characterized in yeast) occur. Based on the presence of 

tandemly repeated CTDs in more ancestral fungi, developmentally complex ascomycetes 

have taken an evolutionary pathway that resulted in the loss of repeated heptads through 

modification by individual substitutions and insertions/deletions. This could parallel 

lineage-specific adaptive modifications in the distal CTD regions of complex animals and 

plants, only without retention of a more canonical proximal set of tandem repeats in 

complex fungi. Similar but less extreme patterns of heptad modifications are found in the 

other pezizomycete classes. Interestingly, with few exceptions the overall structural 

patterns within these CTDs, even in serine codon use, are highly conserved at the 

taxonomic level of classes. This conservation is even more striking at the level of orders 

(Fig. 4). This suggests that co-adapted molecular processes that underlie the conserved 

developmental patterns reflected in class and lower-level systematic designations, also 
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are reflected in conservation of CTD-protein interactions that regulate RNAPII driven 

gene expression. 

The Basidiomycota (Malassezia to Ceriporiopsis, Fig. 1) is as comparably diverse 

as the Ascomycota, but far fewer CTDs have been sequenced. Nevertheless, all available 

basidiomycete CTD sequences show various degrees of modifications of ancestral 

heptads and, given the limited sampling, structural patterns and serine codon usage also 

seem to be conserved at the level of order. For example, members of the Polyporales 

(including Trametes, Ceriporiopsis and Dichomitus) have highly similar CTD structural 

patterns and serine codon use (Fig. 4). Thus, despite the paucity of available data, it is 

reasonable to expect that CTD evolution in basidiomycetes has proceeded comparably to 

what is observed in the better-sampled Ascomycota. 

With respect to broad scale patterns of CTD evolution in fungi, it is intriguing that 

the basidiomycetes and pezizomycetes are predominantly multicellular fungi with more 

complex developmental patterns. In contrast, microsporidians, chytrids, zygomycetes and 

saccharomycetes are relatively simple developmentally, although a few have evolved 

multicellular forms (Kurtzman and Fell 2006). Thus, my results indicate that there are 

two distinct evolutionary trajectories for the CTD in fungi. Simple forms tend to retain 

canonical heptad repeats although varying degrees of differences in serine codon usage, 

suggesting that specific heptads were lost and regained regularly. In contrast, 

morphologically complex fungi tend to adopt extreme modifications in their CTDs, 

which are largely conserved at higher (order) classification levels. This perhaps reflects 

the evolution of strongly conserved lineage-specific CTD/protein interactions. Unlike in 
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multicellular plants and animals, however, there appears to be no strong selection in 

developmentally complex fungi to maintain long stretches of tandem heptad repeats.  

Based on sequences available from eight genera, it appears that CTD evolution in 

red algae followed a remarkably similar pattern to what occurred in fungi. The unicellular 

forms Glaucosphaera, Cyanidioschyzon and Galdieria all have a number of canonical 

heptad repeats, although Cyanidioschyzon has a surprising series of nine amino acid 

repeats with the sequence YSPSSPNVA, unique in all CTD sequences known. In contrast, 

the CTDs of five multicellular rhodophytes have almost no canonical heptads. Although 

taxon sampling is much weaker, this suggests that, as in fungi, large-scale modifications 

of ancestral heptads, along with reduced purifying selection on maintenance of a tandem 

structure, are correlated with the evolution of developmental complexity in red algae. It 

also is interesting that Pyropia yezoensis has a highly similar CTD structure to Porphyra 

purpurea and P. umbilicalis, although these algae have proven to be genetically distant 

(Sutherland, Lindstrom et al. 2011). This indicates another interesting parallel with the 

fungi that, although highly modified, CTD structures are relatively conserved at the level 

of order (Bangiales). As in fungi, this correlates with conserved life history and 

developmental similarities that traditionally placed Pyropia and Porphyra within the 

same genus (Porphrya, sensu latu). 

 

CTD Diversity across Protist Groups  

Stramenopiles (from Aureococcus to Phytophthora, Fig. 1) comprise a large and diverse 

group of eukaryotes that display a broad range of morphological complexity and 
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ecological habits. The group includes photosynthetic members ranging from unicellular 

diatoms to giant kelp, as well as heterotrophic oomycetes and various non-photosynthetic 

protist taxa (Riisberg, Orr et al. 2009). At present, complete and well-annotated RPB1 

sequences are available from only six genera; these are the diatom Phaeodactylum and 

pelagophyte Aureococcus, the multicellular brown alga Ectocarpus, and the filamentous 

oomycetes Hyaloperonospora, Albugo and Phytophthora. All six of them have long 

tandemly repeated heptad regions (YSPTSPA) in their CTDs with nearly no substitutions 

or indels.  

Four ciliate CTD sequences are available and none displays a discernible tandem 

structure, or even recognizable individual heptads. In contrast, of the four CTD sequences 

available from amoebozoans, only the parasite Entamoeba lacks tandemly repeated 

heptad regions. The Excavata is a diverse eukaryotic supergroup composed of various 

unicellular species. At present, CTD sequences are available from six genera, five 

adapted to parasitism and one, Naegleria, predominantly free-living. The CTD of 

Naegleria contains 23 canonical heptad repeats, whereas the five CTDs from parasitic 

excavates have no discernible heptad structures, except for the single YSPASPL motif in 

trichomonad Pentatrichomonas noted earlier.  

 

CTD Evolution in the Apicomplexa 

As in most eukaryotic lineages, the most deeply branching apicomplexan, 

Cryptosporidium, has a CTD with a long array of tandemly repeated heptads. Beyond 

that, CTD evolution has been unusually dynamic in this group. CTDs from Neospora, 
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Theileria and Toxoplasma all are highly degenerate with few canonical heptads, whereas 

Babesia contains numerous tandemly repeated heptads in its middle region with a 

different consensus sequence from those in Cryptosporidium. Most interesting is CTD 

evolution within the genus Plasmodium, for which CTD sequences are available from 10 

different species (Fig. 5). Although both the proximal and distal CTD regions are highly 

conserved across the genus, at least two independent acquisitions of tandem heptads 

(YSPTSPK) have occurred in primate-infecting species (Kishore, Perkins et al. 2009). 

One was in the lineage containing P. fragile, P. knowlesi, and P. vivax, the other 

apparently in the common ancestor of P. falciparum and P. reichinowi. Even more 

interesting, the reamplified heptads vary in number (5 to 9) not only between species, but 

also among different strains of P. falciparum and P. vivax. Thus, it appears that both 

tandem heptad degeneration and reinvention have occurred repeatedly in the 

Apicomplexa, reflecting the global pattern of CTD evolution across the whole of 

eukaryotic diversity. This suggests that CTD evolution in Apicomplexa can provide, in 

microcosm, a model for how selective pressures could have shaped CTD evolution more 

broadly in eukaryotes. 
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Discussion 

Our comprehensive analyses of available CTD sequences show that the phylogenetic 

distribution of a tandemly repeated structure does not support the earlier hypotheses of a 

“CTD-clade”, in which some “critical mass” of CTD/proteins coalesced to place strong 

purifying selection on a canonical and tandemly repeated CTD (Stiller and Hall 2002; 

Stiller and Cook 2004). In fact, tandemly structured CTDs are scattered across the 

eukaryotic tree of life, and appear to have been amplified, lost and reamplified from one 

or more heptads on numerous occasions.  It is possible that CTD variation has been 

impacted by horizontal gene transfer (HGT) of alternative sequences from unrelated taxa; 

however, such transfers generally are not favored in genes encoding core informational 

proteins with multiple complex interactions (Jain, Rivera et al. 1999), and I find no 

empirical evidence of HGT in the sequences I analyzed. Likewise, broader sampling has 

shown that the CTD can degenerate in members of groups, for example multicellular 

animals, previously suggested to be incapable of surviving without a well-ordered CTD. 

My findings demonstrate that the canonical, tandemly repeated CTD has undergone a 

dynamic process of birth, modification/degeneration and rebirth throughout eukaryotic 

evolution. Nevertheless, the evolutionary patterns I highlight can provide new clues for 

understanding what drives CTD diversification. 

 

The Origin of the CTD 

Based on a more limited sample of CTD sequences and differences in serine codon use, 

Chapman and colleagues proposed that the heptads in the CTD were built up initially 
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from smaller motifs (YSPx or SPxY; x represents any amino acid), and then amplified 

independently in various different eukaryotic lineages (Chapman, Heidemann et al. 

2008). My comprehensive investigation of CTD evolution indicates that the extended 

RPB1 C-terminal domain, present in all RPB1 sequences known to date, originated as 

tandemly repeated heptads before divergence of extant eukaryotic groups. Therefore, 

differences in consensus heptads and serine codon use reflect the extremely dynamic 

evolution of tandem repeats rather than their independent origins. 

A very early origin of the RNAP II CTD through relatively rapid amplification of 

one or a few initial heptad motifs raises a provocative question: what was the initial 

functional advantage of this new domain? The fact that the extended C-terminal domain 

was never lost from any lineage that diversified through evolutionary history suggests the 

CTD was, from its origin, connected to an essential function that also evolved in the 

common ancestor of extant eukaryotes. Thus, the most likely candidates are those CTD-

associated processes that are widely distributed across eukaryotic diversity. It also seems 

most reasonable that initial selection was on a single function rather than complexes of 

proteins involved in more complicated pathways, and that it favored longer C-terminal 

extensions rather than a single binding domain. Given these caveats, I argue that the most 

likely ancestral function for CTD tandem repeats was as a platform for carrying out co-

transcriptional pre-mRNA splicing. It is believed that the last common ancestor of all 

extant eukaryotes contained an extremely high density of introns in its protein-coding 

genes (Koonin 2009), apparently the result of a rapid invasion by group II parasitic self-

splicing introns at the dawn of the eukaryotic domain. The spliceosome likely evolved as 
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a mechanism to efficiently remove group II introns that lost the ability to self-splice 

(Rogozin, Carmel et al. 2012). It is reasonable, that the extended CTD evolved to permit 

spliceosomes to function co-transcriptionally, thereby increasing splicing efficiency and 

the overall rate of RNAP II transcription. Experimental results linking the CTD to exon 

recognition and the earliest stages of spliceosome assembly (Hirose, Tacke et al. 1999) 

suggest the two could have co-evolved in this manner. Effectively, the CTD could have 

originated as part of a genomic immune response to a massive invasion of genetic 

parasites.  

Another possibility for the ancestral CTD function is as a platform for 5’ capping, 

which appears to be conserved across the breadth of eukaryotes. Lethal CTD 

substitutions in fission yeast can be complemented by fusing capping enzyme to the 

CTD, suggesting that 5’ capping could be the only essential CTD function in fission yeast 

(Schwer and Shuman 2011).  As a single function, however, capping provides a less 

compelling explanation than splicing for why an extended array of tandem repeats would 

have been favored from the outset.  In any case, once the domain was in place, it proved 

to be an attractive binding platform for a wide variety of other protein partners.  

I proposed the following scenario for the CTD origin and its early evolution. First, 

as suggested by Chapman and colleagues (Chapman, Heidemann et al. 2008), submotifs 

such as YSP and SP evolved at the end of H domain of RPB1 in the eukaryotic ancestor 

through random mutations, finally in combination resulting in formation of one or more 

initial heptad (YSPxSPx) motifs. These heptads then were amplified by tandem 

duplications to create the first major C-terminal extension of RPB1. Such an origin of the 
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original C-terminal extension distal to the H domain is consistent with numerous more 

recent CTD expansions through tandem duplications, for example those well documented 

in Plasmodium parasites (Kishore, Perkins et al. 2009), as well as nearly identical codon 

usage in many tandem CTD motifs across the breadth of eukaryotic diversity. The most 

prominent examples of the latter are proximal tandemly repeated heptad regions of more 

evolutionarily derived animals and plants. As the CTD grew longer, to extend more 

prominently from the core of RNAPII, the heptads in the linker region degenerated. The 

former presence of typical CTD heptads is reflected by the presence of the sub-motif SP, 

which, on average, is nearly thirty times more abundant in linker regions than in RPB1 

from domains A through H (Fig. 6).  

 

The Evolution of the CTD across Eukaryotic Diversity 

The remarkable sequence diversity and variable serine codon use in CTD sequences 

across eukaryotes show that the domain’s evolution has been extraordinarily dynamic. 

Although CTDs of more deeply branching genera in nearly all major eukaryotic taxa 

contain clear tandem heptads, it is unlikely that these specific repeats were conserved 

from the CTD in their ancient common ancestor. Selection appears to have conserved the 

overall tandem structure of the CTD in ancestral eukaryotes, but not necessarily their 

underlying sequences at the amino acid or DNA levels.  In other words, as long as a 

structurally unordered and reversibly modifiable docking platform was maintained, 

slightly different heptapeptides were functionally interchangeable. This has been 

demonstrated experimentally via evolutionary complementation for CTD function in 
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yeast (Stiller, McConaughy et al. 2000). Once present, tandemly repeated sequences are 

easy to amplify, lose and reamplify during DNA replication (Corden 2013). The process 

most likely involves expansion of the CTD by repeated tandem duplications, balanced by 

degeneration of terminal sequences after random mutations introduced new 3’ stop 

codons. 

It appears that in developmentally simple organisms, selection balances 

replication and loss of heptads, thereby maintaining a given length of tandemly repeated 

structure. With the evolution of more developmentally complex eukaryotes, selection 

seemed to favor taxon-specific CTD modification. When accompanied by purifying 

selection on redundant and overlapping functions, this process also led to retention of 

tandem repeats and CTD structures like those found in complex land plants and animals. 

Without purifying selection on greater length and tandem repeats, accumulated 

modifications of the CTD lead to the appearance of moderate to complete degeneration as 

in multicellular fungi. 

The two recent independent CTD heptad expansions in plasmodium parasites 

demonstrate how a tandemly structured CTD can be reinvented when required by the 

addition of new functions. The specific advantage conveyed to plasmodium species that 

parasitize primates as opposed to birds and rodents is unclear, but could involve the 

coincident acquisition of chromatin remodeling pathways not present in other 

apicomplexans (Kishore, Stiller et al. 2013). Regardless, it is clear that the CTD is 

extremely plastic in response to selection. Given the diversity and variation of CTD 

protein interactions across the eukaryotes (Corden 2013), it seems unlikely that specific 
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evolutionary modifications from any given lineage will prove generally applicable. 

Rather, analogous selective pressures likely have yielded parallel patterns of CTD 

evolution. 

The most tantalizing example is the similar patterns of CTD evolution in animals 

and green plants. The CTD grew longer in both developmentally complex forms in both, 

with tandemly repeated proximal regions retained along with somewhat modified distal 

regions. Presumably this was not accomplished by adding distal non-repetitive regions, 

but by adaptive evolution of the ancestral heptads toward specific functions combined 

with simultaneous or later additions of new canonical repeats upstream to permit more 

diverse and overlapping protein binding. In contrast, while CTD heptads underwent 

various levels of modification in both multicellular fungi and red algae, generally more 

severe than those in land plants and animals, neither group reamplified proximal tandem 

repeats. Thus, it appears likely that evolution of developmental complexity is associated 

with specific alterations of the CTD resulting in deviations from the ancestral tandem 

structure. In organisms that exhibit the greatest levels of cell and tissue differentiation, 

such as animals and land plants, transcription and processing functions associated with 

RNAP II appear to be too varied and complicated to be accommodated without an 

enlarged CTD, including a repetitive region that permits flexible, redundant function. An 

association of modified CTD regions with greater transcriptional efficiency required for 

multicellular development is supported by the observations that only the nonconsensus 

repeats 1-3 and 52 are essential for proliferation of mammalian cell cultures (Chapman, 

Conrad et al. 2005), whereas removal of other modified heptads causes retarded growth 
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and increased neonatal lethality in the developing organism (Litingtung, Lawler et al. 

1999). In contrast, multicellular fungi and red algae must have evolved lineage-specific 

functions that modified the ancestral heptads; however, perhaps based on a lesser overall 

need for complexity in gene expression, they did not re- or co-evolve tandemly repeated 

regions for more generalized CTD-protein interactions. 

Unfortunately there are no comparative empirical data that directly tie specific 

functions to modified, conserved CTD regions in most organisms. Nevertheless, some 

studies involving specific CTD alterations provide direct evidence that heptad 

modifications in animals could be related to conserved, lineage-specific functions. For 

example, an investigation of the role of R1810 (an Arg7) in the human CTD indicates it 

is involved specifically in regulating expression of snRNA and snoRNA (Sims, Rojas et 

al. 2011). This could represent a more broadly applicable lineage-specific function 

because this Arg7 modification is conserved at a comparable position across chordates. A 

distal Arg7 also is found in some invertebrate genera, but a conserved specific position 

within the CTD is not apparent outside the chordate lineage. 

It is unknown why developmentally complex fungi and red algae have lost the 

need for tandemly repeated heptads as their CTDs underwent extensive modifications 

associated with the evolution of multicellularity. It may not be coincidental, however, that 

both multicellular fungi and red algae have relatively simpler developmental programs. 

