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ABSTRACT 

 
 High-resolution nuclear magnetic resonance (NMR) spectroscopy is a powerful 

technique, yet practical application outside of the research laboratory has been limited due to the 

high cost and complexity of the instrumentation.  Recently, miniaturized low-field benchtop 

time-domain NMR (TD-NMR) instruments have been developed to solve practical problems 

within the industrial setting. While the low-field instruments sacrifice some degree of sensitivity 

and resolution, they are capable of powerful relaxation time analysis and have gained popularity 

due to their simplicity and cost effectiveness.  Currently these instruments are utilized primarily 

in the food, agricultural and pharmaceutical industry.  This project was initiated to investigate the 

utility of benchtop TD-NMR in clinical diagnostics and health assessment.  Using TD-NMR 

relaxometry, we analyzed a variety of complex biological liquids, which included oil-phase 

lipids, purified proteins and lipoproteins, and whole human serum and plasma.  For oil-phase 

non-esterified fatty acids, we demonstrated that the NMR T2 relaxation times were sensitive to 



 

 

hydrocarbon chain structure, particularly the number of cis-double bonds, which impact chain 

packing and fluidity.  Triglyceride mixtures displayed the same sensitivity to double bond 

content and fluidity.  Therefore, we developed a practical method for using benchtop-TD NMR 

to determine the omega-3 fatty acid content of nutritional supplements.  Analysis of aqueous 

biological samples suffered initially from radiation damping and hardware artifacts.  Therefore, 

we developed new methods to optimize TD-NMR analysis of water-rich samples such as human 

blood serum.  The T2 profile of whole human serum or plasma displayed four resolved T2 peaks. 

One was the intense water peak, which correlated with biomarkers of insulin resistance, 

dyslipidemia, oxidative stress and inflammation. The other three peaks monitor the molecular 

motions of the lipid and protein components in serum and plasma.  In an apparently healthy 

population of human subjects, the lipid-protein T2 values correlated with insulin resistance 

biomarkers by detecting metabolic changes in proteins and lipoproteins.  The analysis of human 

serum and plasma using TD-NMR shows promise as a front-line health screening tool for 

identifying individuals at risk for developing diabetes, cardiovascular disease and Alzheimer’s 

disease.  
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Chapter 1: Introduction 
 

 Nuclear magnetic resonance (NMR) is a physical phenomenon that exploits the magnetic 

properties of certain nuclei to provide detailed structural, dynamic and energetic information of 

molecular compounds.  Physicists and chemists have conventionally used NMR as a highly 

specialized research laboratory tool. Advancements in hardware and data processing have 

broadened the applications across a wide range of industries. Some of the most successful and 

unique applications include: magnetic resonance imaging (MRI) as a non-destructive diagnosis 

tool in clinical medicine1-4, petrophysical applications in oil and gas companies 5-11, food 

processing and quality12-20 and the conservation and characterization of building materials in 

chemical engineering 12,21-25. 

 Top of the line high-resolution NMR instruments contain superconducting magnets that 

require cryogenics and occupy a large space, making them a highly expensive piece of 

equipment. In addition the specialized NMR techniques require an extensive skill set and 

training. Miniaturized benchtop instruments with permanent magnets that operate at lower field 

strengths have been developed which overcome the limitations from high-field NMR26. While 

they sacrifice sensitivity, the low price, small size and simplified user interface has increased the 

appeal of NMR for many scientists previously deterred by the specialized technique.   

 Benchtop time-domain NMR (TD-NMR), also known as relaxometry, is a relatively new 

low-field instrument that probes molecular motions by measuring T1 and T2 relaxation times. 

While specialized techniques have been developed for pharmaceutical and industrial 

settings9,27,28, these instruments have yet to reach their full potential. Therefore, we have set out 

to expand the current benchtop TD-NMR methods into clinical diagnostic laboratories.  
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Theory and Fundamentals 

The NMR Phenomenon and Behavior of Nuclei 

  Certain nuclei possess spin (angular momentum), which is an intrinsic fundamental 

property similar to mass and charge. Spin angular momentum is characterized by the spin 

quantum number I. Nuclei with a non-zero I have magnetic resonance properties (Table 1).  

Isotope Atomic Weight Spin (I) Gyromagnetic Ratio (γ)  

[107rad/(Ts)] 
1H 1 ½ 26.75196 
2H 2 1 4.106625 
13C 13 ½ 6.72828 
14N 14 1 1.933 
15N 15 ½ -2.71262 
19F 19 ½ 25.18147 
31P 31 ½ 10.8394 

 
Table 1.1: Nuclear Properties of Selected Isotopes. Modified from The 64th CRC Handbook of 

Chemistry and Physics, CRC Press, 1984 

 

 When a nucleus possesses both a charge and spin it generates a magnetic moment (μm,). 

This occurs because when a charged particle has angular momentum (motion/spin) it generates a 

magnetic field (magnetic moment). The magnitude of μm can be calculated using equation 1.1 

where I is the spin number, h is planks constant and γ is the gyromagnetic ratio.  

Equation 1.  

��  =  �� � �
	
� 

 The most common isotopes utilized in an NMR experiment have a spin number of ½  

(i.e.: 1H, 13C and 15N). Nuclei with spin ½ can be visualized as a tiny bar magnet possessing a 

north and south pole (directionality). In the absence of a magnetic field, the nuclei are randomly 

oriented and are of equal energy (Figure 1A).  In the presence of an external magnetic field, B0, 
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the magnetic moments are quantized into 2I+1 energy levels (for spin I = ½ � 2( ½) + 1 = 2 

energy levels). Each level is given a magnetic quantum number, m. The nuclei can occupy one of 

two energy levels m +½ (also known as α) and m –½ (also known as β);  m +½ is of lower 

energy and aligned parallel to the external magnetic field while  m –½ of higher energy and is 

aligned anti-parallel to the external magnetic field .  The energy difference between the two 

states is described in Figure 1B, and is proportional to the strength of B0 
29. 

 

 

 

 

 

 

 

 

 

Figure 1: Energy Levels For a Nucleus with Spin 
I= ½. A visualizes the behavior of nuclei in the 
absence and presence of an external magnetic field. 
The energy difference between the two states upon 
the application of the magnetic field is shown in B.  
 

 

  

The distribution of nuclei between the energy levels is not equal; the m +½  state, is more 

favorable and thus slightly more populated. The distribution ratio between states is given by the 

A 

B 
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Boltzmann equation in equation 2. The small abundance of nuclei occupying the lower energy 

state is aligned parallel with B0, which leads to a net macroscopic magnetic moment, Mz
30,31. 

Equation 2.   

�
��

= �–��/ ��� 

 Nuclei are not perfectly parallel to the external magnetic field but precess in the direction 

of the static magnetic field (Figure 2), similar to that of a gyroscope in a gravitation field32. 

Precessional frequency, also known as the Larmor frequency, is dependent on the gyromagnetic 

ratio, which is constant for a given nuclei (Table 1), and the strength of B0.  As shown in 

equation 3 the Larmour frequency is designated ω0 in radians per second or ν0 in Hertz (Hz).  

Equation 3. 

�� =  ��� 

 

 

 

 

 

 

The NMR Experiment: Detection of Resonance  
 
 After a sample is placed in a magnet the nuclei begin precessing around to the axis of the 

external magnetic field (Bo) producing a net magnetization vector, M (sum of individual nuclear 

magnetic moments) aligned along the Z-axis in a coordinate system  (Figure 3). At this state, 

which is known as thermal equilibrium, the population of nuclei is defined by the Boltzman 

distribution, and there is no coherence between the nuclear spins 29,33. These conditions may be 

Figure 2: Larmor or precessional frequency. 
Once placed in an external magnetic field, nuclei 
will precess along the path of the applied field. 
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broken when a radiofrequency pulse, B1, is applied on resonance (Larmor frequency) 

perpendicular to Bo. The application of a RF pulse perturbs, or tips, the orientation of M away 

from Bo (Z axis) and the magnitude depends on the strength and duration of that RF pulse 

(Equation 4: α- the angle of tipping, γ- gyromagnetic ratio, B1- applied magnetic field, tp- 

duration of the pulse).  

Equation 4. 

� =  ����� 

 Imagine a scenario where a RF pulse is applied just long enough to tip the M vector 90° 

away from Z (longitudinal) into the X-Y (transverse) plane (this is known as a 90° pulse). 

Immediately after the pulse has been turned off the nuclei will undergo Larmor precession about 

B0 in coherence (Figure 3B). The precessing magnetization vector produces an oscillating 

voltage detected by a receiver coil located in the transverse plane34. As the nuclei return back to 

their thermal equilibrium (described below in more detail) a multiexponential signal is generated, 

known as a free induction decay (FID)30. The time-domain signal can be converted into the 

frequency domain by computing the Fourier transform of the FID.  

Relaxation: Introduction to T1 and T2  

 
 The process through which equilibrium is regained after a RF pulse is known as 

relaxation, which is monitored by two time constants; T1 (spin-lattice relaxation) and T2 (spin-

spin relaxation). The study of nuclear spin relaxation provides important information about the 

motional processes in molecules35. Immediately after a RF pulse has been turned off, nuclei in 

the X-Y plane are precessing in coherence, meaning they have the same exact precessional 

frequency. Over time, small perturbations and inhomogeneities in the respective local magnetic 
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Figure 3: The NMR Experiment.   
(A) According to the Boltzman distribution, a small excess of nuclei populate the lower energy state, 
which is aligned parallel to Bo. By taking the sum of the individual nuclei vectors we obtain a net 
magnetization vector, M. (B) Visualization of M after the application of a RF pulse. In panel b, the 
application of B1 (green arrow) tips M into the XY-plane. After the RF pulse has been turned off the 
nuclei precess in coherence in the transverse plane as shown by the blue arrow. Over time the nuclei lose 
coherence and the transverse signal decays (3B:b-d). Notice in panel e, that in addition to a loss of the 
transverse signal (absence of blue arrow), the longitudinal component begins its recovery back to thermal 
equilibrium (red arrow), until eventually all of the nuclei have returned back along Bo (panel f).  
 

fields cause the nuclei to lose their coherence in the X-Y plane; this is monitored by T2, also 

known as transverse relaxation. The recovery of magnetization along the Z-axis back to 

thermal equilibrium is characterized by T1, also known as longitudinal relaxation. The 

equations for T1 and T2 are shown in Equation 5.  

Equation 5 

����� = � �! " 	�#$ %!⁄ � 

�'(��� = �'(�����#$ %	⁄ � 
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Spin-lattice relaxation: T1 

 

 T1 monitors the restoration of the Boltzman distribution as the excited spins transfer their 

magnetic energy back to their surrounding environment (lattice) around the nucleus of 

interest30,35,36, which results in the recovery of M along the z-axis. This exchange occurs through 

indirect mechanisms such as dipole-dipole interactions, chemical shift anisotropy and spin-

rotation interactions.  The primary mechanism of relaxation is dipole-dipole interactions, where 

the nucleus experiences a fluctuating field due to the motion of neighboring dipoles (nuclei)30. 

Brownian motions such as rotational diffusion, translation diffusion, vibrations and 

conformational changes cause these 

fluctuating magnetic fields 35.    

 

These fluctuations induce transitions between spin states, which restores the Boltzman 

distribution. Our lab uses an inverse recovery pulse sequence to measure T1 
37. The pulse 

sequence and an example of a T1 recovery curve are shown in Figure 4.  

A 

B 

Figure 4. T1 Inversion Recovery 
Experiment.  Panel A displays the IR 
pulse sequences utilized in our lab. A 
recycle delay (RD) is inserted at the start to 
ensure all nuclei have reached their thermal 
equilibrium along the Z-axis. A 180 pulse 
inverts the magnetization vector from +Z to 
–Z. During the time delay (IR) the nuclei 
begin to relax back towards +Z. After the 
time delay a 90 pulse is applied, which 
monitors the progress of recovery back to 
+Z during at that moment in time. The 
length of the time delay is arrayed 
(increases with each data point) until the 
system has fully relaxed (~5*T1).  An 
example of a T1 recovery curve is shown in 
panel B.  
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Spin-spin relaxation: T2 

 

 T2 is also known as transverse relaxation because it monitors the irreversible decay of M, 

or coherence, in the XY-plane. The transverse magnetization decays overtime because it is 

impossible to keep synchrony between the precessing nuclear vectors due to local magnetic field 

fluctuations 35,36. In addition to the relaxation mechanism described for T1 (dipole-dipole 

interactions, chemical shift anisotropy and spin-rotation interactions), chemical exchange is a 

major contributor to T2 relaxation.  

 

A reversible dephasing effect exists in the presence of an inhomogeneous magnetic field known 

as T2* 38. T2* relaxation time is usually much less than T2 and can be reversed using a spin-echo 

pulse sequence (Figure 5A). This sequence refocuses the spins that have loss coherence due to an 

inhomogeneous magnetic field with a string of τ-180°-τ. The Carr-Purcell-Meiboom-Gill 

(CPMG) experiment shown in Figure 6 utilizes the spin-echo pulse sequence to measure T2 

relaxation time 39,40.  

B 

A 
Figure 5: Loss of Coherence Due to an 

Inhomogenous Magnetic Field 

Corrected With a Spin-Echo Pulse 
Sequence.  (A) Vector diagram 
illustrating the refocusing of nuclear 
vectors in a spin echo experiment.  
(B) A train of spin echo’s demonstrating 
the rapid decay due to an inhomogeneous 
magnetic field, also known as T2*. The 
real T2 relaxation time (dotted line) can 
be determined by implementing a spin-
echo pulse sequence. Modified from 
Handbook of Nuclear Magnetic 
Resonance, Freeman, R., 1987, 2nd 
Edition. 
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Bloch Equations 
 
 Felix Bloch developed a semi-classical set of equations to describe the macroscopic 

behavior of nuclear spins in a static magnetic field under the influence of a RF pulse 31,41,42.  The 

equations are all solutions of the net magnetization vector (sum of individual nuclear magnetic 

moments) as a function of time  (dM(t)/dt). They are used to explain T1 and T2 relaxation, effect 

of a single RF pulse, chemical shifts, precession in static field and isolated spin behaviors 

(Equation 6).  

Equation 6. 

)�����
)� = " ����� " ��
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Figure 6: T2 Carr-Purcell-

Meiboom-Gill (CPMG) 
experiment. (A) The pulse sequence 
pulse sequence to measure T2. Upon 
the application of a 90 degree pulse 
the magnetization vector is tipped 
into the X-Y plane.  Afterwards a 
series of τ-180°-τ are applied to 
correct for any field homogeneity. (B) 
An example of a T2 decay curve.  
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Molecular Motions  
 

 Brownian molecular motions such as rotational, vibrational and translational motions 

generate fluctuating magnetic fields that induce an NMR transition, resulting in relaxation. NMR 

can probe molecular motions over a wide range of timescales, ranging from picoseconds to 

several seconds depending on the experiment utilized (Figure 7)43,44.  

 

 

Figure 7: Types of motions NMR can monitor and their timescales Modified from An NMR 

database for simulation of membrane dynamics. Leftin, A.,2010.Biochim Biophys Acta.  
  

 Molecular motion frequencies that match the Lamor precessional frequency promote 

efficient exchange of energies to induce an NMR transition. Slow rotational motions are the most 

closely matched to Larmor frequencies.  Rotational motions can be described by the rotational 

correlation time, τc, which on average is the time it takes for a molecule to rotate one radian. 

Motions that are greater than or less than the Lamor frequency will not exchange as efficiently, 

affecting the T1 or T2 relaxation time.   

 A spectral density plot (also known as a motional frequency spectrum) is useful for 

determining the probability of observing various motions as a given angular frequency. Figure 8 

shows a spectral density plot for slow, intermediate and fast motions. Notice at the Larmor 

frequency (ω0), the majority of motions are intermediate and approximately equal to 1/τc . As the 
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frequency increases and the τc becomes shorter, one is more likely to observe faster motions 

whereas at lower frequencies one is more likely to find slower motions with longer τc.  

 

Figure 8: Spectral Density Plot for slow, intermediate and fast molecular motions. Modified 
from Handbook of Nuclear Magnetic Resonance, Freeman, R., 1987, 2nd Edition.  
 

 The nature and rate of the molecular motions affect both the T1 and T2 relaxation times 45-

48. Figure 9 demonstrates how T1 and T2 time constants vary with motional correlation times. An 

almost linear correlation exists between T2 and molecular motions; as the frequency of motional 

correlation times increase so does the T2. When the molecular motions are fast T1 ≈ T2. Unlike 

T2, a minimum is reached at the Larmor 

frequency when energy exchange is most 

efficient, and further slowing of the molecular 

motions increases the T1.  

Figure 9:  Behavior of T1 and T2 in 
response to molecular motions. Modified 
from Handbook of Nuclear Magnetic 
Resonance, Freeman, R., 1987, 2nd Edition. 
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Applications of NMR  

 In 1946 two groups of scientists at Stanford49 and Harvard50 applied known physical 

concepts of nuclear spin and magnetic moments to generate the first detectable NMR signal51.  

After its discovery, NMR was utilized primarily by physicist and chemists to elucidate structural 

and physical properties of small molecules. NMR has come a long way since then and is now 

capable of solving 3 or 4-dimensional structures of 30kDa macromolecules, observe complex 

dynamic processes and in vivo imaging of humans and animals. While an extensive overview of 

all the applications of NMR is beyond the scope of this thesis, a few of the most popular and 

novel utilizations of NMR are detailed below.  

High-resolution Fourier Transform NMR  
 
 The inherent poor sensitivity from NMR remains one of the major limiting factors for this 

technique. To demonstrate this, two signal-to-noise proportionality equations are shown in 

Equation 6, where n is the number of nuclear spins, γe is the gyromagnetic ratio being excited, γd 

is the gyromagnetic ratio being detected, Bo is the magnetic field strength and t is the experiment 

acquisition time.   

Equation 6. 

 * �⁄  ∝  ,�� -�).��.�  

* �⁄  ∝  /# 12 345,3 

 Throughout the lifetime of NMR many techniques have been developed to overcome this 

lack of sensitivity. One of the first improvements was the introduction of larger, more powerful 

magnets (increase B0), which enhance spectroscopic resolution and shorten the acquisition time. 
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Modern day NMR instruments not only operate at high magnetic fields, they employ 

superconducting magnets and cryogenics to increase the magnetic field strength and ensure a 

highly homogenous magnetic field. While the most common field strengths utilized range from 

400-600mHz, instruments can be purchased with magnetic fields up to 1000MHz (23.5 Tesla).  

Additional developments that have markedly improved the signal-to-noise include the discovery 

of Fourier transformation, nuclear labeling techniques, solvent suppression, multidimensional 

analyses, and the generation of complex, specialized pulse sequences52.  

 Together, these advancements have propelled high-resolution NMR outside of basic 

research. Some of the most unique applications include metabolomics analysis of biological 

fluids, 53,54 LDL particle counting available through Liposcience55-58, forensic detection and 

identification of unknown chemical agents59 and  quantitative detection of nucleic acids in a 

complex mixture60. Nuclear magnetic resonance imaging (MRI) has been by far the most 

successful implementation of NMR outside of basic research and is used to non-invasively 

develop high special-resolution specialized imagines of bodily tissues and organs 61.   

 As NMR improvements continue, the complexity and costs of these instruments also rise. 

Superconducting instruments cost on average around $500,000.009. A constant supply of liquid 

helium and nitrogen also add to the cost. Modern day high-resolution instruments are capable of 

multiple measurements (spectroscopy, relaxation time analysis, diffusion, imaging), which 

require a highly skilled operator limiting its commercialization and commercial appeal to non-

specialists. New low-field instruments have been developed to overcome these limitations and 

are proving to be just as powerful as high-resolution NMR, while compromising in sensitivity.  
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Low-field NMR and Applications: Imaging, Spectroscopy and Relaxometry  
 
 State of the art low-field instruments are currently on the market operating between 

50mT-1T for 1H (corresponds to Larmor frequencies of 425 kHz- 42.5MHz). The 

superconducting magnets and cryogenics are replaced with permanent magnets, which 

significantly cuts down on cost (on average about $100,000.00 for a benchtop instrument9) and 

miniaturizes the console. In fact some instruments are now portable or even handheld allowing 

scientist to access remote or extreme environmental conditions previously inaccessible to 

convention NMR systems. An example of various instruments, experiments and their 

applications is shown in Figure 10. Common low-field NMR measurements, (imaging, 

spectroscopy and relaxometry) their instrumentation, and applications are described below. 

 

Figure 10: Various NMR instruments, applications and experiments that operate at low-
field strengths. Adapted from Mitchell, L. et al. Low field permanent magnets for industrial 

process and quality control. Prog Nucl Magn Reson Spectrosc. 2014 Jan;76:1-60  
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Low-field Imaging   

 

 Most molecular imaging is performed using high-magnetic fields (> 1.0T).  While there 

is no doubt high magnetic fields provide better quality images, low (<0.5 T) and medium field 

(0.5-1.0T) strength systems have gained popularity due to their small size, low cost, faster patient 

diagnosis and data quality62. The low-field MRI systems are used to image bodily tissue and 

organs to search for tumors, cysts, tissue tears/strains and other physiological abnormalities 63. 

Whole body imaging with permanent magnets have been designed with open access improving 

the patient experience and allowing for simultaneous treatment 64, while intermediate sized 

systems monitor extremities such as arms, legs, fingers and shoulders.  

Low-field Benchtop Spectroscopy and Relaxometery 

 

 Benchtop low-field NMR spectroscopy and relaxometry systems have developed a niche 

in industry where robustness, applicability and the industrial environment become important 

factors 65. Benchtop spectroscopy computes a Fourier Transform of the FID signal, which creates 

a frequency domain chemical spectrum. Variations in the chemical peaks, known as chemical 

shifts, occur because nuclei experience small variations in the local magnetic field due to their 

local electronic environment. Spectroscopy needs excellent field homogeneity and thermal 

stability. Benchtop relaxometry on the other hand operates in the time-domain to monitor 

relaxation processes T1 and T2. Unlike spectroscopy, the magnetic field for data acquisition can 

be inhomogeneous using echo techniques 26.  

 Both techniques provide valuable information and are capable of an array of 

measurements. Chemical shifts can be recorded to provide structural content whereas T1 and T2 

relaxation times are used to characterize and probe the motions aqueous samples. Pulse field 

gradients can be applied to extract coefficients of self-diffusion restricted diffusion and flow 66-69. 
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Multi-dimensional correlations (2D-NMR) can be used to provide robust chemical identification 

when the necessary spectroscopy resolution is not available. Types of 2-D correlations include 

relaxation time correlations (T1 vs T2) 12,70-72, diffusion-relaxation correlations (diffusion 

coefficient vs T1 or T2) 73-75, and exchange rate measurements (T2 vs T2) 76-78.  

 These benchtop NMR instruments can be found across a wide range of industries. The 

food and agriculture industry commonly utilize low-field systems for quality and process control. 

For example, it has been used to determine the water holding capacity and quality of meat, 

albumin quality in hen eggs 79, crystal formation in ice cream80 and as a non-invasive tool for the 

determination of oyster mass and phenotype 18,22. Civil engineers and construction sites employ 

low-field NMR for the characterization of construction materials like cement and wood. Oil and 

gas companies also utilize these instruments for fluid and rock characterization81, and 

development of oil-recovery methods8,10.  Finally, pharmaceutical companies have developed 

methods for identifying drugs, their isomers, decomposition rates and for counterfeit analysis 82.  

 Handheld and portable low-field MRI’s have gained popularity for their ability to access 

remote or extreme environmental conditions previously inaccessible to convention NMR 

systems. They are usually one-sided and allows the operator to see short distance into the sample 

and have been developed for specialty purposes such as analyzing car tires, characterizing 

building materials, monitoring moisture transport in skin, oil-well logging, and water transport in 

trees 83,84. The NMR MOUSE and Surface GARField are two types commonly used 21,85-87 

 These analytical methods only begin to demonstrate the versatility and capabilities of 

low-field benchtop-NMR. As improvements in the hardware, experimentation and data analysis 

continue, the opportunity to develop and commercialize novel NMR methods arises. 

Applications within pharmaceutical and industrial process and quality control are large and 



 

continually growing. Clinical applications on the other hand remain limited. Therefore our 

laboratory has sought out to develop benchtop TD-NMR (relaxometry) for clinical 

applications to assess human health status in biological fluids. 

SIGNIFICANCE, HYPOTHESIS AND SPECIFIC AIMS 

Overview 
 
 One defining feature of lipoprotein particles is their size, and the dynamic range between 

lipoprotein classes. HDL for example on average is about 12nm whereas the largest lipoprotein, 

chylomicrons (CM), can reach up to 1000nm88. Initial attempts were aimed at developing an 

alternative to the current particle sizing methods such as the Vertical Auto Profile (Atherotech 

Diagnostics,89,90), Gradient Gel Electrophoresis 91-94 and the NMR Lipoprofile (Liposcience 95-

97). It was hypothesized that benchtop-TD NMR relaxation times could distinguish variations in 

lipoprotein size based on differences in their overall tumbling correlation time. Instead it was 

determined that the NMR T2 values were sensitive to the internal lipoprotein lipid motions, 

generating the new hypothesis that NMR T2 values in whole human serum were reporting on 

lipoprotein fluidity.   

 Two primary mechanisms impact lipoprotein fluidity; hydrocarbon chain composition 

and the choesteryl-esters to triglycerides ratio found in the non-polar lipid core.  It is well known 

that metabolic dysfunction manifests itself through abnormal lipoprotein structure and 

composition early during disease progression 98-103. Insulin-resistant patients for example 

generate larger than normal VLDL particles, which leads to modified LDL and HDL non-polar 

lipid core composition through CETP action 104-108.  Hydrocarbon chain composition is impacted 

primarily via the diet. Consumption of polyunsaturated fatty acids has been shown to increase 

lipoprotein fluidity, by disrupting hydrocarbon chain packing 109-114. Therefore the ability to 
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directly monitor lipoprotein fluidity and thus lipoprotein lipid composition may have 

implications for clinical utility.  

Aim 1: Configure benchtop TD-NMR for the analysis of aqueous biological fluids such as 
whole human serum and plasma. 
 
 Low-field benchtop NMR instruments are relatively new with limited literature 

resources. Therefore, we must parameterize the instrument for the robust analysis of aqueous 

samples. Unmodified serum and plasma gives rise to a radiation damping artifact which 

interferes with the relaxation analysis. Hence, we will develop a simple solvent suppression 

technique to overcome the intense water signal.  Next we will optimize the CPMG pulse 

sequence to minimize hardware artifacts during data collection. Then we will concentrate on 

finding the appropriate ILT algorithm for the relaxation decay data analysis. Given the 

complexity of human serum, selecting the right algorithm is crucial to obtain run-to-run 

reproducibility.   

Aim 2: Resolve and characterize the T2 values in whole human serum.  
 
 Once the instrument and data collection has been optimized we will begin collecting data 

for whole human serum and plasma. To elucidate the mechanism riving these T2 values, a series 

of controls will subsequently be analyzed. First we will study a mixture of the most abundant 

serum proteins, HSA and IgG. These two proteins constitute 80% of the total proteins found in 

human serum. Next we will generate protein-depleted serum, then compare the results to whole 

human serum. Doing so will unveil the contributions from serum proteins and small molecules to 

human serum T2 values.  Finally, a detailed study of lipoproteins and lipids will be performed. 

We will begin by observing how various lipids that differ in their hydrocarbon chain composition 

compare to one another, and how they impact NMR T2. Next we will investigate how variation 
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in triglyceride and cholesteryl ester mixtures affects the NMR T2, to mimic the lipoprotein lipid 

core. Phospholipid surface models will be constructed to mimic the lipoprotein surface. Finally, 

fractionated lipoproteins will be collected and analyzed by benchtop TD-NMR. A 

comprehensive list of the control samples and their purpose is shown in Table 1.2. Together 

these experiments will help us determine the main contributors to the human serum T2 peaks  

 

Control Category Samples Prepared Purpose 

Protein 

 
• HSA 
• γ- globulin fraction 
• HSA and γ- globulin mixtures 

 

• Analyze T2 values of proteins 
• Study concentration dependence 

of protein and T2 value  

Protein Depleted  

Serum 

 
• HSA and γ- globulin depleted 
• Most proteins and small 

molecules removed 
 

• Observe changes on T2 profile 
after removing proteins and/or 
small molecules 

• Enhance lipoprotein signals 

Lipids 

 
• Free fatty acids that vary in chain 

length, degrees of saturation and 
stereochemistry 

• Triglycerides that vary in omega-
3 content 

• Dilution series of triglyceride and 
cholesterol mixtures 

• Phospholipid multilamellar 
sheets and emulsions 

• Reconstituted lipoproteins 
• Fractionated lipoproteins from all 

classes (CM, VLDL, IDL, LDL, 
HDL) 
 

• Analyze T2 values of lipid and 
lipoproteins 

• Study impact on NMR values as 
fatty acid or triglyceride 
hydrocarbon chains vary 

• Mimic non-polar lipid core of 
lipoproteins 

• Study impact on NMR values as 
CE:TAG ratio varies 

• Mimic lipoprotein phospholipid 
surface 

Table 1.2: List of control samples and their purpose for analysis.  
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Aim 3: Plan and execute an observational clinical study across a healthy population, and 

correlate NMR findings with known clinical biomarkers.  
 
 This aim will determine the feasibility of using benchtop TD-NMR as a clinical 

analytical tool. We will collect a human serum and plasma from a range of participants through 

two approved IRB protocols. NMR T2 values among the cohort of participants will be correlated 

with over 70 conventional clinical biomarkers. Correlation statistics will be used to interpret the 

results and identify significant correlations between the NMR measurements and other blood 

biomarkers. In addition, results from the control samples prepared in aim 2 will help us narrow in 

on the molecular motion mechanism TD-NMR is monitoring in whole human serum. This will 

complete Phase I of our clinical study and multi-biomarker development using benchtop TD-

NMR.  

Significance 
 
 Completion of this proposal will lead to a novel configuration of benchtop TD-NMR that 

can be applied to other research, manufacturing, and diagnostic methods. We will have 

successfully analyzed one of the most complex biological mixtures, human serum, using 

benchtop TD-NMR. Finally, we will have successfully correlated the human serum NMR T2 

values with clinical biomarkers to assess the future potential of this instrument for clinical 

diagnostic use. Together these findings will open the door for future development of this 

instrument for the analysis of biological aqueous and lipid samples. 



 

Chapter 2: Nanofluidity of Fatty Acid Hydrocarbon Chains as 

Monitored by Benchtop Time-Domain Nuclear Magnetic 

Resonance. 
 

Introduction and Background  

 
 Lipids in biological systems display a remarkable variability in hydrocarbon chain 

composition, particularly in chain length and in the number, position and stereochemistry of 

double bonds.   That compositional variability underlies a considerable diversity in physical 

properties and biological functions 115-119. For example, low density lipoprotein or LDL, which 

functions as the primary cholesterol-carrying particle in the blood, undergoes a liquid-crystalline-

to-liquid phase transition near body temperature 120-125. Below this transition, the cholesteryl 

ester molecules in LDL pack in an ordered smectic liquid-crystalline phase, which makes LDL 

less fluid and more susceptible to oxidation, altered metabolism and clearance from the 

circulation 126-129. The temperature at which this phase transition occurs depends on the fatty acyl 

composition of cholesteryl esters and triglycerides, which, in turn, is influenced by the dietary 

intake of saturated, mono- and polyunsaturated fatty acids 130-136. Similarly, the hydrocarbon 

chain fluidity of biological membranes and membrane domains is thought to be a key 

determinant of cell surface receptor function 137-148. For example, B-cell membrane lipid fluidity 

is altered through n-3 polyunsaturated fatty acid supplementation, which disrupts the major 

histocompatibility complex class II lateral translocation into lipid rafts and suppresses T-cell 

activation149. 

 A variety of methods have been used to probe the fluidity of lipid-rich biological 

assemblies such as cell membranes, lipid droplets and serum lipoproteins.  Fluorescence and 

electron spin resonance methods have excellent sensitivity and have been used to characterize 
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the rotational and lateral motions of a variety of lipid probes 150-155. With the exception of 

parinaric acid found in exotic plants, biologically native fatty acids lack intrinsic fluorescence.  

Therefore, fluorescent probes such as DPH (1,6-diphenyl-1,3,5-hexatriene), NBD 

(nitrobenzoxadiazole), bis-pyrene and BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) 

have been synthetically incorporated into the fatty acid hydrocarbon chains of phospholipids and 

other lipids 154,156. For electron spin-resonance, fatty acid analogues incorporating a variety of 

spin labels such as TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl] and doxyl moieties have 

been utilized 151,157-160. While fatty acid analogues offer powerful tools for measuring probe 

dynamics, it is not clear what impact their non-native structures have on hydrocarbon chain 

packing in the vicinity of the probe.  This potential complication can be avoided using NMR 

spectroscopy, where 1H, 2H, or 13C have been used to monitor hydrocarbon chain motions, order 

parameters and/or fluidity 44,161-166. Deuterium NMR is particularly well suited for studies of 

membranes, as it can be used to derive order parameters for hydrocarbon chains from 

quadrupolar splittings.  However, it may not always be feasible or practical to incorporate 2H 

into the biological system of interest; also, sensitivity can be a limiting factor.  High-resolution 

1H and 13C NMR is well suited for smaller assemblies such as serum lipoproteins and model 

membranes, including micelles, bicelles and small unilamellar vesicles.  However, the spectra of 

larger lipid assemblies like liposomes and cell membranes suffer from line broadening and poor 

chemical shift resolution.   

 Another source of uncertainty in studies of lipid fluidity is the ill-defined relationship 

between the properties of the spectroscopic probe and the actual fluidity of the lipid hydrocarbon 

chain environment.  In strict terms, fluidity is defined as the inverse of viscosity that, in turn, is a 

measure of a fluids resistance to flow 167. There may be an implicit assumption that the 
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spectroscopic or motional properties of a molecular probe are monitoring the fluidity of the lipid 

microenvironment.  However, for that assumption to be rigorously validated, the spectroscopic 

or motional parameters should be calibrated against independent measures of fluidity.     

 Here we present a new approach for monitoring the nanofluidity of fatty acyl 

hydrocarbon chains using benchtop time-domain 1H NMR (TD-NMR).  In contrast to 

conventional Fourier-transform NMR spectroscopy, which emphasizes analysis via the 

frequency domain, TD-NMR focuses on the exponential analysis of the time-domain signal.  

This type of NMR relaxometry (as opposed to spectroscopy) circumvents the requirement for 

superconducting magnets with high magnetic field strength and field homogeneity.  As a result, 

time-domain NMR can be performed on simpler, smaller and less expensive benchtop 

instruments equipped with low-field permanent magnets.  Thus, TD-NMR is more practical for 

use in non-NMR research labs, as well as in non-research settings, such as clinical diagnostic 

laboratories, manufacturing/quality control and field-testing sites.  Moreover, it is better suited 

for the study of larger lipid membrane assemblies, as it does not rely on chemical shift 

resolution.  While TD-NMR sacrifices chemical shifts, it retains the information content of the 

T1 and T2 relaxation time constants, which possess significant resolving power on their own.   

In this study, we utilized benchtop TD-NMR to resolve T2 domains in a series of oil-phase fatty 

acids and biologically relevant fatty acid mixtures of varying hydrocarbon chain structure.  The 

use of single-phase fatty acid oils afforded us the opportunity to correlate the TD-NMR values 

for hydrocarbon chain T2 domains with independent measurements of sample fluidity.  The 

results demonstrate the exquisite influence of hydrocarbon chain structure on T2 and fluidity.  

The findings from this study illustrate the potential of employing benchtop TD-NMR as a 

nanofluidity meter for analyzing a variety of biologically significant lipid, lipoprotein and 
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membrane assemblies. Moreover, this approach could help inform strategies for acquiring and 

interpreting T2-weighted and –corrected MRI images of lipid-rich tissues 168,169, as well as in vivo 

MRS analyses of hepatic lipid content in fatty liver disease 170,171.  

Experimental Procedures 

Sample preparation 
 

Individual neat fatty acids (>99% purity) were purchased from Nu-Chek Prep (Elysian, 

Minnesota, USA); for several of these samples, the purity was cross-checked and verified by 1H 

and 13C NMR spectroscopy.  Free fatty acid-based fish oil extracts were kindly provided as a gift 

by Originates (Aventura, Florida), a global supplier of omega-3 fish oil concentrates; they also 

provided a certificate of analysis for sample composition and physical characteristics.  The 7.5 

mm diameter NMR tubes used for TD-NMR were filled to a sample volume of approximately 

350 µL, corresponding to a sample height of 0.7 mm.  The NMR tubes were evacuated with dry 

nitrogen gas before and after sample filling to minimize lipid oxidation during experiments.  

Most of the fatty acid samples used in this study showed no susceptibility to oxidation during 

multiple repeat experiments at 37°C or higher, the highly unsaturated α-linolenic (18:3), 

arachidonic (20:4), eicosapentaeneoic (20:5; EPA) and docosahexaeneoic (22:6; DHA) were 

more susceptible.  For these fatty acids, each NMR experiment was performed within 2 hours 

using a fresh sample. 

Viscosity/fluidity measurements  
 

The absolute viscosity values for single-phase fatty acid oil samples were measured using 

a VISCOlab 3000 instrument (Petroleum Analyzer Company or PAC, L.P., Houston, Texas, 

USA).   This laboratory viscometer utilizes a piston-style electromagnetic sensor, a Peltier-type 

temperature controller and an integrated temperature sensor.  In this study, two different pistons 
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were employed, suitable for the absolute viscosity ranges of 0.5-10 cP and 10-200 cP.  Each 

measurement utilized approximately 0.7 mL of fatty acid.  Sample fluidity, reported here in units 

of centiPoise-1 or cP-1, was obtained by simply taking the inverse of the absolute viscosity.  

Benchtop time-domain NMR relaxometry  
 

 Measurements were acquired using a Bruker mq40 Minispec NMR instrument equipped 

with a permanent magnet and operating at 0.94 Tesla, corresponding to a resonance frequency of 

40 MHz for 1H.  The magnet temperature on this particular instrument is controlled at 37°C.  

This mq40 is equipped with a 7.5 mm 1H probe with variable sample temperature capability 

(Bruker probe model H40-7.5-15BAV) and a circulating water bath (Julabo, Model F32-MA).  

To ensure sample temperature equilibration, the NMR samples were incubated in the instrument 

probe compartment at the experimental sample temperature at least 30 minutes before final NMR 

data acquisition was initiated.  

 Time-domain spin-spin relaxation exponential decay curves were acquired using a 

CPMG pulse sequence (Figure 1S) with a 2τ delay of 380 µs between 180° pulses – kept short to 

eliminate the potential impact of diffusion on T2 values 172,173. The 90° and 180° pulses were 

calibrated for each sample at each temperature prior to CPMG acquisition.  The NMR intensities 

were acquired during the middle of the 2τ delays, and 4000-8000 data points were acquired for 

each decay curve, depending on the T2.  The recycle delay was set to 8*T1 to ensure that the 

spins were fully relaxed at the beginning of the pulse sequence, and the data acquisition time was 

set to 8-9*T2 so that the exponential decay curve reached baseline.  We observed that acquisition 

times significantly less than 8*T2 resulted in poor resolution of the CONTIN-derived peaks in the 

T2 profile.  For signal averaging, 512 scans were acquired for each experiment, corresponding to 

a total experiment time of  ~2 hours.   
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Figure 1S:  Modified CPMG pulse sequence for measuring T2 in benchtop time-domain 
NMR. In contrast to NMR spectroscopy, the time points for the exponential decay curve are 
acquired directly during the CPMG pulse scheme.  For the current study, the first 180˚ pulse and 
Δ delay were set to zero. RD, relaxation delay; DE, dummy echoes; NP, number of points; NS, 
number of scans.  
 

 The multi-exponential T2 decay curves were analyzed using an inverse Laplace transform 

algorithm as implemented in CONTIN 174 (see also s-provencher.com).  For oil-phase fatty acids, 

this analysis yielded two-to-four resolved T2 exponential terms and the amplitudes associated 

with each term.  The high signal-to-noise obtained for oil-phase fatty acid samples provided 

sufficient information content in the data to ensure that the inverse Laplace calculations were 

stable and reproducible.  The data are represented as T2 profiles:  intensity vs. T2.  While these T2 

profiles superficially resemble NMR spectra (intensity vs. chemical shift), the two should not be 

confused since they have a fundamentally different x-axis. 

This Bruker mq40 instrument is also equipped with a 10 mm 1H probe that ultimately 

was not used in this study.  We observed that T2 decay curves acquired with the larger diameter 

probe for concentrated neat oil-phase fatty acid samples led to radiation damping.  That 

phenomenon manifested itself as an oscillatory component in the residuals for the fit of the 

experimental data with the calculated CONTIN exponential decay curves.  No such oscillations 
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were observed when the smaller 7.5 mm probe was used, which has a sample volume about half 

that of the 10 mm probe.   

NMR spectroscopy 
  
 In this study, frequency-domain NMR spectroscopy was used for two purposes:  (1) as an 

independent check of the T2 domain assignments inferred from the time-domain NMR results, 

and (2) as an independent check of the purity of the fatty acid samples obtained from Nu-Chek 

Prep.  NMR spectra were acquired with a Magritek SpinsolveCarbon benchtop NMR 

spectrometer operating at 1 Tesla, corresponding to a resonance frequency of 42.5 MHz for 1H 

and 10.8 MHz for 13C.  One-dimensional 1H and 13C spectra were acquired, and CPMG-based 

frequency-domain T2 experiments were accumulated.  Unlike TD-NMR, the T2 curves in this 

case were generated by measuring the areas of resolved NMR resonances after Fourier 

transformation. In some cases, individual decay curves fit well to single exponentials, whereas in 

other cases, a bi-exponential fit was required, as analyzed on GraphPad Prism. 

Results 

Fatty acid T2 profiles and T2 assignments 
  

The T2 profiles for five different 18-carbon cis-unsaturated fatty acids, varying in the 

position and numbers of double bonds, are shown in Figure 1.  Although T2 profiles displayed in 

this manner (intensity vs. T2) bear a superficial resemblance to NMR spectra (intensity vs. 

chemical shift), the two types of NMR data should not be confused with one another since they 

have a different x-axis and a fundamentally different meaning.  The profiles displayed in this 

manuscript are inverse Laplace transforms of the multi-exponential T2 decay curves.  

