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ABSTRACT OF DISSERTATION 

The overall purpose of this dissertation is to increase understanding of migration and movement 

behaviors associated with a highly migratory elasmobranch species.  In particular, I seek to 

determine whether sufficient evidence exists to warrant the separation of the northwest Atlantic 

Spiny Dogfish (Squalus acanthias) into separate management units.  These management units 

are not genetically distinct, but rather would be based on unique behaviors adopted by 

hypothesized groups of dogfish that connect reproductive, feeding, and overwintering grounds 

(“contingents”).  This dissertation includes an introductory chapter that introduces the reader to 

the Spiny Dogfish resource and recent management actions undertaken, followed by a chapter 

that provides technical and design recommendations based on a meta-analysis and a case study, 

which address the challenges of conducting behavioral research in dynamic environments 

through the use of acoustic telemtry.  Approximately 30 percent of papers reviewed had no 

details on design specifications.  Meta-analyses suggest that more fish were redetected when 

more acoustic equipment was deployed for longer periods of time, exemplifying the need for 



robust equipment that can withstand the rigors of an offshore, dynamic environment.  In 

particular, we found that a heavy anchor, a subsurface float holding a mooring line, and a 

highflier-float system produced the best results in our case study.  New behavioral information, 

derived from an analysis of data collected through a long-term conventional mark-recapture 

program and a multi-year acoustic tagging program, suggest that spiny dogfish tagged off North 

Carolina in overwintering grounds routinely make seasonal migrations to summer feeding 

habitats off southern New England (specifically, Massachusetts), but do not necessarily follow 

the same pathway each year.  Sharks were often not detected on acoustic receivers for lengthy 

periods of time, and mark-recapture data indicated extremely lengthy times at liberty (1,000+ 

days).  Spiny Dogfish were also noted to be locally abundant but exhibit short residency times on 

the Hatteras Bight acoustic array.  An evaluation of potential environmental drivers of localized 

behavior in the southern extent of the Spiny Dogfish range noted that certain factors (i.e., water 

temperature and weather) had an effect on the presence and absence of dogfish in the Hatteras 

Bight.  Finally, the dissertation discusses the Spiny Dogfish Contingent Hypothesis, which 

suggests that the northwestern Atlantic stock could comprise as many as five behaviorally 

distinct groups of Spiny Dogfish. The work presented in this dissertation identifies predictable 

behavioral patterns undertaken by individual Spiny Dogfish and inferred from recapture data, 

which can be used in context with future studies to further evaluate and refine the Spiny Dogfish 

Contingent Hypothesis. Despite many examples in the literature where Contingent Theory has 

been applied to describe spatially complex behavior in fish stocks, it is rarely applied in 

management plans. The current management structure in place for Spiny Dogfish is complex, 

has evolved to respond to fishery needs over the past 16 years, and involves multiple state and 

federal agencies, councils and commissions.  Future research would likely need to quantify 



contingent “vital rates” and/or contribution to overall spawning stock biomass or fisheries to 

fully justify the development of a new management framework. 
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CHAPTER 1: CHALLENGES OF MANAGING ELASMOBRANCH 

FISHERIES AT THE APPROPRIATE UNIT STOCK – THE CASE OF THE 

SPINY DOGFISH (SQUALUS ACANTHIAS) 

Introduction 

Highly migratory fishes, including elasmobranchs, present unique challenges for fisheries 

management.  Oftentimes, these species may have ranges that extend beyond the geographic or 

bathymetric scope of fisheries and fishery independent surveys.  Scientists in turn have difficulty 

in simply identifying the extent of the unit stock, which translates to uncertainty in the evaluation 

of population parameters that are essential in predicting the volume of harvest that may be taken 

sustainably in a given year.  Fisheries managers are often asked to account for factors and 

behaviors in these species that are beyond their control, knowledge, and/or jurisdiction.  In 

addition, the expense of collecting enough basic biological information for a wide-ranging 

species to support or contest management strategies can be prohibitive.  How then, can effective 

management strategies be developed for a migratory species? Science must look past assumed 

paradigms, and periodically question the assumptions concerning behavior and life history of 

migratory species to ensure that management practices best reflect the life history of the stock.   

Unique Challenges in Managing Elasmobranch Fisheries 
 

Elasmobranch Stock Identification.  Stock identification for elasmobranchs can be 

challenging because these species are often data-poor, which makes it difficult to identify the 

biological and geographic extent of a management unit.  Extensive migration has been noted in 

many species of elasmobranchs, including catsharks (Scyliorhinus canicula, Sims et al. 2001), 



 

2 
 

Lemon sharks (Negaprion brevirostris, Feldham et al. 2002), Sandbar sharks (Carcharhinus 

plumbeus, J. Musick and Pratt, personal communications in Hueter et al. 2005), Blacknose 

sharks (Carcharhinus acronotus, Hueter et al. 2005), and Blacktip sharks (Carcharhinus 

limbatus, Keeney et al. 2003; Hueter et al. 2005).  These studies noted homing, or the repeated 

return of individuals to a particular area, for reproductive, foraging and refuge habitats.  In some 

cases, large numbers of sharks were concentrated in a small spatial area (either in a school, or 

bottle-necked by physical features).  Migrating fish that undergo extensive migrations are often 

forced in great numbers into a small area; this provides an opportunity for hunters of these fish to 

harvest large numbers with minimal effort.  Fish may also concentrate in small areas without any 

sort of physical constraint, where water quality conditions and/or prey concentrations attract 

them.  This also results in aggregations of fish that a vulnerable to fishermen.  It is reasonable to 

suspect that the same conditions that allow for massive exploitation of migrating fish that home 

to specific habitats may also apply to sharks.  Localized stock depletion of sharks may be 

masked until a notable reduction in harvest or surveyed stock is recognized.  Hueter et al. (2005) 

noted: 

“Depending on the degree and nature of philopatry, a shark stock that may otherwise be 

viewed as a single population because of overlapping ranges and congruent migratory 

routes may in fact constitute a metapopulation of genetically heterogeneous 

components.” 

   Localized stock depletion could account for the apparent worldwide decline in large 

shark stocks (Baum et al. 2003), and suggests a strong need to understand the multiple scales 

across which migration may occur in different species of sharks.  Reducing management 
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uncertainty through improved understanding of life history is critical for elasmobranchs that are 

the target of high-volume shark fisheries; many of these species may have high local abundance, 

but do not exhibit a high resilience to the effects of fishing (Smith et al. 1998). With some 

exceptions, most elasmobranch species are long-lived, slow growing, late to mature, and tend to 

have small broods with long gestation times (Smith et al. 1998), all of which reduce resiliency.    

Shifts in distribution and localized abundance are very common for many species 

sampled through fishery independent surveys, such as those completed by the National Marine 

Fisheries Service (NMFS).  Winter Skate (Leucoraja ocellata) underwent an apparent 

disappearance and recovery on George’s Bank between 1980 and 2000.  Originally thought to be 

due to changing population dynamics, it was later hypothesized that the entire population 

underwent a transient northern shift in distribution (Frisk et al. 2008).  The NMFS bottom trawl 

surveys are primary fishery independent data sources used to assess Spiny Dogfish stocks; 

however, assessments may be unduly influenced by unusual changes in distribution that may 

result in unrealistic or unexplainable changes in estimated biomass (Sargarese et al. 2014).  For 

these reasons, it is critical that the identification of a unit stock, and the geographic boundaries 

containing the stock, are appropriately defined such that any fluctuations in distribution or 

abundance through time are recognized and incorporated into the assessment of a stock.   

Without knowledge of the spatial and temporal extent of migration, the rate of migration, 

and important habitats included in the migration, it is difficult to identify the full range and 

extent of a management unit. In turn, this uncertainty makes the prediction of population level 

responses (i.e., recruitment) to fishery practices a very difficult undertaking.  Thus, 

understanding migration, and collecting data on fish stocks that fully encompasses these 
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behaviors, is essential in the successful management and protection of migratory fishery 

resources. 

 High Volume Elasmobranch Shark Fisheries.  Holden (1973, 1974) explored the 

question of whether elasmobranch fisheries could be sustainably harvested, given certain aspects 

of elasmobranch life history.  Holden and others (Stevens et al. 1997; Walker 1998; 

Simpfendorfer 1999; Prince 2005) prescribe caution, suggesting that the level of exploitation 

should reflect the productivity of a stock and/or include selective targeting of sharks that are not 

large, mature, spawning females.  Some shark stocks (i.e., Blue sharks (Prionace glauca), Spiny 

Dogfish (Squalus acanthias), and School shark (Galeorhinus galeus)) exhibit complex stock 

structuring by size, age, sex, and reproduction.   Assessments of these stocks should be done with 

spatially structured population models using spatially disaggregated data (Walker 1998).  School 

sharks are often targeted when they aggregate for feeding or reproductive purposes (Prince 

2005).  However,  there is evidence that suggests females exhibit philopatry for certain pupping 

grounds; therefore, any targeted fishing on those pupping grounds would have a concentrated 

effect on the reproductive stock versus targeted fishing on feeding aggregations (which would 

include subadults, males, and reproductive females from multiple breeding grounds).   In 

contrast, Prince (2005) noted that Gummy sharks (Mustelus antarcticus) are comparatively 

unspecialized and have no specialized pupping grounds; 90 percent of the catches in this fishery 

come from aggregations of subadults.  Prince concludes that a small subset of shark fisheries 

may be robust to fishing pressure; however, elasmobranch fisheries are still highly susceptible to 

over-exploitation.  Walker (1998) suggests that only small proportions of shark stocks can be 

taken sustainably, and the maximum sustainable yield is highly dependent on the productivity of 

stocks.  Some sharks, such as Atlantic Sharpnose (Rhizoprionodon terraenovae), Smooth 
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Dogfish (Mustelus canis, also referred to in management as part of the “Smoothhound” stock 

complex which also includes Florida Smoothhound, M. norrisi, and Gulf Smoothhound, M. 

sinusmexicanus), and Bonnethead (Sphyrna tiburo) are highly productive and are able to support 

high volume, robust shark fisheries.   The National Marine Fisheries Service’s (NMFS) Highly 

Migratory Species (HMS) Management Division manages highly migratory sharks through a 

combination of species-specific and species complex quotas (NMFS 2006; NMFS 2013).  The 

highest quotas currently are assigned to the small coastal shark complex, which includes Atlantic 

Sharpnose, Bonnethead, and Finetooth sharks, and the Blacktip shark fishery.  West coast shark 

fisheries are, by comparison, much smaller in terms of scope (number of species managed).  In 

2011, 117 metric tons of sharks (Blue, Thresher, and Shortfin Mako) included under the Pacific 

Highly Migratory Species Fishery Management Plan were landed.  Landings of Pacific HMS 

sharks are comparable to landings for Atlantic Blue, Thresher, and Shortfin Mako.  Additionally, 

NMFS is in the process of developing quotas and a management plan to support a high volume 

fishery for Atlantic Smooth Dogfish.  Landings for Smooth Dogfish reached 2.2 million pounds 

in 2011.  Under Amendment 3 to the 2006 Consolidated Highly Migratory Species Fishery 

Management Plan (FMP), NMFS delayed implementation of a preliminary quota of 715.5 metric 

tons for Smooth Dogfish (the highest of any shark species or complex managed under the HMS 

FMP).  Smooth Dogfish measures will be finalized under Amendment 9 to the 2006 

Consolidated HMS FMP.  The proposed rule, published in August 2014, includes a 

Smoothhound complex quota of 1,739.9 metric tons dressed weight (approximately 3.8 million 

pounds) based on the maximum landings from the 10 most recent years of data plus two standard 

deviations (NMFS 2014).  
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The Spiny Dogfish fishery, which is jointly managed by the Mid-Atlantic Fishery 

Management Council,the New England Fishery Management Council, and the Atlantic States 

Marine Fisheries Commission (ASMFC), has by far the highest quotas established for any of the 

U.S. east coast shark fisheries and is one of a small number of high-volume elasmobranch 

fisheries.  However, the species exhibits many life history traits that would seemingly make it 

susceptible to overexploitation (Smith et al. 1998; Cortes 2002; Fordham 2004).  Rago and 

Sosebee (2009) suggest that sustainable exploitation rates of Spiny Dogfish are likely to be quite 

low.  The species is known to live at least 35-40 years in the northwest Atlantic (Nammack et al. 

1985). Age at maturity has been estimated to be 12 years for Spiny Dogfish (S. acanthias) in the 

Atlantic (Burgess 2002; Castro 2011).  Average length at maturity (L50) tends to vary from 77.9 

to 79 cm for the Northwest Atlantic (Nammack et al. 1985; Sosebee 2005).  Smith et al. (1998) 

evaluated intrinsic rebound potentials of 26 shark species, including both Atlantic and Pacific 

Spiny Dogfish (S. suckleyi).  Pacific Spiny Dogfish were noted to have the lowest intrinsic 

rebound potential, although Atlantic Spiny Dogfish were also grouped with the least resilient 

sharks.  Pacific Spiny Dogfish exhibit different life history characteristics than Atlantic Spiny 

Dogfish, and were recently differentiated back into a separate species (Verissimo et al. 2010; 

Ebert et al. 2010)  making it more difficult to infer life history traits and strategies for Atlantic 

Spiny Dogfish from Pacific Spiny Dogfish (e.g., Pacific Spiny Dogfish live 80 or more years, 

and age at maturation is estimated to be 25-35 years (Saunders and MacFarlane 1993; Vega et al. 

2009).  These sharks warrant special consideration with respect to the development and 

management of fisheries, in particular the protection of breeding stocks to ensure that spawning 

stock biomass is not compromised for short-term economic gain of fishery participants. 
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Atlantic Spiny Dogfish Fisheries 

  Atlantic Spiny Dogfish fisheries in the United States and Canada tend to harvest mature 

females due to their large size (which proved the most economically viable for markets 

overseas), and availability and proximity of large schools of female sharks that aggregate close 

to shore (Rago 1998; Wallace et al. 2009).  Dogfish are typically captured with gillnet, longline 

and trawl gear (Grulich and DuPaul 1986; Hickman et al. 2000). The timing of the fishery in a 

given year reflects the temporal and spatial distribution of the species (Rago and Sosebee 2009).  

In the southern half of the range, dogfish are susceptible to commercial fisheries between 

November and April in a typical year; in the northern half of the range, dogfish are available 

year-round to commercial fisheries (Hickman 2000; MAFMC 1999; ASMFC 2002).   

Spiny Dogfish on both the Atlantic and Pacific coasts have undergone exploitation at 

various times over the past century to meet demands for oil, liver (Vitamin A), meat, and fins.  

At various times, management entities on the Pacific and Atlantic costs offered a bounty for 

dogfish in support of an eradication program due to concerns about damage to fishing gear, 

effective loss of viable fishing grounds due to dogfish bycatch, and predation effects (Ketchen 

1986; Bargmann 2009).  Landings of Spiny Dogfish are shown in Figure 1.  Blue bars indicate 

data presented in the original Fishery Management Plan (FMP) for Spiny Dogfish (MAFMC 

1999), while red bars indicate data provided in the draft Environmental Assessment for 

Amendment 3 to the FMP (MAFMC 2014).  Data in the earlier time series (blue) includes 

landings from Russia and other countries.  Foreign landings decreased from over 52 million 

pounds in 1972 to between 50,000 to 1,500,000 lbs/year between 1978 and 1992; after 1992, 

landings by fleets from outside the United States and Canada were 0 lbs/year. Data from the later 
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time series (1998 through 2012) includes landings only from the United States and Canadian 

fleets.   Most of the landings through the 1960s and late 1970s were from foreign vessels, prior to 

the implementation of the Magnuson-Stevens Act and the gradual implementation of 200 

nautical mile Exclusive Economic Zones (EEZ) via the United Nations’ Convention on the Law 

of the Sea in 1982. 

This fishery was considered by U.S. fishermen to be economically viable only as a 

volume fishery (Register et al. 2007; NCDMF 2008); however, trip limits have varied with the 

status of the fishery. Prior to the development of a fishery management plan, there were no 

retention limits for Spiny Dogfish. The fishery was considered a lucrative and stable wintertime 

option for North Carolina fishermen through the 1990s (Hickman et al. 2000).   Price per pound 

of Spiny Dogfish ranged from $0.07/pound to $0.15/pound between 1988 and 1997 (with the 

exception of 1995-1996 when price/pound was just under $0.20/pound.  From 2000 through 

2012, prices tended to stabilize around $0.20/pound, on average (fin prices were probably 

higher).   

Biomass of Spiny Dogfish generally increased after the 1970s in the Northwest Atlantic, 

possibly due to increases in growth rates (Silva 1993; Rago and Sosebee 2009).  Between 1976 

and 1996, Atlantic Spiny Dogfish were considered an “under-utilized” species, and both state 

and federal management entities encouraged the exploitation of Spiny Dogfish as an alternative 

to declining cod and other groundfish fisheries (Hutchings and Myers 1994; Rago et al. 1998; 

Rulifson et al. 2002).  Spiny Dogfish meat is eaten in Europe, Australia, New Zealand, South 

America and Japan (Fordham 2005).  U.S. industry groups attempted to create more domestic 

demand by relabeling Spiny Dogfish as “cape shark” and “northern shark”; however, a domestic 
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market never fully solidified to support the volume of landings (Fordham 2004).  NMFS 

developed and distributed guidance in the 1980s and 1990s to the fishing industry on how to 

handle, process, and market dogfish, in particular through the Sea Grant College Program 

(Delaware Sea Grant, handling and processing, Hicks 1985; Virginia Sea Grant, high volume 

processing, DuPaul and Grulich 1985; Virginia Sea Grant, development, costs and returns of a 

Spiny Dogfish fishery, Grulich and DuPaul 1986).  Furthermore, international demand for 

Northwest Atlantic Spiny Dogfish increased as stocks in the Northeast Atlantic collapsed due to 

heavy fishing pressure (Waters 2010).  Estimated U.S. east coast landings peaked in 1996, at 

over 60 million pounds of dogfish captured.  The tremendous increase in exploitation through the 

1990s alarmed scientists for a number of reasons: concentrated mortality on the spawning stock 

biomass; trends in average size from fishery independent and fishery dependent sources were 

consistent with increased fishing mortality; decreases in minimum biomass estimates for female 

sharks greater than 80 cm total length in trawl surveys; and increased estimated mortality on 

female sharks; considerable uncertainty regarding data and parameters used for stock assessment, 

stock structure, and role in the ecosystem.  Estimated discards from other fisheries was known to 

be high.  Rago et al. (1998) suggested that in some years, discards may have mirrored the 

magnitude of landings.  Furthermore, Rago et al. (1998) cautioned against continued increases in 

exploitation and advocated for the development of an appropriate management plan for the 

species.  

Spiny Dogfish Stock Assessments Imply A Stock Collapse and Rebuilding.  Atlantic 

Spiny Dogfish provide an example of a species that has undergone an unexplainably rapid stock 

decline and rebuilding.  NMFS determined in 1994 that dogfish were “near full exploitation” in 

the 18
th

 Northeast Stock Assessment Report (SAW), and estimated exploitable and total biomass 
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at 258,000 mt and 649,000 mt, respectively (NEFSC 1994). However, the report also predicted 

declines in biomass given the then-current levels of exploitation, and noted some potentially 

troubling indicators for the stock (declining mean lengths in fishery independent and dependent 

data; no increases to the spawning portion of total biomass; total catches that may have been as 

much as 2/3 higher than reported catches due to unreported discards; potential negative 

replacement of the breeding stock, etc).  The female SSB was deemed overfished with 

overfishing occurring by the National Marine Fisheries Service (NMFS) in 1998, per results 

from a 1997 stock assessment (NEFSC 1997).  At the 26
th

 Northeast Stock Assessment 

Workshop, Spiny Dogfish were determined to be over-exploited (NEFSC 1998).    Stock 

assessment biologists noted that stock rebuilding could, due to the life history of Spiny Dogfish, 

take decades (NEFSC 1998).     

Spiny Dogfish were next assessed at the 43
rd

 Northeast Stock Assessment Workshop in 

2006 (NEFSC 2006).  Biomass estimates indicated that the stock was no longer overfished. 

However, there was some question regarding the determination of whether overfishing was 

occurring.  Under previous biological reference points, overfishing would have been occurring; 

however, the 26
th

 SAW increased the overfishing threshold. Based on the new threshold, the 

stock status was considered improved.  Projections from the stock assessment suggested 

continued increases in spawning stock biomass as sharks from the sizable, non-fished age classes 

matured.  Estimated stock sizes of mature females increased by nearly two-fold between 2005 

and 2006.  NMFS scientists noted in the 43
rd

 SAW that this increase was implausible given the 

slow growth rate of the species, and suggested that the elevated indices could be a function of 

changing distribution and availability of dogfish to the Northeast Fisheries Science Center 

(NEFSC) spring bottom trawl survey.  In other words, the distribution of dogfish along the 
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continental shelf shifted into large strata with higher weighting factors in the overall estimation 

of abundance in this year.  Scientists saw the changes in status as a technicality based on caveats 

within the models and implausible survey data in 2006; and recommended conservative 

management measures for Spiny Dogfish fisheries.    In 2007 the ASMFC Spiny Dogfish 

Technical Committee recommended that directed fishing on dogfish should not be permitted 

until the stock was considered rebuilt (ASMFC 2007).  In 2008, the ASMFC Spiny Dogfish 

Technical Committee continued to note concerns about the determination of rebuilt status, 

including: size frequency distributions that did not include extremely large fish or immature fish 

below 70 cm TL; low numbers of juveniles; poor recruitment over the previous ten years that 

could influence future spawning stock biomass; pup survival rates and assumptions concerning 

pup survival; and skewed sex ratios (ASMFC 2008b). 