Although both groups have been considered plant-like historically, unlike land plants they 

do not exhibit coordinated cellular development required for elaboration of organs such 

as roots, stems, leaves and vascular tissues. It also is interesting that, thus far, the pattern I 
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highlight is compatible with CTD evolution in stramenopiles, another group that has 

evolved complex multicellular forms. All unicellular stramenopiles (e.g., Albugo, Fig. 1) 

examined to date have relatively uniform tandemly repeated CTDs, as do mycelial 

oomycetes and the only multicellular stramenopile alga sequenced, Ectocarpus, a 

structurally simple, filamentous form. The group as a whole, however, has evolved more 

complex cellular differentiation, including rudimentary vascularization (Charrier, Coelho 

et al. 2008). I predict that CTD evolution in stramenopiles will prove to be more similar 

to animals and green plants than to fungi and red algae; that is, more developmentally 

complex brown algae, such as kelp, will have longer CTDs with proximal tandem repeats 

and greater numbers of modifications and indels in distal regions. 

It is clear that extensive CTD modification and relaxed purifying selection on the 

CTD can be associated with the transition to a parasitic lifestyle (Stump and 

Ostrozhynska 2013). Remarkably this extends to parasitic flatworms, even though a 

closely related free-living flatworm retains a CTD with tandemly repeated structure. 

Nevertheless, it also is clear that a parasitic lifestyle is not synonymous with CTD 

degeneration. Microsporidians, which arguably are the most derived of all eukaryotic 

parasites, with genomes smaller than those of typical bacteria (Keeling and Slamovits 

2004), retain CTDs of tandem heptad repeats. Furthermore, the relationship between 

parasitism and CTD structure is more complicated in apicomplexan parasites, where 

tandem repeats have been lost and reinvented multiple times.  

In conclusion, the CTD most likely originated as a tandemly repeated structure, 

which has been maintained, modified and/or lost during broad scale evolution of 
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eukaryotes. The result is a remarkable diversity of sequences, which undoubtedly reflect 

a comparable diversity of underlying CTD-protein interactions. Some CTD-associated 

proteins surely could have undergone related changes to allow continued interactions 

with changing CTD structures. For example, although both bind to the CTD, mammalian 

and yeast capping enzymes read CTD codes differently (Fabrega, Shen et al. 2003; 

Ghosh, Shuman et al. 2011). Even so, it is likely that only a handful of CTD functions, if 

any, are conserved across all eukaryotes. Nevertheless, given that parallel patterns of 

CTD evolution can be found between unrelated taxa, investigations like those in 

apicomplexan parasites (Kishore, Perkins et al. 2009) can help to elucidate more broadly 

applicable mechanisms of CTD evolution.  

 

Materials and Methods 

Data Collection 

RPB1 protein sequences from 205 genera were collected from NCBI and individual 

genome project databases. I excluded sequences with apparent annotation errors, keeping 

only reliably interpreted sequences in my analyses. Evolutionary relationships used to 

interpret patterns of CTD evolution are based on the Tree of Life Web Project and NCBI 

Taxonomy Database.  

 

CTD Annotation 

Previous analyses in both budding and fission yeasts indicated that essential functions of 

the CTD are conferred by repeated domains, and that minimum essential units of function 
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are contained within heptad pairs (Stiller and Cook 2004; Schwer, Sanchez et al. 2012). 

To better highlight patterns of CTD conservation and degeneration, I developed graphics 

for each CTD based on these results with the following color annotations. Green regions 

contain essential CTD functional units identified in budding yeast (Liu, Greenleaf et al. 

2008); that is, paired heptads are present within conserved essential sequence elements 

(YSPxSPxYSP or SPxYSPxSPxY). Yellow designates individual canonical CTD heptads 

(YSPxSPx) that are not part of a CTD functional unit (as defined above). Red regions 

have no conserved heptad structure or contain substitutions that are incompatible with 

CTD function as defined in yeast. Purple heptads have the sequence FSPxSPx that is 

lethal (if present universally) in budding yeast but turns out to be very common in many 

other fungal genera.  

 

Character Evolution Analysis 

Each CTD was assigned a character state ranging from 0-3. CTDs containing tandemly 

repeated canonical heptads (generally not less than 8 heptads) were assigned state 3; 

examples are the CTDs of yeasts, animals and plants. CTD sequences that have 

functional heptads but fewer than 8 uninterrupted (the minimum length for viability in 

yeast) were assigned state 2; examples include CTDs of most sordariomycetes (e.g., 

Sordaria). Sequences with few to no functional regions, but still with recognizable 

heptads, were assigned state 1 (e.g., eurotiomycetes). CTDs with no discernible heptads 

were assigned state 0 (e.g., ciliates). The program Mesquite (Maddison and Maddison 

2011) was used to carry out maximum-likelihood character state analysis, using the Mk 1 
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Model, to estimate likelihoods of each state at key nodes and at the root of the eukaryotic 

tree. 

 



 
 

Chapter 3: The identification of putative RNA polymerase II C-terminal domain 

associated proteins in green and red algae 

 

Background 

RNA polymerase II is a large complex containing 12 subunits; the largest (RPB1) has a 

unique carboxyl-terminal domain (CTD) that has attracted the interest of many scientists 

since it was discovered in the 1980s (Allison, Moyle et al. 1985; Corden, Cadena et al. 

1985). In model systems where most functional studies of the CTD have been carried out, 

the domain is composed of a varied number of tandemly repeated heptapeptides (yeast 26, 

human 52, Arabidopsis 34) with the consensus sequence Y1S2P3T4S5P6S7. Initial 

functional studies of the CTD employed truncation mutants in yeast and human cells 

(Corden 2013); they showed that the domain is essential for viability and there is 

functional redundancy amongst CTD repeats (Nonet, Sweetser et al. 1987; Bartolomei, 

Halden et al. 1988; West and Corden 1995). Genetic substitution screens in yeast 

revealed that Y1 residues and the two SP pairs are essential, consistent with their stronger 

evolutionary conservation than the T4 and S7 positions (Liu, Greenleaf et al. 2008; 

Schwer and Shuman 2011). Further, insertions between individual heptapeptides proved 

to be lethal in fission and budding yeasts, whereas insertions between paired repeats were 

not, indicating that the smallest CTD functional unit lies within pairs of heptapeptides 

(Stiller and Cook 2004; Schwer, Sanchez et al. 2012). Further studies narrowed the 

smallest functional CTD unit in budding yeast to two Y1 residues surrounded by three SP 
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pairs; that is, YSPxSPxYSP or SPxYSPxSPxY (x represents any amino acid) (Liu, 

Kenney et al. 2010). Consistent with genetic analyses, cumulative structural studies 

indicate that most CTD interactions with binding partners involve motifs between one 

and two heptapeptides in length, and usually not starting from a Y1 residue (Jasnovidova 

and Stefl 2013). Although great insights into the functional significance of CTD residues 

has been gained from experimental analyses, primarily in yeast and animals, 

comprehensive evolutionary investigations have shown that CTD sequence diversity 

precludes broader generalization of these results to many other organisms (Yang and 

Stiller 2014). This has been borne out by functional studies, for example, the 

demonstration that the CTD is indispensable in Trypanosoma brucei despite the absence 

of any of the essential motifs or repetitive structures required in yeast and animal models 

(Das and Bellofatto 2009). Parallel with studies of the CTD sequence itself, further 

investigations have implicated the domain’s role in a wide variety of metabolic pathways 

in yeasts, animals and Arabidopsis, including transcription initiation and elongation, pre-

mRNA processing, RNA transport, and chromatin modification among others (Eick and 

Geyer 2013). 

The main way that the CTD performs these functions is by recruiting other 

proteins involved in the various pathways to create transcription/processing factories. 

Different modifications of heptapeptide residues provide a code that allows for the widely 

varied interactions between the CTD and many target proteins (Egloff and Murphy 2008; 

Zhang, Rodriguez-Molina et al. 2012).  Among the possible residue modifications, 

phosphorylations of S2 and S5 are the most common, and mainly relate to co-



38 
 

transcriptional functions like mRNA 5’ capping, mRNA 3’ end processing and pre-

mRNA splicing (Eick and Geyer 2013). Interestingly, these core mRNA processing 

functions are broadly conserved across the eukaryotic domain, as are CTD-directed 

kinases responsible for these modifications (Bartkowiak and Greenleaf 2011). 

 Very little empirical evidence exists for CTD functions in most eukaryotic groups. 

To my knowledge, there has been no previous direct experimental work reported on the 

CTD in red or green algae. Interestingly, the CTDs of these groups have evolved in very 

different ways. Comparable to what has been found in animals (Yang and Stiller 2014), 

simple forms of green algae have CTDs consisting of canonical tandem repeats, whereas 

developmentally complex land plants display both tandemly repeated proximal regions 

and more modified distal regions (Fig. 7). Tandem repeats also are present in unicellular 

red algae; however, multicellular rhodophytes have highly modified CTDs without 

retention of any tandem repeats (Fig. 7). Why the CTD has adopted such different 

evolution trajectories in green plants and red algae is unknown, but it undoubtedly relates 

to underlying differences in the types and numbers of protein partners in the two lineages. 

Given the limited genetic tools available for investigating CTD function in rhodophytes, I 

undertook a biochemical comparison of baseline CTD-protein interactions in unicellular 

green and red algae as a reasonable first step toward elucidating comparative CTD 

function in the two groups.  

 Chlamydomonas reinhardtii is a well-studied unicellular green alga with a CTD 

comprising 20 tandem heptapeptides with the consensus YSPTSPA. The red unicellular 

alga, Cyanidioschyzon merolae, has a CTD with seven proximal tandem heptapeptides 
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(YSPTSPA) and, surprisingly, 11 distal tandem nonapeptides (YSPSSPNVA). This latter 

structure is unique among all CTD sequences known (Yang and Stiller 2014). Complete 

genomes are available for both of these algae, permitting identification of proteins 

through mass spectrometry.  Applying methods used previously to identify PCAPs from 

both yeast and mammalian cells (Carty and Greenleaf 2002; Phatnani, Jones et al. 2004), 

I isolated proteins that bind to bi-phosphorylated (S2 and S5), tri-heptapeptide CTD 

repeats from both algae, and tri-nonapeptide CTD repeats from C. merolae. I aimed to 1) 

identify proteins that bind differentially to the two different CTD regions in C. merolae, 

and 2) provide a first view of CTD-protein interactions that were in place before the CTD 

was modified differently in multicellular green plants and rhodophytes.  

 

Results 

Potential PCAPs with Functions Shared in Both Algae 

I isolated 154 total proteins from C. reinhardtii that bound the phospho-CTD, and 133 

from C. merolae, yields that are very similar to those reported from yeast using 

comparable methods (Phatnani, Jones et al. 2004).  Through careful screening and 

annotation, I identified seven proteins from C. reinhardtii (Table 1) and eight from C. 

merolae (Table 2) that I consider to be likely PCAPs. Six of the eight red algal proteins 

were eluted from the nonapeptide affinity column and two from the heptapeptide column. 

The fact that this group of proteins from Cyanidioschyzon bound only to the heptapeptide 

or nonapeptide repeats, but not to both, suggests they have specific CTD-motif affinities 

and are not simply binding artifacts on a negatively charged polypeptide.  Other 
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reasonable candidate PCAPs were recovered (full lists provided in Tables 3 and 4, and 

see further discussion below), including a number that were specific to only one set of 

repeats; however, in this report I provide a thorough comparative discussion of only those 

proteins for which there is some prior experimental evidence of a CTD-interaction from 

other organisms.  This focuses my results on more central CTD functions that are likely 

to be conserved broadly across eukaryotic diversity, and are most viable candidates for 

follow-up experimental investigations in red and green algae.   

The proteins from C. reinhardtii and C. merolae share two functional groups, and 

co-purification of these proteins from both organisms further implies that they are 

biologically relevant PCAPs.  One shared functional group contains three casein kinases, 

serine/threonine-targeting enzymes, Q84SA0 and A8IYG9 from C. reinhardtii and 

CMS377C from C. merolae. Q84SA0 and CMS377C show significant similarity to 

casein kinase I (CK1) and A8IYG9 to casein kinase II (CK2). Considering that 

CMS377C is most similar (1e-152) to Q84SA0 in reciprocal Blast searches, the two 

appear to be homologous.  Inferred homologs of both of these algal proteins in yeast 

(Hrr25), human and Arabidopsis are annotated as CK1 isoforms.  

The catalytic domain of CK1 lies in its N-terminus, with variable domains in the 

C-terminus that confer substrate specificity for protein-protein interactions or subcellular 

localization (Lee 2009). Budding yeast contains four CK1 isoforms, and Hrr25 is the only 

one that is localized to the nucleus (Lee 2009).  Hrr25 is involved in transcriptional 

response to DNA damage through physical interactions with the transcription factor Swi6, 

a component of cell cycle regulatory complex SBF (Ho, Mason et al. 1997). Notably, 
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comparable affinity column assays in yeast also recovered Hrr25 as a PCAP (Phatnani, 

Jones et al. 2004). The fact that homologs from yeast, and now both C. reinhardtii and C. 

merolae, all bind to phospho-CTD repeats, strongly implicates this protein as a conserved 

functional CTD partner. The third protein in this group, C. reinhardtii A8IYG9, is most 

likely the alpha subunit of CK2, which has been reported to phosphorylate the most C-

terminal serine of the mammalian CTD (Payne, Laybourn et al. 1989), although its 

association with CTD heptapeptides has not been reported previously. Moreover, CK2 

has been implicated as the main kinase that phosphorylates FCP1 in Xenopus, a CTD 

phosphatase that binds transcription factor IIF (Palancade, Dubois et al. 2002). Thus, 

prior evidence indicates at least indirect associations between CK2 and the CTD, and my 

results suggest that CK2 could serve as a CTD-dependent kinase in Chlamydomonas.  

 The second shared functional group includes A8I1B8 and A8HME6 from C. 

reinhardtii and CMH135C from C. merolae. All contain RNA recognition motifs and 

appear to be related to mRNA export based on similarity scores in reciprocal Blast 

searches that recovered putative human and Arabidopsis homologs. The human homolog 

is ALY/REF, an mRNA export factor that shuttles between the nucleus and cytoplasm. 

Previous studies showed that metazoan ALY/REF couples pre-mRNA splicing and 

mRNA export by associating with spliced mRNPs, and also that ALY/REF co-localizes 

with splicing factors (Zhou, Luo et al. 2000). The apparent yeast homolog of both 

CMH135C and ALY/REF is Yral, also an mRNA export factor, and it is perhaps the 

more likely functional model given the relative paucity of introns in both yeast and red 

algae. Interestingly, Yra1 is another of the proteins that was recovered from comparable 
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binding experiments with bi-phosphorylated heptapeptides in yeast (Phatnani, Jones et al. 

2004). Further, experiments substituting negatively charged glutamates for phospho-

serines indicated the interaction between Yra1 and phospho-CTD is specific rather than 

simply an opposite charge attraction (MacKellar and Greenleaf 2011). In addition, 

structural analysis revealed that both the RNA binding and CTD interaction domains of 

Yra1 are located in its N-terminus, and partial N-terminal truncations resulted in a severe 

decrease of Yra1 recruitment to elongating genes (MacKellar and Greenleaf 2011). 

Mutations resulting in deficient RNA binding or CTD interactions both negatively impact 

mRNA export (MacKellar and Greenleaf 2011), indicating that Yra1 is likely recruited to 

transcriptionally elongating genes by the phospho-CTD.  

The closest match from yeast to both Chlamydomonas sequences A8HME6 and 

A8I1B8 is Pab1, a poly(A) binding protein that also functions in mRNA export; however, 

based on similarity scores, Pab1 is more closely related to A8HME6 (they are reciprocal 

best hits). Although A8I1B8 does not share significant similarity with Yra1 from yeast 

(E-value = 0.078), it is the reciprocal match to Yra1 homolog CMH135C (see above) 

from Cyanidioschyzon (3e-04), meaning that A8I1B8 could be a PCAP in C. reinhardtii 

with a similar function in mRNA export as ALY/REF and Yra1. A8HME6 is not only 

identified as the homolog of Pab1 from yeast, but also from human and Arabidopsis. 

Previous studies have shown that Pab1 binds the poly(A) tail of pre-mRNA and could be 

involved in final trimming of the tail, mRNA release from transcription sites, and its 

transport to the cytoplasm (Mangus, Evans et al. 2003). To my knowledge, Pab1 has 

never been shown to interact with the CTD; however, given the confirmed relationship 
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between other mRNA export factors and the CTD, for example, Npl3 in yeast (Dermody, 

Dreyfuss et al. 2008), the proteins in this functional class from Chlamydomonas and 

Cyanidioschyzon are reasonable candidates for further experimental validation as bona 

fide PCAPs. Taken together, my results suggest that the coupling of mRNA processing 

and export to the phospho-CTD, previously characterized in animals and yeast, also is 

conserved in both red and green algae.  