The first three T2 profiles in Figure 1 correspond to fatty acids with a single cis double 

bond in the Δ6, Δ9 and Δ11 positions – panels A, B and C, respectively.  Petroselenic acid 
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displays only two T2 peaks, whereas oleic and vaccenic acids reveal three.  As the position of the 

double bond moves away from the carboxyl group and closer to the methyl terminus, the peak at 

lowest T2 value increases in intensity (area under peak).  However, the T2 values for the peaks 

are comparable for these three mono-unsaturated 18-carbon fatty acids.  By contrast, the 

presence of a second and third cis double bond results in a large increase in T2 values, resulting 

in a dramatic right shift in the T2 profiles for linoleic and α-linolenic acids, panels D and E, 

respectively. 

 

Figure 1:  T2 profiles for 18-carbon cis-

unsaturated fatty acids at 37°C:  Effect 

of double bond position and number.  
(A) Petroselenic acid, 18:1 cis-Δ6; (B) 
Oleic acid, 18:1 cis-Δ9; (C) Vaccenic acid, 
18:1 cis-Δ11;  (D) Linoleic acid, 18:2 cis-

Δ9,12; (E) α-Linolenic acid, 18:3 cis-Δ9,12,15 

  

 

 

 The center of each resolved peak 

represents the average T2 value for a 

domain or cluster of hydrogen atoms in the fatty acid molecule.  The number of hydrogen atoms 

contributing to each domain, i.e., to each resolved T2 peak, can be inferred from the relative 

amplitudes of the peaks derived from the inverse Laplace analysis.  Oleic acid has a total of 34 

hydrogen atoms and displayed a relative intensity ratio of ~3:18:13.  Reasoning that the carboxyl 

proton is the least mobile because of inter-molecular hydrogen bonding with the carboxyl group 

of an adjacent molecule 117, we tentatively assigned the lowest T2 domain to the 3 hydrogen’s at 

the carboxyl end, including the carboxyl proton and the C-2 methylene protons.  The middle T2 
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domain was assigned to the 18 hydrogen atoms in the middle of the hydrocarbon chain, spanning 

the double bond.  The highest T2 domain was assigned to the distal 13 hydrogen atoms including 

the methyl terminus.  These tentative assignments of the T2 profile of oleic acid (Table 1 and 

Figure 2S) were subsequently confirmed using T2 data from frequency-domain NMR 

spectroscopy (Figure 3S).   
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Figure 2S: T2 profile for oleic acid, showing the assignment of the three T2 domains to 
hydrogen atoms in the molecule.  
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Figure 3S:  Proton FT-NMR spectra and T2 exponential decay curves for oleic acid, 
obtained using a Magritek Spinsolve benchtop NMR spectrometer operating at 43MHz. The 
NMR trace shown in red is the experimental spectrum, whereas the trace in blue is a simulated 
spectrum. The exponential decay curves were obtained by measuring the areas under the peaks 
designated by the integrals.   
 

Effect of hydrocarbon chain length on T2 profile 
 
 Figure 2A-C displays T2 profiles for three saturated fatty acids of increasing chain length:  

lauric (12:0), myristic (14:0) and palmitic acids (16:0), respectively.  These data were acquired at 

65°C to ensure that all three fatty acids were above their crystalline-to-liquid phase transition and 

in the oil phase.  Each of the saturated fatty acids displayed only two resolved T2 domains.  As 

hydrocarbon chain length increased, the T2 values decreased, and the profile shifted to the left 

(Figure 2A-C).  Moreover, the number of hydrogens in the lowest T2 domain increased with 

increasing hydrocarbon chain length, while the protons in the higher T2 domain remained 

constant (Table 1). 
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Figure 2: T2 profiles for saturated and 

unsaturated fatty acids at 65°C: Effect of 

hydrocarbon chain length, saturation and 
stereochemistry. (A) Lauric acid, 12:0 (B) 
Myristic acid, 14:0; (C) Palmitic acid, 16:0; 
(D) Palmitelaidic acid, 16:1 trans-Δ9; (E) 
Palmitoleic acid, 16:1 cis-Δ9 

 

 

 

Comparison of T2 profiles for saturated and monounsaturated fatty acids   
 
 Figure 2, Panels C-E, compares palmitic acid with two of its monounsaturated 

counterparts, palmitoleic (16:1 cis- Δ9) and palmitelaidic (16:1 trans- Δ9) acids, respectively.   

The addition of a double bond, regardless of the stereochemistry, increased the number of 

resolved T2 domains from two to three.  In addition, the T2 values for 16-carbon fatty acids 

containing one double bond (Figs. 2D and E) were both higher compared with the 16-carbon 

saturated fatty acid (Fig 2C).   

Effect of double bond stereochemistry  
  

  Two matched sets of monounsaturated fatty acids in their cis and trans configuration 

were compared:  16:1-cis and trans at 65°C (Table 1 and Figure 2, D-E), and 18:1 cis and trans 

at 55°C (Table 1).  Each monounsaturated fatty acid displayed three T2 domains, although those 

with cis double bonds had much higher T2 values than those with trans.  Note that the T2 value



                   Table 1:  Fluidity and TD-NMR Parameters for Pure Oil-phase Fatty Acids at Several Temperatures 

Fatty Acid 
Fluidity  

(cP-1) 

Melting  

Point (˚C) 

Domain 1 Domain 2 Domain 3 Domain 4 

T2 (ms) # of 1H T2 (ms) # of 1H T2 (ms) # of 1H T2 (ms) # of 1H 

37˚C 

Myristoleic Acid (14:1 cis-Δ9) 0.078 -4.0 732.5 ± 4.5 10 353.0 ± 2.1 12 217.0 ± 1.2 4   
Palmitoleic Acid (16:1 cis-Δ9) 0.068 0.5 536.0 ± 6.7 14 256.8 ± 8.5 15 160.0 ± 8.0 4   
Palmitelaidic Acid  
(16:1 trans-Δ9) 

0.056 31.0 453 ± 1.4 12 204 ± 0 16 111 ± 0 2   

Petroselenic Acid 
 (18:1 cis-Δ6) 

0.057 30.0 416.3 ± 4.3 12 219.0 ± 1.5 22     

Oleic Acid (18:1 cis-Δ9) 0.056 13.4 433 ± 1.2 13 211.3 ± 3.2 18 124.2 ± 7.2 3   
Vaccenic Acid (18:1 cis-Δ11) 0.055 15.0 493.0 ± 2.5 12 243.4 ± 4.2 12 152.3 ± 0.8 10   
Linoleic Acid (18:2 cis-Δ9,12) 0.080 -5.0 831.7 ± 7.9 11 396.8 ± 13.2 9 218.3 ± 7.9 11 81±  1 
α-Linolenic Acid  
(18:3 cis-Δ9,12,15) 

0.108 -11.3 1692.8 ± 3.2 6 779.0 ± 0.0 10 336.2 ± 0.2 14   

Arachidonic Acid 
(20:4 cis-Δ5,8,11,14) 

0.128 -49.5 1241.5 ± 6.4 14 665.8 ± 4.2 15 347.8 ± 1.8 3   

Eicosapentaenoic Acid 
(20:5 cis-Δ5,8,11,14,17) 

0.152 -54.0 2133.0 ± 9.9 8 1045.0 ± 12.7 16 507.5 ± 6.3 9   

Docosahexaenoic Acid 
(22:6 cis-Δ4,7,10,13,16,19) 

0.151 -44.0 2211.0 ± 4.2 8 1078.0 ± 2.8 18 575.0 ± 4.2 6   

55˚C 

Oleic Acid (18:1 cis-Δ9) 0.099 13.4 636.5 ± 1.8 11 325.0 ± 0 16 194.0 ± 1.5  7   
Elaidic Acid (18:1 trans-Δ9) 0.077 44.0 539.0 ± 1.5 10 263.3 ± 2.7 17 162.0 ± 2.5 7   

60˚C 

Myristic Acid (14:0) 0.145 54.4 635.7 ± 1.3  14 356.7 ± 2.0 13 166.7 ± 5.9 1   
Myristoleic Acid (14:1 cis-Δ9)  -4.0 1317.3 ±9.3 9 644.7 ± 8.7 12 366.0 ± 8.0 5   

65˚C 

Lauric Acid (12:0) 0.226 43.5 789 ± 13.4 18 437 ± 6.4 6     
Myristic Acid (14:0) 0.167 54.4 728 ± 0.4 15 415 ± 0.7 13     
Palmitic Acid (16:0) 0.123 62.9 658 ± 0.1 15 341 ± 0.7 17     
Palmitoleic Acid (16:1 cis-Δ9) 0.166 0.5 1126 ± 2.5 13 513 ± 3.3 15 247 ± 2.6 2   
Palmitelaidic Acid  
(16:1 trans-Δ9) 

0.132 31 969 ± 7.1 12 461 ± 2.1 16 260 ± 1.4 2   
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for fatty acids with a trans double bond were in between those for cis-unsaturated and saturated 

fatty acids.  The number of hydrogen atoms corresponding to each T2 domain was only 

minimally affected by double bond stereochemistry (Table 1). 

Correlation of T2 from TD-NMR with sample fluidity 
 
 Figure 3A displays the T2 values for oleic acid measured across the temperature range of 

25-55°C.  The results reveal a positive correlation of T2 with temperature and with sample 

fluidity, as measured using a viscometer.  All three resolved T2 domains in oleic acid showed this 

positive correlation with fluidity.  Similar positive correlations between NMR T2 and sample 

fluidity were obtained for all three domains in palmitoleic acid (Figure 3B) and linoleic acid 

(Fig. 3C).    

 To determine how hydrocarbon chain structure impacted the correlation between NMR 

T2 and fluidity measurements, we compared values for a wide range of fatty acids that varied in 

hydrocarbon chain length, number of double bounds and double bond stereochemistry, all at 

37°C.  As shown in Figure 4, a positive correlation between TD-NMR T2 and sample fluidity is 

apparent for each of the three resolved T2 domains. 

 Overall, the highest T2 and fluidity values were observed for the fatty acids with the 

largest number of double bonds.  We reasoned that the deviation from linearity for α-linolenic 

and arachidonic acids might be explained, in part, by the variations in hydrogen domain size (and 

hence average T2) seen with different fatty acids.  Note that the number of protons in domain 1 

for α-linolenic acid is relatively low, in contrast to arachidonic acid, which is relatively high 

(Table 1). 
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T2 profiles for fatty acid mixtures 
  

 Binary mixtures of oleic and linoleic acids 

were prepared with varying percentages of the 

two components.  As the volume percent of 

linoleic acid increased, so did the T2 values and 

the fluidity for each domain at 37°C (not shown). 

 To mimic the diversity of fatty acyl 

hydrocarbon chain structures seen in biological 

samples, we prepared oil-phase fatty acid 

mixtures with compositions similar to those seen 

in the human blood serum lipid profiles from 

individuals on a diet rich in saturated fats 

(SAFA), mono-unsaturated fats (MUFA), or 

polyunsaturated fats (PUFA)134,135. The 

composition of these three mixtures is 

specified in Table 1S. The T2 profiles are 

shown in Figure 5.  Like pure linoleic acid, 

the mixtures showed four resolved T2 

components:  three intense peaks and a very 

small peak at low T2 value.  The PUFA 

mixture had the highest T2 and fluidity 

Figure 3: Temperature dependence of 

T2 and fluidity for oleic acid (A), 

palmitoleic acid (B) and linoleic acid 
(C). The temperatures shown above the 
points in panel A also pertain to the 
points shown in panel B and C; domain 1 
(circles), domain 2 (squares), domain 3 
(triangles).  For oleic acid, the R2 
correlation coefficients for the plots are 
0.99, 0.99 and 0.96 for domains 1, 2 and 
3, respectively.  For palmitoleic, they are 
0.99, 0.97 and 0.94, respectively.  For 
linoleic, all three domains exhibit a R2 
value of 0.99. 
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Figure 4:  T2 correlation with fluidity for a range of structurally distinct fatty acids 
and fatty acid mixtures at 37°C.  The blue curve represents domain 1 and the purple 
and green curves, domains 2 and 3 respectively.  The R2 correlation coefficients for the 
plots of domains 1, 2 and 3 were 0.90, 0.93 and 0.94, respectively.  
 

values, whereas the SAFA mixtures yielded the lowest.  These results demonstrate that 

TD-NMR is able to detect differences in T2 and fluidity in complex mixtures that mimic 

biological variations in hydrocarbon chain composition.   

 To assess the ability of benchtop TD-NMR to detect fluidity differences in 

nutritional oils, we compared two different free fatty acid-based fish oil samples highly 

enriched in n-3 (ω-3) fatty acids.  These two samples varied only slightly in the total 

percentage of n-3 fatty acids (74.8% vs. 73.6%). The T2 and fluidity values for the 74.8% 

n-3 sample were significantly higher (Figure 4S), consistent with the observation that n-3 

fatty acids have the highest T2 values (Figure 4). These results suggest that TD-NMR 

may be sensitive to small differences in hydrocarbon chain composition in nutritional 

oils.  
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Saturated Fat Diet Monounsaturated Fat Diet Polyunsaturated Fat Diet 

Fatty Acid % Volume Fatty Acid % Volume Fatty Acid % Volume 

14:0 1.05 14:0 0.63 14:0 0.73 
16:0 23.71 16:0 21.94 16:0 20.81 
16:1 2.53 16:1 1.73 16:1 1.87 
18:0 7.27 18:0 6.24 18:0 7.39 
18:1 22.34 18:1 25.44 18:1 23.41 
18:2 34.67 18:2 32.55 18:2 28.72 
18:3 0.32 18:3 0.31 18:3 0.42 
20:4 7.06 20:4 6.84 20:4 6.56 
20:5 0.42 20:5 0.95 20:5 6.35 
22:6 0.63 22:6 3.37 22:6 3.75 

 

Table 1S: Composition of fatty acid mixtures designed to mimic human blood serum 
fatty acid profiles of individuals consuming a saturated fatty acid diet (left), 
monounsaturated fatty acid diet (middle) and polyunsaturated fatty acid diet (right). 
 

   

Figure 5: T2 profiles at 37°C for 

fatty acid mixtures that mimic 

serum lipid profiles for subjects on 

a saturated fatty acid diet (A), 

monounsaturated fatty acid diet (B) 

and a polyunsaturated fatty acid 
diet (C). 134,135 The composition of 
each fatty acid mixture is listed in 
Table 1S.    
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Figure 4S: T2 profiles for two different free fatty acid-based fish-oil samples that vary 
slightly in total n-3 fatty acid content.  

 

 Molecular origins of T2 and fluidity differences 
 

In principle, spin-spin or transverse relaxation time constants are able to probe 

molecular motions over a wide range of timescales 29. Fast motions on the nanosecond-

to-picosecond time scale include small amplitude, high frequency fluctuations such as 

segmental bond rotations bonds or small-amplitude translational displacements 32. Slow 

motions on the millisecond-to-second timescale involve high amplitude fluctuations such 

as global conformational exchange or oligomerization in macromolecules.  For the fatty 

Sample A Sample B 

%  ω-3 Fluidity(cP-1) T2 values %  ω-3   Fluidity(cP-1)     T2 values 

73.6 0.086 
1478, 660, 
275,122 

74.8 0.106 
1628, 738,  
322, 125 
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acid systems studied here, we observed that T2 is approximately equal to T1 (extreme 

narrowing limit), implying that T2 relaxation was driven primarily by fast motions with 

lifetimes < < 25 nsec.   

 Upon comparison of T
2
 values for domains within a given fatty acid molecule, the 

domain at the methyl end had average T
2
 values higher than those of the middle and 

carboxyl domains. Thus, the hydrocarbon chain becomes progressively more mobile from 

the carboxyl end toward the methyl end, consistent with the notion that the carboxyl end 

is anchored by intermolecular hydrogen bonding. However, increasing the number of 

double bonds, which reduced the number of degrees of freedom for intramolecular bond 

rotations, had the effect of increasing the T
2
 value, the opposite of what would be 

expected if intramolecular carbon–carbon bond rotations were the dominant contributors 

to fast Brownian motions. Instead, we propose that the dominant source of variation in 

the 
1
H T

2
 values measured in this study is variation in the interactions that occur between 

adjacent hydrocarbon chains. 

 Neat oil phase fatty acids do not form ideal fluids, but consist of small domains of 

hydrogen-bonded bilayers somewhat similar to the molecular organization seen in their 

x-ray crystal structures 117,175. For saturated oil-phase fatty acids, the hydrocarbon chains 

pack quite tightly with low mean volumes per methylene group, especially near the 

carboxyl end.  As demonstrated by J. A. Hamilton and D. M. Small, the 13C T1 values for 

oil-phase undecanoic acid, an 11-carbon saturated fatty acid, increase progressively from 

the carboxyl to the methyl end (Figs. 8-26 through 8-28 in ref. 3).  For unsaturated fatty 

acids, the addition of a cis-double bond introduces a 120-degree kink into the chain, 

which is only partially overcome by trans-gauche isomerization in adjacent methylene 



 

 39

groups.  Hydrocarbon chain packing is disrupted, with a corresponding decrease in 

melting temperature.  The increased volume per methylene group provides greater 

freedom for adjacent hydrocarbon chains to undergo molecular fluctuations.  As those 

fluctuations increase well above the Larmour frequency (here 40 MHz, corresponding to 

a 25 msec lifetime), T2 and T1 relaxation becomes less efficient and the relaxation time 

constants increase. 

 Molecular packing considerations may help explain the correlation between T2 

and fluidity as observed in this study.  Viscosity, the inverse of fluidity, can be described 

as liquid friction. Such friction is increased by intermolecular interactions between 

molecules.  For oil-phase saturated fatty acids, those interactions include hydrogen 

bonding between opposing carboxyl groups and van der Waals interactions between 

adjacent hydrocarbon chains.  As double bonds are introduced into the chain, van der 

Waals interactions are weakened, resulting in less liquid friction and an increase in 

fluidity.  Thus, the variations in T2 and fluidity measurements appear to be monitoring the 

same fundamental phenomenon, variations in hydrocarbon chain packing. 

 The relationship between T2 and fluidity can be explained using the generalized 

Stokes-Einstein-Debye relationship for rotational diffusion 176 

$67 = 1 9$⁄ =  :V<7 =>?⁄  

where τ
c

i
 is the rotational correlation time about the ith axis of a molecule in solution, D

r
 

is the rotational diffusion constant, η is the absolute viscosity, V is the molecular volume, 

k
B
 is Boltzmann’s constant, and T is the absolute temperature. The friction coefficient, f

i
, 

is a dimensionless quantity that depends on the shape of the molecule and the boundary 

conditions imposed by the molecule and surrounding fluid. As fatty acid hydrocarbon 
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chains have a dense network of spin-1/2 nuclei, the dominant relaxation mechanism is 

through dipole–dipole interactions 29. The relationship between τ
c
 and T

2
 for dipole–

dipole relaxation is γ 

1 ?@ =⁄ �	〈�	〉C$4 + $4 ! + �	
E�$4�	⁄ F 

where γ is the gyromagnetic ratio for 
1
H, ⟨B2⟩ is the mean square fluctuating field (the 

magnitude of the fluctuating field resulting from Brownian motion), and ν
o
 is the Larmor 

frequency 32. In the extreme narrowing limit, where T
2
 = T

1
 and (2πν

o
τ

c
)
2
 ≪ 1, eq 2 

simplifies to 

1 ?@ =⁄ �	〈�	〉	$4 

Considering eqs 1–3 together leads to the following proportionality 

?@ ∝  1 $4⁄  ∝  9J  ∝  1 :⁄  

which predicts that T
2
 should be inversely proportional to viscosity and directly 

proportional to fluidity. A similar proportionality holds for the Stokes–Einstein equation, 

which describes translational diffusion. Thus, the experimental observation of a linear 

relationship between T
2
 and fluidity in this study provides evidence that these theoretical 

constructs are valid for the analysis of fatty acid hydrocarbon chains, at least for the 

systems studied here. 

Measuring Nanofluidity in Other Biological Systems 
 
 The use of single-phase fatty acid oil samples permitted us to validate the 

correlation between 1H T2 and fluidity measurements and to establish T2 from TD-NMR 

as a “nanofluidity meter”.  Similar T2 measurements from benchtop TD-NMR could be 

used to measure nanofluidity in multi-phase biological samples such as hydrated 



 

 41

phospholipid bilayers, biological membranes, cell suspensions or serum lipoproteins.  All 

of these complex assemblies are bathed in an aqueous milieu, where measurements of 

bulk sample fluidity may not be relevant to the fluidity of the lipid nanoenvironment 

inside the membrane or lipoprotein assembly.  In such complex samples, TD-NMR may 

be able to probe what a viscometer cannot. 

 While 1H T2 measurements can be performed using conventional Fourier 

transform NMR spectroscopy, the benchtop TD-NMR relaxometry approach has several 

advantages.  First, the time decay points are recorded directly during the delays 

embedded into the CPMG pulse scheme (Figure S1).  Therefore, the T2 decay curve can 

be heavily sampled, enabling a more robust multi-exponential analysis using inverse 

Laplace transforms. By contrast, in NMR spectroscopy, the T2 decay is assessed 

indirectly through the intensities obtained from a series of Fourier-transformed spectra.  

In practice, the T2 decay curves from TD-NMR have 4000-8000 time points, whereas the 

corresponding curves from NMR spectroscopy typically have about 10-50 points.  A 

second advantage is that TD-NMR does not suffer from “line-broadening” as seen in 

high-resolution 1H or 13C NMR spectroscopy of large membrane assemblies.  It can be 

used to measure systems with short T2 values, as it does not rely on resolving NMR 

resonances in the frequency domain.  Like 2H NMR, benchtop TD-NMR is particularly 

well suited for studying membranes.  A third advantage of benchtop TD-NMR is the 

relative simplicity and low cost of the instrumentation.  It can be deployed in 

environments outside of the typical NMR research lab, and may be more accessible to 

non-NMR specialists.   



 

 42

 Finally, TD-NMR detects the properties of the ubiquitous hydrogen atom.  

Therefore, there is no need to enrich molecules with 2H or 13C or to synthetically 

incorporate fluorescent or ESR probes into biological lipids.  For all these reasons, 

benchtop TD-NMR shows promise to become a versatile tool for investigating lipid and 

membrane fluidity in a variety of samples of biological interest.  Current efforts in our lab 

are focused on the application of TD-NMR to characterize lipoproteins in whole human 

serum from subjects with different metabolic disorders. 



 

Chapter 3: Omega-3 Content of Fish-Oil Supplements as 

Monitored by Benchtop Time-Domain NMR 
 

Introduction 

 
 Increased media coverage, scientific research and recommendations made through 

the American Heart Association regarding the health benefits of long chain 

polyunsaturated fatty acids 177-179 has led to a substantial rise in the use of omega-3 (ω-3) 

dietary supplements.  Research suggests increased consumption of ω-3 fatty acids may 

lead to improvements in fetal development, cognitive well-being, inflammation and 

immune response 178,180-184 The most compelling evidence though, has been observed in 

the prevention and management of cardiovascular disease through a number of clinical 

trials including GISSI-Prevenzion, JELIS, GISSI-HR, COMBOS, and ESPRIT181. These 

studies showed a significant inverse correlation between dietary ω-3 fatty acids, coronary 

heart disease mortality rates and circulating triglyceride levels 181,182,185-189.  However, not 

all clinical trials support these claims; the Omega, Alpha Omega, ORIGIN and 

Su.Fol.Om3 trials found no significant impact on human health with increased ω-3 

consumption 186.  While some trials have been criticized for poor trial design quality (i.e., 

ω-3 dosage and duration, baseline ω -3 levels, population heterogeneity and additional 

medication interactions 181), their negative findings have led to mixed perceptions in the 

community.  Nonetheless, ω-3 supplement sales remains strong, and it is estimated that 

sales in the U.S. will rise from $25.4 billion in 2011, to $34.7 billion by 2016 178.          

 The ω-3 fatty acids of particular interest are eicosapentaenoic (EPA), 

docosahexaenoic acid (DHA) and alpha-linolenic acid (ALA).  All are essential fatty 
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acids, meaning they must be obtained through the diet.  For example, EPA and DHA are 

found primarily in fish such as albacore tuna, salmon, mackerel and herring 190,191, 

whereas ALA is plant based and found in walnuts, flaxseed and canola oil.  Routine 

intake of EPA, DHA and ALA is highly recommended, but the dose (g/day) varies based 

on an individual’s metabolic state. For example, those with average CVD risk are 

recommended to consume at least 250mg/day of EPA+DHA 192,193; those with 

documented coronary heart disease are recommended to consume 1g/day of EPA and/or 

DHA 186; and those with severely elevated triglycerides (>500mg/dL) may be prescribed 

as much as 2-4 g/day of EPA and/or DHA 186.  Achieving these doses through fish 

consumption alone can be quite difficult, and many people have turned to fish-oil ω-3 

dietary supplements available at local retailors 194 . The FDA has recently approved three 

highly pure and concentrated ω-3 pharmaceuticals to treat severe hypertriglyceridemia:  

Lovaza (GlaxoSmithKline, DHA and EPA ethyl esters) Vascepa (Amarin, EPA ethyl 

ester) and Epanova (AstraZeneca, DHA and EPA free fatty acids), but these are only 

available through a prescription.  

 Regulation of dietary supplements by the FDA is not as strict as over the counter 

or prescribed mediation, therefore many of the commercially available fish-oil 

supplements are not as pure or concentrated as their labels claim 177,183,195,196.  In fact, a 

recent study from 2014 showed that out of 31 supplements, 74% contained less than 

100% of the stated label amount of EPA and DHA 180.  Consequently, the consumer may 

inadvertently be ingesting a significantly lower concentration of ω-3’s, thereby not taking 

full advantage of potential health benefits.  

 Gas-liquid chromatography (GLC) is the gold-standard method used to determine 
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the fatty acid composition and fish-oil supplement purity 197-200 . Not only is GLC 

expensive, the lipids must be extracted using organic solvents, which is time consuming, 

generates organic waste and can potentially lead to sample loss and contamination 197. 

 Here we present a new approach for non-invasively measuring total ω-3 

concentration in oil-phase samples using benchtop time-domain 1H NMR (TD-NMR) 

relaxometry.  In contrast to Fourier-transform high-resolution NMR spectroscopy, TD-

NMR operates in the time domain, bypassing the requirement for superconducting 

magnets with high magnetic field strength and field homogeneity.  As a result TD-NMR 

can be performed on simpler, smaller and less expensive benchtop instrument equipped 

with low-field permanent magnets. While TD-NMR sacrifices the measurement of 

chemical shifts, it retains the ability to measure T1 and T2 relaxation time constants, 

which possess significant information content and resolving power on their own. 

Previously we demonstrated that benchtop TD-NMR was capable of monitoring 

hydrocarbon chain fluidity in oil-phase fatty acid samples; the fluidity was highly 

dependent upon the content of cis-double bonds 201 . In this study, we apply this approach 

to triglyceride based fish-oil supplements and tested the hypothesis that TD-NMR-

derived T2 values are a sensitive indicator of ω-3 content. 

Experimental Procedure: 

Sample preparation 
 
 Individual neat triglycerides (>99% Purity) were purchased from Nu-Chek Prep 

(Elysain, Minnesota, USA).  Five commercial fish-oil supplements (Nordic Naturals) that 

varied in composition and purity were purchased from a local retailor. Oil was removed 

from the capsules using a needle syringe, placed into and NMR tube and analyzed 



 

 46

immediately. Fatty acid composition of the fish-oil supplements was determined by 

Omega-Quant (Sioux Falls, SD, USA). Approximately 350ul of sample was necessary to 

fill a 7.5mm diameter NMR tube to reach the optimal sample height of 0.7 mm. The 

NMR tubes were evacuated with dry nitrogen gas and sealed after sample filling to 

minimize lipid oxidation during experiments. The triglyceride samples did no show signs 

of oxidation during multiple repeat experiments at 37°C.  

Viscosity/fluidity measurements 
 
 Absolute viscosity for single-phase triglyceride oil samples was measured using a 

VISCOlab 3000. Each measurement required approximately 0.7ml of triglyceride. 

Sample fluidity, reported here in units of centipoise-1 or cP-1 was obtained by taking the 

inverse of the absolute viscosity.  

Benchtop time-domain NMR relaxometry 
 
 Benchtop TD-NMR methods used were described in detail in Robinson 14201. 

Briefly, data was collected using a Bruker mq40 Minispec NMR equipped with a 

permanent magnet, operating at 0.94 Tesla (40 MHz for 1H).  All experiments were run at 

37°C. Time-domain spin-spin relaxation exponential decay curves were acquired using a 

CPMG pulse sequence 50,202-205 . The multi-exponential T2 decay curves were analyzed 

using and inverse Laplace transform algorithm as implemented in CONTIN 206  (see also 

s-provencher.com).  For oil-phase triglycerides this analysis provided three-to-four 

resolved T2 exponential terms and amplitudes associated with each term. The data are 

represented as T2 profiles: intensity vs. T2.  
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Results 

Triglyceride T2 profiles  
 
 The T2 profiles of five pure oil-phase triglycerides commonly found in fish-oil 

supplements are shown in Figure 1. All of the profiles display at least four resolvable T2 

peaks or mobile domains. The center for each peak represents the average T2 values for a 

cluster of 1H nuclei in the triglyceride (Table S1).  For a single triglyceride, the lowest T2 

value is assigned to the least mobile region, the glycerol backbone; the middle peak is 

assigned to the middle of the hydrocarbon chain and the highest T2 represents the most 

mobile region of the triglyceride, the distal end of the methyl chain.  

 The primary structural variation between the triglycerides shown in Figure 1 are 

the number of cis-double bonds:  1, 2, 3, 5 or 6 – panels A, B, C, D and E, respectively. 

As the content of cis-double bonds for a given triglyceride increases, the T2 value for 

each mobile domain shifts to the right, with the most dramatic shift observed for T-DHA.  

 

 

Figure 1: T2 profiles for 

triglycerides that vary in number 

of double bonds. 
(A) Triolein, 18:1 cis-Δ9 
(B)Trilinolein, 18:2 cis-Δ9,12 (C) 
Trilinolenin, 18:3 cis-Δ9,12,15 (D) 
Trieicosapentaenoin, 20:5 cis-
Δ5,8,11,14,17  
(E) Tridocosahexaenoin, 22:6 cis-

Δ4,7,10,13,16,19  
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Tables 1S: Fluidity and TD-NMR Values for Pure Oil-phase Triglycerides at 37˚C 
 

Triglyceride Fluidity (cP-1) 
Domain 1 Domain 2 Domain 3 Domain 4 

T2 (ms) # of 1H T2 (ms) # of 1H T2 (ms) # of 1H T2 (ms) # of 1H 

Tripalmitolein (16:1 cis-Δ9) 0.036 562.4±2.3 9 298.9±1.9 36 126.8±1.9 42 57.5±2.6 5 

Tripalmitelaidin Acid (16:1 
transΔ9) 

0.024 305.8±5.1 29 124.4±2.1 46 63.2±1.3 17   

Triolein (18:1 cis-Δ9) 0.026 330.7±7.4 30 154.3±2.9 51 80.4±4.3 22 41.3±3.6 1 

Trilinolein (18:2 cis-Δ9,12) 0.037 580.2±2.7 29 294.5±5.4 23 148.3±2.2 39 70.6±1.5 7 

Trilinolenin (18:3 cis-Δ9,12,15) 0.054 1093.5±4.9 17 528.3±8.7 24 199.3±1.6 42 96.5±3.3 9 

Triarachidonin 

(20:4 cis-Δ5,8,11,14) 
0.065 949.5±0.7 24 522.5±0.1 45 247.8±1.7 24 100.1±1.8 5 

Trieicosapentaenoin 

(20:5 cis-Δ5,8,11,14,17) 
0.056 1453.5±6.3 26 695.6±8.7 40 319.9±9.6 25 129.9±13.1 1 

Tridocosahexaenoin 

(22:6 cis-Δ4,7,10,13,16,19) 
0.080 1673.6±38.7 18 825.6±47.2 43 409.5±11.5 30 154.1±7.1 7 
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T2 profile behavior of binary triglyceride mixtures   
 
 Figure 2 displays 1:1 binary mixtures of trilinolein (TL, 18:2 cis-Δ9,12) and 

various other triglycerides that differ in the number of cis-double bonds.  As shown in 

panel A, the addition of triolein (TO), which contains one less cis-double bond than TL, 

decreases the T2 values for each mobile domain versus TL alone (Figure 1, panel B). 

Panels B-D of Figure 2 demonstrate that the addition of a triglyceride that contains more 

cis-doubles bond than TL (more than two) increases the T2 values for each domain. The 

most dramatic shifts were observed for the highly unsaturated triglycerides, T-EPA and 

T-DHA. To demonstrate the concentration dependence of ω-3 triglycerides in binary 

mixtures, a dilution series of TL and various polyunsaturated triglycerides (T-ALA, T- 

EPA or T- DHA) were prepared, as shown 

in Figure 2B.  A linear dependence was 

observed between % ω-3 content and TD-

NMR T2 values.   

 

Figure 2: (A.) T2 profiles for 1:1 binary 

triglyceride mixtures with TL(18:2 cis-

Δ9,12) and one other triglyceride.  
Triglycerides that contain less cis-double 
bonds than TL shift the T2 profile to the left, 
whereas additional cis-double bonds 
increase T2 and shift the profile to the right. 
(A)TO,18:1 cis-Δ9 (B)T-ALA, 18:3 cis-
Δ9,12,15 (C)T-EPA, 20:5 cis-Δ5,8,11,14,17   
(D)T-DHA, 22:6 cis-Δ4,7,10,13,16,19  
(B.) T2 correlated with ω-3 content for 

binary mixtures of triglycerides. 
(●) TL and T-DHA (▲) TL and T-EPA (■) 
TL and T-ALA 
 

A 

B 
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Correlation of ω-3 concentration with TD-NMR T2 values in complex mixtures 
 
 Defined mixtures of triglycerides mimicking fish-oil supplements were prepared 

and analyzed (Figure 3).  As the total concentration of ω-3 triglycerides increased, so did 

the NMR T2 values for each mobile domain.  In addition, five commercial fish-oil 

supplements from the same manufacturer that varied in purity and ω-3 concentration 

were analyzed using benchtop TD-NMR.   

 

Figure 3: T2 profile for complex triglyceride mixtures that vary in ω-3 fatty acid 
content. Defined triglyceride mixtures that mimic the composition of fish-oil 
supplements were prepared. As the volume percent of total ω-3 triglyceride increases, the 
T2 value for each mobile domain increases. The composition of each mixture is detail in 
the table below. 
 

As shown in Figure 4 the supplements containing the highest ω-3 concentration 

had the highest T2 values, whereas the supplements with the lowest ω-3 concentration 

have the lowest T2 values.  These results demonstrate that TD-NMR is highly sensitive to 

variations in ω-3 concentration in oil-phase lipid samples. 
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Correlation of T2 from TD-NMR with % ω-3 and fluidity  

 
 Figure 5A displays the correlation between NMR T2 values and % ω-3 in defined 

and commercially available oil-phase lipid mixtures.  A positive correlation is observed 

for all three mobile domains regardless of the type or origin of the triglyceride mixture. 

Overall, the highest T2 values were observed for samples that contained the highest ω-3 

concentration.  In addition, a positive correlation was observed between fluidity and % ω-

3 content for the same set of lipid mixtures, demonstrating that the T2 values in oil-phase 

lipids are sensitive to sample fluidity.  This result is consistent with our previously 

published work using pure oil-phase non-esterified fatty acids 201.  These results indicate 

that TD-NMR is sensitive to small variations in ω-3 concentration in nutritional oils.  
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Figure 4: T2 profiles of store bought Omega-3 neutraceutical supplements that 
vary in composition and Omega-3 content.  Commercial source: Nordic Naturals, Inc. 
(Watsonville, CA). The fatty acid content of each product was analyzed by an 
independent laboratory: OmegaQuant (Sioux Falls, SD) 
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Figure 5: (A) T2 correlation with % 

Omega-3 (V/V) in triglyceride mixtures.  
The highest three T2 domains resolved by 
TD-NMR for each sample are plotted, and 
each domain correlates linearly with ω -3 
content (vol %); R= 0.94, 0.80 and 0.82 for 
T2 domains 1, 2 and 3, respectively. 
● Defined triglyceride mixtures ○ 
Commercial triglyceride mixtures  

 

(B) Fluidity correlation with % ω-3 

(V/V) in defined and commercial 
triglyceride mixtures (R=0.92).  T2 from 
TD-NMR monitors the nanofluidity of 
hydrocarbon chains 

 

 

Discussion and Conclusion 

 
 This study yielded three key observations.  First, the T2 profiles of pure 

triglycerides and triglyceride mixtures, including fish-oil supplements, revealed three-to-

four resolved T2 domains. Each of these domains represents a cluster of 1H atoms in a 

structurally distinct region of the triglyceride. The T2 profiles are similar to those for non-

esterified fatty acids, with the exception of an additional T2 domain that corresponds to 

the glycerol backbone.  The number of cis-double bonds in the hydrocarbon chain heavily 

impacts triglyceride T2 values.  As the number of double bonds increase, the T2 values for 

each mobile domain and the sample fluidity also increase.  Finally, the T2 values are 

positively correlated with ω-3 content in compositionally diverse set of samples including 

pure triglycerides, binary and complex triglyceride mixtures, and commercial fish oil-

supplements.  
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Triglyceride T2 value is governed by molecular packing. 

  Triglycerides consist of three hydrocarbon chains covalently linked through a 

glycerol.  The physical and structural properties of triglycerides are determined by the 

number, position and orientation of hydrocarbon double bonds 116,207,208 . Saturated acyl 

chains promote tight and efficient molecular interactions, whereas the introduction of a 

cis-double bond creates a kink that disrupts molecular packing 209 . Highly unsaturated 

hydrocarbon chains, such as those found in fish-oil, have a highly kinked, almost circular 

conformation.  This molecular shape prevents the close molecular packing characteristic 

of saturated or mono-unsaturated chains and promotes a fluid environment with increased 

molecular motions 207.  Previously we demonstrated TD-NMR was capable of probing 

the fluidity and thus, hydrocarbon chain packing of non-esterified fatty acids 201.  Also 

similar to fatty acids, triglyceride T2 displays a linear correlation with fluidity, where the 

most cis-unsaturated hydrocarbon chains are the most fluid.   

 

Application to Fish Oil Analysis 

 The linear correlation between T2 and omega-3 concentration provides a basis for 

developing a TD-NMR method for the analysis of fish-oil supplements for manufacturing 

and quality control purposes.  The experiments in this study provide proof-of-concept and 

demonstrate the capability and resolving power of TD-NMR for oil-phase triglycerides. 

However, an even simpler, quicker version of the analysis can be envisioned for practical 

real-world applications.  For example, it may not be necessary to resolve all four domains 

to quantify omega-3 content.  Instead of collecting 512 scans (~2 hours) to achieve 

sufficient signal-to-noise for the inverse Laplace transform, it should be possible to 
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collect only 8 scans (1 CPMG phase cycle, approximately 2 minutes) and analyze the 

data with a single exponential decay function.   In addition, 2-3 runs were collected per 

sample to assess precision.  The calculated error values were sufficiently small such that 

one run should be sufficient for routine analysis. 

 

Applications to plant-derived omega-3 oils 

 This method has implications for the quantification of omega-3 content in plant- 

derived dietary supplements. Unlike fish-oil supplements whose primary polyunsaturated 

fatty acids are EPA and DHA, plant based omega-3 supplements contain ALA.  This 

hydrocarbon chain contains approximately half of the number cis-double bonds rendering 

it less fluid than the major fish-oil components.   Therefore, the analysis of plant-based 

supplements containing ALA will require a different calibration curve as compared with 

fish oil supplements.  However, the same principles and processes hold, with T2 being 

proportional to overall ALA content.    

 

Advantages of TD-NMR over other methods 
 
 While GLC remains the gold standard for quantifying omega-3 content, additional 

methods exist which overcome the disadvantages associated with this conventional 

analysis. Liquid chromatography-tandem mass spectrometry (LCMS) is a 

chromatographic alternative with exquisite sensitivity 210-212 and is commonly used to 

provide a detailed analysis of lipid systems. One particular novel application determines 

the hydrocarbon composition of red blood cell membranes, which details a patient’s 

omega-3 index 213-215.  LCMS is an expensive technique and therefore impractical for 
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manufacturing and process control environments 216. A range of spectroscopic techniques 

are also commonly employed which include Fourier transform infrared 217, near-infrared 

179, visible and short-wave near infra-red, mid-infra-red, and Raman spectroscopy 218. 

These methods monitor vibrational motions combined with a chemometric analysis to 

determine total ω-3 concentration in fish oil supplements.  While spectroscopic methods 

show promise, the instruments require an extensive skill set, and the analyses demand a 

complex partial least squares regression algorithm to make their prediction.  The 

chemometric database requires continual revision.  The efficiency and prediction 

accuracy of these algorithms is largely dependent upon spectral quality 217.   

Benchtop TD-NMR possesses several advantages over both conventional GLC 

and the newer spectroscopic techniques for quantifying ω-3 content in fish-oil 

supplements.  First, the TD-NMR technique is non-destructive and non-perturbing.  It 

does not require any sample manipulation, chemical reactions or organic reagents, 

rendering it cost effective and environmentally friendly. While the proof-of-concept 

approach presented here generates a result in about 2 hours, simpler routine protocols 

may be developed with shorter acquisition times to generate a report in under two 

minutes.  Finally, the data analysis does not require a complex chemometric algorithm, 

which may interfere with the prediction accuracy if the spectral quality is poor.   

 Benchtop TD-NMR is already utilized in the food industry for quality control. 

Typical applications include the compositional analysis of total water, fat and protein 

content, the observation of microstructural changes in food products under different 

processing or storage conditions 9,22,219, the freezing behavior of food products 80, 

production quality 13 and food authentication. However, to our knowledge, this is the first 
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report that details the application of benchtop TD-NMR for the determination of ω-3 

content in oil-phase dietary supplements.



 

Chapter 4: Lipid-Protein Profiling of Human Serum Using 

Benchtop Time-Domain NMR: Toward an Early Indicator of 

Insulin Resistance and Metabolic Syndrome  

 

Introduction 

 Metabolic syndrome (MetS) is a cluster of physical and diagnostic findings 

associated with an elevated risk of type 2 diabetes mellitus (T2DM) and cardiovascular 

disease (CVD).220-226  The NIH/Adult Treatment Panel III designation of metabolic 

syndrome requires three out of the following five:  abdominal obesity (increased waist 

circumference), decreased high-density cholesterol (HDL), elevated blood pressure, 

fasting plasma glucose and/or fasting triglycerides.223,226  At the point that an individual 

meets MetS criteria, some of the underlying metabolic abnormalities such as insulin 

resistance may have been in place for some time.  In addition, some individuals may not 

meet the strict definition of MetS, but still have significant metabolic abnormalities that 

place them at higher risk for T2DM and/or CVD.  Therefore, significant effort has gone 

into identifying MetS biomarkers that identify high-risk individuals at an earlier stage.  

