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 The Copper Ridge laccolith is an asymmetric tongue-shaped intrusion located on the 

southeastern margin of Mount Ellen in the Henry Mountains, Utah. The late-Oligocene to early-

Miocene igneous rocks have no syn- or post-emplacement tectonic overprint. In addition, 

exposure of the laccolith is exceptional: well-preserved sedimentary strata cap the intrusion, the 

lower contact is locally exposed, and numerous natural cross sections can be studied. These 

characteristics make the Copper Ridge laccolith an ideal location to study emplacement of 

magma in the shallow crust. Field mapping shows the intrusion is about 3.5 km wide, 2.0 km 

long and, at its thickest point, 425 m thick. The estimated magma volume is about 2.9 km3. Field 

work, crystal size distribution, and geochemistry, suggest that the intrusion was built 

incrementally through the injection of two separate magma batches, resulting in an upper and a 

lower sheet. Field work shows that the upper sheet is separated from the lower sheet by well-

preserved, variably metamorphosed Cretaceous Tununk shale. Data from anisotropy of magnetic 

susceptibility analysis suggest a subhorizontal sill fed the intrusion from the west-northwest, and 

magma flowed to the southeast in a fanning pattern. X-ray diffraction data show that the 

preserved Tununk experienced low-grade contact metamorphism. Multiple data sets suggest a 

construction model in which the upper sheet intruded first, lifting and deforming the sedimentary 

strata. The lower sheet intruded second and off center relative to the upper sheet. The 

asymmetric lifting caused the upper sheet to fracture adjacent to the southern margin of the lower 



sheet. The fractures likely facilitated weathering and erosion, causing the upper sheet to appear 

segmented in current exposure.   
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Introduction 

Extensive studies of igneous intrusions have greatly altered the way we think about the 

movement of magma and emplacement of igneous intrusions in the shallow crust. For some time 

the big tank hypothesis was the favored method of formation for igneous intrusions. However, 

studies on well-exposed intrusions like those in the Henry Mountains have revealed that some 

shallow intrusions form through pulses of magma. Various characteristics can provide evidence 

for pulsed construction, including geochemical variations in igneous rocks and the nature of 

preserved contacts. The study of fabrics preserved in the igneous rocks can aid in our 

understanding of how magma moves through the shallow crust, and can have implications on the 

mitigation of volcanic hazards. In many locations, finding evidence for pulsed construction can 

be difficult due to lack of exposure, and interpreting magmatic fabrics can be complicated if 

there is a tectonic overprint. The intrusions in the Henry Mountains are exceptionally exposed, 

and have no tectonic overprint, making them an excellent place to study pulsed construction.  

The Henry Mountains consist of five mid-Tertiary igneous intrusive centers (Nelson et 

al., 1992), the largest of which is Mount Ellen. This study focuses on the Copper Ridge laccolith, 

a largely concordant igneous body on the southeastern flank of Mount Ellen (Figure 1A). The 

Copper Ridge laccolith provides an exceptional opportunity to study shallow igneous intrusions 

for several reasons. First, exposures are exceptional: well-preserved sedimentary rocks cap the 

intrusion, the lower contact is exposed in several locations, and numerous cross sections through 

the interior can be studied (Figure 1B; Hunt et al., 1953). Along these cross sectional transects, 

sedimentary strata are locally preserved, separating two thick sections of igneous rocks. Such 

exposures are rare elsewhere. Second, the intrusive body formed during a time of no regional 

deformation and there has been no post-emplacement tectonic activity, resulting in no tectonic 
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overprint in the rocks (Horsman et al., 2010).  Therefore, the magmatic fabrics preserved during 

the rapid cooling of the intrusive rocks can be interpreted as the product of purely magmatic 

processes. 

The goal of this study is to constrain the geometry and reconstruct the emplacement 

history of the Copper Ridge laccolith. Several field and laboratory techniques were employed to 

understand how the intrusion formed and to identify the processes that operated within the 

system. To construct the geometry and understand the timing of the magma pulses, field 

observations, crystal size distribution, and major and trace element geochemistry were used. In 

order to understand magma flow and deformation of sedimentary strata, field observations, 

anisotropy of magnetic susceptibility, and x-ray diffraction were used. The aforementioned 

techniques were used to test two hypotheses: 1) the Copper Ridge laccolith was constructed 

through the injection of two or more separate magma pulses at different times, and 2) the 

laccolith was fed by a conduit and magma then migrated laterally between sedimentary strata, 

deforming the strata in the process.
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Figure 1.  A: Map showing the location of the Henry Mountains in Utah. The Copper Ridge laccolith on Mount Ellen is outlined 

in the red box (modified from Horsman et al., 2010). B. Photograph showing a natural cross section through the Copper Ridge 

laccolith, with the contacts between the Cretaceous Tununk shale (Kmt) and the igneous rocks (Td) marked by dashed red lines.  



Background 

Geologic Setting 

Colorado Plateau 

The Colorado Plateau geologic province (Figure 2) extends over about 350,000 km2 in 

the North American Cordillera (Hunt, 1956). It is underlain by 45-50 km of crust, and bounded 

by regions marked by deformation and magmatism (Thompson and Zoback, 1979; Beghoul and 

Barazangi, 1989). It consists of mostly subhorizontal Paleozoic through Tertiary sedimentary 

strata (Figure 3) deposited on Precambrian basement rocks (Hunt, 1956).  

The regions surrounding the Colorado Plateau underwent intense deformation and 

magmatism from late Cretaceous to Eocene time including crustal shortening, followed by 

Oligocene volcanism and late Cenozoic magmatism, uplift and extension (Nelson et al, 1992; 

Nelson and Davidson, 1993). In contrast, interior parts of the Colorado Plateau itself have been 

less susceptible to the deformation (Beghoul and Barazangi, 1989). The minimal deformation 

experienced by the Colorado Plateau interior is likely the result of the structural and rheological 

properties of the thickened crust (Thompson and Zoback, 1979; and Nelson and Davidson, 

1993).  
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Figure 2. Map showing the location of the Colorado Plateau and the distribution of Cenozoic igneous rocks (from Hunt, 1956). 

The Henry Mountains are outlined by the red box. 
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Figure 3. Stratigraphic section of the Colorado Plateau rocks observed on Mount Ellen in the Henry Mountains (from Morton, 

1984). Black arrows indicate units that magma preferentially intruded.  
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The Henry Mountains  

The Henry Mountains consist of five igneous intrusive centers: Mount Ellen, Mount 

Pennell, Mount Hillers, Mount Holmes, and Mount Ellsworth (listed from north to south) (Figure 

1A). These five peaks trend north-south and extend for approximately 50-60 km (Hunt et al., 

1953; Johnson and Pollard, 1973; Jackson and Pollard, 1988; Saint-Blanquat et al., 2006). The 

intrusive centers formed on the shallowly west dipping eastern limb of a structural basin, the 

western limb of which is part of the Waterpocket Fold monocline (Gilbert, 1877; Hunt et al., 

1953). Magma intruded subhorizontal sedimentary strata, uplifting and deforming the host rocks 

in the process. Each of the resulting intrusive centers is composed of a large central intrusive 

body with smaller intrusions radiating towards the margins (Gilbert, 1877; Hunt et al., 1953; 

Jackson and Pollard, 1988). Each large central body is comprised of numerous component 

intrusions (Broda, 2014; Ward, 2014). 

 Nelson et al. (1992) dated titanite and zircon crystals using 40Ar/39Ar dating, and 

hornblende and feldspar crystals using fission track dating. The range of Henry Mountains 

igneous rock ages is 32-23 Ma (Nelson et al., 1992). Geochemical signatures of Henry 

Mountains rocks suggest they are typical of subduction-related volcanic arcs (Nelson et al., 

1992; Nelson and Davidson, 1993, 1998). As subduction occurred, basaltic melts pooled under 

the Colorado Plateau, and melted deep portions of the crust. Assimilation and fractional 

crystallization occurred in the deep crust until portions of the magma ascended rapidly to the 

shallow crust (Nelson and Davidson, 1998). The magma cooled quickly and texturally the rocks 

are plagioclase-hornblende porphyry. Compositionally the rocks are andesite-to-trachyandesite. 
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Mount Ellen  

Mount Ellen is the largest of the five Henry Mountains, with a diameter of about 24 km 

and total magma volume of about 3 km3 (Hunt et al., 1953). The Mount Ellen intrusive center is 

made up of many laccolithic bodies that are stacked in some places, and radiate outward from the 

center of the mountain (Figure 4). Many of the laccoliths are circular in map-view, but some 

exhibit an asymmetric geometry. Several laccoliths and three large bysmaliths are exposed 

throughout the region. Sedimentary strata around the flanks of Mount Ellen are minimally 

deformed, and most retain their original subhorizontal orientation. Locally, there are varying 

degrees of deformation in the sedimentary strata adjacent to intrusive bodies.  

The Copper Ridge laccolith (CRL) is located on the eastern margin of Mount Ellen and is 

the focus of this study (Figure 1A). CRL is asymmetric and tongue-shaped in map-view. In cross 

sectional view CRL is plano-convex with a flat roof and floor. In several locations, natural cross 

sections through the intrusion exist, most notably on a prominent east-facing cliff (Figure 1B, 

Figure 5). Along these cross sections, a thick layer of Cretaceous Tununk shale is preserved 

between two thick sections of igneous rocks. The upper section of igneous rock is about 80-100 

m thick, and the lower portion is about 300-340 m thick. Sedimentary strata around CRL are 

generally subhorizontal, with only local variations in the dip around the margins of the intrusion.  
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Figure 4. Map-view sketch of the cluster of laccoliths that make up Mount Ellen (from Gilbert, 1877). The Peale laccolith is now 

referred to as the Copper Ridge laccolith. 
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Figure 5. A: Sketch by Gilbert (1877) of CRL, which he referred to as the Peale laccolith. B: A photograph of CRL taken from 

the east of Mount Ellen. Both images show the cliff face that provides a natural cross section through the laccolith. 

Defining the Term Laccolith 

Gilbert (1877) described an idealized laccolite, now referred to as a laccolith, as being 

roughly circular in map-view, and concave downward with a flat roof and floor in cross section, 

noting that in some cases the upper boundary may undulate (Figure 6). Gilbert (1877) noted that 

smaller, thinner dikes and sills commonly accompany laccoliths, and suggested these dikes and 

sills may be the means by which magma reaches the place where a laccolith forms. In addition, 

laccoliths may intrude above or below already existing laccoliths, further offsetting the 

sedimentary strata.  
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Corry (1988) expanded on the definition of laccolith using various studies on igneous 

intrusions and noted that a continuum exists between sill and laccolith geometries. He suggested 

that laccoliths are always thicker than 30 m, and sills tend to be about 1-10 m thick. The term 

protolaccolith describes an intrusion that falls between the 10 and 30 m thicknesses; Trachyte 

Mesa on Mount Hillers in the Henry Mountains is an example of a protolaccolith. Corry (1988) 

also noted that laccoliths do not always fit the idealized structure as defined by Gilbert (1877). 

Laccoliths can be symmetric or asymmetric in map and cross-sectional view.  

Corry (1988) noted several important characteristics of laccoliths:  

1) The intrusion generally follows bedding planes;  

2) The intrusion can be symmetric or asymmetric and “plano-convex, or doubly convex, 

lens flattened” in cross sectional view and in map-view can be circular or irregular;  

3) The overlying host rock is vertically displaced due to the intrusion of the magma.  

Based on these characteristics, I believe that the characterization of the Copper Ridge 

intrusion as a laccolith is accurate. Copper Ridge meets the size requirements of Corry’s (1988) 

definition, and, as there are no requirements that the intrusion is symmetrical in map or cross-

sectional view, it meets shape requirements as well.  

 

Figure 6. Sketches of idealized laccolithic intrusions (from Gilbert, 1877): A: Simple idealized laccolith. B: Laccolith with 

associated dikes and sills. C: Stacked laccoliths showing deformation of the overlying strata.  
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Previous Work on the Henry Mountains 

 Previous work on the Henry Mountains has focused on understanding how shallow 

igneous intrusions form. The first major studies on the five intrusive centers focused on the 

geology of the region, and the authors proposed construction models for the intrusive bodies 

(Gilbert, 1877; Hunt, 1953). Gilbert (1877) and Hunt (1953) proposed the conflicting laccolithic 

and stock emplacement models, respectively. Jackson and Pollard (1988) used the geology of the 

Henry Mountains to test both hypotheses, and concluded that the laccolithic emplacement model 

was largely supported. The aim of this study is to reconstruct the emplacement history of CRL 

on Mount Ellen. Observations from the work of Gilbert (1877) and Jackson and Pollard (1988) 

will be used to do this as accurately as possible.  

Recent work on the Henry Mountains focuses on sheeted intrusions, many of which have 

similarities to CRL. The studies provide observations that the authors interpreted as support for 

the pulsed construction model suggested by Gilbert (1877). Observations similar to those in these 

studies are present on CRL, and the studies utilize some of the methodology used in this project 

(Horsman et al., 2005; Saint-Blanquat et al., 2006; Morgan et al., 2008; Horsman et al., 2010). 

Several of the studies proposed construction models for the intrusions of interest and, where 

applicable, those models will be used to understand how CRL likely formed.  

Laccolith-Stock Debate 

 Gilbert (1877) noted that the magma that formed the Henry Mountains was different from 

magmas that extrude onto the surface of the earth. The author hypothesized that magma intruded 

concordantly at depth, likely fed by a feeder dike, and made space for itself by lifting and 

deforming the overlying sedimentary strata, a process that he first suggested (Figure 6). Gilbert 

(1877) noted that the sedimentary strata bend over the intrusion and, in some cases, the new 
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orientation and geometry mimic the geometry of the underlying intrusion. As more magma 

intrudes, the displacement of overlying strata increases. Gilbert (1877) hypothesized that the 

main components of the five Henry Mountains are laccolithic intrusions.  