The 2010 benchmark Transboundary Resources Assessment Committee (TRAC) report 

did not reach a consensus stock assessment for Spiny Dogfish because of the degree of 

uncertainty inherent in the two models developed (TRAC 2010).  One model assumed a single 

unit stock, while the other model assumed a resident northern component and a southern 

component comprising both resident and migratory dogfish.  The TRAC determined that the 

methodologies incorporated into the 43
rd

 SAW were appropriate for determination of stock status 

for U.S. management purposes.  Data from the 2010 TRAC (and subsequent status reviews by 

NMFS) indicated the potential for low spawning stock biomass between 2011 and 2017 as a 

result of the low numbers of recruits between 1997 and 2003 (TRAC 2010).  The 2010 TRAC 

projection models suggest potential oscillations in total stock abundance as a result of a scarcity 

of recruits.   
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NOAA Fisheries determined that the federal Spiny Dogfish stock was rebuilt in 2010, 

after the NEFSC revised biological reference points for Spiny Dogfish that were used in stock 

assessment models (Rago and Sosebee 2010).  Since 2010, Spiny Dogfish status has continued to 

be evaluated annually; the species has remained in a rebuilt status, with the stock deemed not 

overfished and overfishing not occurring.  An analysis of biomass data presented in the NMFS 

2013 Status Report and Projections for Spiny Dogfish shows interesting trends and considerable 

variation in interannual estimates of dogfish abundance from survey data (Rago and Sosebee 

2009; Rago and Sosebee 2013; Figure 2; Figure 3).    Between 1983 and 1993, biomass estimates 

of mature females over 80 cm total length (TL) generally increased with large interannual 

fluctuations every 2 to 3 years (Figure 3).  These fluctuations are still observable in the data 

when the biomass estimates of females over 80 cm TL were depressed from the late 1990s 

through the mid-2000s.  Biomass estimates of subadult sharks (36 cm to 79 cm TL) were noted 

to be large and increasing from 1986 through 1997 (MAFMC 1999; Figure 3).  Estimated 

biomass of subadult females tended to be higher than biomass of adult females from 1994 

through 2005.  Fluctuations in biomass of subadult females are also evident in the time series.   

Biomass of very young sharks (male and female combined, less than 35 cm TL) fluctuated 

between 1980 and 1988, remained fairly constant between 1988 and 1993, peaked in 1994, and 

then remained low until 2009.  After 2009, the biomass of very young sharks increased rapidly, 

with 2013 being a record year for estimated biomass of this size class.   NMFS’ pup index 

displayed near decadal (8-12 year) fluctuations between the late 1960s and late 1990s (shaded in 

alternating cycles (Figure 2).  Pup index was extremely low between 1997 and 2003, but 

increased thereafter to record levels (Rago and Sosebee 2013).   
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  The projected weak cohorts have not materialized in the data, although biomass 

estimates after 2006 are quite variable (Figure 3).  Rago and Sosebee (2013) note that increased, 

recent recruitment with the recovery of the Spiny Dogfish population has resulted in increased 

abundance of small fish (<60 cm TL) (Figure 3).  These numbers of subadult Spiny Dogfish have 

reduced the likelihood of the previously predicted sharp decrease in female spawning stock 

biomass.  However, stock status updates in 2011 and 2012 have cautioned against the potential 

for stock biomass fluctuations or declines as result of poor recruitment in earlier years (MAFMC 

2011; Rago and Sosebee 2012). 

Management Measures Adopted in Response to Spiny Dogfish Stock Assessment 

Results.  In response to the determination that Spiny Dogfish spawning stock biomass (SSB) 

was overfished, NMFS initiated development of a joint fishery management plan (FMP) with the 

Mid-Atlantic Fishery Management Council (lead council) and the New England Fishery 

Management Council to manage the fishery in federal waters (3 to 200 nautical miles from 

shore).  It took several years for the management plan to be implemented due to delays and 

continued Council requests for additional analyses and scientific review (Fordham 2004).  The 

federal fishery management plan allowed for a one-year exit fishery with a 22 million pound 

quota; in subsequent years the quotas were established to meet maximum fishing mortality goals 

of F = 0.2 (first year) and subsequently, F = 0.03.  Implementation of the federal fishery 

management plan began in May 2000, at the start of the 2000-2001 fishing year with a 4 million 

pound quota.  The Atlantic States Marine Fisheries Commission (ASMFC) completed 

development and implementation of an interstate fishery management plan (FMP) by the start of 

the 2003-2004 fishing year.  ASMFC did not incorporate federal landings under its quota 

measures. However, the federal management plan defined a total allowable catch (TAC) that 
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included state landings.  During the years between implementation of a federal management plan 

and implementation of the ASMFC FMP, the majority of landings occurred in state waters 

(MAFMC 2014; Figure 4).  For example, at the implementation of the federal FMP in 2000, the 

federal quota was set at 4 million pounds.  The fishery in state waters, which was unrestricted, 

landed more than 21 million pounds in the same year (Fordham 2004).  

Furthermore, there have been periodic changes to the structure of both management 

plans.  The fishery management plans (FMPs) were initially designed to reflect seasonal 

availability to the fishery.  NMFS created two fishing periods, May 1 through October 31 and 

November 1 through April 30.  Semi-annual quotas (along with trip limits) in the federal FMP 

were designed to allow fishermen throughout the range to be able to take advantage of the 

fishery.  The assignment of quota to each semi-annual period in both ASMFC and federal FMPs 

was based on historical landings data. However, due to the species distribution and availability to 

fisheries the entire federal quota was taken within three months in the first year of federal 

implementation (ASMFC 2002).   

There have been some adjustments to the federal FMP since implementation.  Framework 

I to the FMP was enacted in 2006 to allow for the specification of multi-year management 

measures (MAFMC 2005).  Amendment 1 to the federal FMP constituted part of an Omnibus 

Amendment designed to address the Magnuson Stevens Act requirement that all of the MAFMC 

and NEFMC’s FMPs include standardized bycatch reporting methodology (MAFMC and 

NEFMC 2007).  The goal of Framework 2 of the Spiny Dogfish federal FMP was to build 

flexibility into processes that are used to define and update status determination criteria (74 FR 

30012).  This framework adjustment was designed to allow for faster incorporation of new 
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management measures that may result from scientific reviews by defining acceptable levels of 

peer review and providing guidance on how the council can engage its Scientific and Statistical 

Committee (SSC).  It also redefined stock status criteria for Spiny Dogfish, in general terms.  

Amendment 2 to the Spiny Dogfish federal FMP was also part of an Omnibus amendment 

developed in response to new National Standard 1 guidelines (74 FR 3178; January 16, 2009) 

that required new Allowable Catch Limits (ACLs) and Accountability Measures (AMs). In 

particular, this Amendment specified an ACL that was equal to the Allowable Biological Catch 

(ABC); implemented an allowable catch threshold (ACT) to buffer the ACL; and implemented 

accountability measures that, in the event of a quota overage, would reduce the following year’s 

quota by the weight of the overage.  In July 2014, NMFS finalized Amendment 3 to the federal 

Spiny Dogfish FMP, in which NMFS eliminated allocation of the federal commercial quota by 

period or by region.  NMFS justified the removal of allocation periods by noting that this action 

would make federal management more consistent with ASMFC’s interstate fishery management 

plan (79 FR 16753; March 26, 2014).  The federal fishery management plans, therefore, were 

relatively simple in terms of the spatial and temporal scope of management strategies compared 

to the interstate fishery management plan.   

The ASMFC fishery management plan was developed and implemented by the 2003-

2004 fishing year.  A separate Total Allowable Catch (TAC) was established under the ASMFC 

interstate fishery management plan for Spiny Dogfish resources in state waters annually.  The 

ASMFC plan initially mirrored the federal plan through the allocation of the coast-wide quota by 

time periods: 57.9 percent of the coast-wide quota to Period I (May 1 to October 31), and 42.1 

percent to Period II (November 1 to April 30).  However, the interstate FMP was soon adjusted 

to better reflect the concerns of state fisheries and fishermen.  States at the extreme southern end 
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of the Spiny Dogfish range felt that they were not provided fair opportunity to harvest a portion 

of the quota.  Spiny Dogfish were available year round to fishermen off southern New England; 

however, mid-Atlantic fishermen (in particular those from North Carolina and Virginia) had 

much less time to participate in the fishery and had to compete with fishermen up through Maine 

(ASMFC 2011).    Addendum II was implemented by ASMFC in 2008 to divide the interstate 

quota up between management regions so that each received a percentage share (ASMFC 2008).  

While this was an improvement, there was still contention that states in the northern part of the 

southern region were able to access and harvest the full quota before dogfish became available to 

fishermen in Virginia and North Carolina.  Therefore, the management structure changed again 

in 2011, when ASMFC implemented Addendum III to dissolve the southern region and allocate 

percentages of the quota to states based on historical landings in order to preserve access 

(ASMFC 2011).  The northern region allocation remained the same (58 percent), but the 

southern quota was split as follows: 2.707 percent to New York, 7.644 percent to New Jersey, 

0.896 percent to Delaware, 5.920 percent to Maryland, 10.795 percent to Virginia, and 14.036 

percent to North Carolina.   

In general the interstate fishery management plans attempted to provide complementary 

actions to ensure that state fisheries would not undermine federal fisheries, and vice versa.  

However, there were many points over the previous fifteen years of management where 

inconsistent measures were adopted for Spiny Dogfish by NMFS and ASMFC (Table 1).  For 

example, in the 2003-2004 Fishing Year, NMFS had instituted a 4,000,000 pound quota for 

Spiny Dogfish, and daily trip limits of 600 and 300 pounds for Period I and Period II, 

respectively.  However, ASMFC instituted a quota of 8,800,000 pounds and allowed states to set 

their own trip limits (some used the federal trip limits, some established trip limits much higher).  
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Inconsistencies between interstate and federal management from the 2006 through 2008 fishing 

years occurred after NMFS finalized a benchmark stock assessment in 2006.  Following the 43
rd

 

NEFSC Stock Assessment Workshop (SAW), NMFS implemented the same quotas for the 2006, 

2007, and 2008 fishing years; however, the ASMFC chose to increase quotas in response to the 

federal determination that the stock was no longer overfished, and overfishing was not occurring.  

NMFS and ASMFC deviated again in the quota implemented for the 2014 and 2015 fishing 

years, with the federal quota being set more conservatively than the interstate quota.  A federal 

600 pound daily trip limit was enforced through the rebuilding period, and gradually increased to 

4,000 pounds per trip for both state and federal entities as the fishery recovered (MAFMC 1999; 

Hickman et al. 2000; ASMFC 2002; Rago and Sosebee 2013).    

Rapid Rebuilding of the Spiny Dogfish Stock.  Science has not yet conclusively 

explained how a stock of a long-lived, late maturing shark in such poor shape, as evidenced 

through sampling efforts and subsequent stock assessments in the late 1990s through 2005, could 

rebuild so quickly.   NMFS biologists have, though the dissemination of stock status reviews, 

displayed a lack of confidence in the plausibility of data used in identifying stock status of Spiny 

Dogfish (particularly between 2005 and 2006, and again in 2012).  Furthermore, the stocks 

exhibited characteristics of overfished stocks for several years after stocks were determined to no 

longer be overfished.  NMFS noted that total standing biomass of sharks remained relatively 

high, and in particular there have been moderate numbers of sub-adults and consistent numbers 

of males in the water column.  However the proportion of the stock that “counted” for stock 

assessment purposes, the mature females targeted by the fishery, became much reduced.  Due to 

the slow growth rates of Spiny Dogfish and delayed maturation, it is unlikely  that large numbers 

of sub-adult sharks were able to suddenly account for the rapid re-development of the female 
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spawning stock biomass that occurred between 2006 and 2010 (i.e., they likely could not have 

grown fast enough to replace the overfished females).  Sex ratios of mature males to mature 

females in NEFSC bottom trawl surveys have shifted from 7:1 at the height of the collapse of 

female spawning stock biomass to between 3:1 to 4:1 (Rago and Sosebee 2013).  

Where then, did these female sharks come from to rebuild the population so quickly?  

Perhaps the entire population of sharks was not susceptible to sampling gear, therefore resulting 

in an underestimation of total standing stock biomass.  Beamish and McFarlane (2009) note the 

presence of substantial numbers of juvenile Spiny Dogfish in pelagic, mid-water habitats.  

Presumably, sharks in the middle of the water column would not be sampled and included in 

population estimates based on data collected by a bottom-trawl survey.  Or, perhaps the female 

spawning stock biomass was replenished.    

Fahy (1989, as noted by Stevens 2000) determined that rapid rebuilding of Spiny Dogfish 

stocks off southeastern Ireland was related to immigration and re-colonization from less-depleted 

areas rather than through changes in fecundity, mortality, or growth rates.  If a niche suddenly 

opened up, sharks from adjacent, un-sampled regions (e.g., off the continental shelf) could easily 

move in and take advantage of available resources.  It is also possible that coastal populations 

were replenished by sharks from deepwater areas off the continental shelf, or that coastal 

populations regularly move on and off the continental shelf.  Sharks tagged in mark-recapture 

experiments off North Carolina have been recaptured off the continental shelf (R. Rulifson, East 

Carolina University, Department of Biology, personal communication; this dissertation).  Spiny 

Dogfish have been previously noted to make onshore-offshore migrations (Shepherd et al. 2002; 

Campana et al. 2008; TRAC 2010).  Carlson et al. (2014) deployed 20 pop-up satellite archival 
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X-tags on Spiny Dogfish off the coast of North Carolina.  These sharks tended to disperse either 

along the continental shelf, or eastward into deep waters off the continental shelf, sometimes 

beyond the extent of the U.S. Exclusive Economic Zone. 

Any of these hypotheses could explain the periodic “plagues” of dogfish that fishermen 

have reported at times when the female spawning stock biomass was considered to be low.    

Quotas have increased by nearly 45 million pounds since interstate fisheries management 

programs were initiated.  There is clearly a need for more basic biological information to explain 

the population dynamics of Spiny Dogfish and how this species was able to rebuild so quickly in 

order to determine appropriate levels of exploitation for a sustainable fishery, as well as 

appropriate target population levels to address a more ecosystem-based management approach.   

Research Objective 

The Spiny Dogfish fishery is currently managed as a single unit stock, in part because 

dogfish sampled from different locations throughout the northwestern Atlantic are not 

genetically distinct (Verissimo et al. 2010).  However, recent tagging evidence has emerged 

suggesting that the population structure could be more complex due to observable distinct 

behavior patterns undertaken by groups of dogfish.   

Campana et al. (2008) evaluated spiny dogfish tagging data as part of a 5-year research 

program to improve understanding of stock structure, migration, and observable trends in the 

fishery for management purposes and to guide joint U.S.-Canadian management discussions.  

Spiny dogfish were hypothesized to exhibit complex metapopulation characteristics in Canadian 

waters, with some dogfish aggregations exhibiting migratory behaviors into and out of Canadian 

waters at periodic, multi-year intervals, while others were considered residents.  The Canadian 
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groups were hypothesized to be largely independent of each other, and a “sink” population in the 

southern Gulf of St. Lawrence was proposed due to an overall increase in age and size and 

decrease in numbers.  The Gulf of Maine was proposed to constitute a mixing ground between 

dogfish residing in U.S. waters and dogfish residing in Canadian waters.  Analysis of tag data 

implied a mixing rate of 10-20 percent, otherwise suggesting that dogfish released in U.S. waters 

primarily remain in U.S. waters and dogfish released in Canada primarily remain in Canadian 

waters.  Seasonal migrations in Canadian waters were found to be primarily onshore-offshore, 

and changes in abundance of dogfish were linked to potential increases in seasonal catchability 

of sharks by survey gear driven by distribution across depth strata and the extent of the survey 

instead of immigration or emigration between U.S. and Canadian stocks.  The southern 

populations of dogfish were proposed to undertake migrations between the Mid-Atlantic and the 

Gulf of Maine to remain in a “preferred” temperature range.   

In 2010 the Transboundary Resource Assessment Committee, a group which “reviews 

stock assessments and projections necessary to support management activities for shared 

resources across the USA Canada boundary in the northwestern Atlantic” (TRAC 2010), 

developed the Spiny Dogfish Contingent Hypothesis.  This new behavioral paradigm for Spiny 

Dogfish suggested that the northwestern Atlantic stock could be comprised of multiple 

behavioral contingents (Campana et al. 2008; Figure 5, TRAC 2010).  The independent Canadian 

residential groups proposed in Campana et al. (2008) were carried forward; however, the new 

hypothesis separated U.S. dogfish into migratory groups that moved between the Mid-Atlantic 

and Cape Cod (the “Mid-Atlantic” migratory contingent) and in a gyre-like pattern around the 

Gulf of Maine which moved onshore in the summer and offshore in the winter (the “Gulf of 

Maine” migratory contingent).  Clarke (1968) described contingents as a unique group of fish 
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that “engage(s) in a common pattern of seasonal migration between feeding areas, wintering 

areas, and spawning areas”, and, once established, “maintain its integrity by engaging in a 

distinct pattern of seasonal migration not shared by fish of other contingents.”  Contingents may 

be defined based on broad behavioral descriptions, such as whether the groups of fish in question 

are resident or migratory (Elsdon and Gillanders 2006), or from more specific classifications of 

behavior (Clark 1968).    Although most of the recent contingent theory is based on divergent 

observable patterns in behavior , membership within a contingent can be fluid for some examples 

noted in the literature, and may vary through the lifespan of a member (e.g., Secor et al. 1999 

noted in a review of contingent maintenance mechanisms that arctic char may exhibit reversible 

migration tactics).  The TRAC noted that there was some uncertainty regarding migration rates, 

and exchange between proposed Spiny Dogfish contingents.  Subsequent deployments of a 

limited number of satellite tags by Carlson et al. (2014) suggested that there may be at least two 

groups of dogfish; however this supposition is based on small numbers of tagged sharks, and 

there is uncertainty regarding the proportion of the Spiny Dogfish stock undertaking seasonal 

movements (TRAC 2010; Sargarese et al. 2014).    

The overall purpose of this dissertation is to increase understanding of migration and 

movement behaviors unique to one highly migratory elasmobranch species.  In particular, I seek 

to determine whether sufficient evidence exists to warrant separation of the northwest Atlantic 

Spiny Dogfish population into separate management units as proposed in the Spiny Dogfish 

contingent hypothesis (Figure 5; TRAC 2010).  It should be noted that proposed structures in 

both A and B (Figure 5) may appear to depict Cape Hatteras as a southern boundary of the stock; 

however these figures are only intended to generalize concepts.  Spiny Dogfish schools routinely 

venture south of Cape Hatteras (e.g., Newman et al. 2000), and have been noted off South 
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Carolina (B. Frazier, South Carolina Department of Natural Resources, unpublished data) and 

even anecdotally in deep waters off the continental shelf of Florida (D. Hemilright, commercial 

fisherman, F/V Tar Baby, Manteo NC, personal communication).  This dissertation will also 

establish the northern and southern extent of the proposed Mid-Atlantic migratory contingent 

(#1). 

This dissertation is partitioned into subsequent chapters that review available 

methodologies for studying migration and provide recommendations on establishing a behavioral 

research program for Spiny Dogfish (Chapter 2); present new fishery independent behavioral 

data on Spiny Dogfish (Chapter 3);  elucidate local drivers of behavior of Spiny Dogfish that 

overwinter off the coast of North Carolina (Chapter 4); and evaluate the feasibility of creating 

distinct management units based on the Spiny Dogfish contingent hypothesis (Chapter 5).  

Finally, this dissertation will also include a map appendix depicting the site of all acoustic 

detections of sharks that were tagged off North Carolina. 

Dissertation Chapters  
 

Preface/Introduction (Chapter 1): Challenges of Managing Elasmobranch Fisheries at the 

Appropriate Unit Stock - The Case of the Spiny Dogfish (Squalus acanthias).  

Elasmobranches like Spiny Dogfish are particularly difficult to manage, as they are often data 

poor, exhibit complicated migration patterns, and have widely varying distribution patterns.  This 

chapter introduces the dissertation with a discussion on the challenges of elasmobranch 

management and stock identification, a thorough review of the Spiny Dogfish resource, 

including the fishery, recent changes in biomass (and stock status), and resulting federal and 

interstate management initiatives taken in response to the decline in stock status through the 
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1990s. The purpose of the dissertation, which is to increase understanding of migration and 

movement behaviors and explore whether sufficient evidence exists to substantiate a new 

hypothesis on Spiny Dogfish stock structure, is discussed in context of the unpredicted, 

exceptionally rapid recovery of the species. 