Examples include adipokines such as adiponectin and leptin,226 fatty acid omega-3 

composition of serum lipids,213-215,227,228  inflammatory cytokines such as TNF-α and C-

reactive protein,229,230 oxidative stress markers,231-233 and lipoprotein abnormalities.98,222 

 Advancements in high-throughput technologies, such as genomics, 

transcriptomics, proteomics and metabolomics have propelled the discovery of novel 

biomarkers for metabolic syndrome.234,235  However, most biomarkers do not make it into 

the clinical laboratory because they lack the appropriate specificity and sensitivity.236  
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One potential solution is to develop of an assay or tool that combines the power of 

multiple biomarkers to more accurately assess human health.  

 Our laboratory has been evaluating a relatively simple and practical application of 

nuclear magnetic resonance, benchtop time-domain relaxometry (TD-NMR), for 

analyzing blood samples and assessing health status and disease risk.  The TD-NMR 

relaxation time T2 non-invasively monitors the molecular motions of many of the 

abundant biomolecules (including water) in whole human serum, and has the potential to 

broadly sense an individual’s metabolic state.  The appeal of the technique also stems 

from the ease and low cost of measurement, which is a necessity for translation into the 

clinic234.  Thus, TD-NMR may provide a practical health assessment tool that can help 

prevent the development and progression of diseases that arise from metabolic 

abnormalities, such as diabetes, atherosclerosis and Alzheimer’s disease. 

 Here we present a benchtop TD-NMR analysis of blood serum samples from a 

population of apparently healthy human subjects.   The TD-NMR measurables consist of 

four T2 values:  one peak arising from the intense water signal and three small peaks that 

directly monitor the lipid and protein components in serum.  The results for the water T2 

values are reported in Chapter 5, so the focus of the current chapter is on the three smaller 

lipid/protein T2 peaks.  The results show that two of the peaks report on insulin 

sensitivity/resistance by monitoring the most mobile (peak 2) and a less mobile (peak 3) 

lipid domain within a population of lipoprotein particles.  The fourth peak does not 

correlate with any of the diagnostic biomarkers monitored in this study.  
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Experimental Procedure  

Subject recruitment  

 Human subject volunteers were recruited with informed consent through two 

protocols approved by the Institutional Review Board of the University of North Texas 

Health Science Center (UNTHSC). One protocol recruited seemingly healthy subjects 

from the student and staff population at UNTHSC. The second protocol recruited 

members enrolled in the Health and Aging Brain Study at UNTHSC. Patient exclusion 

criteria included clinically diagnosed with diabetes (HbA1c > 6.4) or had elevated C-

reactive protein levels (>10), which is indicative of acute/chronic infection or illness.   

Serum and plasma preparation 

 Blood samples were collected in the morning after an overnight fast. Plasma was 

collected into lavender-top tubes containing EDTA as the anticoagulant. Serum was 

collected into plain glass red-top tubes, which lack a clot activator and gel separator (BD 

model 366441). Blood obtained for the LipoProfile (LabCorp/LipoScience) analysis was 

drawn into a specialized black-top tube.  In a few circumstances, the sample volume was 

not enough to perform all 70+ biomarkers measurements, which accounts for the variable 

sample size (n) in the statistical analyses. A list of the biomarkers measured in this study 

is displayed in Table S1. 

 Protein depleted serum was made using low-pressure chromatography 

hydroxyapatite column described in detail elsewhere 237,238 . Two fresh 450ul aliquots of 

whole serum were applied to the column and the proteins were eluted with potassium 

phosphate buffer. The samples were then desalted and concentrated using a pressure 

dialysis amicon cell with a 100KDa filter. Given the size of the filter the only remaining 
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elements are residual’s proteins and lipoproteins; small molecules would have passed 

through the filter during the concentration process. Afterwards the sample was analyzed 

using DLS for protein content. 

Blood sample analysis  

 Serum and plasma samples were processed immediately after each blood draw. 

The samples were centrifuged to remove blood cells, followed by a second low speed 

spin of the supernatant to remove any residual blood cells. Four TD-NMR measurements 

were collected immediately after sample processing. Likewise viscosity measurements 

were made on the same day using a VISCOLab3000 described elsewhere 201. Aliquots of 

serum and plasma were immediately frozen and stored at -80°C for in-house analyses. 

These tests include apolipoprotein E concentration (Abcam, ab108813), ORAC 

antioxidant capacity (Cell Biolabs, STA-345), protein carbonyl content (Cell Biolabs 

STA-307), HNE (Cell Biolabs, STA-838) and free fatty acid concentration (BioAssay 

Systems, EFFA-100). Aliquots of fresh serum or plasma were shipped to outside 

laboratories for all other testing, which include Atherotech Inc, Labcorp, Quest 

Diagnostics, Liposcience and OmegaQuant.  

Lipoprotein fractionation and purification 

 Lipoprotein classes were fractionated by density gradient ultracentrifugation 

described elsewhere 91,239-242. In brief, three milliliters of fresh plasma was added to 

1.21grams of KBr and gently vortexed in an ultracentrifugation tube. Various density 

gradient solutions are carefully layered in the following order; 1 mL 1.22 g/ml, 4 ml of 

1.063 g/ml, 3 ml of 1.019 g/ml and lastly at least 1 ml of HPLC grade water to top it off. 

The sample is centrifuged at 4°C, 36,000rpm for at least 12 hours. Afterwards, 1ml  
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Category Correlated with T2
† Did not correlate with T2

† 

Water T1 and T2 
T2, T2V, T2P, T2A,  

T2G, T2TG, T2O3, T2H 
T2C 

Protein, viscosity, liver 

function markers 

Serum viscosity, plasma 
viscosity, α1-antitrypsin 

Total serum protein, serum albumin, 
serum globulins, AST, ALT, GGT 

Inflammation, blood 
cell & oxidative stress 

markers 

WBC, neutrophils, RBC, 
hematocrit, MCHC, eosinophils, 

basophils, TNFα 

hs-CRP, Lp-Pla2, hemoglobin, MCV, 
MCH,  RDW, platelets, monocytes, 
lymphocytes, HNE, total antioxidant 
capacity, protein carbonyl, anion gap 

Cholesterol-rich 

lipoprotein markers 

Total cholesterol, non-HDL-C, 

LDL-C 
LDL-P, LDL size, small LDL-P, Lp(a), 

apoE, apoB, phospholipids 

Omega 3 and 6 lipids Omega-3 index, DHA, EPA, AA  

Triglyceride-rich 

lipoprotein markers & 

insulin resistance 

Total triglycerides, VLDL-C, 
TG/TC, Glucose, HOMA2-%B, 

IR Score (LipoScience) 

Free fatty acids, BMI, insulin,  
C-peptide, HbA1c, apoAI,. HDL-C, 

HDL-P, remnant-C, VLDL-P 

Electrolyte markers  
Sodium, potassium, calcium, chloride, 

bicarbonate, anion gap 

Kidney function 

markers 

Blood urea nitrogen (BUN)*, 
creatinine* 

Estimated glomerular filtration rate 
(eGFR)* 

Thyroid function 

markers 
 

Free T4, Thyroid stimulating hormone 
(TSH) 

Nutritional markers B12*, Folate*  

Amino acids 

Alanine, Alpha-amino butyric 
acid, beta-alanine, 

hydroxyproline, homocystine, 
Isoleucine, 1-methyl histidine, 

phenylalanine, sarcosine 

Anserine, arginine, asparagine,  
beta-proline, butyric acid, citruline, 

cystathionine, ethanolamine, glycine, 
glutamine, leucine, methionine, 

ornithine, taurine, threonine, 
tryptophan, tyrosine, serine, valine 

 
Table S1.  Biomarkers measured in this study.  †In this table, a correlation is defined 
as one where p<0.05 for the Pearson correlation, non-parametric Spearman correlation or 
both for at least one variant of serum T2. The null hypothesis is that there is no correlation 
between a given serum T2 measure and a particular biomarker.  The individual correlation 
coefficients and statistics are provided in Tables 3-5 and Tables S2-7.  *These particular 
biomarkers were measured for only five-to-ten subjects; although they met the p-value 
threshold, the correlations are considered preliminary.  
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aliquots are carefully removed and collected from the ultracentrifuge tube each 

corresponding to a particular lipoprotein class or subclass.  

The lipoprotein fractions were stored at 4°C and used within a month. Before 

analyzed on TD-NMR, the lipoprotein fractions were desalted and concentrated using a 

pressure dialysis amicon cell, with a 10, 100 or 300KDa filter depending on the fraction. 

The homogeneity and purity of the individual lipoprotein classes was determined using 

dynamic light scattering (DLS). Fractions were not used for TD-NMR analysis unless 

there were more than ~95% pure. 

 Reconstituted HDL was generated using cholate dialysis 88,208,243-248. Particles 

were prepared using DOPC or DPMC, free cholesterol and ApoA1 at a molar ratio of 

80:10:1. Phospholipids and free cholesterol were fully dissolved in chloroform, and 

subsequently dried under a nitrogen stream generating a film of lipids at the bottom of the 

flask. 140ul of sodium cholate (100mg/ml stock, pH 7.4, PBS) was added to the flaks and 

gently mixed until the film was dissolved.  Purified ApoA1, the major apolipoprotein in 

HDL, was added to the solution and incubated for 12 hours at 4°C. Over the next 2 days 

the sample was dialyzed against 2L of PBS undergoing three buffer exchanges. The final 

product analyzed using DLS for purity and homogeneity.  

Benchtop time-domain NMR relaxometry 

 Measurements of T2 and T1 were performed at 37°C using a Bruker mq20 

Minispec benchtop time-domain NMR instrument equipped with a 10 mm variable 

temperature probe (Model H20-10-25-AVGX).  The 10 mm NMR tube was filled to a 

sample height of 1 cm, corresponding to a sample volume of ~680 uL.  Three runs were 

collected at 256 scans (~2 hours), which was the minimum number of scans to achieve 
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optimal signal-to-noise. An additional overnight run with 2048 scans was collected to 

utilize the instrument time efficiently.  The final T2 was an average between the three 256 

and one 2048 scan run. 

 T2 was measured using a modified CPMG pulse sequence 40,173,202, shown in 

Figure 1.  The modified pulse sequence allows us to suppress the intense water signal to 

avoid radiation damping, which readily manifests itself by a non-random oscillatory 

artifact observed in the residuals of the fit after an inverse Laplace transform 30.  By 

suppressing the solvent signal we also enhance the signal of our peaks of interest, the 

smaller lipid and protein peaks. We determined empirically that a delta delay of 0.95*T1 

(leading to a water signal that is ~23% of its full intensity) provides a level of suppression 

of the water sufficient to avoid radiation damping, while still maximizing the overall 

signal intensity of the water and the other lipid/protein peaks for analysis. Another unique 

aspect to this TD-NMR pulse scheme was the delayed acquisition of the data points, 

which began 19 ms after the beginning of the CPMG scheme.  This strategy de-

emphasizes the very fast processes at the beginning of the decay curve in order to 

emphasize the slower processes such as the lipids and proteins.  This delayed acquisition 

scheme reduces the number of exponential terms; simplifying the inverse Laplace 

transforms calculation.   If attempts are made to fit the data using too many exponential 

terms, the calculation can become unstable, and becomes a mathematically ill-posed 

problem and leads to poor run-to-run precision.  

 T2 values were quantitated using an inverse Laplace transform implemented in the 

discrete components analysis of XPFit (http://www.softscientific.com/science/xpfit.html).  

A key to obtaining stable, reproducible calculations is to restrain the number of 



 

 64

exponential terms to a consistent number; the data obtained with 256 or 2048 scans were 

fit to four terms. XPFit has the advantage of being able to constrain the number of 

exponentials and employs a non-negative truncated single value decomposition 

algorithm, which stabilizes the calculation. For illustrative purposes, the T2 profile 

distributions shown in Figure 1 were generated using CONTIN (s-provencher.com), even 

though the T2 values were quantified using XPFit as described above. CONTIN is a 

robust algorithm for samples that have plenty of signal-to-noise (water signal), which was 

not the case for our analyses of lipid and protein components in whole human serum.  

Statistical analysis 

 The correlation, linear regression and statistical analyses were performed using 

GraphPad Prism v. 6.05 (GraphPad Software, Inc.).  The principles for the statistical 

analyses were derived from the book by Motulsky 249.  The null hypothesis states that 

there is no correlation between the variables being compared.  The two-tailed p value 

defines the probability of observing a correlation as strong or stronger if the null 

hypothesis were true.  For example, for r = -0.6 and p <0.01, there is less than 1% 

probability of observing a correlation this strong or stronger by random chance; thus, the 

null hypothesis is rejected.  For each correlation that met p-value thresholds, we 

inspected the plot to ensure that the correlation was not heavily influenced by one or two 

outliers.  
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Figure 1:  Modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence for measuring 
T2 values in human serum using benchtop time-domain NMR.  The data were recorded at 
37°C using a Bruker mq20 minispec NMR instrument equipped with a 10 mm variable 
temperature probe, model H20-10-25-AVGX.  The composite 180˚ pulse (90x180y90x) 
and Δ delay were introduced prior to the CPMG scheme to achieve partial water 
suppression and eliminate radiation damping.  The Δ delay was tuned to 0.95*T1, which 
corresponds to suppression of the water to 23% of its full intensity.  The τ delay was kept 
short (0.19 ms) to minimize the possible impact of translational diffusion on T2 in an 
inhomogeneous Bo field.  The green loop with DA=42 was added to achieve delayed 
acquisition of the first data point until after the first 19 ms of intensity decay; this 
suppresses very fast decay components in order to reduce the number of exponential 
terms and simplify the analysis of the slower components of the exponential decay curve.  
Water has the slowest decay rate and the longest T2.  The DE loop generates dummy 
echos without recording intensity data; with DE=5, the signal intensity of one in every six 
echoes was recorded during the NP loop.   For all experiments, the relaxation delay RD 
was set to 5* T1, corresponding to ~ 8 sec for serum or plasma; NP=5600, NS=256 or 
2048.  Phase cycles for the pulses: φ = (x)2, (-x)2, (y)2, (-y)2; ψ = x,-x.  Phase cycle of the 
receiver:  same as φ.   

Materials  

 All samples were prepared with phosphate-buffered saline, pH 7.4, with 0.05% 

sodium azide. Reagents obtained from Sigma Aldrich include human serum albumin 

(A8763), human γ-globulin (G4386) apolipoprotein A-1 (A0722), KBr  (60089), HPLC 

grade water (270733). All triglycerides and cholesterol esters were purchased from 

NuChek Prep. Phospholipids were purchased from Avanti Polar Lipids. Chloroform was 

purchased from Ricca Chemical Company (RSOC0020-1C).  Ultracentrifuge tubes were 
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purchased from Beckman Coulter (344059).  10 (13612), 100 (14412) and 300KDa filters 

(PBMK02510) were purchased from Millipore.  

Results 

Human study population 
 
 The characteristics of the human subjects analyzed in this study are presented in 

Table 1.  Overall, this is a healthy group of adults spanning a wide age range.  The 

exclusion criteria are diabetes (HbA1c >6.4) or acute/chronic illness (C-reactive protein 

>10).  The mean values for various blood biomarkers fall within the normal reference 

ranges, although the values for some individuals are outside of those ranges.  Time-

domain NMR relaxometry directly analyzes the multi-exponential decay curve to extract 

the relaxation time constants (Figure 2A).  

T2 profile of whole human serum 

 The T2 profile for whole human serum contains one intense peak >650ms (Figure 

2B), corresponding to the water T2, and the three smaller peaks shown in Figure 2C.  The 

three less intense peaks arise from the abundant components of human serum such as 

lipoprotein lipids, proteins and small molecules. Across a population of 28 human 

subjects, we observed significant variability in the T2 values of each peak:  peak 2 ranges 

from 573-172 ms, peak 3, from 77-58 ms and peak 4, 18-11ms (Table 1). 
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Parameter Mean ± SD Range, This Study Reference Values1 

Age 43 ± 18 24 - 80 n/a 

Peak 2 (ms) 411.6 ± 22.1 171.9 – 573.2 n.d. 

Peak 3 (ms) 66.3 ± 1.9 57.6 - 76.5 n.d. 

Peak 4 (ms) 14.5 ± 0.3 10.9 – 17.5 n.d. 

Total serum protein (g/dL) 7.2 ± 0.4 6.2 - 7.9 6.1 - 8.1 

Serum albumin (g/dL) 4.5 ± 0.3 4.0 - 5.0 3.6 - 5.1 

α1-antitrypsin (mg/dL) 130 ± 19 102 - 177 90 - 200 

Serum viscosity (cP) 1.17 ± 0.10 1.04 - 1.542 1.27 ± 0.06 

WBC count (x 103/µL) 6.3 ± 1.5 3.9 - 10.2 3.4 - 10.8 

Neutrophil count (x 103/µL) 3.6 ± 1.4 1.8 - 7.3 1.4 - 7.0 

hs-CRP (mg/L) 1.9 ± 1.6 0.1 - 5.1 
< 1.0 (low risk) 

1.0 – 3.0 (average risk) 
> 3.0 (high risk) 

Glucose (mg/dL) 91 ± 8 78 - 115 
<100 non-diabetic 

100-125 (pre-diabetic) 

HbA1c (%) 5.5 ± 0.3 4.9 - 6.2 
<5.7 (non-diabetic) 

5.7-6.4 (pre-diabetic) 

Insulin C-peptide (ng/mL) 2.4 ± 0.8 1.1 - 4.3 1.1 - 4.4 

Triglycerides (mg/dL) 111 ± 57 42 - 245 < 150 mg/dL 

HDL-C (mg/dL) 55 ± 12 32 - 85 > 40 mg/dL 

Total cholesterol (mg/dL) 196 ± 44 111 - 3292 < 200 mg/dL 

LDL-C (mg/dL) 119 ± 43 42 - 2572 < 130 mg/dL 

TSH (µIU/mL) 2.2 ± 1.1 0.6 - 5.3 0.5 - 4.5 

Free T4, direct (ng/dL) 1.2 ± 0.2 0.9 - 1.5 1.0 - 1.5 

 

Table 1 Characteristics of the human study group (n=29).  This sample size provided 
sufficient statistical power to identify correlations using conventional p-value thresholds.  
There were 15 females and 14 males, with an ethnic/racial distribution of 15 white, 6 
Asian/Indian, 5 Hispanic and 3 African American/Caribbean.  The mean BMI is 25.6 ± 4.2. 
1Reference values are from Quest, Labcorp and Atherotech; viscosity reference values were 
obtained from the literature; use of a different method may explain why the measured 
viscosity range is approximately 0.1 cP lower than the reference range.  2One subject had a 
serum viscosity of 1.54 cP, a statistical outlier; the next highest was 1.30. This subject had 
the highest total cholesterol (329 mg/dL) and LDL-C (257 mg/dL), as well as a family history 
of type II hypercholesterolemia (father).
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Figure 2: Time-domain NMR relaxometry analysis of whole human serum. (A) Raw T2 
multi-exponential decay curve for whole human serum, (B) T2 profile of whole human serum 
derived from an inverse Laplace transform (CONTIN) of the multi-exponentail decay curve. The 
intense water peak is shown in pink.  (C) An expansion of the T2 profile reveals three small peaks 
arising from lipid and protein components in serum. 
 
Statistical analysis 

 
 The correlation, linear regression and statistical analyses were performed using GraphPad 

Prism v. 6.05 (GraphPad Software, Inc.).  The principles for the statistical analyses were derived 

from the book by Motulsky 249.  The null hypothesis states that there is no correlation between 

the variables being compared.  The two-tailed p value defines the probability of observing a 

correlation as strong or stronger if the null hypothesis were true.  For example, for r = -0.6 and p 
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<0.01, there is less than 1% probability of observing a correlation this strong or stronger by 

random chance; thus, the null hypothesis is rejected.  For each correlation that met p-value 

thresholds, we inspected the plot to ensure that the correlation was not heavily influenced by one 

or two outliers.  

Human serum controls for peak assignment   

 Assignments for the three non-water T2 peaks in whole human serum to particular 

motional domains of biomolecules were made using isolated control samples.  Individual 

samples contained either a mixture of the most abundant proteins in serum, one of the three 

individual fractionated lipoprotein classes (LDL, HDL and VLDL+IDL, also known as the 

triglyceride rich lipoproteins), reconstituted lipoproteins and phospholipid vesicles which mimic 

the lipoprotein phospholipid surface, and finally oil-phase lipid mixtures designed to mimic the 

lipid mixtures found in the non-polar lipid core of serum lipoprotein particles.  

 Table 2 shows the results from the control samples. The top line displays the range of T2 

values for each peak in whole human serum observed across the human study population.  Some 

of the control samples contained T2 peaks that were not observed in human serum and were 

given a separate column and peak description.  As expected, all of the aqueous samples had a 

water T2 peak; the exact location differed due to the variations of water binding (determined 

mainly by protein concentration).   All of the lipoprotein related control samples (protein 

depleted serum, fractionated lipoprotein subclasses, and reconstituted lipoproteins) contained a 

peak between 2000 and 1200 ms (Peak A).  We hypothesize that Peak A monitors the most 

mobile components on the outermost surface of the lipoproteins, either water tightly bound to the 

surface or the rapid motions of phospholipid head groups in the lipoprotein surface monolayer. 
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Peak A is not resolved in samples of whole human serum, presumably because it is masked by 

the intense water peak.  The identity and nature of Peak A will be explored in future studies.  

 Peak 2 in human serum aligns with many of the lipoprotein controls including protein 

depleted serum, all three of the lipoprotein classes, phospholipid surface models and the 

triglyceride-rich lipoprotein core models. Noticeably missing are the cholesterol-rich lipoprotein 

non-polar core models.  Peak 3 in human serum seems to have contributions from all of the 

controls we examined. Finally, peak 4 in human serum aligns with the protein control and 

several of the non-polar core lipid mimics. Interestingly, protein depleted serum, fractionated 

lipoproteins and reconstituted lipoproteins do not display any peaks in this range.  Overall, the 

assignment of T2 peaks in the profiles of whole human serum was not straightforward -- not 

surprising given the compositional complexity of this biological sample. 

Correlations with metabolic biomarkers  

Peak 2 

 The T2 values from TD-NMR vary considerably across the study population (Table 1).  

To identify the factors governing the variation, we measured over 70 established diagnostic 

biomarkers and correlated them with the T2 values for each peak.  Only the statistically 

significant (p<0.05) correlations are displayed. An example of statistically significant correlation 

plots for both peaks 2 and 3 are shown in Figure 3.  
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Figure 3. Correlation plots between T2 and selected clinical diagnostic biomarkers. A and C 
demonstrate selected correlation plots for peak 2, while panels B and D show selected plots for 
peak 3.  The correlation statistics are presented in the Tables 3 and 4. 
 

A

C D

B
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 Peak 1 (H2O) Peak A Peak 2 Peak B Peak 3 Peak C Peak 4 

Whole Human Serum 915 - 692.1  573.1 - 171.9  76.5 – 57.6  17.5 - 10.9 
Protein Depleted Serum 2414.5 ± 6.3 1289.5 ± 263.7 474.3 ± 43.3   43.2 ± 5.5     

60% HSA 40% γ-Globulin 876.6 ± 3.4   345.9 ± 62.6   94.3 ± 50   13.0 ± 2.3 
LDL 3481.3 ± 49.5 1793 ± 369.1 314.1 ± 7.9   55.8 ± 4.8     
HDL 2760.5 ± 16.2 1271.5 ± 66.4 451.7 ± 4.5   36.1 ± 0.3    

VLDL + IDL 4099.5 ± 6.3 2981 ± 231 533.3 ± 45   83.2 ± 3.5     
30% DOPC 1262 ± 0   568.3 ± 1.5   110.8 ± 18   15.8 ± 5 

24% DOPC 6 % FC 584.2 ± 16.8   312.0 ± 22.1   57.4 ± 83   21.3 ± 2.7 
DOPC FC & ApoA1 3474.3 ± 30.5 1598.1 ± 108 412.2 ± 104   30.2 ± 9.7    
DMPC FC & ApoA1 3490.5 ± 3.5 1563.5 ± 115.2 358.4 ± 26.5    41.0 ± 20.3   

84% CL 5% FC 11%TO      112.7 ± 0.1 27.9 ± 9.2 18.2 ± 0.6 8.0 ± 0.3 
75% CL 5% FC 20%TO     134.1 ± 1.5  62.6 ± 0.8 24.7 ± 0.2 8.9 ± 0.2 

89% CL 11% TO     137.1 ± 2.1  61.6 ± 1.4 22.8 ± 1.1 8.7 ± 0.14 
80% CL 20% TO     144.3 ± 0.83  66.7 ± 1.3 28.9 ± 1.67 10.7 ± 0.2 
60% CL 40 % TO     221.5 ± 2.3 101.2 ± 1.4 47.1 ± 0.8  15.8 ± 0.2 
40% CL 60% TO     257.7 ± 4.1 117.7 ± 2.7 57 ± 2  20.3 ± 0.3 
20% CL 80% TO     271.1 ± 1.2 122.3 ± 2.4 62.1 ± 2.6  24.8 ± 0.4 

100% TO     331.7 ± 3.7 152.7 ± 2.9 81.0 ± 2.3  42.1 ± 2.1 
 

 
Table 2: TD-NMR T2 results for isolated human serum components and control samples. The top line displays the range of T2 
values observed in whole human serum across a population of healthy subjects.  To assign these peaks, controls samples of 
fractionated lipoproteins, a protein mixture containing the most abundant proteins found in serum, phospholipids, and oil-phase lipid 
mixtures were analyzed.  Some of the control samples contained T2 peaks that were not observed in human serum and were given a 
separate column which are assigned to peaks A, B and C.  Unlike NMR spectroscopy, the TD-NMR method has a practical upper limit 
of resolving 4 peaks per profile.  Thus, some peaks are not observed in a given type of sample due to coalescence and overlap.



 

 73

  Table 3 shows the correlations between peak 2 and the diagnostic biomarkers. The 

strongest correlations were observed with alpha-1 antitrypsin, omega-3 index, EPA, insulin 

resistance score (LipoScience), red blood cell count, hematocrit and mean corpuscular 

hemoglobin concentration (MCHC). Additional correlations were observed with several amino 

acids, serum and plasma water T1 and turbidity (O.D. at 550 nm). To gain additional insight into 

these correlations, a series of statistical regression residual analyses were performed.  This 

analysis eliminates the influence of one variable, emphasizing the correlation with those that 

remain. Variables removed were chosen to assess the influence of a given variable or to remove 

a known influence on relaxation mechanisms (i.e., viscosity and protein concentration). 

Removing the influence of protein concentration from peak 2 did not impact the 

significance or number of correlations, indicating that protein concentration provides minimal 

influence on the variation of peak 2 in whole human serum (Table S3). On the other hand, 

removing the influence of viscosity revealed additional correlations with Peak 2, such as glucose, 

total triglycerides, triglyceride-to-total cholesterol ratio and triglyceride-to non-HDL cholesterol 

ratio.  The reaming correlations remain unchanged for the most part with the exception of RBC 

and HCT, which lost their significance (Table S2).  Interestingly, removing the influence of 

triglycerides led to the loss of a number of correlations and greatly diminished the remaining R 

and R2 values (Table S4). Together, these findings suggest that circulating triglycerides, both 

concentration and composition, heavily influence the T2 value of peak 2.     
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Peak 2 T2 Correlations 

 

N 

Pearson Spearman  

R R2 R 

Peak 3 T2 26 0.63*** 0.40**** 0.46* 
Plasma Water T1 25 0.57** 0.32** 0.44* 
Serum Water T1 26 0.44* 0.19* 0.32 

Alpha-1 Anti Trypsin 24 0.38 0.14 0.44* 
0.1 um Filtered Serum OD 550 23 -0.44* 0.20* -0.19 

IR Score (LipoProfile) 15 -0.57* 0.32* -0.34 
Omega-3 Index 26 0.41* 0.17* 0.33 

EPA 26 0.46* 0.21* 0.43* 
RBC 25 -0.48* 0.23* -0.42* 
HCT 25 -0.38 0.14 -0.44* 

MCHC 25 0.25 0.07 0.41* 
Homocysteine 25 -0.45* 0.20* -0.50* 
Aspartic Acid 24 -0.49* 0.24* -0.52** 

Sarcosine 24 -0.38 0.14 -0.42* 
Beta-Alanine 24 -0.50* 0.25* -0.45* 

Alpha Amino Butyric Acid 24 -0.48* 0.23* -0.41* 
Isoleucine 24 -0.42* 0.18* -0.35 

 

*p<0.05 **p<0.01 ***p<0.001 

Table 3.  Correlation statistics for peak 2 T2 value with serum and T1 (blue), proteins and 

viscosity (yellow), blood cell markers (red), insulin resistance (green), omega-3 lipids 
(orange) and amino acids (unshaded).  Biomarkers were included in the table if they 
demonstrated at least one correlation coefficient with a p value < 0.05.  The null hypothesis is 
defined as no correlation between serum peak 2 T2 and a particular biomarker in the overall 
population.   A p value < 0.05 is the threshold for rejecting the null hypothesis. 



 

 75

  

Peak 2 - T2V Correlations 

 
N 

Pearson Spearman  

R R2 R 

Peak 3 T2 25 0.62** 0.38** 0.44* 
Plasma Water T1  25 0.52** 0.27** 0.35 

Viscosity (cP) 25 0.00 0.00 -0.20 

Serum OD 550 22 -0.43* 0.18* -0.37 
0.45 um Filtered Serum OD 550 22 -0.55** 0.30** -0.36 
0.1 um Filtered Serum OD 550 22 -0.56** 0.32** -0.32 

IR Score (LipoProfile) 15 -0.57* 0.33* -0.28 
Glucose 25 -0.47* 0.22* -0.44* 

TG (Quest/Labcorp) 25 -0.49* 0.24* -0.38 
TG/TC (Quest/Labcorp) 25 -0.44* 0.20* -0.37 

TG/non-HDL-C (Quest/Labcorp) 25 -0.41* 0.17* -0.39 
VLDL-C (VAP) 24 -0.43* 0.18* -0.27 

TG (VAP) 24 -0.48* 0.23* -0.34 
TG/TC (VAP) 24 -0.43* 0.18* -0.31 

TG/non-HDL-C (VAP) 24 -0.40* 0.16* -0.32 
Omega-3 Index  25 0.43* 0.18* 0.32 

EPA 25 0.49* 0.24* 0.42* 
MCHC 24 0.19 0.04 0.48* 

Homocysteine 24 -0.41* 0.17* -0.44* 
Aspartic Acid  23 -0.46* 0.21* -0.46* 
Beta- alanine 23 -0.51* 0.26* -0.45* 

α-Amino Butyric Acid 23 -0.46* 0.22* -0.38 
Isoleucine 23 -0.43* 0.18* -0.33 

 
*p<0.05 **p<0.01 ***p<0.001 

 
 
 

Table S2.  Correlation coefficients for peak 2 T2V with biomarkers for water T1 and T2, 

(blue), protein concentration and viscosity (yellow), triglyceride-rich lipoproteins and 

insulin resistance (green), omega-3 lipids (orange), blood cell counts (red), and amino acids 
(unshaded).  Peak 2 T2v values represent the regression residuals obtained from a linear fit of 
peak 2 T2 vs. serum viscosity.  This analysis removes the influence of serum viscosity on peak 2 
T2 and emphasizes the influence of other variables. 
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Peak 2 T2P Correlations N 
Pearson Spearman 

R R2 R 

Peak 3 26 0.59** 0.35** 0.44* 
Plasma T1 Water 25 0.50* 0.25* 0.41* 

Serum Protein 26 0.00 0.00 0.03 

Alpha-1 anti trypsin 24 0.45* 0.21* 0.47* 
0.1 um Filtered Serum OD 550 23 -0.46* 0.21* -0.26 

IR Score 15 -0.57* 0.32* -0.31 
Omega-3 Index 26 0.46* 0.21* 0.30 

EPA 26 0.53** 0.29** 0.49* 
DHA 26 0.40* 0.16* 0.26 
RBC 25 -0.44* 0.19* -0.36 

MCHC 25 0.25 0.06 0.43* 
Homocysteine 26 -0.40* 0.16* -0.49* 
Aspartic Acid 24 -0.45* 0.20* -0.42* 

Sarcosine 24 -0.47* 0.22* -0.51* 
Beta-Alanine 24 -0.54** 0.29** -0.54** 

α-Amino Butyric Acid 24 -0.51* 0.26* -0.44* 
Isoleucine 24 -0.45* 0.20* -0.37 

 
*p<0.05 **p<0.01 ***p<0.001 

 
 

Table S3.  Correlation coefficients for peak 2 T2P with biomarkers for Water T1 and T2, 

(blue), protein concentration and viscosity (yellow), insulin resistance (green), omega-3 
lipids (orange), blood cell counts (red), and other processes (unshaded).  Peak 2 T2P values 
represent the regression residuals obtained from a linear fit of peak 2 T2 vs. serum protein.   This 
analysis removes the influence of serum protein on peak 2 T2 and emphasizes the influence of 
serum lipoproteins. 
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Peak 2 T2TG Correlations N 
Pearson Spearman  

R R2 R 

Peak 3  25 0.54*** 0.29*** 0.54* 
Serum Water T1 25 0.23* 0.05* 0.37  

Triglyceride 25 0.00 0.00 -0.03 

HOMA %B (C-peptide) 25 0.19* 0.04*  0.34 
Glucose 25 -0.36 0.13  -0.40* 

Omega-3 Index 25 0.23* 0.05* 0.41* 
EPA 25 0.23* 0.05*  0.39 
DHA 25 0.19* 0.03* 0.41* 
AA 25 0.37   0.13 0.53* 

MCHC 24  0.26  0.07 0.47* 
Beta-alanine 23 0.54** 0.29** -0.48* 

Aspartic Acid  23 -0.35   0.12 -0.44* 
Sarcosine 23  -0.30  0.10 -0.45* 

α-Amino Butyric Acid 23  -0.38  0.14 -0.44* 
 
 

*p<0.05 **p<0.01 ***p<0.001 
 

Table S4.  Correlation coefficients for peak 2 T2TG with biomarkers for water T1 and T2, 

(blue), insulin resistance (green), omega-3 lipids (orange), blood cell counts (red), and 
amino acids (unshaded).  Peak 2 T2TG values represent the regression residuals obtained from a 
linear fit of peak 2 T2 vs. total serum triglycerides.   This analysis removes the influence of 
triglycerides on peak 2 T2. 
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Peak 2 T2-O3 N 
Pearson Spearman 

R R2 R 

Peak 3 26 0.67*** 0.45*** 0.53** 
Serum Water T2 26 0.48* 0.23* 0.49* 
Plasma Water T2 26 0.41* 0.17* 0.40 
Serum Water T2V 26 0.43* 0.18* 0.36 
Serum Water T2P 26 0.39* 0.15* 0.38 
Serum Water T2G 26 0.43* 0.19* 0.47* 
Serum Water T2A 26 0.47* 0.22* 0.44* 
Serum Water T1 26 0.48* 0.23* 0.41* 
Plasma Water T1 25 0.65*** 0.42*** 0.57** 

0.45 um Filtered Serum OD 550 23 -0.35 0.12 -0.42* 
0.1 um Filtered Serum OD 550 23 -0.49* 0.24* -0.41* 

IR Score 15 -0.63* 0.39* -0.48 
Omega-3 Index 26 0.00 0.00 -0.14 

WBC Count 25 -0.41* 0.17* -0.39 
Neutrophils 25 -0.40* 0.16* 0.42* 
Basophils 25 -0.41* 0.17* -0.36 

RBC 25 -0.45* 0.20* -0.38 
Homocysteine 26 -0.49 0.24 -0.58** 

Hydroxyproline 24 -0.27 0.07 -0.44* 
Beta Alanine 24 -0.44* 0.19* -0.35 

Alanine 24 -0.41* 0.17* -0.26 
α-Amino Butyric Acid 24 -0.42* 0.16* -0.36 

 
 

*p<0.05 **p<0.01 ***p<0.001 
 

Table S5.  Correlation coefficients for peak 2 T2-O3 with biomarkers for serum and plasma 

water T1 and T2, (blue), insulin resistance (green), omega-3 lipids (orange), blood cell 
counts (red), and other processes (unshaded).  Peak 2 T2-O3 values represent the regression 
residuals obtained from a linear fit of peak 2 T2 vs. omega-3 index.   This analysis removes the 
influence of omega-3 fatty acid concentration on peak 2 T2. 
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Peak 3 

 Peak 3 T2 correlates positively with the serum water T2 and negatively with viscosity, 

total cholesterol and several amino acids (Table 4).  

Peak 3 T2 Correlations N 
Pearson Spearman 

R R2 R 

Peak 2 24 0.40* 0.05* 0.32 
Serum Water T2 24 0.46* 0.21* 0.51* 
Serum Water T2V 24 0.46* 0.21* 0.47* 
Serum Water T2P 24 0.68*** 0.47*** 0.71*** 
Serum Water T2G 24 0.56** 0.31** 0.60** 
Serum Water T2A 24 0.42* 0.18* 0.45* 
Serum Water T1 24 0.51* 0.26* 0.56** 
Plasma Water T1 24 0.42* 0.17* 0.35 
Plasma Viscosity 9 -0.69* 0.47* -0.85** 
Total-C (VAP) 24 -0.41* 0.16* -0.37 

Hydroxyproline 22 -0.47* 0.22* -0.41 
Alanine 22 -0.39 0.15 -0.50* 

1-methyl Histidine 22 -0.46* 0.22* -0.40 
Phenylalanine 22 -0.47* 0.23* -0.54** 

BUN 7 -0.89** 0.79** -0.87** 
Creatinine 7 -0.84* 0.71* -0.93** 

 
*p<0.05 **p<0.01 ***p<0.001 

 
Table 4. Correlation coefficients for peak 3 T2 with serum and plasma water T1 or T2 

values (blue) proteins and viscosity (yellow), blood cell counts (red), cholesterol markers 
(purple), and amino acids/other (unshaded).  Biomarkers were included in the table if they 
demonstrated at least one correlation coefficient with a p value < 0.05.  The null hypothesis is 
defined as no correlation between peak 3 T2 and a particular biomarker in the overall population. 
 

 Removing the influence of serum viscosity through a regression residual analysis 

eliminated the correlation of the peak 3 T2 value with total cholesterol (Table S6).  Previous 

work has shown that the concentration of lipoproteins has a significant impact on serum 

viscosity.250,251 These observations suggest that peak three is heavily influenced by lipoproteins 
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and their lipid composition.   Similarly, removing the influence of cholesterol on peak 3 also 

removed the correlations with plasma viscosity (Table S7).   Interestingly, the amino acids 

alanine, phenylalanine and hydroxyproline are negatively correlated with the peak 3 T2 value 

(Tables 4 and S7).   Many of these correlations persist after correcting for viscosity, total 

cholesterol or total protein (Tables S5-S8).   Correlations with BUN and creatinine were 

observed, but the n is small and this observation warrants further investigation.  

 

Peak 3 T2V Correlations N 
Pearson Spearman  

R R2 R 

Peak 4  23 0.56* 0.31* 0.50* 
Serum Water T2V  23 0.46* 0.22* 0.41 
Serum Water T2P  23 0.68***  0.46*** 0.69*** 
Serum Water T2G  23 0.52* 0.27* 0.53** 
Serum Water T2A  23 0.36 0.13 0.42* 
Serum Water T1  23 0.60** 0.36** 0.54** 
Plasma Water T1  23 0.45* 0.21* 0.37 
Serum Viscosity 23 0.00 0.00 -0.27 

 Plasma Viscosity 9 -0.64   0.41 -0.80* 
Hydroxyproline 21 -0.48* 0.23* -0.47* 

Alanine 21 -0.41 0. 17 -0.57* 
1-Methyl Histidine 21  -0.50* 0.25* -0.45* 

Phenylalanine 21 -0.48* 0.23* -0.56** 
BUN 6 -0.90* -.80* -0.91*** 

Creatinine 6 -0.91* 0.84* -0.94* 
 
 

*p<0.05 **p<0.01 ***p<0.001 
 

Table S6.  Correlation coefficients for peak 3 T2V with biomarkers for water T1 and T2, 

(blue), protein concentration and viscosity (yellow), blood cell counts (red), and other 
processes (unshaded).  Peak 3 T2v values represent the regression residuals obtained from a 
linear fit of peak 3 T2 vs. serum viscosity.   This analysis removes the influence of serum 
viscosity on peak 3 T2. 
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Peak 3 T2C Correlations N 
Pearson  Spearman  

R R2 R 

Peak 2  23 0.42* 0.18* 0.36 
Peak 4  23 0.41 0.17 0.54** 

Serum Water T2P  23 0.57** 0.32** 0.59** 
Serum Water T2G 23 0.41 0.17 0.42* 
Serum Water T1  23 0.57** 0.32** 0.46* 
Plasma Water T1  23 0.43* 0.18* 0.31 
Total Cholesterol  23 0.00 0.00 0.0 

Hydroxyproline 21 -0.52* 0.27* -0.46* 
Alanine 21 -0.34 0.12 -0.50* 

1-methyl-Histidine 21 -0.46* 0.21* -0.42 
Phenylalanine 21 -0.39 0.15 -0.48* 

BUN 6 -0.88* 0.78 -0.97*** 
Creatinine 6 -0.89* 0.80* -0.94* 

 
*p<0.05 **p<0.01 ***p<0.001 

 
Table S7.  Correlation coefficients for peak 3 T2C with biomarkers for water T1 and T2, 
(blue) and other processes (unshaded).  Peak 3 T2C values represent the regression residuals 
obtained from a linear fit of peak 3 T2 vs. total cholesterol.   This analysis removes the influence 
of serum cholesterol on peak 3 T2. 
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Peak 3 TP Correlations N 
Pearson Spearman 

R R2 R 

Peak 4 23 0.38 0.14 0.49* 

Serum Water T2 23 0.41 0.17 0.46* 

Serum Water T2V 23 0.42* 0.17* 0.33 

Serum Water T2G 23 0.54** 0.29** 0.61** 

Serum Water T2P 23 0.69*** 0.47*** 0.73*** 

Serum Water T2A 23 0.37 0.13 0.45* 

Serum Water T1 23 0.59** 0.36** 0.61** 

Plasma Water T1 23 0.44* 0.19* 0.59** 

Plasma Viscosity 9 -0.68* 0.47* -0.85** 

Serum Protein 23 0.00 0.00 0.00 

Hydroxyproline 21 -0.49* 0.24* -0.44* 

Alanine 21 -0.41 0.17 -0.57** 

1-methyl-Histidine 21 -0.49* 0.24* -0.44* 

Phenylalanine 21 -0.49* 0.24* -0.59** 

BUN 6 -0.89* 0.79* -0.97*** 

Creatinine 6 -0.92* 0.84* -0.94* 
 

Table S8.  Correlation coefficients for peak 3 T2P with biomarkers for water T1 and T2, 
(blue), viscosity and protein (yellow) and other processes (unshaded).  Peak 3 T2C values 
represent the regression residuals obtained from a linear fit of peak 3 T2 vs. serum protein.   This 
analysis removes the influence of serum protein concentration on peak 3 T2. 
 