 After constructing the first geologic map of this area, Hunt et al. (1953) made 

observations that challenged Gilbert’s (1877) conclusions. Hunt et al. (1953) hypothesized that 

the mountains consist of a large, discordant stock that fed surrounding intrusions (Figure 7). The 

stock would have intruded vertically and expanded, creating an area of extremely 

metamorphosed rock referred to as the shatter zone. Hunt et al. (1953) hypothesized that bulges 

on the sides of the stock were the sites of radial intrusion initiation and growth, and magma 

supplied by the stock spread out and formed laccoliths (Hunt et al., 1953). 

 

Figure 7. Sketch of the stock, shatter zone, and laccolith as suggested by Hunt et al. (1953; figured modified from Hunt et al., 

1953). 

 

 Jackson and Pollard (1988) used the characteristics of the Henry Mountains to test the 

contradictory hypotheses of Gilbert (1877) and Hunt et al. (1953). Data from their study 

suggested that the vertical growth of a laccolith deformed the sedimentary strata, rather than the 

outward growth of a stock (Jackson and Pollard, 1988). The sedimentary strata show hinges on 
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both sides of the laccolith, which is consistent with Gilbert’s (1877) findings. Structures, such as 

buckle folds, would be present if horizontal compression from stock emplacement had occurred; 

however, they are not present. In addition, paleomagnetic data from some sills showed that they 

were emplaced into horizontal strata and were rotated after inflows of subsequent magmatic 

pulses (Jackson and Pollard, 1988). Overall, the data from Jackson and Pollard (1988) support 

the laccolithic growth model. 

 

Figure 8. Schematic cross section of a Henry Mountains central intrusion with doubly hinged sedimentary beds and tilted sills 

above the intrusion (from Jackson and Pollard, 1988). 

Recent Work on the Henry Mountains 

 Recent studies provide examples of shallow intrusions that were built through several 

pulses of magma (Coleman et al., 2004; Glazner et al., 2004; Michel et al., 2008; Rocchi et al., 

2010; Saint-Blanquat et al., 2011). Pulsed construction can lead to step-wise growth of intrusive 

bodies. For example, an intrusion constructed through pulses of magma may start out as a sill 

and, through subsequent injections of magma, may grow to be a laccolith (Horsman et al., 2010). 
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The different geometries of intrusions have varying characteristics, including volume of magma 

and interaction with the host rock, and can show increasing complexity with increasing size. 

Studies on several intrusions in the Henry Mountains, including the Maiden Creek sill, the 

Trachyte Mesa laccolith, and Black Mesa bysmalith reveal the complexities and characteristics 

of such intrusions (Horsman et al., 2005; Saint-Blanquat et al., 2006; Morgan et al., 2008).  

Horsman et al. (2005) described the Maiden Creek sill on the eastern margin of Mount 

Hillers. Through field observations, several key characteristics were observed: solid-state 

deformation at igneous-igneous contacts; presence of intercalated sedimentary rocks between the 

sheets; and continuous bulbous terminations at the margins of the intrusion. The aforementioned 

characteristics provided evidence for the hypothesis that the Maiden Creek sill is the result of 

pulsed construction. Using a suite of techniques to determine magmatic fabric orientation, 

Horsman et al. (2005) found that magma likely originated from a feeder to the west and flowed 

from the center of the main body and outward to several finger-like lobes that surround the main 

body. These authors also found that most of the lineations were subhorizontal, likely resulting 

from flattening that occurred during magma spreading and vertically displacing the overburden.  

The Trachyte Mesa intrusion, studied by Morgan et al. (2008), is a protolaccolith on the 

eastern margin of Mount Hillers. The intrusion is asymmetric and tongue-shaped in map-view, 

similar to CRL, with a relatively flat roof. Magnetic fabric data suggested that a feeder from 

Mount Hillers fed the intrusion, and magma traveled from the southwest to the northeast. The 

sheets intruded sub-horizontally, each above earlier sheets, and different sheets are separated by 

contacts marked by intense cataclasis (Morgan et al., 2008). The tip of the intrusion has a 

bulbous termination, and the sedimentary host rock has been deformed and bent to accommodate 

the intrusion.  



 

16 

 

Saint-Blanquat et al. (2006) studied the Black Mesa bysmalith on the eastern margin of 

Mount Hillers. The intrusion is cylindrical and the eastern contact is fault bounded. Textural and 

fabric differences through the intrusion provided evidence for a pulsed construction. Their 

emplacement model proposed that the intrusion began as a sill and grew larger through 

progressive under-accretion of new sheets. Faulting and deformation of the host rocks allowed 

for accommodation of the intrusion. Emplacement occurred rapidly, possibly in less than 100 

years (Saint-Blanquat et al., 2006).  

Horsman et al. (2010) suggested a model of pulsed construction of idealized upper-

crustal intrusions and the evolution of smaller intrusions into larger intrusions, based on studies 

on the Maiden Creek sill, the Trachyte Mesa laccolith, and the Black Mesa bysmalith. The 

important differences between these types of intrusions are the total volume of magma emplaced, 

and the deformation of the host rock. In addition to these differences, the temporal component of 

intrusion formation differs between intrusion types. A direct correlation exists between magma 

volume and duration of intrusion formation (Saint-Blanquat et al., 2011). Therefore, smaller 

intrusions, such as a sill, will form more quickly than a larger intrusion, such as a bysmalith.  

A sill forms when a small volume of magma spreads away from the feeder in finger-like 

lobes (Figure 9; Horsman et al., 2010). Successive small pulses of magma may intrude, and will 

likely follow the same path as the initial pulse. Slight bending of the host rocks may occur along 

the edges of the intrusion. Additional pulses of magma or larger volumes of magma can cause 

the sill to evolve into a laccolith (Figure 9; Horsman et al., 2010). Similar to the sill, subsequent 

pulses of magma will tend to intrude along the same paths as previous pulses, and spread to 

about the same extent. Due to the increased size of the intrusion, wall rock bending, uplift, and 

deformation around laccolithic intrusions is more extensive. Increasing the magma supply can 
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lead to a bysmalith (Figure 9). Subsequent injections of magma lead to steepened margins, and 

the displacement of the host rock increases (Horsman et al., 2010). At a certain point, a fault 

forms in order to accommodate the increase in vertical relief, and the overburden is displaced in 

a piston-like manner. 

 

Figure 9. Idealized sill, laccolith and bysmalith block diagrams and examples of such intrusions (modified from Horsman et al., 

2010). Note the relationships between the host rock (stippled) and the intrusive rocks. Intrusions are not to scale. 

Magma Ascent and Laccolith Emplacement 

Petford et al. (2000) and Vigneresse and Clemens (2000) discuss the formation, transport 

(ascent), and emplacement of magma. These are the main aspects of the construction history of 

CRL focused on in this project. Corry (1988) focuses on the vertical ascent and the emplacement 

of the magma, and the subsequent growth into a laccolith. He splits the process into four stages: 

1) vertical ascent of the magma; 2) transition of magma movement from vertical to horizontal; 3) 
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progression and termination of horizontal movement and beginning of thickening; and 4) 

deformation of the overburden occurring with stages 2 and 3. This paper will focus on the first 

three stages.  

Vertical Ascent of Magma 

 Magma ascent is an essential process in the formation of laccoliths, and much work has 

focused on how the magma ascends to the emplacement site. Magma flow through a crack or 

dike is one favored mechanism. Some studies suggest that magma emplacement may cause 

fracturing of the host rock and the magma propagates through the fracture. Magma may also then 

propagate through pre-existing fractures (Cook and Gordon, 1964; Pollard, 1977; Clemens and 

Mawer, 1992). A simpler approach by Petford et al. (1993) suggests that pre-existing faults and 

fractures act as the conduits for magma ascent.  

As the magma ascends, and the temperature drops, viscosity increases exponentially. 

Therefore, rapid ascent to the shallow crust is essential for the magma to remain fluid enough to 

intrude. Slow ascent would likely lead to the magma solidifying at depth. A low viscosity is 

important to maintain because as the viscosity increases, drag against the wallrock increases, 

which decreases ascent speed (Pitcher, 1978). Many factors contribute to magma maintaining a 

viscosity that allows free flow to continue (Pitcher, 1978). One such factor is H2O content; an 

increase in the H2O content decreases viscosity (Clemens and Petford, 1999). A lower viscosity 

magma will move through a dike more rapidly than a more viscous magma (Petford et al., 1993). 

Additionally, a more pressurized magma will ascend through the crust rapidly, allowing the 

magma to reach the surface before solidifying.  
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Another important factor to consider when discussing ascent is the depth at which magma 

originates. Corry (1988) notes that a common assumption is that the source area for magma is at 

least at 30-50 km depth, generally about the thickness of the continental crust. The velocity of 

ascent and the depth of generation are both important in keeping the magma fluid through ascent. 

Petford et al. (1993) calculate critical dike widths that are required for magmas of a certain 

viscosity and density to ascend from an assumed 30 km of depth and remain fluid enough to 

begin emplacement. Therefore, in order for the vertical ascent to occur, and to reorient to 

horizontal emplacement, a certain dike width must exist to facilitate rapid ascent to prevent 

freezing of the magma.  

Transition of Magma Movement from Vertical to Horizontal 

 As magma movement transitions from vertical to horizontal, ascent ceases and 

emplacement begins (Petford et al., 2000). Corry (1988) suggests that the magma reaching the 

theoretical neutral buoyancy level may cause a magma to emplace at a certain location. The 

neutral buoyancy level is the location in the crust where the host rock and magma have equal 

buoyancy and ascent will cease. However, Vigneresse and Clemens (2000) note that the neutral 

buoyancy level for granitic magmas does not exist in the shallow crust. Therefore, this cannot be 

the sole mechanism for emplacement of all magmas. Menand (2011) suggests other factors that 

may control where horizontal movement initiates, including the rheology-contrast, stress, and 

rigidity-contrast controls. Rheology-contrast control and stress control were not likely at work 

during the emplacement of the Henry Mountains because the intrusions formed in brittle upper 

crust, and there was no syn-emplacement regional deformation, respectively. 

 Rigidity-contrast control refers to the instances where the competency contrast between 

two sedimentary layers causes magma to intrude at a contact (Menand, 2011). Menand (2011) 
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suggests that this is likely one of the most common controls on where magma emplaces. When 

magma reaches a contact between a more competent rock above and a less competent rock 

below, it may intrude along that contact. This is not always the case, as evidenced in the work by 

Kavanagh et al. (2006). The laboratory results revealed that in some cases the water (magma) 

behaved as suggested. In other cases, the water stopped at the contact and it did not intrude. In a 

case where a weaker layer was on top of a stronger layer, the water continued to intrude as a 

dike, past the contact. Other factors that may contribute to magma emplacing at certain locations 

in the crust include preexisting weaknesses, such as fractures or bedding planes within a rock 

layer, and syn-emplacement fracturing in the host rock.  

Progression and Termination of Horizontal Movement and Initiation of Thickening 

Emplacement specifically refers to the space-making mechanisms that displace the host 

rock, and allow the intrusion to grow to its final geometry (Horsman et al., 2010). Once magma 

begins intruding horizontally, the magma must make space for itself in order to continue 

growing. For some time the space making mechanisms for shallow crust intrusions were not well 

understood. One early suggestion for the progression of a small intrusion, such as a sill, into a 

larger intrusion, such as a laccolith, was that when the intrusion reached a certain lateral extent it 

would begin to inflate into a laccolithic intrusion (Johnson and Pollard, 1973; Pollard and 

Johnson, 1973). It was hypothesized that at some critical extent the intrusion would have enough 

leverage to begin lifting the overburden. However, recent studies have found that more factors 

are involved in the transition from sill to laccolith (Rocchi et al., 2002; Horsman et al., 2010). 

Rocchi et al. (2002) cite magma-supply rate, depth of emplacement, magma trap 

availability and space-making mechanisms as important factors for intrusion growth. During 

emplacement, the aforementioned factors contribute to the transition from a sill to a laccolithic 
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intrusion. Horsman et al. (2010) also consider emplacement rate as a major factor in the 

emplacement and growth processes; the authors also include wallrock lithology as a major factor. 

With a higher emplacement rate, the magma is more pressurized and the intrusion can grow 

larger than an intrusion emplaced at a slower rate.  In addition, an intrusion may progress into a 

larger intrusion in a less competent rock, such as shale, whereas an intrusion may remain smaller 

if it intrudes a more competent rock, such as a sandstone. 



Methods 

 In this section, I will describe the methods used to test my hypotheses, and devise the 

construction history of CRL. To test the hypothesis that CRL was constructed through two or 

more separate pulses of magma, I used a combination of field work, crystal size distribution, and 

geochemical analysis. To test the hypothesis that the intrusion was fed from a lateral feeder and 

deformed the sedimentary strata, I used a combination of field work, anisotropy of magnetic 

susceptibility, and x-ray diffraction.  

Field Work 

Field work was used to create a detailed geologic map of CRL. Previous work on Mount 

Ellen has not focused solely on CRL, resulting in more generalized (Hunt et al., 1953), and 

incomplete (Morton, 1984, 1986) maps of CRL. Morton (1984, 1986) mapped the entire Mount 

Ellen quadrangle; however, CRL lies along its boundary with the Raggy Canyon quadrangle, 

leaving half of CRL unmapped. My geologic map created in the field was digitized using 

ArcMap. Additionally, multiple cross sections through the intrusion were created to show overall 

geometry.  