 

Chapter 2: Design Considerations for Offshore Acoustic Arrays to Support Behavioral 

Research.  This chapter discusses the challenges in obtaining data on long-term, long-distance 

migration of animals for purposes of clarifying units for stock assessment or management 

purposes.  One of the challenges in studying migration patterns of highly migratory 

elasmobranches, such as Spiny Dogfish, are the limited opportunities to collect fishery 

independent data in a way that is truly reflective of the behavior of individual fishes.  We present 

a methodological discussion on approaches to behavioral research on fishes, and provide 

recommendations on the development of an acoustic tagging program which balances data 

output against cost and manpower limitations.  

  

Chapter 3: Migration and Local Movement Patterns of Spiny Dogfish Overwintering in the 

Southern Mid-Atlantic Bight and off Cape Hatteras, North Carolina.  This chapter presents 

results of acoustic and mark-recapture tagging studies on Spiny Dogfish that overwinter in 

coastal North Carolina waters from November to April.  These Spiny Dogfish are hypothesized 

to be part of the proposed Mid-Atlantic migratory contingent that moves between overwintering 

habitats in the Mid-Atlantic to summer habitats off New England.  However, there is uncertainty 

with regard to how much this proposed contingent overlaps spatially with the proposed Gulf of 
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Maine contingent, whether it mixes with the proposed Gulf of Maine contingent behaviorally 

(i.e., do individuals adopt into more than one contingent?), and the extent to which it migrates 

into the South Atlantic Bight.  Previous research has identified the Cape Cod region could serve 

as a mixing ground between two hypothesized contingents of sharks (Rulifson et al. 2012).  In 

order to refine or verify the definition and existence of contingents it is important to evaluate 

behavior and movement patterns both of sharks that are located within the mixing grounds and 

sharks that are located in areas that are clearly attributable to one contingent (in other words, 

studying fish in overwintering grounds of the southern Mid Atlantic Bight).  This chapter 

identifies the seasonal, regional, spatial and yearly movement patterns of sharks that overwinter 

in the Mid Atlantic and South Atlantic Bights, and touches on previous research completed off 

Cape Cod, Massachusetts that question whether this region is an area of spatial overlap or 

behavioral mixing for groups of Spiny Dogfish in the northwestern Atlantic Ocean.  The chapter 

includes an analysis of acoustic and mark-recapture data to analyze localized movements, and 

synthesizes large scale migration patterns and address the question of where these sharks go on a 

broad scale.   

 

Chapter 4: Influence of Environmental Conditions on Overwintering Spiny Dogfish in the 

Hatteras Bight, North Carolina.  Because Spiny Dogfish are known to exhibit considerable 

variability in seasonal distribution and abundance, it is also important to understand the drivers 

of localized movement and migratory behavior.  This chapter will include a comparison of Spiny 

Dogfish acoustic data (Chapter 2) to environmental data to characterize the variables that best 

predict localized presence and absence. 
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Chapter 5: The Spiny Dogfish Contingent Hypothesis – Proposed Delineation of Mid-

Atlantic and Gulf of Maine Migratory Contingents.  This chapter will present a theoretical 

grounding of the contingent hypothesis and other related behavioral theories (partial migration 

and meta-population), and provide an overview of the Spiny Dogfish Contingent Hypothesis. I 

also include all data associated with the East Carolina University Spiny Dogfish research 

program (survey, mark-recapture data, and acoustic data) with published literature to delineate 

northern and southern extents of the Mid-Atlantic migratory contingent of Spiny Dogfish.  This 

chapter also includes a discussion on management of fisheries contingents, drawing upon 

examples from other fisheries. I also reflect on previous and current management strategies for 

Spiny Dogfish, and discuss the implications of a change in management that reflects the behavior 

patterns identified in this dissertation.    
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Figure 1.  Landings of Spiny Dogfish between 1962 and 2012. Landings shown in blue (1962 – 
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1999).  Data presented in red (1998 – 2012) are data presented in the draft Amendment 3 to the 

Spiny Dogfish fishery management plan (MAFMC 2014). 

 

Figure 2. Biomass estimates of Spiny Dogfish pups from the NEFSC spring bottom trawl 

surveys, 1968 - 2013. Areas shaded in pink reflect two time periods of heavy exploitation (Data 

Source: Rago and Sosebee 2013). 

 

Figure 3. Spiny Dogfish estimated biomass of mature females (> 80 cm TL), juvenile females 

(36 to 79 cm TL), and pups (<35 cm TL), 1980 to 2013. (Data Source: Rago and Sosebee 2013).   

 

Figure 4. Distribution of landings data reported through vessel trip reports (VTR) in NMFS 

northeast statistical areas.  Shaded red areas are locations in 2012 where Spiny Dogfish 

constitute 5 percent or more of the harvest within a given region; yellow areas comprise 1 to 5 
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percent of the harvest; and green areas constitute less than 1 percent of the harvest.  VTR data 

predominantly come from vessels participating in northeast permitted fisheries that are 

conducted north of Cape Hatteras, North Carolina.  Therefore VTR data may underestimate the 

landings of dogfish in the southern part of the range from fishermen that participate in other 

southern fisheries (e.g., snapper grouper, croaker, weakfish, etc) occurring south of Cape 

Hatteras.  Source: Environmental Assessment of Amendment 3 to the Federal FMP, MAFMC 

2014). 

 

Figure 5.  The single stock structure for Spiny Dogfish (A), which assumed a single mass 

movement of sharks between summer and winter habitats, compared to the new proposed multi-

contingent structure (B) with two major contingents (identified as #1 and 2) and three resident / 

satellite contingents that do not receive immigrants from the major contingents (#3-5).  Source: 

TRAC 2010. 
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Table 1.   
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Federal Management 
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Federal Status 

 

ASMFC Management Measures 

Quota 

 Trip  

Limits 

 

Overfished? 

Overfishing 

Occurring? Rebuilt? 

 

Quota  Period II Trip Limits 

2000-2001 4,000,000 600 / 300  Y Y N  none  n/a 

2001-2002 4,000,000 600 / 300  Y Y N  none  n/a 

2002-2003 4,000,000 600 / 300  Y Y N  none  n/a 

2003-2004 4,000,000 600 / 300  Y N N  8,800,000 up to 7,000 (NC 4,000) 

2004-2005 4,000,000 600 / 300  Y N N  4,000,000 300 

2005-2006 4,000,000 600 / 300  Y N N  4,000,000 300 

2006-2007 4,000,000 600  N N N  6,000,000 States Allowed to Set 

Own Trip Limit  

(300 - 4,000) 2007-2008 4,000,000 600 
 

N N N 
 

6,000,000 

2008-2009 4,000,000 600  N N N  8,000,000 3,000 

2009-2010 12,000,000 3,000  N N N  12,000,000 3,000 

2010-2011 15,000,000 3,000  N N Y  15,000,000 3,000 

2011-2012 20,000,000 3,000  N N Y  20,000,000 3,000 

2012-2013 35,700,000 3,000  N N Y  35,600,000 3,000 

2013-2014 40,842,000 4,000  N N Y  40,800,000  4,000 

2014-2015 41,784,000 4,000  N N Y  49,370,000 4,000 

2015-2016 41,578,000 4,000  N N Y   50,612,000 4,000 
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CHAPTER 2: DESIGN CONSIDERATIONS FOR OFFSHORE ACOUSTIC 

ARRAYS TO SUPPORT BEHAVIORAL RESEARCH.   

Abstract 

The number of manuscripts published using acoustic telemetry has increased dramatically 

between 1986 and 2012 (Kessel et al. 2014), yet it can be difficult to identify the most 

appropriate strategy for conducting acoustic fisheries research in challenging field environments.  

Much of the current acoustic literature focuses on research with species in fundamentally 

different environments such as lakes, rivers, estuaries, coral reefs, and atolls, and does not offer 

adequate advice on appropriate deployment methodology for challenging coastal, high energy 

environments.  This chapter therefore addresses the question of how to deploy acoustic receivers 

in an open ocean environment through 1) an analysis of the type of information available through 

biological research articles and the identification of patterns in acoustic array design elements; 2) 

a case study describing the Hatteras Acoustic Array off the Outer Banks of North Carolina; and 

3) a summary of the technical recommendations provided in “design” type publications by 

authors experienced in the deployment of acoustic telemetry infrastructure.   Most articles 

reviewed in the meta-analysis offered little or no description of the anchoring mechanisms, or 

simply noted that receivers were “moored” or “anchored” to the bottom. In instances where the 

anchoring mechanism was noted, authors seemed to most often use either blocks of cement or 

concrete, or some type of boat anchor that either locks, screws, or digs into the substrate.  

Research success (based on the number of redetections) was not specifically linked to a certain 

design element, but was related to the number of transmitters, number of receivers, the degree of 

overlap between receivers, and the length of time receivers were deployed.  In general, 
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researchers looking to conduct this type of work in offshore coastal environments are encouraged 

to account for long-term exposure to a variety of challenging environmental factors (e.g., 

biofouling, severe weather, salt corrosion) and should tend gear regularly.    

 

Introduction: Methodological Approaches to Elucidate Behavior of Marine 

Fishes and Elasmobranches   

Behavioral research on migratory fish stocks has been enhanced through the development 

of new technological approaches to the conventional mark-recapture research program.  Tagging 

studies are an important tool for researchers because they provide important clues to localized 

behavior, migration, habitat use, and population structure of fish stocks.  Discrete data from 

tagged individuals can be combined and used to infer population-level movement patterns at a 

finer scale than what might be apparent from a broad-scale survey.   

The choice of methodology is often a compromise between practical limitations (i.e., 

cost, manpower) and the resolution of data needed to answer the research question.  Coarse scale 

movement and range extent can be assessed from conventional mark-recapture programs using 

low-cost external tags or marks (Rogers and White 2007).  Conventional mark-recapture 

methods using external tags (e.g., spaghetti or button tags) or marks (e.g., fin clips) are usually 

inexpensive, are not labor intensive when conducted in conjunction with a directed fishery, and 

allow a large number of animals to be tagged (Heupel and Webber 2012).  However, 

conventional mark-recapture tag studies often provide only two points of data for a particular 

animal consistent with the release and recapture event (in studies where angler catch-release 

rates are high, tagged animals may be recaptured multiple times); information on behavior 
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between these two (or more) points in time is unavailable.  Recapture rates are sometimes low 

for mark-recapture studies (i.e., 5 percent or less), especially those conducted within open marine 

or coastal systems (e.g., R. Rulifson unpub.; Parker 1990; McFarlane and King 2003; Register 

2006; Landa et al. 2008; Tallack 2009). Recapture events are often dependent on the behavior of 

commercial or recreational fisheries and fishermen.  High return rates are not uncommon for 

high profile or high effort fisheries (e.g., 27 percent for red snapper in Gulf of Mexico artificial 

reefs, Patterson et al. 2001; 21 percent return rate for striped bass tagged off New Brunswick, 

Williamson 1974 and Dadswell 1976; 16.6 percent for striped bass tagged in the Bay of Fundy, 

Rulifson et al. 2008).  However, data are not available on animals that move beyond the regions 

normally accessible to the fishery or animals that are otherwise not captured.  At the other end of 

the spectrum of available tagging methods, archival pop-up satellite tags (PSATs) or Smart 

Position and Temperature (SPOT) tags are extremely expensive (US $5,000 or more per 

individual for the tag and data support via satellite), but are less labor intensive and offer long-

tracking, high resolution data (Heupel and Webber 2012).  The tagging method considered for 

this research, acoustic tagging and telemetry, falls in the middle of this spectrum.       

Acoustic Tagging.  Recent advances in acoustic technology have allowed for cost-

effective, longer-term tracking studies of individual animals using acoustic telemetry, which 

provide high resolution, fishery-independent data when compared to conventional mark-

recapture programs (Heupel et al. 2006).  Acoustic telemetry studies are dependent upon two 

types of equipment: a transmitter and a receiver.  Acoustic transmitters are small tags that are 

programmed to emit a series of ultrasonic pings (a “pulse train”) containing identification codes 

and possibly environmental data (e.g., water temperature or pressure), and error checking 

information (Webber 2009).  Researchers often select between transmitters that continuously 



 

51 
 

emit pings, which are often used to continuously track individual fish over long periods of time, 

and coded transmitters, which emit the pings and pulse trains across specific time intervals.  

Transmitters are programmed such that the time between pulse trains will vary between tags, 

allowing multiple transmitters to be detected by receivers simultaneously (which may be 

important if the tagged species exhibits site fidelity, territoriality, and/or schooling behavior).  

Modern acoustic receivers are submersible single-channel receivers capable of logging and 

storing large amounts of data. 

The type of receiver and deployment strategy used in a study may vary depending on the 

available resources and the goals of the study.  Given the additional expense of acoustic tags, 

researchers must carefully consider research strategies and the acoustic environment prior to 

deployment.  Most acoustic telemetry researchers typically choose between receivers designed to 

accommodate active (e.g., actively looking for transmitters along a survey path) or passive (e.g., 

receivers deployed and left in aquatic environments to collect data on animals that swim within 

range) acoustic sampling methods.  Active acoustic telemetry usually consists of tracking 

individual animals with a mobile receiver (Campos et al. 2009; Heupel and Webber 2012).  

Active tracking is often used for direct tracking of individually tagged animals to learn about 

short-term movement patterns; however, active tracking of animals can be extremely labor 

intensive (Trefethen et al. 1957; Holland et al. 1985).  Passive acoustic telemetry allows 

researchers to identify and track behavior without disturbance; animals are not captured, are free 

to engage in normal behavior, and are not subjected to any unusual environmental conditions 

consistent with an active research program (i.e., boat noise) that might influence behavior 

(Nielsen 1992; Heupel et al. 2006).  Receivers might be arranged in complex arrays that allow 

triangulation and location in two-dimensional or three-dimensional space (e.g., Steig 2000; 
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Klimley et al. 2001; Cooke et al. 2005; Ubeda et al. 2009).  Scientists rely on the positioning of 

acoustic arrays that record presence and absence or to address issues such as immigration or 

emigration from selected habitats (Heupel et al. 2006).   

Passive acoustic telemetry systems have been used successfully to study the migration 

patterns of multiple species of fishes in riverine and estuarine systems (e.g., sturgeon, Collins et 

al. 2000; striped bass, Ng et al. 2007; razorback suckers, Zelasko et al. 2010; Australian bass, 

Walsh et al. 2012).  The use of acoustic curtains and arrays to study the migration patterns of 

marine fish moving through open ocean habitats has become more practical with the 

development of regional and international data-sharing networks, such as the Ocean Tracking 

Network (OTN) (O’Dor and Stokesbury 2009), the Atlantic Cooperative Telemetry Network 

(ACT) (http://theactnetwork.com/; Fox et al. 2009), regional integrated ocean observing systems 

(e.g, the Gulf of Maine Ocean Observing System, or GoMOOS), and the Pacific Ocean Shelf 

Tracking Project (POST) (Jackson 2011).  The United States Navy has also developed an array 

in the southeastern part of Chesapeake Bay (and adjacent coastal areas) and at bombing test sites 

in North Carolina to monitor ecological effects of training exercises (C. Watterson, United States 

Navy, Newport News, VA, pers comm).  These collaborative networks have effectively allowed 

researchers to extend the research footprint to large scale geographic regions such as continental 

coastlines (ACT), and even entire ocean basins.  The ACT network, within which the Cape 

Hatteras array maintained by East Carolina University discussed in this manuscript was situated, 

provided comprehensive coverage of many coastal habitats along the east coast of the United 

States.  The ACT network was started as a mechanism to study the behavior and dispersion of 

diadromous fish from particular river systems (e.g., Atlantic sturgeon).  Despite the recent 
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increase in acoustic coverage in these environments, there is a notable lack of offshore acoustic 

arrays in the mid-Atlantic region.   

 

Objective 

The number of manuscripts published using acoustic telemetry has increased dramatically 

between 1986 and 2012 (Kessel et al. 2014), yet it can be difficult to identify the most 

appropriate strategy for conducting acoustic fisheries research in challenging field environments.  

Much of the current acoustic literature focuses on research with species in freshwater (rivers or 

lakes), partially or wholly contained (lagoons, or estuaries), or isolated environments (atolls or 

coral reefs), and does not offer adequate advice on appropriate deployment methodology for 

challenging offshore, high energy environments.  This chapter therefore addresses the question 

of how to deploy acoustic receivers in an open ocean environment through 1) an analysis of the 

type of information available through biological research articles and the identification of 

patterns in acoustic array design elements; 2) a case study describing the Hatteras Acoustic Array 

off the Outer Banks of North Carolina; and 3) a summary of the technical recommendations 

provided in “design” type publications by authors experienced in the deployment of acoustic 

telemetry infrastructure.    The objective of the meta-analysis is to characterize and quantify gear 

schematics utilized by scientific researchers conducting acoustic telemetry research.  The case 

study highlights research on the migration and local movement patterns of Spiny Dogfish 

(Squalus acanthias) overwintering off the coast of North Carolina.  The meta-analysis and case 

study are compared to hard recommendations provided in the literature to develop a suite of 

guidelines for deployment of acoustic receivers in remote, offshore, open ocean environments.  
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Methods 
 

Examination of the literature on acoustic telemetry suggests that there are two common 

classes of articles available for reference: those that seem to focus on design, performance, and 

methodological approaches (i.e., a “design paper”), and articles that are more focused on 

presenting biological research with variable amounts of detail on deployment schematics (i.e., a 

“biological research paper”).  Arguably, a scientific researcher initiating a field program should 

consult both types of papers.  The former tend to provide grounding in highly technical aspects 

of design and acoustic theory, and may offer research design recommendations.  The latter apply 

the theory and intense analysis of design specifications towards fisheries research objectives, 

with the purpose of evaluating a biological or fishery problem.  Successful designs can be 

inferred from high detection rates, and repeated uses of schematics across multiple research 

programs.  However, these fisheries acoustics research articles tend to (rightly) focus less on the 

methods of deployment, and more on the data analyses and modeling efforts, and interpretation 

of data for biological or management purposes.   

Articles were queried using the East Carolina University Joyner Library “One Search”, a 

powerful search engine that queries the entire library catalog and all online resources accessible 

by East Carolina University library patrons.  Two types of literature searches were undertaken 

for articles that: 1) featured acoustic telemetry research for elasmobranchs (Keywords: “shark” 

and “acoustic telemetry”; and 2) featured acoustic telemetry research on non-elasmobranch, 

teleost fish (Keywords: “fish” and “acoustic telemetry”). Search parameters were restricted to 

journal articles and dissertations only, but otherwise no additional restrictions were incorporated.  

Results of the literature query were screened for target species, and the utilization of passive 
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acoustic telemetry (i.e., deployed receivers in a fixed location).  Initial searches included only 

projects conducted in open ocean environments, but results did not produce enough applicable 

articles for analysis; therefore, the search was repeated to include acoustic telemetry research 

conducted in many different types of aquatic and marine environments.  Many of the 

elasmobranch articles were published by authors researching the same system; therefore, 

manuscripts by the same authors that featured the exact same methodological design were 

represented by only one manuscript to reduce inherent biases in the analysis.  Out of over 200 

articles that were screened, 46 unique elasmobranch manuscripts and 51 unique teleost fish 

manuscripts were retained for additional analysis. 

Each article was reviewed for the attributes listed in Table 2 and logged in separate 

databases for each analysis group (elasmobranchs and non-elasmobranch target species).  Data 

were summarized in Microsoft Excel to describe general trends, and imported into SAS JMP 

(Version 9) for statistical analysis.  The purpose of the study was characterized from the goal or 

objective statements provided in the introduction to the manuscript and the abstract.  Numerical 

variables from each dataset were analyzed with tests of normality to indicate whether data 

transformations were appropriate (numerical and nominal variables identified with asterisks in 

Table 2).  In particular, the Number of Fish Redetected and the Single Redetection Rate (simple 

percentage of total tagged fish) were explored as dependent variables.  Continuous (numerical) 

dependent variables and categorical dependent variables are labeled in Table 2. 

Shapiro-Wilk Goodness-of-fit tests were run on numerical data extracted from the 

sampled elasmobranch and non-elasmobranch articles (and a combined pool of all articles) to 

determine which dependent variable (Number of Fish Redetected or Single Redetection Rate) 
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should be used in statistical analyses.  Furthermore, Shapiro-Wilk Goodness of fit tests also were 

used to determine whether independent variables extracted from sampled elasmobranch and non-

elasmobranch articles (and a pooled sample of all articles reviewed) needed to be transformed.  

Log-transformed, continuous independent variables were compared by type of paper 

(elasmobranch and non-elasmobranch) using ANOVAs.  Number of Fish Redetected (cube root 

transformed) was compared to log-transformed numerical variables that exhibited normal 

distributions in either the non-elasmobranch sample of articles, the elasmobranch sample of 

articles, or both groups of articles pooled (e.g., Maximum Battery Life, Maximum Deployment 

Length, Maximum Time Interval Between Downloads, Number Receivers, Number 

Transmitters, and Maximum Range) using regression analysis.   Number of Fish Redetected 

(cube root transformed) was compared to ordinal variables using ANOVA (system containment, 

type of array, receiver attachment surface, type of anchor, type of habitat, and receiver overlap) 

to determine whether there were any statistically significant differences between categories 

within these variables in either the non-elasmobranch sample of articles, the elasmobranch 

sample of articles, or both groups of articles pooled.  Results of the meta-analysis were compared 

to the information provided in acoustic telemetry and array “design” articles, and to the results of 

our case study detailing research on Spiny Dogfish to provide guidelines for the long-term 

deployment of acoustic receivers in offshore, dynamic environments.   