 

Potential PCAPs Found Only in C. reinhardtii 

Two of the proteins isolated only from Chlamydomonas appear to be related to pre-

mRNA splicing. A8J3U2 and A8HRV5 both are most similar to components of the U2 

snRNP complex, which combines with pre-mRNAs and other snRNPs to form 

spliceosomes. The homologs of A8J3U2 in yeast, human and Arabidopsis are U2A 

components, and those of A8HRV5 are U2B components. Previous studies have shown a 

strong functional link between the CTD and pre-mRNA splicing, including several 

splicing factors that physically interact with the phospho-CTD; for example, Prp40 in 

yeast, a component of the U1 snRNP (Morris and Greenleaf 2000). Moreover, a recent 

study reported that the auxiliary factor 65-kDa subunit (U2AF65) of the U2 snRNP and 

Prp19 complex is recruited by the CTD to promote splicing activation, and that U2AF65 

interacts directly with the CTD (David, Boyne et al. 2011).  Although there is no 

evidence for direct interactions between the CTD and U2 snRNP complex components, 

considering the importance of the CTD in pre-mRNA splicing, along with established 
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CTD/spliceosome interactions, broader or even slightly different direct interactions 

between the CTD and spliceosome components is reasonable. 

 Another putative PCAP identified in C. reinhardtii is A8IDW3, which contains 

both SANT and MPN domains. The human homolog of A8IDW3 is histone H2A 

deubiquitinase MYSM1, a chromatin regulator. Domain analysis showed that A8IDW3 

shares the SANT and MPN domains with its human counterpart and, therefore, is likely 

to function as a histone H2A deubiquitinase in C. reinhardtii. Human histone H2A 

deubiquitinase regulates transcriptional activation and elongation of many genes 

(hormone related genes, for example) by deubiquitination of H2A, which enhances the 

dissociation of linker histone H1 from the nucleosome (Zhu, Zhou et al. 2007). Previous 

studies reported that several proteins related to chromatin modifications are associated 

with the phospho-CTD, including histone methyltransferases set1 and set2 (Corden 2013). 

Such interactions are consistent with my recovery of a green algal H2A deubiquitinase as 

a putative PCAP; if demonstrated in vivo, this would identify a new function of the CTD 

in chromatin modification. 

   

Potential PCAPs Only in C. merolae 

In addition to the two proteins discussed above (CMS377C bound the nonapeptide and 

CMH135C the heptapeptide columns, respectively), there are another six likely PCAPs 

identified only from C. merolae; five (CMH210C, CMT578C, CMM263C, CMM087C 

and CMG052C) bound to nonapeptides and one (CMS144C) to heptapeptides.  
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 CMH210C is a nonapeptide-associated PCAP that is likely to be a peptidyl-prolyl 

cis/trans isomerase (PPIase), based on its strong similarity to homologs from yeast, 

human and Arabidopsis. The yeast homolog Ess1 and the human homolog Pin1 both have 

been confirmed experimentally to interact with phosphorylated CTD; their putative 

function is to help Ssu72 dephosphorylate S5 on CTD repeats by making the S5P-P6 bond 

take on a cis conformation (Werner-Allen, Lee et al. 2011). Ess1 and Pin1 interact with 

the CTD through their WW domains (Corden 2013). Although CMH210C does not have 

a recognizable WW domain, it does contain a SurA domain with predicted PPIase 

function as in yeast and human. Instead of a WW domain, however, CMH210C has a 

FHA domain at its N-terminus, which also is a phospho-peptide (mostly phospho-

threonine) interacting domain present in many regulatory proteins (Durocher and Jackson 

2002). CMH210C was eluted only from the nonapeptide column, suggesting this protein 

does not interact strongly with phosphorylated heptapeptides in the CTD of C. merolae. 

This certainly could be explained by the presence of a FHA instead of a WW domain; in 

both yeast and human homologs of CMH210C, the latter interacts only with 

phosphorylated heptapeptides.   

 CMT578C, another potential nonapeptide-associated PCAP, is homologous with 

Mgt1 from yeast. No reciprocal homolog was found in human, although the nearest 

match was to MGMT, homologous to yeast Mgt1, with an e-value a little higher than my 

threshold. Although the similarity between CMT587C and MGMT is not significant 

based on my a priori cutoff, the significant relationships between Mgt1 and MGMT, and 

between Mgt1 and CMT587C, make it likely that CMT587C also is homologous with 
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MGMT. Both Mgt1 and MGMT are 6-O-methylguanine-DNA methyltransferases that 

use cysteine residues to interact with alkyl groups, which are transferred from toxic 

lesions of alkylated guanine in DNA (Shaiu and Hsieh 1998; Sedgwick, Bates et al. 2007). 

If CMT578C has the same function in C. merolae, it is the first time this 

methyltransferase has been implicated as having interactions with the RNAP II CTD.  

 The nonapeptide-associated PCAP CMM263C is likely to be a Topoisomerase I, 

based on its strong similarity to yeast, human and Arabidopsis Top I genes. During 

transcription, Top I relaxes superhelical stress in unwinding DNA. Early analyses 

indicated that the N-terminal domain of Drosophila Top I could associate with RNA 

polymerase II (Shaiu and Hsieh 1998), and later work revealed that both human and yeast 

Top I physically bind the phospho-CTD (Phatnani, Jones et al. 2004). A more recent 

study demonstrated that both Drosophila and human Top I use the proximal half of their 

N-terminal domain to interact with the CTD (Wu, Phatnani et al. 2010). Therefore, my 

identification of Top I as a PCAP in C. merolae is consistent with established Top I 

interactions with the phospho-CTD.  

 Another nonapeptide-associated protein, CMM087C, contains a SWIB/MDM2 

domain found in both SWI/SNF complex B and in MDM2, a regulator of the p53 tumor 

suppressor gene. SWI/SNF components, first characterized in chromatin remodeling 

complexes in yeast (Winston and Carlson 1992), are widely conserved in eukaryotes. 

Cumulative studies indicated that they remove nucleosome blocks on interactions 

between DNA and regulatory proteins like transcription factors (Schwabish and Struhl 

2007). In doing so, SWI/SNF complexes regulate many biological processes, including 
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RNAP II transcription initiation, elongation and associated DNA repair (Euskirchen, 

Auerbach et al. 2012). To my knowledge, no direct interaction between SWI/SNF 

complex subunits and phospho-CTD has been established. Nevertheless, given the 

phospho-CTD’s apparent recruitment of histone acetyltransferase (HAT) complexes and 

deacetylase complexes (HDACs) that remodel nucleosomes around the elongating RNAP 

II (Spain and Govind 2011), it is reasonable that SWI/SNF components, which also 

accompany RNAP II transcription factory, could have evolved direct CTD interactions in 

some organisms. Thus, my recovery of a SWI/SNF-like subunit acting as a PCAP in C. 

merolae could be the first evidence of a more broadly important CTD protein interaction.  

The last nonapeptide-associated protein from Cyanidioschyzon is CMG052C, 

which is inferred to be homologous with yeast Bas1, a MYB-related transcription factor 

required for transcriptional regulation of a number of genes related to the biosynthesis of 

purine, pyrimidine and several amino acids; for example, the ADE3 gene encoding the 

purine and glycine biosynthetic enzyme tetrahydrofolate synthase (Joo, Kim et al. 2009). 

The most similar sequence to CMG052C in Arabidopsis is an R2R3 transcription factor, 

which belongs to a MYB-protein subfamily in plants. Cumulative research on plant 

R2R3-type MYB factors suggests they are involved in controlling development, 

determination of cell fate, and transcriptional activation (Stracke, Werber et al. 2001). To 

date, there is no experimental evidence for a Bas1/CTD interaction in yeast, or any 

reports of a CTD association with MYB-related transcription factor in plants and animals. 

Moreover, if the CTD in C. merolae is hyperphosphorylated during transcript elongation 

rather than initiation, as is true in all CTD model organisms (Egloff and Murphy 2008), 
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then a relevant biological interaction between an MYB factor and the phospho-CTD is 

not immediately apparent.  

 The same can be said for a potential PCAP, CMS144C, which bound to phospho-

heptapeptides. All yeast, human and Arabidopsis homologs are identified as TFIID 

subunit 12 (Taf12), a TATA-binding protein associated factor. Previous studies in yeast 

have shown an association between the CTD and the TFIID complex (Conaway, 

Bradsher et al. 1992; Koleske, Buratowski et al. 1992); however, the specific 

component(s) of TFIID that is/are the target(s) for this interaction remain(s) unclear. 

Interestingly, a recent study revealed that another TFIID subunit, Taf15, can interact with 

the unphosphorylated CTD in vitro through its polymerized Low Complexity (LC) 

domain, and that this interaction is deterred by phosphorylation of the CTD (Kwon, Kato 

et al. 2013). This suggests that recruitment of RNAP II during transcription initiation is 

facilitated by interactions between the unphosphorylated CTD and Taf15, and that its 

release from the transcription initiation complex is promoted by CTD phosphorylation 

(Kwon, Kato et al. 2013). No clear homolog of Taf15 is present in yeast, however, and I 

likewise found no Taf15 homolog in C. merolae through extensive Blast searches using 

human Taf15 as the query. Taf12 does not contain a LC domain, suggesting it might not 

interact with the unphosphorylated CTD in Cyanidioschyzon. Thus, if the interaction of 

Taf12 with the phospho-CTD in C. merolae is biologically relevant, it suggests a more 

complicated relationship between the TFIID complex and the CTD, at least in red algae.  
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Other Proteins That Bound Phospho-CTD Peptides 

In addition to the 15 likely PCAPs I singled out for in-depth comparative analyses, many 

other proteins bound to my phospho-CTD affinity columns. A number have putative 

functions that are relevant to the CTD’s established roles in transcription and mRNA 

processing, while many others have no recognizable homologs that allow a prediction of 

function or cellular localization.  Like the eight red algal PCAPs discussed above, many 

of these proteins from Cyanidioschyzon bind to either the heptapeptide or nonapeptide 

column, but not to both (Table 4).  Thus, it is reasonable that a number of other proteins I 

isolated are biological relevant CTD partners.   

Interestingly, most of the proteins that can be annotated do not function in the 

nucleus based on inferred yeast, human and Arabidopsis homologs. The largest fractions 

are ribosomal proteins, consistent with prior results from yeast where numerous 

ribosomal proteins bound to bi-phosphorylated CTD affinity columns (Phatnani, Jones et 

al. 2004). This is not surprising, given that these proteins generally interact with uniform, 

negative phosphate charges on rRNAs within the ribosome. Although individual 

ribosomal proteins are imported into the nucleus, where major ribosome components are 

assembled before transport to the cytoplasm, the physical separation between the 

nucleolus (site of ribosome synthesis) and RNAP II transcription factories suggests that 

their direct contact with the phospho-CTD (present only where RNAP is actively 

elongating mRNA transcripts) as individual proteins is unlikely.  
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I also found a similar result using the E. coli proteome, an additional negative 

control for assessing non-specific binding. Given that the CTD is present only on RNAP 

II in eukaryotes, there has been no selective pressure on E. coli proteins to avoid binding 

inappropriately to negative charges on a phospho-CTD.  Sixty-five percent E. coli 

proteins that bound phospho-CTD peptides were ribosomal proteins (Table 5). Therefore, 

it appears that their recovery represents the major issue with non-specific protein binding 

to phospho-CTD peptides. 

 Despite potential binding artifacts, it has been demonstrated that the 

methodologies employed here are effective in recovering numerous bona fide PCAPs 

from both yeast and human cells (Morris, Phatnani et al. 1999; Carty, Goldstrohm et al. 

2000; Carty and Greenleaf 2002; Phatnani, Jones et al. 2004). I believe this is because 

inside the nucleus, where elaborate and intricate regulation of transcription and mRNA 

processing is carefully orchestrated, there must be strong selection for more highly 

specific interactions between the phospho-CTD and its binding partners. In other words, 

transcription-related nuclear proteins are likely to be under strong selection to avoid 

simple opposite surface charge attractions, whereas cytoplasmic proteins that do not 

encounter the CTD will have experienced weaker or no selection to avoid non-specific 

interactions.  Because my results were comparable to those reported in previously 

published investigations, I thought it important to investigate this issue further by 

examining the proportions of nuclear and cytoplasmic proteins that bound my CTD 

affinity columns.  
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Of the 116 C. reinhardtii proteins recovered with identifiable functional 

homologs, 26 (22.4%) are putatively related to processes occurring in the nucleus; for C. 

merolae, 23 of the 113 (20.4%) are nucleus-related. Because of the large numbers of 

genes without known homologs in their genomes, clear ratios of nuclear to total proteins 

are difficult to estimate for these two algal species. In more thoroughly characterized 

budding yeast and Arabidopsis genomes, however, the ratios are 35.2% (2070/5887) and 

32.4% (9356/28912) respectively, according to GO annotations. I therefore set a 

conservative estimate of 30% as the fraction of the nuclear localized proteins for both 

algae, and ran binomial tests to determine whether, as predicted, there is evidence for 

reduced non-specific binding of artificial phospho-CTD peptides for nuclear proteins. For 

the purposes of this analysis, I used the highly unlikely and conservative assumption that 

none of the nuclear proteins isolated were true PCAPs, and that all proteins had an equal 

probability of binding the phospho-CTD.  For C. reinhardtii, the 26 (22.4%) nuclear 

proteins recovered are significantly fewer than 30% (P = 0.044, one-tailed), which also 

was true for the 23 (20.4%) C. merolae proteins (P = 0.014, one-tailed).  Thus, even 

assuming that no legitimate PCAPs were recovered from either alga, my results are 

consistent with the argument that natural selection has diminished non-specific CTD-

protein interactions within the nucleus.  Clearly, if even some of the nuclear proteins 

isolated are legitimate PCAPs, the differences in non-specific binding compared to 

cytoplasmic proteins is that much greater. 

Based on this result, along with the similarity of my data with those from prior 

analyses in yeast, I believe that the transcription/mRNA processing related proteins I 
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isolated from C. reinhardtii and C. merolae can be considered viable candidates for 

further investigation as biologically relevant PCAPs.  The evidence I find for selection 

against non-specific CTD binding in nuclear proteins also offers further validation of 

PCAPs inferred in previous studies using comparable methods. 

 

Discussion 

Although I am unaware of experimental investigations showing the CTD is 

phosphorylated at S2 and S5 in red or green algae, my phylogenetic analyses revealed that, 

except for the absence of CDK8 from the two unicellular red algae Cyanidioschyzon and 

Galdieria, members of all CDK subfamilies are conserved in both the red and green 

lineages (Fig. 8). Therefore, the presence of homologs of the CDK7 and CDK9/12/13 

subfamilies, those mainly responsible for S2 and S5 CTD phosphorylations in human and 

yeast (Bartkowiak and Greenleaf 2011), suggests that this phosphorylation pattern also is 

conserved in Chlamydomonas and Cyanidioschyzon, and is predicted to be present during 

transcription elongation. Thus, using S2P and S5P CTD peptides as bait for PCAPs appears 

reasonable for both algae.  

Our proteomics analyses provide the first experimental evidence of CTD-protein 

interactions in red and green algae. Although the potential for nonspecific binding to 

artificial CTD repeats dictates caution when interpreting results from this sort of assay, a 

number of factors suggest I have identified viable PCAP candidates in both algal species. 

First, my data are consistent with natural selection favoring reduced non-specific CTD 
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binding by proteins that function in the nucleus, where they could encounter the CTD by 

chance. I think this result is important, in itself, given that similar non-specific binding 

has been reported in prior studies, and is always a concern in any assay of protein binding 

to a highly charged peptide like the CTD.  

Second, a number of the homologs of known PCAPs were recovered from both 

algal taxa, which is unlikely to be coincidental give the small fractions of the proteomes 

involved.  Third, a number of the proteins I recovered are inferred homologs of yeast and 

human proteins that have been shown to bind comparable phospho-CTD affinity columns 

for those organisms (Carty and Greenleaf 2002; Phatnani, Jones et al. 2004), and for 

which there is additional corroborating evidence of a CTD interaction.  Perhaps more 

compelling, however, is the level of differential binding of nuclear proteins to 

heptapeptides and nonapeptides from Cyanidioschyzon. Of the 23 proteins with nuclear 

annotations, only five bound to both peptide affinity columns. In contrast, over half (48 

of 90) cytoplasmic proteins bound to both versions of the phospho-CTD. This 

demonstrates a significant (P = 0.01, binomial test, one tailed) tendency for nuclear 

proteins to bind specifically to one or the other type of CTD repeats present in 

Cyanidioschyzon, as would be expected if CTD-protein interactions are spacio-

temporally arranged as in model systems (Jasnovidova and Stefl 2013). 

Finally, despite focusing on only the 15 proteins for which CTD interactions can 

be argued from prior research, differences in PCAP functional categories recovered relate 

to a clear and important biological difference between the two algae; PCAPs associated 

with re-mRNA splicing were recovered from Chlamydomonas, but not from 
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Cyanidioschyzon.  Only 27 introns (in 26 genes) have been identified in the entire C. 

merolae genome and several spliceosome-related proteins appear to be missing 

(Matsuzaki, Misumi et al. 2004).  In Chlamydomonas, on the other hand, over 90% of 

protein-encoding genes contain introns, with 8.3 exons per gene on average (Merchant, 

Prochnik et al. 2007). Thus, it is unlikely that spliceosomal proteins that could interact 

with the CTD are expressed as highly in Cyanidioschyzon as in Chlamydomonas. 