Field work also included collection of oriented samples, observation of igneous rock 

characteristics, measurement of foliations and lineations, and measurement of bedding in 

sedimentary units. Important details about the igneous rocks observed in the field include color 

of the matrix, relative size and abundance of phenocrysts and xenoliths, and the mineralogical 

composition of the phenocrysts. A cursory grouping of rocks into the upper and lower sheets was 

created using these characteristics. The grouping was then compared to the location of the 
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outcrop on the geologic map. This work and supplemental laboratory work led to a definitive 

identification of the upper and lower sheets.  

Another important aspect of field work was observing the sedimentary rocks. Special 

consideration was given to the Tununk shale, the host rock for CRL. The Tununk shale is 

preserved as cap rock, within the laccolith, and under the laccolith. Contacts between the Tununk 

and igneous rocks were noted and carefully plotted on the geologic map. Contacts were also used 

to understand how the intruding magma interacted with the host rock. When observing the 

preserved Tununk special care was taken to note any metamorphism, and any spatial differences 

in the degree of metamorphism. Another subset of field work was to observe the sedimentary 

rocks and compare them with the detailed descriptions provided by previous studies.  

Crystal Size Distribution 

Crystal size distribution (CSD) analysis provides a quantitative measurement of rock 

texture and can help differentiate between superficially homogenous igneous rocks (Cashman 

and Marsh, 1988; Marsh, 1988, 1998; Higgins and Roberge, 2003; Mock et al., 2003). Data from 

CSD can be used to estimate crystal growth and nucleation rates, and the information can 

constrain the thermal history of the magma (Cashman and Marsh, 1988; Marsh 1988, 1998; 

Higgins, 2000; Higgins and Roberge, 2003). Separate pulses of magma may have distinct 

thermal histories; therefore, variations in CSD between samples can indicate that the rocks 

formed from different magma pulses. Several studies have used CSD on igneous rocks (e.g. 

Cashman and Marsh, 1988; Mock et al., 2003), and recently CSD has been used in several 

studies of Henry Mountains igneous rocks (Gwyn, 2011; Broda, 2014; Thornton, 2015). In the 

recent Henry Mountains work, the authors identified multiple CSDs in their field areas, and 

hypothesized that the igneous bodies formed from distinct magma pulses. 
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 CSD analysis works by measuring phenocryst dimensions on a planar surface, and 

dividing those phenocrysts into groups based on a selected size interval. The abundance of 

phenocrysts within certain size intervals gives the population density. The natural logs of the 

population densities are plotted as a function of grain size to produce a CSD curve. The shape, 

slope, and y-intercept of the CSD curve can be interpreted to provide information about the 

crystallization history of the magma. The shape of the CSD curve can reveal complexities in the 

crystallization history. Straight CSD curves can indicate a steady-state cooling (Marsh, 1998; 

Higgins and Roberge, 2003). Curves that maintain a consistent slope for a portion of the line, but 

then shallow out significantly, may be the result of textural coarsening at depth (Higgins, 1998). 

Concave up curves may also result from textural coarsening (Higgins and Roberge, 2003), and 

also may result from magma mixing (Higgins, 1996). The slope of the curve provides 

information about residence time, and the y-intercept provides information about the nucleation 

density.  

For this study, CSD was measured for six samples from the upper sheet, six samples from 

the lower sheet, and one sample from an intrusion adjacent to CRL. All samples were cut so that 

a flat, fresh surface was exposed. The surfaces were scanned at high resolution. Binary versions 

of the scanned images were created using the computer program ImageJ. The binary images 

allowed for the plagioclase phenocrysts to be isolated; the plagioclase crystals showed up as 

black and the rest of the rock was white. The image was then despeckled to avoid fragmentation 

of phenocrysts, and any large xenoliths were removed from the image. ImageJ then measured the 

dimensions of each phenocryst based on a set of minimum and maximum size parameters. Data 

from ImageJ were imported into a program called CSD Corrections (Higgins, 2000). The 

program produced numerical and graphical representations of the abundances of plagioclase 
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phenocrysts within certain size ranges. Data from all samples were plotted together, allowing 

relationships between samples to be recognized.  

Geochemistry 

Whole-rock major and trace element compositions of 16 samples were obtained 

commercially by inductively coupled plasma-mass spectrometry (ICP-MS) from Acme 

Analytical Laboratories. Samples were selected as follows: six from the upper sheet, six from the 

lower sheet, and four thought to be from adjacent intrusions. Upon further investigation, two of 

the non-CRL samples are now considered to be from the upper sheet of CRL. The selection 

process aimed to test for chemical variations between the upper and lower sheets and to 

distinguish other intrusions from the main CRL body. Special care was taken to choose samples 

that were as fresh as possible.  

Anisotropy of Magnetic Susceptibility 

In the Henry Mountains, field fabrics are sometimes absent or difficult to measure, 

making field data sparse. Measuring anisotropy of magnetic susceptibility (AMS) allows for a 

more detailed and complete representation of igneous fabrics. AMS data give information about 

the magnetic fabric within a rock, which can be used to infer magma flow characteristics 

(Bouchez, 1997). Previous studies have used AMS to study fabrics and infer magma flow 

characteristics in the Henry Mountains and similar intrusions (Knight and Walker, 1988; 

Horsman et al., 2005; Saint-Blanquat et al., 2006; Stevenson et al., 2007; Morgan et al., 2008; 

Thornton, 2015).  

It is important to consider the magnetic minerals that control the AMS in a rock when 

interpreting the data (Rochette et al., 1992). Michael Petronis at New Mexico Highlands 
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University tested two samples from CRL. Testing involved heating the samples, and then cooling 

them, measuring susceptibility values throughout the course of temperature change. The data 

reveal a pattern consistent with that of magnetite (Figure 10). The same test on igneous rocks 

from the Henry Mountains in previous studies and those data suggest that the main ferromagnetic 

mineral grains are multi-domain magnetite (Horsman et al., 2005).  

To collect AMS data, a rock specimen is subjected to an induced magnetic field. The 

magnetic minerals within the sample cause perturbations in the induced magnetic field (Rochette 

et al., 1992; Tarling and Hrouda, 1993). The magnetic susceptibility (K) is based on a ratio of the 

induced magnetization and the inducing magnetic field, and it is a unitless quantity represented 

by SI. The magnetic properties within a sample may vary spatially, so data are visualized as an 

ellipsoid with long, intermediate, and short principal axes, referred to as K1, K2, and K3, 

respectively. The ellipse represents the magnetic fabric within the samples. The magnitudes of 

the axes are used to calculate scalar parameters, defined as: 

𝐾𝑚 =
𝐾1+𝐾2 + 𝐾3

3
 

𝑇 = [2
ln (

𝐾2

𝐾3
)

ln (
𝐾1
𝐾3
)
] − 1 

𝑃𝑗 = exp⁡(2[(𝜂1 − 𝜂𝑏)
2+(𝜂2 − 𝜂𝑏)

2 + (𝜂3 − 𝜂𝑏)
2]1/2  

𝐿 =
𝐾1
𝐾2

 

𝐹 =
𝐾2

𝐾3
 



 

27 

 

The abundance of magnetic grains is represented by bulk susceptibility (Km). The mean shape 

factor (T) describes the ellipticity of the AMS ellipsoid: a perfect sphere has a T=0, an ellipsoid 

that is infinitely prolate has a T= -1, and an ellipsoid that is infinitely oblate has a T=1. The 

degree of anisotropy (Pj) represents the intensity of the magnetic fabric within the specimen. The 

magnetic lineation (L) and foliation (F) are represented by ratios that incorporate the principal 

axes. 

 

Figure 10. Plot of susceptibility vs. temperature for samples ME6 and ME9 from CRL. The heating and cooling cycles are noted 

in different colors. The sharp drop-off in both samples is indicative of magnetite. 

AMS analysis was performed on forty-four oriented samples. From each sample, two to 

three 25-mm-diameter cores were drilled and oriented in the laboratory. Each core was cut into 

22-mm-long specimens, resulting in five to six specimens from each rock. AMS was measured 

using an AGICO MFK1-A magnetic susceptibility bridge at East Carolina University. The 

SAFYR computer program provided with the instrument was used to collect the data. The 

AniSoft computer program was used to visualize the data. It shows the primary axes of the 

ellipsoid on a stereonet and provides magnetic parameters (Km, T, Pj, L, and F). For this study, 
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data were used to make interpretations about magma flow during emplacement, and to compare 

the scalar parameters in the upper and lower sheets of CRL. 

X-Ray Diffraction 

 The mineralogy of three samples of Tununk shale was determined using X-ray diffraction 

(XRD). XRD analysis was performed at East Carolina University. A transect consisting of three 

Tununk samples was taken the layer of Tununk preserved within CRL. Variation in the degree of 

metamorphism observed in the Tununk layer may provide insight into the thermal history of the 

host rock, and shed light on the intrusive history of CRL.  



Results 

Field Work 

Copper Ridge Laccolith Geometry, Maps, and Cross Sections 

Field observations were used to create a detailed map of the CRL region (Figure 11) and 

to construct cross sections (Figure 12). An annotated map of CRL with the main regions and 

features of CRL labeled is in Appendix A (Figure 47). The geologic map covers an area of 15.5 

km2. In map-view the upper sheet covers an area of about 3 km2, and the lower sheet covers an 

area of about 4.8 km2 (Figure 13). Both sheets have asymmetric tongue-like map-view 

geometries, generally fanning out from a point in the west-northwest toward the east-southeast. 

A portion of the upper sheet in the Garden Basin area is at the same elevation as some of the 

lower sheet, and appears to be detached from the main body. In cross sectional view the upper 

sheet has a relatively flat floor, and a dome shaped upper contact (Figure 12). The lower sheet 

also appears to have a flat floor with a domed upper contact. The lower sheet has a flatter roof 

than the upper sheet.  

An easily recognized layer of Tununk separates the upper and lower sheets, and on the 

main ridge of CRL, Tununk cap rock can be observed. In one location to the southeast, the 

bottom contact of CRL is exposed. Where Tununk is preserved, the bedding is generally 

subhorizontal, with dips ranging from 0○ to 24○. Other sedimentary units maintain their 

horizontal to subhorizontal bedding, except locally near the margins of the intrusion (Figure 14). 

In many locations, the upper and lower contacts between the Tununk and the igneous rocks are 

directly observable (Figure 15). The top of the intrusion undulates gently, and mimics the 

topography of the main ridge. As the sheets pinch out to the north and south, the igneous/Tununk 
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contact cuts up-section in a stair-step geometry. In some locations, the bulbous termination of the 

upper sheet can be observed (Figure 16).  Two sills, much smaller than CRL, are visible below 

the bottom sheet. Only one is of mappable size, and thick sedimentary strata (~100 m) separate 

the sills from the laccolith.  

Magmatic fabric measurements were collected from igneous rocks where well-developed 

fabrics existed (Figure 17). The fabrics all had subhorizontal plunges. The trends of the fabrics 

are consistent down the main ridge. From the main ridge, magmatic fabric trends fan out radially 

towards the margins.  
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Figure 11. Geologic map of CRL area with station locations marked. Cross section lines A-A', B-B', C-C', and D-D’ are noted. 
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Figure 13. Gray-scale geologic map of CRL, showing the proposed aerial extent of the upper and lower sheets. 
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Figure 14. Geologic map with field-measured strikes and dips of bedding. 
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Figure 15. Images of preserved contacts between igneous rocks and Tununk. A: Contact between preserved Tununk and lower 

sheet of CRL (station CR22). B: Contact between Tununk over igneous rock (station CR16). Dashed red lines show the contact 

between the Tununk (Kmt) and igneous rock (Td). C: Contact between the lower sheet and the Tununk (station CR22). 
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Figure 16. Image showing the bulbous termination of the upper sheet against Tununk. The red line indicates the approximate 

location of the contact. Labeled in red are the igneous rocks (Td) and Tununk (Kmt).  
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Figure 17. Magmatic fabric field measurements, all of which have subhorizontal plunges. 
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This new mapping builds on the work of Hunt et al. (1953) and Morton (1986) and 

remaps some incorrectly mapped sedimentary units, as well as the lateral extent of CRL. Hunt et 

al. (1953) mapped the northern boundary of the intrusion to extend north of the Copper Creek 

drainage and south to Ragged Mountain (Appendix A- Figure 48). However, the rocks observed 

in the Copper Creek drainage were not typical of CRL, and the southern margin does not extend 

to Ragged Mountain. In the northeastern region of the area, Morton (1986) mapped a ring of 

Dakota in the base of a drainage (Appendix A- Figure 49); the outcrops are actually Tununk 

(Figure 18). Morton’s (1986) map also shows a semi-continuous layer of Dakota along the 

southern margin of CRL. In the field, no such layer was observed. Instead, several large Dakota 

lenses surrounded by igneous rocks are present. The bedding in the Dakota lenses (307/47NE) is 

generally steeper than the bedding in the Tununk and other layers. 

 Hunt et al. (1953) also originally hypothesized that the tip of CRL had been bent 

upwards during the intrusion of the Ragged Mountain bysmalith to the south of CRL. The 

location of this interpreted tip of CRL was adjacent to Ragged Mountain; however, upon 

investigation, it was clear that the igneous rocks near Ragged Mountain were not part of CRL. 

Farther away from Ragged Mountain on the southern tip of CRL, an area of extremely fractured 

rock appears to be tilted (Figure 19).  



 

41 

 

 

Figure 18. Tununk in drainage that Morton (1986) had mapped as a ring of Dakota (Appendix A). A portion of the outcrop has 

been removed (outlined in red) to show the black shale under the weathered surface. 

 

Figure 19. Stitched photograph of the extremely fractured igneous rock (Td) at the distal tip of CRL. Red lines outline some 

major fracture patterns present in the outcrop. Inset shows the location of the fractured tip on CRL outlined by a black box. 