Results: Meta-Analysis 

Articles analyzed for the meta-analysis are listed in Appendix 1.  A total of 46 research articles 

that presented passive acoustic telemetry research on 34 species of elasmobranchs were analyzed. Nine of 

these elasmobranch articles reviewed tagging efforts on more than one species.  Most species were only 

referenced in one paper (n = 20 species); however seven species were researched in two articles, three 
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species in four articles, and one species in six separate articles.  Approximately 66 percent of the 

elasmobranch articles referenced Carcharhinid species (Table 3; Figure 6).  A total of 51 articles that 

discussed research on 59 non-elasmobranch species were evaluated. Most of these articles tended to target 

one species per paper, and covered a broad variety of genera (most prevalent Genus was Oncorhynchus 

spp.) (Figure 7).  Six non-elasmobranch articles researched more than one species at a time.   

 The purposes of elasmobranch and teleost fish research articles screened for the meta-

analysis were compared (Figure 8).   The identification of spatial and temporal movement 

patterns, habitat utilization, and residency were common objectives among all research articles.  

Site fidelity was a more common objective for elasmobranch research, while mortality (natural 

mortality rates and analyses of post release mortality) studies were more common in teleost fish 

research.  In both cases, there were a large number of articles oriented to discussing specific 

fishery management problems.  Home range, diel movements, and analyses of presence/absence 

with environmental associations were also common goals for several elasmobranch and teleost 

fish research articles.  

 Of the sample of articles analyzed, 67 percent of those featuring research on 

elasmobranchs and 73 percent of those featuring research on non-elasmobranchs were found to 

contain some detail regarding deployment schematics or methodologies (Table 4).  Fifteen 

percent of the sampled elasmobranch articles, and eight percent of the non-elasmobranch articles, 

incorporated a description of methodologies by referencing another paper.   

The majority of elasmobranch and non-elasmobranch articles included the use of Vemco 

transmitters and receivers (http://vemco.com/about/) in chosen methodologies. Vemco receivers 

were used in ninety-six percent of elasmobranch articles and 76 percent of non-elasmobranch 
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articles.  Several authors cited benefits from the common use of Vemco equipment by receiving 

tag information from other researchers.  A broad mix of Vemco acoustic transmitters were used 

in some studies. Model type varied by size, and researchers tended to follow recommended limits 

on tag:fish mass (2 to 10 percent, depending on species).  Studies that used more than one kind 

of Vemco transmitter were studying a range of size classes or species. 

In most articles, acoustic receivers were attached to rope, bar, or a cable that was 

suspended in the water column (Table 4), and attached to an anchoring mechanism (Table 5). 

Most articles offered little or no description of the anchoring mechanisms, or simply noted that 

receivers were “moored” or “anchored” to the bottom. In instances where the anchoring 

mechanism was noted, authors seemed to most often use either blocks of cement or concrete, or 

some type of boat anchor that either locks, screws, or digs into the substrate.   Reported detection 

ranges of receivers varied slightly (χ
2 

= 5.9743, df = 2, p = 0.05), with higher average detection 

ranges noted for brackish and freshwater environments (e.g., lakes and reservoirs) than for 

marine environments (Figure 9).   

Most articles did not have details on every parameter analyzed in the meta-analysis.  A 

majority of elasmobranch and non-elasmobranch articles failed to present details on the spatial 

area of receiver arrays, spacing of receivers, length of time between data downloads, details on 

how receivers were deployed and retrieved, whether biofouling affected the receiver arrays, 

receiver loss, and factors attributed to receiver loss (Table 6).  Furthermore, design specifications 

such as anchor dimensions or substance, or the mechanics of receiver attachment were typically 

not mentioned.  Most articles mentioned whether range testing was undertaken and whether an 

estimate of the maximum or average detection range of receivers under a limited set of 
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conditions was calculated.  Also, I assessed whether there was enough description of the sites to 

determine whether arrays were positioned around geophysical features or if the deployment site 

was open or exposed (e.g., a seamount or an open coastal region), partially open (e.g., an 

estuary), or fully enclosed (e.g., a lake or reservoir).  In some cases where maps were scaled and 

detection ranges provided (or graphically depicted), it was possible to identify whether receivers 

likely overlapped in detectable range. 

Shapiro-Wilk Goodness-of-fit tests on numerical data extracted from the sampled 

elasmobranch and non-elasmobranch articles (and a pooled dataset based on elasmobranch and 

non-elasmobranch articles) indicated that most numerical, independent variables were likely not 

normally distributed.  Null hypotheses under these tests are that the data are likely part of a 

normal distribution, with small p-values (in this case, < 0.05) rejecting the null hypothesis.  As 

an example, Table 8 shows goodness of fit test results for numerical variables extracted from the 

sample of non-elasmobranch acoustic telemetry articles.  Interestingly, test results for several 

variables were indicative of the normal distribution when elasmobranch and non-elasmobranch 

articles were analyzed separately (e.g., elasmobranch articles, Log(Max Estimated Battery Life), 

W = 0.971036, p = 0.51; non-elasmobranch articles, Log(Max Estimated Battery Life), W = 

0.974707, p = 0.73).  However, in some cases those same variables were not normally distributed 

when pooled across both samples of literature and then analyzed (e.g., Log 

(MaxEstimatedBatteryLife), W = 0.941608, p = 0.0064, data not shown).  Table 9 shows 

Shapiro-Wilk goodness of fit test results for transformed dependent variables. The cube root 

transformation was the only transformation that resulted in successful normalization of the 

dependent variables tested, and results suggest that the transformation normalized the data in 
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both the separate datasets (elasmobranch and non-elasmobranch articles) and when the datasets 

were pooled.  

Statistical analyses also noted some differences between types of articles. When 

comparing the elasmobranch and non-elasmobranch articles, there was not a statistically 

significant difference in the cube-root transformed number of fish redetected (F = 2.182, df = 74, 

p > 0.05); however, there were differences between the two types of articles with respect to the 

log-transformed length of receiver deployment (F = 10.8756, df = 75, p < 0.05) and the log-

transformed number of transmitters (F = 5.41, df = 85, P < 0.05).  The number of transmitters 

tended to be higher and the receivers tended to be deployed for longer periods of time in non-

elasmobranch articles (Figure 10; Figure 11).  

Some statistically significant relationships were noted between the number of fish 

redetected and some continuous dependent variables. For the sampled non- elasmobranch 

articles, statistically significant linear relationships were modeled between the Number of Fish 

Redetected, and the Maximum Deployment Length (R
2
 = 0.1678; F = 5.6474, df = 29, p < 0.05) 

and the Number of Receivers (R
2 

= 0.1299; F = 4.6267, df = 32, P < 0.05).  For the sampled 

elasmobranch articles, statistically significant linear relationships were modeled for the Number 

of Transmitters (R
2
 = 0.1733; F = 6.9191, df = 34, p < 0.05). The linear regression was 

strengthened when the data were fit to a 6
th

 order polynomial line instead of a linear line of best 

fit (R
2 

= 0.3658; F = 2.6915, df = 34, p < 0.05).  For a pooled sample of data from both 

elasmobranch and non-elasmobranch articles, a statistically significant relationship was also 

modeled for the Number of Transmitters (R
2 

= 0.3015; F = 28.9201, df = 68, p<0.05).  The linear 
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regression was also strengthened when the data were fit to a 6
th

 order polynomial line instead of 

a linear line of best fit (R
2 

= 0.4516; F = 8.510, df = 68, p < 0.05).   

No statistically significant relationships were noted between categorical independent 

variables and the transformed number of fish redetected when elasmobranch and non-

elasmobranch articles were analyzed separately.  However, in the analysis of pooled 

elasmobranch and non-elasmobranch articles, statistically significant differences were noted 

between the number of fish redetected and  the degree of receiver overlap (i.e., are receivers 

placed so that estimated detection ranges fully overlap, partially overlap, do not overlap, have 

varying degrees of overlap?; F = 3.34, df = 73, p<0.05).  Therefore, authors that utilized varying 

degrees of overlap in receiver deployment had higher numbers of fish redetected than those that 

consistently spaced receivers apart such that detection ranges always overlapped fully, partially, 

or not at all (Figure 12).  

 

Case Study: An Example of A Successful Offshore Array – The Hatteras 

Bight Acoustic Array 

 

Deployment Location.  The study area includes coastal regions of the Outer Banks and 

Cape Hatteras, North Carolina.  Cape Hatteras is a highly productive environment through which 

many species of fish transit during migration cycles.  The continental shelf narrows from roughly 

100 kilometers to less than 50 kilometers around Cape Hatteras (Werner et al. 1999) (Figure 13).  

In addition, shallow shoals and hard bottom reefs extend from Cape Hatteras nearly three-

quarters of the distance from shore to shelf, and are interspersed with several channels through 
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which animals and vessels may transit.  The physical oceanography (e.g., Bumpus 1974, 

Beardsley et al. 1976, Atkinson et al. 1985, Pietrafesa et al. 1985, Bane 1994, Rhoades and 

Hecker 1994, Berger et. al 1995, Churchill and Berger 1998, Werner et al. 1999), and the 

biological oceanography (Weston 1988, Gabriel 1992, Werner et al. 1999, and Sedberry 2001, 

among others) are thoroughly reviewed elsewhere and are thus not discussed in great detail here.  

The Gulf Stream is often positioned between the 40 meter and 70 meter isobaths (Werner et al. 

1999), and follows the edge of the continental shelf until it reaches Cape Hatteras, where it is 

deflected offshore.  The Labrador Current moves southward immediately along the North 

American coast; this wedge of colder, fresher water can force the western edge of the Gulf 

Stream away from the coastline in winter months (Schollaert et al. 2004) (Figure 14).  In 

addition, brackish waters exiting Chesapeake Bay to the south can have significant influence on 

temperature, salinity, and distribution of biota.   

Animals following these respective currents (e.g., Bluefin Tuna Thunnus thynnus, 

Swordfish Xiphias gladius, Dolphinfish Coryphaena hippurus), or those following preferential 

thermal clines (e.g., Spiny Dogfish are known to follow the 8.3ºC / 47º F isotherm) are 

channeled into narrow warm and cold water regions along the continental shelf.  The 

combination of physical factors and unique oceanographic conditions establishes a region 

whereby animals tracking certain conditions through migration (e.g., ocean currents, continental 

shelf break, or the coastline) are effectively funneled through a smaller area that is conducive for 

the deployment of an acoustic array of receivers. 

The array site was located within the Hatteras Bight of Raleigh Bay, a coastal embayment 

that is bordered by Diamond Shoals (Cape Hatteras) to the north and Lookout Shoals (Cape 
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Lookout) to the south (Figure 14).  The bathymetry of the coastal embayments south of Cape 

Hatteras is relatively smooth except for the aforementioned reef and shoals (Werner et al. 1999).  

The orientation of the shoals and the islands of the Outer Banks effectively protect the area from 

weather and sea conditions in three directions.  According to local commercial fishermen, this 

makes the region an important temporary shelter for commercially important fish stocks that 

reside along the North Carolina Outer Banks in the wintertime.  North Carolina coastal waters 

are subject to extreme wintertime weather systems including periodic storm fronts and 

nor’easters, which can generate sea conditions comparable to those encountered during the 

summertime hurricane season.  Anchor systems deployed in the Hatteras Bight study area had to 

be able to withstand strong along-shore currents, tidal inlet processes, swash, boat traffic, 

periodic storm events and sedimentation.   

The site of the array was selected in consultation with local commercial fishermen.  A 

number of factors were considered in selecting the array deployment location, including ease of 

access and distance from the home port of Hatteras, NC; minimization of acoustic interference 

due to waves breaking and swash along Hatteras Shoals; safety concerns about deploying and 

working in and around Hatteras Shoals; and the identification by commercial fishermen of 

locations with the narrowest sections of continental shelf to ensure maximum coverage.   

Array Configurations for Dynamic Environments.  The objectives surrounding the 

deployment of the Cape Hatteras acoustic array were to develop a system that could be deployed 

in a rapid, safe, and cost-effective manner.   Figure 15 and Figure 16 show schematics for anchor 

and float systems used in three consecutive years (Figure 15A in 2009, Figure 15B in 2010, 

Figure 16 in 2011).   
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Research Year 1 (November 2008 – April 2009) 

Deployment schematic.  Anchor systems consisted of eighteen-wheeler tractor tire hubs 

purchased from local junkyards (Figure 15A).  A length of chain was bolted across the top of the 

hub, and was connected to a 4.57 meter (15-foot) length of 1.9 centimeter (0.75 inch) twisted 

polypropylene line.  A harness for the VR2W was constructed out of 300 pound nylon 

monofilament (location indicated by a yellow line in Figure 15A, see harness in Figure 16).  The 

VR2Ws were attached to the harness with zip ties, and longline clips on the VR2W harness were 

attached to loops that were woven into the polypropylene line.  A hard trawl float (20.3 cm / 8 

inches in diameter) kept the VR2W line upright in the water column.  A 51 kHz Vemco V16 

pinger tag in a durable PVC shark case was attached to the line with zip ties; this tag was 

programmed to emit pings at random 30 to 90 second intervals during wintertime daylight hours 

(roughly eight hours per day, although programmed times did change due to daylight savings 

time).    The float line (1.9 centimeter or 0.75 inch twisted polypropylene line) and float system 

were connected to the subsurface float line with a marine mammal breakaway.  The breakaway 

allows the disengagement of the mainline from the anchor system and acoustic receiver in the 

event that the line is severed by a passing boat or marine mammals, or by rope deterioration.  

The float line was connected to two standard sized crab pot floats at the surface to mark the 

location of the gear and indicate the direction of surface water movement.  

Testing of Array Design.  The anchor and float system was tested in inshore waters near 

Beaufort, NC,  in November 2008 with divers to ensure that the VR2W would be held upright in 

the water column.  The array units were deployed two months prior to deployment of acoustic 

transmitters to assess the durability of the system and conduct range tests.    
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Range test results (conducted throughout the study) suggested that the Hatteras Bight was 

an extremely noisy environment.  Detection efficiencies implied a maximum system efficiency 

of 60 percent at a distance of 100 meters from the receiver in nearshore conditions of the 

Hatteras Bight (approximately 1.6 kilometers, or 1 mile, from the beach); however, system 

efficiencies were noted to change with environmental conditions.  For example, receivers 

deployed in calm sea conditions had a much higher detection range than those deployed in seas 

with 0.9 – 1.5 meter (3 to 5 feet) waves.  Subsequent range testing in deeper water at locations 

between 4.8 to 9.6 kilometers (3 to 6 miles) offshore suggested that the VEMCO estimate of 800 

meters was viable in certain conditions (calm sea conditions, little temperature stratification in 

the water column, deep water, and increased distances from nearshore swash zones); however, 

the detection efficiency at this distance from the receiver tended to be low.   

Receiver Unit Spacing. Range tests indicated that receivers needed to be deployed much 

closer together to ensure acoustic “coverage” by receivers.   However, the objectives of the study 

were to deploy receivers as far from shore as possible.  We accounted for increased water 

movement through the shoreline swash zone, and deployed our first receiver at least 1.6 

kilometer from the beach.  The first nine receivers in the array were spaced approximately 600 

meters apart based on range testing within the nearshore environment.  Offshore receivers (the 

last three) were spaced 1000 meters apart to extend the line out as far as possible with minimal 

coverage gaps.  Results from 2009 implied that target species encountered on one receiver were 

also detected on adjacent receivers when the receivers were spaced further apart. 

Deployment and Retrieval.  Array units (anchor, VR2W harness, and float system) were 

pushed overboard once assembled onboard.  Divers then ensured that the anchors landed on the 
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bottom in an upright position, and clipped the VR2Ws into a harness as depicted in Figure 15A.  

Retrieval consisted of attempting to relocate the crab pot buoys that marked the location of the 

array.  During array servicing and attempts at relocating the VR2W, a portable receiver system 

(VEMCO VR 100) was used to interface with the 51 kHz locator pingers if surface markers were 

found to be missing at the receiver site.  Divers had to be deployed to retrieve receivers due to 

the inability to raise the anchor to the surface.  

Receivers Shifted Offsite and/or Lost.  One offshore receiver deployed approximately 

8.8 kilometers offshore in 2009 was moved over 4.8 kilometers from its initial location due to an 

encounter with a commercial fishing vessel.  One VR2W receiver also went missing in 2009 due 

to corrosion on the hardware that connected it to the polypropylene line.  Two other receivers 

were moved offsite, likely through encounters with commercial fishing operations. 

Biofouling Organisms.  Physical biotic interference with the acoustic receiver was noted 

in our study.  Growth was common on receivers deployed for over a month.  More growth was 

observed in offshore sites than at nearshore sites, possibly due to scouring and strong currents 

closer to shore.  There was significantly more growth on receivers deployed without some sort of 

protective coating.  Desitin ®, a diaper rash cream that contains zinc oxide, was found to be very 

effective in controlling the attachment and growth of biofouling organisms (see Figure 17 for 

examples of receivers that did not receive a coating of Desitin, A and C, and receivers that did 

receive a coating of Desitin, B and D).  The most common biofouling organisms included 

bryozoans, algae, and barnacles.  Divers sent to collect acoustic receivers noted that the 

subsurface float lines holding receivers that were covered with biofouling organisms did not 

remain perpendicular to the water column, likely due to the weight and increased friction of the 
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fouling organisms relative to the buoyancy of the subsurface floats.  Therefore, it is 

recommended that offshore arrays be retrieved and cleaned once each month to minimize 

potential interference to the acoustic field.  

Lessons Learned in 2009:  

 The hubs were not recoverable due to being covered up by sand from 

sedimentation processes after the five month deployment period.     

 The diver-based system was not practical for wintertime field work off the coast 

of North Carolina.  Divers were limited to a set number of dives per day due to 

the difficult diving conditions (also a safety concern), which extended the amount 

of time needed to deploy and retrieve gear.  Weather conditions off the coast of 

North Carolina are highly dynamic, and the weather windows that afforded good 

sea conditions were often only 1-2 days in length. In addition, extending the array 

further offshore would increase the depth of the dives (which would reduce the 

number that individual divers could complete in a day).    

 All hardware must be stainless steel.  We initially used longline clips with brass 

swivels that experienced some corrosion due to sea water.   

 Gear movement and loss was attributed to interactions with fishing gear (e.g., 

trawlers); modifications should raise visibility and increase avoidance of gear. 

 Most tagged animals were detected on more than one receiver.  We therefore felt 

that the concerns about “detection gaps” between receivers did not outweigh the 

benefits of extending the array as far seaward as possible.  
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  Biofouling necessitated cleaning and replacement of lines every 1-2 months 

during warm months, and every 2-3 months in colder months. 

Research Year 2 (December 2009 – July 2010) 

Deployment Schematic. Due to the problems with a diver-based retrieval (and 

encounters with fishing vessels in 2009), a new anchor-and-float system was developed for the 

2010 field season (Figure 15B).  The 2010 anchor system used 1.27 centimeter (0.5 inch) 

galvanized chain and a 6.35 kilogram (18-pound) Danforth anchor as a base.  The same type of 

subsurface float line as used in 2009 was attached to the chain using stainless steel shackles at a 

point where, when the line was folded down against the anchor, the VR2W would lie behind the 

anchor and not rub or bump against it during retrieval (Figure 15 is not drawn to scale to depict 

this specification).  At the end of the chain, a 2.54 centimeter (1 inch) twisted polypropylene line 

was used to connect the anchor unit to the surface float system.  The float system was designed 

to increase visibility to commercial fishing vessels, both visually and by radar; it consisted of a 

“highflier” connected to the mainline, which was kept at the surface with large (15.24 centimeter 

x 35.56 centimeter; 6 inch x 14 inch) crab pot floats.  Highfliers consisted of an aluminum radar 

reflector and a flag printed with “research in progress” and contact information mounted on an 

aluminum pole with an appropriate counterweight. 

Testing of Array Design. This anchor configuration was tested between July 2, 2009, 

and September 15, 2009, off Atlantic Beach, North Carolina.  The anchor-highflier system did 

not move despite heavy vessel traffic (commercial fishing vessels, shipping vessels, and 

recreational vessels), several frontal systems, and one tropical system (Hurricane Bill) that 

affected North Carolina coastal sea conditions during the deployment period. 
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Receiver Unit Spacing.  In 2010, the receivers were spaced 1600 meters (1 mile) apart to 

obtain the maximum amount of coverage possible within the Hatteras Bight. 

Deployment and Retrieval.   VR2Ws were clipped onto the anchor system and deployed 

without divers by playing out the anchor line with the boat in idle speed, securing the anchor in 

sediment, and then a rapid (but gentle) lowering of the harnessed VR2W, subsurface float, and 

lines used to connect the anchor to the highflier.  The entire line (12 receivers and anchor-float 

systems) was deployed in one day; subsequent retrievals (requiring a winch) took one to one and 

a half days due to limited amount of deck space on the vessel.   