Comparable methods applied in S. cerevisiae recovered splicing-related proteins 

(Phatnani, Jones et al. 2004), despite the relatively paucity of yeast introns (Spingola, 

Grate et al. 1999) compared to Chlamydomonas, suggesting the possibility that fewer or 

no splicing factors interact with the CTD in C. merolae. Given the likelihood that splicing 

is an ancient CTD function (Yang and Stiller 2014), it will be interesting to determine 

whether the CTD remains involved in co-transcriptional splicing in other eukaryotes that, 

like red algae, are thought to have lost most of their ancestral introns (Csuros, Rogozin et 

al. 2011).  

Such differences highlight the importance of further experimental investigations 

of CTD function in red algae and other diverse eukaryotes. When considering my results, 

it is important to note that red algae have been evolving independently from other 

eukaryotes for well over a billion years (Butterfield 2000), and relatively few gene 

functions have been determined experimentally. Moreover, patterns of CTD evolution 

among eukaryotic taxa are far more diverse than was suggested by early comparative 

studies (Yang and Stiller 2014). Thus, my recovery of two different proteins implicated 

in transcription initiation among my potential PCAPs, could be a first suggestion that 
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patterns of CTD hypo- and hyper-phosphorylation in at least some red algae differ from 

those established in model systems (Egloff and Murphy 2008).  Interestingly, I found 

neither CDK8 (Fig.8), nor most components of mediator in the Cyanidioschyzon genome, 

in line with potential differences in CTD phosphorylation during transcription initiation. 

Although I limited my detailed treatment to proteins with evidence from other organisms 

to implicate involvement with the CTD, other nuclear proteins were recovered from both 

species (Tables 3 and 4). Some have inferred functions that are biologically relevant to 

the CTD’s established roles, whereas others have no identifiable homologs to provide 

predictions of function and cellular localization.  Many could prove to be CTD-

interacting proteins. 

Given the great evolutionary distances between major eukaryotic lineages, the 

single CTD phosphorylation pattern I examined, the small fractions of the algal 

proteomes recovered and even smaller fractions that have identifiable homologs, it is 

interesting that I uncovered as many shared putative homologs and functional categories 

as I did. Although clearly biased by the fact that I looked for prior evidence of CTD 

involvement, my results nevertheless suggest there could be functional conservation of a 

number of core CTD-protein interactions across broad eukaryotic diversity.  

 In conclusion, my study provides the first experimental evidence of baseline 

CTD-protein interactions in simple, undifferentiated unicellular green and red algae. 

They permit an initial comparison of potential PCAPs with those recovered in 

comparable previous investigations in yeast and mammals. The PCAPs shared among all 

these groups indicate that a number of CTD-protein interaction are widely conserved, at 
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least among eukaryotic groups that evolved multicellularity. In contrast, differential 

PCAP binding to heptapeptides and nonapeptides in the red alga further highlights the 

importance of lineage-specific modifications, which have punctuated CTD evolution 

during the diversification of major eukaryotic phyla (Yang and Stiller 2014).  Indeed, the 

large number of unclassified proteins that bind specifically to nonapeptide repeats from 

Cyanidioschyzon (Table 4) suggests the presence of a variety of new, taxon-specific 

CTD-protein interactions.  This variation likely reflects differences in how CTD-protein 

interactions have elaborated and diversified, providing what Zachary Burton (Burton 

2014) has called the “New Testament” in the Genesis of organismal complexity through 

elaborations of CTD-based mechanisms for controlling gene expression. My 

investigation provides a first glimpse into the chapters of that book on red and green 

algae.  

 

Materials and methods 

Cell Culture and Lysis  

C. reinhardtii (CC-503 cw92 mt+) was cultured in TAP medium (Gorman and Levine 

1965) at room temperature and 24 hrs light, and C. merolae (N-1804) was cultured in 

Allen Culture medium (Minoda, Sakagami et al. 2004) at 42ºC and 24 hrs light. 

Escherichia coli (DH5α) was cultured in LB medium at 37ºC overnight.  Harvested algal 

and E. coli cells were suspended in cold BY-AS400 buffer (25 mM HEPES, pH 7.6; 1 

mM EDTA; 1 mM PMSF; 400 mM AmSO4; protease inhibitor cocktail for plants 1:100 

dilution) using 2-3 ml buffer per gram of cells. A French press (12,000 psi) was used 
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twice to break suspended cells and obtain crude protein extracts. The crude extracts were 

centrifuged in a SS34 rotor at 20,000×g for 45 minutes at 4ºC, and the supernatant was 

collected. A flowchart of the protein purification methodology is shown in Fig. 9. 

 

Ammonium Sulfate Precipitation  

The detergent NP-40 was added to the SS34-supernatant to a final concentration of 1%, 

and (NH4)2SO4 was gradually added to a final concentration of 50% (~313g/l) while 

stirring at 4ºC. The ammonium sulfate suspension was then centrifuged again in a SS34 

rotor at 30,000×g for 45 minutes at 4ºC. The (NH4)2SO4 pellet was collected and 

suspended with enough cold BH buffer (25 mM HEPES, pH 7.6; 1 mM EDTA; 1 mM 

DTT; 1 mM PMSF; 8% glycerol) to bring conductivity in the suspension approximately 

equal to 0.15 M NaCl. 

 

Ion Exchange Chromatography 

In order to increase concentration of proteins with positive surface charges that could 

bind CTD phosphoserines, I employed two steps of ion-exchange chromatography 

modified from the protocol of Greenleaf and colleagues (Phatnani, Jones et al. 2004). 

This both enriched potential PCAPs, and removed remaining cell debris and undesired 

proteins (e.g. chromoproteins) that were not eliminated by initial centrifugations. 

The BH-suspension was passed through a ~21 ml (1.5cm × 12cm) anion exchange 

column (Q Sepharose Fast Flow, GE Healthcare) at a flow rate of ~1.4 ml/min, and the 

column was washed with 4 column volumes of BH buffer + 0.15 M NaCl. The flow 



58 
 

through from the column was collected and loaded on a same size cation exchange 

column (SP Sepharose Fast Flow, GE Healthcare) with the same flow rate. The column 

also was washed with 4 column volumes of BH buffer + 0.15 M NaCl, and eluted with 

BH buffer + 1 M NaCl. The elution from cation exchange column was collected and 

desalted by dilution and ultrafiltration.  

 

Affinity Chromatography 

One ml CTD affinity columns were constructed using NeutrAvidin Agarose Resin 

(Thermo Scientific) bound to biotin-labeled, synthetic CTD tri-heptapeptides (Biotin-

YSpPTSpPAYSpPTSpPAYSpPTSpPA) or tri-nonapeptides (Biotin-

YSpPSSpPNVAYSpPSSpPNVAYSpPSSpPNVA), which were constructed at Eton 

Bioscience Inc, each containing three repeats phosphorylated at all S2 and S5 residues.  

Because these peptides are very similar in sequence, and in phosphorylation patterns, 

each represents an excellent negative control for non-specific binding to the other.  That 

is, if a protein cannot bind to one of these very similar phospho-peptides, it is strong 

evidence of a specific affinity for the other.  A 1 ml control column also was made 

containing only the NeutrAvidin Agarose Resin. I chose this phosphorylation pattern to 

allow direct comparison to PCAPs isolated previously from the far more thoroughly 

characterized Saccharomyces cerevisiae genome (Phatnani, Jones et al. 2004). 

I added a PhosSTOP phosphatase inhibitor cocktail tablet to each cation-elution 

pool (~4 mg of protein) to avoid de-phosphorylation of the CTD peptides and then passed 

the pool through the appropriate heptapeptide or nonapeptide affinity column. All 
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columns were washed with 16 column volumes of BH + 0.1 M NaCl. Bound proteins 

were eluted sequentially with increasing salt concentrations (1ml BH buffer + 0.3, 0.5, 

1.0 M NaCl), with each elution step collected in four 250 l aliquots. To assay the 

presence and quality of eluted proteins, 25 l of each aliquot was examined using SDS-

PAGE (4-20% Tris HCl gradient gels from Bio-Rad) stained with Coomassie blue (Fig. 

10, 11, 12). The control column (resin with no CTD peptides) followed the same 

procedure as above, and showed no indication of protein binding (Fig. 13). The middle 

two 250 µl aliquots from each elution concentration were pooled, desalted and 

concentrated. 10 g of proteins from each elution pool were subjected to SDS-PAGE, 

followed by Coomassie blue stain (gels shown in Fig. 9); the rest were submitted to Duke 

University Proteomics Center for mass spectrometry (LC/ESI/MS/MS) identification. 

 

Protein Annotations  

Because functions assigned to genes in both the C. reinhardtii and C. merolae genome 

are based primarily upon sequence similarity to genes from more well-developed models, 

I relied on annotated functions of apparent homologs from yeast, human and Arabidopsis 

to identify potential CTD-binding partners in both algae. Homologs were identified 

through reciprocal Blast searches between the C. reinhardtii or C. merolae and each of 

the three reference genomes (E-value cutoff of 1e-04). Reciprocal best hits were 

considered to be homologous sequences. Protein domain analyses were based on the 

National Center for Biotechnology Information (NCBI) structure online service 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.  

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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Phylogenetic Analyses of CDKs 

I performed phylogenetic analyses of putative cyclin-dependent kinases (CDKs) from 

both algae to verify that appropriate homologs are present to expect the pattern of CTD-

phosphorylation analyzed in this study. According to previous investigations, human 

CDKs can be divided into well-defined subfamilies (Guo and Stiller 2004; Cao, Chen et 

al. 2014). Therefore, I applied reciprocal Blast searches to identify the homologs of each 

CDK subfamily from yeast, Arabidopsis, Chlamydomonas, Cyanidioschyzon and two 

additional complete red algal genomes (Chondrus crispus and Galdieria sulphuraria). 

For each organism, the putative CDK homolog with the highest similarity score to each 

subfamily was chosen for phylogenetic analyses together with the representative human 

CDKs. A multiple sequence alignment was performed in MUSCLE (Edgar 2004) (online 

service: http://www.ebi.ac.uk/Tools/msa/muscle/) and Gblocks 0.91b (Castresana 2000) 

(http://www.phylogeny.fr/version2_cgi/one_task.cgi?task_type=gblocks) was used to 

select the conserved blocks appropriate for tree-building. Phylogenetic analysis were 

performed in MrBayes using a WAG + invgamma model (Huelsenbeck and Ronquist 

2001) as determined through maximum-likelihood model estimation in MEGA 5.2.2 

(Tamura, Peterson et al. 2011).  Relative support for the presence of CTK1/CDK9 

homologs was inferred from Bayesian posterior probabilities estimated from all trees (106 

generations) sampled after the average standard deviation of split frequencies had 

converged on a value < 0.01.

http://www.ebi.ac.uk/Tools/msa/muscle/
http://www.phylogeny.fr/version2_cgi/one_task.cgi?task_type=gblocks


 
 

Chapter 4: Conclusion 

 

The C-terminal domain of the largest subunit of RNA polymerase II is responsible for 

coordinating a wide range of co-transcriptional functions. Although tandem repeats of a 

seven amino acid motif comprise the CTD in model eukaryotes, the domain is highly 

unordered in many other organisms. The research presented in chapter 2 represents the 

most comprehensive investigation of CTD diversity and evolution to date, and finds that 

the CTD’s tandem structure likely existed in the last eukaryotic common ancestor, that 

unordered CTDs have resulted from extensive, lineage-specific sequence modifications, 

and that tandem heptads have been lost and reinvented many times. The work also 

highlights interesting parallels in CTD evolution that appear to be associated with the 

requirements of developmental complexity. For red algae and fungi, although present in 

simple, ancestral red algae and fungi, CTD tandem repeats have undergone extensive 

modifications and degeneration during the evolutionary transition to developmentally 

complex rhodophytes and fungi. In contrast, CTD repeats are maintained in animals, 

green algae and their more complex land plant relatives.  

The different CTD evolution trajectories in eukaryotes inspired my interest in 

investigate studying the mechanisms that underlie CTD sequence variation, and 

investigations of CTD-associated proteins is primarily required to understand these 

mechanisms. Based on controversial relationships and differences in the pattern of CTD 

evolution between green plants and red algae, I initiated a baseline comparison of the 

CTD associated proteins in the unicellular green algae Chlamydomonas and red algae 
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Cyanidioschyzon. The previously established method that uses artificially synthesized 

and phosphorylated CTD repeats to bind PCAPs was adopted in this study. A number of 

potential PCAPs were found in this study, and several of them have yeast and human 

counterparts that have been identified experimentally as PCAPs by previous research. 

This study represents the first CTD associated functional analyses in both green and red 

algae. I hope this work will spark broader interest in these organisms and lead to further 

functional experimentations in both. 

 



 
 

References 

 

Allison, L. A., M. Moyle, et al. (1985). "Extensive homology among the largest subunits 

of eukaryotic and prokaryotic RNA polymerases." Cell 42(2): 599-610. 

Allison, L. A., J. K. Wong, et al. (1988). "The C-terminal domain of the largest subunit of 

RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and 

mammals: a conserved structure with an essential function." Mol Cell Biol 8(1): 

321-329. 

Bartkowiak, B. and A. L. Greenleaf (2011). "Phosphorylation of RNAPII: To P-TEFb or 

not to P-TEFb?" Transcription 2(3): 115-119. 

Bartkowiak, B., A. L. Mackellar, et al. (2011). "Updating the CTD Story: From Tail to 

Epic." Genet Res Int 2011: 623718. 

Bartolomei, M. S., N. F. Halden, et al. (1988). "Genetic-Analysis of the Repetitive 

Carboxyl-Terminal Domain of the Largest Subunit of Mouse Rna Polymerase-Ii." 

Mol Cell Biol 8(1): 330-339. 

Bartolomei, M. S., N. F. Halden, et al. (1988). "Genetic analysis of the repetitive 

carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II." 

Mol Cell Biol 8(1): 330-339. 

Baskaran, R., M. E. Dahmus, et al. (1993). "Tyrosine phosphorylation of mammalian 

RNA polymerase II carboxyl-terminal domain." Proc Natl Acad Sci U S A 90(23): 

11167-11171. 

Buratowski, S. (2003). "The CTD code." Nat Struct Biol 10(9): 679-680. 



64 
 

Buratowski, S. (2009). "Progression through the RNA Polymerase II CTD Cycle." Mol 

Cell 36(4): 541-546. 

Burley, S. K. and N. Sonenberg (2011). "Gimme phospho-serine five! Capping enzyme 

guanylyltransferase recognition of the RNA polymerase II CTD." Mol Cell 43(2): 

163-165. 

Burton, Z. F. (2014). "The Old and New Testaments of gene regulation: Evolution of 

multi-subunit RNA polymerases and co-evolution of eukaryote complexity with 

the RNAP II CTD." Transcription 5:e28764. doi.org/10.4161/trns.28674. 

Butterfield, N. J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the 

evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic 

radiation of eukaryotes." Paleobiology 26: 386-404. 

Cao, L., F. Chen, et al. (2014). "Phylogenetic analysis of CDK and cyclin proteins in 

premetazoan lineages." BMC Evol Biol 14: 10. 

Carty, S. M., A. C. Goldstrohm, et al. (2000). "Protein-interaction modules that organize 

nuclear function: FF domains of CA150 bind the phosphoCTD of RNA 

polymerase II." Proc Natl Acad Sci U S A 97(16): 9015-9020. 

Carty, S. M. and A. L. Greenleaf (2002). "Hyperphosphorylated C-terminal repeat 

domain-associating proteins in the nuclear proteome link transcription to 

DNA/chromatin modification and RNA processing." Mol Cell Proteomics 1(8): 

598-610. 

Castresana, J. (2000). "Selection of conserved blocks from multiple alignments for their 

use in phylogenetic analysis." Mol Biol Evol 17(4): 540-552. 



65 
 

Chapman, R. D., M. Conrad, et al. (2005). "Role of the mammalian RNA polymerase II 

C-terminal domain (CTD) nonconsensus repeats in CTD stability and cell 

proliferation." Mol Cell Biol 25(17): 7665-7674. 

Chapman, R. D., M. Heidemann, et al. (2007). "Transcribing RNA polymerase II is 

phosphorylated at CTD residue serine-7." Science 318(5857): 1780-1782. 

Chapman, R. D., M. Heidemann, et al. (2008). "Molecular evolution of the RNA 

polymerase II CTD." Trends Genet 24(6): 289-296. 

Charrier, B., S. M. Coelho, et al. (2008). "Development and physiology of the brown alga 

Ectocarpus siliculosus: two centuries of research." New Phytol 177(2): 319-332. 

Cho, E. J., C. R. Rodriguez, et al. (1998). "Allosteric interactions between capping 

enzyme subunits and the RNA polymerase II carboxy-terminal domain." Genes 

Dev 12(22): 3482-3487. 

Cho, E. J., T. Takagi, et al. (1997). "mRNA capping enzyme is recruited to the 

transcription complex by phosphorylation of the RNA polymerase II carboxy-

terminal domain." Genes Dev 11(24): 3319-3326. 

Conaway, R. C., J. N. Bradsher, et al. (1992). "Mechanism of Assembly of the Rna 

Polymerase-Ii Preinitiation Complex - Evidence for a Functional Interaction 

between the Carboxyl-Terminal Domain of the Largest Subunit of Rna 

Polymerase-Ii and a High Molecular Mass Form of the Tata Factor." J Biol Chem 

267(12): 8464-8467. 