Peak 4 

 Peak 4 did not show any significant correlations with the diagnostic biomarkers analyzed 

in this study.  Based on the analysis of control samples, this peak includes contributions from 

virtually all of the lipid, lipoprotein and protein components of serum and hence is highly non-

specific.  This peak also includes contributions from the slower motions of proteins resulting 

from the delayed acquisition approach used in the CPMG experiment.    

  



 

 83

Discussion and Conclusions 

 Benchtop TD-NMR can resolve 3 non-water T2 domains in whole human serum.  The T2 

values for all 3 peaks vary considerably across a population of seemingly healthy individuals.  In 

addition, peaks 2 and 3 each correlate with a different cluster of diagnostic biomarkers.  Thus, in 

a single TD-NMR experiment, we can assess the metabolic state of an individual from several 

different perspectives.  Peak 2 shows the  strongest correlations with triglycerides, α1-

antitrypsin, omega-3 index, EPA, RBC, HTC and MCHC.   Peak 3’s strongest correlations are 

with viscosity, total cholesterol, and several amino acids.  

Peak 2 monitors insulin resistance and cardiovascular disease risk.   

All of the biomarkers that correlate with peak 2 are associated with the development of 

insulin resistance and risk for cardiovascular disease.  The insulin resistance score generated by 

LipoScience98 is based on the number and size of VLDL, LDL and HDL particles in circulation.  

Early insulin resistance is suggested to occur through abnormal lipid and lipoprotein metabolism, 

which causes high triglycerides and reduced HDL-cholesterol levels.252,253  This score is thought 

to predict insulin resistance before loss of beta-cell function and progression to pre-diabetes.  

  Complete blood count is a common clinical test used to monitor a wide range of 

disorders including anemia, leukemia and infections 254. Red blood cell count, hematocrit and 

MCHC displayed significant correlations with peak 2, but cannot be directly influencing the T2 

directly since serum is devoid of red blood cells.  Rather, these blood cell makers appear to be 

indirectly linked through insulin resistance and metabolic syndrome.255  A positive correlation 

between serum insulin and insulin resistance with RBC and hematocrit has been reported in the 

literature.256  Studies have shown that insulin stimulates the proliferation of erythroid 
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colonies.257-259  The RBC count is also a strong predictor of cardiovascular events such as stroke 

and myocardial infarction.255,260  

 Omega-3 index measures the fatty acid composition of red blood cells to determine the 

concentration of omega-3 fatty acids, particularly DHA and EPA. Increased consumption of 

omega-3 fatty acids have been linked to a number of health benefits including improved 

cardiovascular disease risk, improvements in fetal development, cognitive well-being, 

inflammation and immune response.178,180,181,183,184 Recently, it has been suggested that an 

elevated Omega-3 index is associated with higher insulin sensitivity and lower fasting glucose213-

215 through the lowering of circulating free fatty acids and C-reactive protein, an inflammatory 

marker. 

 The abundant serum protein α1-antitrypsin is a serine protease inhibitor, which plays an 

important protective role against the enzymes of inflammatory cells, such as neutrophil elastase. 

Increased concentrations of α1-antitrypsin in whole serum have also been positively correlated 

with pancreatic beta cell survival, inversely correlated with obesity, waist-to-hip ratio261,262 and 

serum levels of adiponectin, leptin and insulin.  While the mechanism is still unclear, it is 

hypothesized α1-antitrypsin may effect adipocyte proliferation and differentiation.  

Direct mechanism driving variations in peak 2 

 Liposcience IR score and the various blood count markers are negatively correlated with 

peak 2 T2, while omega-3, EPA and α1-antitrypsin are positively correlated.  Overall, we observe 

that the higher the peak 2 T2 value the more likely that subject will be insulin sensitive with an 

improved cardiovascular disease risk outlook and inflammatory status.  By combining the 

statistical analysis, control samples and clinical biomarker patterns, we can elucidate the direct 

influences on the observed T2 values of peak 2.  
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 Removing the influence of serum protein concentration does not significantly impact the 

strength or number of correlations with peak 2, so that factor can be ruled out.   By contrast, 

removing the influence of triglyceride concentration drastically changes the correlations, 

indicating their contribution peak 2 T2.  Inspection of the controls reveals that the fractionated 

lipoproteins have T2 values that fall within the range of peak 2. A trend is observed between the 

second T2 of VLDL+IDL, LDL and HDL vs. lipoprotein composition; the triglyceride-rich 

lipoproteins have a higher peak 2 T2 values versus the cholesterol-rich lipoproteins. In addition, 

the lipoprotein lipid core models that mimic the triglyceride-rich particles have T2 values with 

the range of peak 2, but the cholesterol-rich mimics do not.  

 We propose that the T2 value of peak 2 likely reflects the average molecular motions of 

lipids in the core of lipoprotein particles. Previously, we demonstrated that higher numbers of 

cis-double bonds in a hydrocarbon chain increase T2 by disrupting molecular packing and 

increasing fluidity (Chapters 2 and 3)201.   Thus, the positive correlation between T2 and omega-3 

index/EPA is consistent with the notion that the T2 is monitoring lipid fluidity in triglyceride-rich 

lipoproteins.  The inverse relationship with the remaining markers can be attributed to the 

abnormal changes that occur in lipoproteins as patients become increasingly insulin resistant.  

Abnormal lipoprotein lipid composition is commonly associated with diabetes. Free fatty acids 

accumulate in circulation resulting in increased production of VLDL-1 particles, which are larger 

and more triglyceride rich than their normal counterparts263-267.  As a result lipoproteins begin to 

accumulate and possess an increased residence time in the blood. The combined action of 

various modification proteins, in particular cholesterol-ester transfer protein (CETP), leads to 

heavily processed lipoproteins that are more cholesterol-rich. Therefore, the decrease in T2 is 

monitoring an increase in cholesterol content across the whole population of lipoprotein 
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particles. As a subset of lipoproteins become increasingly cholesterol rich, the average molecular 

motions of the most mobile lipid domain within the lipoprotein core monitored by peak 2 will 

decrease due to disruptions in metabolism related to insulin resistance. 

Peak 3 monitors insulin resistance risk 
 

Higher T2 values for peak 3 are associated with lower total cholesterol and viscosity.  

Interestingly, when the influence of viscosity on peak 3 was removed, the correlation with total 

cholesterol was eliminated, indicating that the two variables are related.  Serum and plasma 

viscosity has long been associated with metabolic abnormalities such as diabetes mellitus and 

dyslipidemia.250,251 The association between metabolic dysfunction and viscosity is attributed to 

the accumulation of serum proteins, glucose and lipids in circulation.  Alterations in the blood 

protein composition have also been hypothesized to increase the viscosity of serum and plasma.  

We propose that the TD-NMR T2 of peak 3 is significantly influenced by a less-mobile 

lipid domain within the core of lipoprotein particles.  The value likely reflects the average 

molecular motions of lipids in the core from a range of particles, including LDL, HDL and 

cholesterol-rich remnants.  The remodeling of lipoprotein particles that occurs with insulin 

resistance and metabolic syndrome results in larger numbers of small LDL and remnant particles.   

The observed decrease in the T2 value for peak 3 is consistent with a decrease in core fluidity 

resulting from this remodeling.  

 Another indicator that peak 3 is probing the molecular motions of cholesterol-rich 

lipoproteins is the correlation of peak 3 with various serum water T2’s; T2, T2V, T2P, T2G and T2A 

(corrected for viscosity, total protein, globulin concentration and albumin concentration 

respectively). The only biomarker all of these have in common is cholesterol.  
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 With respect to amino acids, the pattern observed is consistent with the mobilization of 

amino acids from muscle (1-methyl-histidine) and connective tissue (hydroxyproline).  This 

catabolic process is also consistent with insulin resistance. 

 Together we have concluded that the NMR T2 values for peak 2 and 3 are reflective of 

the lipoprotein lipid core fluidity. In this study we observed lower T2 values in serum are 

indicative of increasing degrees of metabolic dysfunction in apparently healthy subjects. We 

concluded this was due to an increasingly less fluid, cholesterol rich lipoprotein lipid core 

brought on by the beginning stages of insulin resistance. Hypothetically, it should be possible to 

detect lipoprotein particle that are more fluid than normal, due to frank hypertriglyceridemia and 

an increased triglyceride component within the non-polar lipid core. This will be explored in 

future studies.     

Benchtop TD-NMR T2 as a front-line screening tool for insulin resistance and metabolic 
syndrome 
 A primary reason for developing biomarkers is to identify metabolic abnormalities in at-

risk individuals early on, well before these abnormalities progress to pre-diabetes, diabetes or 

cardiovascular disease.   A biomarker can be defined as “cellular, biochemical or molecular 

alterations that are measurable in biological media such as human tissues, cells or fluids” and 

include “tools and technologies that can aid in the understanding and prediction, cause, 

diagnosis, progression, regression or outcome of treatment of disease”.268  Biomarkers can be 

classified into two main categories:  biomarkers of exposure, which are used to predict risk, and 

biomarkers of disease, which screen and monitor disease progression.235   We envision benchtop 

TD-NMR as a screening tool, but not for disease.  Rather, it could serve to screen seemingly 

healthy individuals for hidden metabolic abnormalities that put them at risk for developing 

disease.  Specifically, it would identify the presence or absence of insulin resistance, a precursor 
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of disease.  Robust clinical tests and diagnostic criteria already exist to diagnose full-blown 

diabetes as well as pre-diabetes.  We envision that TD-NMR would have the greatest value in 

screening individuals who do not meet the diagnostic criteria for diabetes or pre-diabetes.  Some 

of those individuals may meet the criteria for metabolic syndrome, and the TD-NMR test could 

be used to screen for insulin resistance.  Early identification and elimination of insulin resistance 

is a key strategy for diabetes and CVD prevention. 

 According to the National Cancer Institute’s Early Detection Network, there are five 

phases of biomarker development. Phase I is the preclinical exploratory studies, Phase II 

demonstrates reproducibility, sensitivity and specificity Phase III evaluates sensitivity and 

specificity for diseases that have not been detected by conventional clinical diagnostics, Phase IV 

evaluates the sensitivity and specificity on a prospective cohort of patients and finally Phase V 

evaluates the overall benefits and risks associated with the new biomarker 234. Currently we have 

successfully completed Phase I of development.  This method holds great promise as it already 

meets many of the requirements for an ideal biomarker:  a safe simple method with relatively 

low cost.  In addition, the measurement is capable of monitoring multiple processes in one 

simple measurement, enhancing its utility.



 

Chapter 5: Water as a Universal Biosensor for Inflammation, 

Insulin Resistance, Oxidative Stress and Dyslipidemia 
 

Introduction 

 
 An era can be envisioned, not far in the future, where each individual will be 

accompanied by a personal data cloud for ongoing health assessment.  That data may include the 

individual’s entire genomic sequence as well as proteomic and metabolomic profiles, some 

monitored in real time.  Although the acquisition of big data clouds is becoming feasible, 

complexity and cost remain significant barriers to widespread use for health screening.  

Therefore, streamlined approaches are needed.  Our laboratory has been evaluating a relatively 

simple and practical implementation of nuclear magnetic resonance, benchtop time-domain 

relaxometry (TD-NMR), for analyzing blood samples and assessing health status.  The initial 

focus was on lipid and lipoprotein T2 values, which non-invasively monitor changes in the 

fluidity and composition of lipid domains201.   

 Time-domain NMR relaxometry, in contrast with conventional frequency-domain NMR 

spectroscopy, incorporates the direct analysis of the exponentially decaying signal to extract 

relaxation time constants (Fig. 1A).  As acquired with this experimental protocol, the T2 profiles 

for human serum are comprised of three tiny lipid/protein peaks with T2 values <200 ms (Fig. 

1B, orange) and an intense water peak with a T2 value >600 ms (Fig. 1B, blue).   In this context, 

the intense water signal was considered a nuisance, as it can lead to radiation damping and 

obscure the detection and analysis of the much smaller lipid/protein peaks.  Recently we initiated 

a pilot study to assess the variability of serum and plasma T2 values in a human subject 

population.  After a few months, it became apparent that the water T2 value (not just the 
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lipid/protein T2) was tracking with a variety of metabolic biomarkers.  So we halted the protocol 

and redesigned it to include fast, six-minute analyses of the water. Collected this way, the water 

T2 values for serum and plasma exhibit high precision, with standard errors less than 0.5%. 

 

 

 

   

Figure 1.  Time-domain NMR 

relaxometry analysis of water in 

unmodified blood plasma and serum.  
(A) Raw TD-NMR data for human serum 
consisting of a multi-exponential decay 
curve; (B) T2 profile for human serum 
derived from an inverse Laplace 
transform of the multi-exponential decay 
curve in (A).  This profile is not to be 
confused with a conventional NMR 
spectrum where the x-axis is frequency.  
The T2 profile reveals an intense water 
peak (blue) and a few small peaks arising 
from directly-detected lipid and protein 
components of serum (orange).  (C) 
Expansions of the water T2 profiles for 
individual human subjects illustrating the 
wide range of T2 values observed across 
this study population.  Data acquisition 
and processing details are provided in 
Fig. S1 and Materials and Methods. 
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Experimental Procedures 
 
 Subject recruitment.   
 
 Human subject volunteers were recruited with informed consent into two protocols 

approved by the Institutional Review Board of the University of North Texas Health Science 

Center in Fort Worth (UNTHSC).  One protocol recruited apparently healthy adult subjects from 

the student and staff population of UNTHSC, including some spouses and significant others.  

The second protocol recruited community members enrolled in the Health and Aging Brain 

Study at UNTHSC269.  Exclusion criteria for the current study included diabetes (HbA1C > 6.4), 

acute/chronic infection or illness (C-reactive protein > 10), or not fasting for at least 12 hours.  

Characteristics of the human study group are detailed in Table S1. 

Plasma and serum preparation.   

 
 Fasting blood samples were drawn in the morning by a trained nurse or phlebotomist.  

For plasma preparation, blood was drawn into lavender-top tubes containing EDTA as the 

anticoagulant.  For serum, blood was drawn into plain glass red-top tubes lacking any gel 

separator or clot activators (BD model 366441) in order to avoid potential interference of 

additives with TD-NMR or viscosity testing.  Blood obtained for NMR LipoProfile analysis 

(LabCorp/LipoScience) was drawn into black-top tubes specialized for that purpose.  Every 

effort was made to collect enough blood from each subject to perform all 70+ planned 

measurements.  However, there were situations where the amount of blood collected from a 

given subject was not sufficient or samples were rejected by the testing lab.  That variability 

accounts for the test-to-test differences in sample size (n) in the statistical analyses.   
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Table S1:  Human Study Group 

Parameter Mean ± SD Range, This Study Reference Values1 

Age 43 ± 18 24 - 80 n/a 

Plasma T2 (ms) 748.8 ± 57.1 642.8 - 865.9 n.d. 

Serum  T2 (ms) 810.5 ± 52.1 692.1 - 915.0 n.d. 

Total serum protein (g/dL) 7.2 ± 0.4 6.2 - 7.9 6.1 - 8.1 

Serum albumin (g/dL) 4.5 ± 0.3 4.0 - 5.0 3.6 - 5.1 

α1-antitrypsin (mg/dL) 130 ± 19 102 - 177 90 - 200 

Serum viscosity (cP) 1.17 ± 0.10 1.04 - 1.542 1.27 ± 0.06 

Plasma viscosity (cP) 1.27 ± 0.17 1.07 - 1.46 1.39 ± 0.08 

WBC count (x 103/µL) 6.3 ± 1.5 3.9 - 10.2 3.4 - 10.8 

Neutrophil count (x 103/µL) 3.6 ± 1.4 1.8 - 7.3 1.4 - 7.0 

hs-CRP (mg/L) 1.9 ± 1.6 0.1 - 5.1 

< 1.0 (low risk) 

1.0 – 3.0 (average risk) 

> 3.0 (high risk) 

Glucose (mg/dL) 91 ± 8 78 - 115 
<100 non-diabetic 

100-125 (pre-diabetic) 

HbA1c (%) 5.5 ± 0.3 4.9 - 6.2 
<5.7 (non-diabetic) 

5.7-6.4 (pre-diabetic) 

Insulin C-peptide (ng/mL) 2.4 ± 0.8 1.1 - 4.3 1.1 - 4.4 

Triglycerides (mg/dL) 111 ± 57 42 - 245 < 150 mg/dL 

Total cholesterol (mg/dL) 196 ± 44 111 - 3292 < 200 mg/dL 

HDL-C (mg/dL) 55 ± 12 32 - 85 > 40 mg/dL 

LDL-C (mg/dL) 119 ± 43 42 - 2572 < 130 mg/dL 

TSH (µIU/mL) 2.2 ± 1.1 0.6 - 5.3 0.5 - 4.5 

Free T4, direct (ng/dL) 1.2 ± 0.2 0.9 - 1.5 1.0 - 1.5 

 
Table S1:  Characteristics of the human study group (n=29).  This sample size provided sufficient 
statistical power to identify correlations using conventional p-value thresholds.  There were 15 
females and 14 males, with an ethnic/racial distribution of 15 white, 6 Asian/Indian, 5 Hispanic and 3 
African American/Caribbean.  The mean BMI is 25.6 ± 4.2. 1Reference values are from Quest, 
Labcorp and Atherotech; viscosity reference values were obtained from 270; use of a different method 
may explain why the measured viscosity range is approximately 0.1 cP lower than the reference 
range.  2One subject had a serum viscosity of 1.54 cP, a statistical outlier; the next highest was 1.30. 
This subject had the highest total cholesterol (329 mg/dL) and LDL-C (257 mg/dL), as well as a 
family history of type II hypercholesterolemia (father).   
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 Blood sample analysis and banking.   

 The plasma and serum samples were processed immediately after each blood draw.  The 

samples were centrifuged to remove pelleted blood cells, followed by a second low speed spin of 

the supernatant to remove residual blood cells.  The TD-NMR water T2 measurements were 

performed five times on a sample of fresh plasma followed immediately by five repeats on fresh 

serum such that all water T2 measurements were completed within ~2 hours after the blood draw.  

Likewise, viscosity was measured in house on fresh serum and plasma samples within a few 

hours of the blood draw using a VISCOLab3000 instrument as described elsewhere 201.  Aliquots 

of fresh serum were sent on ice to Atherotech, Inc. for Vertical Autoprofile (VAP) advanced 

lipoprotein testing, as well as to determine LDL-P, hs-CRP, GGT, homocysteine, and Lp(a).  

Aliquots of plasma and serum were frozen at -80°C prior to in-house analysis using assay kits:  

apolipoprotein E concentration (Abcam, Ab108813); ORAC antioxidant capacity (Cell Biolabs, 

STA-345), protein carbonyl content (Cell Biolabs STA-307), and HNE (Cell Biolabs, STA-838); 

and free fatty acids (BioAssay Systems, EFFA-100).  All other testing of serum and plasma 

samples was performed by LabCorp, Quest Diagnostics and their affiliates including 

LipoScience (NMR LipoProfile) and OmegaQuant (Omega-3 Index).  Plasma aliquots for amino 

acid analysis were frozen immediately after preparation and stored at -80°C prior to shipment to 

Quest.   

 Samples for controlled experiments.   
 
 All samples were prepared with phosphate-buffered saline, pH 7.4.  Reagents obtained 

from Sigma-Aldrich included human serum albumin (Catalog No. A8763), human γ-globulin 

(G4386), uric acid (U2625), DL-lactic acid (69785), malondialdehyde tetrabutylammonium salt 

(63287) and glyceraldehyde (G5001).  Reagents obtained from Fisher Scientific included 
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adenosine-tri-phosphate (S25123), D-glucose (D15-500), urea (BP169-500) and cupric sulfate 

(S25285).  

 Benchtop Time-domain NMR Relaxometry.   

 Measurements of T2 and T1 were performed at 37°C using a Bruker mq20 Minispec 

benchtop time-domain NMR instrument equipped with a 10 mm variable temperature probe 

(Model H20-10-25-AVGX).  The 10 mm NMR tube was filled to a sample height of 1 cm, 

corresponding to a sample volume of ~680 µL.  Given the abundance of signal, it should be 

feasible to use a smaller probe diameter and sample volume, although a small-diameter probe 

was not available to us for this study.   

 The pulse sequence for T2 measurement is illustrated in Figure 1S.  In our experience, a 

critical factor in obtaining high quality TD-NMR data with aqueous samples is carefully tuning 

the delta delay to avoid radiation damping.  This artifact occurs when the additional magnetic 

field created by the intense oscillating water signal distorts the performance of CPMG pulse 

scheme 30.   Radiation damping manifests itself by a non-random oscillatory artifact observed in 

the residuals of the fit after inverse Laplace transform.   We determined empirically that a delta 

delay of 0.95*T1 (leading to a water signal that is ~23% of its full intensity) provides a level of 

suppression of the water sufficient to avoid radiation damping, while still maximizing the overall 

signal intensity of the water and the other lipid/protein peaks for analysis.  Even after partial 

suppression, the intensity of the water signal was still sufficiently intense to measure water T2 

with high precision after only 16 scans.  In this regard, the goal of water suppression in TD-

NMR is different from that of frequency-domain NMR spectroscopy, as essentially complete 

suppression of the water is typically desired in the latter.   
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Figure S1:  Modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence for measuring water 
T2 in human serum or plasma using benchtop time-domain NMR.  The data were recorded at 
37°C using a Bruker mq20 minispec NMR instrument equipped with a 10 mm variable 
temperature probe, model H20-10-25-AVGX.  The composite 180˚ pulse (90x180y90x) and Δ 
delay were introduced prior to the CPMG scheme to achieve partial water suppression and 
eliminate radiation damping.  The Δ delay was tuned to 0.95*T1, which corresponds to 
suppression of the water to 23% of its full intensity.  The τ delay was kept short (0.19 ms) to 
minimize the possible impact of translational diffusion on T2 in an inhomogeneous Bo field.  The 
green loop with DA=42 was added to achieve delayed acquisition of the first data point until 
after the first 19 ms of intensity decay; this suppresses very fast decay components in order to 
reduce the number of exponential terms and simplify the analysis of the slower components of 
the exponential decay curve.  Water has the slowest decay rate and the longest T2.  The DE loop 
generates dummy echos without recording intensity. For all experiments, the relaxation delay RD 
was set to 5* T1, corresponding  to ~ 8 sec for serum or plasma; NP=5600, NS=16.  Phase cycles 
for the pulses: φ = (x)2, (-x)2, (y)2, (-y)2; ψ = x,-x.  Phase cycle of the receiver:  same as φ.  Total 
experiment time, 6.4 min.   
 

 Another unique aspect to this TD-NMR pulse scheme was the delayed acquisition of the 

data points, which began 19 ms after the beginning of the CPMG scheme.  This strategy de-

emphasizes the very fast processes at the beginning of the decay curve in order to emphasize the 

slower processes such as the water.  This delayed acquisition scheme reduces the number of 

exponential terms, simplifying the inverse Laplace transform calculation.   If attempts are made 

to fit the data using too many exponential terms, the calculation can become unstable, as it 
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becomes a mathematically ill-posed problem.  Such overfitting is evidenced by poor run-to-run 

precision, which was not observed using the current protocol. 

 For quantification of serum and plasma water T2 values, each raw CPMG decay curve 

was analyzed using an inverse Laplace transform as implemented in the discrete components 

analysis of XPFit (http://www.softscientific.com/science/xpfit.html).  An important 

consideration for sample-to-sample comparisons is to restrain the number of exponential terms to 

a consistent number; the data obtained with 16 scans were fit to three terms.  Less than three is 

not adequate to fit the data, as evidenced by poor residuals.  Given the high signal-to-noise ratio 

of the water, it is not difficult to obtain stable fitting solutions for serum or plasma water T2 data 

recorded with 16 scans.  For illustrative purposes, the T2 profile distributions shown in Figure 1 

were generated using CONTIN (s-provencher.com), even though the T2 values were quantified 

using XPFit as described above.  The water T2 values from CONTIN and XPFit are essentially 

identical.  XPFit has the advantage of being able to contrain the number of exponentials and 

employs a non-negative truncated single value decomposition algorithm, which stabilizes the 

calculation. 

 Statistical Analysis.   

 The correlation, linear regression and statistical analyses were performed using GraphPad 

Prism v. 6.05 (GraphPad Software, Inc.).  The guiding principles for the statistical analyses were 

derived from the book by Motulsky249 .  The null hypothesis states that there is no correlation 

between the variables being compared.  The two-tailed p value defines the probability of 

observing a correlation as strong or stronger if the null hypothesis were true.  For example, for r 

= -0.6 and p <0.01, there is less than 1% probability of observing a correlation this strong or 

stronger by random chance; thus, the null hypothesis is rejected.  For each correlation that met p-
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value thresholds, we inspected the plot to ensure that the correlation was not heavily influenced 

by one or two outliers.  Sample plots are provided in Figs. 2 and 3.  Regression residuals were 

analyzed in GraphPad Prism using the simple strategy outlined in the web link within ref. 271,272. 

 

Results and Discussion 

 

 The characteristics of the human subjects analyzed in this study are presented in Table 

S1.  Overall, this is a healthy group of adults spanning a wide age range.  The exclusion criteria 

are diabetes (HbA1c >6.4) or acute/chronic illness (C-reactive protein >10).  The mean values for 

various blood biomarkers fall within the normal reference ranges, although the values for some 

individuals are outside of those ranges.  For example, the mean HbA1c value is 5.5 ± 0.3, and 19 

of the 29 subjects are not diabetic or pre-diabetic by that criterion.  Of the remaining 10, seven 

have HbA1C values of 5.7 or 5.8, near the borderline between non-diabetes and pre-diabetes.  By 

fasting glucose criteria, only 3 of the 29 show evidence of pre-diabetes.  Similarly, some 

individual subjects have lipid levels outside the reference ranges, even though the mean values 

are not.   However, for white blood cell counts, insulin C-peptide, total protein and albumin 

concentrations, all 29 subjects are within normal reference ranges. 
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Table S2:  Biomarkers Measured in this Study 

 
TD-NMR Markers:  plasma water T2, T2p, T2a, T2g, T2c, T2v serum water T2, T2p, T2a, T2g, T2c, T2v 

 

Category Correlated with T2
† Did not correlate with T2

† 

Protein, viscosity, liver 
function markers 

total serum protein, serum albumin, 
serum globulins (calc), serum viscosity, 

plasma viscosity 

α1-antitrypsin, AST, ALT, 
GGT 

Inflammation, blood 
cell and oxidative 

stress markers 

hs-CRP, WBC, neutrophils, monocytes, 
eosinophils, basophils, platelets, RDW, 

anion gap corrected for albumin 
concentration, TNFα, sICAM*, I-309*, 

factor VII* 

RBC, hematocrit, 
hemoglobin, MCV, MCH, 

MCHC, lymphocytes, HNE, 
ORAC antioxidant capacity 

Cholesterol/lipid 
markers 

Total cholesterol, HDL-C, non-HDL-C, 
LDL-C, LDL-P, LDL size, small LDL-

P, HDL-P,  VLDL-C, remnant-C, 
apoB, DHA, omega-3 index 

Lp(a), EPA, AA, apoAI, 
phospholipids, apoE 

Insulin resistance & 
diabetes markers 

insulin, insulin C-peptide, HbA1c, 
HOMA2-IR, -%B, -%S, triglycerides,   

IR Score (LipoScience)  

glucose, free fatty acids, 
body-mass index 

Electrolyte markers chloride, bicarbonate, anion gap sodium, potassium, calcium 

Kidney function 
markers 

blood urea nitrogen (BUN)*, estimated 
glomerular filtration rate (eGFR)* 

creatinine 

Thyroid function 
markers 

thyroid stimulating hormone (TSH) free T4 

 

Table S2.  Biomarkers measured in this study.  †In this table, a correlation is defined as one 
where p<0.05 for the Pearson correlation, non-parametric Spearman correlation or both for at 
least one variant of serum or plasma water T2.  The null hypothesis states that there is no 
correlation between a plasma or serum water T2 measure and a particular biomarker.  The 
individual correlation coefficients and statistics are provided in Tables 1, 2 and S3-S12.  *These 
particular biomarkers were measured for only five-to-eight subjects; although they met the p-
value threshold, the correlations are considered preliminary.  The most compelling  of these 
preliminary correlations was plasma T2a with TNFα:  r = -0.93, R2 = 0.87, rS = -0.97, with p 
values <0.05, <0.05 and <0.001, respectively. 
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Figure 2.  Linear regression plots for plasma or serum water T2 vs. various blood 
biomarkers for the human subjects enrolled in this study.  (A) Plasma water T2 vs. total 
serum protein; (B) Plasma water T2 vs. white blood cell count; (C) Plasma water T2 vs. HbA1c ; 
(D) Serum water T2 vs. total serum protein; (E) Serum water T2 vs. red cell distribution width; 
(F) Serum water T2 vs. LDL particle number.  The correlation statistics are provided in Tables 1 
and 2. 
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Table 1:  Whole plasma T2 values correlated with biomarkers 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 28 -0.65*** 0.42*** -0.65*** 

Globulins, Serum 28 -0.52** 0.27** -0.54** 

Viscosity, Serum 24 -0.49* 0.24* -0.65*** 

Viscosity, Plasma   9 -0.82** 0.67** -0.90*** 

WBC Count 27 -0.60*** 0.36*** -0.60*** 

Neutrophil Count 27 -0.54** 0.29** -0.47* 

Platelet Count 27 -0.38 0.14 -0.39* 

C-reactive Protein 27 -0.57** 0.33** -0.54** 

HbA1c 27 -0.43* 0.19* -0.44* 

Insulin C-peptide 28 -0.42* 0.18* -0.41* 

HOMA2-IR 28 -0.39* 0.16* -0.39* 

HOMA2-%B 28 -0.40* 0.16* -0.36 

HOMA2-%S 28 +0.44* 0.20* +0.40* 

Triglycerides 28 -0.30 0.09 -0.43* 

Asparagine 26 +0.41* 0.17* +0.23 

 

*p<0.05 **p<0.01 ***p<0.001 

 

Table 1.  Correlation coefficients for plasma water T2 with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), insulin resistance (green) and 
other processes (unshaded).  Biomarkers were included in the table if they demonstrated at 
least one correlation coefficient with a p value < 0.05.  The null hypothesis is defined as no 
correlation between plasma water T2 and a particular biomarker in the overall population.    
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The plasma and serum water T2 values from TD-NMR vary considerably across the study 

population (Fig. 1C and Table S1).  To identify the factors governing the variation, we measured 

over 70 blood biomarkers and correlated them with plasma and serum water T2 values (Table 

S2).  The correlation coefficients are listed in Tables 1 and 2, and selected linear regression plots 

are shown in Figure 2.  Strong inverse correlations are observed between plasma water T2 total 

serum protein concentration and viscosity (Table 1, yellow).  Of the main protein fractions, the 

concentration of serum globulins, but not serum albumin, correlates with plasma water T2.  

Among the strongest correlations with plasma water T2 are several inflammatory markers:  white 

blood cell, neutrophil and platelet counts, and C-reactive protein (Table 1, red).  In addition, 

plasma water T2 correlates with markers of insulin resistance:  HbA1c, insulin C-peptide, 

HOMA2-IR, -%B, -%S and triglycerides (Table 1, green). Plasma water T2 measurements did 

not correlate with body-mass index or age. 

 Serum water T2 values reveal a somewhat different set of correlations as compared with 

plasma.  Serum water T2 does not correlate with markers of insulin resistance.  Rather, it 

correlates with a number of LDL-related cholesterol markers (Table 2, blue).  However, serum 

water T2 does show significant correlations with total serum protein, globulin and albumin 

concentrations as well as serum viscosity (Table 2, yellow).  Like plasma, serum water T2 

correlates with white blood cell and neutrophil counts, as well as C-reactive protein (Table 2, 

red).   The correlations from this observational study led us to consider the factors that may 

contribute directly to the variation in plasma and serum water T2, as well as those that may be 

indirectly linked through another variable or a network of variables.  Human blood plasma and 

serum are complex mixtures containing hundreds of different proteins and lipoproteins as well as 

numerous small molecule metabolites.  At first thought, de-convoluting these myriad variables 
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would seem to be hopelessly complex.  However, the ten most abundant proteins in plasma 

(albumin, IgG, transferrin, fibrinogen, IgA, α2-macroglobulin, IgM, α1-antitrypsin, C3 

complement and haptoglobin) account for over 90% of total protein mass and the top two, nearly 

80% 273.  So identifying the primary contributors to water T2 may be feasible.   

 We used two approaches to tease apart the factors giving rise to variations in plasma and 

serum water T2.  The first approach was reductionist, utilizing controlled experiments on 

simplified model systems that mimic one or more components of human serum or plasma.  The 

second was statistical and involved eliminating the influence of one variable and analyzing the 

correlations with those that remain.    

Figure 3A displays the variation of water T2 with protein concentration in a sample 

containing only human serum albumin in buffer (▲).  As protein concentration increases, the 

water T2 decreases, and the viscosity of the sample increases.  Similar results are observed for 

lipoprotein-deficient serum (■) and whole serum (●).  The influence of viscosity on water T2 can 

be eliminated by analyzing the regression residuals 271, yielding the parameter T2v.  The water 

T2v values for albumin solutions, like uncorrected T2, are inversely correlated with protein 

concentration.  Likewise, water T2v values for serum samples from the human study group are 

inversely correlated with total serum protein concentration (Table S3).   Therefore, the water T2 

value must be influenced not only by viscosity, but other factors such as the binding of water to 

protein molecules 275,276. The 1H T2 values for water and other small molecules in solution are 

inversely proportional to the correlation time for rotational diffusion, i.e., the time it takes for 

reorientation of the 1H magnetic dipoles of water molecules in the static magnetic field of the 

NMR instrument32.   
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Table 2:  Whole serum T2 values correlated with biomarkers 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 26 -0.82**** 0.67**** -0.86**** 

Albumin, Serum 26 -0.39* 0.15* -0.39* 

Globulins, Serum 26 -0.49* 0.24* -0.57** 

Viscosity, Serum 25 -0.52* 0.27* -0.76**** 

WBC Count 25 -0.54** 0.29** -0.51** 

Neutrophil Count 25 -0.52** 0.27** -0.52** 

Eosinophil Count 25 -0.32 0.10 -0.45* 

C-reactive Protein 25 -0.37 0.14 -0.49* 

RDW 23 -0.61** 0.38** -0.66*** 

Total Cholesterol 26 -0.47* 0.23* -0.52** 

Non-HDL-C 26 -0.42* 0.18* -0.49* 

LDL-C 26 -0.42* 0.18* -0.44* 

LDL-P 25 -0.45* 0.20* -0.47* 

Apo B 26 -0.39* 0.15* -0.42 

3-Methyl-Histidine§ 24 +0.39 0.15 +0.50** 

Phenylalanine 24 -0.42* 0.17* -0.33 

Anion Gap 26 -0.39* 0.15* -0.41* 

 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
 

Table 2.  Correlation coefficients for serum water T2 values with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), dyslipidemia (blue) and other 
metabolic processes (unshaded).  Biomarkers were included in this table if they demonstrated 
at least one correlation coefficient with a p value < 0.05. §Numbering is based on current IUPAC 
nomenclature, as explained elsewhere274.  Defined with this convention, 3-methyl-histidine refers 
to the amino acid found in anserine, a dipeptide not produced in human tissues, but derived from 
dietary ingestion of poultry and fish.   
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Table S3:  Water T2v Correlations, Human Serum 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 24 -0.47* 0.22* -0.41* 

Viscosity, Serum 24  0.00 0.00 -0.01 

Insulin 24 -0.42* 0.18* -0.46* 

Total Cholesterol 24 -0.50* 0.25* -0.46* 

Non-HDL-C 24 -0.40* 0.16* -0.41* 

LDL-C (VAP) 24 -0.43* 0.18* -0.40 

LDL-P 24 -0.46* 0.21* -0.54** 

 

Table S3.  Correlation coefficients for serum water T2v values with biomarkers for protein 

concentration and viscosity (yellow), insulin resistance (green) and dyslipidemia (blue).  
Serum water T2v values represent the regression residuals obtained from a linear fit of serum 
water T2 vs. serum viscosity.   This analysis removes the influence of viscosity on serum water 
T2 and highlights the concentration-dependent binding of water to proteins and lipoproteins.  One 
subject with an extremely high serum viscosity level, a statistical outlier, was excluded from this 
analysis.  See Table S1 legend for further information about this subject. 
 

In turn, the rotational correlation time depends on temperature and viscosity, as defined 

by the Stokes-Einstein-Debye equation 201,277,278.  Water molecules bound to proteins sense the 

slower rotational tumbling of the protein; thus, the observed water T2 is lower than that of 

unbound water 275.  In addition, the protein-bound water molecules undergo exchange with 

unbound water, and the hydrogen atoms on ionizable groups of the proteins exchange with those 

of unbound water.  Both exchange processes further decrease the observed 1H T2 for water 276.  

Overall, water T2 is influenced by sample viscosity as well as the binding and exchange of water 

molecules on and off protein binding sites. 
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Figure 3.  Protein concentration and oxidation affect water T2 values. (A) Water T2 values  
vs. protein concentration for human serum albumin (▲), lipoprotein-depleted human serum (■) 
and whole human serum (●); the serum samples were progressively diluted with buffer to 
change protein concentration; (B) and (C) Metal-catalyzed oxidation of proteins.  In (B), whole 
serum or plasma was titrated with CuSO4 in the presence or absence of added histidine.  In (C), 
20uM of CuSO4  was added to either human serum or a protein mixture containing human serum 
albumin and γ-globulin, after which the samples was titrated H2O2.  (D) Whole human serum (C) 
was titrated with malondialdehyde tetrabutylammonium salt, which reacts with protein side 
chains to form carbonyl derivatives.  (E) Linear regression of serum water T2 with the anion gap; 
(F) Linear regression of serum water T2a with the anion gap.   
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 Insulin Resistance and Water T2.  We sought to identify the factors that underlie the 

correlation of plasma, but not serum, water T2 with markers of insulin resistance.  The primary 

difference between plasma and serum is the presence of clotting factors I, II, V, VIII and XIII in 

plasma 273.  All have negligible concentrations except factor I (fibrinogen), which constitutes 

~4% of total plasma protein.  Fibrinogen levels increase in insulin resistance and diabetes, and 

increased fibrinogen is an established risk factor for cardiovascular disease279-281 .  Correction of 

plasma water T2 values by removing the influence of serum protein concentration highlights the 

influence of fibrinogen.  Like uncorrected T2, plasma water T2p values display an inverse 

correlation with insulin resistance biomarkers (Table S4).  Thus, plasma water T2 appears to be 

sensing insulin resistance, in part, through variations in fibrinogen concentration.   

 Although fibrinogen level is a significant contributor, it is not the only factor linking T2 

and insulin resistance.  Plasma water T2a lacks the influence of albumin and emphasizes both 

fibrinogen and globulin concentrations.  Among all of the water T2 variants, plasma water T2a 

exhibits the strongest correlations with insulin resistance markers (Table S5).  Conversely, 

plasma water T2g, which eliminates the influence of serum globulin concentration, shows weaker 

correlations (Table S6).  Serum water T2a, which highlights the influence of globulins in the 

absence of fibrinogen, also correlates with insulin resistance markers (Table S9).  The most 

abundant proteins present in the serum globulin fraction include IgG, IgA and IgM.  