In 2010 and 2011, acoustic receivers were deployed and retrieved using a 12-volt winch 

(Powerwinch Capstan 1000 Windlass, 453 kilogram pull for a line up to 1.58 centimeters (0.625 

inches) in diameter) and boom system mounted to the rear port gunnel of a 7.6 meter TomCat 

power boat (Figure 18).  A manual winch (basic boat trailer winch, roughly 1,134 kilograms 

pull) was also used to allow for increased control over the anchor system at the end of retrieval 

(Figure 18).   The boom was constructed to allow the anchor system to be retrieved in a way that 

minimized contact with the side of the vessel; the boom pivoted to allow the anchor system to be 

deposited in the back of the boat.  Maintenance was conducted as necessary to replace fouled 

lines, broken or damaged parts, and to remove biofouling organisms.  Receivers were removed 

and cleaned, data were downloaded, and the receiver was redeployed.   

Receivers Shifted Offsite and/or Lost.  Nine of ten receivers deployed in January 2010 

were recovered in May 2010.  One missing receiver from the 2010 deployment was never 

recovered. 
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Lessons Learned in 2010:  

 During the 2010 deployment, we observed that the chains used to help weight down 

the anchor system tended to wrap around the anchor; while this provided additional 

weight to the system, it also allowed the anchor system to roll during weather events 

or periods of strong current movement.   

 Lines need to be replaced every 1-2 months in spring 2010 due to accumulation of 

fouling organisms.   

 Partnering with the fishing industry ensured that a large number of people monitored 

the array for us in between trips. This type of cooperation is essential to the success of 

projects depending on gear deployed in heavily fished areas. 

 

Research Year 3 (December 2010 – November 2011) 

Deployment Schematic.  Modifications to the 2010 VR2W anchor-float system were 

made after the entire array was shifted offsite due to a tropical storm (Figure 16).  A circular 

cement block weighing approximately 45.36 kilograms (100 pounds) was added to the system to 

provide a more stable anchoring platform. A 5.9 kilogram (13 pound) Danforth anchor was 

connected to the top of the cement block with a 1.9 centimeter (0.75 inch) diameter, 4.3 meter 

(14 foot) long galvanized chain. A sub-surface float system was also connected to the top of the 

cement block via a 1.83 meter (6 foot) long, 0.48 centimeter (0.1875 inch) diameter stainless 

steel cable (instead of polypropylene line).  The receiver line was suspended in the water column 

with a hard trawl float (20.32 centimeters / 8 inches).  The VR2W was secured to a harness 

constructed from 136 kilogram (300 pound) test monofilament line and shackled to stainless 
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steel cable loops to improve durability (the monofilament harness was long enough to discourage 

acoustic interference from the stainless steel loops).  Surface floats and a highflier were also 

deployed in 2011 to maintain visibility to passing fishing vessels.   

Testing of Array Design. No additional testing of the acoustic array was conducted in 

2011. 

Receiver Unit Spacing.   In 2011, the receivers were spaced 1600 meters (1 mile) apart 

to obtain the maximum amount of coverage possible within the Hatteras Bight. 

Deployment and Retrieval.   The extra weight from this receiver anchoring system 

necessitated the use of a hydraulic winch bolted onto a boom for retrieval.  Retrieval methods 

were identical to those in 2010 (see description under Year 2).   

Receivers Shifted Offsite and/or Lost.  Hurricane Irene significantly affected the 

receiver array.  All receivers were pushed offsite approximately 3200 meters (2 miles) to the 

northeast. After modifications were made to the acoustic array, only one acoustic receiver was 

missing at the end of the deployment period. 

Lessons Learned in 2011  

 Adaptations to the system were necessary after Hurricane Irene made landfall in 

coastal North Carolina on August 27, 2011.  45.4 kg (100 pound) blocks of concrete 

were added to the anchor systems and stainless steel cables were used to connect the 

subsurface float to the anchoring system to improve overall system durability. 
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Synthesis and Discussion  

This chapter provides a comprehensive synthesis of recommendations from two types of 

articles commonly found in the literature (“biological research” and “design” articles) and from 

our own experiences in conducting acoustic telemetry research off the coast of North Carolina. 

Given the limitations, and in some cases lack of information, from these sources, this synthesis 

allows recommendations on site analysis, range testing, deployment and retrieval of equipment, 

anchoring mechanisms, receiver attachment, and maintenance.  

Site Analysis, Range Testing and Deployment.  An understanding of site specific 

factors that affect how the transmitter and receiver communicate is essential to successful 

collection and evaluation of data. Therefore researchers need to catalog and account for potential 

physical and oceanographic variables that could reduce the likelihood of success.  While most 

“biological research articles” presented information on the site, and many discussed the detection 

range of receivers, these articles tended to not focus on the identification and discussion of 

factors that may have influenced detectability of transmitters.  Many of these articles 

incorporated discussion of factors that affect receiver detections by reference (especially when 

the author was able to cite previous work completed in the study location), or simply relied on 

the advice provided by the manufacturer (i.e., factory and field testing completed under more 

carefully controlled settings).   However, many of the “design” articles did discuss site selection 

and factors influencing the acoustic field of receivers and detection of transmitters (Table 11). 

After careful analysis of our study location, and consideration of logistics and costs, we 

determined that we needed a durable system that could be deployed for several months at a time 

with minimal tending.  We accounted for many of the factors presented in Table 11 when 

developing the Hatteras Bight Acoustic Array, and even held a workshop in 2007 to discuss 
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study design and logistics in 2007 (Rulifson and Hemilright 2008).  The biggest concerns with 

the Hatteras Bight Acoustic Array were based on oceanographic conditions and heavy fishing 

activity in the area.  In response, we experimented with multiple types of anchors to identify the 

best option that was durable and resistant to extreme weather and sea conditions, and heavy 

activity from fishing vessels.  Furthermore, due to the remote location and infrequent (1-3 

months or more) site visits, the array had to be durable enough to withstand these stressors.    

  The meta-analysis of biological research articles and a review of design articles indicate 

that many researchers are concerned with how the environment affects the detection range of 

receivers.  Detection range was one of the most commonly reported design aspects in the 

“biological research” articles.  Guidelines and suggestions from authors of “design” articles are 

presented in Table 12.  In particular, Kessel et al. (2014) provided an extremely thorough literary 

analysis of over 300 articles and provides recommendations on important variables to consider in 

study design, site analysis, and range testing.   Analysis of biological research articles indicated 

that detection range of sampled articles tended to be lower in marine environments (however, 

this is inclusive of all marine environments and spans coral reef, open ocean, and deep 

submarine canyons).   

Design and development of the Hatteras Bight Acoustic Array was initially based on 

manufacturer advice concerning detection range and spacing of acoustic receivers; we were 

therefore surprised and concerned when range testing indicated receivers needed to be spaced 

more closely together.  The final deployment in Year 1 of the Hatteras Bight Acoustic Array 

balanced conflicting needs to have complete coverage down the acoustic line yet extend the array 

as far offshore as possible.   
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The initial grant that funded the Hatteras Bight Acoustic Array did not include enough 

money (in part due to our own inexperience with budgeting for this type of project) for thorough 

range testing to be completed across multiple days, times of day, and seasons.  Although 

recommended by multiple authors of the “design” articles, we did not have enough money for 

sentinel tags that would have enabled us to better evaluate the causes in variability of acoustic 

detections.  We would therefore strongly recommend that researchers completing acoustic 

telemetry research in similar environments plan to run continuous sentinel tags, to range test as 

often as possible while arrays are in the water, and even consider a preliminary pilot project 

based on range testing to assess the study site and develop a deployment plan that maximizes the 

likelihood of achieving research objectives. 

The actual deployment and retrieval of acoustic receivers can provide a significant 

logistical challenge, especially in deeper waters.    Recommendations on deployment and 

retrieval from “design” articles are presented in Table 13. The ease and speed with which 

receivers can be deployed and retrieved should factor into design considerations (Lacroix and 

Voegeli 2000; Heupel et al. 2006), especially if receivers are deployed in high traffic areas or if 

weather or sea conditions pose logistical challenges to deployment and retrieval with divers (the 

latter being the case off the Outer Banks of North Carolina).  We attempted deployment and 

retrieval with divers in the first year the Hatteras Acoustic Array was deployed, and quickly 

found that conditions were unsafe due to cold water and required work in air temperatures less 

than 4º C (40º F).  Divers were limited in the number of dives they could do in a day, and the 

work could often not be completed in the extremely short windows of calm wintertime weather 

off the Outer Banks.   
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Researchers seem split on whether it is best to use surface tag lines to ease deployments 

or whether it is better to “hide” the receiver on the bottom and either use grappling lines, divers, 

or acoustic releases to retrieve gear.  Most authors that chose to hide equipment and also 

identified a retrieval mechanism either relied on divers (see the following references in Appendix 

1: Garla et al. 2006; Kerwatch et al. 2008; Papastamatious et al. 2010; Lee et al. 2011; da Silva et 

al. 2013; Hawthorne 2013; Kock et al. 2013; Lefevre et al. 2013; Reyier et al. 2014), snagging or 

grappling a line or loop on the anchor system (see the following references in Appendix 1: 

Castagna 2010; Halfyard et al. 2012; Smith 2013), or on deepwater acoustic release mechanisms 

(see the following references in Appendix 1: Welch et al. 2004; Dawson and Starr 2009; 

McMichael et al. 2010; Wolfe 2013; Alfonso et al. 2014; Daley et al. 2014).  Given the logistical 

challenges of deployment and retrieval, it was discouraging that a number of the “biological 

research” articles glossed over or did not mention how equipment was deployed and retrieved.   

If rapid deployment is desired, we recommend a system whereby receivers can be pushed 

overboard already attached to equipment. Because of the sedimentation risks caused by 

prevailing alongshore currents, and gear movement from extreme weather and encounters with 

fishing gear, the Hatteras Acoustic Array was eventually deployed with large floats and a radar 

reflector on the tagline to aid in relocating the equipment.  We successfully relied on 

collaborative working relationships with the local fishing community to gain assistance in day-

to-day monitoring (and avoidance) of the acoustic equipment.  Cooperative commercial 

fishermen were willing to locate our buoys while working in the area and report back on whether 

they were still at the deployment site, to share information about the experiment, and to assist in 

outreach regarding the project.  With respect to retrieval, it is easiest to find gear that is marked 

at the surface; however, if exceptionally precise location information is recorded via a ship GPS 



 

76 
 

unit then equipment may be grappled (e.g., Domeier 2005).  For a variety of reasons, it may be 

desirable to not mark location of underwater equipment; in this instance, we recommend that 

researchers conducting research in offshore environments consider deployment of cabled 

acoustic equipment that communicate data with vessels via a modem versus driving a vessel in 

circles attempting to grapple lines that may be subject to unknown currents (and thus in a 

different orientation to gear than expected) or buried in sediment.   

Anchoring Mechanisms.  An appropriate anchor system is a key factor in deployment 

success (Heupel et al. 2006).  Anchor system recommendations from “design” articles are 

presented in Table 14.  Choice of anchor is largely dependent on the substrate and environmental 

forces that will act against the system.  In energetic environments such as swash zones or inlets, 

or if extended deployments of acoustic Doppler current profilers are planned, we recommend a 

hybrid system that permits sediment to move underneath the frame or trawl shield to minimize 

the risk of gear burial.   

Many acoustic receiver arrays along the U.S. east coast are opportunistically deployed on 

navigational markers, often requiring the use of divers to affix and retrieve receivers.  Navigation 

buoys are safe and durable anchors, and mariners are prohibited by law from harassing 

navigation markers, making them attractive options for long-term deployment situations.  

However, acoustic receiver manufacturers often advise against their deployment on navigation 

buoys, which expose the receivers to increased environmental noise due to proximity of shipping 

and navigation channels.  Boat traffic, noise, and wake can interfere with the acoustic field and 

possibly trigger false detections (Simmonds and MacLennan 2005; Heupel et al. 2006).  Because 

mariners are prevented from harassing navigation buoys by state and federal law, and navigation 

buoys tend to be well marked, researchers should consider whether the potential loss of acoustic 
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detection range is offset by the likelihood of gear loss.  Finally, depending on the goals of the 

project, researchers may have to invest in alternative anchoring mechanisms if acoustic sampling 

is required in regions where navigation buoys are not present.  In short, the acoustic array should 

be designed to meet the needs of the research project, and receiver locations should not be 

restricted to current navigational infrastructure.     

Receiver Attachment.  Recommendations presented by authors in “design” articles are 

itemized in Table 15.  Receivers are often attached to metal chains that connect the buoy to an 

anchor; however, mounting acoustic receivers on metal can detrimentally affect detection 

efficiencies (Clements et al.  2005).  Clements et al. (2005) compared the effects of different 

mounting platforms on an acoustic receiver in a freshwater reservoir.  Detection ranges tended to 

be between 200-400 meters, but when a metal mounting bar was used the acoustic detection 

range was minimal at distances greater than 100-200 meters from the receiver.  Unfortunately the 

most stable and durable mounting platforms, especially in highly dynamic environments such as 

fast-moving rivers or coastal environments, tend to be made out of metal.  The most common 

means of attachment mentioned in both the “biological research” articles and the “design” 

articles was direct attachment of the receiver to a rope or line; we found this to be an easy and 

effective solution for the Hatteras Acoustic Array.  This approach is also commonly 

recommended by Vemco Ltd.  

Maintenance.  Recommendations from “design” articles (e.g., Fitzgerald et al. 1947; 

Clare 1998; Afsar et al. 2003; Domeier 2005; Heupel et al. 2008; Table 16) and our case study 

concur on the importance of regular cleaning and maintenance to maintain receiver performance; 

however, maintenance was rarely discussed in the “biological research” articles.  Normal wear 

and tear will occur over the life of the research study, but physical abrasion from extreme 
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currents or tides or corrosion due to exposure will degrade anchor systems (Titzler et al. 2010; 

Cudney, this study).  Similar to the results noted in this study, Titzler et al. (2010) found multiple 

weak points in the ropes, receiver bridle, surface buoys, and taglines that comprised their anchor 

systems, and ended up replacing many degradable parts with stainless steel shackles, pins, and 

cable to increase durability.  Titzler et al. (2010) deployed many acoustic receivers in a riverine, 

high flow environment, and noted success after a polyurethane fin was added to the receiver to 

stabilize it in the water column and reduce drag.   Maintenance and upkeep (e.g., replacing lines 

and degradable parts) also mitigates the effects of biofouling organisms on receiver orientation in 

the water column.  There is strong support in the literature, and from our case study and field 

experiences, for the use of anti-fouling paint on underwater equipment. We also found success in 

coating receivers with Desitin ® (zinc oxide) and then wrapping them in saran wrap (use duct 

tape, electrical tape, or zip ties to hold saran wrap in place).    

 

Conclusions 

Aside from the recommendations contained in the Synthesis and Discussion section, we offer a 

few final recommendations for researchers wishing to deploy acoustic receivers in offshore 

environments: 

1) Researchers should take the time to fully analyze the deployment location with respect to 

environmental factors that may affect the outcome of the study concurrently with the 

development of a project budget.  Discussions with coastal and offshore fishermen may 

yield clues on whether current patterns, sea condition, tides, temperature, salinity, or 

other factors need to be factored into research design. 
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2) Conduct range testing as often as possible, in as many conditions as possible. Deploy 

sentinel tags. Determine whether your study requires full, partial, or no overlap between 

receivers in advance to meet research objectives and space them accordingly. 

3) Open ocean deployments are often conducted in remote locations, requiring considerable 

time and expense for upkeep.  Investments of time and resources to make the system 

more durable at the beginning of a study may save money in the long term by reducing 

the number of visits to replace equipment and adapting the system to forcing agents 

within the environment. 

4) Develop a realistic plan for maintenance.  How often can receiver anchor units be 

retrieved for data downloads and cleaning? Deployments in coastal photic zones may 

necessitate removal of algal growth, whereas deployments at any depth will have to 

mitigate attachment of bryozoans, limpets, and barnacles.  Have appropriate biofouling 

mitigative techniques been adopted?  Visit the array as often as possible to ensure it is in 

good working order.  Frequent retrieval, cleaning, and deployment is logistically difficult 

in offshore environments.  Include as much money in the budget for maintenance as 

possible – it always takes longer and costs more to do offshore research. 

5) Conduct long-term tests of anchor systems before deploying acoustic receivers during the 

same time of year that equipment will be deployed.  Many researchers have found 

success in using concrete anchors, but there are many alternatives that are available 

depending on the type of substrate in study locations. 

6) If no tag lines are to be used, be as precise as possible in recording deployment location. 

If tag lines are to be used, develop collaborative working relationships with individuals 

that frequently work in the area and can keep an eye on equipment on your behalf. If 



 

80 
 

deployments with tag lines occur in an area with heavy vessel traffic, deploy radar 

reflectors on equipment.  

7) If studying migratory species, it is recommended that researchers collaborate in region-

wide telemetry networks.  Networks can provide expanded coverage at little to no 

additional cost to the researcher or home institution, and reduce the risk of deploying 

equipment without redetecting animals (Welch et al. 2013).   

8) Publish the results of your range test, and the conditions under which they were 

conducted, so that others might benefit from your findings. 
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Source: Google Maps. 

 

Figure 14. Sea surface temperature satellite composite map showing surface temperature 

conditions on February 21, 2010, and Raleigh Bay / Hatteras Bight.  North Carolina is a unique 
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3.05 meter (10 foot) long, “Y”-shaped rope bridle. 
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Figure 17. Biofouling of VR2W acoustic receivers when the receiver was deployed without an 

anti-foulant (A, C) versus when receivers were deployed with Desitin (zinc oxide; B, D). 

 

Figure 18. Winch and boom system used to retrieve anchors, lines, and the acoustic receivers. 
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Table 3. 

Elasmobranch Study Species (Scientific & Common Names) 

Rhizoprionodon 

terraenovae  Atlantic Sharpnose Shark Ginglymostoma cirratum  Nurse Shark 

Carcharhinus tilstoni  Australian Backtip Shark Carcharhinus amboinensis Pigeye Shark 

Carcharhinus 

melanopterus  Blacktip reef Shark Echinorhinus cookei  Prickly Shark 

Carcharhinus limbatus Blacktip Shark Carcharhinus plumbeus Sandbar Shark 

Triaenodon obesus Whitetip Reef Shark Sphyrna lewini 

Scalloped Hammerhead 

Shark 

Sphyrna tiburo Bonnethead Shark Rhinobatos productus Shovelnose Guitarfish 

Notorynchus cepedianus Broadnose Sevengill Shark Negaprion acutidens Sicklefin Lemon Shark 

Carcharhinus leucas Bull Shark Carcharhinus albimarginatus Silvertip Shark 

Carcharhinus perezi Caribbean Reef Shark Hexanchus griseus Sixgill Shark 

Cephaloscyllium laticeps  

Australian SwellShark;  

Draughtboard Shark Pristis pectinata Smalltooth Sawfish 

Manta birostris  Giant Manta ray Mustelus canis Smooth Dogfish 

Mustelus californicus Gray Smoothhound Shark Mustelus mustelus Smoothhound Shark 

Somniosus microcephalus  Greenland Shark Centrophorus zeehaani  Southern dogfish 

Carcharhinus 

amblyrhynchos Grey Reef Shark Carcharhinus sorrah Spottail Shark 

Mustelus antarcticus Gummy Shark Galeocerdo cuvier Tiger Shark 

Negaprion brevirostris Lemon Shark Carcharodon carcharias White Shark 

Triakis semifasciate Leopard Shark 

  
Non-Elasmobranch Study Species (Scientific & Common Name) 

 Thunnus albacares Yellowfin Tuna Ophiodon elongatus Lingcod 

Acipenser medirostris Green Sturgeon Pagellus bogaraveo Blackspot Seabream 

Albula vulpes Bonefish Pangasianodon gigas Mekong Giant Catfish 

Anguilla anguilla European eel Paralichthys dentatus Summer Flounder 

Argyrosomus japonicus Mulloway Perca fluviatilis Yellow Perch 

Branchiostegus japonicus Red Tilefish Pomadasys commersonnii Spotted Grunter 

Centropristis striata Black Sea Bass Pomatomus saltatrix Bluefish 

Cheilinus undulatus Humphead Wrasse Rhabdosargus globiceps White Stumpnose 

Chelonia mydas Green Sea Turtle Salmo salar Atlantic Salmon 

Choerodon schoenleinii  Black-Spot Tuskfish Salvelinus alpinus Arctic Char 

Gadus morhua  Atlantic Cod Scarus psittacus Palenose Parrotfish 

Genyonemus lineatus White Croaker Scarus rubroviolaceus Ember Parrotfish 

Katsuwonus pelamis Skipjack Tuna Sciaenops ocellatus Red Drum 

Labrus bergylta Ballan Wrasse Sebastes caurinus Copper Rockfish 

Lthrinus nebulosus Spangled Emperor Selar crumenophthalmus Bigeye Scad 

Lutjanus campechanus Red Snapper Serranus cabrilla Comber 

Morone saxatilis Striped Bass Serranus scriba Painted Comber 

Mycteroperca microlepis Gag Sphyraena barracuda Great Barracuda 

Mycteroperca phenax Scamp Stenodus leucichthys Inconnu 

Naso unicornis Bluespine Unicornfish Thymallus thymallus European Grayling 

Naso lituratus Orangespine Unicornfish Trachinotus falcatus Permit 

Oncorhynchus kisutch Coho Salmon Xyrauchen texanus Razorback Sucker 

Oncorhynchus mykiss Steelhead Trout Zebrasoma flavescens Yellow Tang 

Oncorhynchus tshawytscha Chinook Salmon   

 



 

100 
 

Table 4.  