Corden, J. L. (2013). "RNA polymerase II C-terminal domain: Tethering transcription to 

transcript and template." Chem Rev 113(11): 8423-8455. 



66 
 

Corden, J. L., D. L. Cadena, et al. (1985). "A Unique Structure at the Carboxyl Terminus 

of the Largest Subunit of Eukaryotic Rna Polymerase-Ii." Proc Natl Acad Sci U S 

A 82(23): 7934-7938. 

Csuros, M., I. B. Rogozin, et al. (2011). "A detailed history of intron-rich eukaryotic 

ancestors inferred from a global survey of 100 complete genomes." PLoS Comput 

Biol 7(9): e1002150. 

Das, A. and V. Bellofatto (2009). "The Non-Canonical CTD of RNAP-II Is Essential for 

Productive RNA Synthesis in Trypanosoma brucei." PLoS One 4(9). 

David, C. J., A. R. Boyne, et al. (2011). "The RNA polymerase II C-terminal domain 

promotes splicing activation through recruitment of a U2AF65-Prp19 complex." 

Genes Dev 25(9): 972-983. 

Dermody, J. L., J. M. Dreyfuss, et al. (2008). "Unphosphorylated SR-like protein Npl3 

stimulates RNA polymerase II elongation." PLoS One 3(9): e3273. 

Descostes, N., M. Heidemann, et al. (2014). "Tyrosine phosphorylation of RNA 

polymerase II CTD is associated with antisense promoter transcription and active 

enhancers in mammalian cells." Elife 3: e02105. 

Durocher, D. and S. P. Jackson (2002). "The FHA domain." FEBS Lett 513(1): 58-66. 

Ebright, R. H. (2000). "RNA polymerase: structural similarities between bacterial RNA 

polymerase and eukaryotic RNA polymerase II." J Mol Biol 304(5): 687-698. 

Edgar, R. C. (2004). "MUSCLE: multiple sequence alignment with high accuracy and 

high throughput." Nucleic Acids Res 32(5): 1792-1797. 



67 
 

Egloff, S. and S. Murphy (2008). "Cracking the RNA polymerase II CTD code." Trends 

Genet 24(6): 280-288. 

Egloff, S., D. O'Reilly, et al. (2007). "Serine-7 of the RNA polymerase II CTD is 

specifically required for snRNA gene expression." Science 318(5857): 1777-1779. 

Eick, D. and M. Geyer (2013). "The RNA polymerase II carboxy-terminal domain (CTD) 

code." Chem Rev 113(11): 8456-8490. 

Euskirchen, G., R. K. Auerbach, et al. (2012). "SWI/SNF chromatin-remodeling factors: 

multiscale analyses and diverse functions." J Biol Chem 287(37): 30897-30905. 

Fabrega, C., V. Shen, et al. (2003). "Structure of an mRNA capping enzyme bound to the 

phosphorylated carboxy-terminal domain of RNA polymerase II." Mol Cell 11(6): 

1549-1561. 

Ghosh, A., S. Shuman, et al. (2008). "The structure of Fcp1, an essential RNA 

polymerase II CTD phosphatase." Mol Cell 32(4): 478-490. 

Ghosh, A., S. Shuman, et al. (2011). "Structural Insights to How Mammalian Capping 

Enzyme Reads the CTD Code." Mol Cell 43(2): 299-310. 

Glover-Cutter, K., S. Larochelle, et al. (2009). "TFIIH-associated Cdk7 kinase functions 

in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal 

pausing, and termination by RNA polymerase II." Mol Cell Biol 29(20): 5455-

5464. 

Gorman, D. S. and R. P. Levine (1965). "Cytochrome f and plastocyanin: their sequence 

in the photosynthetic electron transport chain of Chlamydomonas reinhardi." Proc 

Natl Acad Sci U S A 54(6): 1665-1669. 



68 
 

Grummt, I. (1999). "Regulation of mammalian ribosomal gene transcription by RNA 

polymerase I." Prog Nucleic Acid Res Mol Biol 62: 109-154. 

Guo, Z. and J. W. Stiller (2004). "Comparative genomics of cyclin-dependent kinases 

suggest co-evolution of the RNAP II C-terminal domain and CTD-directed 

CDKs." BMC Genomics 5: 69. 

Guo, Z. and J. W. Stiller (2005). "Comparative genomics and evolution of proteins 

associated with RNA polymerase II C-terminal domain." Mol Biol Evol 22(11): 

2166-2178. 

Haag, J. R. and C. S. Pikaard (2011). "Multisubunit RNA polymerases IV and V: 

purveyors of non-coding RNA for plant gene silencing." Nat Rev Mol Cell Biol 

12(8): 483-492. 

Heidemann, M. and D. Eick (2012). "Tyrosine-1 and threonine-4 phosphorylation marks 

complete the RNA polymerase II CTD phospho-code." RNA Biol 9(9): 1144-

1146. 

Heidemann, M., C. Hintermair, et al. (2013). "Dynamic phosphorylation patterns of RNA 

polymerase II CTD during transcription." Biochim Biophys Acta 1829(1): 55-62. 

Hintermair, C., M. Heidemann, et al. (2012). "Threonine-4 of mammalian RNA 

polymerase II CTD is targeted by Polo-like kinase 3 and required for 

transcriptional elongation." Embo Journal 31(12): 2784-2797. 

Hirose, Y., R. Tacke, et al. (1999). "Phosphorylated RNA polymerase II stimulates pre-

mRNA splicing." Genes Dev 13(10): 1234-1239. 



69 
 

Ho, C. K. and S. Shuman (1999). "Distinct roles for CTD Ser-2 and Ser-5 

phosphorylation in the recruitment and allosteric activation of mammalian mRNA 

capping enzyme." Mol Cell 3(3): 405-411. 

Ho, C. K., V. Sriskanda, et al. (1998). "The guanylyltransferase domain of mammalian 

mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of 

RNA polymerase II." J Biol Chem 273(16): 9577-9585. 

Ho, Y., S. Mason, et al. (1997). "Role of the casein kinase I isoform, Hrr25, and the cell 

cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA 

damage in Saccharomyces cerevisiae." Proc Natl Acad Sci U S A 94(2): 581-586. 

Hsin, J. P., W. Li, et al. (2014). "RNAP II CTD tyrosine 1 performs diverse functions in 

vertebrate cells." Elife 3: e02112. 

Hsin, J. P. and J. L. Manley (2012). "The RNA polymerase II CTD coordinates 

transcription and RNA processing." Genes Dev 26(19): 2119-2137. 

Hsin, J. P., A. Sheth, et al. (2011). "RNAP II CTD Phosphorylated on Threonine-4 Is 

Required for Histone mRNA 3 ' End Processing." Science 334(6056): 683-686. 

Hsin, J. P., K. Xiang, et al. (2014). "Function and control of RNA polymerase II CTD 

phosphorylation in vertebrate transcription and RNA processing." Mol Cell Biol. 

Hsu, P. L., F. Yang, et al. (2014). "Rtr1 Is a Dual Specificity Phosphatase That 

Dephosphorylates Tyr1 and Ser5 on the RNA Polymerase II CTD." J Mol Biol 

426(16): 2970-2981. 

Huelsenbeck, J. P. and F. Ronquist (2001). "MRBAYES: Bayesian inference of 

phylogenetic trees." Bioinformatics 17(8): 754-755. 



70 
 

Hurwitz, J. (2005). "The discovery of RNA polymerase." J Biol Chem 280(52): 42477-

42485. 

Jain, R., M. C. Rivera, et al. (1999). "Horizontal gene transfer among genomes: The 

complexity hypothesis." Proc Natl Acad Sci U S A 96(7): 3801-3806. 

James, T. Y., F. Kauff, et al. (2006). "Reconstructing the early evolution of Fungi using a 

six-gene phylogeny." Nature 443(7113): 818-822. 

Jasnovidova, O. and R. Stefl (2013). "The CTD code of RNA polymerase II: a structural 

view." Wiley Interdiscip Rev RNA 4(1): 1-16. 

Joo, Y. J., J. A. Kim, et al. (2009). "Cooperative regulation of ADE3 transcription by 

Gcn4p and Bas1p in Saccharomyces cerevisiae." Eukaryot Cell 8(8): 1268-1277. 

Keeling, P. J. and C. H. Slamovits (2004). "Simplicity and complexity of microsporidian 

genomes." Eukaryot Cell 3(6): 1363-1369. 

Kishore, S. P., S. L. Perkins, et al. (2009). "An unusual recent expansion of the C-

terminal domain of RNA polymerase II in primate malaria parasites features a 

motif otherwise found only in mammalian polymerases." J Mol Evol 68(6): 706-

714. 

Kishore, S. P., J. W. Stiller, et al. (2013). "Horizontal gene transfer of epigenetic 

machinery and evolution of parasitism in the malaria parasite Plasmodium 

falciparum and other apicomplexans." BMC Evol Biol 13: 37. 

Koleske, A. J., S. Buratowski, et al. (1992). "A Novel Transcription Factor Reveals a 

Functional Link between the Rna Polymerase-Ii Ctd and Tfiid." Cell 69(5): 883-

894. 



71 
 

Koonin, E. V. (2009). "Intron-dominated genomes of early ancestors of eukaryotes." J 

Hered 100(5): 618-623. 

Krishnamurthy, S., X. He, et al. (2004). "Ssu72 Is an RNA polymerase II CTD 

phosphatase." Mol Cell 14(3): 387-394. 

Kurtzman, C. P. and J. W. Fell (2006). "in Biodiversity and Ecophysiology of Yeasts, eds 

Rosa C, Peter G (Springer, Heidelberg)." pp11-30. 

Kwon, I., M. Kato, et al. (2013). "Phosphorylation-regulated binding of RNA polymerase 

II to fibrous polymers of low-complexity domains." Cell 155(5): 1049-1060. 

Lang, B. F., C. O'Kelly, et al. (2002). "The closest unicellular relatives of animals." Curr 

Biol 12(20): 1773-1778. 

Lee, J. Y. (2009). "Versatile casein kinase 1: multiple locations and functions." Plant 

Signal Behav 4(7): 652-654. 

Lee, Y., M. Kim, et al. (2004). "MicroRNA genes are transcribed by RNA polymerase 

II." EMBO J 23(20): 4051-4060. 

Licatalosi, D. D., G. Geiger, et al. (2002). "Functional interaction of yeast pre-mRNA 3' 

end processing factors with RNA polymerase II." Mol Cell 9(5): 1101-1111. 

Litingtung, Y., A. M. Lawler, et al. (1999). "Growth retardation and neonatal lethality in 

mice with a homozygous deletion in the C-terminal domain of RNA polymerase 

II." Mol Gen Genet 261(1): 100-105. 

Liu, P., A. L. Greenleaf, et al. (2008). "The essential sequence elements required for 

RNAP II carboxyl-terminal domain function in yeast and their evolutionary 

conservation." Mol Biol Evol 25(4): 719-727. 



72 
 

Liu, P., J. M. Kenney, et al. (2010). "Genetic organization, length conservation, and 

evolution of RNA polymerase II carboxyl-terminal domain." Mol Biol Evol 

27(11): 2628-2641. 

Lunde, B. M., S. L. Reichow, et al. (2010). "Cooperative interaction of transcription 

termination factors with the RNA polymerase II C-terminal domain." Nat Struct 

Mol Biol 17(10): 1195-1201. 

MacKellar, A. L. and A. L. Greenleaf (2011). "Cotranscriptional association of mRNA 

export factor Yra1 with C-terminal domain of RNA polymerase II." J Biol Chem 

286(42): 36385-36395. 

Maddison, W. P. and D. R. Maddison (2011). "Mesquite: a modular system for 

evolutionary analysis. Version 2.75  http://mesquiteproject.org." 

Mangus, D. A., M. C. Evans, et al. (2003). "Poly(A)-binding proteins: multifunctional 

scaffolds for the post-transcriptional control of gene expression." Genome Biol 

4(7): 223. 

Matsuzaki, M., O. Misumi, et al. (2004). "Genome sequence of the ultrasmall unicellular 

red alga Cyanidioschyzon merolae 10D." Nature 428(6983): 653-657. 

Mayer, A., M. Heidemann, et al. (2012). "CTD tyrosine phosphorylation impairs 

termination factor recruitment to RNA polymerase II." Science 336(6089): 1723-

1725. 

McCracken, S., N. Fong, et al. (1997). "5'-Capping enzymes are targeted to pre-mRNA 

by binding to the phosphorylated carboxy-terminal domain of RNA polymerase 

II." Genes Dev 11(24): 3306-3318. 

http://mesquiteproject.org./


73 
 

Meininghaus, M., R. D. Chapman, et al. (2000). "Conditional expression of RNA 

polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of 

the large subunit affects early steps in transcription." J Biol Chem 275(32): 

24375-24382. 

Merchant, S. S., S. E. Prochnik, et al. (2007). "The Chlamydomonas genome reveals the 

evolution of key animal and plant functions." Science 318(5848): 245-250. 

Minoda, A., R. Sakagami, et al. (2004). "Improvement of culture conditions and evidence 

for nuclear transformation by homologous recombination in a red alga, 

Cyanidioschyzon merolae 10D." Plant Cell Physiol 45(6): 667-671. 

Morris, D. P. and A. L. Greenleaf (2000). "The splicing factor, Prp40, binds the 

phosphorylated carboxyl-terminal domain of RNA polymerase II." J Biol Chem 

275(51): 39935-39943. 

Morris, D. P., H. P. Phatnani, et al. (1999). "Phospho-carboxyl-terminal domain binding 

and the role of a prolyl isomerase in pre-mRNA 3'-End formation." J Biol Chem 

274(44): 31583-31587. 

Mosley, A. L., S. G. Pattenden, et al. (2009). "Rtr1 is a CTD phosphatase that regulates 

RNA polymerase II during the transition from serine 5 to serine 2 

phosphorylation." Mol Cell 34(2): 168-178. 

Myer, V. E. and R. A. Young (1998). "RNA polymerase II holoenzymes and 

subcomplexes." J Biol Chem 273(43): 27757-27760. 

Nonet, M., D. Sweetser, et al. (1987). "Functional redundancy and structural 

polymorphism in the large subunit of RNA polymerase II." Cell 50(6): 909-915. 



74 
 

Palancade, B., M. F. Dubois, et al. (2002). "FCP1 phosphorylation by casein kinase 2 

enhances binding to TFIIF and RNA polymerase II carboxyl-terminal domain 

phosphatase activity." J Biol Chem 277(39): 36061-36067. 

Payne, J. M., P. J. Laybourn, et al. (1989). "The Transition of Rna Polymerase-Ii from 

Initiation to Elongation Is Associated with Phosphorylation of the Carboxyl-

Terminal Domain of Subunit-Iia." J Biol Chem 264(33): 19621-19629. 

Phatnani, H. P. and A. L. Greenleaf (2006). "Phosphorylation and functions of the RNA 

polymerase II CTD." Genes Dev 20(21): 2922-2936. 

Phatnani, H. P., J. C. Jones, et al. (2004). "Expanding the functional repertoire of CTD 

kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the 

yeast proteome." Biochemistry 43(50): 15702-15719. 

Riisberg, I., R. J. Orr, et al. (2009). "Seven gene phylogeny of heterokonts." Protist 

160(2): 191-204. 

Rogozin, I. B., L. Carmel, et al. (2012). "Origin and evolution of spliceosomal introns." 

Biol Direct 7: 11. 

Rosonina, E., N. Yurko, et al. (2014). "Threonine-4 of the budding yeast RNAP II CTD 

couples transcription with Htz1-mediated chromatin remodeling." Proc Natl Acad 

Sci U S A. 

Schneider, S., Y. Pei, et al. (2010). "Separable functions of the fission yeast Spt5 

carboxyl-terminal domain (CTD) in capping enzyme binding and transcription 

elongation overlap with those of the RNA polymerase II CTD." Mol Cell Biol 

30(10): 2353-2364. 



75 
 

Schroeder, S. C., D. A. Zorio, et al. (2004). "A function of yeast mRNA cap 

methyltransferase, Abd1, in transcription by RNA polymerase II." Mol Cell 13(3): 

377-387. 

Schwabish, M. A. and K. Struhl (2007). "The Swi/Snf complex is important for histone 

eviction during transcriptional activation and RNA polymerase II elongation in 

vivo." Mol Cell Biol 27(20): 6987-6995. 

Schwer, B., A. M. Sanchez, et al. (2012). "Punctuation and syntax of the RNA 

polymerase II CTD code in fission yeast." Proc Natl Acad Sci U S A 109(44): 

18024-18029. 

Schwer, B. and S. Shuman (2011). "Deciphering the RNA Polymerase II CTD Code in 

Fission Yeast." Mol Cell 43(2): 311-318. 

Sedgwick, B., P. A. Bates, et al. (2007). "Repair of alkylated DNA: recent advances." 

DNA Repair (Amst) 6(4): 429-442. 

Shaiu, W. L. and T. S. Hsieh (1998). "Targeting to transcriptionally active loci by the 

hydrophilic N-terminal domain of Drosophila DNA topoisomerase I." Mol Cell 

Biol 18(7): 4358-4367. 

Sims, R. J., L. A. Rojas, et al. (2011). "The C-Terminal Domain of RNA Polymerase II Is 

Modified by Site-Specific Methylation." Science 332(6025): 99-103. 