Immunoglobulin concentrations, especially IgA, increase in metabolic disorders including 

metabolic syndrome, obesity and hyperglycemia 282.  Thus, plasma water T2 appears to be 

sensing insulin resistance through variations in both fibrinogen and immunoglobulin 

concentrations. 
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Table S4:  Water T2p Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 28  0.00 0.00 -0.04 

Albumin, Serum 28  0.09 0.01  0.05 

Globulins, Serum 28 -0.07 0.01 -0.08 

Viscosity, Serum 24 -0.27 0.07 -0.32 

Viscosity, Plasma   9 -0.90*** 0.81*** -0.93*** 

WBC Count 27 -0.43* 0.18* -0.40* 

Neutrophil Count 27 -0.39* 0.15* -0.44* 

C-reactive Protein 27 -0.48* 0.23* -0.41* 

HbA1c 27 -0.41* 0.17* -0.45* 

Insulin C-peptide 28 -0.43 0.19* -0.47* 

HOMA2-IR 28 -0.41* 0.17* -0.45* 

HOMA2-%B 28 -0.41* 0.16* -0.36 

HOMA2-%S 28 +0.48** 0.23** +0.46* 

Triglycerides 28 -0.28 0.08 -0.38* 

Alanine 26 -0.42* 0.18* -0.43* 

Citrulline 26 -0.36 0.13 -0.41* 

TSH 28 -0.33 0.11 -0.39* 

 
*p<0.05 **p<0.01 ***p<0.001 

 

Table S4.  Correlation coefficients for plasma water T2p with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), insulin resistance (green) and 
other processes (unshaded).  The plasma water T2p values represent the regression residuals 
obtained from a linear fit of plasma water T2 vs. total serum protein.  This analysis removes the 
influence of total serum protein concentration on plasma water T2 values, emphasizing the 
influence of fibrinogen concentration. 
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Table S5:  Water T2a Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total protein, serum 28 -0.52** 0.27** -0.50** 

Albumin, Serum 28  0.00 0.00  0.03 

Globulins, Serum 28 -0.60*** 0.36*** -0.62*** 

Viscosity, Plasma 9 -0.83** 0.68** -0.90** 

WBC Count 27 -0.53** 0.28** -0.49** 

Neutrophil Count 27 -0.51** 0.26** -0.49** 

C-reactive Protein 27 -0.61** 0.37** -0.63** 

HbA1c 27 -0.46* 0.21* -0.48* 

Insulin C-peptide 28 -0.50** 0.25** -0.51** 

HOMA2-IR 28 -0.47* 0.22* -0.48** 

HOMA2-%B 28 -0.46* 0.21* -0.48** 

HOMA2-%S 28 +0.49** 0.24** -0.50** 

Triglycerides 28 -0.37 0.14 -0.47* 

TG/cholesterol ratio 28 -0.32 0.10 -0.40* 

Asparagine 26 +0.47* 0.22* +0.29 

Bicarbonate ion 28 +0.31 0.10 +0.41* 

 
*p<0.05 **p<0.01 ***p<0.001 

 
Table S5.  Correlation coefficients for plasma water T2a with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), insulin resistance (green) and 
other processes (unshaded).  Plasma water T2a values represent the regression residuals 
obtained from a linear fit of plasma T2 vs. serum albumin concentration.  This analysis removes 
the influence of albumin concentration on plasma T2 and emphasizes the influence of globulins 
and fibrinogen concentration. 
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Table S6:  Water T2g Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Albumin, Serum 28 -0.46* 0.21* -0.44* 

Globulins, Serum 28 0.00 0.00 -0.05 

Viscosity, Plasma 9 -0.82** 0.67** -0.87** 

C-reactive Protein 27 -0.43* 0.18* -0.40* 

WBC Count 27 -0.59** 0.35** -0.54** 

Neutrophil Count 27 -0.46* 0.21* -0.41* 

Platelet Count 27 -0.44* 0.19* -0.42* 

Monocyte Count 27 -0.44* 0.19* -0.54** 

HbA1c 27 -0.37 0.14 -0.38* 

HOMA2-%S 28 +0.38* 0.15* +0.34 

IR Score (LipoScience) 17 -0.31 0.09 -0.49* 

LDL-P 27 -0.39* 0.15* -0.42* 

Small LDL-P/HDL-P 17 -0.36 0.13 -0.52* 

Alanine 26 -0.44* 0.20* -0.44* 

Homocysteine 27 -0.30 0.09 -0.41* 

Ethanolamine 26 -0.37 0.14 -0.43* 

MCV 27 +0.34 0.12 +0.38* 

Chloride ion 28 +0.43* 0.18* +0.49** 

 

*p<0.05  **p<0.01 ***p<0.001 
 

Table S6.  Correlation coefficients for plasma water T2g with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), insulin resistance (green), 
dyslipidemia (blue) and other processes (unshaded).   Plasma water T2g values represent the 
regression residuals obtained from a linear fit of plasma T2 vs. serum globulin concentration.   
This analysis removes the influence of serum globulin concentration on plasma water T2 and 
highlights the influence of albumin and fibrinogen.  
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Table S7:  Water T2c Correlations, Human Plasma 

 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total protein, serum 28 -0.64*** 0.41*** -0.65*** 

Albumin, Serum 28 -0.25 0.06 -0.29 

Globulins, Serum 28 -0.54** 0.30** -0.57** 

Viscosity, Plasma 9 -0.81** 0.65** -0.90** 

WBC Count 27 -0.64*** 0.41*** -0.59** 

Neutrophil Count 27 -0.58** 0.34** -0.47* 

Platelet Count 27 -0.36 0.13 -0.39* 

C-reactive Protein 27 -0.60*** 0.36*** -0.51** 

HbA1c 27 -0.45* -0.20* -0.49** 

Insulin C-peptide 28 -0.42* 0.18* -0.47* 

HOMA2-IR 28 -0.39* 0.15* -0.45* 

HOMA2-%B 28 -0.40* 0.16* -0.40* 

HOMA2-%S 28 +0.42* 0.18* +0.49 

Triglycerides 28 -0.30 0.09 -0.40* 

Asparagine 26 +0.39* 0.15* +0.29 

 
*p<0.05 **p<0.01 ***p<0.001 

 
Table S7.  Correlation coefficients for plasma water T2c with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), insulin resistance (green) and 
other processes (unshaded). Plasma water T2c values represent the regression residuals obtained 
from a linear fit of plasma water T2 vs. total cholesterol concentration.   This analysis removes 
the influence of total cholesterol concentration on plasma water T2 and emphasizes the influence 
of plasma proteins other than lipoproteins. 
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Table S8:  Water T2v Correlations, Human Plasma 
 

Biomarker N* r (Pearson) R2 rS (Spearman) 

Total protein, serum 9 -0.79* 0.63* -0.73* 

Viscosity, Plasma 9  0.00 0.00 -0.25 

RDW 9 -0.53 0.28 -0.73* 

Omega 3 Index 9 -0.71* 0.50* -0.85** 

DHA 9 -0.70* 0.48* -0.77* 

3-Methyl-Histidine 9 +0.70* 0.48* +0.54 

Hydroxy-Proline 9 -0.54 0.29 -0.76* 

 
*p<0.05 **p<0.01 ***p<0.001 

 
Table S8.  Correlation coefficients for plasma water T2v values with biomarkers for protein 
concentration and viscosity (yellow) and other processes (unshaded).  Plasma water T2v 
values represent the regression residuals obtained from a linear fit of plasma water T2 vs. plasma 
viscosity.   This analysis removes the influence of plasma viscosity on plasma water T2 and 
emphasizes the influence of water binding to proteins and lipoproteins.  *For some subjects, there 
was not enough blood available to measure both serum and plasma viscosity, so the number of 
subjects with plasma viscosity data is smaller. 
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Table S9:  Water T2a Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 26 -0.75**** 0.56**** -0.74**** 

Albumin, Serum 26  0.00 0.00 -0.01 

Globulins, Serum 26 -0.72**** 0.52**** -0.72**** 

Viscosity, Serum 25 -0.44* 0.19* -0.62*** 

WBC Count 25 -0.43* 0.19* -0.40* 

Neutrophil Count 25 -0.47* 0.22* -0.44* 

Eosinophil Count 25 -0.30 0.09 -0.41* 

Basophil Count 25 -0.36 0.13 -0.44* 

RDW 25 -0.14 0.02 -0.41* 

RDW (see caption)§ 23 -0.59** 0.34** -0.55** 

C-reactive Protein 25 -0.42* 0.18* -0.57** 

Total Cholesterol 26 -0.43* 0.19* -0.48* 

Non-HDL-C 26 -0.38 0.15 -0.48* 

LDL-C (VAP) 26 -0.36 0.13 -0.41* 

LDL-P 25 -0.40* 0.16* -0.43* 

Apo B 26 -0.35 0.13 -0.44* 

Remnant-C 26 -0.35 0.13 -0.41* 

Insulin 26 -0.46* 0.21* -0.47* 

Insulin C-peptide 26 -0.39* 0.15* -0.42* 

HOMA2-IR 26 -0.38 0.14 -0.40* 

HOMA2-%S 26 +0.33 0.11 +0.42* 

 

- Table S9 continued on next page – 
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Table S9:  Water T2a Correlations, Human Serum (continued) 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Bicarbonate ion 26 +0.45* 0.20* +0.46* 

3-methyl histidine 24 +0.35 0.12 +0.43* 

 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
 
Table S9.  Correlation coefficients for serum water T2a values with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), dyslipidemia (blue), insulin 
resistance (green) and other processes (unshaded).  Serum water T2a values represent the 
regression residuals obtained from a linear fit of serum water T2 vs. serum albumin 
concentration.   This analysis removes the influence of serum albumin concentration on serum 
water T2 and emphasizes the influence of globulin and lipoproteins concentrations. 

 

 Dyslipidemia and Water T2.  Serum, but not plasma, water T2 is inversely correlated 

with a number of LDL-related biomarkers.  Similar correlations of T2 and LDL markers are 

observed with serum water T2p, T2g, T2a and T2v (Tables S9-11, 3).  This pattern suggests that 

serum water T2 is sensing elevated LDL cholesterol and particle number concentration primarily 

through the direct binding of water molecules to lipoprotein particles.  Although most of the 

plasma water T2 variants do not track with LDL, an exception is plasma T2g (Table S6), which 

correlates with LDL-P, as well as the ratio of small LDL-P to HDL-P and the lipoprotein-derived 

insulin resistance score 98. 
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Table S10:  Water T2p Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 26  0.00 0.00  0.00 

Total Cholesterol 26 -0.42* 0.18* -0.40* 

LDL-P 25 -0.40* 0.16* -0.45* 

HDL-P 15 +0.52* 0.27* 0.46 

small-LDL-P/HDL-P 15 -0.45 0.20 -0.53* 

Platelet Count 25 -0.30 0.09 -0.43* 

Phenylalanine 24 -0.53** 0.29** -0.57** 

Alanine 24 -0.49* 0.24* -0.57** 

Tyrosine 24 -0.41* 0.17* -0.45* 

1-Methyl-Histidine§ 24 -0.39 0.15 -0.42* 

 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 

 

Table S10.  Correlation coefficients for serum water T2p values with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), dyslipidemia (blue) and other 
processes (unshaded).  Serum water T2p values represent the regression residuals obtained from 
a linear fit of serum water T2 vs. total serum protein concentration.   This analysis removes the 
influence of albumin, globulins and viscosity on serum water T2 and emphasizes the influence of 
serum lipoproteins.   
 
§This numbering is based on current IUPAC nomenclature, as explained elsewhere 274.  As 
defined with this convention, 1-methyl-histidine refers to the amino acid found in carnosine, a 
dipeptide present in human muscle tissue.  Elevated 1-methyl-histidine in the circulation is 
consistent with protein breakdown in muscle, as seen in insulin resistance and diabetes, or with 
strenuous exercise.  Concurrent elevations of phenylalanine, alanine and tyrosine support that 
interpretation. 
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Table S11:  Water T2g Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 26 -0.53** 0.28** -0.49* 

Albumin, Serum 26 -0.70**** 0.49**** -0.72**** 

Globulins, Serum 26  0.00 0.00  0.01 

Viscosity, Serum 25 -0.41* 0.16* -0.48* 

WBC Count 25 -0.51** 0.26** -0.49* 

Neutrophil Count 25 -0.45* 0.20* -0.48* 

Monocyte Count 25 -0.38 0.14 -0.44* 

Total Cholesterol 26 -0.47* 0.22* -0.49* 

Non-HDL-C 26 -0.41* 0.17* -0.44* 

LDL-C (VAP) 26 -0.43* 0.19* -0.44* 

LDL-P 25 -0.47* 0.22* -0.48* 

Apo B 26 -0.37 0.14 -0.41* 

IR Score (LipoScience) 15 -0.37 0.14 -0.53* 

Phenylalanine 24 -0.57** 0.33** -0.60** 

Tyrosine 24 -0.54** 0.29** -0.62** 

Alanine 24 -0.44* 0.19* -0.47* 

Ethanolamine 24 -0.40 0.16 -0.50* 

α-amino-butyric acid 24 -0.40 0.16 -0.50* 

Chloride Ion 26 +0.40* 0.16* +0.51** 

Anion Gap 26 -0.37 0.13 -0.41* 

 

Table S11.  Correlation coefficients for serum water T2g values with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), dyslipidemia (blue) and other 
processes (unshaded).  Serum water T2g values represent the regression residuals obtained from 
a linear fit of serum water T2 vs. serum globulin concentration.   This analysis removes the 
influence of serum globulins on serum water T2 and emphasizes the influence of albumin and 
lipoproteins. 
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 Inflammation and Water T2.  Both plasma and serum water T2 correlate inversely with 

inflammatory markers, namely white blood cell and neutrophil counts, and C-reactive protein.  

Serum water T2 shows a strong inverse correlation with red cell distribution width, which is also 

linked with inflammation 283.  For white blood cell counts, the strongest correlations are observed 

for plasma water T2 (Table 1) and serum water T2c, which removes the influence of cholesterol 

concentration (Table S12), whereas no detectable correlations were observed for plasma water 

T2v and serum water T2p.  Overall, it appears that water T2 is sensing white blood cell counts via 

changes in fibrinogen, albumin and globulins (plasma) or just albumin and globulins (serum).  

Neutrophils, which comprise three fourths of the white blood cell population and are linked with 

both inflammation and insulin resistance 284, show a similar pattern.   For C-reactive protein, the 

pattern is different.  The strongest correlation is observed with plasma water T2a, whereas no 

correlations with p<0.05 are observed for plasma water T2v, serum water T2v, T2g, or T2p.  Taken 

together, it appears that water T2 is sensing C-reactive protein levels via fluctuations in 

fibrinogen and globulins (plasma) or just globulins (serum). 

 Both plasma and serum water T2g, but not other T2 variants, correlate with monocyte 

count, another marker of inflammation 285.   Similarly, plasma water T2g correlates with platelets, 

which have dual roles in thrombosis and inflammation 286.  Although preliminary, correlations 

are observed with other inflammatory markers (Table S2).  The inverse correlation of TNFα with 

plasma water T2 and T2a is particularly intriguing and warrants further study. 
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Table S12:  Water T2c Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum 26 -0.78**** 0.61**** -0.82**** 

Globulins, Serum 26 -0.49* 0.24* -0.65*** 

Viscosity, Serum 25 -0.30 0.09 -0.62** 

WBC Count 25 -0.64*** -0.40*** -0.57** 

Neutrophil Count 25 -0.65*** -0.43*** -0.62** 

C-reactive Protein 25 -0.41* 0.17* -0.49* 

3-Methyl-Histidine 24 +0.47* 0.22* +0.57* 

 
Table S12.  Correlation coefficients for serum water T2c values with biomarkers for protein 

concentration and viscosity (yellow), inflammation (red), and other metabolic states 
(unshaded).  Serum water T2c values represent the regression residuals obtained from a linear fit 
of serum water T2 vs. total cholesterol concentration.   This analysis removes the influence of 
cholesterol and lipoprotein levels on serum water T2 and highlights the influence of albumin and 
globulins. 

 

Metabolite Levels and Water T2.  To assess the possible contribution of small 

metabolites to variations in water T2, we conducted a series of controlled experiments.   The 

samples contained fixed physiological concentrations of human albumin and γ-globulins, and 

varying amounts of metabolites, either an amino acid mixture (0.05 - 5.0 mg/ml), glucose (50 - 

400 mg/dl), ATP (0.5 - 2.5 mg/ml), uric acid (2.5 - 8.6 mg/dl), urea (1 - 5 mg/dl), or 

glyceraldehyde (1.2 - 4.3 mg/dl).  No significant changes in water T2 are observed across these 

physiological ranges of metabolites.  Only glucose at 400 mg/dl, a level found in severe 

uncontrolled diabetes, causes a significant decrease in T2.  Although water can bind to small 

molecules, the effect on its rotational correlation time and T2 is negligible compared to that for 

water bound to protein and lipoprotein assemblies. 
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 Proteolysis, Oxidation and Water T2.  The measurement of water T2 requires only six 

minute experiments, but we also acquire data for longer periods of time in order to track the 

much smaller lipid and protein peaks.  The T2 value of the water peak (not the lipid/protein 

peaks) slowly decreased over a 3 to 18 hour period of incubation at 37°C.  Initially, we 

hypothesized that the slow, gradual decrease in water T2 may be resulting from ex vivo 

proteolysis.  To assess the effect of proteolysis, we incubated whole human serum with 

exogenous trypsin and monitored T2 over time.  This incubation did not lead to a decrease in 

water T2.  Similar incubations of simple protein mixtures and trypsin did not result in a decrease 

in T2, but rather a small increase.  The lack of sensitivity of water T2 to proteolysis could arise 

from two factors.  Water binding to smaller protein fragments would cause less of a decrease in 

T2 compared to water binding to larger, intact proteins.  If substantial proteolysis occurs, it may 

cause T2 to increase, not decrease.  Another consideration is that human blood has evolved to 

resist proteolysis, especially through the activity of α1-antitrypsin.  It is notable that across our 

human subject population, the concentration of α1-antitrysin does not correlate with any of the 

water T2 markers. 

 Another possible cause of slow decrease in serum water T2 is ex vivo protein oxidation.  

Hydrogen peroxide is ubiquitous in the human body 287 and can serve as a substrate for metal-

catalyzed oxidation involving albumin-bound copper 288.  The product is hydroxyl radical, a 

highly reactive oxygen species that can non-enzymatically hydroxylate proline and lysine side 

chains 289 and cause a range of other protein modifications including carbonylation 290.  Such 

modifications increase the polarity of protein side chains and create additional binding sites for 

water. 
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 Figure 3B illustrates the decrease in water T2 for human serum and plasma samples 

incubated with increasing amounts of copper (II) sulfate.  The effect was lessened when 

histidine, a copper chelator, was included in the buffer.  A similar decrease in water T2was 

observed when 20um of CuSO4 was added to whole human serum is titrated with hydrogen 

peroxide. Interestingly, the same phenomena were not observed when the experiment was 

repeated with a protein solution indicating a variable found in whole human serum, but not the 

protein mixture, was driving the reaction(Fig. 3C).  Also, malondialdehyde causes a 

concentration-dependent decrease in water T2 (Fig. 3D); this agent modifies protein side chains, 

generating carbonyl derivatives 290.  Albumin, by sequestering copper and preventing metal 

catalyzed oxidation of other proteins, is thought to be the most abundant anti-oxidant in human 

blood 291.  Some of the hydrogen peroxide needed for this reaction may come from neutrophils 

activated during inflammation 292,293.   

 Is water T2 able to sense metal-catalyzed protein oxidation that occurs in vivo?  One of 

the consequences of albumin oxidation in vivo is a change in the protein’s net charge, with an 

anionic shift to lower isoelectric point 294.  Similarly, glycation of albumin lowers its isoelectric 

point 295.  Therefore, we searched for evidence of an anionic shift in the blood samples from our 

study population.   

 Serum water T2 and T2g are inversely correlated with the anion gap, and T2g is positively 

correlated with chloride ion concentration (Fig. 3E; Tables 2 and S10).  The anion gap is used in 

clinical medicine to help diagnose different types of acid-base abnormalities .  The body 

maintains charge neutrality in the circulation, but the concentration of measured cations nearly 

always exceeds that of measured anions.  The anion gap is defined as [UA] - [UC] = [Na+] + 

[K+] - ([Cl-] + [HCO3
-]), where UA and UC represent unmeasured anions and cations, 
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respectively.  The gap results primarily from albumin, an anionic protein with an isoelectric point 

of ~4.9.  As the albumin concentration increases in vivo, the body decreases the chloride ion 

concentration to maintain charge balance, resulting in an increase in the anion gap.  Across this 

human study population, serum water T2 and T2g are sensing differences in chloride ion and 

anion gap, in part, through variation in albumin concentration. 

 Another factor that modulates the anion gap is the net charge of albumin molecules.  

Correcting serum water T2 values for albumin concentration does not eliminate the dependence 

of T2 on anion gap (Fig. 3F).  This observation indicates that serum water T2 is sensing changes 

in albumin net charge, as well as concentration, likely as a result of glyco-oxidation linked to 

inflammation.  In support of this conclusion, the anion gap corrected for albumin concentration 

correlates positively with levels of C-reactive protein, a marker of inflammation. 

 Correlations of other biomarkers with water T2.  Alanine concentration is noteworthy 

for its inverse correlations with water T2 values, specifically serum and plasma water T2p and 

T2g.  One of the most abundant free amino acids in the blood, alanine levels correlate with 

HbA1c, triglycerides, small LDL and LDL particle number, and the levels of other amino acids in 

our database.  This pattern is consistent with insulin resistance, protein mobilization from muscle 

and abnormalities in LDL metabolism..  Phenylalanine concentration correlates inversely with 

serum water T2, T2p, T2g and T2v, but not T2c, T2a or any of the plasma water T2 markers.  It 

correlates positively with markers of abnormal LDL metabolism.  Thus, serum water T2 appears 

to be sensing variation in phenylalanine levels primarily via changes in LDL-C and LDL-P, 

whereas it is sensing variation in alanine through both insulin resistance and LDL markers.  

Homocysteine, a known marker of cardiovascular risk, correlates with plasma water T2g. 
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 Two amino acids show positive correlations with water T2:  asparagine and 3-methyl-

histidine.  For the latter, serum water T2 appears to be sensing its levels via changes in globulin 

levels.  Of note, 3-methyl-histidine is not synthesized by humans, but is a breakdown product of 

anserine, a dipeptide derived from the dietary ingestion of poultry and fish.  Both anserine and 3-

methylhistidine are chelators of divalent cations and may inhibit copper-catalyzed oxidation, as 

well as glycation and lipoxidation274. 

 Inverse Proteomics for Health Assessment and Promotion.  Conventional proteomics 

uses mass spectrometry to measure a large number of protein biomarkers and establish 

phenotypic profiles 296.  Here we generated protein-based phenotypic profiles by measuring just 

one biomarker:  water T2.  Also, conventional proteomics focuses on the less abundant proteins 

in blood after removing the most abundant proteins during pre-treatment 297,298.  In contrast, the 

current approach involves no pre-treatment or sample manipulation and leverages the 

information content of all plasma and serum proteins, especially the most abundant ones.  For 

these reasons, we refer to this approach as inverse proteomics.   

 Lower values of water T2 in serum and plasma are indicative of increasing degrees of 

metabolic dysfunction, even in apparently healthy human subjects.  The unique value of inverse 

proteomics is that health status with respect to insulin resistance, low-grade inflammation, 

dyslipidemia and oxidative stress can be assessed simultaneously in one measurement without 

having to order a panel of clinical lab tests or biomarkers.  One could envision the development 

of a T2 Health Score, a practical screening tool for the early identification of hidden 

abnormalities in healthy subjects.  This is contrast with conventional diagnostic tests, which are 

designed to rule in or rule out existing disease, typically in individuals who are already 

symptomatic.  Early detection and correction of subclinical abnormalities in healthy individuals 
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could prevent the progression to serious diseases like diabetes, coronary artery disease, and 

possibly Alzheimer’s disease 299.  These disorders account for much of the morbidity and 

mortality in modern societies.  Effective screening tools that can be implemented practically, 

inexpensively and broadly across the population will have a place in P4 medicine:  personal, 

predictive, preventative and participatory 300.  

 Although this study focused on the analysis of blood plasma and serum, it is conceivable 

that similar information could be extracted from whole blood, after correcting for hematocrit.  

Conversely, information could be gleaned about blood cells after correcting for plasma protein 

levels.  Given the intensity of the water NMR signal, it should be feasible to monitor the mobility 

of water in blood from outside of the body using a TD-NMR-enabled finger clip, earlobe clip or 

a wristwatch-like device linked to a smart phone.  This concept is not farfetched, as portable 

NMR devices are already in use in industry 9.



 

 

Chapter 6: Methods Development for the Analysis of Biological 

Samples using Benchtop Time-Domain Nuclear Magnetic 

Resonance 
 

Introduction 
 

The high-resolution analysis of biological samples using nuclear magnetic resonance 

spectroscopy (NMR) typically demands the use of instruments with mid-to-high-field 

superconducting magnets and sophisticated electronic consoles.  Proper operation of these 

complex instruments usually requires the skill set of a NMR specialist, and they can be 

expensive to purchase and maintain.  Recently, a number of low-field benchtop NMR 

instruments with permanent magnets have been developed that overcome some of the operational 

and economic barriers of high-field NMR 26.  While they sacrifice some degree of sensitivity and 

resolution, the low price, small footprint and simplified user interface has increased the 

accessibility of NMR to non-NMR specialists.  Some low-field benchtop instruments are 

designed to function as miniature NMR spectrometers, generating conventional NMR spectra, 

sometimes with heteronuclear 2D capabilities.  

A different class of benchtop system is designed for relaxometry rather than 

spectroscopy.  Known as benchtop time-domain NMR (TD-NMR), these instruments analyze the 

raw free-induction decay (FID) or perform relaxation experiments in the time domain, without 

the use of Fourier transforms.  A key practical advantage is that the magnetic field need not be 

high or homogeneous.  While TD-NMR sacrifices the chemical shift and is no substitute for 

spectroscopy, useful information can often be extracted directly from the FID or from relaxation 
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decay curves without chemical shift resolution.  Benchtop TD-NMR is particularly useful for 

analyzing oil-fat-protein content or the phase behavior of complex samples.  Thus, applications 

of TD-NMR have been developed for manufacturing and process control in industrial settings 

9,27,28. Some of the most common applications include:  evaluation of the relaxation properties of 

contrast agents used for magnetic resonance imaging (MRI) 1-4, petrophysical applications in oil 

and gas companies 5-11, food processing and quality12-20 and the conservation and 

characterization of building materials in chemical engineering 12,21-25.  Thus, relaxometry offers 

great potential for the characterization and quantification of components in complex mixtures 301.   

 Our lab set out to evaluate benchtop TD-NMR as a tool for clinical diagnostic purposes, 

especially for the analysis of human blood samples.  We have successfully characterized the 

lipid, protein and water components in whole human serum, an especially complex aqueous 

biological sample.  Our approach is to generate multi-exponential T2 decay curves from CPMG 

experiments and employ inverse Laplace transforms to resolve the individual exponential 

parameters.  In particular, we have focused on extracting data for the slower relaxing 

components in whole human serum, including water and the mobile lipid domains of serum 

lipoproteins.  Here we describe the experimental considerations important for generating and 

analyzing T2 data for whole human serum using benchtop TD-NMR.   

 

Experimental Procedures 

Serum and plasma preparation and analysis  
 
 Human subject volunteers were recruited with informed consent through two protocols 

approved by the Institutional Review Board of the University of North Texas Health Science 

Center (UNTHSC).  One protocol recruited seemingly healthy subjects from the student and staff 
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population at UNTHSC. The second protocol recruited members enrolled in the Health and 

Aging Brain Study at UNTHSC.  

 Blood samples were collected in the morning after an overnight fast.  Serum was 

collected into plain glass red-top tubes, which lack a clot activator and gel separator (BD model 

366441).  The samples were processed immediately after each blood draw, centrifuged to 

remove blood cells, followed by a second low speed spin of the supernatant to remove any 

residual blood cells.  

Benchtop TD-NMR relaxometry 

 Most of the TD-NMR measurements of T2 and T1 were performed on Bruker mq20 

Minispec instrument equipped with a 10 mm variable temperature probe (Model H20-10-25-

AVGX) and operating at 20MHz.  Some experiments were performed with a similarly equipped 

mq40 operating at 40 MHz.  The 10 mm NMR tube was filled to a sample height of 1 cm, 

corresponding to a sample volume of ~680 uL.  All measurements were performed at 37°C.  

Samples were equilibrated inside the instrument at for at least 30 minutes before analysis.  The 

T2 is measured using a modified CPMG pulse sequence, as shown in Figure 2A.  

Materials 
 
Relaxation agents Fe-Rex (MR-7200) and Gadolinium DTPA (MR-00P10) were purchased from 

Biopal. D2O was 99.9% pure and purchased from Cambridge Isotope Labs (7789-20-0).  

Results and Discussion 

 

Radiation damping and optimizing solvent suppression for aqueous samples  

 
 Our first attempts to analyze 1H T2 relaxation curves at 40 MHz for whole human serum 

and other aqueous biological samples failed to provide useful data.  The Bruker 
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mq40/Hyperquant TD-NMR instrument used for these experiments is equipped with a 10mm 

probe which holds approximately 700 µL of sample.  Under these conditions, the CPMG decay 

curves were not purely exponential, but exhibited oscillatory distortions.    

 Radiation damping is a common occurrence for 1H NMR of aqueous samples.  The 

strong rf signal induces a current in the receiver coil, which in turn generates a weak RF field 

that exerts a torque on the nuclear spins 30,302.  This phenomenon leads to a deviation from the 

intended response of the pulse sequence, resulting in premature relaxation and an oscillatory 

decay curve.  Figure 1 demonstrates how radiation damping manifests itself within the data.  

 

 

 

Figure 1: Effect of radiation damping on whole human serum. (A) The T2 profile of human 
serum shows only two peaks when radiation damping is present, as the T2 decay curve is 
distorted by non-exponential components.  Those components manifest themselves as 
osciallatory artifacts in the residuals comparing the experimental and calculated decay curves 
(right panel).  (B) In the absence of radiation damping, the T2 profile of human serum reveals up 
to seven peaks and the residuals appear random, without an oscillatory distortion.   
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 The T2 profiles following inverse Laplace transform of the CPMG decay curve using 

CONTIN contains one intense water peak, which overshadows other T2 components (Figure 1A).  

This can be attributed to a systematic oscillatory component within the raw decay curve, 

observable with the residual analysis, which displays the point-by-point differences between the 

raw decay curve and that calculated from the inverse Laplace analysis. 

We investigated multiple solvent suppression techniques to eliminate the radiation damping 

artifact.  First we tested the efficacy of MRI relaxation agents, whose paramagnetic properties 

drastically shorten the relaxation times of water 276,303.  The two relaxation agents tested were Fe-

Rex, an iron oxide-based T2 relaxation agent 304, and Gadolinium-DTPA, a T1 relaxation agent 

305.  We reasoned that these MRI agents would suppress the water signal to prevent radiation 

damping and shift the water T2 value from ~700 ms to a much lower value, possibly unveiling 

useful lipid and protein T2 peaks.  While both agents were successful in reducing water 

relaxation times and partially suppressing the water, they created other undesirable artifacts.  Fe-

Rex is coated with a proton-rich polymer, which gave rise to additional T2 peaks, interfering with 

the analysis whole human serum.  Gadolinium-DTPA seemed promising but distorted the T2 

values for non-water peaks in a concentration dependent fashion.  Even if the relaxation agents 

had the desired NMR response, the addition of compounds not native human serum raises the 

possibility of other chemical artifacts and adds an additional layer of complexity to a blood 

serum analysis protocol that should be as simple as possible. 

 Another approach was to replace a portion of the H2O in human serum with varying 

amounts of isotonic D2O using pressure dialysis.  Empirically, we determined that optimal water 

suppression occurred when the D2O content was between 70-80%, leaving 20-30 % of the proton 

signal intact.  In this range, there was no evidence of oscillatory artifacts and radiation damping.  
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The T2 profile in 70% D2O revealed 3-5 additional non-water peaks that were eventually 

assigned to lipid and protein components in human serum.  Although the D2O exchange 

approach was successful and useful for preliminary proof-of-concept experiments, solvent 

exchange is not practical for a clinical diagnostics protocol.  The buffer exchange process is 

labor and time-intensive, and D2O is somewhat expensive in that context. 

 A better approach is to incorporate water suppression into the pulse sequence so that no 

sample manipulations are necessary.  Although the 20MHz Bruker mq20 TD-NMR instrument 

that we currently use for serum analysis is equipped with a pulsed field gradient accessory, our 

aim was to use the simplest, most practical water suppression scheme that would be suitable for 

simpler instruments that lacked gradients.  The best approach was a WEFT-like sequence, 

although no Fourier transform is employed in this case 306.   Spin population inversion is 

achieved at the beginning of the pulse sequence, prior to the CPMG, using a composite 180-

degree pulse (90x-180y-90x) followed by a delay τ to allow partial longitudinal relaxation of the 

water (Figure 2).  This takes advantage the fact that the non-water lipid and protein components 

in the sample have much shorter T1 relaxation times than water and relax fully during the delay.  

The delay can be tuned to achieve the desired degree of water suppression.  Unlike NMR 

spectroscopy, where essentially complete water suppression is desirable, some residual water is 

advantageous in TD-NMR as it increases the overall signal-to-noise ratio of the CPMG decay 

curve.  The increased information content from the improved signal-to-noise stabilizes the 

inverse Laplace calculation and improves the precision of the measurement.  

We determined empirically that a delta delay of 0.95*T1 for water (leading to a water 

signal that is ~23% of its full intensity) provides a level of suppression sufficient to avoid 

radiation damping, while still maximizing the overall signal-to-noise of the CPMG decay curve.   
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Figure 2: Modified CPMG pulse sequence successfully eliminates radiation damping in 
whole human serum.  Panel A displays the pulse sequence.  Panel B shows an example of a T2 
profile and residuals after implementing the solvent suppression scheme.  
 

This level of residual water is consistent with our empirical findings from the D2O exchange 

experiments, which gave optimal results at 70-80% D2O.  Figure 2B shows a T2 profile of human 

serum that does not suffer from radiation damping.   

CPMG parameter optimization  
 
 Selecting the right combination of CPMG parameters was critically important for 

obtaining reproducible data and eliminating artifacts.  A short tau (0.19ms) was selected to 

prevent translational diffusion from complicating the T2 analysis, as TD-NMR instruments have 

somewhat inhomogeneous fields with fixed field gradients across the sample.  Using a tau 

significantly less than 0.19 ms can cause sample heating and data oversampling.  The dummy 

echo and acquisition time were set to ensure that the decay curve reached baseline as to not 

truncate the signal.  This was achieved by using a CPMG acquisition time ≥ 5 times the longest 

T2.  The acquisition time was adjusted by varying the number of data points.  The 90° and 180° 

degree pulses were calibrated for each sample, typically 8.22  and 16.44 µs, respectively, and 

showed little sample-to-sample variation. 
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 Other modifications were made to the original CPMG pulse sequence program obtained 

from Bruker.  The phase of the 180° pulse in the CPMG loop is alternated to mimimize pulse 

imperfections, which can introduce oscillatory artifacts into the CPMG decay curve.  In addition, 

the pulse sequence incorporates an 8-step phase cycle, alternating the 90° pulse along with the 

receiver to eliminate artifacts 307,308.   

  The acquisition parameters for the CPMG pulse sequence are summarized in Table 1. 

 

Table 1: CPMG acquisition parameters  

Parameter Input 

Tau Delay 0.19 ms 
Dummy Echo 5 
Recycle Delay 5* Longest T1 

Acquisition Time 5* Longest T2 
Delta Delay 0.95 * Longest T1 

Minimum # of scans 16 scans – water analysis only  
256 scans – lipid/protein analysis 

Number of points 5600 – Serum 
8000 – Fractionated Lipoproteins 

 

Data analysis: choosing the right algorithm 

 
 The Inverse Laplace transform (ILT) algorithm employed in the program CONTIN is 

provided in the Bruker software to extract T2 components from a multiexponential decay curve.  

While CONTIN calculations are robust when the solute of interest has high signal-to-noise (and 

hence high information content), the analysis of weaker signals suffer from poor reproducibility 

and instability in the calculations. Mathematically, the conversion of the relaxation decay into a 

continuous distribution of relaxation components using an ILT calculation can be an ill-posed 

problem.  An ill-posed problem is defined as having one of three properties:  (A) does not have a 

solution (B) the solution is NOT unique, or (C) a small perturbation of the problem may cause a 
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large change in the solution.  Even small amounts of noise may lead to an invalid solution 301, 

leading to irreproducible results.  Figure 3 demonstrates the variability within a single sample 

between four runs of human serum using the ILT algorithm implemented in CONTIN.    

 

Figure 3:  Four identical repeat CPMG experiments on a single human serum sample, 

showing the variable and inconsistent solutions obtained using the CONTIN ILT 

algorithm.   
  
 To circumvent these issues, we implemented two critical improvements.  First, we 

delayed the data acquisition for 19 ms after the beginning of the CPMG scheme to minimize the 

number of exponential terms for data processing.  Figure 4A shows an example of a fully 

sampled T2 relaxation decay curve.  In the first 19 ms, there is a fast decaying component (blue 

box), which results in 3-4 T2 components from 0-50ms (Figure 4B).  By not recording the data 

points for the first 19ms, the very fast relaxation processes at the beginning of the decay curve 

are deemphasized, and the slower processes of interest are emphasized (Fig. 4C, D).  This 

modification reduces the number of exponential terms, simplifying and stabilizing the inverse 

Laplace transform calculation.  
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Figure 4: Effect of delayed acquisition on T2 profile. (A-B) Full decay curve and T2 profile. 
(C-D) Delayed acquisition (19ms) T2 profile and decay curve without the first  19ms. 
 

 The second improvement was utilizing a different ILT algorithm as implemented in XPfit 

(http://www.softscientific.com/science/xpfit.html).  This program permits the user to constrain 

the number of exponential terms.  For subject-to-subject comparisons of human serum samples, 

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

0

2 0

4 0

6 0

8 0

T 2 (m s )

In
te

n
s

it
y

0 1 0 2 0 3 0 4 0 5 0

6 5

7 0

7 5

8 0

8 5

T 2 (m s )

In
te

n
s

it
y

0 5 0 1 0 0 1 5 0 2 0 0

0

1 0

2 0

3 0

4 0

T 2 (m s )

In
te

n
s

it
y

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

0

2 0

4 0

6 0

8 0

T 2 (m s )

In
te

n
s

it
y

0 1 0 2 0 3 0 4 0 5 0

7 5

8 0

8 5

T 2 (m s )

In
te

n
s

it
y

0 5 0 1 0 0 1 5 0 2 0 0

0

1 0

2 0

3 0

T 2 (m s )

In
te

n
s

it
y

A 

B 

C 

D 



 

 133

it is essential to restrain the number of exponential terms to a consistent number, up to four.  The 

XPFit program employs a non-negative truncated single value decomposition algorithm, which 

stabilizes the calculation.  

   

Figure 5: XPFit data analysis output 

Figure 5 shows an example of the XPfit data output screen.  Initial input of reasonable starting 

value estimates for the amplitude and T2 is important for obtaining consistent results.  For the 

data to converge in whole human serum, the starting amplitude of the solvent peak must be at 

least two magnitudes greater than the lipid and protein peaks.  We found that starting amplitude 

of 85 for the solvent and 0.5 for the remaining peaks was sufficient for the algorithm.  

Conclusions 

 This study identified the conditions necessary to obtain robust, reproducible multi-

exponential T2 profiles of human serum using benchtop TD-NMR.  High-quality, artifact-free 

CPMG decay curves were obtained using a modified CPMG pulse sequence.  This pulse scheme 

was tuned to achieve partial suppression of the strong water signal sufficient to eliminate 
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radiation damping while optiminzing the signal-to-noise ratio of the decay curve.  Delayed 

acquisition was employed to deemphasize the first 19ms, which reduced the number of 

exponentials and emphasized the slower relaxing lipid and water components. Finally, the ILT 

algorithm in XPfit was utilized to analyze the multiexponential decay curve, as it provided more 

stable and reproducible results compared with the CONTIN algorithm, which does not permit 

user control over the number of exponentials.   

 These methods can be extrapolated from human serum into other aqueous biological 

samples. For example, we have used this protocol to analyze fractionated lipoproteins, pure 

proteins and complex protein mixtures, and multilamellar phospholipid bilayer systems.  Similar 

applications may be envisioned that would benefit the experimental approach used here. 



 

Chapter 7:  Discussion and Conclusions 
 

Overview 

 
 Low-field NMR is a fast developing field due to recent advancements in hardware and 

data processing.  The novel 1H benchtop TD-NMR methods presented here demonstrate that the 

molecular dynamics of water, lipoproteins and proteins in whole human serum correlate with a 

large number of clinical biomarkers for insulin resistance, oxidative stress, dyslipidemia and 

inflammation. This was accomplished by implementing a modified CPMG pulse sequence, 

which achieved partial water suppression to overcome the radiation damping artifact. Another 

crucial development was the utilization of the data analysis software XPfit, which allowed us to 

constrain the number of components to obtain run-to-run reproducibility.  

 Aside from aqueous liquids, we also developed a novel method for analyzing oil-phase 

lipid fluidity. We found that the NMR T2 directly monitors hydrocarbon chain packing, which is 

proportional to the polyunsaturated fatty acid content, omega-3’s in particular.   Together, these 

novel applications demonstrate the potential for opportunity and expansion of low-field NMR 

beyond its conventional scope.  

Future Exploration and Development 

Optimization of Human Serum and Plasma Collection and Analysis 

 
 Upon completion of the first phase, it is necessary to review and update the protocol to 

ensure an efficient secondary phase. Three major improvements will be investigated before the 

next round of specimen collection will begin. We have analyzed only freshly draw blood 

products in this study, which limits our analysis to 1 sample/day because of processing demands 

and subject recruitment.  Through a network of collaborators at UNTHSC, we have access to a 
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large number of human serum and plasma samples stored at  -80°C. Utilizing these samples 

would quickly increase our patient sample size, and enhance the statistical power. Therefore the 

first study would assess human serum and plasma integrity after they have been thawed. It is 

well documented that triglyceride-rich samples cannot withstand multiple freeze-thaw cycles 309, 

which may or may not impact our TD-NMR analysis.  

 The second improvement to explore is the sample volume. Currently the experiment 

requires ~700ul of serum or plasma for analysis. Realistically, this volume would be difficult to 

obtain in the clinical setting. Therefore we will investigate a variety of methods to decrease the 

required sample size. Previously we demonstrated that decreasing the NMR tube size from 

10mm to 7.5mm eliminated a radiation damping effect in oil-phase lipids 201. We hypothesize the 

same will hold true for the aqueous water samples, whereby reducing the sample volume will 

eliminate the need for water suppression, hence decreasing total acquisition time.  

 Finally, it is necessary to revise the list of biomarkers collected now that a hypothesis 

concerning the mechanism and disease risk has been developed.  Tailoring the data collection 

will enhance or disprove our theories. Biomarkers that should be included are adipokines, 

inflammatory cytokines, kidney function markers, and various cognitive function markers such 

as MMSE.  After this is complete the lab will begin the next round of patient sample collection 

to increase the sample size and further explore the capability of this instrument.  

Oil-phase lipids – Oxidation 

 Polyunsaturated fatty acids (PUFAs), commonly found in edible food oils and dietary 

supplements, are highly susceptible to peroxidation due to the numerous cis-double bonds they 

contain.  Auto-oxidation and photo-oxidation can occur during processing and storage which 

results in rancidity and the production of toxic compounds 310.  Peroxidation by-products are 
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subject to crosslinking reactions, resulting in a polymeric network of hydrocarbon chains.311  

Current methods currently to detect lipid peroxidation include infared or mass spectroscopy, 

high-resolution NMR, scanning calorimetry and size exclusion chromatography 312.   

 Benchtop TD-NMR may be a simpler less expensive method for the detection of 

peroxidation in oil-phase lipids. Previously we demonstrated the sensitivity of TD-NMR to 

omega-3 content, on the basis of monitoring hydrocarbon molecular motions. An increased 

number of double bonds disrupt tight packing rendering the oil more fluid. The same theory can 

be applied to monitor lipid peroxidation. The crosslinking induced by lipid peroxidation will 

decrease sample fluidity, which we hypothesize will be detectable by TD-NMR.   Correlating the 

TD-NMR values of suspected oxidize lipids with conventional peroxidation markers, such as 

HNE and MDA, will aid in validating the method.  