 

 

 

Any Details on Deployment? 

Elasmobranch Non-Elasmobranch 

Number 
of 

Articles 

Percent 
of 

Articles 

Number 
of 

Articles 

Percent 
of 

Articles 

Yes 31 0.67 37 0.73 

No 15 0.33 14 0.27 

Total 46 ----- 51 ----- 

Incorporation by Reference 
7 0.15 4 0.08 

(Inclusive of Y/N) 
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Table 5. 

 

 

Elasmobranch Articles Non-Elasmobranch Articles 

Attachment Surface 
# 

Articles 
Attachment Surface 

# 
Articles 

No Information Provided 27 No Information Provided 28 

unspecified rope or line 8 unspecified rope or line 9 

metal pole / rebar 3 metal pole / rebar 2 

chain / galvanized chain 2 galvanized chain /steel cable 2 

steel cable (thin) 2 PVC pipe  2 

nylon rope 2 rebar / steel cable 1 

PVC pipe  1 nylon rope 1 

rubber  1 polypropelene line 1 

sand screw 1 screw anchor / auger 1 

stainless steel threaded rod 1 stainless steel anchor 1 

  

FAD mooring line 1 

ground line 1 

navigation buoy 1 
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Table 6.  

 

 

 

Elasmobranch Articles Non-Elasmobranch Articles 

Type of Anchor  
# 

Articles 
Type of Anchor  

#  
Articles 

No Information Provided 22 No Information Provided 20 

concrete  7 Concrete block 7 

cement block 3 "Anchor" 6 

sand screws 2 "Moored" 3 

"Moored" 2 Pyramid Anchor 3 

dock pilings and channel markers 2 Screw Anchor / Auger 3 

steel clump weight 1 Cast Iron Heating Element 1 

star pickets, cable ties, stainless steel wire 1 Steel Pipe 1 

screws or sandbags 1 Bruce Anchor/Chain 1 

sandbags 1 Car Tire (filled w/ concrete) 1 

pyramid anchor 1 FAD 1 

Concrete filled tires 1 Ground Line 1 

chains  1 Pilings and Navigation Buoys 2 

CART 1 Sandbags 1 
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Table 7.  

 

 

 

Descriptive Parameter 

Elasmobranch Articles Non-Elasmobranch Articles 

#  Articles 
Percent of 

Articles 
# Articles 

Percent of 

Articles 

*Physical features 4 9 3 6 

*Oceanographic features 33 72 39 76 

*Containment (Full, Partial, Open) 1 2 0 0 

*Type of Array 2 4 1 2 

Spatial Area of Array 39 85 36 71 

Spacing of Receivers 32 70 27 53 

Receiver Overlap 17 37 4 8 

Length of Deployment (Months) 5 11 15 29 

How Often Data Downloaded 26 57 32 63 

How are receivers deployed/retrieved? 35 76 36 71 

Biofouling Comments / How Mitigated 40 87 43 84 

Type Anchor 22 48 20 39 

Weight Anchor 39 85 42 82 

Size Anchor 45 98 48 94 

Anchor substance 31 67 32 63 

Depth of Deployment (meters) 22 48 32 63 

Location in water column 25 54 14 27 

Receiver Orientation 30 65 23 45 

Attachment surface 27 59 28 55 

Type Lines Used 36 78 40 78 

Receiver Loss (number) 38 83 44 86 

Receiver Loss Cause 40 87 46 90 

Range Testing? 6 13 4 8 

Maximum detection range (meters) 9 20 18 35 

Percentage at maximum detection range 36 78 42 82 
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Table 8.  

 

 

 

 

Variable 

W-score (Shapiro 

Wilk GofF) 
p<W? (small p-

value rejects null, 

p<0.05) 

Possibly a Normal 

Distribution? 

Max Estimated Battery Life 0.897756 0.0119 No 
Log (Max Estimated Battery Life) 0.974707 0.7286 Yes 
Log (Number of Fish Redetected) 0.957195 0.1342 Yes 
Max Length Deployment (months) 0.897177 0.0016 No 

Log (Max Length Deployment (months)) 0.956445 0.1265 Yes 
Log (Max Interval Between Downloads) 0.923773 0.1710 Yes 

Max Interval Between Downloads 0.917401 0.1335 Yes 
Maximum Detection Range (meters) 0.928983 0.0208 No 

Log (Max Detection Range) 0.854460 0.0002* No 
Number Receivers 0.888184 0.0006* No 

Log(Number Receivers) 0.987299 0.9036 Yes 
Number Transmitters 0.630170 <0.0001* No 

Log (Number Transmitters) 0.930186 0.0118* No 
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Table 9.  

 

 

 

Variable 
W-score (Shapiro 

Wilk GofF) 

p<W? (small p-

value rejects null, 

p<0.05) 

Possibly a 

Normal 

Distribution? 

Cube Root Transformation (# Fish 

Redetected) – Elasmobranch Articles 
0.988260 0.9653 Yes 

Cube Root Transformation (# Fish 

Redetected) –  Non Elasmobranch Articles 

 

0.961368 0.1865 Yes 

Cube Root Transformation (# Fish 

Redetected) – All Articles 
0.977889 0.2204 Yes 
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Table 10.  

 

 

Distance from 
Receiver (m) 

Pings 
Detected 

Pings Sent 
by 

Transmitter 

System 
Efficiency 

100 1089 1812 60.1 

200 153 264 58 

300 112 204 54.9 

400 138 264 52.3 

500 111 204 54.4 

600 47 180 26.1 

700 2 204 1 

800 4 252 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

107 
 

 

Table 11.   

 

 

Author Design Subject Notes 

Pincock et al. 2010; Singh et al. 
2013; Welsh et al. 2012 

Physical Barriers Underwater signal distortion and acoustic 
propagation loss happen in complex 
environments (e.g., reefs), in stratified 
environments, or near water-air and 
water-substrate barriers. 
 

Clements et al. 2005; Cudney, 
J.L. (this study) 

Vessels / Vessel 
Traffic/Fishing Activity 

Physical or proximate encounters with 
vessels generate acoustic interference and 
are a primary cause of receiver loss or 
damage. 
 

Voegeli and Pincock 1996; 
Winter 1996; Thorstad et al. 
2000; How and de Lestang 2012 

Oceanographic / 
Environmental 
Conditions 

Sea state, air entrapment, cavitation, 
currents, changing water velocities, 
eddies, salinity, temperature, depth, 
suspended matter. Receivers deployed 
near the water column surface pick up 
vessel noise, wave action, and air bubbles. 
 

Whitecraft et al. 2007  Mangroves Mangrove swamps are obstruction rich 
environments. Detrital litter on bottom 
can decrease detectability of tags, and 
mangrove prop roots induce attenuation 
due to small air bubbles present on roots. 
 

Voegeli and Pincock 1996; 
Klimley et al. 1998; Voegeli et al. 
1998; Finstad et al. 2005 

Biotic Noise Receivers often pick up noise from benthic 
animals (e.g., shrimp, oysters, barnacles, 
etc).  
 

Singh et al. 2013; Cudney, J.L.  
(this study) 

Wind and Weather Wind can decrease detection range of 
receivers either due to waves or to the 
introduction of air bubbles into surface 
layers.  
 

Clements et al. 2005 Biofouling  Cause of biotic noise and can disrupt 
receiver orientation in water column.  
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Table 12.   

 

 

Author Design Subject Notes 

Heupel et al. 2006 Type of Tags Do not use too many tags. 
Do not use tags with short ping intervals. 
Use tags similar to those that will be 
deployed in test subjects (specifications).  
 

Moser et al. 2006  Periodicity of Range 
Testing 

Daily or hourly calibration produces the 
most accurate results in high noise or high 
interference environments.  
 

Pincock et al. 2010 Extreme Conditions Do range testing in the worst acoustic 
conditions at your site. 
 

Pincock et al. 2010 Depth Range testing should be done at a variety 
of depths. 
 

Singh et al. 2013 Detection range Detection ranges vary tremendously by 
environment, and don’t usually conform 
to factory specifications. 
 

Payne et al. 2010; Kessel et al. 
2014 

Sentinel tags  Sentinel tags should be deployed to 
monitor variability in detection range 
through time and ground truth 
fluctuations in animal detections against 
the environment.  
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Table 13.  

 

 

Author Design Subject Notes 

Castagna 2006; Heupel et al. 
2006; Send et al. 2013 

Cost  Expensive boat and dive operations make 
acoustic uploading desirable (e.g., VR4 or 
cabled/acoustic modem systems). 
 

Clements et al. 2005 Fast recovery Trawl anchors resulted in faster recovery 
than heavy concrete anchors that require 
a hydraulic boom for deployment and 
retrieval. 
 

Welch et al. 2003; Heupel et al. 
2006 

Deployment on bottom 
without surface tag 
lines 

Keeps receivers hidden from the public 
and reduces the likelihood of damage or 
loss.  
 

Domeier 2005; Heupel et al. 
2006; Cudney, J.L. (this study) 

Divers Divers are depth limited and can be a 
bottleneck for deployment/retrieval 
operations. Divers can be used to ensure 
that gear pushed overboard is oriented 
properly on the bottom. Sand screw 
anchors require the use of divers. 
 

Welch et al. 2003; Loher et al. 
2010 

Acoustic Releases Acoustic releases can be used to retrieve 
gear on the bottom, but may also be 
subject to failure. Risks are greater with 
lengthy deployments.  
 

Domeier 2005 Precision of Data 
Collection Leads to Easy 
Recovery 

Ease of recovering hydrophones is related 
to the precision used to deploy stations 
and record position. 
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Table 14.  

Author Design Subject Notes 

Clements et al. 2005; Cudney, 
J.L.(this study) 

Concrete Blocks Suitable for lengthy deployments or 
deployments in areas subject to heavy 
currents.  
 

Clements et al. 2005; Cudney, 
(this study) 

Danforth Anchors If there is a need for rapid retrieval and 
deployment at the study site. 
 

Lacroix and Voegeli 2000; 
Clements et al. 2005 

Ketch anchor Ketch anchors are more resistant to 
dragging and are good in fast current 
environments. 
 

Heupel and Hueter 2001; 
Domeier 2005; Heupel et al. 
2006 

Sand screw anchors In shallow water locations that have soft 
substrate, screw-type anchors offer a 
secure anchor system that can be 
attached to a mooring system via chain or 
mooring line. Requires divers. 
 

Domeier 2005 Sandbags Sandbags (15-20 kg) are good anchors for 
hard substrate. 
 

Casto-Yerty and Bettoli 2009 Bridge pilings Acoustic shadows  and additional 
environmental noise may occur due to 
turbulence and air entrapment as water 
flows around bridge pilings. 
 

Bettoli et al. 2014 SUR anchors  
 

Durable anchors in high energy/current 
velocity environment (tested in rivers). 
 

Heupel et al. 2006  Mooring Platforms 
Commonly Utilized by 
Researchers  

Construction sites, piers, wharves, pilings, 
islands, marina entrances, port entrances, 
natural bottlenecks, along submerged 
channels, tidal creeks, shelf-wide fence 
and array deployments, known 
aggregation hotspots, hard bottom reefs, 
edges of submarine canyon. 
 

Welch et al. 2004; Heupel et al. 
2006; 

Floats Creates an “acoustic shadow”, need to be 
sufficient distance away from floats 
 

Simmonds and MacLennan 2005; 
Heupel et al. 2006 

Navigation buoys as 
anchors 

Anchoring a receiver to a navigation buoy 
exposes the receiver to increased 
environmental noise; boat traffic, noise, 
and wake can interfere with the acoustic 
field and possibly trigger false detections 
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Table 15.  

 

 

Author Design Subject Notes 

Clements et al. 2005 Mounting bars The transducer end should be clear of 
mooring cables, lines, or poles, which can 
reduce detection range by nearly 100 
percent at distances of 100-200 meter 
when these elements are in the acoustic 
field. 
 

Welch et al. 2003; Domeier 
2005; Send et al. 2013 

Seafloor moorings Receivers should sit directly on the seabed 
and not include surface floats vulnerable 
to vessel traffic or fishing activities. 
Deepwater deployments are better 
protected and can remain deployed for 
longer periods of time. 
 

Clements et al. 2005; Domeier 
2005; Heupel et al. 2006 

Transducer orientation Receivers are most sensitive in the 
horizontal plane around the transducer 
and least sensitive to the vertical plane 
(directly above and below).  At the bottom 
or off bottom, they should be oriented 
upwards. At the surface, they should be 
oriented downwards. Mid-water 
deployments should be based on biology 
of target species. 
 

Titzler et al. 2010; Cudney, 
current study  

Receiver loss due to 
failure of mooring 
system 

Receivers were lost due to physical 
abrasion and corrosion from extreme river 
flows/tides.  
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Table 16.  

 

 

Author Design Subject Notes 

Clare 1998; Afsar et al. 2003; 
Heupel et al. 2008 

Biofouling Deterring marine growth is important to 
maintain full functionality of marine 
equipment.  
 

Fitzgerald et al. 1947 Effects on Acoustic 
properties 

Within 3-5 months, oceanographic 
equipment can be rendered inoperative 
due to biofouling. 
 

Domeier 2005 Preventative 
maintenance 

Researchers should remove or replace 
lines every 18 months to 2 years. Thimbles 
and shackles should be replaced every 18 
months. Replace anchors as needed.  
 

Domeier 2005; Heupel et al. 
2008 

Anti-fouling paint Use of anti-fouling paint is recommended, 
decreases fouling and results in higher 
performance. 
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Figure 6.   
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Figure 7.  

 

 

 

 



 

 

1
15

 

Figure 8.  
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Figure 9.  
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Figure 10.  
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Figure 11,  
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Figure 12.  
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Figure 13.   
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Figure 14.  
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Figure 15. 
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Figure 16.   
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Figure 17. 
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Figure 18.   

 

 

 

 

 

 



 

 

CHAPTER 3: MIGRATION AND LOCAL MOVEMENT PATTERNS OF 

SPINY DOGFISH OVERWINTERING IN THE SOUTHERN MID-

ATLANTIC BIGHT AND OFF CAPE HATTERAS, NORTH CAROLINA 

Abstract 

Spiny Dogfish is an abundant, temperate, small coastal shark that was assumed until recently to 

comprise a single unit stock.  This chapter discusses results from two research programs 

conducted between 1997 and 2012 aimed at better understanding the stock structure of this 

species: a long-term mark-recapture program utilizing external dart tags, and acoustic telemetry 

research conducted on sharks that encountered compatible receiver arrays between North 

Carolina and the Gulf of Maine.  The research presented herein fills a critical knowledge gap and 

reflects the only finalized tagging study to date that has focused principally on dogfish at the 

southern extent of the range.  I summarize and speculate on the migration and movement patterns 

of a particular group of Spiny Dogfish, the purpoted Mid-Atlantic migratory contingent, and 

identify a clear predictable seasonal migration of Spiny Dogfish sharks between spatially discrete 

areas off the coast of North Carolina and southern New England.   Results from tagging studies 

completed by our laboratory off Cape Cod, and from previous studies in the northern half of the 

range, provide further clarification on the northern extent of this hypothesized contingent and the 

behavior of other hypothesized contingents in the northwest Atlantic.  

Introduction 

Identification and delineation of appropriate stock units are essential for understanding 

the true state of a fish stock, and for the creation of effective and sound fishery management 
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measures (Stephenson 1999).  Many migratory species such as Atlantic Cod (Gadus morhua), 

Atlantic Herring (Clupea harengus) and Atlantic Salmon (Salmo salar), to name a few, were 

initially managed as single-stock fisheries until population declines forced managers to 

alternatives (Merriman 1941; Wise 1963; Sinclair 1988; Sinclair and Iles 1988; Serchuk and 

Wigley 1993; Myers et al. 1997; Stephenson 1999).  Recent fishery disasters, such as the 

collapse of Gulf of Maine Atlantic Cod fishery, can be partially attributed to a lack of assessment 

and management at a scale appropriate for a complex stock structure (Wise 1963; Serchuk and 

Wigley 1993; Myers et al. 1997; Dobbs 2000; Ames 2003).  As demonstrated by the history of 

these fisheries, science must look past assumed paradigms and periodically question the 

assumptions concerning behavior and life history of migratory species to ensure that 

management practices best reflect the life history of the stock.  

The Spiny Dogfish (Squalus acanthias) is an abundant, slow-growing, late maturing, 

schooling shark commonly found in temperate waters.  Despite a recent crash in coastal female 

spawning stock biomass, populations in the northwest Atlantic support a high-volume shark 

fishery.  Coastal spawning stock biomass was considered rebuilt after 2008, much sooner than 

expected after interstate and federal management plans were implemented in the 2000s (ASMFC 

2002; MAFMC 1999; 65 FR 1557, January 10, 2000).   Despite a rebuilt management status of 

“not overfished / overfishing not occurring”, there is considerable uncertainty regarding how the 

coastal Spiny Dogfish stock was capable of rebuilding so fast.  Stock assessment models 

completed over the last decade suggested subsequent declines due to low pup production that 

have not yet materialized in the fishery (MAFMC 1999; ASFMC 2002; ASMFC 2013; Rago and 

Sosebee 2013).  There is a strong need for research that better elucidates the behavior and stock 



  

128 
 

structure of Spiny Dogfish, in part to explain the reason for such rapid recovery of the species 

through the 2000s and to reduce management uncertainty.   

Fishery dependent, mark-recapture research on segments of the Spiny Dogfish population 

has been conducted since the 1960s in Atlantic Canada and off New England (Jensen 1961, 

1966, 1969; Templeman 1963 and 1984; Shafer 1970; Hickman et al. 2000; Rulifson et al. 2002; 

Moore 1995, unpublished data; Campana et al. 2008). After consideration of all tagging studies 

to date, Campana et al (2008) noted evidence of spatial structuring within the northwest Atlantic 

Spiny Dogfish stock.  Specifically, a new dogfish behavioral paradigm was hypothesized that 

identified separate groups, or “contingents”, of Spiny Dogfish populations that exhibit similar 

migratory behaviors (TRAC 2010).   

Spatial structuring also has been observed in other closely related dogfish species.  

Although not specifically referenced as a behavioral contingent, research by Wood et al. (1979), 

McFarlane and King (2003), and Taylor et al. (2009) suggest, using different terminology, that 

northwest Pacific Spiny Dogfish (the previous taxonomic classification, Squalus suckleyi 

(Girard 1855), was recently resurrected by Ebert et al. 2010)  may exhibit different migration 

and life history strategies by location.  For example, Pacific Spiny Dogfish in inland coastal 

waters tend to be recaptured in inland coastal waters, whereas there were a greater number of 

instances of Pacific Spiny Dogfish released in open waters that were recaptured in open coastal 

waters of other states or countries (McFarlane and King 2003; Taylor et al. 2009).  In addition, 

Taylor et al. 2009 noted that the distribution pattern of recaptures in historical tagging studies of 

Puget Sound support modeling Pacific Spiny Dogfish in Puget Sound as a metapopulation as 

opposed to separate stocks.   
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The contingent hypothesis of intrapopulation migratory groups was first presented by 

Clark (1968), and was further evaluated by Secor (1999, 2005) through consideration of 

behaviorally distinct “contingents” of striped bass that were part of the same genetic stock.  

Contingents were defined by Secor (1999, 2005) as a useful management unit that is based upon 

divergent migration behaviors or habitat use within a unit stock.  This potential new paradigm of 

dogfish behavior in the northwest Atlantic proposes that there are two primary migratory 

contingents of dogfish (Figure 19). One large group of dogfish is hypothesized to cycle between 

overwinter habitats in North Carolina (and possibly further southward into the South Atlantic 

Bight) and summer habitats in the southern Gulf of Maine (“mid-Atlantic contingent”, Figure 19, 

Panel B, #1).  Another large group of dogfish is suspected to make a gyre-like migration around 

the Gulf of Maine, moving offshore in the winter and onshore in the summer (“Gulf of Maine 

contingent”, Figure 19, Panel B, #2).  There are also a number of discrete satellite groups of 

dogfish in Atlantic Canada that exhibit a small degree of intermixing with the Gulf of Maine 

gyre-contingent (Figure 19, Panel B, #3-5).  Discrete studies on individual contingents are 

therefore needed to evaluate the timing, spatial extent, and migration pathways undertaken by 

each proposed contingent. 

Most of the previous tagging studies on northwest Atlantic Spiny Dogfish have been 

conducted in northern parts of the range; therefore, we focused our research efforts on Spiny 

Dogfish that are clearly part of the hypothesized Mid-Atlantic migratory contingent.  This 

manuscript discusses two research programs conducted between 1997 and 2012: a long-term 

mark-recapture program utilizing external dart tags, and acoustic telemetry research conducted 

on sharks that encountered compatible receiver arrays between North Carolina and the Gulf of 

Maine.  Data from the two studies are combined and presented collectively to provide a more 
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comprehensive and robust discussion on the behavior of the presumptive Mid-Atlantic migratory 

contingent.   The research presented herein fills a critical knowledge gap and reflects the only 

finalized tagging study to date that has focused principally on dogfish at the southern extent of 

the range.  Therefore an objective of this manuscript is to summarize and speculate on the 

migration and movement patterns of Spiny Dogfish sharks that could be part of the hypothesized 

Mid-Atlantic Contingent.  The primary null hypothesis explored in this research questioned the 

presence of a clear identifiable and predictable seasonal migration of Spiny Dogfish sharks 

moving between spatially discrete areas off the coast of North Carolina and southern New 

England.   However, we also conducted tagging at what we suspect to be an area of spatial 

overlap, and possible behavioral mixing ground, between between the proposed Mid-Atlantic 

and Gulf of Maine migratory contingents in order to clarify the rate of mixing (Rulifson et al. 