Spain, M. M. and C. K. Govind (2011). "A role for phosphorylated Pol II CTD in 

modulating transcription coupled histone dynamics." Transcription 2(2): 78-81. 



76 
 

Spingola, M., L. Grate, et al. (1999). "Genome-wide bioinformatic and molecular 

analysis of introns in Saccharomyces cerevisiae." Rna-a Publication of the Rna 

Society 5(2): 221-234. 

Stechmann, A. and T. Cavalier-Smith (2003). "The root of the eukaryote tree 

pinpointed." Curr Biol 13(17): R665-666. 

Stiller, J. W. and M. S. Cook (2004). "Functional unit of the RNA polymerase II C-

terminal domain lies within heptapeptide pairs." Eukaryot Cell 3(3): 735-740. 

Stiller, J. W. and B. D. Hall (1998). "Sequences of the largest subunit of RNA 

polymerase II from two red algae and their implications for rhodophyte 

evolution." Journal of Phycology 34(5): 857-864. 

Stiller, J. W. and B. D. Hall (2002). "Evolution of the RNA polymerase II C-terminal 

domain." Proc Natl Acad Sci U S A 99(9): 6091-6096. 

Stiller, J. W., B. L. McConaughy, et al. (2000). "Evolutionary complementation for 

polymerase II CTD function." Yeast 16(1): 57-64. 

Stracke, R., M. Werber, et al. (2001). "The R2R3-MYB gene family in Arabidopsis 

thaliana." Curr Opin Plant Biol 4(5): 447-456. 

Stump, A. D. and K. Ostrozhynska (2013). "Selective constraint and the evolution of the 

RNA polymerase II C-Terminal Domain." Transcription 4(2): 77-86. 

Sutherland, J. E., S. C. Lindstrom, et al. (2011). "A New Look at an Ancient Order: 

Generic Revision of the Bangiales (Rhodophyta)." Journal of Phycology 47(5): 

1131-1151. 



77 
 

Tamura, K., D. Peterson, et al. (2011). "MEGA5: molecular evolutionary genetics 

analysis using maximum likelihood, evolutionary distance, and maximum 

parsimony methods." Mol Biol Evol 28(10): 2731-2739. 

Tietjen, J. R., D. W. Zhang, et al. (2010). "Chemical-genomic dissection of the CTD 

code." Nat Struct Mol Biol 17(9): 1154-1161. 

Werner-Allen, J. W., C. J. Lee, et al. (2011). "cis-Proline-mediated Ser(P)5 

dephosphorylation by the RNA polymerase II C-terminal domain phosphatase 

Ssu72." J Biol Chem 286(7): 5717-5726. 

Werner, F. (2007). "Structure and function of archaeal RNA polymerases." Mol 

Microbiol 65(6): 1395-1404. 

West, M. L. and J. L. Corden (1995). "Construction and analysis of yeast RNA 

polymerase II CTD deletion and substitution mutations." Genetics 140(4): 1223-

1233. 

Willis, I. M. (1993). "RNA polymerase III. Genes, factors and transcriptional specificity." 

Eur J Biochem 212(1): 1-11. 

Winston, F. and M. Carlson (1992). "Yeast SNF/SWI transcriptional activators and the 

SPT/SIN chromatin connection." Trends Genet 8(11): 387-391. 

Wu, J., H. P. Phatnani, et al. (2010). "The phosphoCTD-interacting domain of 

Topoisomerase I." Biochem Biophys Res Commun 397(1): 117-119. 

Yang, C. and J. W. Stiller (2014). "Evolutionary diversity and taxon-specific 

modifications of the RNA polymerase II C-terminal domain." Proc Natl Acad Sci 

U S A 111(16): 5920-5925. 



78 
 

Zhang, D. W., A. L. Mosley, et al. (2012). "Ssu72 phosphatase dependent erasure of 

phospho-Ser7 marks on the RNA Polymerase II C-terminal domain is essential 

for viability and transcription termination." J Biol Chem. 

Zhang, D. W., J. B. Rodriguez-Molina, et al. (2012). "Emerging Views on the CTD 

Code." Genet Res Int 2012: 347214. 

Zhou, Z., M. J. Luo, et al. (2000). "The protein Aly links pre-messenger-RNA splicing to 

nuclear export in metazoans." Nature 407(6802): 401-405. 

Zhu, P., W. Zhou, et al. (2007). "A histone H2A deubiquitinase complex coordinating 

histone acetylation and H1 dissociation in transcriptional regulation." Mol Cell 

27(4): 609-621.



 
 

List of Tables 

 

Table 1. The 7 potential Chlamydomonas PCAPs identified.  

0.3M and 0.5M represent the NaCl elution concentrations. The numbers of the MS/MS 

identified matching peptides from the elution are shown under each salt step. The 

annotations are based on their homologs in yeast, human and Arabidopsis. The Blast best 

matches to proteins in yeast, human and Arabidopsis are shown with the e-values. The 

same is true for Table 2 and the supplementary tables. 

Protein 

names 

Wt. 

(kDa) 

Heptapeptide 

column 

Annotations Best hit in yeast and e-

value 

Best hit in human and 

e-value 

Best hit in Arabidopsis 

and e-value 

0.3M 

NaCl 

0.5M 

NaCl 

Q84SA0 34.81 19 16 Casein kinase I  HRR25 e-139 P48730 e-165 AT4G26100 e-171 

A8IYG9 41.99 8 4 Casein kinase II subunit alpha CKA2 e-111 E7EU96 e-118 AT2G23070 e-129 

A8J3U2 27.67 2   Component of U2 snRNP complex LEA1 1.00E-08 P09661 3.00E-55 AT1G09760 2.00E-59 

A8IDW3 48.49 1 2 MYB-like transcription factor similar RPN11 2.00E-06 Q5VVJ2 3.00E-14 AT3G09600 4.00E-08 

A8HME6 68.7 2   Polyadenylate-binding protein PAB1 e-127 P11940 e-135 AT1G49760 e-127 

A8I1B8 14.68   3 RNA export factor PAB1 7.00E-07 Q86V81 4.00E-21 AT5G59950 1.00E-24 

A8HRV5 26.14 1   U2B component of U2 snRNP MSL1 7.00E-10 P08579 1.00E-75 AT1G06960 6.00E-88 
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Table 2. The 8 potential Cyanidioschyzon PCAPs identified. 

 

Protein 

names 

Wt. 

(kDa) 

Heptapeptide 

column 

Nonapeptide 

column 

Annotations Best hit in yeast and e-

value 

Best hit in human and 

e-value 

Best hit in Arabidopsis and 

e-value 

0.3M 0.5M 0.3M 0.5M 

CMM263C 81.13      24   TOP1 TOP1 e-155 P11387 e-152 AT5G55300.1 e-180 

CMM087C 44.81     1                               SWIB/MDM2 domain containing protein TRI1 1.00E-12 F8VUB0 7.00E-06 AT3G19080.1 7.00E-20 

CMT578C 30.16     5   Similar to methylated-DNA--protein-cysteine 

methyltransferase 

MGT1 2.00E-09         

CMH210C 47.26     7   peptidyl-prolyl cis-trans isomerase activity ESS1 5.00E-24 Q13526 8.00E-18 AT2G18040.1 7.00E-23 

CMS377C 44.66     13 6 Casein kinase I isoform HRR25 e-142 B0QY34 e-160 AT4G26100.1 e-156 

CMG052C 44.5       8 Myb-related transcription factor BAS1 6.00E-13 E9PJ96 6.00E-24 AT3G18100.2 2.00E-33 

CMH135C 30.29 4 2     mRNA export YRA1 2.40E-05 E9PB61 8.00E-09 AT5G59950.2 5.00E-10 

CMS144C 17.17 1       TBP-associated factor TAF12 TAF12 1.00E-14 Q16514 5.00E-24 AT3G10070.1 8.00E-14 
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Table 3.  The 154 identified proteins from C. reinhardtii. 

 

Localization 

 

Protein 

names 

Annotations Best hit in yeast and 

 e-value 

Best hit in human and 

e-value 

Best hit in Arabidopsis and 

e-value 

Nucleus Q84SA0 Casein kinase I  HRR25 e-139 P48730 e-165 AT4G26100 e-171 

 A8IYG9 Casein kinase II subunit alpha CKA2 e-111 E7EU96 e-118 AT2G23070 e-129 

 A8J3U2 Component of U2 snRNP complex LEA1 1.00E-08 P09661 3.00E-55 AT1G09760 2.00E-59 

 A8IDW3 Histone H2A deubiquitinase RPN11 2.00E-06 Q5VVJ2 3.00E-14 AT3G09600 4.00E-08 

 A8HME6 Polyadenylate-binding protein PAB1 e-127 P11940 e-135 AT1G49760 e-127 

 A8I1B8 RNA export factor PAB1 7.00E-07 Q86V81 4.00E-21 AT5G59950 1.00E-24 

 A8HRV5 U2B component of U2 snRNP MSL1 7.00E-10 P08579 1.00E-75 AT1G06960 6.00E-88 

 A8JI44 Exportin-7     Q9UIA9 3.00E-48 AT5G06120 2.00E-89 

 A8J3F0 High mobility group protein NHP6B 1.00E-09 E9PES6 2.00E-10 AT4G11080 6.00E-07 

 A8J591 Puf protein PUF6 1.00E-37 Q15397 2.00E-47 AT3G16810 3.00E-49 

 A8ITC0 Pumilio domain-containing protein IPL1 7.00E-34 O14965 1.00E-47 AT2G45490 3.00E-46 

 A8IW57 Zinc finger protein BUD20 4.00E-13 O00488 3.00E-12 AT2G36930 1.00E-21 

 A8IV98 DEAD box RNA helicase DBP3 e-147 P17844 e-121 AT1G31970 e-175 

 A8JHA8 ATP-dependent RNA helicase DDX54 DBP10 e-113 Q8TDD1 e-126 AT1G77030 e-157 

 A8J0A8 Subunit of U3-containing Small Subunit 

(SSU) processome complex; 

SAS10 4.00E-08 Q9NQZ2 2.00E-11 AT2G43650 5.00E-10 

 A8IJG8 WD repeat-containing protein 46 UTP7 e-131 O15213 e-112 AT3G10530 e-147 

 A8J763 RNA exonuclease  REX4 8.00E-50 Q9GZR2 2.00E-48 AT3G15080 5.00E-47 

 A8JCZ5 Ribosomal RNA small subunit 

methyltransferase NEP1 

EMG1 2.00E-62 Q92979 7.00E-77 AT3G57000 8.00E-88 

 A8HPV5 ribosome biogenesis regulatory protein      Q15050 2.00E-06 AT2G37990 1.00E-09 

 A8IWU0 Ribosome production factor  RPF2 1.00E-46 Q9H7B2 9.00E-63 AT3G23620 4.00E-84 

 A8IED9 Pseudouridine synthase catalytic subunit 

of box H/ACA snoRNPs 

CBF5 0.00E+00 O60832 0 AT3G57150 0 

 A8I6R1 Protein required for biogenesis of  

ribosomal subunit; 

SOF1 4.00E-52 Q9NV06 3.00E-53 AT4G28450 2.00E-74 

 A8I4A8 Nucleolar component of the spliceosomal 

ribonucleoprotein complexes 

NOP4 1.00E-27 Q9NW13 7.00E-39 AT2G21440 1.00E-59 

 A8I0Z4 Nucleolar GTP-binding protein 1  NOG1 e-169 Q9BZE4 0 AT1G50920 0 

 A8JB67 Nucleolar protein, small subunit of 

H/ACA snoRNPs 

NHP2 8.00E-43 Q9NX24 9.00E-30 AT5G08180 6.00E-35 

 A8IA86 methyltransferase fibrillarin  NOP1 e-121 M0R299 e-131 AT4G25630 e-134 

Non-nucleus A8IWI1 Mitochondrial ribosomal protein L17     Q9H2W6 8.00E-06 AT1G14620 7.00E-15 

 A8HXM1 Mitochondrial ribosomal protein L29             

 A8I8Z4 Plastid ribosomal protein L1 MRPL1 3.00E-05     AT3G63490 2.00E-81 

 A8HWZ6 Plastid ribosomal protein L13  MRPL23 3.00E-24 Q9BYD1 1.00E-15 AT1G78630 4.00E-59 

 A8JAL6 Plastid ribosomal protein L15 MRPL10 2.00E-10     AT3G25920 8.00E-54 

 A8I3M4 Plastid ribosomal protein L17 MRPL8 6.00E-11 Q9NRX2 9.00E-12 AT3G54210 7.00E-44 

 A8HNJ8 Plastid ribosomal protein L18         AT1G48350 4.00E-41 

 A8J9D9 Plastid ribosomal protein L24      Q96A35 5.00E-09 AT5G54600 5.00E-42 

 A8INR7 Plastid ribosomal protein L27 MRP7 3.00E-11 Q9P0M9 4.00E-10 AT5G40950 4.00E-27 

 A8HWS8 Plastid ribosomal protein L28         AT2G33450 4.00E-24 

 A8I1D3 Plastid ribosomal protein L33         ATCG00640 8.00E-15 
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 Q84U22 Plastid ribosomal protein L4     Q9BYD3 8.00E-14 AT1G07320 2.00E-51 

 A8J503 Plastid ribosomal protein L6 MRPL6 3.00E-25     AT1G05190 3.00E-58 

 A8HTY0 Plastid ribosomal protein L7/L12 MNP1 1.00E-07     AT3G27850 1.00E-18 

 A8IYS1 Plastid ribosomal protein L9         AT3G44890 3.00E-24 

 A8JDP6 Plastid ribosomal protein S13 SWS2 8.00E-17 P62269 2.00E-08 AT5G14320 7.00E-38 

 A8JDN8 Plastid ribosomal protein S16 MRPS16 3.00E-15 A6ND22 2.00E-09 ATCG00050 2.00E-17 

 A8JGS2 Plastid ribosomal protein S17 MRPS17 1.00E-10 P62280 1.00E-04 AT1G49400 6.00E-19 

 A8JDN4 Plastid ribosomal protein S20         AT3G15190 4.00E-15 

 A8IMN3 Plastid-specific ribosomal protein 6              

 A8I645 Ribosomal protein CIC1 1.00E-05 O76021 8.00E-30 AT3G58660 2.00E-39 

 A8J597 Ribosomal protein L12 RPL12A 7.00E-74 P30050 3.00E-78 AT2G37190 4.00E-89 

 A8IQE3 Ribosomal protein L14  RPL14A 5.00E-10 E7EPB3 1.00E-16 AT4G27090 9.00E-28 

 A8JI94 Ribosomal protein L22 RPL22A 5.00E-12 C9JYQ9 1.00E-20 AT3G05560 1.00E-38 

 A8HMG7 Ribosomal protein L26 RPL26A 1.00E-31 P61254 8.00E-41 AT3G49910 3.00E-46 

 A8JF05 Ribosomal protein L28     P46779 4.00E-12 AT2G19730 4.00E-15 

 A8ICT1 Ribosomal protein L30  RPL30 2.00E-43 P62888 7.00E-58 AT1G36240 8.00E-57 

 A8HP90 Ribosomal protein L6 RPL6B 3.00E-46 Q02878 3.00E-35 AT1G74050 2.00E-53 

 A8IVE2 Ribosomal protein L7 RPL7A 2.00E-69 A8MUD9 2.00E-80 AT2G44120 2.00E-90 

 A8J567 Ribosomal protein L7a RPL8B 5.00E-71 P62424 1.00E-77 AT3G62870 2.00E-92 

 A8JDP4 Ribosomal protein L9 RPL9B 2.00E-66 P32969 3.00E-71 AT4G10450 1.00E-81 

 A8HSU7 Ribosomal protein S16 RPS16A 3.00E-71 P62249 6.00E-73 AT2G09990 8.00E-78 

 A8J8M9 Ribosomal protein S20  RPS20 1.00E-38 P60866 1.00E-60 AT3G47370 4.00E-59 

 A8IZ36 Ribosomal protein S25 RPS25A 1.00E-24 P62851 1.00E-25 AT4G39200 7.00E-29 

 A8IKP1 Ribosomal protein S28 RPS28B 1.00E-19 P62857 1.00E-19 AT5G03850 1.00E-20 

 A8JGI9 Ribosomal protein S7 RPS7B 2.00E-64 P62081 5.00E-79 AT1G48830 1.00E-89 

 C5HJB7 Ribosomal protein S9     P82933 6.00E-06 AT1G74970 1.00E-15 

 RR19 30S ribosomal protein S19, chloroplastic RSM19 1.00E-15 P62841 1.00E-09 ATCG00820 7.00E-44 

 Q6Y682 38 kDa ribosome-associated protein  YLL056C 1.00E-07 B3KV61 1.00E-04 AT1G09340 e-174 

 RS14 40S ribosomal protein S14 RPS14A 6.00E-73 P62263 2.00E-86 AT2G36160 5.00E-85 

 A8I0I1 40S ribosomal protein S24 RPS24B 4.00E-44 P62847 2.00E-35 AT5G28060 2.00E-57 