Igneous Rocks of the Copper Ridge Laccolith and Adjacent Intrusions 

 The upper sheet igneous rocks have plagioclase crystals up to 14 mm, and hornblende 

crystals up to 7 mm, surrounded by a dark gray matrix (Figure 20A). Within the rocks of the 
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upper sheet, large and abundant xenoliths (0.5-5 cm) of Proterozoic basement rock (Nelson and 

Davidson, 1993) are observed.  The upper sheet weathers to generally massive orange-brown 

rock and is surrounded by large pieces of float (>6 cm) from the upper sheet (Figure 20C). In 

some places the rocks have quartz-filled vugs (<3 mm). Close to the host rock contacts, crystal 

size and abundance are greatly reduced in the igneous rocks.  

 The lower sheet igneous rocks have plagioclase crystals up to 8 mm, and hornblende 

crystals up to 4 mm, surrounded by a light gray matrix (Figure 20B). Basement rock xenoliths 

are far less abundant in the lower sheet, and only range up to 1 cm. The lower sheet weathers to 

white, almost vertical fins that are surrounded by gruss formed from lower sheet igneous rocks 

(Figure 20D, E).  

 Igneous rocks collected in the Garden Basin area are texturally similar to those from the 

upper sheet. However, these samples are at the same elevation as the lower sheet. 
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Figure 20. Physical differences between the upper and lower sheets of CRL. A: Texture of upper sheet igneous rock. B: Texture 

of lower sheet igneous rock. C: Example of weathering of the upper sheet. D, E: Examples of the weathering of the lower sheet. 

 On the northern side of the field area, a ridge previously mapped as part of CRL was 

found to differ in physical characteristics from both the upper and lower sheets. These rocks have 

a darker matrix, smaller plagioclase crystals, and far lower hornblende abundance (Figure 21A). 

In one location, the igneous rocks had several large shale and sandstone inclusions ranging in 

size from 2 cm to 10 cm (Figure 21B).  
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Figure 21. Physical characteristics of igneous rocks not from CRL. A: Scanned image of rock from the ridge north of CRL, 

showing color and texture. B: Picture showing large inclusion of sedimentary rock in igneous rock from the ridge north of CRL. 

Sedimentary Rocks in the Field Area 

 The most abundant sedimentary rock in the field area is Cretaceous Tununk shale. The 

Tununk is a very fine-grained dark gray shale, locally containing abundant fossils, most 

predominantly ammonites (Figure 22). Throughout the thick layer of Tununk (~40 m) between 

the upper and lower sheets, differences in its physical properties exist. In many locations, the 

Tununk is metamorphosed to a very fine-grained, dark-gray rock. Toward the top and bottom of 

the layer, the Tununk is more metamorphosed than in the middle of the layer. The middle portion 

of the Tununk maintains shaley cleavage. The top and bottom have a mottled appearance (Figure 

23), and narrow (< 1 mm wide) mineralized fractures (Figure 24). The lower portion of the 

Tununk exhibits small-scale faults, and appears to be more highly deformed and to have more 

fractures than the upper portion of the Tununk. Plumose structures are present locally near 

contacts. In one location, the Tununk contains extensive gypsum. The Tununk layer is folded in 

some areas, with visible fractures and a small detachment fold (Figure 25). The interlimb angles 

of the fold hinges increase closer to the tip of the intrusion: the first hinge is about 20○, the 

second about 60○, and the last, and closest to the tip of the intrusion, is about 120○.  
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Figure 22. Pictures of fossils in Tununk. 

 

 

Figure 23. Picture showing mottled appearance in the Tununk adjacent to the contact with the lower sheet. 
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Figure 24. Image of metamorphosed Tununk sample, showing small-scale faults and calcite mineralized fractures. 

 

Figure 25. Picture of folding in the Tununk, with some of the visible fold limbs marked by red lines. 
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 Also observable in the field were Cretaceous Dakota sandstone, and the Brushy Basin 

and Saltwash members of the Jurassic Morrison formation. The Dakota exist in lenses (~10 m) 

surrounded by igneous rock and float. The sandstone contains abundant fossils (Figure 26B); 

also present were slickensides (Figure 26A). In most locations, Brushy Basin exists as a green, 

fine-grained unconsolidated material. In some areas, Brush Basin is lithified, very fine-grained, 

and green with some red weathering (Figure 26C). In the northeastern region of the field area, 

Saltwash exists as a white to tan coarse-grained sandstone, with conglomerate lenses. In some 

parts of the outcrops, there is black dendritic mineralization. In the southeastern region of the 

field area, the Saltwash includes of large portions of conglomerate, with poorly-sorted clasts 

ranging in size from 0.5 cm to 6 cm (Figure 26D, E). East of the large conglomerate outcrop is a 

cliff of typical Saltwash coarse-grained sandstone (Figure 26F).  

 

Figure 26. Sedimentary rocks present in the field area. A: Slickenside in Dakota sandstone. B: Fossils in Dakota sandstone. C: 

Lithified Brushy Basin. D, E: Large clasts in Saltwash conglomerate. F: Cliff of typical coarse-grained Saltwash. 
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Crystal Size Distribution 

 CSD results (Appendix B) were used to quantify the textural differences between the 

upper and lower sheets that can be difficult to see in hand sample. The CSD curves for the sheets 

have different slopes, and the shapes of the curves differ considerably (Figure 27). The slopes of 

CSD curves for the lower sheet are generally steeper than those from the upper sheet (Table 1). 

The upper sheet contains larger plagioclase crystals, with sizes ranging from 0.5 mm to about 

13.0 mm (Figure 28). The upper sheet CSD curves are mostly straight, but flatten significantly at 

higher crystal sizes. The lower sheet contains plagioclase crystals that range from about 0.5 mm 

to 8.0 mm (Figure 29). Most of the samples from the lower sheet have an upper crystal size 

threshold of 5.0 mm. Each of the CSD curves for the lower sheet have a generally consistent 

slope. The sample not from CRL shows a slope similar to that of the upper sheet samples that 

have the lowest crystal size upper threshold. 
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Figure 27. Crystal size distributions for the upper sheet, lower sheet, and a sample from an adjacent intrusion. 

 

 

Table 1. Slope and y-intercept values calculated through linear regression analysis on CSD curves for all samples. 

 

Sample Y-Intercept Slope Sample Y-Intercept Slope Sample Y-Intercept Slope

CR19 -5.0746 -0.7868 CR2 -3.4465 -1.4503 CR38 -3.6409 -1.2612

CR48 -4.6251 -0.9414 CR9a -3.6436 -1.3755

CR59 -3.9565 -1.3784 CR14 -2.2155 -1.9939

CR84 -4.3635 -1.2147 CR62 -3.8435 -1.5581

CR95 -4.3168 -1.0923 CR88 -4.0526 -1.3901

ME9 -4.4400 -0.9445 ME7 -2.9301 -1.8741

Upper Sheet Lower Sheet Not CRL



 

50 

 

 

Figure 28. Crystal size distributions for the upper sheet. 

 

Figure 29. Crystal size distributions for the lower sheet. 
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 Linear regression analysis gave a y-intercept and slope for each CSD curve. The y-

intercept corresponds to the nucleation density in the magma, and the slope provides the 

characteristic crystal length for the sample. Plotting the characteristic crystal length versus the 

nucleation density reveals a trend between the upper and lower sheets (Figure 30). The upper 

sheet tends to have a higher characteristic crystal length and a lower nucleation density, and the 

lower sheet tends to have a lower characteristic crystal length and a higher nucleation density. 

Very little overlap exists between the upper and lower sheets. The two distinct groupings suggest 

that the two sheets underwent different crystallization histories. The sample that is not from CRL 

falls in between values from the upper and lower sheets. The overall relationship between 

nucleation density and characteristic crystal length shows that as the nucleation density gets 

higher, the characteristic crystal length decreases.  

 

Figure 30. Characteristic crystal length vs. nucleation density for the CSD curves of all samples analyzed. 
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Geochemistry 

 Notable variations exist between the chemical composition of the upper and lower sheets 

(Appendix C). Silica concentrations vary between the sheets, but are consistent within each 

sheet. The upper sheet has lower silica concentrations, ranging from 58.12 wt% to 60.11 wt%, 

and the lower sheet has higher concentrations, ranging from 61.23 wt% to 63.2 wt%. Plotting 

data from the two sheets on a total alkalis (Na2O+K2O) versus silica (SiO2) diagram (Le Bas et 

al., 1986) shows a difference in rock type (Figure 31). The upper sheet plots on the 

andesite/trachyandesite border and the lower sheet plots mostly as andesite, with one sample 

plotting in dacite and one sample in trachyandesite. There is no overlap in the silica 

concentrations, so the samples from the two sheets cluster separately. Samples from the northern 

end of the field area differ physically from the upper and lower sheets of CRL. Additionally 

these rocks vary chemically. Sample CR100 is a basaltic trachyandesite. Sample CR37 is a 

basaltic andesite and has the lowest silica and alkali concentrations of any sample analyzed.  
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Figure 31. Total alkalis (Na2O+K2O) vs. silica (SiO2) diagram (Le Bas et al., 1986) for 16 samples: 8 from the upper sheet of 

CRL; 6 from the lower sheet of CRL; and 2 from intrusions surrounding CRL. 

 Four major element oxides and 22 trace elements show statistically significant 

differences between the upper and lower sheets. The upper sheet has a higher average 

concentration than the lower sheet in all but two of the statistically significant elements. The 

lower sheet only has higher concentration than the upper sheet in SiO2 and Ba. Mapping Fe2O3 

(as total iron) concentrations show the general trend present for most of the statistically 

significant elements (Figure 32). Major and trace element concentrations plotted against silica 

concentration show the relationships between the upper sheet, lower sheet, and samples not from 

CRL (Figure 33). 
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Figure 32. Map showing the abundance of Fe2O3 (Total wt.%) for the upper sheet, lower sheet, and an adjacent intrusion. A 

dashed blue line outlines the upper sheet, and a black dashed line outlines the lower sheet. 
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Rare earth element (REE) concentrations were normalized to CI-Chondrite values 

(McDonough and Sun, 1995). Aside from lanthanum (La) and neodymium (Nd), the upper and 

lower sheets differ significantly in the REEs (Figure 34). Samples from the upper sheet tend to 

follow a consistent trend, with low standard deviations (Figure 35A). Samples from the lower 

sheet also follow a consistent trend, also having low standard deviations (Figure 35B). Samples 

from the adjacent intrusion have similar concentrations, with only small variations (Figure 35C). 

Average concentrations of each sheet from CRL show that the upper sheet is enriched in every 

REE relative to the lower sheet (Figure 35D). Samples from adjacent intrusions are enriched in 

about half of the REEs relative to the upper sheet, and all the REEs relative to the lower sheet 

(Figure 35D). Both the upper and lower sheet have low concentrations of heavy REEs. 

Additionally, there is no Eu anomaly in the upper and lower sheets REE patterns.  

 

Figure 34. Chondrite-normalized (McDonough and Sun, 1995) REE plots for the upper and lower sheets. Error bars for each 

element represent one standard deviation in each direction. 
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Figure 35. Chondrite-normalized (McDonough and Sun, 1995) REE plots for the A: upper sheet; B: lower sheet; C: intrusions 

adjacent to CRL; and D: all three combined to show differences and trends. 

Anisotropy of Magnetic Susceptibility 

 K1 orientations (lineations) are plotted on Figure 36. Additionally, individual stereonets 

for each location were plotted on a grayscale geologic map (Figure 37). For each site the 

stereonets show the K1, K2, and K3 orientations, and the confidence ellipse for each axis. A loose 

trend in AMS lineations shows a generally consistent orientation down the main ridge of CRL, 

with lineations fanning out radially towards the margins of the intrusion.  
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Figure 36. Geologic map of CRL with AMS lineations plotted. 
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Figure 37. Grayscale geologic map of CRL with stereonets plotted for each sample site. Confidence ellipses are shown for each 

principal axis. The upper and lower sheets are outlined in blue and red, respectively. Stereonets that correspond to locations not 

within the red or blue areas are interpreted as being from intrusions separate from CRL.  

 

AMS data from the upper sheet are plotted on equal area lower hemisphere stereographic 

projections (Figure 38A). The upper sheet K1 orientations trend mostly from north-northeast to 

west-southwest and vary from shallowly plunging to steeply plunging (Figure 38B). K3 
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orientations vary widely across all samples, with shallow and steep plunges trending in variable 

orientations. When samples are divided into the categories “not near contact” and “near contact” 

trends are observable. Samples are considered near the contact if they are no more than 10 m 

away from an observable contact. Upper sheet K1 orientations near contacts are generally 

moderately to steeply plunging, and trend to the northwest (Figure 39A). K1 orientations away 

from the contact are concentrated at shallow plunges, trending northwest and southeast (Figure 

39B).  

 

Figure 38. Equal area lower hemisphere stereographic projections for the upper sheet. Stereonets show: A: All upper sheet data; 

B: Upper sheet K1 orientations; C: Upper sheet K2 orientations; D: Upper sheet K3 orientations. 
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Figure 39. Equal area lower hemisphere stereographic projections for upper sheet samples, separated based on proximity to the 

margins of the intrusion. A: AMS orientations for upper sheet samples near contacts. K1 orientations are shown with kamb 

contours. B: AMS orientations for upper sheet samples not near contacts. K1 orientations are shown with kamb contours. 