2012).  Tagging studies from Nova Scotia are also incorporated into this larger study as a 

compliment to tagging efforts at the northern end of the range (Moore 2009).  The geographic 

northern and southern extents of migration for Spiny Dogfish which overwinter off the coast of 

North Carolina are inferred from two types of tagging studies and supplemental evidence.   

Methods 

Acoustic Tagging of Spiny Dogfish. The study was conducted using VEMCO 

V16-4H acoustic tags (A69-1303, R64K 320/20; VEMCO Ltd, Shad Bay, Nova Scotia).  Tags 

operated on a 69 kHz frequency, and had an estimated battery life of 510-820 days.  Acoustic 

pings were programmed to emit at random 30 to 90- second intervals; this random transmission 

interval minimized errors that occur when multiple pings are detected at the same time by 

acoustic receivers.  Fifty Spiny Dogfish sharks were surgically implanted with acoustic tags 

January 29 – 31, 2009 onboard the R/V Cape Hatteras during the annual Cooperative Winter 
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Tagging Cruise (CWTC), between Cape Hatteras and the NC/VA line (Figure 20).  Length (mm 

TL) and weight (g) of sharks were noted to ensure that the water weight of the tag did not 

surpass 2 percent of the body mass of the shark.  Sharks were initially monitored for 12 hours to 

gauge short-term survival and tag expulsion (100 percent survival, 0 percent expulsion after 12 

hours).  Most sharks were noted to adopt normal swimming behavior within 10 minutes of 

release into the recovery tank; all sharks were observed exhibiting normal behaviors within an 

hour of surgery.  In 2010, adult Spiny Dogfish were collected by commercial gillnet and by 

angling (Figure 21), surgically implanted with acoustic tags, and released  (n = 30 sharks: 15 

south and 15 north of Cape Hatteras, NC).  In addition, 10 sharks were captured, tagged, released 

and immediately tracked using a Vemco VFIN towable unit (5 south and 5 north of Cape 

Hatteras, NC).  No sharks were tagged in 2011; however, the tags surgically implanted in 2009 

and 2010 were still detectable according to battery life projections provided by Vemco, LTD.   

 Passive Acoustic Detection of Tagged Spiny Dogfish.   A Vemco VR2W acoustic 

receiver array was created to track Spiny Dogfish movements in the Hatteras Bight.  Although 

typical battery life for a VR2W is 15 months, they were retrieved more often to download data, 

and to conduct maintenance and repairs on the moorings, lines and floats used to maintain the 

VR2W in the water column. Array schematics were modified between 2009 and 2012 as needed 

in order to maximize the probability of successful deployment and retrieval of the array (see 

Chapter 2 for details). 

Twelve receivers were deployed within the Hatteras Bight in 2009 (Figure 22).  The first 

receiver was situated 750 meters from the beach to avoid swash zone conditions.  The first nine 

receivers in the array were spaced approximately 600 meters apart based on range testing within 
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the nearshore environment.  Offshore receivers (the last three) were spaced 1000 meters apart to 

extend the line out as far as possible with minimal coverage gaps.  Results from 2009 supported 

spacing the receivers farther apart, thereby extending the line further offshore.  In 2010, 10 

VR2Ws were deployed approximately 1600 meters (1 mile) apart from each other, in roughly the 

same line that was used in 2009.  The receivers were deployed from January 2010 to May 2010, 

and sites were visited periodically throughout the sampling season to check on equipment.  All 

sites were accounted for through April 1, 2010.  Only one unit was moved offsite (it was not 

found), suggesting that the use of radar reflectors minimizes the risk of destructive encounters 

with vessels.  See Chapter 2 for a complete description of mooring systems. 

Many institutions and agencies between Florida and Newfoundland use VEMCO acoustic 

receivers and transmitters in research activities (Figure 23).  Our receiver array detected a 

number of acoustically tagged fish implanted by other investigators.  Similarly, our transmitters 

were detected by other researchers on their acoustic arrays.  These data provided valuable 

information on the timing of migration, and the movement patterns of overwintering North 

Carolina Spiny Dogfish.  Data sharing occurred primarily through the Atlantic Cooperative 

Telemetry (ACT) network.  This network is organized and maintained by Dr. Dewayne Fox 

(Delaware State University) and Tom Savoy (Connecticut Department of Environmental 

Protection).  Semi-annual updates to a tagging database, which contains tag and owner 

information, are distributed to members of the network.  Members provide data to one another as 

receivers are uploaded. 

               Active Tracking of Tagged Spiny Dogfish.  Active tracking of acoustically tagged 

dogfish was completed after tags were detected by a VEMCO VR-28 VFin deployed during 
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acoustic surveys (Figure 24A and Figure 24B).  When a fish surgically implanted with an 

acoustic transmitter came within range of the hydrophones, the signal was transferred through 

the towed unit to a receiver unit (blue and silver box, Figure 24C).  The receiver unit integrated 

the acoustic signals with a GPS unit and created a text file that contained the ID number, a 

date/time stamp, the signal strength, direction of the signal, and sensor data (if applicable).  

Survey tracks were recorded using the compatible GPS software program “Chart Navigator Pro” 

(Figure 24D).  Mobile surveys were conducted in February and March of 2009 and 2010 over the 

gray-shaded region in Figure 25.    Active acoustic tracking was conducted in February and 

March of 2009 and 2010 (n = 16 days/season, eight days north of Cape Hatteras and eight days 

south of Cape Hatteras over the two-month study period).  Sampling routes (e.g., Figure 24D) 

were selected after consideration of fishing reports, weather conditions, recommendations from 

fishing captains (including the co-PI), and from satellite sea surface temperature maps obtained 

from Rutger’s University Coastal Oceans Observing Lab 

(http://marine.rutgers.edu/cool/sat_data/?nothumbs=0&product=sst).  When a transmitter was 

detected, we circled the boat around the initial detection point to determine if the tagged fish was 

moving.  We attempted to remain onsite to obtain a minimum number of detections (n = 10, or 

five minutes).  If the transmitter was moving, we attempted to track the shark for a short period 

of time to determine directionality of movement.   

External Mark-Recapture Tag Program (1997-2012).  Between 1996 and 2012, East 

Carolina University researchers deployed over 47,000 tags in Spiny Dogfish (Table 17).  

Depending on the research project, Spiny Dogfish were either captured via hook and line (n = 

15), handline (n = 744), longline (n = 5,564), gillnet (n = 13,141), or trawl (n = 27,487).  Sharks 

were measured for total length, sexed, and tagged with a Floy single barb dart tag (Floy SS-94) 
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(Figure 26A, Figure 26B).  Tags were printed with a return mailing address and web address, a 

serial tag number, and a reward amount.  The website (not in operation after the end of 2013) 

provided information about the tagging program and a form that could be filled out by fishermen 

regarding the recapture event.  Fishermen were asked to provide information regarding the 

recapture event, including the location and date of capture, capture method, gear specifications, 

weather and sea conditions, and sex and approximate total length of the shark. 

Data Analysis – Acoustic Data 

Passive and active detection data (geographic location coordinates, date and time of 

detection, transmitter ID number) from the Cape Hatteras Acoustic Array and arrays maintained 

by collaborative partners were downloaded, summarized, and plotted in ArcGIS, EXCEL, and 

JMP 9 and JMP 10 (statistical analysis).  Detection data were analyzed to fully evaluate the 

spatial and temporal distribution of acoustic detections on the Cape Hatteras Acoustic Array and 

other arrays operated by partner institutions.   

In evaluating the temporal trends in detection data, unique independent detection events 

were identified as those that occurred discretely in time and space. Since we were interested in 

periodicity of detection events, and observed that sharks tended to remain in the area of the 

acoustic array and were detected many times over short intervals, we identified a unique event as 

those that either were separated by at least 12 hours, or were from separate transmitter IDs.  The 

12 hour window was selected as a starting point for this analysis, but future analyses should 

consider whether results would vary due to biotic or abiotic cycles of different time durations 

(e.g., tidal cycles are approximately every 6 hours).  Detections that occurred within a short span 

of each other on receivers deployed in close proximity were considered to be part of the same 
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detection event. The following were calculated for each independent detection event: amount of 

time spanning each detection event, days at large, number of detections, number of stations, 

description of movement along the array (onshore, offshore, or remaining in one area), and a 

description of the event timing (sustained in array for less than an hour, sustained in array for 

less than 12 hours, and multiple visits within a 12 hour period).  Minimum rates of movement 

(km/day) were calculated by dividing straight line distance (km) as measured in ArcGIS 9.3 and 

time elapsed (days) between detection points for individual sharks.  Movement rates by region 

(coastal North Carolina, Massachusetts, Gulf of Maine and Delaware)  were analyzed using a 

Kruskal Wallis test in JMP (Version 9); nonparametric multiple comparisons were made using 

the Steel-Dwass All Pairs test (similar to the Tukey HSD post-hoc test for parametric data).  

Data Analysis – Mark-Recapture Data.   

Recapture data were examined in ArcGIS, EXCEL, JMP 9, and JMP 10 to further develop 

hypotheses regarding patterns in spatial and temporal distribution of Spiny Dogfish.  Timing of 

recaptures was analyzed to determine whether sharks from specific release years constituted 

greater proportions of recapture events, and whether certain years had more recapture events.  

Days-at-large (DAL), or the number of days between release and recapture events, were 

analyzed by location of release, release year, and recapture year.  Long-term periodicity of 

recapture events was determined by comparing DAL to latitude and to the distance between 

release and recapture events.  Shifts in latitudinal distribution of all recapture events were 

analyzed by standardizing all recapture events to calendar day.  Because sharks were tagged and 

released at different times of year, an analysis that just considers DAL could obscure seasonal 

latitudinal recapture patterns.  
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Given particular interest in the Massachusetts region as potential behavioral mixing (or 

spatially overlapping) grounds between the hypothesized Mid-Atlantic migratory contingent and 

the hypothesized Gulf of Maine migratory contingent, part of the research program consisted of a 

study whereby sharks were tagged with both mark-recapture and acoustic tags, and released on 

either side of Cape Cod, Massachusetts.  Further discussion of this research project may be found 

in Rulifson et al. (2012). 

Given that dogfish migrations are thought to be cyclic in nature, North Carolina-tagged 

shark data were analyzed to determine whether sharks were recaptured in similar locations at 

similar times of year (based on the distance between the original release location and the 

recapture location).  An annual increment was defined as a period spanning the annual 

anniversary of the tagging and release of a shark (plus/minus three weeks to account for natural 

inter-annual variability in the timing of migration).  The location of recapture for sharks at 

annual increments was compared between years, and to short-term increments (0-30 days, 31-60 

days, and 0-60 days) to determine how close recaptures were at similar times of year.  If sharks 

were completing a regular circuit between Massachusetts and North Carolina and arriving at the 

overwintering grounds at roughly the same time each year, then the distances between release 

and recapture at the annual increments should be similar.  Complete geographic information was 

provided for 400 North Carolina-tagged Spiny Dogfish.  Distance between release and recapture 

location was found to not be normally distributed; hence the data were log-transformed for 

statistical analysis. 
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Results – Acoustic Telemetry Experiment  
 

Maps depicting the redetections of these sharks between 2009 and 2011 are shown in 

Appendix 2 and Appendix 3 of this dissertation.  The locations of all acoustic tag detections 

(both in North Carolina and other locations) are shown in Figure 27. Spiny Dogfish were not 

detected on acoustic arrays south of the Hatteras Acoustic Array.  Although the North Carolina 

Hatteras Acoustic Array was deployed in 2012, no Spiny Dogfish were redetected on the array 

that year.  Of the 53 sharks tagged in 2009, 17 sharks were redetected on the Hatteras Acoustic 

Array for an array redetection rate of 32 percent over the expected duration of battery life for the 

tags (Table 18).  The years with the greatest number of detections included 2009 and 2011; in 

2010 only 5 animals tagged in 2009 were redetected on the Hatteras array.   Annual detection 

rates of these sharks (assuming the 53 2009-tagged sharks were at large and available to interact 

with the array in a given year) were 15.09, 9.43, and 16.98 percent in 2009, 2010, and 2011, 

respectively.  Five of the sharks were detected on the array in multiple years; of these, four were 

redetected in subsequent years, implying annual return migrations to the area.     

A total of 26 of the 40 sharks surgically implanted in 2010 were redetected on the 

Hatteras Acoustic Array, for an array redetection rate of 65 percent (Table 19). Annual detection 

rates of these sharks (assuming all 40 of the 2010-tagged sharks were at large and available to 

interact with the array in a given year) were 50 and 45 percent in 2010 and 2011.  Twelve of 

these sharks were detected both in 2011 and 2012 on the Hatteras Acoustic Array.  

Spatial Distribution of Detections.  When considering all of the detection data provided 

to the team by scientists from other institutions, 39 of the 53 tags deployed off NC in 2009 (73.5 

percent) were redetected off the coast of North Carolina, in Delaware Bay, in Long Island Sound, 
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off the coast of Massachusetts, and in the Gulf of Maine (Table 20).  After the initial tagging 

season, the largest numbers of 2009-tagged sharks were redetected in Delaware Bay (fall and 

spring) and off the coast of Massachusetts (summer).  Nineteen of the sharks tagged in 2009 

were detected in coastal North Carolina in 2009, 2010, or 2011 by passive (VR2W acoustic 

array) or active (VFIN) acoustic sampling off the coast of North Carolina.  One shark (#54065) 

was redetected off the coast of North Carolina three years in a row.  Four 2009-tagged sharks 

were redetected off the coast of North Carolina in consecutive years, and seven sharks were only 

redetected in the third detection year off the coast of North Carolina.  Several of these sharks 

were detected in locations outside of North Carolina at other times of the year.    

After tagging and redetection in the winter and early spring of 2009, the tagged sharks 

dispersed northward and a few (n = 3) were redetected in Delaware Bay in April and May 2009.  

A few of the sharks were redetected in various locations between New York and the northern 

Gulf of Maine in summer 2009, but it was not until the fall of 2009 that a larger number (N = 11) 

of sharks were redetected in close proximity within a relatively short time span in Delaware Bay. 

A number of these sharks were redetected in winter and early spring of 2010 on the Hatteras 

Acoustic Array (n = 8). The largest number of sharks detected within an aggregated spatio-

temporal timeframe occurred in the summer of 2010, when 18 sharks were tracked off the coast 

of Massachusetts.   

    Of the 40 sharks tagged off NC in 2010,  35 (87.5 percent) were redetected off the coast 

of North Carolina, in Delaware Bay (“Del Bay11”), off the coast of Massachusetts (“Mass10”, 

“PlymouthBay10”, and “Mass11”), and in the Gulf of Maine (“GoMOOS10”) (Table 21).  

Twenty-seven sharks were redetected by the Hatteras Bight acoustic array and via active VFIN 
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sampling of coastal habitats; 12 of these sharks were redetected in consecutive years. Most of the 

sharks redetected on the Hatteras acoustic array were tagged and released south of Cape 

Hatteras.  However, the five sharks tagged and tracked off Wimble Shoals were all redetected by 

the Hatteras array at least once, and three of the Wimble Shoals sharks were detected in both 

2010 and 2011.  Five sharks tagged off Oregon Inlet were redetected in the Hatteras Bight in 

2010 and 2011.  

After tagging and release off the coast of North Carolina in the late winter and early 

spring, over half of the 2010-tagged sharks (n = 23, 58 percent) were redetected off the coast of 

Massachusetts in summer 2010.  A large number (n = 16, 40 percent) of 2010-tagged sharks 

were redetected off the coast of the Outer Banks between December 2010 and March 2011.  A 

small number of sharks were sparsely detected between Delaware Bay and the Gulf of Maine 

between spring and fall of 2011.  A notable number (n = 10, 25 percent) of 2010-tagged sharks 

next showed up off the coast of New Jersey and New York from January to May 2012 (but were 

not detected off the coast of North Carolina).  

Results for active acoustic surveys for tagged Spiny Dogfish were not as robust as results 

for passive acoustic deployments.  Active acoustic survey yielded location data for six 2009-

tagged sharks in 2009 and four 2009-tagged sharks in 2010.  Active acoustic surveys were more 

successful in 2010, with 19 animals being redetected using the VFIN towable receiver; four of 

these sharks had been tagged in 2009 and 15 were tagged in 2010 (Figure 28).      

Most of the sharks detected with active acoustic tracking were also detected on the 

passive acoustic array.  A small proportion of the sharks tagged and released north of Cape 

Hatteras were detected only via acoustic surveys.  Two 2009-tagged sharks were detected each 
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year of the study only through the VFIN acoustic surveys.  One of these sharks was detected 

again in 2010 and 2011 in North Carolina; the other shark was detected in 2010 in the Gulf of 

Maine and in 2011 back in North Carolina.  Two of the 2010-tagged sharks detected with the 

VFIN were not detected on the Hatteras array.   

Most detections of sharks occurred on the same side of Cape Hatteras in which they were 

tagged, but some movement around Cape Hatteras was documented (Table 22).  Most of the 

2010-tagged sharks that were detected in regions south and west of Cape Hatteras had been 

tagged either in the Hatteras Bight or Cape Lookout.  Only one 2010-tagged shark that was 

released south of Cape Hatteras was redetected with the VFIN well north of the shoals fringing 

Cape Hatteras.  Sharks detected in 2009 and 2010 also tended to be relocated near complex 

bathymetric features.  Many of the sharks were detected in sloughs, or channels, that run through 

the shoals off Cape Hatteras, Oregon Inlet, and the Outer Banks. Two sharks (one tagged in 2009 

and one tagged in 2010) were detected off the continental shelf break in waters close to 100 

meters in depth.  South of Cape Hatteras, most of the detections of tagged sharks happened either 

within a few km of the beach along sandy bottom, along the south side of Diamond Shoals, or 

further offshore closer to the shelf break.    

Temporal Distribution of Detections.  Sharks tagged in 2009 and 2010 appeared on the 

Cape Hatteras Acoustic Array within a few weeks of each other, typically from January through 

March or early April (Figure 29, Figure 30).  Sharks were detected multiple times within a 

season (Figure 29, Figure 30).  Figure 31 shows the number of times that tagged Spiny Dogfish 

returned to the acoustic array deployed within the Hatteras Bight in each wintertime sampling 

season.  These “returns” constituted independent detection events, whereby the detection events 
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were separated by at least 12 hours from each other.  While a large number of sharks were only 

detected one time each season (i.e., only one detection event was noted for 23 sharks), there were 

a number of tagged sharks that exhibited multiple independent detection events.  In 2010 and 

2011 (the years with the largest numbers of detections), the average number of independent 

detection events recorded for each tagged shark on the Hatteras Acoustic Array was 3 and 3.5 

times, respectively.   Figure 32 shows the timing of detections in 2009, 2010, and 2011 by week.  

In 2009 and 2010, the number of detections on the Cape Hatteras Acoustic Array peaked 

between early February and early March.  In 2011, a definitive peak in the number of detections 

was noted the first week of February; however detections occurred across a broader time range 

(somewhat attributable to when gear was deployed).  In 2009 and 2010, detections of tagged 

sharks dropped off after the last week of March; in 2011 the last sharks were detected the first 

week of April on the Hatteras Acoustic Array (Figure 32).    

A total of 184 individual detection events from 43 different Spiny Dogfish were observed 

on the Hatteras Acoustic Array, ranging from less than a minute to over 24 hours (Table 23; 

Figure 33).  Nine of these detection events consisted of a single detection (meaning that these 

data are suspect due to the risk of false detections).  Fifty fish were not detected on the acoustic 

array and therefore had no independent detection events considered in this analysis; some of 

these animals were detected on other arrays and these independent detection events will be 

considered in future analyses.  Overall, most detection events lasted between 15 minutes and 2 

hours.  Figure 34 shows the frequency distribution of individual detection event duration by year.  

The majority of detection events in 2009 lasted between 45 minutes and 2 hours. The majority of 

detection events in 2010 were between 16 and 45 minutes in duration.  In 2011, the time interval 

with the greatest number of detection events was 1-2 hours; however, many detection events also 
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occurred between 16 and 45 minutes. There were no statistically significant differences in the 

log-transformed duration of detection events (total time in minutes) by detection year (F = 

0.2159, df = 182, p>0.05). The greatest number of detection events started between midnight and 

1:00am (Figure 35).  

Temporal Aspects of Detections Beyond North Carolina.  Aggregated acoustic 

tagging data standardized to calendar day of detection is suggestive of a cyclic north-south 

migration based on the timing of detections and the latitude of occurrence (Figure 36).  While 

sharks were periodically detected on buoys that were part of the Gulf of Maine Ocean Observing 

System (one of which was in the central Gulf of Maine), most detections in the northern half of 

the range occurred off coastal Massachusetts during the summer and fall of 2010 (Figure 37).   