 Q6Y683 41 kDa ribosome-associated protein         AT3G63140 2.00E-90 

 RK22 50S ribosomal protein L22, chloroplastic         ATCG00810 2.00E-29 

 RK5 50S ribosomal protein L5, chloroplastic MRPL7 1.00E-22 Q5VVC9 4.00E-06 AT4G01310 2.00E-74 

 RL11 60S ribosomal protein L11 RPL11B 5.00E-78 P62913 2.00E-79 AT2G42740 8.00E-93 

 Q8GUQ9 60S ribosomal protein L38 RPL38 5.00E-15 P63173 2.00E-32 AT3G59540 1.00E-35 

 A8I232 Eukaryotic initiation factor  GCD11 0.00E+00 P41091 0 AT1G04170 0 

 A8HX38 Eukaryotic translation elongation factor 1 TEF1 e-105 Q05639 e-113 AT5G60390 e-106 

 A8HWK8 Subunit of the signal recognition particle     Q9UHB9 4.00E-36 AT5G61970 3.00E-54 

 A8JH66 Subunit of the signal recognition particle     O76094 3.00E-15 AT1G67680 5.00E-29 

 A8JG36 Subunit of the signal recognition particle  SEC65 2.00E-11 P09132 1.00E-22 AT1G48160 9.00E-27 
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 A8IAB5 Flagella associated protein             

 A8IZG0 Flagellar associated protein             

 A8JAC0 Flagellar associated protein             

 A8IAA8 Flagellar associated protein              

 A8IXA1 Protein involved in an early step of 60S 

ribosomal subunit biogenesis; 

MAK11 6.00E-22 O75695 3.00E-44 AT1G65030 3.00E-46 

 A8IAF7 RNA pseudouridine synthase RIB2 4.00E-12 B4DDD1 2.00E-09 AT1G76050 1.00E-99 

 A8JA59 ABC transporter G family YOL075C 2.00E-13 Q9UNQ0 1.00E-07 AT2G29940 3.00E-19 

 A8JDV2 Alpha subunit of the nascent polypeptide-

associated complex (NAC); 

EGD2 8.00E-22 Q13765 4.00E-59 AT3G49470 3.00E-59 

 A8JA80 AP-2 complex subunit mu APM1 2.00E-89 Q96CW1 e-122 AT5G46630 e-160 

 A8IL88 Axin interactor, dorsalization-associated 

protein 

    F5H715 5.00E-33     

 A8IHL6 Calcium/calmodulin dependent protein kinase II 

Association; 

  H0Y9J2 6.00E-39     

 A8IZI4 Carbohydrate sulfotransferase 15     Q7LFX5 3.00E-36     

 A8JIC1 Carbohydrate sulfotransferase 15     Q7LFX5 8.00E-11     

 Q6PLP6 Cell wall protein GP2             

 CB29 Chlorophyll a-b binding protein CP29         AT2G40100 4.00E-83 

 A8IIK4 Chloroplast stem-loop-binding protein          AT3G63140 3.00E-91 

 Q9XHE2 Class II DNA photolyase         AT1G12370 0 

 A8I2M1 Exostosin-like glycosyltransferase     P22105 2.00E-06 AT3G57630 5.00E-28 

 A8JHN6 Exostosin-like glycosyltransferase     Q93063 2.00E-05 AT3G57630 2.00E-32 

 Q9LD42 Fe-assimilating protein 1             

 ALFC Fructose-bisphosphate aldolase 1, 

chloroplastic 

    P04075 3.00E-90 AT4G38970 e-172 

 G3PA Glyceraldehyde-3-phosphate 

dehydrogenase A, chloroplastic 

TDH3 4.00E-98 P04406 2.00E-86 AT1G42970 0 

 A8JFM5 Glycosyltransferase-like protein LARGE2     Q8N3Y3 1.00E-17     

 A8IWB3 Low-CO2-inducible protein             

 A8IGD9 Low-CO2-inducible protein              

 MDHM Malate dehydrogenase, mitochondrial MDH1 8.00E-99 P40926 e-121 AT1G53240 e-164 

 A8J979 Methylcrotonoyl-CoA carboxylase alpha 

subunit 

DUR1,2 5.00E-94 Q96RQ3 e-161 AT1G03090 e-157 

 A8J7A9 Mitogen-activated protein kinase kinase 

kinase 9  

BCK1 2.00E-14 J3KPI6 2.00E-29 AT2G42640 7.00E-28 

 A8HYN3 NADP-dependent malic enzyme MAE1 1.00E-80 P48163 e-153 AT5G25880 e-172 

 A8IQU9 Oligopeptidase     P48147 1.00E-20 AT1G50380 1.00E-83 

 PSBP Oxygen-evolving enhancer protein 2         AT1G06680 3.00E-70 

 A8HQ69 Protein sel-1 homolog     Q9UBV2 1.00E-21 AT1G18260 2.00E-19 

 A8HQL5 Pyridoxal-5'-phosphate-dependent 

enzyme family protein; 

        AT3G26115 9.00E-09 

 A8HQC9 Rhodanese-like domain;  UBA4 1.00E-05         

 RBL Ribulose bisphosphate carboxylase large 

chain 

        ATCG00490 0 

 A8JIC2 Serine/threonine-protein kinase CTR1 CDC15 1.00E-07 Q02779 3.00E-13 AT5G03730 3.00E-15 

 A8J3M8 Superoxide dismutase SOD2 2.00E-19 P04179 1.00E-29 AT3G10920 7.00E-29 

 A8HPY3 tyrosylprotein sulfotransferase          AT1G08030 9.00E-41 

 A8HN92 Uridine 5'-monophosphate synthase  URA3 2.00E-62 P11172 e-161 AT3G54470 0 

Unannotated A8HNG8               
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 A8HQC6               

 A8HQL4           AT3G26115 4.00E-10 

 A8HYZ9           AT2G01640 4.00E-06 

 A8HZK3               

 A8I2L9               

 A8I363               

 A8I4J5               

 A8I829   RRP14 1.00E-04     AT5G05210 2.00E-12 

 A8IAA9               

 A8IBT9           AT4G05400 1.00E-04 

 A8IHD2               

 A8IHJ7               

 A8IKY2               

 A8ITX3               

 A8IVS3               

 A8IWR4               

 A8IY50               

 A8IZS7               

 A8J0X6               

 A8J127           AT2G45830 2.00E-05 

 A8J148               

 A8J290               

 A8J2L0               

 A8J437               

 A8J4A2               

 A8J6I0               

 A8J7S1               

 A8JAA9               

 A8JBA6   NHP2 1.00E-06         

 A8JBL1       Q6UW63 5.00E-10     

 A8JBR8       Q6UW63 2.00E-06     

 A8JD45               

 A8JE77       Q6UW63 5.00E-08     

 A8JGF5               

 A8JH42               

 A8JH86               

 A8JI67               
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Table 4. The identified 133 proteins from C. merolae. 

 

Localization 

 

Protein 

names 

Heptad column 
Nonatad 

column 
Annotations 

Best hit in yeast and 

 e-value 

Best hit in human and e-

value 

Best hit in Arabidopsis and 

e-value 0.3M 0.5M 0.3M 0.5M 

Nucleus CMS377C 0   13 6 Casein kinase I isoform HRR25 e-142 B0QY34 e-160 AT4G26100 e-156 

 CMH135C 4 2     mRNA export YRA1 2.40E-
05 

E9PB61 8.00E-09 AT5G59950 5.00E-10 

 CMG052C   0   8 Myb-related 
transcription factor 

BAS1 6.00E-
13 

E9PJ96 6.00E-24 AT3G18100 2.00E-33 

 CMH210C     7   peptidyl-prolyl cis-trans 
isomerase activity 

ESS1 5.00E-
24 

Q13526 8.00E-18 AT2G18040 7.00E-23 

 CMT578C     5   Similar to methylated-
DNA--protein-cysteine 

methyltransferase 

MGT1 2.00E-
09 

        

 CMM087
C 

    1   SWIB/MDM2 domain 
containing protein 

TRI1 1.00E-
12 

F8VUB0 7.00E-06 AT3G19080 7.00E-20 

 CMS144C 1       TBP-associated factor 
TAF12 

TAF12 1.00E-
14 

Q16514 5.00E-24 AT3G10070 8.00E-14 

 CMM263
C 

0   24 0 TOP1 TOP1 e-155 P11387 e-152 AT5G55300 e-180 

 CMN174C       5 Histone H2A HTA1 3.00E-
56 

P0C0S8 4.00E-59 AT1G51060 2.00E-56 

 CMN145C 3 6 5   Histone H2B HTB2 4.00E-
55 

Q99880 6.00E-59 AT3G45980 2.00E-53 

 CMR457C 1 4 3 3 Histone variant H2AZ HTZ1 1.00E-
50 

P0C0S5 2.00E-56 AT3G54560 3.00E-57 

 CMN183C 4 2 4 3 Histones H1     P07305 1.00E-04     

 CMT575C 0   9 1 3'-5' exonuclease 
activity 

REX4 4.00E-
42 

Q8WTP8 1.00E-35 AT3G15080 2.00E-28 

 CMD071C     1   3'-5' exonuclease 
activity 

    Q8N9H8 3.00E-15 AT1G56310 1.00E-21 

 CMC063C     5   Methyltransferase for 
rRNA 

EMG1 8.00E-
55 

Q92979 7.00E-60 AT3G57000 1.00E-56 

 CMI184C     4   Protein component of 
the H/ACA snoRNP 

pseudouridylase 

complex 

GAR1 4.00E-
23 

Q9NY12 3.00E-18 AT3G03920 9.00E-23 

 CMF022C     9 0 PseudoUridine Synthase PUS4 2.00E-

15 

Q8WWH5 4.00E-31 AT5G14460 4.00E-34 

 CMP061C 0   9 1 rRNA-processing 

protein 

    E5RGP0 3.00E-06 AT2G34570 1.00E-04 

 CMN074C 0   8 5 rRNA 2'-O-

methyltransferase 

fibrillarin 

NOP1 e-111 P22087 e-124 AT5G52470 e-123 

 CMK102C     4   Ribosomal Protein     Q96EU6 1.00E-06 AT1G12650 1.00E-05 

 CMT080C     1   Ribosome biogenesis 
protein UTP30 

UTP30 2.00E-
10 

J3QSV6 2.00E-15 AT2G42650 4.00E-20 

 CMP145C 1   5   heat shock protein 70 SSA1 0.00E+0
0 

P11142 0.00E+0
0 

AT3G12580 0.00E+0
0 

 CMQ470C 1   5 0 thioredoxin peroxidase DOT5 2.00E-
19 

    AT3G26060 8.00E-07 

Non-nucleus CMA082C 8 0 16 10 40S ribosomal protein 

S2 

RPS2 3.00E-

91 

P15880 e-113 AT1G58684 e-113 

 CMG109C 3 1 8 5 40S ribosomal protein 

S15 

RPS15 2.00E-

43 

P62841 3.00E-57 AT1G04270 5.00E-55 

 CMI202C   0 3 2 40S ribosomal protein 

S15A 

RPS22A 4.00E-

60 

P62244 4.00E-61 AT5G59850 8.00E-60 

 CMP007C 0 1   2 40S ribosomal protein 

S16 

RPS16A 6.00E-

63 

P62249 1.00E-66 AT2G09990 1.00E-69 

 CMB004C     2 0 40S ribosomal protein 

S18 

RPS18B 5.00E-

68 

P62269 1.00E-77 AT4G09800 2.00E-80 

 CMR148C 0 0 11 2 40S ribosomal protein 

S19 

RPS19B 5.00E-

34 

P39019 8.00E-40 AT3G02080 4.00E-48 

 CMN125C 1 0     40S ribosomal protein 

S27A 

RPS31 1.00E-

16 

P62979 6.00E-17 AT2G47110 5.00E-19 

 CMO024C 2 0 1   40S ribosomal protein 

S28 

RPS28B 2.00E-

21 

P62857 6.00E-22 AT5G03850 3.00E-15 

 CMN148C     2   40S ribosomal protein 

S3 

RPS3 e-101 P23396 e-116 AT5G35530 e-120 

 CMT030C 3 1 4 2 40S ribosomal protein 

S30 

RPS30B 3.00E-

15 

E9PR30 1.00E-15 AT5G56670 4.00E-18 

 CMT627C 3 1 7 8 40S ribosomal protein 

S5 

RPS5 e-101 P46782 e-115 AT2G37270 e-112 
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 CMA122C 5 2 11 5 40S ribosomal protein 

S7  

RPS7B 2.00E-

54 

P62081 6.00E-64 AT1G48830 2.00E-65 

 CMT159C   1     40S ribosomal protein 

S8 

RPS8B 5.00E-

79 

P62241 2.00E-81 AT5G59240 5.00E-89 

 CMJ109C 6 7 8 7 60S ribosomal protein 

L10 

RPL10 e-102 P27635 e-114 AT1G66580 e-110 

 CML196C   1     60S ribosomal protein 

L11 

RPL11B 3.00E-

61 

P62913 2.00E-65 AT5G45775 4.00E-67 

 CMH065C     3 0 60S ribosomal protein 

L14 

RPL14A 4.00E-

28 

P50914 2.00E-29 AT2G20450 2.00E-34 

 CMQ463C   1   0 60S ribosomal protein 

L17 

RPL17A 3.00E-

49 

J3QQT2 1.00E-61 AT1G27400 7.00E-62 

 CMO302C 12 6 16 14 60S ribosomal protein 

L18a 

RPL20B 2.00E-

39 

Q02543 9.00E-44 AT2G34480 9.00E-45 

 CMP179C     5   60S ribosomal protein 

L1-A 

RPL1A 4.00E-

83 

P62906 1.00E-90 AT2G27530 4.00E-94 

 CMR150C 5 1 8 4 60S ribosomal protein 

L21 

RPL21A 1.00E-

40 

P46778 2.00E-37 AT1G09690 3.00E-48 

 CMS262C     6   60S ribosomal protein 

L23 

RPL23B 8.00E-

74 

P62829 3.00E-80 AT3G04400 1.00E-79 

 CMK273C 4 7   1 60S ribosomal protein 

L23A 

RPL25 5.00E-

41 

P62750 8.00E-51 AT3G55280 7.00E-43 

 CMG157C   7   4 60S ribosomal protein 

L26 

RPL26B 1.00E-

37 

E5RIT6 1.00E-38 AT3G49910 5.00E-43 

 CML305C   1   2 60S ribosomal protein 

L27 

RPL27A 3.00E-

42 

P61353 2.00E-39 AT3G22230 4.00E-39 

 CMM040

C 

6 7 5 7 60S ribosomal protein 

L30 

RPL30 5.00E-

41 

P62888 2.00E-48 AT3G18740 3.00E-46 

 CMP175C 5 1 7 5 60S ribosomal protein 

L31 

RPL31B 2.00E-

19 

P62899 7.00E-25 AT4G26230 3.00E-18 

 CMP012C 0 2 2 2 60S ribosomal protein 

L34 

RPL34B 1.00E-

37 

P49207 1.00E-25 AT1G69620 6.00E-30 

 CMC053C 4 4 2 5 60S ribosomal protein 

L35 

RPL35A 2.00E-

28 

P42766 4.00E-39 AT5G02610 1.00E-40 

 CMN315C 0   2   60S ribosomal protein 

L37A 

RPL43A 8.00E-

31 

P61513 6.00E-34 AT3G60245 1.00E-32 

 CMJ170C 1 3 2 3 60S ribosomal protein 

L38 

RPL38 2.00E-

17 

P63173 2.00E-22 AT3G59540 1.00E-20 

 CMC044C 1 0 3 1 60S ribosomal protein 

L44 

RPL42A 2.00E-

34 

P83881 9.00E-33 AT4G14320 4.00E-36 

 CMH071C 1 8     60S ribosomal protein 

L5 

RPL5 5.00E-

96 

P46777 e-108 AT5G39740 e-109 

 CMQ078C   5 3 7 60S ribosomal protein 

L6 

RPL6B 2.00E-

35 

Q02878 4.00E-38 AT1G74050 2.00E-47 

 CMO310C   2     60S ribosomal protein 

L7 

RPL7A 9.00E-

74 

P18124 1.00E-79 AT2G01250 1.00E-79 

 CML317C     2   60S ribosomal protein 

L7A 

RPL8A 4.00E-

82 

P62424 1.00E-83 AT2G47610 3.00E-96 

 CMR287C 2 3   1 60S ribosomal protein 

L8 

RPL2B 5.00E-

99 

P62917 e-101 AT2G18020 e-102 

 CMC145C 2   12 9 60S ribosomal protein 

L9 

RPL9B 9.00E-

57 

P32969 6.00E-63 AT4G10450 6.00E-63 

 CMV189C     2 2 28S ribosomal protein 

S12, mitochondrial 

MRPS12 7.00E-

43 

O15235 1.00E-26 ATCG00905 1.00E-63 

 CMV084C 3 2 2 2 28S ribosomal protein 

S16, mitochondrial 

MRPS16 8.00E-

10 

A6ND22 9.00E-08 AT4G34620 8.00E-15 

 CMV173C 2 5 5 3 28S ribosomal protein 

S17, mitochondrial 

MRPS17 2.00E-

09 

    AT1G79850 2.00E-12 

 CMS081C   1 4 2 28S ribosomal protein 

S34, mitochondrial 

    P82930 3.00E-05 AT5G52370 1.00E-06 

 CMV170C     2   30S ribosomal protein 

S3, chloroplastic 

        ATCG00800 1.00E-38 

 CMV180C   4 8 8 30S ribosomal protein 

S5, chloroplastic 

        AT2G33800 2.00E-13 

 CMV177C 2     5 30S ribosomal protein 

S8, chloroplastic 

RPS22A 5.00E-

08 

P62244 1.00E-06 ATCG00770 2.00E-21 

 CMV187C     4 2 30S ribosomal protein 

S9, chloroplastic 

MRPS9 5.00E-

05 

P82933 2.00E-05 AT1G74970 2.00E-22 

 CMV168C 2 3 3 3 37S ribosomal protein 

S19, mitochondrial 

RSM19 1.00E-

15 

K7ELC2 2.00E-08 ATCG00820 3.00E-38 

 CMV190C 2 2 13 7 37S ribosomal protein 

S7, mitochondrial 

RSM7 1.00E-

10 

J3KSI8 2.00E-12 ATCG00900 4.00E-48 

 CMV009C 4   11 10 37S ribosomal protein, 

mitochondrial 

NAM9 5.00E-

07 

    ATCG00380 4.00E-42 

 CMV183C       4 37S ribosomal protein, 

mitochondrial 

SWS2 2.00E-

15 

    AT5G14320 4.00E-26 

 CMV171C 1 0 2 5 39S ribosomal protein 

L16, mitochondrial 

MRPL16 8.00E-

15 

Q9NX20 2.00E-08 ATCG00790 2.00E-57 

 CMV186C       2 39S ribosomal protein 

L23, mitochondrial 

MRPL23 6.00E-

10 

    AT1G78630 2.00E-19 
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 CMV035C     2 1 39S ribosomal protein 