Adipose Tissue Fluidity 

 In addition to oil-phase lipids, benchtop TD-NMR may be able to probe the fluidity of 

adipose tissue. Body fat distribution (visceral vs subcutaneous) and fatty acid adipose tissue 

composition (saturated vs monounsaturated vs polyunsaturated lipids) are both associated with a 

number of disorders such at metabolic syndrome, insulin resistance and cardiovascular 

disease313-316. Preliminary experiments of canine adipose tissue display a T2 profile similar to that 

of an oil-phase lipid. Therefore, adipose tissue fluidity may be a useful marker for characterizing 

metabolic dysfunction. Statistical correlations between adipose tissue T2 and adipokines, 

inflammatory, insulin resistance and cholesterol markers should be tested in the future to assess 

the utility of this potential method.   
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Protein Modification – Oxidation and Glycation   

 We have previously shown how dramatically the concentration of protein in solution can 

affect the water peak in an aqueous sample.  As the protein concentration increases, so does the 

number of binding sites for water to associate with. Certain protein modification processes may 

also lead to increased protein water binding sites. For example, once albumin becomes oxidized, 

its overall surface charge is altered leading to increased water binding288,290,291. Therefor it 

becomes plausible that benchtop TD-NMR can monitor protein modification by studying the 

differential water binding in a solution. TD-NMR values should be correlated against known 

protein modification indicators such as carbonylation, glycation and electrophoretic mobility.    

Potential for commercialization and biomarker development  

Human Serum Analysis  
 
 Benchtop TD-NMR relaxation times T1 and T2 have the ability to survey a range of 

metabolic abnormalities such as insulin resistance, oxidative stress, dyslipidemia and 

inflammation in whole human serum or plasma.  The participants in the study were seemingly 

healthy, with normal conventional clinical values and displayed no signs of illness.  Yet we 

observed within this group that lower water T2 values are characteristic of increasing metabolic 

dysfunction. Therefore this would suggest evidence of hidden abnormalities, that could lead to 

diseases in the future such as diabetes and cardiovascular disease. 

 The purpose of this study was not to diagnose an already sick individual, but rather assess 

the overall health status to identify those at risk for developing metabolic abnormalities.  Early 

detection of such may correct or delay the development of disease if the appropriate lifestyle 

changes and interventions are taken. Advancements in biotechnology are paving the way to make 

this possible, especially through the implementation of P4 Medicine (personalized, predicative, 
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preventative and participatory) in healthcare systems, which aims to anticipate and manage 

health status instead of reacting to a disease 300,317.  In the future is may be feasible to obtain a 

benchtop TD-NMR T2 value for serum, which will provide the user with an overall health score 

based on a library of patient data collected in a large cohort study.   

Oil-phase lipid analysis  

 The omega-3 concentration in fish-oil supplements could be accurately quantified using 

benchtop TD-NMR. Unlike other commonly used methods, TD-NMR is simple, inexpensive and 

does not suffer from complications due to chemometircs or complex algorithms. This method 

holds similar implications for determination of omega 3’s in flax seed and other edible oils. In 

addition, several instruments are capable of on-line real time monitoring, which would allow this 

method to be implemented during the purification and production process not just at the end for 

quality control.  
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Appendix B: Methods for monitoring changes in the core of 

lipoprotein particles in metabolism and disease  
 

 

 

BACKGROUND 
 
The present invention relates to the analysis of blood to identify and measure properties that 
correlate with cardiovascular disease. 
 Cardiovascular disease—primarily in the form of heart attack or stroke—is the leading 
cause of death in the United States and other developed countries. Cardiovascular disease is 
likewise becoming an increasing cause of death in developing countries as the risk of death from 
infectious diseases decreases in such countries. 
Some of the main risk factors associated with cardiovascular disease are generally well 
understood. They include an elevated amount of low density lipoprotein (LDL), high blood 
pressure, cigarette smoking, diabetes mellitus (“diabetes”), family history, and a less physically 



 

 183

active, more sedentary lifestyle. 
 Serum LDL cholesterol levels are positively correlated with cardiovascular disease risk. 
However, approximately half of patients who suffer from symptomatic coronary artery disease 
have normal LDL-cholesterol concentrations. Therefore, there appears to be a hidden risk not 
detected by conventional clinical laboratory measurements of cholesterol. 
 As currently best understood, cholesterol deposited in arteries represents a main factor in 
cardiovascular disease. Cholesterol is effectively insoluble in water and blood and thus the body 
carries cholesterol using particles called lipoproteins. The body uses several lipid transporting 
particles present in blood and these lipoprotein particles are typically referred to as 
chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL) 
and high density lipoproteins (HDL). Density increases when less cholesterol is present and 
density decreases when more cholesterol is present. Thus, the layman often refers to LDL 
cholesterol as “bad” cholesterol and HDL cholesterol as “good” cholesterol. 
 Low density lipoprotein particles tends to deposit in artery walls to form atherosclerotic 
plaques in the artery. In turn, the deposition of LDL to form the atherosclerotic plaques is 
promoted by an increased LDL concentration (or remnants that can form LDL particles) and a 
decreased LDL particle size. 
 In order to help predict and potentially moderate or avoid cardiovascular disease in 
individuals, conventional clinical tests are carried out to measure certain of the known risk 
factors. Currently, the most common test is the basic lipid panel which measures total 
cholesterol, HDL cholesterol (“HDL-C”), and triglycerides. The LDL cholesterol (“LDL-C”) is 
calculated as the difference between total cholesterol and HDL cholesterol. 
 Currently, approximately 250,000,000 such tests are carried out in the United States 
every year, and on a worldwide basis 540 million tests are carried out each year. Current costs 
are between about $26 and $56 per test. 
 As an additional factor, LDL can be present in different LDL particle sizes. In turn, 
smaller LDL particle sizes are associated with an increased risk of cardiovascular disease. 
Because of the size relationship, information about the size of the LDL particles is valuable in 
combination with information about the concentration of LDL particles. 
Currently, the common tests for measuring LDL particle size include vertical autoprofile 
(VAP®), gradient gel electrophoresis, and NMR lipoprofiles. 
 VAP is also referred to as a vertical spin density gradient ultracentrifugation and an 
exemplary version (“The VAP Cholesterol Test”®) is provided by Atherotech, Inc. of 
Birmingham, Ala. (USA). 
 Gradient gel electrophoresis distinguishes particle size in a otherwise conventional 
electrophoresis (i.e. chromatography) process with an exemplary test offered by Berkeley 
HeartLab Inc. of (South San Francisco Calif. (USA). 
 In one commercial embodiment, NMR lipoprofile testing is based upon the chemical shift 
of the resonant frequencies. LipoScience Inc. (Raleigh, N.C. USA) is an exemplary provider of 
such tests, a number of which are based on U.S. Pat. No. 5,343,389 (and others) to James D. 
Otvos (“the Otvos patents”). The Otvos patents employ frequency-domain FT-NMR to study 
lipoprotein particle properties, such as particle size and particle number, in order to perform 
clinical diagnostic testing and disease risk assessment. In order to provide accurate data, 
however, chemical shift NMR is typically carried out in large (e.g., 400 megahertz or higher) 
high resolution Fourier-transform NMR instruments. Many such instruments incorporate a 
superconducting magnet cooled by a surrounding environment of liquid helium which in turn is 
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surrounded by liquid nitrogen. As a result, the device is large and expensive and the testing is 
carried out in a small number of central laboratories at a cost of between about 100 and $200 per 
test. 
 Such tests also require a frequency-domain analysis, typically performed by a Fourier 
transform of the data. The key measurable is the chemical shift, a measure of relative frequency 
and atomic environment. Differences in chemical shifts are used to distinguish and resolve 
different lipoprotein classes and permit the detection of particle size and number. 
In evaluating an individual's lipid profile, core mobility or fluidity of the lipids is a reflection of 
the relative ratio of different cholesteryl ester and triglyceride molecules in the particle core, 
which in turn, is a reflection of normal or abnormal lipid metabolism. 
 Lipoproteins are the body's nanoparticle delivery systems that carry water-insoluble 
cholesterol and triglyceride molecules through the blood and target them to particular tissues for 
metabolism. Lipoprotein particles can be distinguished by their density, size, chemical 
composition and charge. They can also be distinguished by the relative lipid content of the 
particle's oily core compartment. For example, the cores of LDL and HDL are relatively rich in 
cholesteryl ester (a highly water-insoluble form of cholesterol), whereas VLDL and 
chylomicrons are relatively rich in triglycerides. Triglyceride molecules are more flexible than 
cholesteryl esters, so oil phases rich in triglycerides will appear more fluid and mobile, less 
viscous. Also, the ratio of these components and thus, the core mobility, changes with 
metabolism and disease. 
 On a broad basis, the use of NMR techniques for medical purposes is not new, and the 
term “NMR” typically can refer to a variety of diagnostic methods. There are many types of 
NMR methods and instruments and thousands of distinct NMR experiments. A vivid example of 
this is magnetic resonance imaging (“MRI”), which was originally called NMR Imaging. MRI is 
a variation of NMR that yields anatomical images rather than chemical signatures. Although 
MRI is based on the same fundamental physics, it involves different instrumentation, methods 
and derived measurable from other NMR techniques. Thus, different kinds of NMR are used in 
somewhat related but distinct areas of medical diagnosis, imaging, and treatment. 
U.S. Pat. No. 7,550,971 B2) to Carpenter and Benson describe a method of determining analyte 
concentrations in body fluids such as blood plasma or serum, examples given in the claims are 
the concentrations of glucose, cholesterol, triglycerides, albumin, blood urea nitrogen, alkaline 
phosphatase and creatinine. The method is restricted to the use of low-field, bench-top TD-NMR 
instruments, but the measurements and derived quantities are analyte concentration rather than 
lipoprotein core mobility. These contrasting measurables provide completely different types of 
diagnostic information. 
 Arguably, the Carpenter and Benson methods are thinly justified and lack any 
preliminary data that demonstrates the feasibility of their method for measuring analyte 
concentrations, and bench-top TD-NMR may not be as suitable for measuring the analyte 
concentrations as Carpenter and Benson imply. Serum is a complex mixture, and U.S. Pat. No. 
7,550,971 lacks any explanation as to how the different analytes in serum can be resolved from 
one another. Instead, much of the content in U.S. Pat. No. 7,550,971 reflects the known 
operation of the TD-NMR instrument rather than a technique for resolving analytes from TD-
NMR data. 
 As a result of these various factors, vertical autoprofile, gradient gel electrophoresis, and 
NMR lipoprofiles can be impractical for routine clinical use; i.e., they are too expensive and too 
cumbersome to be carried out on-site in a practitioner's office or a hospital laboratory. 
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As another factor, various lipid tests (e.g., for HDL-C and LDL-C) can be inaccurate in certain 
circumstances. For example, calculated LDL-C values from a conventional lipid panel are not 
accurate when determined from non-fasting blood samples or in patients who have elevated 
triglyceride levels, as is common in diabetes. Likewise, some advanced lipid tests like the NMR 
LipoProfile require fasting blood samples and thus, cannot monitor changes in lipoprotein 
particles during metabolism following a meal. 
 Furthermore, evidence is beginning to emerge that characteristics of lipid-carrying 
particles other than size and density will correlate with an increased risk of cardiovascular 
disease. 
 As yet another factor, when any particular test is difficult to carry out, or must be carried 
out off-site, or will take significant time to complete, or any combination of these factors, the use 
of that test will tend to be less frequent than the use of tests that can be carried out quickly and 
easily at a location—a physician's office, small clinic, or hospital—where patients are typically 
located and their blood samples taken. 
 Thus, tests that identify cardiovascular risk and that can be carried out more quickly, 
more easily, less expensively, and on site would tend to be used more frequently and thus 
provide greater benefits to individual patients and to the relevant patient population. 
 Therefore, a need exists for faster, similar and localized techniques that will identify and 
measure relevant characteristics that correlate to an expected degree of risk of cardiovascular 
disease. 
 

SUMMARY 
 This invention describes non-perturbing methods for monitoring changes in the core 
mobility and core composition of lipoprotein particles in intact, unfractionated body fluids such 
as blood serum or plasma. 
 In one aspect, the method includes the of placing a small volume of a sample into a NMR 
instrument tuned to measure a particular nucleus, applying a series of radiofrequency pulses with 
intermittent delays in order to measure spin-spin (“T2”) and/or spin-lattice (“T1”) relaxation time 
constants from the time-domain decay of the signal, without the use of chemical shifts and 
without converting data into the frequency domain by Fourier transform or other means, at least 
partially suppressing the water signal prior to the beginning of a sequence used to record 
relaxation time constants in the time domain, optionally utilizing relaxation contrast agents or 
other chemical additives to perturb the solvent water or other elements of the sample, analyzing 
the exponentially decaying NMR signal in the time domain using multi-exponential analysis, and 
comparing differences in the relaxation time constants for lipoprotein- or protein-specific 
elements within a single human subject, or between subjects, to assess normal and abnormal 
metabolism reflective of increased disease risk or active disease. 
 In another aspect, the method comprises measuring the pulsed time domain NMR spin-
spin relaxation time for a plurality of LDL samples, normalizing the viscosity of the same LDL 
samples, plotting the product of spin-spin relaxation time and viscosity for the samples against 
an axis defined by spin-spin relaxation time to thereby develop a database of T2 or T2V statistics 
(or T1 or T1V statistics or some combination of T2, T2V, T1, or T1V) for the original LDL 
samples, measuring the classic lipoprotein profile for the same LDL samples, and correlating 
known risks of cardiovascular disease based upon the classic lipoprotein testing with the results 
as determined by the T2 or T2V statistics to thereby correlate the T2 or T2V statistics with the 
known risks of cardiovascular disease in a statistically acceptable manner. As used herein, the 
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term “normalizing” the viscosity of the sample comprises either using samples at the same 
viscosity by physically manipulating the samples to obtain the viscosity; or mathematically 
modeling the resulting data so that the results are comparable across viscosities. Persons skilled 
in the art are familiar with both techniques and they are not otherwise described in detail herein. 
Without being bound by theory, the possibility exists that the relevant interpretation of the NMR 
data can be obtained regardless of normalization; i.e., the viscosity normalization may be option 
or unnecessary. Thus, where appropriate the phrase “T2 or T2V” reflects this. 
 In another aspect, the invention is a diagnostic kit that includes a pulse time domain 
NMR instrument, a sample selected from the group consisting of serum and plasma, and a 
database of T2 or T2V data that correlates with known cardiovascular risk statistics. 
In another aspect, the invention is a combinatorial library that includes a plurality of patient 
samples selected from the group consisting of whole or partially fractionated serum or plasma, 
and a T2 or T2V measurement for each sample. 
 In another aspect, the invention is a method of determining cardiac risk factors based 
upon blood samples. The method includes the steps of measuring the pulse time domain NMR 
spin-spin or spin-lattice relaxation time of a sample selected from the group consisting of serum 
and plasma, measuring the lipid profile of the same sample, optionally combining the spin-spin 
relaxation time and viscosity of the sample to produce a T2 or T2V value for the blood sample, 
and comparing the T2 or T2V value to the lipid profile of the sample to identify the cardiac risk 
measured by the T2 or T2V value based upon the cardiac risk measured by the lipid profile. 

BRIEF DESCRIPTION OF THE DRAWINGS  
 
FIG. 1 is a very general schematic diagram of an LDL particle and its internal oil phase. 
 
FIG. 2 is a TD-NMR T2 profile for purified human low-density lipoprotein at 25° C. 
 
FIG. 3 is a plot of metabolic remodeling of LDL core lipids during metabolism following a meal. 
 
FIGS. 4-6 are CONTIN profiles for pure triolein and for two lipid cores. 
 
FIG. 7 is a plot of T2V values for albumin, LDL plus albumin, and VLDL plus albumin. 
 
FIG. 8 is a plot of T2V values for three samples of whole human serum. 
 
FIG. 9 is a plot of T2V values for lipoprotein particles at various times after a meal. 

 

DETAILED DESCRIPTION  
 The methods of the invention resolve individual lipoprotein particle classes (e.g., low-
density lipoprotein or LDL) by detecting differences in core lipid mobility, which is influenced 
by the relative amount of cholesteryl ester to triglyceride molecules within each particle's core. 
Variability in core mobility and core composition within a particle class, such as LDL, can result 
from patient-to-patient differences, or from particle remodeling within an individual subject as 
occurs during metabolism following a meal. Changes in lipoprotein particle core mobility and 
core composition are monitored using a time-domain nuclear magnetic resonance (TD-NMR) 
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analysis. A hallmark of this approach is that the analysis is performed without Fourier 
transformation and without the use of frequency-domain information such as chemical shifts. 
Unlike frequency-domain Fourier-transform NMR, this time-domain NMR analysis can be 
performed at low magnetic fields (≦60 MHz for hydrogen) in a low-cost, bench-top instrument 
configuration, although it can also be performed in conventional high-field NMR spectrometers. 
The general principles of time domain pulse NMR are generally well understood and familiar to 
persons of ordinary skill in the art and need not be discussed in detail. In brief, however, a 
sample is positioned in an external magnetic field provided by a permanent magnet. This aligns 
the magnetic moments of the hydrogen atoms with (or against) the permanent magnetic field. 
Then, a radio frequency pulse is applied in a direction that provides a secondary (temporary) 
magnetic field perpendicular to the permanent magnetic field. This moves the magnetic moments 
of the hydrogen atoms away from their equilibrium state. The time duration of the pulse 
determines how far the magnetic moments move. The combined movement of many spins (many 
hydrogen atoms) generates a small but detectable oscillating magnetic field that in turn induces 
an alternating voltage that is measured as the NMR signal by a detection coil. 
 At the end of the pulse, the protons in the sample give up excess energy to their 
surroundings and relax back to the equilibrium state with respect to the permanent magnetic 
field. This relaxation takes a certain amount of time, so that the NMR signal remains detectable 
for a period of time that can range from several milliseconds to several seconds. 
 Furthermore, the relaxing component of the NMR signal will be characteristic of 
individual mobility domains, which in turn, help identify the molecules involved in the motions. 
For example, cholesterol molecules are more internally rigid than triglyceride molecules and will 
tend to give lower T2 and T1 values. 
 Additionally, the data resolution of the pulse time domain NMR technique of the 
invention is on the order of particle size. In comparison, Fourier transfer NMR resolves data on 
an atomic scale. As a result, the time domain technique makes fewer technical demands (so to 
speak) on the instrument and can provide useful data at the available resolution. 
 According to the invention, it is been determined that time decay constants are sensitive 
to both particle size and particle mobility. 
 The method is also tolerant of multiple phases or mixed phases; i.e., solids and liquids in 
many circumstances. 
 As part of the correlation discoveries of the invention, it is now been determined that 
LDL particles with a higher triglyceride/cholesterol molecular ratio in the core have a longer 
spin-spin relaxation time (T2) and particles with a lower triglyceride/cholesterol ratio have a 
shorter T2. 
Although the inventors do not wish to be bound by a particular theory, it appears that this may 
result from the characteristics of an LDL particle as not being solid in the same sense as a solid 
homogeneous composition would be. Instead, the LDL particle has an internal oil phase (FIG. 1). 
In turn, the oil phase moves (tumbles) differently—and typically faster—than the remainder of 
the particle. This faster internal tumbling increases the spin-spin relaxation time. 
 In one embodiment, the hydrogen spin-spin relaxation rate constants (or time constants) 
are measured using a low-field bench-top time-domain NMR analyzer, and the relaxation rate 
constants for individual lipoprotein classes are resolved through a multi-exponential 
deconvolution algorithm. Another key feature of this analysis is that measurements can be made 
directly on intact body fluids (e.g., serum, plasma or blood) without the need for separation or 
fractionation of individual lipoprotein classes by ultracentrifugation, electrophoresis, 
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chromatography or other time-consuming, sample-perturbing methods. Because of the relative 
simplicity and low cost, this method has potential application to clinical testing for the detection 
of unique dyslipidemias and for the early detection and risk assessment of cardiovascular 
disease, diabetes and cancer. 
 The measurements can, of course, be made in conventional high-field NMR 
spectrometers, but as set forth herein, the use of Benchtop instruments offers a number of clinical 
advantages. 
 In the invention, time-domain NMR resolves individual lipoprotein classes by measuring 
mobility differences in the oil phases within the core compartment of lipoprotein particles. The 
invention is also based on the discovery that TD-NMR is sensitive to changes in the particle core 
within a lipoprotein class. For example, the LDL particles in diabetic subjects tend to be richer in 
triglyceride, which makes the particle core more mobile. 
 The mobility differences are monitored by measuring relaxation rate constants (or time 
constants) without chemical shifts. Chemical shifts are the centerpiece of conventional high-
field, frequency-domain NMR. By contrast, time-domain NMR does not require chemical shifts 
for frequency domain resolution and does not require high magnetic field strength or field 
homogeneity. This approach is fundamentally different from conventional NMR spectroscopy in 
both methodology and instrumentation requirements. 
 In one embodiment, the invention is a process for measuring the spin-spin or transverse 
relaxation time constants (T2) for the lipid core compartments in unfractionated human serum. 
The human serum is obtained in a conventional manner from a low-speed centrifugation of 
human blood after clotting. Approximately 0.6 mL of unmodified serum is pipetted into a 10 mm 
NMR tube, and the tube is placed into the bore of the magnet of a bench-top TD-NMR analyzer, 
typically operating at 10, 20, 40 or 60 MHz resonance frequency for hydrogen. In the examples 
described here, 20 MHz and 40 MHz data were collected using Bruker benchtop mq20 and mq40 
TD-NMR instruments (Bruker BioSpin Corporation, Billerica, Mass., USA). 
 A Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is used to measure the 
exponential time-decay curve. This pulse sequence effectively eliminates chemical shifts and 
magnetic field inhomogeneity, permitting the measurement of T2 values. Although T2 

measurements can be linked with chemical shifts and measured in the frequency domain, the 
present TD-NMR method measures T2 in the time domain without chemical shifts. This provides 
a distinct advantage with respect to instrument simplicity and cost. 
 The resulting T2 decay curve for human serum is multi-exponential, so the individual 
exponential terms are deconvoluted and resolved with the use of an inverse Laplacian transform. 
An implementation of this mathematical calculation is provided in the public domain software 
CONTIN, authored by Steven Provencher (http://s-provencher.com/pages/contin.shtml; accessed 
Mar. 11, 2013). Under the proper experimental conditions with excellent signal-to-noise, the 
CONTIN calculation can resolve up to 8 different exponential terms in TD-NMR T2 profiles of 
human serum. Because human serum has abundant quantities of lipoprotein core lipids and 
soluble proteins, and because these assemblies are relatively large, the protein and lipoprotein 
components dominate the T2 profile. 
 One experimental issue involves solvent suppression, because an intense water signal can 
overshadow the contributions of lipoprotein components and lead to artifacts such as radiation 
damping. The solvent water can be partially suppressed using a number of NMR schemes. In this 
embodiment, a 180-degree pulse and delay is inserted prior to the CPMG sequence. This 
achieves partial relaxation (and partial suppression) of the water with full recovery of the 
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lipoprotein components by the start of the CPMG pulse scheme. Although there are many 
sophisticated NMR methods for suppressing water, the goal of this invention was to develop the 
simplest, most inexpensive method for measuring lipoprotein core properties in unmodified 
human serum. 
 This embodiment is further illustrated using the figures and tables. FIG. 2 shows a time-
domain T2 NMR profile of normal fasting human serum, and FIG. 3 is the TD-NMR T2 profile 
for purified human low-density lipoprotein at 25° C. 
 The profile of FIG. 2 (not to be confused with a conventional NMR spectrum) was 
obtained by performing an inverse Laplacian transform of the T2 decay curve. In turn, the T2 

curve was measured using a modified CPMG experiment on a Bruker 40 MHz TD-NMR 
analyzer. The profile resolves 7 distinct T2 components, here represented as peaks in the profile. 
Higher T2 values represent more mobile elements. The solvent water peak in serum, not shown in 
this plot, is observed at T2 values of approximately 600 ms. The peaks at approximately 200 and 
70 ms represent two distinct mobility domains in LDL, as assigned from control samples 
containing only LDL. 
 These two peaks are not observed in the other control samples containing fractionated 
serum proteins or lipoproteins and appear to provide a unique signature for the core lipid 
mobility of LDL. The peaks at lower T2 values have contributions from both serum proteins and 
lipoproteins. 
 FIG. 9 illustrates the variation in T2 measurements in response to metabolic changes 
following a meal. Shown are T2 profiles for whole human serum at fasting, 2 hours, 4 hours and 
6 hours post-prandial. The T2 values for the LDL-specific peaks increase and peak at 4 hours, 
reflecting the remodeling of the LDL core as the content of triglyceride increases relative to 
cholesteryl ester. 
 These preliminary results demonstrate the feasibility of obtaining particle-specific 
measurements of the core mobility of LDL in whole human serum. The data also demonstrate 
that T2 measurements obtained from TD-NMR are sensitive to metabolic remodeling and patient-
to-patient variability. 
 Furthermore, the invention requires neither high magnetic field instrumentation nor a 
frequency-domain analysis. Instead, it uses a time-domain analysis. Unlike (for example) the 
Otvos approach, the methods of the invention can be performed on inexpensive low-field bench-
top instruments, because high field strength and field homogeneity is not required. The key 
measurables are relaxation rate constants rather than chemical shifts. Differences in relaxation 
rate constants are used to resolve lipoprotein classes (not chemical shifts, as in Otvos and 
Kremer). Also, the derived parameter in our invention is lipoprotein particle core mobility or 
fluidity, rather than particle number or particle size. In summary, the instrumentation, data 
processing, measurables and derived parameters of our invention are different from those of 
Otvos. 
 In contrast to (for example) U.S. Pat. No. 7,550,971, the present invention does not 
measure analyte concentrations. Rather it measures lipoprotein particle properties, specifically 
the mobility or fluidity (“squishiness”) of the oily lipid core found within lipoprotein particles. 
Also, the invention is not restricted to low-field, bench-top NMR instruments, but can also be 
performed on conventional high-resolution NMR instruments as well. 
 Overall, the method of the invention is much simpler and can be performed on 
inexpensive low-field benchtop NMR analyzers, and the particle core mobility provides 
diagnostic information different from particle size and concentration distribution. 
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Additional Examples 
 In the following Examples, all aqueous samples are prepared in a 9.1 D2O/H2O saline 
buffer, concentrated to a viscosity of 1.20cP at 37° C. The raw data are in the form of a multi 
exponential decay curve. The individual relaxation time constants are deconvoluted using an 
inverse Laplacian transform calculation as implemented in the public domain program CONTIN. 
Lipoprotein Lipid Core Mixtures 
 
 A CONTIN profile of triolein, the most abundant TG in lipoproteins, is shown in FIG. 4. 
Each T2 (or T2V) corresponds to a mobility domain of the triglyceride molecule. A VLDL like 
lipid core with 80% TG and 20% CE shows a similar profile (FIG. 5) but is shifted slightly to the 
left, indicating a less mobile, more vicious environment. The LDL like lipid core (FIG. 6) 
composed of 80% CE and 20% TG exhibited lower T2 or T2V values indicating reduced 
mobility. This trend resembles that observed with physiological lipoprotein particles with 
differences in TG/CE ratios. T2V values for lipid mixtures are summarized in Table 1. 
 

TABLE 1     
 (T2V times in ms)    

 Fast Medium Slow Other 

100% TO 347 155 79 8 
80% to 20% CL 303 141 70 25, 5 

(VLDL Core)     
20% to 80% CL 183 92 45 19, 9, 4 

(LDL Core)     
 
Fractionated Lipoproteins and Serum Proteins 
 
FIG. 7 shows the T2V profiles for albumin (“HSA”), LDL plus albumin and VLDL plus albumin. 
Although all of the profiles display fast decaying components in the range of 2-50 ms, there are 
T2V values above 50 ms that are unique to individual lipoprotein classes 
 
Whole Human Serum 
 De-identified samples of whole human serum, representing various metabolic and disease 
states were obtained from Pitt County Memorial Hospital (Greenville, N.C., USA). As seen in 
FIG. 8 variability was observed in lipoprotein T2V values. Patient samples with a higher HbAlc, 
indicative of poorly managed Type 2 Diabetes Mellitus, have increased T2 or T2V values 
suggesting that the lipoprotein particles have increasingly mobile, TG-rich lipid cores versus 
non-diabetic patients. 
 
 Results: FIG. 9 shows the remodeling healthy non-diabetic subject ingested a liquid meal 
that contained 50 grams of lipid following a 16 hour fast, after which blood was drawn every 
hour for 8 hours. The NMR data are shown in FIG. 4 b at 0 hour (fasting) and other time points 
after the meal. As lipoprotein remodeling occurs and the particles become TG rich, the T2V peak 
shifts to the right indicating an increase in lipid core mobility. Table 2 shows standard lipid 
analysis for these samples. 
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TABLE 2 

 0 Hr. 2 Hr. 3 Hr. 4 Hr. 5 Hr. 6 Hr. 7 Hr. 8 Hr. 

Triglycerides 87 184 181 194 197 231 188 169 
Cholesterol 197 204 200 199 193 187 184 187 

HDL-C 54 55 52 52 49 47 47 48 
Non-HDL-C 148 149 148 147 144 140 137 139 

LDL-C 125 112 112 108 105 94 99 105 
 
 Benchtop TD-NMR appears to provide unique information about LDL and VLDL 
particle properties reflective of different states of normal and abnormal metabolism. This 
approach holds promise for translation from the research lab into the clinical setting as the 
measurements are performed on whole human serum and are relatively simple, inexpensive and 
non-invasive. 
 
 In the drawings and specification there has been set forth a preferred embodiment of the 
invention, and although specific terms have been employed, they are used in a generic and 
descriptive sense only and not for purposes of limitation, the scope of the invention being 
defined in the claims. 

CLAIMS 
 
1. A method for measuring the properties of protein and lipoprotein elements in a sample, the 
method comprising the steps of: 
placing a small volume of a sample into a NMR instrument tuned to measure a particular 
nucleus; 
applying a series of radiofrequency pulses with intermittent delays in order to measure spin-spin 
and/or spin-lattice relaxation time constants from the time-domain decay of the signal, without 
the use of chemical shifts and without converting data into the frequency domain by Fourier 
transform or other means; 
at least partially suppressing the water signal prior to the beginning of a sequence used to record 
relaxation time constants in the time domain; 
analyzing the exponentially decaying NMR signal in the time domain using multi-exponential 
analysis; and 
comparing differences in the relaxation time constants for lipoprotein- or protein-specific 
elements within a single human subject, or between subjects, to assess normal and abnormal 
metabolism reflective of increased disease risk or active disease. 
 
2. A method according to claim 1 comprising using between about 0.2 and −0.6 mL of the 
sample. 
 
3. A method according to claim 1 comprising tuning the NMR instrument to measure a nucleus 
selected from the group consisting of hydrogen-1, carbon-13, nitrogen-15, fluorine-19, and 
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phosphorous-31. 
 
4. A method according to claim 1 wherein the step of suppressing the water signal comprises a 
180-degree inversion pulse followed by a delay to partially relax the water signal. 
 
5. A method according to claim 1 wherein the step of analyzing the exponentially decaying NMR 
signal in the time domain is selected from the group consisting of an inverse Laplacian transform 
and a multi-exponential analysis. 
 
6. A method according to claim 1 wherein the step of analyzing the exponentially decaying NMR 
signal in the time domain comprises a chemometric analysis. 
 
7. A method according to claim 1 wherein the step of comparing differences in the relaxation 
time constants includes an assessment of the remodeling of the core lipid compartment of 
particles selected from the group consisting of LDL, HDL, VLDL, other lipoprotein particles and 
remnants during metabolism and in disease. 
 
8. A method according to claim 1 further comprising normalizing the viscosity of the sample. 
 
9. A method for measuring the dynamical, mobility and/or fluidity properties of protein and 
lipoprotein elements in a sample, including but not limited to lipoprotein particle core mobility 
and relative core composition, the method comprising: 
placing between about 0.2 and 0.6 mL of a sample into a NMR instrument tuned to measure a 
nucleus selected from the group consisting of hydrogen-1, carbon-13, nitrogen-15, fluorine-19, 
and phosphorous-31; 
applying a series of radiofrequency pulses with intermittent delays in order to measure spin-spin 
and/or spin-lattice relaxation time constants from the time-domain decay of the signal, without 
the use of chemical shifts and without converting data into the frequency domain by Fourier 
transform or other means. 
partially suppressing the water signal by including a 180-degree inversion pulse followed by a 
delay to partially relax the water signal prior to the beginning of a sequence used to record 
relaxation time constants in the time domain; 
utilizing a relaxation contrast agents to perturb the solvent water or other elements of the sample; 
analyzing the exponentially decaying NMR signal in the time domain using multi-exponential 
analysis, including an inverse Laplacian transform; and 
comparing differences in the relaxation time constants for lipoprotein- or protein-specific 
elements within a single human subject, or between subjects, to assess normal and abnormal 
metabolism reflective of increased disease risk or active disease. 
 
10. The method of claim 9 comprising measuring the properties of a body fluid. 
 
11. The method of claim 9 comprising measuring the properties of whole blood. 
 
12. The method of claim 9 comprising measuring the properties of blood serum. 
 
13. The method of claim 9 comprising measuring the properties of blood plasma. 
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14. The method of claim 9 comprising measuring the properties of lymph fluid. 
 
15. The method of claim 9 comprising measuring the properties of ascites fluid. 
 
16. The method of claim 9 where the sample is partially fractionated body fluid, including but 
not limited to human blood serum following selective precipitation or column fractionation. 
 
17. A method according to claim 9 comprising taking a specimen of whole blood from a patient 
and thereafter extracting a blood plasma sample from the specimen. 
 
18. A method according to claim 9 comprising taking a specimen of whole blood from a patient 
and thereafter extracting a blood serum sample from the specimen. 
 
19. A method of identifying the cardiovascular risk factors in patients comprising: 
measuring the pulsed time domain NMR spin-spin relaxation time for a plurality of LDL samples 
selected from the group consisting of LDL and other individually fractionated lipoprotein or 
lipoprotein remnant samples; 
normalizing the viscosity of the same samples; 
plotting the product of spin-spin relaxation time and viscosity for the samples against an axis 
defined by spin-spin relaxation time to thereby develop a database of T2V statistics for the 
original samples; 
measuring the classic lipoprotein profile for the same samples; and 
correlating known risks of cardiovascular disease based upon the classic lipoprotein testing with 
the results as determined by the T2V statistics to thereby correlate the T2V statistics with the 
known risks of cardiovascular disease in a statistically acceptable manner. 
 
20. A method according to claim 19 comprising obtaining the LDL samples from the group 
consisting of serum or plasma 
 
21. A method according to claim 19 further comprising 
taking a blood specimen from a patient; 
preparing a sample selected from the group consisting of plasma and serum from the blood 
specimen; 
measuring the spin-spin relaxation time and the viscosity of the plurality of the sample; 
calculating a parameter selected from the group consisting of T2, T2V, T1 and T1V the for the 
sample; and 
determining the risk of cardiovascular disease in the patient sample based upon the correlation 
between the calculated parameter and the known risks of cardiovascular disease. 
 
22. A method according to claim 19 comprising normalizing the samples by concentrating the 
samples to a substantially similar viscosity. 
 
23. A method according to claim 19 comprising normalizing the samples by normalizing the 
viscosity component of the time domain data. 
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24. A diagnostic kit comprising: 
a pulse time domain NMR instrument; 
a sample selected from the group consisting of serum and plasma; and 
a database of T2V data that correlates with known cardiovascular risk statistics. 
 
25. A combinatorial library comprising: 
a plurality of patient samples selected from the group consisting of plasma and serum; and 
a T2 measurement for each sample. 
 
26. A method of determining cardiac risk factors based upon blood samples, the method 
comprising: 
measuring the pulse time domain NMR spin-spin relaxation time of a sample selected from the 
group consisting of serum and plasma; 
measuring the lipid profile of the same sample; 
combining the spin-spin relaxation time and viscosity of the sample to produce a T2V value for 
the blood sample; 
comparing the T2V value to the lipid profile of the sample to identify the cardiac risk measured 
by the T2V value based upon the cardiac risk measured by the lipid profile. 
 
27. A method according to claim 26 comprising separating a whole blood specimen into a 
sample selected from the group consisting of plasma and serum prior to the step of measuring the 
pulse time domain NMR spin-spin relaxation time of the sample. 
 
28. A method according to claim 26 wherein the step of measuring the lipid profile of the sample 
comprises measuring a profile selected from the group consisting of total cholesterol, HDL-C 
and LDL-C. 
 
29. A method according to claim 26 comprising carrying out the measuring, combining and 
comparing steps for a plurality of samples. 
 
30. A method according to claim 26 comprising normalizing the viscosity of the samples. 
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Appendix C: 

Method and Tools for Assessing Health Status Using NMR 

Relaxation Times for Water 
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DESCRIPTION 

 

METHODS AND TOOLS FOR ASSESSING HEALTH STATUS USING NMR 

RELAXATION TIMES FOR WATER 

 5 

BACKGROUND OF THE INVENTION 

Conventional proteomics uses mass spectrometry to measure a large number of protein 

biomarkers to establish profiles of health and disease (2).  The subject application generates 

protein profiles by measuring just one biomarker:  water T2.  conventional proteomics focuses on 

the less abundant proteins in blood after removing the most abundant ones during pre-treatment 10 

prior to analysis (2, 3).  In contrast, the subject application has developed a technique, termed 

“inverse proteomics” that involves no pre-treatment or sample manipulation and leverages the 

information content of all plasma and serum proteins, including the most abundant ones.   

 

Brief Summary of the Invention 15 

This application provides a means for developing an inexpensive blood test for front-line 

health screening and monitoring.  The test analyzes the spin relaxation times (T2 and/or T1) of 

water in plasma, serum or whole blood using nuclear magnetic resonance (NMR).  The blood 

samples can be obtained using a conventional needle stick or finger prick.  However, given the 

intensity of the water NMR signal, it should be feasible to monitor the relaxation times of water 20 

in blood from outside of the body using a NMR-enabled finger clip, earlobe clip or a wristwatch-

like device linked to a smart phone.  Portable NMR devices are already available (1).   The 
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NMR T2 for water reports on the concentration and chemical state of the proteins and 

lipoproteins in the blood.  We refer to this approach as inverse proteomics.  The NMR T2 for 

water reports on the concentration and chemical state of the proteins and lipoproteins in the 

blood.  We refer to this approach as “inverse proteomics”.   

The subject application has determined that lower water T2 and/or T1 values in serum and 5 

plasma are indicative of increasing degrees of metabolic dysfunction, even in an essentially 

healthy population with clinical lab values that fall in the normal reference ranges.  The unique 

value of time-domain nuclear magnetic resonance (TD-NMR) is that an individual’s overall 

health status with respect to insulin resistance, inflammation, dyslipidemia and possibly 

oxidative stress can be assessed simultaneously in one measurement without having to survey a 10 

large panel of clinical lab tests or biomarkers.  Given its simplicity, water T2 and/or T1 (4) can 

serve as a screening tool for the early identification of individuals with hidden risk for diseases 

that are linked with metabolic abnormalities.  Non-limiting examples of such diseases include, 

but are not limited to, diabetes, coronary artery disease, and Alzheimer’s disease (5, 6).  These 

disorders account for much of the morbidity and mortality in modern societies.  There is a 15 

continuing need for effective screening tools that can be implemented practically, inexpensively 

and broadly across the population.  Such tools will have a place in P4 medicine:  personal, 

predictive, preventative and participatory (7).  The invention disclosed herein provides a solution 

to this continuing need. 

   20 
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Brief Description of the Drawings 

 

The patent or application file contains at least one drawing executed in color. Copies of 

this patent or patent application publication, with color drawing(s), will be provided by the 

Office upon request and payment of the necessary fee. 5 

Figures 1A-1C.  Time-domain NMR relaxometry analysis of water in unmodified 

human plasma and serum.  (Fig. 1A) Raw data for human serum consisting of a multi-

exponential decay curve, (Fig. 1B) T2 profile for human serum derived from an inverse Laplace 

transform of the multi-exponential decay curve.  This profile reveals an intense water peak (blue) 

and a few small peaks arising from direct detection of lipid and protein components in serum 10 

(orange).  (Fig. 1C) Expansions of T2 profiles for 28 human subjects illustrating the wide range 

of water T2 values observed in this study population.   

Figures 2A-2F.  Linear regression plots for plasma or serum water T2 vs. various 

blood biomarkers for the human subjects enrolled in this study.  (Fig. 2A) Plasma water T2 

vs. total serum protein; (Fig. 2B) Plasma water T2 vs. white blood cell count; (Fig. 2C) Plasma 15 

water T2 vs. HbA1c; (Fig. 2D) Serum water T2 vs. total serum protein; (Fig. 2E) Serum water T2 

vs. red cell distribution width; (Fig. 2F) Serum water T2 vs. LDL particle number.  The 

correlation coefficients are provided in Tables 1 and 2. 

Figures 3A-3F.  Protein concentration and oxidation affect water T2 values. (Fig. 

3A) Water T2 values vs. protein concentration for human serum albumin (triangles), lipoprotein-20 

depleted human serum (squares) and whole human serum (circles); (Fig. 3B) and (Fig. 3C) 

Metal-catalyzed oxidation of proteins.  In Fig. 3B, whole serum or plasma was titrated with 

CuSO4, in the presence or absence of added histidine.  In Fig. 3C, a protein solution containing 
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human serum albumin and γ-globulin was titrated with CuSO4, in the presence or absence of 

added histidine.  (Fig. 3D) The same protein solution as in Fig. 3C was titrated with 

malondialdehyde, which reacts with protein side chains to form carbonyl derivatives.  (Fig. 3E) 

Linear regression of serum water T2 with the anion gap; (Fig. 3F) Linear regression of serum 

water T2 (corrected for albumin concentration) with the anion gap. 5 

Figure 4. Modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence for measuring 

water T2 in human serum or plasma using benchtop time-domain NMR. In contrast to NMR 

spectroscopy, the time points for the exponential decay curve are acquired directly during the 

CPMG pulse scheme, during the middle of the τ delay between successive 180° pulses, as 

designated by the purple arrow.  For the current study, the first 180˚ pulse and Δ delay were 10 

added prior to the CPMG scheme to achieve partial water suppression and eliminate radiation 

damping.  The Δ delay was tuned to 0.95*T1 for each sample, which corresponds to suppression 

of the water to 23% of its full intensity.  The τ delay was kept short (0.19 ms) to eliminate any 

possible impact of translational diffusion on T2 in an inhomogeneous Bo field.  For all 

experiments, RD was set to 5* T1, which corresponds to ~ 8 sec for serum or plasma; DE=5, 15 

NP=5600 and NS=16.  The total experiment time was 6.4 minutes.  Analysis of the resulting 

exponential decay curves is discussed in Materials and Methods.  Abbreviations:  RD, relaxation 

delay; DE, dummy echoes; NP, number of decay points acquired; NS, number of scans.  