 AMS data from the lower sheet are plotted on equal area lower hemisphere stereographic 

projections (Figure 40). The K1 orientations for samples from the lower sheet cluster into 

shallowly to moderately plunging samples and steeply plunging samples (Figure 40B). The 

shallowly to moderately plunging samples trend in a swath from northeast to southwest. The 

steeply plunging K1 orientations trend in various directions. K3 orientations trend from northwest 

to southeast and have shallow and steep plunges (Figure 40D). Separating the lower sheet 
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samples into “near contact” and “not near contact” reveals trends in the data. Lower sheet 

samples near contacts have K1 orientations that are moderately to steeply plunging and trend 

towards the southwest to northwest (Figure 41A). K1 orientations for lower sheet samples not 

near contacts are concentrated along a main girdle, oriented from northeast to southwest (Figure 

41B).  

 

Figure 40. Equal area lower hemisphere stereographic projections for the lower sheet. Stereonets show: A: All lower sheet data; 

B: Lower sheet K1 orientations; C: Lower sheet K2 orientations; D: Lower sheet K3 orientations. 
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Figure 41. Equal area lower hemisphere stereographic projections for lower sheet samples, separated based on proximity to the 

margins of the intrusion. A: AMS orientations for lower sheet samples near contacts. K1 orientations are shown with Kamb 

contours. B: AMS orientations for lower sheet samples not near contacts. K1 orientations are shown with Kamb contours. 

 AMS scalar parameters are plotted in Figure 42. There are no apparent trends between 

the upper sheet, lower sheet, and adjacent intrusions for bulk susceptibility (Km) values vs. other 

parameters. The upper sheet has a wider range of bulk susceptibilities, ranging from 2.72 x10-4 

SI to 7.53 x 10-2 SI, with an average of 1.98 x 10-2 SI and a standard deviation of 1.99 x 10-2 SI. 

Samples from the upper sheet have the highest susceptibilities. The lower sheet has a smaller 
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range of susceptibilities, ranging from 1.52 x 10-4 SI to 3.72 x 10-2 SI, with an average of 1.43 x 

10-2 SI and a standard deviation of 9.91 x 10-3 SI.   

 Values for the ellipticity (T) for the upper sheet fall over a wide range, from -0.818 to 

0.656, averaging at -0.061 with a standard deviation of 0.286. About half of the samples from the 

upper sheet fall in the oblate range (T= 0 to 1), and the other half in the prolate range (T= 0 to-1). 

Samples from the lower sheet have a smaller range in ellipticity, from -0.363 to 0.620, averaging 

0.097 with a standard deviation of 0.326. Most of the samples from the lower sheet plot in the 

oblate range. No trend exists between T and Km values (Figure 42A). 

 The degree of anisotropy (Pj) in the upper sheet ranges from 1.016 to 1.050, with an 

average of 1.023 and a standard deviation of 0.286. Pj values for the lower sheet range from 

1.013 to 1.046, with an average of 1.031 and a standard deviation of 0.010. No apparent trends 

exist between Pj  and the other parameters (Figure 42B, C).  

 The upper sheet, aside from one outlier, has a smaller range of lineation (L) values than 

the lower sheet. Upper sheet L values range from 1.003 to 1.041 with an average of 1.012 and a 

standard deviation of 0.003. Lower sheet L values range from 1.005 to 1.026, with an average of 

1.014 and a standard deviation of 0.008. The upper sheet has a slightly larger range of foliation 

(F) values than the lower sheet (Figure 42D). Upper sheet F values range from 1.004 to 1.025, 

averaging at 1.011 with a standard deviation of 0.005. Lower sheet F values range from 1.007 to 

1.025, averaging at 1.016 with a standard deviation of 0.006. The lower sheet F values follow a 

general trend, increasing with an increase in L values. The upper sheet data have no apparent 

trend. 
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X-Ray Diffraction 

 XRD performed on the three Tununk samples (Figure 43) revealed that the most 

prominent minerals are quartz, feldspar, and calcite. The samples were analyzed twice because 

the calcite peaks were extremely intense and obscured the smaller peaks of minor minerals. The 
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samples were treated with 10% acetic acid to get rid of the calcite, allowing the less intense 

peaks to be recognizable. On the first run, the data show that the upper sample contains quartz, 

calcite, and feldspar. The data suggest that the feldspars may be sodium or potassium feldspar. 

Data from the central sample shows that it contains quartz, calcite and sodium and potassium 

feldspar. The central sample data show strong peaks at 2θ= 7 and 14. Peaks at these locations are 

strong evidence for the presence of chlorite. The lower sample contains calcite, and sodium and 

potassium feldspar. 

On the second run, the upper sample data show quartz, chlorite, and feldspar. There is 

strong evidence that it contains a potassium-rich feldspar. The middle sample data show quartz, 

chlorite, and feldspar. There is strong evidence that it contains potassium-rich feldspar as well as 

plagioclase feldspar. The lower sample data show chlorite and feldspar. There is strong evidence 

that the feldspar is plagioclase and orthoclase. Data also showed strong evidence that calcium-

rich clinopyroxene is present in the lower sample. 

 

Figure 43. Map showing the location of the Tununk samples used for XRD analysis. Inset shows the location of the samples on 

CRL.



Discussion 

Field Work 

Physical characteristics of the igneous rocks observed in the field suggest that CRL 

formed through two separate pulses of magma, resulting in an upper and lower sheet. Field 

observations suggest that the nearly continuous, well-preserved Tununk layer within CRL 

separates the upper and lower sheets. The intrusion of the upper and lower sheets displaced the 

Tununk vertically, and the layer remained mostly intact, maintaining the original horizontal to 

subhorizontal bedding. The folding, calcite veins, and micro-faulting locally present in the 

Tununk indicate that the layer was deformed by the intrusions.  

The upper sheet likely intruded into the central portion of the Tununk (originally ~134 m 

thick). Local preservation of cap rock on the main CRL ridge suggests there was a substantial 

thickness of Tununk above the upper sheet. The lower sheet likely intruded close to the contact 

between the Tununk and the underlying Dakota sandstone. The lower sheet would have had to 

intrude low enough for the thick portion of Tununk now between the sheets to be preserved. The 

lower contact between the Tununk and the lower sheet is locally preserved, and in many places 

there are lenses of Dakota within the lower sheet. Dakota was not observed in place in the field 

area, suggesting that it was locally disaggregated by the intrusion of the lower sheet.  

Dakota inclusions found within the intrusion had highly variable bedding dips, and were 

definitely rotated and maybe displaced from their original locations. The lenses of Dakota are 

similar to intercalated sedimentary rocks in the Maiden Creek sill described by Horsman et al. 

(2005), and sedimentary rafts in a laccolith described by Schmiedel et al. (2014). Fault surfaces 
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observed in the Dakota lenses may be detachment surfaces where the lens detached from its 

original location, or perhaps a larger piece of Dakota split into smaller pieces through faulting. 

Constraining the geometry of CRL and its component sheets required the classification of 

igneous rocks based on physical properties. The physical differences between the upper and 

lower sheet were consistent throughout most of the field area. However, the location of the 

igneous rocks found in the Garden Basin area raised questions as to whether or not they were 

part of CRL. These rocks are texturally similar to the upper sheet but are at the same elevation as 

the lower sheet, causing the upper sheet to appear segmented in map-view. Based on textural 

characteristics of the rocks, and a variety of other datasets, they are interpreted as being part of 

the upper sheet. The northern margin of CRL was remapped because the rocks from the ridge to 

the north of the main CRL ridge are texturally different from any observed in CRL. The ridge 

north of CRL is interpreted as being from a separate intrusion. To further support this, an area on 

the same ridge contains igneous rocks with large inclusions of several types of sedimentary rock. 

This zone may be an example of the complex process zone that forms at the tip of a propagating 

magma body. The orientation of the ridge and the location of the process zone suggest that the 

ridge to the north of CRL is a separate intrusion. These observations contradict the extent of 

CRL as mapped by Hunt et al. (1953) and support the new extent map (Figure 13). Hunt et al. 

(1953) originally suggested CRL had a length of 3 km and a width of 8 km. The new extent map 

suggests a length of 2 km and a width of 4 km. 

Field observations and measurements were used to try to understand magma flow at the 

time of intrusion. Magma flow tends to align crystals in relation to flow directions, and the rapid 

cooling of the CRL igneous rocks in the shallow crust locked the aligned crystals in place. 

Crystal alignment is a useful indicator of magma flow directions, and variations in alignment can 
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result from different locations within the intrusion (Knight and Walker, 1988; Philpotts and 

Asher, 1994; Correa-Gomes et al., 2001). Magmatic fabric patterns measured in the field show a 

consistent orientation down the main ridge of CRL, with a fanning pattern toward the margins. 

This suggests that as the magma intruded it was fed toward the east-southeast through a main 

conduit. This conduit then fed more local magma flow radially towards the margins. The 

vergence of the detachment fold in the Tununk supports magma flow in those directions.  

The overall geometry of both sheets in the intrusion suggests magma was fed laterally 

from the central portion of Mount Ellen to where CRL formed. The upper and lower sheets both 

fan out from the same general area, suggesting that the feeders for both sheets were located to the 

west-northwest, which agrees with field measurements. The magma was likely transported 

vertically from depth to the central portion of Mount Ellen, and horizontal feeder movement 

began when magma exploited the weaknesses in the Tununk, which is overlain by a sandstone. 

As described by Kavanagh et al. (2006) magma is likely to intrude into less competent layers 

when it reaches a boundary between an overlying competent layer and an underlying less 

competent layer.  

Sedimentary strata in the vicinity of CRL are locally deflected upward from their 

consistent regional orientation, as shown in cross section (Figure 12). I interpret this to mean that 

a subsurface intrusion has locally lifted the sedimentary strata. In cross section A-A’, I 

hypothesize that a buried intrusion, locally under CRL, is associated with the Ragged Mountain 

bysmalith to the south of CRL. The formation of the hypothesized intrusion likely postdates the 

formation of CRL, and the buried intrusion may have lifted the southern margin of the lower 

sheet. The extremely fractured area in the lower sheet (Figure 19) may be evidence for this post-
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CRL emplacement deformation. The suggested intrusion in the D-D’ cross section is likely 

independent of CRL, and during intrusion locally lifted the overlying sedimentary strata. 

 The observed reduction in phenocryst size and abundance near the contacts in the upper 

sheet is attributed to the Bagnold effect (Bagnold, 1954), which is described in igneous 

intrusions by Komar (1972 a, b). The velocity gradient in a magma near an intrusion margin 

creates a grain dispersive pressure. Close to the contacts, the velocity decreases and viscosity 

increases, and in order to maintain a constant grain dispersive pressure through the magma, 

crystals are preferentially moved to the center. The forces preferentially affect large crystals, 

resulting in a smaller mean crystal size towards the margins of the intrusion and a larger mean 

crystal size towards the center of the intrusion.  

Crystal Size Distribution 

 The upper and lower sheets have distinct CSDs, indicating that they underwent different 

crystallization histories. Larger crystal sizes suggest a longer crystal growth period, relative to 

smaller crystal sizes. The upper sheet has larger plagioclase crystals than the lower sheet, 

suggesting that the upper sheet had a more extended period of crystal growth.  

The upper sheet samples all have shallow and consistent slopes (Figure 28). Some of the 

samples have a segmented slope, with a consistent slope that shallows out significantly around 

the 8 mm crystal size extending to 13 mm. The consistent slope of the curve suggests steady-

state cooling (Marsh, 1988). The shallowing of the slope at 8 mm suggests that the magma 

underwent textural coarsening at depth. Higgins (1998) suggests that at depth, plagioclase will 

begin to crystallize and at a certain depth and temperature nucleation stops and textural 

coarsening begins. During textural coarsening tiny crystals are reincorporated into the melt and 
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larger crystals continue to grow. As ascent continues, coarsening slows and stops, resulting in a 

CSD curve similar to those from the upper sheet.   

The CSDs for lower sheet samples exhibit a relatively steep and consistent slope (Figure 

29). With only minor changes in slope in some samples, the lower sheet likely went through a 

nearly steady state cooling cycle. If the magma was transported to the shallow crust after a 

shorter time at depth smaller crystals would result.  

A consistent relationship exists between the nucleation density and the characteristic 

crystal length (Figure 30). Mock et al. (2003) had similar results, and suggested that higher 

nucleation densities lead to a large number of small crystals. The differences in nucleation 

density and characteristic crystal length between the upper and lower sheets of CRL suggest that 

the two sheets are from distinct pulses of magma. It is likely that the lower sheet ascended to the 

shallow crust after a shorter amount of time at depth than the upper sheet.  

Geochemistry 

 The distinct clustering of geochemical data for the upper and lower sheets into two 

groups (Figure 31) suggests that the upper and lower sheets are from separate pulses of magma. 

Geochemistry results for CRL samples are broadly consistent with the findings of Nelson and 

Davidson (1993), who analyzed several samples from other intrusions on Mount Ellen. Trace 

element abundances from CRL samples are similar to other samples from Mount Ellen, with 

only minor variations in some elements. No samples from Nelson and Davidson (1993) were 

from CRL, so variations in the trace element abundances are to be expected. The broad 

similarities across the samples from Mount Ellen and CRL may suggest that the intrusions come 

from a common magma source.  
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 Relative to the upper sheet, the lower sheet has higher silica and lower trace element 

concentrations. The REE plots for the upper and lower sheets show that the upper sheet is 

relatively higher in every REE (Figure 35). Nelson and Davidson (1993) attributed most of the 

differences in elemental abundance to fractional crystallization, which may be the cause of the 

differences between the two sheets. The magma that formed the lower sheet may have hosted 

more fractional crystallization than the magma that formed the upper sheet.  

Nelson and Davidson (1993) also observed a lack of a Eu anomaly. The lack of a 

significant Eu anomaly may be the result of no addition or loss of plagioclase from the 

crystallizing magma body. The loss of plagioclase during crystallization processes leads to a 

negative Eu anomaly, and the addition of plagioclase to a melt leads to a positive Eu anomaly 

(Rollinson, 2013). 