L27, mitochondrial 

MRP7 4.00E-

10 

Q9P0M9 3.00E-05 AT2G16930 1.00E-20 

 CMV164C 3   8 6 39S ribosomal protein 

L9, mitochondrial 

MRPL9 6.00E-

20 

P09001 1.00E-17 AT2G43030 9.00E-34 

 CMW038

C 

1   6   50S ribosomal protein 

L16, mitochondrial 

MRPL16 1.00E-

06 

    ATCG00790 4.00E-13 

 CMV179C     3 1 50S ribosomal protein 

L18, chloroplastic 

        AT1G48350 4.00E-24 

 CMV166C 1   3   50S ribosomal protein 

L23, chloroplastic 

        ATCG01300 3.00E-06 

 CMV175C 6 2 7 7 50S ribosomal protein 

L24, chloroplastic 

        AT5G54600 1.00E-15 

 CMW036

C 

    2   50S ribosomal protein 

L5, mitochondrial 

            

 CMV178C     5 0 54S ribosomal protein 

L6, mitochondrial 

MRPL6 2.00E-

20 

    AT1G05190 7.00E-43 

 CMQ292C 0   9 0 Chloroplast ribosomal 

protein L15 

MRPL10 6.00E-

10 

E9PLX7 2.00E-05 AT3G25920 5.00E-39 

 CMB032C 1   1 2 Chloroplast ribosomal 

protein S21 

        AT3G27160 8.00E-07 

 CMP308C 3 0 4 1 Mitochondrial 

ribosomal protein L27 

MRP7 1.00E-

16 

Q9P0M9 2.00E-14 AT2G16930 1.00E-21 

 CMH275C     9 0 Mitochondrial 

ribosomal protein L46 

MRPL17 2.00E-

05 

Q9H2W6 7.00E-16 AT1G14620 7.00E-14 

 CMT544C 1 0 5 2 Mitochondrial 

ribosomal protein S16 

MRPS16 1.00E-

17 

A6ND22 1.00E-11 AT5G56940 6.00E-17 

 CMS212C   0   1 Mitochondrial 

ribosomal protein S17 

MRPS17 4.00E-

06 

    AT1G49400 2.00E-13 

 CMV108C     3   Ribosomal protein L19 

family protein 

        AT5G11750 2.00E-13 

 CMV158C 0   3 6 [pt] allophycocyanin 

(APC) alpha chain 

            

 CMV159C   0   3 [pt] allophycocyanin 

(APC) beta chain 

            

 CMV162C 4 4 7 5 [pt] DNA-binding 

protein Hu homolog 

            

 CMV063C     5 3 [pt] phycocyanin (PC) 

alpha chain 

            

 CMV064C 0 0 4   [pt] phycocyanin (PC) 

beta chain 

            

 CMQ087C 5 0 16 12 chloroplast ATP 

synthase 

ATP3 2.00E-

22 

P36542 2.00E-23 AT4G04640 4.00E-85 

 CMT202C     6   chloroplast phosphatase 

activity 

        AT2G25870 1.00E-13 

 CMQ121C 1   5 4 chloroplast, 

endonuclease activity 

        AT1G18680 1.00E-38 

 CMV163C 0   2   Hsp70 family ATPase  

chloroplasts 

SSC1 0 P38646 0 AT4G24280 0 

 CMH226C 5 0 20 7 Translation Elongation 

Factor 

TEF1 0.00E+0

0 

Q05639 0.00E+0

0 

AT5G60390 0 

 CMT223C     8   Translation initiation 

factor 

        AT4G30690 2.00E-07 

 CMV195C 1   2 2 ATPase ATP16 2.00E-

05 

    ATCG00470 2.00E-29 

 CMJ015C     5 0 Calcineurin-like 

metallo-
phosphoesterase 

superfamily protein 

        AT1G18480 9.00E-42 

 CMI049C     6 0 Fructose-bisphosphate 

aldolase A 

    P04075 1.00E-99 AT2G01140 e-127 

 CMJ042C     3 0 glyceraldehyde-3-

phosphate 
dehydrogenase 

TDH2 5.00E-

92 

P04406 7.00E-89 AT1G42970 e-145 

 CMV013C 7 0 7 8 large subunit of 

RUBISCO 

        ATCG00490 0 

 CMN338C     23 14 oxidoreductase     Q9NZC7 9.00E-12 AT1G03630 9.00E-69 

 CMO306C     1   Oxidoreductase family 

protein;  

YMR315

W 

4.00E-

05 

Q9UQ10 9.00E-13 AT4G09670 6.00E-11 

 CMP166C 4 3 14 16 phycocyanin-associated 

rod linker protein 

            

 CMN111C 5   14 4 Protein disulfide-

isomerase A6 

MPD1 2.00E-

25 

Q15084 1.00E-31 AT2G32920 2.00E-33 

 CMD190C     14 7 Putative oxidoreductase     Q9NZC7 4.00E-11 AT1G03630 3.00E-66 

 CMV014C 4   6 3 Rubisco small subunit 

(RBCS) multigene 
family 

        AT1G67090 1.00E-20 

 CMT279C 8   12 0 similar to prostatic acid 

phosphatase precursor 

    P11117 3.00E-21     

 CMJ105C 0   16 7 Tic22-like family 

protein; LOCATED IN: 
chloroplast,  

        AT3G23710 1.00E-07 
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Unannotated  CMB153C 1   5                 

 CMC095C 8 1 8 6               

 CMD103C     1                 

 CMD165C 2 0 3 2               

 CME038C     5                 

 CMH254C     1 0               

 CMK221C     9                 

 CML117C 0   4                 

 CML294C     13 3               

 CMN296C 1   3 0               

 CMN330C 3 1 1 1               

 CMP346C 1   9 5               

 CMQ170C     3                 

 CMQ259C     4                 

 CMR253C     12 0               

 CMT270C     3                 

 CMT340C 5 3 4 5               

 CMT366C 3   13 4               

 CMT392C     9 4               

 CMT440C 0 1   1               

 

  



89 
 

Table 5. The identified 55 proteins from E. coli. 

 

Protein names Heptapeptide 

column 0.3M 

Nonapeptide 

column 0.3M 

Annotations 

AP_004493.1 3  30S ribosomal subunit protein S11 

AP_004448.1 5 5 30S ribosomal subunit protein S12 

AP_004492.1 7 11 30S ribosomal subunit protein S13 

AP_004483.1 3  30S ribosomal subunit protein S14 

AP_003710.1 6  30S ribosomal subunit protein S15 

AP_003190.1 6 2 30S ribosomal subunit protein S16 

AP_004479.1 2  30S ribosomal subunit protein S17 

AP_004702.1 4 1 30S ribosomal subunit protein S18 

AP_004474.1 7 7 30S ribosomal subunit protein S19 

AP_000687.1 4 6 30S ribosomal subunit protein S20 

AP_003615.1 5 9 30S ribosomal subunit protein S21 

AP_004476.1 13 13 30S ribosomal subunit protein S3 

AP_004494.1 16 17 30S ribosomal subunit protein S4 

AP_004487.1 11 13 30S ribosomal subunit protein S5 

AP_004700.1  3 30S ribosomal subunit protein S6 

AP_004449.1 9 14 30S ribosomal subunit protein S7 

AP_003772.1 7 7 30S ribosomal subunit protein S9 

AP_003773.1 10 8 50S ribosomal subunit protein L13 

AP_004480.1 4  50S ribosomal subunit protein L14 

AP_004489.1 10 12 50S ribosomal subunit protein L15 

AP_004477.1 5 11 50S ribosomal subunit protein L16 

AP_004496.1 6 5 50S ribosomal subunit protein L17 

AP_004486.1 5 5 50S ribosomal subunit protein L18 

AP_003187.1 7  50S ribosomal subunit protein L19 

AP_004473.1 15 13 50S ribosomal subunit protein L2 

AP_004475.1 8 12 50S ribosomal subunit protein L22 

AP_004472.1 3  50S ribosomal subunit protein L23 

AP_004481.1 7 8 50S ribosomal subunit protein L24 

AP_002783.1 2  50S ribosomal subunit protein L25 
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AP_003728.1 4 4 50S ribosomal subunit protein L27 

AP_004154.1 7 9 50S ribosomal subunit protein L28 

AP_004471.1 4  50S ribosomal subunit protein L4 

AP_004482.1 6 3 50S ribosomal subunit protein L5 

AP_004485.1 6  50S ribosomal subunit protein L6 

AP_003833.1 3  50S ribosomal subunit protein L7/L12 

AP_004703.1 7  50S ribosomal subunit protein L9 

AP_001712.1 17 18 23S rRNA pseudouridylate synthase 

AP_001428.1 19 6 RNA helicase 

AP_001583.1 3  ribosome modulation factor 

AP_002572.1 9  DNA cytosine methylase 

AP_003818.1 4  HU, DNA-binding transcriptional regulator, alpha subunit 

AP_002332.1 10 3 integration host factor (IHF), DNA-binding protein, alpha subunit 

AP_001542.1 3 5 integration host factor (IHF), DNA-binding protein, beta subunit 

AP_002192.1 4 2 predicted regulator for DicB 

AP_004701.1  4 primosomal protein N 

AP_001116.1 6  primosomal replication protein N 

AP_000689.1 7  bifunctional riboflavin kinase and FAD synthetase 

AP_002941.1 10  fused enoyl-CoA hydratase 

AP_004160.1 7  glucosyltransferase I 

AP_001586.1 3  hypothetical protein 

AP_004162.1 4  lipopolysaccharide core biosynthesis protein 

AP_000935.1 16  predicted phage integrase 

AP_002948.1 4  predicted prophage CPS-53 integrase 

AP_002338.1 5 1 protein chain initiation factor IF-3 

AP_004365.1 37 26 sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding 
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Fig. 1. CTD diversity in eukaryotes. 

The tree shows consensus relationships of the 205 eukaryotes with CTD sequences 

mapped to each taxon. Sequences are oriented with N-termini at the outer edge and C-

termini toward the center. Most CTD sequences are shown from the first obvious heptad 

to the C-terminal end; and for those with few or without heptads are shown from a 

supposed first heptad position, based on typical linker lengths, to the C-terminal end (the 

same convention is used in other figures). The 22 chordates are collapsed into one branch 

as their CTD sequences are nearly identical; the same was done for the 19 
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saccharomycete species. The annotated CTD structure for each genus is shown around 

the tree. Genus names and their branches are shown in four different colors based on their 

CTD states (see methods); 3 = green; 2 = teal; 1 = purple; 0 = red. Roots I and II reflect 

alternative rootings of the eukaryotic tree for character state analyses. The probability that 

the ancestor of descending clades in state 0 (completely disorganized CTDs) or state 3 

(tandem repeats) are shown separately in red and green.  
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Fig. 2. The character state analysis with rooting close to Excavata.  

The number 0,1,2,3 and corresponding color represent specific CTD states (See Chapter 

1 Materials and Methods). The small dash-line framed area are expanded into the big 

frame. The possibilities of the character states of the eukaryotic common ancestor and the 

common ancestor of the eukaryotes except excavates are shown separately with arrows 

directed. 
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Fig. 3. The character state analysis with rooting between Bikonta and Unikonta.  

The annotation is similar with Fig. 2.  
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Fig. 4. CTD evolution in fungi. 

The tree shows consensus relationships of all fungal genera used in this study. Branch 

colours are based on the conventions described for Figure 1. The annotated CTD 

structure for each genus is shown above the tree (CTD N-termini are at the top of each 

sequence). Each bracket contains all genera belonging to the taxonomic order named 

above.  

  



96 
 

 

Fig. 5. CTD evolution in the Apicomplexa. 

The tree shows the evolutionary relationships of apicomplexans. The 10 Plasmodium 

species are divided into three groups (shown in different colors) according to their hosts: 

bird, primate and rodent. CTD N-termini are at the top of each sequence.  
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Fig. 6. Sub-motif SP content comparison.  

To avoid biases based on imbalances of available RPB1 sequences across eukaryotic 

taxa, and similarities within closely related genera, I chose 20 RPB1 sequences (6 from 

Metazoa, 6 from Fungi, 4 from green plants, 3 from Apicomplexa and 1 from Excavata) 

from distantly related genera across eukaryotic taxa for a sub-motif comparison of Ser-

Pro pair content between RPB1 domains A-H and the CTD linker region. Each bar 

represents the mean percent (standard errors are shown on each bar) of SP sub-motifs for 

the main body of RPB1 and the CTD linker respectively.   
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Fig. 7. The CTD in green plants and red algae. 

The tree reflecting the relationships of the taxa Green algae/plants and Red algae are 

constructed based on the Tree of Life Web Project. Annotated CTDs for each genus is 

shown above the taxa included in the tree (CTD N-termini are at the top of each 

sequence). Sequences from multicellular red algae are shown in boxes; they have highly 

modified CTDs with no discernable repetitive structures that are present in unicellular 

(ancestral) forms.  Green indicates regions with at least two continuous canonical 

(YSPxSPx) heptapeptides; yellow indicates the presence of isolated heptads, not in 

tandem with another canonical repeat; purple indicates the presence of the non-canonical 

motif “FSPTSPS”; red regions are without any canonical heptapeptides whatsoever. For 

more detail on these annotations, see Figure1. 
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Fig. 8. Phylogenetic analyses of CDKs. 

Tree recovered through Bayesian inference showing that CDKs shown previously to 

phosphorylate the CTD in experimental models, all present in red and green algae.  

Notably, CDK8 is absent from the two unicellular red algae, but is present in 

Chlamydomonas. Green algal CDKs are shown in green, red algal CDKs in red.  
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Abbreviations are as follows: Human, Hsa; Yeast, Sce; Arabidopsis, Ath; 

Chlamydomonas, Cre; Cyanidioschyzon, Cme; Chondrus, Ccr; Galdieria, Gsu.)  
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Fig. 9. PCAP purification process.  

The PCAP purification process is shown step by step as indicated by the direction of the 

arrows. The elution from each affinity column was subjected to SDS-PAGE followed by 

staining with Coomassie blue. The gels run on elutions are shown for each affinity 

column. M represents molecular weight (KDa) marker, 0.3 M and 0.5 M indicate elution 

with those concentrations of NaCl in BH buffer. The putative PCAPs from each elution 

highlighted in my results section are shown under the respective gels.   
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Fig. 10. The gels of E. coli proteins running both heptad and nonatad affinity 

columns.  

A, E. coli proteins run heptad affinity column; B, E. coli proteins run nonatad affinity 

column. M represents molecular weight (KDa) ladder; OP, onput; FT, flow through; W-5, 

10, 15 indicate the 5th, 10th and 15th ml wash buffer collections; 0.3 M, 0.5 M and 1 M 

indicate elution with those concentrations of NaCl in BH buffer; and for each 

concentration, 4 × 250ul elution was collected. For gel running, 5ul marker, OP and FT 

was separately used, and all other wells were added with 25ul samples. 
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Fig. 11. The gels of Cyanidioschyzon proteins running both heptad and nonatad 

affinity columns.  

The annotations are the same as Fig. 10.  A, Heptad affinity column gel; B, Nonatad 

affinity column gel. 

  



104 
 

 

Fig. 12. The gel of Chlamydomonas proteins running heptad affinity column. 

 The annotations are the same as Fig. 10.   
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Fig. 13. Control affinity column gels.  

The control affinity column was constructed by using NeutrAvidin resin without 

artificially synthesized peptides attached. A, E. coli proteins run control column. B, 

Cyanidioschyzon proteins run control column. The annotations are the same as Fig. 10. 

 