Figure 5 illustrates an example system architecture in which an implementation of 

techniques for health screening using T1 and/or T2 values for water may be carried out.   20 

Figure 6 shows a block diagram illustrating components of a computing device or system 

used in some implementations of an apparatus for health screening using T1 and/or T2 values for 

water. 
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Brief Description of the Tables 

 

Table 1:  Correlation coefficients for plasma water T2 with biomarkers for protein 

concentration and viscosity , inflammation , insulin resistance and other metabolic processes.  5 

Biomarkers were included in the table if they demonstrated at least one correlation coefficient 

with a p value < 0.05.   

Table 2:  Correlation coefficients for serum water T2 values with biomarkers for protein 

concentration and viscosity, inflammation, dyslipidemia and other metabolic processes.   

Table 3:  Characteristics of the Human Subject Population. 10 

Table 4:  Biomarkers Measured in this Study. 

Tables 5-9:  Correlation Coefficients for Water T2 Variants in Human Plasma. 

Tables 10-14:  Correlation Coefficients for Water T2 Variants in Human Serum. 

 

DETAILED DISCLOSURE OF THE INVENTION 15 

The term “about” is used in this patent application to describe some quantitative aspects 

of the invention, for example, time.  It should be understood that absolute accuracy is not 

required with respect to those aspects for the invention to operate.  When the term “about” is 

used to describe a quantitative aspect of the invention, the relevant aspect may be varied by up to 

±10%.  As used herein, the term “subject” refers to a human or non-human animal, such as a rat, 20 

mouse, pig, dog, cat, horse or any other animal, including animal models of human diseases. 
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The subject application discloses a method that involves at least three steps: (1) 

acquisition of a NMR relaxation decay curve for plasma, serum or whole blood samples, or for 

tissues monitored from outside the body, (2) analysis of the relaxation decay or recovery curve to 

extract the T2 and/or T1 relaxation times for water, and (3) conversion of the water T2 and/or T1 

values into a measure of someone’s health status (referred to as a T2 or T1 health score depending 5 

on the value (T1 or T2 or both T1 and T2) associated with the score).  The T1 and/or T2 health 

score utilizes a statistical database derived from previous studies of subjects having varying 

degrees of metabolic abnormalities, such as inflammation, insulin resistance, lipid abnormalities 

(dyslipidemia), oxidative stress, brain abnormalities or other disorders, and provides a measure 

of a subject’s overall metabolic and brain health status. Specifically, the disclosed method 10 

detects or rules out hidden problems such as inflammation, insulin resistance, lipid abnormalities 

(dyslipidemia), oxidative stress, brain abnormalities or other disorders. The disclosed invention 

has value as a front-line health screening test and provides a subject with a T2 and/or T1 Health 

Score that provides individuals with an overall assessment of their metabolic and brain health. 

The T2 and/or T1 Health Score provides evidence of hidden abnormalities that could lead to 15 

disease in the future.  Non-limiting examples of these abnormalities include, but are not limited 

to, inflammation, insulin resistance, neurological abnormalities, oxidative stress and lipid 

abnormalities.  Early detection and subsequent intervention can remedy or delay the 

manifestation of disease arising from the abnormalities disclosed herein (e.g., atherosclerosis, 

etc.)  Thus, if an apparently healthy subject has a moderately low T2 and/or T1 Health Score, the 20 

subject can choose an intervention, such as an exercise program, and check the score 4-8 weeks 

later to see if the health score has improved. Alternatively, the subject can alter its diet, take low 

dose aspirin or add a nutritional supplement, such as an antioxidant or a fish oil and assess the 
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impact of this change in diet on the T2 and/or T1 Health Score.  Subjects with the lowest scores 

would be advised to visit their physician for a more complete workup to rule out a disease 

diagnosis and/or subjects can be treated with an appropriate therapeutic intervention. With 

respect to the overall assessment of metabolic and brain health, subjects can be separated into at 

least three categories.  In some embodiments, the subjects can be separated as follows on the 5 

basis of the T2 and/or T1 Health Score (based on plasma T2 values):  >800:  lowest likelihood of 

metabolic abnormalities; 700-800 or between 720 to 800:  medium likelihood of metabolic 

abnormalities; <700 or <720:  highest likelihood of metabolic abnormalities.  Thus, subjects with 

a T2 and/or T1 Health Score of 800 or less can be treated according to the methods disclosed 

herein, subjected to heightened monitoring for the development of metabolic abnormalities or 10 

referred to a health provider for further evaluation for a hidden metabolic abnormality, such as 

inflammation, insulin resistance, lipid abnormalities (dyslipidemia), oxidative stress, brain 

abnormalities or other disorders. 

As discussed above, the subject application has determined that lower water T2 and/or T1 

values in serum and plasma are indicative of increasing degrees of metabolic dysfunction, even 15 

in an essentially healthy population with clinical lab values that fall in the normal reference 

ranges.  The unique value of TD-NMR is that an individual’s overall health status with respect to 

insulin resistance, inflammation, dyslipidemia and possibly oxidative stress can be assessed 

simultaneously in one measurement without having to survey a large panel of clinical lab tests or 

biomarkers.  Given its simplicity, water T2 and/or T1 (4) can serve as a screening tool for the 20 

early identification of individuals with hidden risk for diseases that are linked with metabolic 

abnormalities.  Non-limiting examples of such diseases include, but are not limited to, diabetes, 

coronary artery disease, and Alzheimer’s disease (5, 6).  These disorders account for much of the 
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morbidity and mortality in modern societies.  There is a continuing need for effective screening 

tools that can be implemented practically, inexpensively and broadly across the population will 

have a place in P4 medicine:  personal, predictive, preventative and participatory (7).  The 

invention disclosed herein provides a solution to this continuing need.  This subject application 

describes methods for determining an individual’s overall health status with respect to insulin 5 

resistance, inflammation, dyslipidemia, oxidative stress and brain abnormalities can be assessed 

simultaneously in one measurement without having to survey a large panel of clinical lab tests or 

biomarkers by measuring water T2 and/or T1 values in samples obtained from a subject.  In 

various embodiments, the samples are subjected to no pre-treatment or other sample 

manipulation.  The method leverages the information content of all plasma and serum proteins, 10 

including the most abundant ones, in developing T2 and/or T1 Health Scores. 

In one aspect, the method includes the of placing a small volume of a sample comprising 

water into a NMR instrument tuned to measure a particular nucleus, such as 1H, 2H or 17O, by 

applying a series of radiofrequency pulses with intermittent delays in order to measure spin-spin 

(“T2”) and/or spin-lattice (“T1”) relaxation time constants from the time-domain decay or 15 

recovery of the signal.  The delay from pulse to data acquisition can range from about 1 to about 

50 milliseconds after the start of pulse scheme that acquires the relaxation decay curve; about 16 

to about 20 milliseconds after the start of the pulse scheme; or about 19 milliseconds after the 

start of the pulse scheme.  In some embodiments, the signal is used in a raw form, without the 

use of chemical shifts and without converting data into the frequency domain by Fourier 20 

transform or other means.  The method can also be performed by, at least, partially suppressing 

the water signal prior to the beginning of a sequence used to record relaxation time constants in 

the time domain, analyzing the exponentially decaying NMR signal in the time domain using 
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multi-exponential analysis, and comparing differences in the relaxation time constants for water 

within a single human subject, or between subjects, to assess normal and abnormal water T2 

and/or T1 values that are reflective of increased disease risk or active disease.  In another aspect, 

the method comprises application of the disclosed method to a plurality of samples obtained 

from a plurality of subjects and developing a database of T2 and/or T1 values for water in said 5 

samples.  The database can be used to provide a range of values for individuals having, or at risk 

of developing, a disorder such as insulin resistance, inflammation, dyslipidemia, oxidative stress 

and brain abnormalities (e.g., lower cognitive scores or mild cognitive impairment that often 

precedes Alzheimer’s disease or Parkinson’s disease).    

In some embodiments, the database can provide further guidance in the development of 10 

T2 and/or T1 Health Score (based on T2 and/or T1 values).  For example, plasma T2 and/or T1 

Health Scores >800 are indicative of the lowest likelihood of metabolic abnormalities; T2 and/or 

T1 Health Score values of between 700-800 or 720 to 800 indicate a medium likelihood of 

metabolic abnormalities; and T2 and/or T1 Health Score values of <700 or <720 are indicative of 

the highest likelihood of metabolic abnormalities.   15 

In another aspect, the invention is a diagnostic kit that includes a pulse time domain 

NMR instrument, a sample selected from the group consisting of serum and plasma, and a 

database of T2 and/or T1 data for water that correlates with a disorder such as insulin resistance, 

inflammation, dyslipidemia, oxidative stress and brain abnormalities (e.g., low cognitive scores 

or mild cognitive impairment). 20 

The general principles of time domain pulse NMR are generally well understood and 

familiar to persons of ordinary skill in the art and need not be discussed in detail. In brief, 

however, a sample is positioned in an external magnetic field provided by a permanent magnet. 
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This aligns the magnetic moments of the hydrogen atoms with (or against) the permanent 

magnetic field. Then, a radio frequency pulse is applied in a direction that provides a secondary 

(temporary) magnetic field perpendicular to the permanent magnetic field. This moves the 

magnetic moments of the hydrogen atoms away from their equilibrium state. The time duration 

of the pulse determines how far the magnetic moments move. The combined movement of many 5 

spins (many hydrogen atoms) generates a small but detectable oscillating magnetic field that in 

turn induces an alternating voltage that is measured as the NMR signal by a detection coil.   

At the end of the pulse, the protons in the sample give up excess energy to their 

surroundings and relax back to the equilibrium state with respect to the permanent magnetic 

field. This relaxation takes a certain amount of time, so that the NMR signal remains detectable 10 

for a period of time that can range from several milliseconds to several seconds.  Furthermore, 

the relaxing component of the NMR signal will be characteristic of individual mobility domains, 

which in turn, help identify the molecules involved in the motions and the rate of the motions.  

Samples can be scanned and the NMR signal acquired multiple times, such as between 1 and 256 

times or up to 10 to 50 times. 15 

In one embodiment, the hydrogen spin-spin relaxation rate constants (or time constants) 

are measured using a low-field bench-top time-domain NMR analyzer, and the relaxation rate 

constant for water is resolved through a multi-exponential deconvolution algorithm. The analysis 

can be made directly on serum, plasma, whole blood or intact tissue. Because of the relative 

simplicity and low cost, this method has potential application to clinical testing for the detection 20 

of a disorder such as insulin resistance, inflammation, dyslipidemia, oxidative stress and brain 

abnormalities (e.g., low cognitive scores or mild cognitive impairment).  Alternatively, the 

measurements can be made in conventional high-field NMR spectrometers or a portable, 
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wearable NMR device.  In one embodiment, a tube containing a sample is placed into the bore of 

the magnet of a bench-top TD-NMR analyzer.  Typically, the analyzer can be operated at 5,10, 

20, 40 or 60 MHz resonance frequency for hydrogen.  

A Car-Purcell-Miniboom-Gill (CPMG) pulse sequence can, in some embodiments, be 

used to measure the exponential T2 time-decay curve for water. This pulse sequence effectively 5 

eliminates chemical shifts and magnetic field inhomogeneity, permitting the measurement of T2 

values. Of course, any pulse sequence capable of measuring T2 and, if necessary, partially 

suppressing the water signal can be used in the disclosed method.  Although T2 measurements 

can be linked with chemical shifts and measured in the frequency domain, the present TD-NMR 

method measures T2 in the time domain without chemical shifts. The resulting T2 decay curve for 10 

human serum is multi-exponential, so the individual exponential terms can be deconvoluted and 

resolved with the use of an inverse Laplacian transform. The mathematical calculation can be 

implemented using Xpfit, a public domain program, among other open-source or commercially 

available solutions.  While the use of an inverse Laplace transform is exemplified in this 

application for the exponential analysis algorithm, any other suitable exponential analysis 15 

algorithm can be used for the analysis of the exponential data acquired by the practice of the 

disclosed methods.  With respect to the exponential analysis of the acquired data, at least one 

exponential term is analyzed.  In various embodiments, between one and 10 terms are analyzed.  

Other embodiments provide for the analysis of up to 6 terms or up to three exponential terms. 

Plasma and serum water T2 values from TD-NMR have been correlated with over 70 20 

blood tests (Table 4).  Strong correlations exist between plasma water T2, plasma viscosity and 

total serum protein concentration, particularly serum globulins (Table 1).  Inflammatory markers 

also correlated with plasma water T2.  These include the inflammatory markers:  C-reactive 
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protein, white blood cell counts and neutrophil counts.  Plasma water T2 also correlated with the 

following markers of insulin resistance:  insulin C-peptide, HOMA2-IR, -%B, -%S, triglycerides 

and HbA1c.   

Serum water T2 values (Table 2) reveal a slightly different set of correlations as 

compared with plasma.  Serum water T2 correlates with a number of LDL-related cholesterol 5 

markers.  Serum water T2 also shows significant correlations with serum protein, globulin and 

albumin concentrations as well as serum viscosity.  Additionally, serum water T2 also correlates 

with white blood cell counts, neutrophil counts and C-reactive protein (inflammatory markers).  

Thus, serum water T2 values can be used to assess the risk or presence of disorders such as 

inflammation or dyslipidemia (lipid disorders in a subject). 10 

The disclosed methods can also be coupled with treatments (under the supervision of a 

physician or appropriate licensed health care provider) for the disorders discussed herein for 

subjects identified to be at risk for the development of diabetes, coronary artery disease, 

Alzheimer’s disease, etc.  For example, subjects with evidence of inflammation can be treated 

with a variety of anti-inflammatory agents.  Non-limiting examples of such agents include: non-15 

steroidal anti-inflammatory agents such as ibuprofen, naproxen, aspirin, celecoxib, sulindac, 

oxaprozin, salsalate, diflunisal, piroxicam, indomethacin, etodolac, meloxicam, nambumetone, 

ketorolac tromethamine, and diclofenac; corticosteroids, such as beclomethasone, 

beclometasone, budesonide, flunisolide, fluticasone, tramcinolone, methylprednisone, 

prenisolone or prednisone.  For patients showing evidence of insulin resistance, the patients can 20 

be treated by altering diet, initiating a diabetic treatment, increasing exercise or otherwise 

modifying behavior so as to reduce the likelihood of developing diabetes arising from insulin 

resistance.  For subjects showing evidence of a dyslipidemia, the subject can be treated with low 
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dose aspirin and/or statins (such as atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, 

rosuvastatin or simcastatin), or another suitable lipid-lowering therapy. 

Figure 5 illustrates an example system architecture in which an implementation of 

techniques for health screening using T1 and/or T2 values for water may be carried out.  In the 

example illustrated in Figure 5, a health screening service 200 may receive information from an 5 

NMR 210, used to process a subject 205 sample. Health screening service 200 may output 

results, such as a health score or treatment information to subject 205.    

A device appropriate for a health screening service 200 may be implemented as software 

or hardware (or a combination thereof) on a device which may be an instantiation of system 300.  

Such a device may be or include computing systems or devices such as a laptop, desktop, tablet, 10 

reader, mobile phone, wearable device, “Internet of things” device, and the like. 

An NMR device 210 may be laboratory device, bench-top device, or even a portable 

device. A portable NMR device 210 may be capable of being worn (e.g., wearable), connected to 

a subject’s skin through a biosensor. In such cases the NMR device 210 may communicate with 

the health screening service over a wireless communications network, such as Bluetooth®. 15 

Health screening service 200 may interact with a data store 220, which can store 

biomarkers and their associated T1 and/or T2 reference values and/or ranges for different sample 

types. Data store 220 may also store additional information, for example, treatment information 

and data sets derived from samples gathered from other subjects. All or part of data store 220 

may be instantiated on the same system as health screening service, or may be instantiated on 20 

multiple systems, connected by a network. 

Communications and interchanges of data between components in the environment may 

take place over a network (not shown). The network can include, but is not limited to, a cellular 
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network (e.g., wireless phone), a point-to-point dial up connection, a satellite network, the 

Internet, a local area network (LAN), a wide area network (WAN), a Wi-Fi network, an ad hoc 

network, an intranet, an extranet, or a combination thereof.  The network may include one or 

more connected networks (e.g., a multi-network environment) including public networks, such as 

the Internet, and/or private networks such as a secure enterprise private network.  5 

Figure 6 shows a block diagram illustrating components of a computing device or system 

used in some implementations of an apparatus for health screening using T1 and/or T2 values for 

water. For example, any computing device operative to run a health screening service 200 or 

intermediate devices facilitating interaction between other devices in the environment may each 

be implemented as described with respect to system 300, which can itself include one or more 10 

computing devices. The system 300 can include one or more blade server devices, standalone 

server devices, personal computers, routers, hubs, switches, bridges, firewall devices, intrusion 

detection devices, mainframe computers, network-attached storage devices, and other types of 

computing devices. The hardware can be configured according to any suitable computer 

architectures such as a Symmetric Multi-Processing (SMP) architecture or a Non-Uniform 15 

Memory Access (NUMA) architecture.  

The system 300 can include a processing system 301, which may include a processing 

device such as a central processing unit (CPU) or microprocessor and other circuitry that 

retrieves and executes software 302 from storage system 303. Processing system 301 may be 

implemented within a single processing device but may also be distributed across multiple 20 

processing devices or sub-systems that cooperate in executing program instructions. 

Examples of processing system 301 include general purpose central processing units, 

application specific processors, and logic devices, as well as any other type of processing device, 
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combinations, or variations thereof. The one or more processing devices may include 

multiprocessors or multi-core processors and may operate according to one or more suitable 

instruction sets including, but not limited to, a Reduced Instruction Set Computing (RISC) 

instruction set, a Complex Instruction Set Computing (CISC) instruction set, or a combination 

thereof.  In certain embodiments, one or more digital signal processors (DSPs) may be included 5 

as part of the computer hardware of the system in place of or in addition to a general purpose 

CPU. 

Storage system 303 may comprise any computer readable storage media readable by 

processing system 301 and capable of storing software 302 including health screening service 

200 and/or data store 220. Storage system 303 may include volatile and nonvolatile, removable 10 

and non-removable media implemented in any method or technology for storage of information, 

such as computer readable instructions, data structures, program modules, or other data.  

Examples of storage media include random access memory (RAM), read only memory 

(ROM), magnetic disks, optical disks, CDs, DVDs, flash memory, solid state memory, phase 

change memory, or any other suitable storage media. Certain implementations may involve 15 

either or both virtual memory and non-virtual memory. In no case do storage media consist of a 

propagated signal. In addition to storage media, in some implementations, storage system 303 

may also include communication media over which software 302 may be communicated 

internally or externally.  

Storage system 303 may be implemented as a single storage device but may also be 20 

implemented across multiple storage devices or sub-systems co-located or distributed relative to 

each other. Storage system 303 may include additional elements, such as a controller, capable of 

communicating with processing system 301. 
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Software 302 may be implemented in program instructions and among other functions 

may, when executed by system 300 in general or processing system 301 in particular, direct 

system 300 or processing system 301 to operate as described herein for enabling health screening 

with T2 and/or T1 values. Software 302 may provide program instructions 304 that implement a 

health screening service 200 or subcomponents thereof. Software 302 may implement on system 5 

300 components, programs, agents, or layers that implement in machine-readable processing 

instructions the methods described herein as performed by health screening service 200 (as 

instructions 304).  

Software 302 may also include additional processes, programs, or components, such as 

operating system software, database management software, or other application software. 10 

Software 302 may also include firmware or some other form of machine-readable processing 

instructions executable by processing system 301. 

In general, software 302 may, when loaded into processing system 301 and executed, 

transform system 300 overall from a general-purpose computing system into a special-purpose 

computing system customized to facilitate health screening with T2 and/or T1 values. Indeed, 15 

encoding software 302 on storage system 303 may transform the physical structure of storage 

system 303. The specific transformation of the physical structure may depend on various factors 

in different implementations of this description. Examples of such factors may include, but are 

not limited to, the technology used to implement the storage media of storage system 303 and 

whether the computer-storage media are characterized as primary or secondary storage.  20 

System 300 may represent any computing system on which software 302 may be staged 

and from where software 302 may be distributed, transported, downloaded, or otherwise 
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provided to yet another computing system for deployment and execution, or yet additional 

distribution. 

In embodiments where the system 300 includes multiple computing devices, one or more 

communications networks may be used to facilitate communication among the computing 

devices. For example, the one or more communications networks can include a local, wide area, 5 

or ad hoc network that facilitates communication among the computing devices. One or more 

direct communication links can be included between the computing devices. In addition, in some 

cases, the computing devices can be installed at geographically distributed locations. In other 

cases, the multiple computing devices can be installed at a single geographic location, such as a 

server farm or an office. 10 

A communication interface 305 may be included, providing communication connections 

and devices that allow for communication between system 300 and other computing systems (not 

shown) over a communication network or collection of networks (not shown) or the air. 

Examples of connections and devices that together allow for inter-system communication may 

include network interface cards, antennas, power amplifiers, RF circuitry, transceivers, and other 15 

communication circuitry.  The connections and devices may communicate over communication 

media to exchange communications with other computing systems or networks of systems, such 

as metal, glass, air, or any other suitable communication media. The aforementioned 

communication media, network, connections, and devices are well known and need not be 

discussed at length here.  20 

It should be noted that many elements of system 300 may be included in a system-on-a-

chip (SoC) device. These elements may include, but are not limited to, the processing system 
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301, a communications interface 305, and even elements of the storage system 303 and software 

302.  

Alternatively, or in addition, the functionality, methods and processes described herein 

can be implemented, at least in part, by one or more hardware modules (or logic components).  

For example, the hardware modules can include, but are not limited to, application-specific 5 

integrated circuit (ASIC) chips, field programmable gate arrays (FPGAs), system-on-a-chip 

(SoC) systems, complex programmable logic devices (CPLDs) and other programmable logic 

devices now known or later developed. When the hardware modules are activated, the hardware 

modules perform the functionality, methods and processes included within the hardware 

modules. 10 

 

MATERIALS AND METHODS 

Materials and Methods 

 Subject recruitment.  Human subject volunteers were recruited with informed consent 

into two protocols approved by the Institutional Review Board of the University of North Texas 15 

Health Science Center in Fort Worth (UNTHSC).  One protocol recruited healthy adult subjects 

from the student and staff population of UNTHSC, including some spouses and significant 

others.  The second protocol recruited subjects from the community who are participating in the 

Health and Aging Brain Study at UNTHSC (8).  Exclusion criteria for the current study included 

diabetes (HbA1C > 6.4), acute/chronic infection or illness (C-reactive protein > 10), or not fasting 20 

for at least 12 hours.  Characteristics of the human study group are summarized in Table 3. 

 Plasma and serum preparation.  Blood samples were drawn in the morning by a trained 

nurse or phlebotomist after a ≥12 hour overnight fast.  For plasma preparation, blood was drawn 
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into lavender-top tubes containing EDTA as the anticoagulant.  For serum, blood was drawn into 

plain glass red-top tubes lacking any gel separator or clot activators (BD model 366441) in order 

to avoid potential interference with TD-NMR or viscosity testing.  Blood obtained for NMR 

LipoProfile analysis (LipoScience/LabCorp) were drawn into black-top tubes specialized for that 

purpose.  Every effort was made to collect enough blood from each subject to perform all 70+ 5 

planned measurements.  However, there were situations where the amount of blood collected 

from a given subject was not sufficient or samples were rejected by the testing lab.  That 

variability accounts for the test-to-test differences in sample size (n) in the statistical analyses.   

 

 Blood Sample analysis and banking.  The plasma and serum samples were processed 10 

immediately after each blood draw.  The samples were centrifuged to remove pelleted blood 

cells, followed by a second low speed spin of the supernatant to remove residual blood cells.  

The TD-NMR water T2 measurements were performed five times on fresh plasma followed 

immediately by 5 repeats on serum such that all water T2 measurements were completed within 

~2 hours after the blood draw.  Likewise, viscosity was measured in house on fresh serum and 15 

plasma samples within a few hours of the blood draw using methods described elsewhere (9).  

Aliquots of fresh serum were sent on ice to Atherotech for the Vertical Autoprofile advanced 

lipoprotein testing, as well as to determine LDL-P, hs-CRP, GGT, homocysteine, and Lp(a).  

Assays for apolipoprotein E, total antioxidant capacity, protein carbonylation, HNE and free 

fatty acids were performed in house using kits.  All other testing of serum and plasma samples 20 

was performed by LabCorp, Quest Diagnostics and their affiliates including LipoScience and 

OmegaQuant.  Sample aliquots for amino acid analysis were frozen immediately and stored prior 

to shipment.   
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 Benchtop Time-domain NMR Relaxometry.  Measurements of T2 and T1 were performed 

at 37°C on unmodified whole serum or plasma using methods and instrumentation described 

elsewhere (9), with significant modifications noted below.  The pulse sequence for T2 

measurement included a Carr-Purcell-Meiboom-Gill refocusing scheme (10, 11) with a prior 5 

180° pulse and delta delay incorporated for partial water suppression (Figure 4).  In our 

experience, a critical factor in obtaining high quality TD-NMR data with aqueous samples is 

carefully tuning the delta delay to avoid radiation damping.  This artifact occurs when the 

additional magnetic field created by the intense oscillating water signal distorts the performance 

of CPMG pulse scheme (12).  Radiation damping readily manifests itself by a non-random 10 

oscillatory artifact observed in the residuals of the fit of the data after inverse Laplace transform.  

We determined empirically that a delta delay of 0.95*T1 (leading to a water signal that is ~23% 

of its full intensity) provides a level of suppression of the water sufficient to avoid radiation 

damping, while still maximizing the overall signal intensity of the water and the other 

lipid/protein peaks for analysis.  Even after partial suppression, the intensity of the water signal 15 

was still sufficiently intense to measure water T2 with high precision after only 16 scans.  In this 

regard, the goals of water suppression in TD-NMR are different from that of frequency-domain 

NMR spectroscopy, where essentially complete suppression of the water is normally desired.  

Another unique aspect to this TD-NMR pulse scheme was the delayed acquisition of the data 

points, which began 19 ms after the beginning of the CPMG scheme.  This strategy was a 20 

deliberate attempt to de-emphasize the very fast decay processes at the beginning of the decay 

curve in order to reduce the number of exponential terms and simplify the multi-exponential 

profile for analysis.   
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 The raw decay curves were analyzed using an inverse Laplace transform as implemented 

in Xpfit, a public domain program.  A key to obtaining stable, reproducible results with this data 

was to restrain the number of exponential terms to a consistent number, in this case to three.  

Less than three terms was not adequate to fit the data and gave poor residuals, and more than 

three rendered the calculations to be increasingly ill posed.  Given the high signal-to-noise of the 5 

water peak, it was not difficult to obtain stable solutions for serum or plasma data recorded with 

16 scans. 

 The correlation, linear regression and statistical analyses were performed using GraphPad 

Prism v. 6.05 (GraphPad Software, Inc.).  The guiding principles for the statistical analyses used 

in this study are discussed in the book by Motulsky (13).  10 

 

EXAMPLE 1 

 

Time-domain NMR relaxometry, in contrast with conventional frequency-domain NMR 

spectroscopy, involves the analysis of single- or multi-exponential decay curves to extract 15 

relaxation time constants (Fig. 1).  As acquired with this experimental protocol (14), the T2 

profiles for human serum are comprised of three tiny peaks with T2 values <200 ms (Fig. 1B, 

orange) and a much more intense water peak with a T2 value >600 ms (Fig. 1B, blue).  When 

trying to monitor the tiny peaks,, the intense water signal is considered a nuisance, as it can lead 

to radiation damping and obscure the detection and analysis of the much smaller lipid/protein 20 

peaks.  We assessed the variability of serum and plasma T2 values in a human subject population 

and modified the protocol to include fast, six-minute analyses of the water in samples obtained 
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from the test population. The water T2 values for serum and plasma exhibit high precision, with 

standard errors less than 0.5%. 

The characteristics of the human subjects analyzed in this study are summarized in Table 

3.  Overall, this is an apparently healthy group of adults spanning a wide age range, with 

approximately equal numbers of males and females of diverse race and ethnicity.  Exclusion 5 

criteria were diabetes (HbA1c >6.4) or acute/chronic illness (C-reactive protein >10).  The mean 

values for various blood biomarkers fall within the normal reference ranges, although the values 

for some individual subjects are outside of those ranges.  For example, the mean HbA1c value is 

5.5 ± 0.3, and 19 of the 29 subjects are non-diabetic by HbA1C criteria.  Of the remaining 9, 

seven have HbA1C values of 5.7 or 5.8, near the borderline between non-diabetic and pre-10 

diabetic.  By fasting glucose criteria, only 3 of the 29 show evidence of pre-diabetes.  Similarly, 

some individual subjects have lipid levels outside the reference ranges, even though the mean 

values are not.  However, for white blood cell counts, insulin C-peptide, total protein and 

albumin concentrations, all 29 subjects are within normal reference ranges. 

The plasma and serum water T2 values from TD-NMR vary considerably across the study 15 

population (Fig. 1C and Table 3).  To identify the factors governing the variation in T2, we 

measured over 70 blood tests and correlated those values with the plasma and serum T2 values 

for water (Table 4).  The correlation coefficients for plasma water T2 are listed in Table 1 and 

sample linear regression plots are provided in Figure 2.  Not surprisingly, strong correlations 

exist between water T2, plasma viscosity and total serum protein concentration.  Of the main 20 

protein fractions, the concentration of serum globulins, but not serum albumin, met the threshold 

of p<0.05.  Among the strongest correlations with plasma water T2 were several inflammatory 

markers:  C-reactive protein, white blood cell and neutrophil counts.  In addition, plasma water 
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T2 correlated with markers of insulin resistance:  insulin C-peptide, HOMA2-IR, -%B, -%S, 

triglycerides and HbA1c.   

Serum water T2 values (Table 2) reveal a somewhat different set of correlations as 

compared with plasma.  Serum water T2 does not correlate with markers of insulin resistance.  

Rather, it correlates with a number of LDL-related cholesterol markers.  However, serum water 5 

T2 does show significant correlations with serum protein, globulin and albumin concentrations as 

well as serum viscosity.  Like plasma, serum water T2 also correlates with white blood cell and 

neutrophil counts, as well as C-reactive protein.    

The correlations from this observational study led us to consider the factors that may 

contribute directly to the variation in plasma and serum water T2, as well as those that may be 10 

indirectly linked through another variable or a network of variables.  Human blood plasma and 

serum are complex mixtures containing hundreds of different proteins and lipoproteins as well as 

numerous small molecule metabolites.  At first thought, de-convoluting these myriad variables 

would seem to be hopelessly complex.  However, the five most abundant proteins in serum 

(albumin, IgG, transferrin, α1-antitrypsin and IgA) account for nearly 90% of total serum protein 15 

mass and the top two, nearly 80%.  So identifying the primary contributors to water T2 may not 

be impossible.   

We used two approaches to tease apart the factors giving rise to variations in plasma and 

serum T2.  The first approach was reductionist, utilizing controlled experiments on simplified 

model systems that mimic one or more components of human serum or plasma.  The second was 20 

statistical and involved correcting for the influence of one variable and analyzing the correlations 

with those that remain.    
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Figure 3A displays the variation of water T2 with protein concentration in a sample 

containing only human serum albumin in buffer (triangles).  As protein concentration increases, 

the water T2 decreases linearly, while the viscosity of the sample increases.  Similar results are 

observed for lipoprotein-deficient serum (Fig. 3A, squares) and whole serum (circles), 

progressively diluted to change protein concentration.  The influence of viscosity on T2 can 5 

removed by analyzing the regression residuals (15), yielding the parameter T2v.  The T2v values 

for albumin solutions, like uncorrected T2, are negatively correlated with protein concentration.  

Likewise, T2v values for whole human serum are negatively correlated with total serum protein 

concentration (Table 14).  Therefore, the water T2 value must be influenced not only by 

viscosity, but other factors such as the binding of water to protein molecules (16, 17). 10 

The 1H T2 values for water and other small molecules in solution are inversely 

proportional to the correlation time for rotational diffusion, i.e., the time it takes for reorientation 

of the 1H magnetic dipoles of water molecules in the static magnetic field of the NMR instrument 

(18, 19).  In turn, the rotational correlation time depends on temperature and viscosity, as defined 

by the Stokes-Einstein-Debye equation (9).  Water molecules bound to proteins sense the slower 15 

rotational tumbling of the protein, and thus the observed water T2 is lower than that of unbound 

water (16).  In addition, the protein-bound water molecules undergo exchange with unbound 

water, and the hydrogen atoms on ionizable groups of the proteins exchange with those of 

unbound water.  Both exchange processes further decrease the observed 1H T2 for water (17).  In 

summary, T2 is influenced by sample viscosity as well as the binding and exchange of water 20 

molecules on and off protein binding sites. 

Insulin Resistance and T2.  We sought to identify the factors that underlie the correlation 

of plasma water T2, but not serum T2, with markers of insulin resistance.  The principal 
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difference between plasma and serum is the presence of clotting factors III, VIII and XIII and I 

(fibrinogen) (20).  Three of these four factors have negligible concentrations in plasma, but 

fibrinogen is abundant, representing ~4% of total plasma protein.  Fibrinogen levels increase in 

insulin resistance and diabetes (21-23), and increased fibrinogen is an established risk factor for 

cardiovascular disease.  Correction of plasma T2 values by removing the influence of serum 5 

protein concentration highlights the influence of fibrinogen.  Like uncorrected plasma T2, plasma 

T2p values display an inverse correlation with insulin resistance biomarkers (Table 5).  Thus, 

plasma T2 appears to be sensing insulin resistance, in part, through variations in fibrinogen 

concentration.   

Although fibrinogen level is a significant contributor, it is not the only factor linking T2 10 

and insulin resistance.  Plasma T2a removes the influence of albumin and highlights both 

fibrinogen and globulin concentrations.  Among all of the T2 variants, plasma T2a it exhibited the 

strongest correlations with insulin resistance markers (Table 6).  Conversely, plasma T2g showed 

weaker correlations (Table 7).  Serum T2a, which highlights the influence of globulins in the 

absence of fibrinogen, also correlates with insulin resistance markers (Table 11).  The most 15 

abundant proteins present in the serum globulin fraction are IgG, transferrin, α1-antitrysin, IgA, 

IgM and haptoglobin.  Immunoglobulin concentrations, especially IgA, increase in metabolic 

disorders including metabolic syndrome, obesity, hyperglycemia (24).  Thus, plasma T2 appears 

to be sensing insulin resistance through variations in both fibrinogen and immunoglobulin 

concentrations. 20 

Dyslipidemia and T2.  Serum water T2, but not plasma T2, is inversely correlated with a 

number of LDL-related biomarkers.  This result parallels previous observations by Rosenson et 

al. that LDL-C correlates with serum, but not plasma viscosity (25).  Similar correlations of T2 
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and LDL markers are observed with serum T2p, T2g, T2a and T2v (Tables 10-12, 14).  This pattern 

suggests that serum water T2 is sensing elevated LDL cholesterol and particle number 

concentration through the direct binding of water to lipoprotein particles.   

Inflammation and T2.  Both plasma and serum water T2 values correlate inversely with 

inflammatory markers, namely white blood cell and neutrophil counts, C-reactive protein and red 5 

cell distribution width (26).  For white cell counts, the strongest correlations were observed for 

plasma T2 and serum T2c, whereas no detectable correlations were observed for plasma T2v, 

serum T2a and serum T2p.  Overall, it appears that T2 is sensing white blood cell counts via 

changes in fibrinogen and albumin (plasma) or just albumin (serum).  Neutrophils, which 

comprise three fourths of the white blood cell population and are linked with both inflammation 10 

and insulin resistance (27), show a pattern similar to that of white blood cells.   For C-reactive 

protein, the pattern was different.  The strongest correlation was observed with plasma T2a, 

whereas no correlations with p<0.05 were observed for plasma T2v, serum T2v, serum T2g and 

serum T2p.  Taken together, it appears that T2 is sensing C-reactive protein levels via fluctuations 

in fibrinogen and globulins (plasma) or just globulins (serum). 15 

Both plasma and serum T2g, but not other T2 variants, correlate with monocyte count, 

another marker of inflammation (28).  Similarly, plasma T2g correlates with platelets, which have 

dual roles in thrombosis and inflammation (29).  

Metabolite Levels and T2.  To assess the possible contribution of small metabolites to 

variations in water T2, we conducted a series of controlled experiments.  The samples contained 20 

fixed physiological concentrations of human albumin and -globulins, and varying amounts of 

metabolites, either an amino acid mixture (0.05 - 5.0 mg/ml), glucose (50 - 400 mg/dl), ATP (0.5 

- 2.5mg/ml), uric acid (2.5 - 8.6 mg/dl), urea (1 - 5mg/dl), or glyceraldehyde (1.2 - 4.3 mg/dl).  
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No significant changes in water T2 were observed across these physiological ranges of 

metabolites.  Only glucose at 400 mg/dl, a level found in severe uncontrolled diabetes, caused a 

small but significant decrease in T2.  Although water can bind to small molecules, the effect on 

its rotational correlation time and T2 is negligible compared to that for water bound to much 

larger assemblies like proteins and lipoproteins. 5 

Proteolysis, Oxidation and T2.  The measurement of water T2 required only six minute 

experiments, but we also acquired data for longer periods of time in order to track the much 

smaller lipid and protein peaks.  The T2 value of the water peak (not the lipid/protein peaks) 

slowly decreased over a 3 to 18 hour period of incubation at 37°C.  Initially, we hypothesized 

that the slow, gradual decrease in water T2 may be resulting from ex vivo proteolysis.  To assess 10 

the effect of proteolysis, we incubated whole human serum with exogenous trypsin and 

monitored T2 over time.  This incubation did not lead to a decrease in T2.  Similar experiments 

with simple protein mixtures and trypsin in buffer did not result in a decrease in T2, but rather a 

small increase.  The lack of sensitivity of T2 to proteolysis could arise from two factors.  Water 

binding to smaller protein fragments would cause less of a decrease in T2 compared to water 15 

binding to larger, intact proteins.  If significant proteolysis occurs, it may cause T2 to increase, 

not decrease.  Another consideration is that human blood has evolved to resist proteolysis, 

especially through the activity of α1-antitrysin.  It is notable that across our human subject 

population, the concentration of α1-antitrysin did not correlate with any of the T2 markers. 

Another possible cause of slow gradual ex vivo decrease in water T2 is protein oxidation.  20 

Hydrogen peroxide is ubiquitous in the human body (30) and can serve as a substrate for metal-

catalyzed oxidation involving albumin-bound copper (31).  The product is hydroxyl radical, a 

highly reactive oxygen species that can non-enzymatically hydroxylate proline and lysine side 
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chains (32) and cause a range of other protein modifications including carbonylation (33).  Such 

modifications increase the polarity of protein side chains and provide additional binding sites for 

water. 

Figure 3B illustrates the decrease in T2 for human serum and plasma samples incubated 

with increasing amounts of copper (II) sulfate.  The effect is lessened when histidine, a copper 5 

chelator, is included in the buffer.  Similar results were observed in protein solutions containing 

only albumin and -globulin in buffer (Fig. 3C).  By sequestering copper and preventing metal 

catalyzed oxidation of other proteins, albumin is thought to be the most abundant anti-oxidant in 

human blood (34).  Some of the hydrogen peroxide needed for this reaction may be derived from 

neutrophils activated during inflammation (35, 36).  10 

Is T2 able to sense metal-catalyzed protein oxidation in blood samples from human 

subjects?  One of the consequences of albumin oxidation (37), as well as glycation (38), is a 

change in the protein’s net charge, with an anionic shift to lower isoelectric point.  Therefore, we 

searched for evidence of this anionic shift in the blood samples from our study population.  

Serum T2 and T2g are positively correlated with chloride ion concentration and the anion gap 15 

(Fig. 3E; Tables 2 and 12).  The anion gap is used in clinical medicine to help diagnose different 

types of acid-base abnormalities (39).  The body maintains charge neutrality in the circulation, 

but the concentration of measured cations nearly always exceeds that of measured anions.  The 

anion gap is defined as [UA] - [UC] = [Na+] + [K+] - ([Cl-] + [HCO3
-]), where UA and UC 

represent unmeasured anions and cations, respectively.  The gap results primarily from albumin, 20 

an anionic protein with an isoelectric point of ~4.9.  As the albumin concentration increases in 

vivo, the body decreases the chloride ion concentration to maintain charge balance, resulting in 
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an increase in the anion gap.  Across this human study population, serum T2 and T2g are sensing 

differences in anion gap, in part, through variation in albumin concentration. 

Another factor that modulates the anion gap is the net charge of albumin molecules.  

Correcting serum T2 values for albumin concentration partially, but not completely, eliminates 

the dependence of T2 on anion gap (Fig. 3F).  This observation indicates that T2 is sensing 5 

changes in albumin net charge, as well as concentration, likely as a result of glyco-oxidation 

linked to inflammation.  In support of this conclusion, the anion gap corrected for albumin 

concentration correlates with levels of C-reactive protein in our subject population. 

Correlations of other biomarkers with T2.  Alanine concentration is noteworthy for its 

inverse correlations with water T2 values, specifically serum and plasma water T2p and T2g.  One 10 

of the most abundant free amino acids in the blood, alanine levels increase with HbA1c, 

triglycerides, small LDL and LDL particle number, and the levels of other amino acids.  This 

pattern is consistent with insulin resistance, protein mobilization from muscle and abnormalities 

in LDL metabolism. Phenylalanine concentration correlates inversely with serum T2, T2p, T2g and 

T2v, but not T2c and T2a or any of the plasma T2 markers.  It correlates positively with markers of 15 

abnormal LDL metabolism.  Serum water T2 appears to be sensing variation in phenylalanine 

levels primarily via changes in LDL-C and LDL-P, whereas it is sensing variation in alanine 

through both insulin resistance and LDL markers.  Homocysteine, a known marker of 

cardiovascular risk, correlates with plasma T2g. 