Anisotropy of Magnetic Susceptibility  

AMS data can provide information about magma flow at the time of intrusion (Horsman 

et al., 2005; Morgan et al., 2008). Lineations towards the center of the upper sheet trend in 

approximately the same orientation down the main ridge of CRL, and are interpreted to mark the 

main flow channel of the magma. This orientation may indicate that magma flowed toward the 

east-southeast from a feeder in the west-northwest. A second trend in upper sheet lineations is a 

pattern fanning outward from the main flow channel. The fanning lineations suggest that the 

magma flowed from the center of the sheet outward to the margins. For the most part, these 

lineations are close to perpendicular with the margins of the intrusion. The perpendicular 

relationship may be consistent with magma flow paths that fanned outward towards the contacts 

during intrusion. Morgan et al. (2008) observed similar trends on Trachyte Mesa, and arrived at 

similar conclusions. The center of the lower sheet of CRL is not observable, but AMS data 
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collected from lower sheet samples reveal a fanning pattern similar to that in the upper sheet. I 

interpret this to mean that the feeder for the lower sheet was located in the same general area as 

the feeder for the upper sheet.  

In both the upper and lower sheets, samples collected away from contacts yielded AMS 

lineations with variable trends, dominated by subhorizontal plunges. The subhorizontal plunges 

are likely the result of flattening that occurred while magma spread and the overburden was 

lifted (e.g. Horsman et al., 2005; Morgan et al., 2008). In both the upper and lower sheets, 

samples collected near contacts had lineations with moderate to steep plunges. This was likely 

caused by drag against the host rock rotating crystals. 

In almost all instances, for both the upper and lower sheets, the degree of anisotropy (Pj) 

is highest near the margins. There is a semi-consistent trend with Pj values increasing from the 

center of the sheets outward, suggesting that fabric is better developed near the margins. Better-

developed fabric near the margin of intrusions is likely the result of viscous drag against the host 

rock (Horsman et al., 2005). 

X-Ray Diffraction 

 Overall, the three Tununk samples from between the upper and lower sheets have 

consistent mineralogy. The only difference is that the sample close to the lower sheet lacked 

quartz and contained some clinopyroxene. The rocks have not been metamorphosed to hornfels 

facies likely due to the rapid cooling of the intrusions. In shallow igneous intrusions, the 

temperature of the magma decreases rapidly. According to Kornprobst (2002), a shallow crustal 

intrusion can only metamorphose the host rock at low temperatures (≤400°C), even directly 
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adjacent to the contact. The short duration and low temperature of the heating is likely the reason 

that the Tununk was not metamorphosed to a hornfels.  

Relative to other minerals, pyroxenes require higher temperatures to form in hornfels 

(Kornprobst, 2002), so the presence of clinopyroxene in the lower sample may indicate that the 

lower sheet heated the Tununk to a higher temperature than the upper sheet. The elemental 

differences coincide with physical differences in the Tununk samples. The lower portion Tununk 

appears to be more highly metamorphosed than the upper sheet, with a more mottled surface, and 

more fractures and veins of calcite. The lower sheet consists of a much larger volume of magma 

and may have heated the Tununk for longer than the upper sheet did, resulting in differences in 

metamorphism within the Tununk.  

Construction History and Geometry of the Copper Ridge Laccolith 

 The data collected for this study are consistent with two distinct construction histories for 

CRL. The first is a model in which the upper sheet intruded prior to the lower sheet. The second 

is a model in which the lower sheet intruded prior to the upper sheet. Regardless of the timing, 

the proposed flow paths inside the sheets remain the same (Figure 44 and Figure 45). The flow 

path interpretations are modeled after the work of Morgan et al. (2008) on the Trachyte Mesa 

laccolith. Flow path interpretations are based on both AMS lineations and magmatic fabric field 

measurements; arrow width is proportional to the importance of the flow path. Data from the 

central portion of the lower sheet were sparse in the field, so interpretations in this area are 

hypothetical. 

Also regardless of the timing, the final geometry of the intrusion is an asymmetric, fan 

shaped laccolith. The upper and lower sheets both originated from some feeder in the west-
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northwest. Both sheets have relatively flat bottoms and domed tops, creating a planoconvex 

cross-sectional geometry. Portions of the upper sheet exist at similar elevations as the lower 

sheet.  

Preferred Construction Model: Upper Sheet before the Lower Sheet 

 The preferred construction model is shown schematically in Figure 46. Magma likely 

ascended rapidly from depth in a vertical feeder to the central portion of Mount Ellen, where it 

exploited the weak bedding planes of the Tununk layer. Movement through a now horizontal 

feeder led magma to the area that would become CRL. The upper sheet formed when magma 

moved through a main flow channel and spread radially while lifting the overburden (Figure 44). 

Once the magma reached its lateral extent, vertical growth dominated. The upper sheet inflated 

and vertically displaced the overlying sedimentary strata. 

 The second pulse of magma likely originated from a similar mid-crustal storage area and 

ascended along the same general path. The magma forming the lower sheet spread through a 

main flow path and then fanned out radially (Figure 45). The lower sheet intruded off center 

under the upper sheet, with its southern extent ending just south of the center of the upper sheet, 

and its northern extent extending well past the northern margin of the upper sheet. As it spread, 

the magma lifted the strata and upper sheet to make space for itself, and much of the Dakota 

sandstone was disaggregated. Once the magma reached its final lateral extent, vertical growth 

dominated, displacing both the overlying Tununk and the upper sheet. The off center intrusion of 

the lower sheet caused the overburden to form a monocline. The upper sheet monocline resulted 

in a central limb separating a portion of the upper sheet resting on top of the lower sheet, and a 

portion of the upper sheet that has no lower sheet below it. As vertical growth progressed, 

fractures and faults likely formed in the central limb of the upper sheet monocline. The off center 
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intrusion of the lower sheet also led to variations in the thickness of the lower sheet. In the north, 

the lower sheet is thicker. This is likely the result of there being no upper sheet overlying the 

northern portion of the lower sheet. 

After CRL was exposed at the surface of the earth, the faults and other fractures in the 

upper sheet likely facilitated higher weathering and erosion rates. As a result, the central limb 

zone was deeply eroded away, exposing the lower sheet and making the upper sheet appear 

segmented (Figure 13).  

This growth model is preferred because under-accretion is commonly observed in 

intrusions formed through pulsed construction (Menand, 2011). Additionally, most of the upper 

sheet remains intact, except for the hinge region. The lower sheet intruding second and fracturing 

the hinge region would account for the hinge eroding away, while the rest of the upper sheet 

remained intact. In the alternative model, fracturing would not have been concentrated and the 

hinge region would likely be present in modern outcrops.  

Alternative Construction Model: Lower Sheet before Upper Sheet 

As an alternative model, the lower sheet may have intruded before the upper sheet. 

Magma would have originated and flowed in the same way as the preferred construction model 

(Figure 45). As the lower sheet magma spread to form CRL, it lifted the overburden and 

deformed the host rock, disaggregating much of the Dakota sandstone in the process.  

 In this model, the upper sheet intruded some time after the lower sheet. As the upper 

sheet intruded, magma spread both north and south. The northern margin is much more 

constrained than the southern margin. One possible reason for the asymmetry of the upper sheet 

is that there was some preexisting weakness in the Tununk toward the south, and the magma 
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exploited it, allowing the magma to spread farther to the south. The southern portion of the upper 

sheet may have flowed through the Tununk and cascaded down over the southern margin of the 

lower sheet (Figure 44).  

 

Figure 44. Interpreted flow paths during magma intrusion and formation of the upper sheet. Thin black lines with arrowheads 

indicate AMS lineations, and plain thin black lines indicate field fabric measurements. 
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Figure 45. Interpreted flow paths during magma intrusion and formation of the lower sheet. Thin black lines with arrowheads 

indicate AMS lineations, and plain thin black lines indicate field fabric measurements. 
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Figure 46. Cross sectional construction model for CRL with no vertical exaggeration. 
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Conclusions 

 A wide variety of datasets suggest that CRL is composed of two different sheets. A well-

preserved layer of Cretaceous Tununk separates the upper and lower sheets of the CRL in several 

locations. CSD data agree with two distinct pulses of magma forming CRL. The lower sheet has 

smaller plagioclase crystals than the upper sheet, suggesting the two had different crystallization 

histories at depth. The magma that formed the lower sheet likely spent less time at depth than the 

upper sheet. The upper and lower sheet are also chemically different. The lower sheet has higher 

SiO2 concentrations relative to the upper sheet, and the upper sheet has higher concentrations of 

all of the rare earth elements, as well as several other trace elements. AMS data suggest magma 

for both sheets flowed outward from a feeder in the northwest. Magma likely flowed through a 

main channel and then spread radially in a fanning pattern. The spreading of magma in a fanlike 

pattern resulted in an asymmetric tongue-shaped laccolith.  

 It is likely that upper sheet magma intruded first, exploiting weaknesses in the Tununk 

and spreading radially out from a central flow channel. As magma spread, it made space for itself 

by lifting the overlying Tununk, which is locally preserved as cap rock on top of CRL. The 

magma that formed the lower sheet likely moved in a similar manner to the upper sheet, 

spreading through a main flow path and fanning out radially. The lower sheet is a much larger 

volume of magma so the vertical displacement of the overburden was much greater. As the lower 

sheet vertically displaced the upper sheet, fractures and faults formed in the central limb of the 

upper sheet monocline. Fractures facilitated weathering and erosion of the central limb in the 

upper sheet, causing the upper sheet to appear segmented in modern exposures.     
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Appendix A: Annotated Maps of the Copper Ridge Laccolith  

Maurer (2015) 

 

Figure 47. Geologic map of CRL made for this project. Geographic regions mentioned in the text are labeled, and Tununk 

preserved within the intrusion, as cap rock, and under the intrusion are labeled. 
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Hunt et al. (1953)  

 

Figure 48. Map from Hunt et al. (1953) with the main CRL ridge outlined in a red box, Copper Creek is labeled by a red arrow, 

and the author's hypothesized extent of CRL labeled by red lines. 
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Morton (1986) 

 

Figure 49. Map from Morton (1986) with the main CRL ridge labeled, the "ring of Dakota" outlined in a red box, and the 

continuous layer of Dakota labeled by red arrows.



Appendix B: Crystal Size Distribution Data 

Table 2: CSD data for plagioclase phenocrysts 

 

 

 

 

Sample #

Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density

12.7 -13.89 12.7 -15.28 5.06 -10.91

8.01 -12.86 8.01 -13.74 3.19 -8.32

5.06 -9.61 5.06 -10.32 2.01 -6.93

3.19 -8.07 3.19 -7.88 1.27 -5.55

2.01 -6.76 2.01 -6.44 0.801 -5.07

1.27 -5.38 1.27 -5.08

0.801 -4.95 0.801 -4.74

Sample #

Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density

8.01 -13.76 8.01 -12.57 12.7 -15.24

5.06 -10.92 5.06 -10.29 8.01 -13.7

3.19 -8.47 3.19 -8.33 5.06 -9.79

2.01 -7 2.01 -6.92 3.19 -7.64

1.27 -5.63 1.27 -5.54 2.01 -5.95

0.801 -5.11 0.801 -4.47 1.27 -4.77

Upper Sheet CSD for Plagioclase Phenocrysts

CR19 CR48 CR59

CR84 CR95 ME9a

Sample #

Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density

8.01 -14.33 8.01 -14.33 3.19 -8.51

5.06 -11.83 5.06 -10.94 2.01 -6.33

3.19 -8.46 3.19 -8.49 1.27 -4.81

2.01 -6.46 2.01 -6.45 0.801 -3.71

1.27 -4.85 1.27 -4.98

0.801 -4.25 0.801 -4.65

Sample #

Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density Crystal Size (mm) (ln) Pop. density

5.06 -11.7 5.06 -10.83 5.06 -12.3

3.19 -8.73 3.19 -8.71 3.19 -8.97

2.01 -7.23 2.01 -7.22 2.01 -6.97

1.27 -5.84 1.27 -5.88 1.27 -5.32

0.801 -4.93 0.801 -5.03 0.801 -4.2

0.506 -4.49

Lower Sheet CSD for Plagioclase Phenocrysts

CR2 CR9a CR14

CR62 CR88 ME7
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CSD data for plagioclase phenocrysts, continued 

Sample #

Crystal Size (mm) (ln) Pop. density

8.01 -13.24

5.06 -10.66

3.19 -7.99

2.01 -6.39

1.27 -4.98

0.801 -4.24

CR38

Not CRL CSD for Plagioclase Phenocrysts



Appendix C: Geochemistry Data 

Table 3: Whole-rock major element geochemistry data for upper sheet samples 

Upper Sheet Geochemistry Data- Major Elements 

  Sample #   

Major Element (wt. %) CR19 CR66 CR71 CR82 CR95 CR114 ME8 ME9 Average 

SiO2 58.65 58.12 58.72 59.09 58.12 60.11 59.82 59.93 59.07 

Al2O3 17.02 16.98 16.75 17.28 16.71 17.34 17.41 17.46 17.12 

Fe2O3 6.90 6.67 7.14 7.27 6.88 6.59 6.86 6.90 6.90 

MgO 1.97 1.66 1.79 2.02 1.60 1.95 1.94 1.86 1.85 

CaO 6.19 6.62 6.32 5.26 6.41 5.44 4.52 5.43 5.77 

Na2O 4.25 4.31 4.13 5.05 4.19 4.30 4.59 4.19 4.38 

K2O 1.87 1.89 1.9 1.86 1.71 1.86 1.88 1.84 1.85 

TiO2 0.61 0.60 0.59 0.62 0.57 0.59 0.61 0.60 0.60 

P2O5 0.21 0.22 0.21 0.23 0.22 0.21 0.24 0.22 0.22 

MnO 0.13 0.11 0.14 0.15 0.12 0.13 0.12 0.13 0.13 

Cr2O3 0.004 0.004 0.004 0.003 0.004 0.003 0.003 0.004 0.004 

LOI 1.90 2.50 2.00 0.90 3.20 1.20 1.70 1.20 1.83 

Total 99.70 99.68 99.69 99.73 99.73 99.72 99.69 99.76 99.72 

 

Table 4: Whole-rock major element geochemistry data for lower sheet samples 

Lower Sheet Geochemistry Data- Major Elements 

  Sample #   

Major Element (wt%) CR8 CR63 CR76 CR88 CR81 CR104 Average 

SiO2 61.95 62.22 61.23 61.95 62.26 63.20 62.14 

Al2O3 16.96 17.43 16.92 16.60 17.06 17.16 17.02 

Fe2O3 5.07 5.95 5.47 5.95 5.85 5.28 5.60 

MgO 1.21 1.49 1.32 1.40 1.29 1.26 1.33 

CaO 5.30 5.06 5.09 5.00 4.34 5.09 4.98 

Na2O 4.53 4.57 4.82 4.57 5.17 4.41 4.68 

K2O 1.70 1.85 1.77 1.99 1.82 1.83 1.83 

TiO2 0.43 0.46 0.45 0.45 0.45 0.44 0.45 

P2O5 0.20 0.21 0.20 0.21 0.21 0.19 0.20 

MnO 0.10 0.18 0.12 0.13 0.14 0.10 0.13 

Cr2O3 <0.002 <0.002 0.002 <0.002 <0.002 <0.002 - 

LOI 2.30 0.30 2.30 1.50 1.10 0.80 1.38 

Total 99.75 99.72 99.69 99.75 99.69 99.76 99.73 
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Table 5: Whole-rock major element geochemistry data for not-CRL samples 

Not CRL Geochemistry Data- Major Elements 

  Sample #   

Major Element (wt. %) CR37 CR100 CR82 CR95 Average 

SiO2 52.96 56.29 59.09 58.12 56.62 

Al2O3 15.53 16.53 17.28 16.71 16.51 

Fe2O3 8.33 7.30 7.27 6.88 7.45 

MgO 3.26 2.67 2.02 1.60 2.39 

CaO 7.41 6.63 5.26 6.41 6.43 

Na2O 3.55 4.05 5.05 4.19 4.21 

K2O 1.31 1.82 1.86 1.71 1.68 

TiO2 0.68 0.68 0.62 0.57 0.64 

P2O5 0.25 0.24 0.23 0.22 0.24 

MnO 0.15 0.13 0.15 0.12 0.14 

Cr2O3 0.009 0.005 0.003 0.004 0.01 

LOI 6.20 3.30 0.90 3.20 3.40 

Total 99.64 99.65 99.73 99.73 99.69 

 

Table 6: Whole-rock trace element geochemistry data for upper sheet samples 

Upper Sheet Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR19 CR66 CR71 CR82 CR95 CR114 ME8 ME9 Average 

Sc 10 10 9 10 9 10 10 10 10 

Ba 718 699 680 625 701 657 737 741 695 

Be 2 <1 <1 <1 <1 <1 <1 <1 - 

Co 12.3 11.8 10.8 10.8 11.3 10.4 11.2 11.4 11.3 

Cs 0.6 0.6 0.6 0.3 0.7 0.6 1.4 0.6 0.7 

Ga 18.6 19 18.6 19.6 18.1 18.4 18 20.2 18.8 

Hf 3.7 3.1 3.8 3.6 3.5 3.7 3.6 3.7 3.6 

Nb 6.2 5.7 6.3 6.6 5.9 6.4 5.9 6.4 6.2 

Rb 26.8 29.7 30.5 27.7 26.5 25.7 28.3 26.7 27.7 

Sn 1 <1 1 <1 <1 <1 <1 <1 - 

Sr 1020.7 918.1 991.2 893.9 993.8 1029 967.1 1019.6 979.2 

Ta 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.3 

Th 3.1 2.9 2.2 2.4 3.4 2.7 2.4 2.9 2.8 

U 1.3 1 1.1 1.3 1.1 1.2 0.9 1 1.1 

V 101 103 92 104 96 100 105 105 101 

W <0.5 <0.5 0.8 <0.5 <0.5 <0.5 <0.5 <0.5 - 
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Whole-rock trace element geochemistry data for upper sheet samples, continued 

Upper Sheet Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR19 CR66 CR71 CR82 CR95 CR114 ME8 ME9 Average 

Zr 136.2 128.7 155.9 141.6 131.4 130.1 135.9 138.2 137.3 

Y 19.3 19.6 19.3 19.5 18.2 19.3 18.2 19.8 19.2 

La 24.2 21.7 18.1 19.6 23.3 18.4 17.9 25.8 21.1 

Ce 47.6 43.3 36.5 41.9 47.7 37.1 37.5 48.7 42.5 

Pr 5.92 5.21 4.76 5.31 5.54 4.93 4.76 5.66 5.26 

Nd 23.2 22.5 18.9 21.2 23.6 18.9 18.2 23 21.2 

Sm 4.23 4.36 3.96 4.67 4.3 4.18 4.02 4.58 4.29 

Eu 1.28 1.29 1.23 1.31 1.26 1.33 1.26 1.34 1.29 

Gd 3.87 3.88 3.82 4.07 3.93 3.86 3.6 4.22 3.91 

Tb 0.58 0.57 0.57 0.59 0.56 0.58 0.53 0.63 0.58 

Dy 3.15 3.3 3.28 3.43 3.45 3.19 3.17 3.33 3.29 

Ho 0.66 0.72 0.64 0.71 0.63 0.68 0.64 0.68 0.67 

Er 2.02 2.01 2.18 2.05 1.95 1.85 1.83 1.94 1.98 

Tm 0.3 0.3 0.32 0.33 0.28 0.3 0.29 0.3 0.30 

Yb 2.04 2 1.98 1.86 1.8 1.97 2.02 1.99 1.96 

Lu 0.31 0.31 0.31 0.3 0.31 0.3 0.32 0.32 0.31 

Mo 0.4 0.3 0.3 0.3 0.5 0.2 0.3 0.1 0.3 

Cu 19 21.2 19.1 17.6 18.8 20.2 25.5 20.6 20.25 

Pb 4 4.1 4.9 32 3.7 2.9 3.4 2 7.1 

Zn 47 31 58 173 57 39 43 37 61 

Ni 8 6.7 5.2 5 7.9 5.3 7.9 5.9 6.5 

As 1.1 0.9 1 0.7 0.6 <0.5 <0.5 <0.5 - 

Cd <0.1 <0.1 <0.1 0.3 <0.1 <0.1 <0.1 <0.1 - 

Sb <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 - 

Bi <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 - 

Ag <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 - 

Au (ppb) <0.5 <0.5 <0.5 0.6 <0.5 <0.5 <0.5 <0.5 - 

Hg <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - 

Tl <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 - 

Se <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 - 
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Table 7: Whole-rock trace element geochemistry data for lower sheet samples 

Lower Sheet Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR8 CR63 CR76 CR88 CR81 CR104 Average 

Sc 6 7 6 6 6 7 6 

Ba 889 850 994 934 970 812 908 

Be 2 <1 <1 <1 2 <1 - 

Co 6.5 7.6 7.8 7.4 7.5 6.8 7.3 

Cs 1.1 1.1 0.7 0.8 1.6 0.8 1.0 

Ga 17.8 19 18.5 18.6 18.7 17.6 18.4 

Hf 3.1 3.2 2.9 2.8 3.1 3 3.0 

Nb 5.5 5.3 5.8 5.3 5.6 4.7 5.4 

Rb 26.8 32 29.4 35.2 29.4 29.1 30.3 

Sn <1 <1 <1 <1 <1 <1 - 

Sr 1021.2 1020.8 1196.5 1042.5 1202.6 1037.9 1086.9 

Ta 0.2 0.3 0.2 0.2 0.3 0.3 0.3 

Th 2.7 2.7 2.7 2.5 2.4 2.3 2.6 

U 0.9 1.1 0.9 0.9 0.9 1 1.0 

V 60 65 62 67 63 62 63 

W 0.6 <0.5 <0.5 <0.5 <0.5 <0.5 - 

Zr 117.7 116.3 113.5 107.1 112.8 109.6 112.8 

Y 14.6 15.4 14.8 14.6 14.5 14.5 14.7 

La 15.4 19.6 17.5 16.9 16.3 16 17.0 

Ce 32.1 36.7 34.9 31.5 33.5 31.4 33.4 

Pr 3.98 4.85 4.64 4.13 4.3 4.09 4.33 

Nd 16.9 20.8 19 18.5 18 18.1 18.6 

Sm 3.72 3.51 4 3.76 3.84 3.51 3.72 

Eu 1.04 1.19 1.16 1.17 1.21 0.99 1.13 

Gd 3.06 3.6 3.44 3.34 3.23 3.06 3.29 

Tb 0.43 0.46 0.48 0.48 0.46 0.43 0.46 

Dy 2.52 2.58 2.49 2.67 2.64 2.61 2.59 

Ho 0.48 0.5 0.51 0.49 0.49 0.52 0.50 

Er 1.44 1.56 1.43 1.58 1.51 1.33 1.48 

Tm 0.21 0.22 0.22 0.21 0.22 0.21 0.22 

Yb 1.39 1.53 1.5 1.58 1.55 1.37 1.49 

Lu 0.22 0.24 0.23 0.24 0.23 0.22 0.23 

Mo 0.3 0.4 0.2 0.3 0.4 0.2 0.3 

Cu 6.4 14.4 9.2 11.9 10.7 5.4 9.7 

Pb 3.1 7.5 6.4 5 4.8 4.2 5.2 

Zn 40 69 53 67 44 31 51 
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Whole-rock trace element geochemistry data for lower sheet samples, continued 

Lower Sheet Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR8 CR63 CR76 CR88 CR81 CR104 Average 

Ni 3.2 3 3 3.2 2.6 2.6 2.9 

As 0.6 1 6.4 2.1 0.8 1.4 2.9 

Cd <0.1 <0.1 <0.1 0.1 0.4 <0.1 - 

Sb <0.1 0.1 0.2 <0.1 <0.1 0.1 - 

Bi <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 - 

Ag <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 - 

Au (ppb) <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 - 

Hg <0.01 <0.01 <0.01 <0.01 0.01 <0.01 - 

Tl <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 - 

Se <0.5 0.6 <0.5 <0.5 <0.5 <0.5 - 

 

Table 8: Whole-rock trace element geochemistry data for not-CRL samples 

Not CRL Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR37 CR100 CR82 CR95 Average 

Sc 16 12 10 9 12 

Ba 700 725 625 701 688 

Be <1 <1 <1 <1 - 

Co 21.2 15.4 10.8 11.3 14.7 

Cs 0.7 0.4 0.3 0.7 0.5 

Ga 17.6 18.5 19.6 18.1 18.5 

Hf 2.8 2.9 3.6 3.5 3.2 

Nb 4.7 5 6.6 5.9 5.6 

Rb 18.1 28.9 27.7 26.5 25.3 

Sn 1 <1 <1 <1 - 

Sr 1121.6 1102.1 893.9 993.8 1027.9 

Ta 0.3 0.3 0.3 0.3 0.3 

Th 5 4.2 2.4 3.4 3.8 

U 1.5 1.5 1.3 1.1 1.4 

V 170 141 104 96 128 

W <0.5 0.5 <0.5 <0.5 - 

Zr 110.7 100.7 141.6 131.4 121.1 

Y 19.5 15.9 19.5 18.2 18.3 

La 30.6 26.9 19.6 23.3 25.1 
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Whole-rock trace element geochemistry data for not-CRL samples, continued 

Not CRL Geochemistry Data- Trace Elements 

  Sample #   

Trace Element (ppm) CR37 CR100 CR82 CR95 Average 

Ce 55.9 49.7 41.9 47.7 48.8 

Pr 6.58 6.01 5.31 5.54 5.86 

Nd 27 23.7 21.2 23.6 23.9 

Sm 4.88 4.48 4.67 4.3 4.58 

Eu 1.42 1.38 1.31 1.26 1.34 

Gd 4.47 3.98 4.07 3.93 4.11 

Tb 0.61 0.53 0.59 0.56 0.57 

Dy 3.17 3.09 3.43 3.45 3.29 

Ho 0.73 0.57 0.71 0.63 0.66 

Er 1.78 1.58 2.05 1.95 1.84 

Tm 0.28 0.26 0.33 0.28 0.29 

Yb 1.91 1.63 1.86 1.8 1.8 

Lu 0.3 0.25 0.3 0.31 0.29 

Mo 1.2 0.6 0.3 0.5 0.7 

Cu 55.7 25.2 17.6 18.8 29.3 

Pb 7.7 4.4 32 3.7 12.0 

Zn 75 72 173 57 94 

Ni 22.1 11.9 5 7.9 11.7 

As 1.9 9.8 0.7 0.6 3.3 

Cd 0.1 <0.1 0.3 <0.1 - 

Sb 0.1 0.2 0.1 <0.1 - 

Bi <0.1 <0.1 <0.1 <0.1 - 

Ag <0.1 <0.1 0.1 <0.1 - 

Au (ppb) <0.5 <0.5 0.6 <0.5 - 

Hg <0.01 <0.01 <0.01 <0.01 - 

Tl <0.1 <0.1 <0.1 <0.1 - 

Se <0.5 <0.5 <0.5 <0.5 - 

 