Two amino acids show positive correlations with T2:  asparagine and 3-methyl-histidine 20 

(40).  For the latter, serum T2 appears to be sensing its levels via changes in globulin levels.  Of 

note, 3-methyl-histidine is not synthesized by humans, but is a breakdown product of anserine, a 

dipeptide derived from the dietary ingestion of poultry and fish.  Both anserine and 3-
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methylhistidine are chelators of divalent cations and may inhibit copper-catalyzed oxidation, as 

well as glycation and lipoxidation (41). 

It should be understood that the examples and embodiments described herein are for 

illustrative purposes only and that various modifications or changes in light thereof will be 

suggested to persons skilled in the art and are to be included within the spirit and purview of this 5 

application and the scope of the appended claims.  In addition, any elements or limitations of any 

invention or embodiment thereof disclosed herein can be combined with any and/or all other 

elements or limitations (individually or in any combination) or any other invention or 

embodiment thereof disclosed herein, and all such combinations are contemplated with the scope 

of the invention without limitation thereto. 10 
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Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 28 -0.65*** 0.42*** -0.65*** 

Globulins, Serum1 28 -0.52** 0.27** -0.54** 

Viscosity, Serum1 24 -0.49* 0.24* -0.65*** 

Viscosity, Plasma1   9 -0.82** 0.67** -0.90*** 

WBC Count2 27 -0.60*** 0.36*** -0.60*** 

Neutrophil Count2 27 -0.54** 0.29** -0.47* 

Platelet Count2 27 -0.38 0.14 -0.39* 

C-reactive Protein2 27 -0.57** 0.33** -0.54** 

HbA1c
3 27 -0.43* 0.19* -0.44* 

Insulin C-peptide3 28 -0.42* 0.18* -0.41* 

HOMA2-IR3 28 -0.39* 0.16* -0.39* 

HOMA2-%B3 28 -0.40* 0.16* -0.36 

HOMA2-%S3 28 +0.44* 0.20* +0.40* 

Triglycerides3 28 -0.30 0.09 -0.43* 

Asparagine4 26 +0.41* 0.17* +0.23 

 

*p<0.05 **p<0.01 ***p<0.001 

 5 

Table 1.  Correlation coefficients for plasma water T2 with biomarkers for protein 

concentration and viscosity (1), inflammation (2), insulin resistance (3) and other processes 
(4).  Biomarkers were included in the table if they demonstrated at least one correlation 
coefficient with a p value < 0.05.  The null hypothesis is defined as no correlation between 
plasma water T2 and a particular biomarker in the overall population.    10 
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Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 26 -0.82**** 0.67**** -0.86**** 

Albumin, Serum1 26 -0.39* 0.15* -0.39* 

Globulins, Serum1 26 -0.49* 0.24* -0.57** 

Viscosity, Serum1 25 -0.52* 0.27* -0.76**** 

WBC Count2 25 -0.54** 0.29** -0.51** 

Neutrophil Count2 25 -0.52** 0.27** -0.52** 

Eosinophil Count2 25 -0.32 0.10 -0.45* 

C-reactive Protein2 25 -0.37 0.14 -0.49* 

RDW2 23 -0.61** 0.38** -0.66*** 

Total Cholesterol3 26 -0.47* 0.23* -0.52** 

Non-HDL-C3 26 -0.42* 0.18* -0.49* 

LDL-C3 26 -0.42* 0.18* -0.44* 

LDL-P3 25 -0.45* 0.20* -0.47* 

Apo B3 26 -0.39* 0.15* -0.42 

3-Methyl-Histidine4§ 24 +0.39 0.15 +0.50** 

Phenylalanine4 24 -0.42* 0.17* -0.33 

Anion Gap4 26 -0.39* 0.15* -0.41* 
 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
 

Table 2.  Correlation coefficients for serum water T2 values with biomarkers for protein 5 

concentration and viscosity (1), inflammation (2), dyslipidemia (3) and other metabolic 
processes (4).  Biomarkers were included in this table if they demonstrated at least one 
correlation coefficient with a p value < 0.05.  The null hypothesis is defined as no correlation 
between serum water T2 and a particular biomarker in the overall population.  §Numbering is 
based on current IUPAC nomenclature, as explained elsewhere (30).  Defined with this 10 

convention, 3-methyl-histidine refers to the amino acid found in anserine, a dipeptide not 
produced in human tissues, but derived from dietary ingestion of poultry and fish.   
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Table 3:  Human Study Group 
 

Parameter Mean ± SD Range, This Study Reference Values1 

Age 43 ± 18 24 - 80 n/a 

Plasma T2 (ms) 748.8 ± 57.1 642.8 - 865.9 n.d. 

Serum  T2 (ms) 810.5 ± 52.1 692.1 - 915.0 n.d. 

Total serum protein (g/dL)3 7.2 ± 0.4 6.2 - 7.9 6.1 - 8.1 

Serum albumin (g/dL) 3 4.5 ± 0.3 4.0 - 5.0 3.6 - 5.1 

α1-antitrypsin (mg/dL) 3 130 ± 19 102 - 177 90 - 200 

Serum viscosity (cP) 3 1.17 ± 0.10 1.04 - 1.542 1.27 ± 0.06 

Plasma viscosity (cP) 3 1.27 ± 0.17 1.07 - 1.46 1.39 ± 0.08 

WBC count (x 103/µL)4 6.3 ± 1.5 3.9 - 10.2 3.4 - 10.8 

Neutrophil count (x 103/µL)4 3.6 ± 1.4 1.8 - 7.3 1.4 - 7.0 

hs-CRP (mg/L)4 1.9 ± 1.6 0.1 - 5.1 

< 1.0 (low risk) 

1.0 – 3.0 (average risk) 

> 3.0 (high risk) 

Glucose (mg/dL)5 91 ± 8 78 - 115 
<100 non-diabetic 

100-125 (pre-diabetic) 

HbA1c (%)5 5.5 ± 0.3 4.9 - 6.2 
<5.7 (non-diabetic) 

5.7-6.4 (pre-diabetic) 

Insulin C-peptide (ng/mL)5 2.4 ± 0.8 1.1 - 4.3 1.1 - 4.4 

Triglycerides (mg/dL)5 111 ± 57 42 - 245 < 150 mg/dL 

Total cholesterol (mg/dL)6 196 ± 44 111 - 3292 < 200 mg/dL 

HDL-C (mg/dL)6 55 ± 12 32 - 85 > 40 mg/dL 

LDL-C (mg/dL)6 119 ± 43 42 - 2572 < 130 mg/dL 

TSH (µIU/mL)7 2.2 ± 1.1 0.6 - 5.3 0.5 - 4.5 

Free T4, direct (ng/dL)7 1.2 ± 0.2 0.9 - 1.5 1.0 - 1.5 

 
Table 3:  Characteristics of the human study group (n=29).  This sample size provided sufficient statistical 
power to identify correlations using conventional p-value thresholds.  There were 15 females and 14 males, with an 5 

ethnic/racial distribution of 15 white, 6 Asian/Indian, 5 Hispanic and 3 African American/Caribbean.  The mean 
BMI is 25.6 ± 4.2. 1Reference values are from Quest, Labcorp and Atherotech; viscosity reference values were 
obtained from (40); use of a different method may explain why the measured viscosity range is approximately 0.1 cP 
lower than the reference range.  2One subject had a serum viscosity of 1.54 cP, a statistical outlier; the next highest 
was 1.30. This subject had the highest total cholesterol (329 mg/dL) and LDL-C (257 mg/dL), as well as a family 10 

history of type II hypercholesterolemia (father).  Correlation coefficients for plasma water T2 with biomarkers 

for protein concentration and viscosity (3), inflammation (4), insulin resistance (5), dyslipidemia (6) and other 

metabolic processes (7). 
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Table 4:  Biomarkers Measured in this Study 

 
TD-NMR Markers:  plasma water T2, T2p, T2a, T2g, T2c, T2v serum water T2, T2p, T2a, T2g, T2c, T2v 

 

Category Correlated with T2
† Did not correlate with T2

† 

Protein, viscosity, liver 
function markers 

total serum protein, serum albumin, 
serum globulins (calc), serum viscosity, 

plasma viscosity 

α1-antitrypsin, AST, ALT, 
GGT 

Inflammation, blood 
cell and oxidative 

stress markers 

hs-CRP, WBC, neutrophils, monocytes, 
eosinophils, basophils, platelets, RDW, 

anion gap corrected for albumin 
concentration, TNFα, sICAM*, I-309*, 

factor VII* 

RBC, hematocrit, 
hemoglobin, MCV, MCH, 

MCHC, lymphocytes, HNE, 
ORAC antioxidant capacity 

Cholesterol/lipid 
markers 

Total cholesterol, HDL-C, non-HDL-C, 
LDL-C, LDL-P, LDL size, small LDL-

P, HDL-P,  VLDL-C, remnant-C, 
apoB, DHA, omega-3 index 

Lp(a), EPA, AA, apoAI, 
phospholipids, apoE 

Insulin resistance & 
diabetes markers 

insulin, insulin C-peptide, HbA1c, 
HOMA2-IR, -%B, -%S, triglycerides,   

IR Score (LipoScience)  

glucose, free fatty acids, 
body-mass index 

Electrolyte markers chloride, bicarbonate, anion gap sodium, potassium, calcium 

Kidney function 
markers 

blood urea nitrogen (BUN)*, estimated 
glomerular filtration rate (eGFR)* 

creatinine 

Thyroid function 
markers 

thyroid stimulating hormone (TSH) free T4 

 5 

Table 4.  Biomarkers measured in this study.  †In this table, a correlation is defined as one 
where p<0.05 for the Pearson correlation, non-parametric Spearman correlation or both for at 
least one variant of serum or plasma water T2.  The null hypothesis states that there is no 
correlation between a plasma or serum water T2 measure and a particular biomarker.  The 
individual correlation coefficients and statistics are provided in Tables 1, 2 and 5-14.  *These 10 

particular biomarkers were measured for only five-to-eight subjects; although they met the p-
value threshold, the correlations are considered preliminary.  The most compelling of these 
preliminary correlations was plasma T2a with TNFα:  r = -0.93, R2 = 0.87, rS = -0.97, with p 
values <0.05, <0.05 and <0.001, respectively. 
 15 
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Table 5:  Water T2p Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 28  0.00 0.00 -0.04 

Albumin, Serum1 28  0.09 0.01  0.05 

Globulins, Serum1 28 -0.07 0.01 -0.08 

Viscosity, Serum1 24 -0.27 0.07 -0.32 

Viscosity, Plasma1   9 -0.90*** 0.81*** -0.93*** 

WBC Count2 27 -0.43* 0.18* -0.40* 

Neutrophil Count2 27 -0.39* 0.15* -0.44* 

C-reactive Protein2 27 -0.48* 0.23* -0.41* 

HbA1c
3 27 -0.41* 0.17* -0.45* 

Insulin C-peptide3 28 -0.43 0.19* -0.47* 

HOMA2-IR3 28 -0.41* 0.17* -0.45* 

HOMA2-%B3 28 -0.41* 0.16* -0.36 

HOMA2-%S3 28 +0.48** 0.23** +0.46* 

Triglycerides3 28 -0.28 0.08 -0.38* 

Alanine4 26 -0.42* 0.18* -0.43* 

Citrulline4 26 -0.36 0.13 -0.41* 

TSH4 28 -0.33 0.11 -0.39* 

 
*p<0.05 **p<0.01 ***p<0.001 

 5 

Table 5.  Correlation coefficients for plasma water T2p with biomarkers for protein 

concentration and viscosity (1), inflammation (2), insulin resistance (3) and other processes 
(4).  The plasma water T2p values represent the regression residuals obtained from a linear fit of 
plasma water T2 vs. total serum protein.  This analysis removes the influence of total serum 
protein concentration on plasma water T2 values, emphasizing the influence of fibrinogen 10 

concentration.   
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Table 6:  Water T2a Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total protein, serum1 28 -0.52** 0.27** -0.50** 

Albumin, Serum1 28  0.00 0.00  0.03 

Globulins, Serum1 28 -0.60*** 0.36*** -0.62*** 

Viscosity, Plasma1 9 -0.83** 0.68** -0.90** 

WBC Count2 27 -0.53** 0.28** -0.49** 

Neutrophil Count2 27 -0.51** 0.26** -0.49** 

C-reactive Protein2 27 -0.61** 0.37** -0.63** 

HbA1c
3 27 -0.46* 0.21* -0.48* 

Insulin C-peptide3 28 -0.50** 0.25** -0.51** 

HOMA2-IR3 28 -0.47* 0.22* -0.48** 

HOMA2-%B3 28 -0.46* 0.21* -0.48** 

HOMA2-%S3 28 +0.49** 0.24** -0.50** 

Triglycerides3 28 -0.37 0.14 -0.47* 

TG/cholesterol ratio3 28 -0.32 0.10 -0.40* 

Asparagine4 26 +0.47* 0.22* +0.29 

Bicarbonate ion4 28 +0.31 0.10 +0.41* 

 
*p<0.05 **p<0.01 ***p<0.001 

 5 

Table 6.  Correlation coefficients for plasma water T2a with biomarkers for protein 

concentration and viscosity (1), inflammation (2), insulin resistance (3) and other processes 
(4).  Plasma water T2a values represent the regression residuals obtained from a linear fit of 
plasma T2 vs. serum albumin concentration.  This analysis removes the influence of albumin 
concentration on plasma T2 and emphasizes the influence of globulins and fibrinogen 10 

concentration. 
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Table 7:  Water T2g Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Albumin, Serum1 28 -0.46* 0.21* -0.44* 

Globulins, Serum1 28 0.00 0.00 -0.05 

Viscosity, Plasma1 9 -0.82** 0.67** -0.87** 

C-reactive Protein2 27 -0.43* 0.18* -0.40* 

WBC Count2 27 -0.59** 0.35** -0.54** 

Neutrophil Count2 27 -0.46* 0.21* -0.41* 

Platelet Count2 27 -0.44* 0.19* -0.42* 

Monocyte Count2 27 -0.44* 0.19* -0.54** 

HbA1c
3 27 -0.37 0.14 -0.38* 

HOMA2-%S3 28 +0.38* 0.15* +0.34 

IR Score 

(LipoScience)4 
17 -0.31 0.09 -0.49* 

LDL-P4 27 -0.39* 0.15* -0.42* 

Small LDL-P/HDL-P4 17 -0.36 0.13 -0.52* 

Alanine5 26 -0.44* 0.20* -0.44* 

Homocysteine5 27 -0.30 0.09 -0.41* 

Ethanolamine5 26 -0.37 0.14 -0.43* 

MCV5 27 +0.34 0.12 +0.38* 

Chloride ion5 28 +0.43* 0.18* +0.49** 

 

*p<0.05  **p<0.01 ***p<0.001 
 5 

Table 7.  Correlation coefficients for plasma water T2g with biomarkers for protein concentration and 
viscosity (1), inflammation (2), insulin resistance (3), dyslipidemia (4) and other processes (5).  Plasma water T2g 
values represent the regression residuals obtained from a linear fit of plasma T2 vs. serum globulin concentration.  
This analysis removes the influence of serum globulin concentration on plasma water T2 and highlights the influence 
of albumin and fibrinogen.  10 
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Table 8:  Water T2c Correlations, Human Plasma 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total protein, serum1 28 -0.64*** 0.41*** -0.65*** 

Albumin, Serum1 28 -0.25 0.06 -0.29 

Globulins, Serum1 28 -0.54** 0.30** -0.57** 

Viscosity, Plasma1 9 -0.81** 0.65** -0.90** 

WBC Count2 27 -0.64*** 0.41*** -0.59** 

Neutrophil Count2 27 -0.58** 0.34** -0.47* 

Platelet Count2 27 -0.36 0.13 -0.39* 

C-reactive Protein2 27 -0.60*** 0.36*** -0.51** 

HbA1c
3 27 -0.45* -0.20* -0.49** 

Insulin C-peptide3 28 -0.42* 0.18* -0.47* 

HOMA2-IR3 28 -0.39* 0.15* -0.45* 

HOMA2-%B3 28 -0.40* 0.16* -0.40* 

HOMA2-%S3 28 +0.42* 0.18* +0.49 

Triglycerides3 28 -0.30 0.09 -0.40* 

Asparagine4 26 +0.39* 0.15* +0.29 

 
*p<0.05 **p<0.01 ***p<0.001 

 5 

Table 8.  Correlation coefficients for plasma water T2c with biomarkers for protein 

concentration and viscosity (1), inflammation (2), insulin resistance (3) and other processes 
(4). Plasma water T2c values represent the regression residuals obtained from a linear fit of 
plasma water T2 vs. total cholesterol concentration.  This analysis removes the influence of total 
cholesterol concentration on plasma water T2 and emphasizes the influence of plasma proteins 10 

other than lipoproteins. 
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Table 9:  Water T2v Correlations, Human Plasma 
 

Biomarker N* r (Pearson) R2 rS (Spearman) 

Total protein, serum1 9 -0.79* 0.63* -0.73* 

Viscosity, Plasma1 9  0.00 0.00 -0.25 

RDW2 9 -0.53 0.28 -0.73* 

Omega 3 Index3 9 -0.71* 0.50* -0.85** 

DHA3 9 -0.70* 0.48* -0.77* 

3-Methyl-Histidine3 9 +0.70* 0.48* +0.54 

Hydroxy-Proline3 9 -0.54 0.29 -0.76* 

 
*p<0.05 **p<0.01 ***p<0.001 

 5 

Table 9.  Correlation coefficients for plasma water T2v values with biomarkers for protein 
concentration and viscosity (1), inflammation (2) and other processes (3).  Plasma water T2v 
values represent the regression residuals obtained from a linear fit of plasma water T2 vs. plasma 
viscosity.  This analysis removes the influence of plasma viscosity on plasma water T2 and 
emphasizes the influence of water binding to proteins and lipoproteins.  *For some subjects, there 10 

was not enough blood available to measure both serum and plasma viscosity, so the number of 
subjects with plasma viscosity data is smaller. 
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Table 10:  Water T2p Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 26  0.00 0.00  0.00 

Total Cholesterol2 26 -0.42* 0.18* -0.40* 

LDL-P2 25 -0.40* 0.16* -0.45* 

HDL-P2 15 +0.52* 0.27* 0.46 

small-LDL-P/HDL-P2 15 -0.45 0.20 -0.53* 

Platelet Count3 25 -0.30 0.09 -0.43* 

Phenylalanine4 24 -0.53** 0.29** -0.57** 

Alanine4 24 -0.49* 0.24* -0.57** 

Tyrosine4 24 -0.41* 0.17* -0.45* 

1-Methyl-Histidine4§ 24 -0.39 0.15 -0.42* 

 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 

 5 

Table 10.  Correlation coefficients for serum water T2p values with biomarkers for protein 

concentration and viscosity (1), dyslipidemia (2), inflammation (3), and other processes (4).  
Serum water T2p values represent the regression residuals obtained from a linear fit of serum 
water T2 vs. total serum protein concentration.  This analysis removes the influence of albumin, 
globulins and viscosity on serum water T2 and emphasizes the influence of serum lipoproteins.   10 

 
§This numbering is based on current IUPAC nomenclature, as explained elsewhere (30).  As 
defined with this convention, 1-methyl-histidine refers to the amino acid found in carnosine, a 
dipeptide present in human muscle tissue.  Elevated 1-methyl-histidine in the circulation is 
consistent with protein breakdown in muscle, as seen in insulin resistance and diabetes, or with 15 

strenuous exercise.  Concurrent elevations of phenylalanine, alanine and tyrosine support that 
interpretation. 
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Table 11:  Water T2a Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 26 -0.75**** 0.56**** -0.74**** 

Albumin, Serum1 26  0.00 0.00 -0.01 

Globulins, Serum1 26 -0.72**** 0.52**** -0.72**** 

Viscosity, Serum1 25 -0.44* 0.19* -0.62*** 

WBC Count2 25 -0.43* 0.19* -0.40* 

Neutrophil Count2 25 -0.47* 0.22* -0.44* 

Eosinophil Count2 25 -0.30 0.09 -0.41* 

Basophil Count2 25 -0.36 0.13 -0.44* 

RDW2 25 -0.14 0.02 -0.41* 

RDW (see caption)2§ 23 -0.59** 0.34** -0.55** 

C-reactive Protein2 25 -0.42* 0.18* -0.57** 

Total Cholesterol3 26 -0.43* 0.19* -0.48* 

Non-HDL-C3 26 -0.38 0.15 -0.48* 

LDL-C (VAP) 3 26 -0.36 0.13 -0.41* 

LDL-P3 25 -0.40* 0.16* -0.43* 

Apo B3 26 -0.35 0.13 -0.44* 

Remnant-C3 26 -0.35 0.13 -0.41* 

Insulin4 26 -0.46* 0.21* -0.47* 

Insulin C-peptide4 26 -0.39* 0.15* -0.42* 

HOMA2-IR4 26 -0.38 0.14 -0.40* 

HOMA2-%S4 26 +0.33 0.11 +0.42* 

 



 243 UNT.108P 

 

 

Table 11:  Water T2a Correlations, Human Serum (continued) 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Bicarbonate ion5 26 +0.45* 0.20* +0.46* 

3-methyl histidine5 24 +0.35 0.12 +0.43* 

 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
 5 

Table 11.  Correlation coefficients for serum water T2a values with biomarkers for protein 

concentration and viscosity (1), inflammation (2), dyslipidemia (3), insulin resistance (4) and 
other processes (5).  Serum water T2a values represent the regression residuals obtained from a 
linear fit of serum water T2 vs. serum albumin concentration.  This analysis removes the 
influence of serum albumin concentration on serum water T2 and emphasizes the influence of 10 

globulin and lipoproteins concentrations. 
 
 



 244 UNT.108P 

 

 

Table 12:  Water T2g Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 26 -0.53** 0.28** -0.49* 

Albumin, Serum1 26 -0.70**** 0.49**** -0.72**** 

Globulins, Serum1 26  0.00 0.00  0.01 

Viscosity, Serum1 25 -0.41* 0.16* -0.48* 

WBC Count2 25 -0.51** 0.26** -0.49* 

Neutrophil Count2 25 -0.45* 0.20* -0.48* 

Monocyte Count2 25 -0.38 0.14 -0.44* 

Total Cholesterol3 26 -0.47* 0.22* -0.49* 

Non-HDL-C3 26 -0.41* 0.17* -0.44* 

LDL-C (VAP) 3 26 -0.43* 0.19* -0.44* 

LDL-P3 25 -0.47* 0.22* -0.48* 

Apo B3 26 -0.37 0.14 -0.41* 

IR Score (LipoScience)3 15 -0.37 0.14 -0.53* 

Phenylalanine4 24 -0.57** 0.33** -0.60** 

Tyrosine4 24 -0.54** 0.29** -0.62** 

Alanine4 24 -0.44* 0.19* -0.47* 

Ethanolamine4 24 -0.40 0.16 -0.50* 

α-amino-butyric acid4 24 -0.40 0.16 -0.50* 

Chloride Ion4 26 +0.40* 0.16* +0.51** 

Anion Gap4 26 -0.37 0.13 -0.41* 

 

Table 12.  Correlation coefficients for serum water T2g values with biomarkers for protein 

concentration and viscosity (1), inflammation (2), dyslipidemia (3) and other processes (4).  5 

Serum water T2g values represent the regression residuals obtained from a linear fit of serum 
water T2 vs. serum globulin concentration.  This analysis removes the influence of serum 
globulins on serum water T2 and emphasizes the influence of albumin and lipoproteins. 
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Table 13:  Water T2c Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 26 -0.78**** 0.61**** -0.82**** 

Globulins, Serum1 26 -0.49* 0.24* -0.65*** 

Viscosity, Serum1 25 -0.30 0.09 -0.62** 

WBC Count2 25 -0.64*** -0.40*** -0.57** 

Neutrophil Count2 25 -0.65*** -0.43*** -0.62** 

C-reactive Protein2 25 -0.41* 0.17* -0.49* 

3-Methyl-Histidine3 24 +0.47* 0.22* +0.57* 

 
Table 13.  Correlation coefficients for serum water T2c values with biomarkers for protein 
concentration and viscosity (1), inflammation (2), and other metabolic states (3).  Serum 5 

water T2c values represent the regression residuals obtained from a linear fit of serum water T2 
vs. total cholesterol concentration.  This analysis removes the influence of cholesterol and 
lipoprotein levels on serum water T2 and highlights the influence of albumin and globulins. 
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Table 14:  Water T2v Correlations, Human Serum 
 

Biomarker N r (Pearson) R2 rS (Spearman) 

Total Protein, Serum1 24 -0.47* 0.22* -0.41* 

Viscosity, Serum1 24  0.00 0.00 -0.01 

Insulin2 24 -0.42* 0.18* -0.46* 

Total Cholesterol3 24 -0.50* 0.25* -0.46* 

Non-HDL-C3 24 -0.40* 0.16* -0.41* 

LDL-C (VAP) 3 24 -0.43* 0.18* -0.40 

LDL-P3 24 -0.46* 0.21* -0.54** 

 

Table 14.  Correlation coefficients for serum water T2v values with biomarkers for protein 
concentration and viscosity (1), insulin resistance (2) and dyslipidemia (3).  Serum water T2v 5 

values represent the regression residuals obtained from a linear fit of serum water T2 vs. serum 
viscosity.  This analysis removes the influence of viscosity on serum water T2 and highlights the 
concentration-dependent binding of water to proteins and lipoproteins.  One subject with an 
extremely high serum viscosity level, a statistical outlier, was excluded from this analysis.  See 
Table 3 legend for further information about this subject. 10 
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Abbreviations 

AA:  arachidonic acid 

ALT:  alanine aminotransferase 

AST:  aspartate aminotransferase 

BMI:  body-mass index 5 

BUN:  blood urea nitrogen 

CPMG:  Carr-Purcell-Meiboom-Gill NMR pulse sequence to measure T2 

DHA:  Docosahexaenoic Acid 

EDTA:  ethylene-diamine-tetra-acetic-acid 

eGFR:  estimated glomerular filtration rate 10 

EPA:  eicosapentaenoic Acid 

GGT:  gamma glutamyl transpeptidase 

HABS:  Health & Aging Brain Study at the UNT Health Science Center, Fort Worth 

HABLE:  Health and Aging Brains in Latino Elders, a sub-study of HABS 

HbA1C:  glycated hemoglobin 15 

HDL-C:  high-density lipoprotein cholesterol concentration 

HDL-P:  high-density lipoprotein particle number concentration 

HNE:  4-hydroxynonenal 

HOMA2-%B:  homeostatic model assessment version 2, % beta cell function 

HOMA2-%S:  homeostatic model assessment version 2, % insulin sensitivity 20 

HOMA2-IR:  homeostatic model assessment version 2, insulin resistance index  

 (see https://www.dtu.ox.ac.uk/homacalculator for HOMA2 definitions) 

hs-CRP:  high-sensitivity C-reactive protein 
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I-309:  member of the CC subfamily of chemokines 

IR Score:  insulin resistance score (from NMR LipoProfile, LipoScience) 

LDL-C:  low density lipoprotein cholesterol concentration 

LDL-P:  low density lipoprotein particle number concentration 

Lp(a):  lipoprotein (a) cholesterol concentration 5 

MCH:  mean corpuscular hemoglobin 

MCHC:  mean corpuscular hemoglobin concentration 

MCV:  mean corpuscular volume 

MDA:  malondialdehyde 

NMR, nuclear magnetic resonance 10 

T2a:  regression residuals from a linear fit of plasma or serum water T2 vs. serum albumin  

T2c:  regression residuals from a linear fit of plasma or serum water T2 vs. serum cholesterol   

T2g:  regression residuals from a linear fit of plasma or serum water T2 vs. serum globulins 

 (globulins = total serum protein – serum albumin) 

T2p:  regression residuals from a linear fit of plasma or serum water T2 vs. total serum protein 15 

T2v:  regression residuals from a linear fit of plasma or serum water T2 vs. viscosity 

r:  Pearson correlation coefficient 

rS:  Spearman correlation coefficient, non-parametric 

R2:  square of the Pearson correlation coefficient 

RDW:  red cell distribution width 20 

Remnant-C: remnant lipoprotein particle cholesterol concentration 

sICAM:  soluble intercellular adhesion molecule 

TD-NMR:  time-domain nuclear magnetic resonance 
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TG:  serum triglyceride concentration 

TNFα:  tumor necrosis factor alpha 

TSH:  thyroid stimulating hormone 

[UA]:   unmeasured anion concentration, in meq/L 

[UC]:  unmeasured cation concentration, in meq/L 5 

VAP:  Vertical AutoProfile test, Atherotech 

VLDL-C: very low density lipoprotein cholesterol concentration 

WBC:  white blood cells 
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1845 (2013). 
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CLAIMS 

 

We claim: 

  

1.  A method for determining the T2 and/or T1 health score of a subject comprising 

obtaining a NMR spin relaxation curve for a sample with an NMR instrument tuned to measure a 

particular nucleus selected from 1H, 2H, 3H or 17O, analyzing the curve to extract T2 and/or T1 

relaxation times for water and converting the water T2 and/or T1 values into a measure of the 

health status of the subject (the T2 and/or T1 health score).  

 

2.  The method according to claim 1, wherein the sample is a plasma sample, a serum 

sample, whole blood sample, a tissue sample or a subject, such as a human being. 

 

3.  The method according to claims 1-2, wherein the method comprises a step of 

partially suppressing the water signal, for example with a 180-degree inversion pulse followed 

by a delay or any other suitable method for partial suppression of the water signal prior to 

recording the relaxation curve. 

 

4. The method according to claim 3, wherein the delay time is tuned to eliminate 

radiation damping while maximizing water signal intensity. 
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5. A method according to claims 1-4, wherein the step of analyzing the 

exponentially decaying or recovering NMR signal comprises acquiring the relaxation curve and 

subjecting the data to exponential analysis, for example transforming the data with an inverse 

Laplace transformation, or using any other suitable exponential analysis algorithm. 

 

6. The method according to claim 5, wherein said exponential analysis comprises the 

analysis of one or more exponential terms, for example one to six exponential terms, two to four 

exponential terms or three exponential terms. 

 

7. The method according to claims 3-6, wherein data acquisition begins about 1 to 

about 50 milliseconds after the start of pulse scheme that acquires the relaxation decay curve; 

about 16 to about 20 milliseconds after the start of the pulse scheme; or about 19 milliseconds 

after the start of the pulse scheme  

 

8. The method according to claims 1-7, wherein said sample is scanned multiple 

times, such as between 1 and 256 times or up to 10 to 50 times.  

 

9. The method according to claims 1-8, wherein the step of converting the T2 and/or 

T1 values into a measure of the health status of the subject comprises comparing the T2 and/or T1 

values obtained for the sample from the subject with T2 and/or T1 values obtained from a 

database, said database comprising T2 and/or T1 values obtained for a range of subjects, from 

those who are normal and healthy to those having varying degrees of inflammation, insulin 
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resistance, lipid abnormalities, oxidative stress, brain or cognitive abnormalities and/or other 

disorders.   

 

10. The method according to claims 1-9, said method comprising referring an 

individual subject with a plasma T2 value less than about 800 to a registered dietician, certified 

personal trainer, physician or other licensed health provider to improve health and well-being, 

and prevent the onset of diabetes, coronary artery disease, myocardial infarction, ischemic 

vascular disease, stroke, cognitive impairment, neurodegenerative diseases and dementia, 

including Alzheimer’s disease, or any other diseases that arise from metabolic abnormalities 

such as chronic, low-grade inflammation, insulin resistance, lipid/lipoprotein abnormalities 

and/or oxidative stress and/or treating the subject with an appropriate treatment for 

inflammation, insulin resistance, lipid abnormalities, oxidative stress, brain or cognitive 

abnormalities and/or other disorders. 

 

11.  A method of creating a database for determining the health status of a subject 

comprising obtaining a NMR relaxation curve for a sample obtained from a subject with an 

NMR instrument tuned to measure a particular nucleus selected from 1H, 2H, 3H or 17O, 

analyzing the relaxation curve to extract T2 and/or T1 relaxation times for water and converting 

the water T2 and/or T1 values into a measure of the health status of the subject, associating the 

health status of the subject with the converted water T2 and/or T1 values and creating a database 

containing the associated water T2 and/or T1 values (T2 and/or T1 health scores) and the health 

status of the subject. 
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12.  The method according to claim 11, wherein the sample is a plasma sample, a 

serum sample, whole blood sample, a tissue sample or a subject, such as a human. 

 

13.  The method according to claims 11-12, wherein the method comprises a step of 

partially suppressing the water signal, for example with a 180-degree inversion pulse followed 

by a delay or any other suitable method for partial suppression of the water signal prior to 

recording the relaxation curve. 

 

14. The method according to claim 13, wherein the delay time is tuned to eliminate 

radiation damping while maximizing water signal intensity.  

 

15. The method according to claims 11-14, wherein the step of analyzing the 

exponentially decaying or recovering NMR signal comprises acquiring the relaxation curve and 

subjecting the data to exponential analysis, for example transforming the data with an inverse 

Laplace transformation, or using any other suitable exponential analysis algorithm. 

 

16.  The method according to claim 15, wherein said exponential analysis comprises 

the analysis of one or more exponential terms for example one to six exponential terms, two to 

four exponential terms or three exponential terms.   

 

17.  The method according to claims 11-16, wherein data acquisition begins about 1 to 

about 50 milliseconds after the start of pulse scheme that acquires the relaxation curve; about 16 
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to about 20 milliseconds after the start of the pulse scheme; or about 19 milliseconds after the 

start of the pulse scheme. 

 

18. The method according to claims 11-17, wherein said sample is scanned multiple 

times, such as between 1 and 256 times or up to 10 to 50 times  

 

19. The method according to claims 11-18, said method being applied to a plurality of 

samples obtained from a plurality of subjects to create said database. 

 

20. An apparatus for health-screening a subject comprising: 

a NMR instrument or portable device tuned to measure a particular nucleus selected from 

1H, 2H, 3H or 17O; 

one or more computer readable storage media; 

a processing system; 

a data store contained on the one or more computer readable storage media comprising: 

one or more reference T2 relaxation times for water and a reference T1 relaxation times 

for water, for one or more of a sample type, wherein the reference T2 and/or reference T1 values 

are associated with a health status; 

program instructions for a health screening service stored on the one or more computer 

readable storage media that direct the processing system to: 

acquire an NMR relaxation decay or recovery signal, using the NMR instrument, from a 

sample of a particular sample type from the subject;  
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analyze the NMR relaxation curve to extract a T2 relaxation time for water and/or a T1 

relaxation time for water;  

identify the reference values for the particular sample type associated with the extracted 

T2 and/or T1 values and determine the health status associated with the reference values; and 

display a health score determined from the health status. 

 

21. The apparatus of claim 20, wherein the sample type is a whole blood sample, a 

serum sample, a plasma sample, a tissue sample or a subject, such as a human being. 

 

22. The apparatus of claim 20, wherein the NMR instrument is a wearable device or 

is a benchtop or portable time domain NMR instrument or is a NMR spectrometer or magnetic 

resonance imager. 

 

23. An apparatus comprising:  

one or more computer readable storage media; 

a processing system; 

program instructions stored on the one or more computer readable storage media that 

direct the processing system to: 

obtain an NMR relaxation decay or recovery curve from a sample obtained from a 

subject, wherein the relaxation curve was obtained using a NMR instrument tuned to measure a 

particular nucleus selected from 1H, 2H, 3H or 17O; 

analyze the NMR relaxation decay curve to extract a T2 relaxation time for water and/or a 

T1 relaxation time for water; 
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determine a health status value of the subject, wherein the health status is determined 

from water T1 and/or T2 from the sample; and 

 store the water T2 and/or T1 values in association with the health status in a data store 

contained on the one or more computer readable storage media. 

 

24. The apparatus according to claim 23, wherein the sample is a plasma sample, a 

serum sample, whole blood sample, a tissue sample or subject, such as a human being. 

 

25. The method according to claims 23-24, wherein the method comprises a step of 

partially suppressing the water signal, for example with a 180-degree inversion pulse followed 

by a delay or any other suitable method for partial suppression of the water signal prior to 

recording the relaxation curve. 

 

26. The method according to claim 25, wherein the delay time is tuned to eliminate 

radiation damping while maximizing water signal intensity.  

 

27. The method according to claims 23-26, wherein the step of analyzing the 

exponentially decaying or recovering NMR signal comprises acquiring the relaxation curve and 

subjecting the data to exponential analysis, for example transforming the data with an inverse 

Laplace transformation, or using any other suitable exponential analysis algorithm. 
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28. The method according to claim 27, wherein said exponential analysis comprises 

the analysis of one or more exponential terms for example one to six exponential terms, two to 

four exponential terms or three exponential terms. 

 

29. The method according to claims 23-28, wherein data acquisition begins about 1 to 

about 50 milliseconds after the start of pulse scheme that acquires the relaxation decay curve; 

about 16 to about 20 milliseconds after the start of the pulse scheme; or about 19 milliseconds 

after the start of the pulse scheme  

 

30. The method according to claims 23-29, wherein said sample is scanned multiple 

times, such as between 1 and 256 times or up to 10 to 50 times.  

 

31. The apparatus according to claims 23-30, wherein the data store comprises water 

T2 and/or T1 values in association with the health status obtained from a plurality of samples 

from a plurality of subjects. 

 

32. A method of treating a subject with a plasma water T2 value less than about 800 

and at risk for the development of hidden metabolic abnormalities selected from inflammation, 

insulin resistance, lipid abnormalities (dyslipidemia), oxidative stress, brain abnormalities or 

other disorders comprising obtaining a health score for a subject according to the methods of 

claims 1-11 and treating a subject having a health score lower than about 800 for said metabolic 

abnormality and/or referring said subject to a physician for further evaluation. 
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33. The method according to claim 32, wherein said hidden metabolic abnormality is 

low grade inflammation and said subject is further evaluated for treatment with one or more anti-

inflammatory agents and/or treated with one or more anti-inflammatory agents. 

 

34. The method according to claim 33, wherein said anti-inflammatory agent is 

selected from ibuprofen, naproxen, aspirin, celecoxib, sulindac, oxaprozin, salsalate, diflunisal, 

piroxicam, indomethacin, etodolac, meloxicam, nambumetone, ketorolac tromethamine, or 

corticosteroids selected from as beclomethasone, beclometasone, budesonide, flunisolide, 

fluticasone, tramcinolone, methylprednisone, prenisolone or prednisone.   

 

35. The method according to claim 32, wherein said metabolic abnormality is insulin 

resistance and said subject is further evaluated and/or treated to improve insulin sensitivity, said 

treatment to improve insulin sensitivity being selected from the start or modification of an 

exercise and physical activity program, alteration of diet, or other modification of behavior so as 

to improve insulin sensitivity and reduce the likelihood of developing diabetes arising from 

insulin resistance.   

 

36. The method according to claim 32, wherein the metabolic abnormality is 

dyslipidemia and said subject is referred to a physician for further diagnostic evaluation and/or 

treated with low dose aspirin, statins and/or other lipid-lowering agents. 

 

37. The method according to claim 36, wherein the statin is selected from 

atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin or simcastatin. 
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38. The method according to claim 32, wherein the metabolic abnormality is 

oxidative stress and a subject is referred to a physician and/or registered dietician to receive 

nutritional advice and/or is evaluated and treated with anti-oxidants such as ascorbic acid 

(Vitamin C), vitamin E or other nutritional supplements, and/or evaluated and treated for any 

accompanying inflammation or insulin resistance. 

 

39. A method of referring an individual with a plasma water T2 value less than about 

800 to a registered dietician, certified personal trainer, physician or other licensed health 

provider, with the goal to improve health and well-being, and prevent the onset of diabetes, 

coronary artery disease, myocardial infarction, ischemic vascular disease, stroke, cognitive 

impairment, neurodegenerative disease and dementia, including Alzheimer’s disease, or any 

other diseases that arise from hidden metabolic abnormalities such as chronic, low-grade 

inflammation, insulin resistance, lipid/lipoprotein abnormalities, oxidative stress and/or brain 

abnormalities. 

 

40. The method according to claim 39, wherein said hidden metabolic abnormality is 

low grade inflammation and said subject is further evaluated for treatment with one or more anti-

inflammatory agents. 

 

41. The method according to claim 40, wherein said anti-inflammatory agent is 

selected from ibuprofen, naproxen, aspirin, celecoxib, sulindac, oxaprozin, salsalate, diflunisal, 

piroxicam, indomethacin, etodolac, meloxicam, nambumetone, ketorolac tromethamine, or 
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corticosteroids selected from as beclomethasone, beclometasone, budesonide, flunisolide, 

fluticasone, tramcinolone, methylprednisone, prenisolone or prednisone.   

 

42. The method according to claim 39, wherein said metabolic abnormality is insulin 

resistance and said subject is further evaluated, advised to start or modifying an exercise and 

physical activity program, alter diet, or otherwise modify behavior so as to improve insulin 

sensitivity and reduce the likelihood of developing diabetes arising from insulin resistance.  

 

43. The method according to claim 39, wherein the metabolic abnormality is 

dyslipidemia and said subject is referred to a physician for further diagnostic evaluation and 

possibly treated with low dose aspirin, statins and/or other lipid-lowering agents. 

 

44. The method according to claim 43, wherein the statin is selected from 

atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin or simcastatin. 

 

45. The method according to claim 39, wherein the metabolic abnormality is 

oxidative stress and a subject is referred to a physician and/or registered dietician to receive 

nutritional advice and/or is evaluated and treated with anti-oxidants such as ascorbic acid 

(Vitamin C), vitamin E or other nutritional supplements, and/or evaluated and treated for any 

accompanying inflammation or insulin resistance. 
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ABSTRACT OF THE DISCLOSURE 

 

The subject invention pertains to a method that involves at least three steps: (1) 

acquisition of a NMR spin relaxation curve for plasma, serum or whole blood samples, or for 

tissues monitored from outside the body, (2) analysis of the relaxation curve to extract the T2 

and/or T1 relaxation times for water, and (3) conversion of the water T2 and/or T1 values into a 

measure of someone’s health status (referred to as a T2 or T1 health score depending on the value 

(T1 or T2 or both T1 and T2) associated with the score).  The T1 and/or T2 health score utilizes a 

statistical database derived from previous studies of subjects ranging from normal, healthy 

individuals to those having varying degrees of hidden or non-hidden metabolic abnormalities, 

such as inflammation, insulin resistance, lipid abnormalities (dyslipidemia), oxidative stress, 

brain abnormalities, cognitive impairment or other disorders, and provides a measure of a 

subject’s overall metabolic and brain health status. 
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