Appendix D: Anisotropy of Magnetic Susceptibility Data 

Table 9: AMS data for upper sheet samples 

Upper Sheet AMS data 

Name UTM E UTM N Num. Km (SI) Km 1 s (SI)* K1 K2 K3 

  Zone 12N (NAD83)             

ME8 521243 4210732 6 0.075300 0.001720 1.008 0.999 0.993 

ME9 521274 4211060 6 0.042600 0.001380 1.009 0.999 0.992 

CR3 521585 4211068 6 0.017800 0.000439 1.011 0.997 0.992 

CR15 520710 4210792 6 0.000272 0.000016 1.014 0.997 0.989 

CR18 520595 4211096 6 0.017900 0.000263 1.012 1.001 0.988 

CR19 521687 4210995 5 0.019400 0.001730 1.012 0.998 0.990 

CR48 521868 4211416 6 0.000367 0.000010 1.011 1.005 0.984 

CR54 519964 4210017 6 0.000296 0.000015 1.009 1.002 0.989 

CR59 521621 4210621 6 0.020900 0.000364 1.011 1.002 0.986 

CR66 521670 4210179 6 0.033800 0.001940 1.013 0.999 0.988 

CR71 521722 4211507 5 0.013600 0.000522 1.011 0.999 0.990 

CR82 520421 4209011 6 0.009150 0.000766 1.008 1.004 0.988 

CR83 520462 4209005 6 0.003140 0.000566 1.013 0.999 0.988 

CR84 520277 4209295 5 0.005240 0.002700 1.028 0.988 0.984 

CR86 520738 4211618 6 0.000335 0.000092 1.012 0.999 0.989 

CR95 520210 4210273 6 0.028700 0.003290 1.014 1.005 0.981 

CR96 520256 4210291 6 0.000312 0.000015 1.013 1.004 0.982 

CR101 521500 4210388 6 0.018800 0.004380 1.013 0.999 0.988 

CR114 521267 4210884 6 0.026900 0.001770 1.012 0.997 0.990 

 

*One standard deviation  
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AMS data for upper sheet samples, continued 

Upper Sheet AMS data 

Name K1       K2       K3       

  decl. incl. α95 max 

α95 

min decl. incl. 

α95 

max 

α95 

min decl. incl. 

α95 

max 

α95 

min 

ME8 358.3 65.5 6.6 4.0 195.3 23.6 10.0 5.6 102.5 6.4 10.3 4.3 

ME9 308.9 42.1 14.4 2.1 68.2 28.4 15.7 7.6 180.2 34.7 12.4 3.7 

CR3 312.3 41.0 7.4 1.8 92.2 41.3 16.2 3.7 202.3 21.4 15.5 3.2 

CR15 37.9 58.2 6.3 2.6 151.8 14.1 11.4 2.5 249.4 27.8 12.2 4.3 

CR18 13.5 1.6 3.4 1.3 283.4 3.7 3.4 2.3 127.0 85.9 2.6 1.1 

CR19 140.1 7.3 3.1 2.5 248.0 67.4 7.5 2.9 47.2 21.3 7.5 2.5 

CR48 14.7 33.2 16.3 3.3 233.6 49.9 16.1 3.2 118.3 19.8 5.5 2.2 

CR54 106.3 54.0 9.7 1.2 318.0 31.7 10.7 4.7 218.3 15.2 7.1 2.0 

CR59 71.4 11.6 8.4 1.7 330.0 44.0 8.7 2.8 172.7 43.7 3.7 1.8 

CR66 206.7 47.5 5.0 2.2 39.4 41.8 9.3 1.7 303.7 6.4 10.1 2.3 

CR71 244.3 11.3 12.5 7.2 152.2 10.4 19.5 0.9 20.6 74.6 18.2 7.7 

CR82 295.8 20.5 54.9 27.1 49.0 46.5 55.6 25.4 189.9 36.4 36.7 16.1 

CR83 99.6 15.6 40.9 20.0 204.3 42.2 30.0 13.9 354.1 43.6 40.1 24.5 

CR84 215.8 79.0 18.7 3.7 117.1 1.7 68.0 4.7 26.8 10.9 68.2 4.8 

CR86 242.5 71.0 33.9 13.5 95.2 16.1 33.9 17.5 2.4 9.7 21.5 4.0 

CR95 271.8 32.2 6.9 4.6 79.8 57.2 6.9 3.2 178.3 5.4 5.5 2.4 

CR96 235.7 15.1 25.2 2.7 115.3 61.9 25.5 6.7 332.3 23.1 8.3 3.2 

CR101 147.6 14.7 29.6 4.0 282.1 69.5 43.3 3.2 53.9 14.0 37.3 3.7 

CR114 320.4 18.4 13.9 4.3 91.9 63.3 18.5 12.7 223.9 18.6 18.0 3.8 
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AMS data for upper sheet samples, continued 

Upper Sheet AMS data 

Name L F Pj T 

          

ME8 1.009 1.007 1.016 -0.170 

ME9 1.010 1.007 1.018 -0.180 

CR3 1.014 1.004 1.019 -0.503 

CR15 1.016 1.008 1.025 -0.321 

CR18 1.011 1.013 1.025 0.078 

CR19 1.013 1.008 1.022 -0.220 

CR48 1.006 1.021 1.029 0.587 

CR54 1.007 1.012 1.020 0.248 

CR59 1.009 1.016 1.026 0.306 

CR66 1.013 1.011 1.025 -0.099 

CR71 1.012 1.010 1.022 -0.117 

CR82 1.003 1.016 1.021 0.656 

CR83 1.014 1.012 1.026 -0.085 

CR84 1.041 1.004 1.050 -0.818 

CR86 1.013 1.009 1.023 -0.171 

CR95 1.008 1.025 1.035 0.493 

CR96 1.009 1.022 1.032 0.436 

CR101 1.014 1.012 1.026 -0.069 

CR114 1.016 1.007 1.023 -0.402 
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Table 10: AMS data for lower sheet samples 

Lower Sheet AMS data 

Name UTM E UTM N Num. Km (SI) Km 1 s (SI)* K1 K2 K3 

  Zone 12N (NAD83)             

ME6 521180 4210224 6 0.027900 0.000767 1.015 1.000 0.984 

ME7 521224 4210472 6 0.014300 0.000580 1.007 1.001 0.992 

CR2 521586 4211623 6 0.006150 0.000310 1.021 1.002 0.977 

CR7 522167 4211066 6 0.022700 0.000625 1.023 0.998 0.979 

CR8 522049 4211158 6 0.037200 0.000600 1.012 0.997 0.991 

CR9a 521942 4211221 6 0.018900 0.000217 1.018 0.998 0.984 

CR10 521064 4210512 6 0.000403 0.000040 1.014 1.003 0.983 

CR24 521937 4210348 6 0.018300 0.000761 1.021 1.000 0.979 

CR49 521895 4211488 5 0.000152 0.000012 1.006 1.001 0.993 

CR62 521743 4209868 6 0.023100 0.000370 1.010 1.000 0.990 

CR63 521788 4209571 6 0.019800 0.000650 1.010 1.005 0.984 

CR73 521870 4211677 6 0.000222 0.000006 1.010 1.000 0.991 

CR76 521598 4211906 6 0.013800 0.000154 1.017 0.999 0.985 

CR81 521245 4212011 6 0.020000 0.000374 1.017 0.999 0.984 

CR87 522210 4211692 6 0.016200 0.000479 1.011 1.002 0.987 

CR88 522480 4211948 6 0.006670 0.000351 1.008 1.001 0.991 

CR103 521432 4210261 6 0.014700 0.000880 1.017 1.001 0.982 

CR104 521325 4210067 6 0.007370 0.000502 1.011 1.003 0.986 

CR105 521375 4209868 6 0.015100 0.000371 1.018 1.002 0.979 

CR113 521175 4210423 6 0.008780 0.000087 1.015 1.002 0.983 
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AMS data for lower sheet samples, continued 

Lower Sheet AMS data 

Name K1       K2       K3       

  decl. incl. 

α95 

max 

α95 

min decl. incl. 

α95 

max 

α95 

min decl. incl. 

α95 

max 

α95 

min 

ME6 248.8 62.9 8.2 2.5 9.5 14.7 11.0 2.8 105.7 22.3 7.9 2.4 

ME7 259.8 20.5 17.4 3.9 158.3 27.9 17.6 6.5 21.1 54.2 7.7 4.9 

CR2 230.0 55.4 6.5 2.5 119.6 13.5 4.6 3.8 21.2 31.1 6.6 2.9 

CR7 216.1 30.5 5.6 1.1 307.0 1.4 5.5 3.6 39.3 59.4 4.6 2.3 

CR8 339.2 22.5 2.8 0.9 244.1 12.0 4.4 2.0 128.0 64.2 4.2 1.7 

CR9A 154.4 43.9 9.7 0.7 331.2 46.0 9.8 2.0 62.9 1.6 2.6 0.6 

CR10 314.4 51.1 7.6 4.1 161.3 35.7 6.4 3.9 61.5 13.4 5.9 3.8 

CR24 322.9 29.7 3.8 1.6 186.5 51.8 4.6 1.6 66.0 21.8 5.8 0.7 

CR49 341.7 36.7 19.1 3.0 229.0 27.5 20.1 11.8 112.1 41.0 13.6 2.0 

CR62 271.8 8.5 3.1 1.7 181.4 2.5 4.8 2.6 75.4 81.2 4.6 1.9 

CR63 296.8 14.5 33.7 6.2 143.9 73.8 32.4 4.4 28.6 7.1 17.8 1.8 

CR73 228.9 61.1 6.3 1.3 326.1 4.0 6.1 1.5 58.2 28.6 2.5 0.9 

CR76 144.7 65.8 2.7 1.7 35.1 8.5 2.8 2.1 301.6 22.5 2.7 1.4 

CR81 48.2 3.6 9.0 4.4 154.8 77.6 10.0 0.9 317.5 11.9 6.1 3.7 

CR87 48.0 74.2 7.7 1.6 243.5 15.2 8.2 2.2 152.4 4.0 3.7 1.7 

CR88 58.9 19.9 12.3 2.4 303.7 49.6 12.3 6.2 162.8 33.5 6.5 1.5 

CR103 108.5 69.4 4.9 1.4 226.5 10.0 4.1 1.9 319.7 17.8 3.0 1.8 

CR104 16.2 20.5 5.4 2.5 245.4 60.2 5.3 3.6 114.3 20.6 4.1 3.3 

CR105 59.4 5.3 7.1 3.3 183.4 80.5 6.8 0.7 328.7 7.8 4.4 1.6 

CR113 304.9 69.4 3.3 2.3 196.4 6.8 4.3 1.6 104.0 19.4 3.8 1.6 
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AMS data for lower sheet samples, continued 

Lower Sheet AMS data 

Name L F Pj T 

          

ME6 1.015 1.016 1.032 0.039 

ME7 1.006 1.009 1.015 0.242 

CR2 1.019 1.025 1.045 0.122 

CR7 1.026 1.019 1.046 -0.151 

CR8 1.014 1.007 1.021 -0.363 

CR9A 1.019 1.014 1.034 -0.156 

CR10 1.012 1.020 1.033 0.273 

CR24 1.021 1.022 1.043 0.038 

CR49 1.006 1.007 1.013 0.139 

CR62 1.011 1.010 1.021 -0.033 

CR63 1.005 1.021 1.028 0.620 

CR73 1.010 1.009 1.019 -0.016 

CR76 1.018 1.014 1.033 -0.118 

CR81 1.017 1.016 1.033 -0.045 

CR87 1.009 1.015 1.025 0.259 

CR88 1.007 1.010 1.016 0.178 

CR103 1.016 1.020 1.036 0.100 

CR104 1.008 1.017 1.026 0.364 

CR105 1.016 1.024 1.040 0.195 

CR113 1.012 1.020 1.032 0.231 
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Table 11: AMS data for not-CRL samples 

Lower Sheet AMS data 

Name UTM E UTM N Num. Km (SI) Km 1 s (SI)* K1 K2 K3 

  Zone 12N (NAD83)             

CR34 521275 4212243 5 0.018100 0.000315 1.025 1.006 0.969 

CR37 521403 4212584 5 0.000771 0.000097 1.003 1.001 0.996 

CR38 521334 4212640 6 0.003630 0.000632 1.013 0.998 0.988 

CR85 520340 4211497 6 0.000196 0.000014 1.009 0.999 0.991 

CR100 520528 4212371 6 0.005650 0.001250 1.015 0.997 0.988 

 

Lower Sheet AMS data 

Name K1       K2       K3       

  decl. incl. 

α95 

max α95 min decl. incl. 

α95 

max 

α95 

min decl. incl. 

α95 

max 

α95 

min 

CR34 321.2 4.4 3.0 1.5 144.0 85.6 2.5 1.6 51.3 0.2 2.4 1.6 

CR37 318.3 0.4 14.1 10.1 227.6 60.0 16.1 13.2 48.5 30.0 16.2 9.1 

CR38 202.1 1.7 23.1 3.4 111.9 8.2 28.4 16.8 304.0 81.6 24.9 2.5 

CR85 49.4 66.9 11.8 2.2 252.5 21.4 4.9 2.5 159.3 8.3 12.4 2.8 

CR100 213.6 45.8 13.5 5.4 307.2 3.5 24.0 9.7 40.5 44.0 22.5 5.9 

 

Lower Sheet AMS data 

Name L F Pj T 

          

CR34 1.019 1.039 1.060 0.327 

CR37 1.003 1.005 1.008 0.315 

CR38 1.015 1.010 1.025 -0.179 

CR85 1.010 1.008 1.018 -0.137 

CR100 1.018 1.009 1.027 -0.338 

 