Four peaks were observable in the data, suggesting that some environmental factor may be 

driving dogfish at periodic intervals into habitats sampled.  

Analysis of straight-line distance between detection points and time elapsed between 

detections (i.e., movement rates) indicate that sharks can move very quickly within short periods 

of time. Sharks were noted to move up to 32 kilometers in the same day, with an average 

movement rate of sharks between two points on the same day of 4.92 km/day (± 6.90 km/day).  

Sharks were also noted to make extensive movements within a day , as evidenced by Shark 

#63952, which moved from deepwater continental shelf break habitat approximately 55 

kilometers (35 miles) off the coast of Rodanthe, NC (near a physical feature known as “the 

point” to local fishermen) to a detection site just off the beach near Hatteras Inlet. The distance 

between these two locations was measured to be approximately 106 kilometers (66 miles).  

Unusually fast rates of travel could be reflective of a predation event and the tag’s presence 
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inside a predator; however, without additional information such as external temperature sensors 

this would be hard to prove.  Additional analyses should be undertaken to evaluate local 

movement and between-array movement rates to determine if this rate of travel is realistic for 

spiny dogfish.    

 The average travel rate of sharks detected within a 24 hour period was estimated to be 

19.58 kilometers/day (± 18.51 kilometers/day).   Average movement rate between detection 

points was different by arrival region (North Carolina, Massachusetts, and Delaware, Gulf of 

Maine; Kruskal Wallis / Chi Square, χ
2 

= 17.21, df = 3, p < 0.05), with a particular leg assigned 

based on the arrival location.   Comparison using a Steel-Dwass Multiple Comparisons analysis 

(non-parametric version of a Tukey HSD test; e.g., Neuhauser and Bretz 2001) indicated 

significant differences in movement rates (kilometers/day) between detection points between 

North Carolina and Delaware (Z = -2.79, p = 0.03), North Carolina and Massachusetts (Z = -

3.22, p = 0.007) and North Carolina and the Gulf of Maine (Z = -3.04, p = 0.013) (see Figure 38 

for box plots of log-transformed travel rates by region).  Travel rates are hypothesized to be 

slightly slower for legs that arrived in or were wholly contained in coastal North Carolina than in 

other areas. This analysis did not differentiate between local movements and long-range 

movements; future analyses should account for the differences between these two types of 

movements.  

 

Results: Mark-Recapture Experiment  
 

Spatial Extent of Recaptures.  As of December 31, 2014, a total of 619 conventional 

dart tags were returned to East Carolina University, which equates to a 1.32 percent return rate 
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for the project (Table 24).  Recapture rates for Massachusetts-tagged sharks and North Carolina-

tagged sharks were roughly 1.64 and 1.12 percent, respectively.  Recapture rate for Nova 

Scotian-tagged sharks was higher (2.94 percent), and 75 percent of these sharks were recaptured 

and returned from Canada.  Approximately 4.7 percent (n = 26) of the sharks released in the 

United States were recaptured in Canada (Table 24); 6.0 percent of the North Carolina-tagged 

sharks were recaptured in Canada.  Despite repeated attempts to communicate with fishermen, 

we were unable to obtain exact recapture location information for 14 tags.  Locations of 

recapture were approximated from qualitative descriptions from fishermen, or based on the 

return address or postmark from mailings.  

Most of the sharks released off of North Carolina (typically in late winter) were 

recaptured in North Carolina (usually within 1-3 months of release) or Massachusetts (usually 

within 4 – 7 months of release).  Most of the tag returns from sharks released off coastal 

Massachusetts were recaptured in the same area, but recaptures occurred year round.  

Recapture location of Massachusetts-tagged sharks is of particular interest because 

Massachusetts is suspected to be a mixing ground (or an area of spatial overlap) for sharks in the 

Gulf of Maine and Mid-Atlantic hypothetical behavioral contingents.  Ninety-one sharks that 

were released north of the 42º N Latitude line were recaptured; of these, 70 sharks were 

recaptured north of Cape Cod and 21 were recaptured south of Cape Cod (Figure 39).  Forty-

seven of the sharks released south of the 42º N Latitude line were recaptured.  Some of these 

sharks, released along Cape Cod just south of the 42º N Latitude line, were caught in almost 

equal numbers north and south of the 42º N Latitude line.  Sharks that were released well to the 

south of Cape Cod (off Rhode Island) tended to be recaptured south of Cape Cod.     
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Mark-recapture data provided additional insight on the peripheral distribution of tagged 

Spiny Dogfish (albeit limited by the distribution of fisheries that encounter tagged Spiny 

Dogfish).  Northern recapture locations of all North Carolina-tagged sharks are shown in Figure 

40.  North Carolina-tagged sharks were recaptured in the two circled locations through a 

majority of the year (spring through fall).  Northward movements between the two areas along 

the shoreline of Cape Cod were identified from recapture data in June (Figure 41); however a 

number of recapture events also happened during this time out in the Gulf of Maine.  Southward 

movements along Cape Cod were observed in October (Figure 42).  North Carolina-tagged Spiny 

Dogfish were only recaptured within Cape Cod Bay in late summer.   

Geographic recapture data were provided to ECU researchers for 64 tagged sharks that 

were recaptured south of Cape Hatteras, North Carolina (see Figure 43).  Most of the recaptures 

occurred in between Cape Hatteras and Cape Lookout, North Carolina, and reflected the seasonal 

availability of the species to the local fishery.  Sharks were recaptured south of Cape Hatteras as 

early as November and as late as June in a given fishing year.  Overall, the greatest number of 

recaptures south of Cape Hatteras occurred in March (data not shown). 

Timing of Recaptures.  Release and recapture years were provided by industry 

participants for 403 North Carolina-tagged Spiny Dogfish (Table 25), 142 Massachusetts-tagged 

Spiny Dogfish, and 51 Nova Scotia-tagged Spiny Dogfish (data from Massachusetts and Nova 

Scotia not shown to maintain a reasonable scope and size for this chapter).  For North Carolina-

tagged Spiny Dogfish, the release year with the greatest number of recaptures was 2006 (n = 121 

tags); this was the same year with the largest number of tags released (n = 10,713 tags).  The 

majority of tagged sharks were recaptured within 1-2 years of the release event, especially in the 
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early years of the tagging program (i.e., roughly 96 percent of the tags deployed on sharks in 

1997 and 1998 were returned either in the same year or the consecutive year, whereas between 

2000 and 2006, on average 59 percent of the tags were returned within 2 years of deployment).  

The most recaptures occurred in 2007 (n = 78 tags) (Table 25).  

Days-at-large (DAL) were the number of days between the release and recapture events.  

The overall median DAL for all tag recaptures (across all release locations) was 340 days.  

Median DAL for North Carolina-tagged sharks, Massachusetts-tagged sharks, and Nova Scotian-

tagged sharks were 313 days, 403 days, and 338 days, respectively.  Figure 44 shows boxplots 

depicting the median DAL by release year of North Carolina-tagged Spiny Dogfish sharks, 

which provides an indication of how long sharks from a given year tended to be “at liberty” 

before they were recaptured.  Years with robust fisheries (late 1990s and after 2010) tended to 

have smaller DALs than the years encompassing the rebuilding period for Spiny Dogfish (2000 

to 2008).  The greatest median DAL occurred in 2004; the year with the greatest variability in 

DAL was 2005.   It is also worth noting that DAL by recapture year has increased dramatically 

since 2007; this could be a result of stricter management measures in the directed fishery (i.e., 

lower quotas), a reduction in interactions with incidental fisheries, or more sharks adopting 

behaviors that make them less susceptible to capture from either directed or incidental fisheries 

(Figure 45). 

A number of recapture events with DALs greater than 1,000 days in primary recapture 

areas (North Carolina, Virginia, and Massachusetts) were noted in the study (Figure 46).  Most of 

these long-term recapture events in the southern mid-Atlantic Bight had timeframes of two to 

five years at liberty.   Long-term recapture events off southern New England varied between 
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three to ten years, while long term recapture events in the Gulf of Maine varied between three to 

seven years.  When the distance between release and recapture locations was compared to days-

at-large, a clear cyclic pattern over multiple years was observable for North Carolina-tagged fish 

(Figure 47).   When the recaptures were standardized by calendar day and compared to latitude, 

there was clear indications that North Carolina tagged dogfish undertake extensive migrations 

between latitudes of 34ºN and 45ºN, whereas sharks tagged off Massachusetts and Nova Scotia 

tend to be recaptured at latitudes closer to the latitude of release (Figure 48). 

 A number of tag returns occurred close to anniversaries of tagging events (i.e., those that 

occurred within the timeframe of an “annual increment”).  Tag returns from 35 sharks were 

considered to occur within an annual increment of the release event, and there were 49 tag 

returns that occurred within a short time (<60 days) of release.  Many of these tag recaptures 

occurred within a relatively short distance of the tag and release location (Table 26). 

Discussion 

Behavioral data, no matter how they are collected, are limited by the inherent biases 

associated with the methodologies.  Utilizing both acoustic and mark-recapture data provide a 

more robust description of movement patterns than either approach might on its own. For 

example, acoustic tagging methods collects fishery independent data on individual fish and can 

provide irrefutable evidence of cyclic migrations between North Carolina and Massachusetts as 

individuals are sequentially detected on arrays along the coast.  Data collections are limited to 

locations where acoustic receivers are deployed and are subject to the “detectability” of tags 

within the environment. However, it is possible to receive hundreds of data points for an 

individually tagged fish while the batteries are active.  Conversely, mark-recapture data may 
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provide expanded spatial coverage since returns are based on the extent (and behavior) of 

fisheries that might interact with tagged sharks.  Tagged Spiny Dogfish were captured with seine, 

handline, rod and reel, gillnet, pelagic and bottom longline, trawl, trap and pot gears deployed in 

multiple fisheries between South Carolina and Iceland.  Since conventional tag mark-recapture 

data most often only feature two data points (rarely more if animals are released with tag still in 

place) for each animal (release and recapture locations), behavior patterns are inferred from 

collective analysis of all mark-recapture data. Conventional, external tags are not, however, 

limited in terms of battery life (a problem with acoustic tags), and conventional tags have been 

returned a decade or more after the release event.  This project demonstrates that the two types of 

approaches can collectively provide a more comprehensive picture of Spiny Dogfish behavior 

than either approach by itself.   

Annual redetection rates of acoustically tagged spiny dogfish within the Hatteras Bight 

ranged between 10 and 15 percent in 2009 and 40 to 50 percent in 2010.  These rates were 

somewhat low compared to single redetection rates from acoustic tagging projects completed on 

other species reported in manuscripts utilized in Chapter 2 for the meta-analysis. For example, 

Andrews et al. (2007) noted single redetection rates of 100 percent for Sixgill Sharks in Puget 

Sound; Dewar et al. (2008) detected 85 percent of tagged Giant Manta in Komodo Marine Park, 

Indonesia; 100 percent of Gray Smoothhound in a California estuary were redetected by 

Espinoza (2010); Smith (2012) redetected 84 percent for Bonnethead Shark tagged and released 

in a Georgia estuary; Filmalter et al. (2013) relocated 86 percent of Sicklefin Lemon Shark 

tracked at an Indian Ocean atoll; and 100 percent for White Sharks in False Bay, South Africa 

tagged by Kock et al. (2013) were redetected.  In drawing comparisons between our study and 

these studies, it is important to remember that several of these systems were either partially 
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enclosed (thereby constraining tagged animals within an area that has active receivers, which 

should increase the probability of detection), or the acoustic receivers were deployed in habitat 

oasises (e.g., Indian Ocean atoll) whereby the tagged animals would be incentivized to remain 

due to availability of food sources.  Understanding an animal’s behavior can assist in strategizing 

the deployment of acoustic receivers. For example, white sharks are known to patrol specific 

hunting grounds, so the deployment of acoustic receivers in areas close to beaches frequented by 

seals (e.g., Kock et al. 2013) might increase the likelihood of detection in those areas.   

Our acoustic array was deployed in an area that may serve as a migratory bottleneck for 

some species traveling along the continental shelf.   High detection rates for other animals in the 

Mid-Atlantic Bight (i.e., Atlantic sturgeon) may be due to the tendency of these animals to be 

“shoreline huggers” (R.W. Laney, U.S. Fish and Wildlife Service, personal communication).  

However, dogfish are known to make rapid on- and off-shelf movements; there was no physical 

barrier preventing these sharks from swimming around the array or off the continental shelf.  

Furthermore, these animals are not known to be shoreline huggers; rather, they are classically 

referred to as a deepwater shark that often distributes across the continental shelf (e.g., Burgess 

2002).  Although not a firm rule, there are examples in the literature of acoustic tagging studies 

conducted in open ocean environments that experienced lower single redetection rates (e.g., 49 

percent redetection rate of  Steelhead Trout Oncorhynchus mykiss in a study evaluating marine 

movements (Welch et al. 2004); 54 percent redetection rate for Green Sturgeon completing 

marine migrations (Lindley et al. 2008); 55 percent redetection rates for Tiger Sharks tracked 

across the Coral Sea (Werry et al. 2014)). Furthermore, we noted that dogfish were detected in a 

variety of habitats, and therefore may not be behaviorally constrained in the same way as are 

animals that are dependent on specific food sources or constrained to particular habitats.   
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Our recapture rates of Spiny Dogfish tagged in mark-recapture experiments were either 

slightly lower or consistent with results from other tagging studies completed on Spiny Dogfish.  

Templeman (1954, 1984) tagged 2,657 sharks between 1942 and 1965 off southern 

Newfoundland (Canada), and had a recapture rate of 8.7 percent (n = 232 individuals).  

Myklevoll (1993; as reported in Campana et al. 2008) tagged 500 sharks in Georges Bank 

between 1956 and 1961, and obtained recapture data on 14 individuals (2.5 percent). Jensen 

(1961, 1966, 1969) tagged 999 Spiny Dogfish in 1968 between Cape Cod, Maine, and Brown 

Banks (Canada), and obtained recapture data from 25 sharks (2.8 percent). Shafer (1970) tagged 

and released 3,583 Spiny Dogfish at various locations throughout the Mid-Atlantic Bight and 

New England, and reported a recapture rate of 1.67 percent, which is close to the results obtained 

in our tagging program.  McFarlane and King (2003) tagged over 71,000 Pacific Spiny Dogfish 

(S. suckleyi) between 1978 and 2000, and received recapture information on 2,940 indivuals (4.1 

percent).    Our mark-recapture results therefore do not appear to be inconsistent or unusual when 

compared to other tag studies on Spiny Dogfish.   

Distribution of Spiny Dogfish on either U.S. coast has long been known to reflect a 

northward distribution in the summer and a southward distribution in the winter (Brodeur et al. 

2009; e.g., McMillan and Morse 1999 and Campana et al. 2009 in the Atlantic, and Bonham et 

al. 1949 and Holland 1957 in the Pacific).  Jensen et al. (1961) noted that dogfish are spring and 

autumn transients in the southern part of the range (NY to NC), and in the Cape Cod area are 

mostly transients moving to the north in the spring and the south in the fall.  Templeman (1984) 

found southward migrations in late autumn and winter of sharks tagged off Newfoundland to 

waters off the U.S. for overwintering and liberation of young; northward return feeding 

migrations to regions off Newfoundland occurred in late spring and early summer.  Acoustic data 
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and mark-recapture external tag data from this research indicate that an identifiable component 

of the Northwest Atlantic stock makes seasonal migrations between North Carolina and 

Massachusetts.  There is also evidence that dogfish remain available to coastal New England 

fisheries for much of the year; indeed, year round fisheries in these areas are not uncommon 

(ASMFC 2002; see annual reviews of the Interstate Fishery Management Plan for detailed 

landings by state).  We note that dogfish tagged at the extreme northern end of the range tended 

to not be recaptured beyond southern New England; however this could be a function of sample 

size since the number of sharks tagged by Moore (1999) and Register (2007) were relatively 

small compared to the number of sharks tagged off of North Carolina by Rulifson (Hickman et 

al. 2000; Rulifson et al. 2002).  Comparison of recapture latitudes with calendar day from both 

mark-recapture and acoustic data suggest that the North Carolina-tagged Spiny Dogfish (as part 

of the hypothesized mid-Atlantic migratory contingent) make regular, cyclic migrations between 

mid-Atlantic wintertime and southwestern Gulf of Maine or southern New England summer 

habitats (Figure 49).  This is further corroborated by the repeat detection of individually tagged 

Spiny Dogfish multiple years in a row on either (or both) the Cape Hatteras and Massachusetts 

coastal arrays.    

Mark-recapture external tag data and acoustic data suggest that Spiny Dogfish arrive in 

coastal North Carolina in December (or even November) of a given year, and may stay well until 

April or May of a given year (depending on water temperature and other environmental factors, 

see Chapter 3).  In wintertime, many Spiny Dogfish were recaptured (mark-recapture external 

tag) or redetected (acoustic tags) south of Cape Hatteras, which traditionally has been recognized 

as a southern extent of the Spiny Dogfish range for management purposes by the Mid-Atlantic 

and New England Fishery Management Councils, and NOAA Fisheries.   Our data corroborate 
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with other research that has noted the presence of dogfish south of Cape Hatteras.  Some 

recaptures occurred south of Cape Hatteras (a small number from South Carolina fishermen).  

Large dogfish aggregations have been observed in the Hatteras Bight and Onslow Bay (Figure 

50; Newman et al. 2000, Rulifson and Moore 2009), and there are reports of these sharks 

venturing much further south.  Spiny Dogfish are found in numbers large enough to support an 

annual wintertime tournament held in Wrightsville Beach, North Carolina (east of Wilmington, 

NC) (A. Baird, Mercer Pier Dogfish Tournament organizer, personal communication).  Spiny 

Dogfish are periodically encountered in surveys conducted off Charleston, SC (pers comm., B. 

Frazier, South Carolina Department of Natural Resources, Marine Resources Division, 

Charleston).  In addition, numerous fishermen between North Carolina and Florida have reported 

Spiny Dogfish in exceptionally deep waters off the continental shelf (e.g., personal 

communications - D. Hemilright, NC; E. Sander, FL).   

Spiny Dogfish schools are known to distribute in response to rapid changes in 

environmental conditions off the coast of North Carolina (Rulifson and Moore 2009).  Our 

acoustic data indicated that sharks can move quickly (e.g., one shark traveled 106 kilometers in 

one day), but may revisit array sites multiple times in a season. It is possible that this shark could 

have been consumed by a predator. Our acoustic tag data would not be indicative of a predation 

event; however, this could be investigated by comparing known movement rates of spiny dogfish 

and known predators of spiny dogfish (e.g., larger sharks).     

Mark-recapture and acoustic data suggest that sharks that overwinter in North Carolina 

may distribute northward (starting in March or April) in the summer to nearshore habitats along 

the Massachusetts coast, specifically between Cape Ann and Cape Cod.  Therefore, we propose 
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this area as the northern extent of the contingent range and the site of a possible area of spatial 

overlap between the hypothesized mid-Atlantic and Gulf of Maine contingents. Approximately 

fifteen percent of tagged Spiny Dogfish were either redetected or recaptured north of Cape Ann, 

Massachusetts, and approximately one-quarter of spiny dogfish were recaptured or redetected 

between Chatham, Massachusetts and Cape Ann, Massachusetts (Figure 51).  Research 

conducted in the Cape Cod region by Rulifson et al. (2012) found that a majority (60-70 percent) 

of sharks tagged north and south of Cape Cod tended to be recaptured on the same side of Cape 

Cod, further exemplifying the hypothesis of this region as a mixing ground.  The sharks then 

spend roughly five months of the year between southern New England (i.e., Rhode Island, or 41º 

Latitude) and the central Gulf of Maine (i.e., roughly along the New Hampshire – Maine border) 

before heading back to wintertime habitats in the mid-Atlantic.  The migration between summer 

and winter habitats takes approximately three to five months; mark-recapture data suggest that 

the southward (fall) migration may take less time than the northward (spring) migration.   

Notable numbers of sharks were recaptured (external tags) and redetected (acoustic tags) 

at northern and southern extents of the range; however, comparatively few animals were detected 

in between these regions.  Acoustic data indicate that groups of dogfish tagged in one year do not 

necessarily undertake the same migratory pathways as groups of dogfish tagged in a subsequent 

year; similarly, individually tagged dogfish may not undertake the same movements from one 

year to the next.  Furthermore, while several of the sharks that were tagged off the North 

Carolina coast were redetected in subsequent years on the North Carolina array, this type of an 

annual detection event was not strongly observed in other locations.  For example, a relatively 

large number of sharks were only detected off the coast of Delaware in one year (2009).   Also of 

note is the fact that some sharks detected in coastal North Carolina in 2009 or 2010 disappeared, 
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and went a year or more before being redetected.  There are indications from mark-recapture data 

of dogfish not being susceptible to fisheries for extended periods of time, and large numbers of 

tagged sharks are not recaptured.  Dogfish that were at large 1,000 – 1,800 days (three to five 

years) were recaptured off the coast of North Carolina, and dogfish that were at large for 2,000 to 

3,000 days (five to eight years) were caught between New Jersey and Nantucket (Figure 46).  

Maximum time at liberty from the mark-recapture research discussed herein was attributed to a 

shark tagged in March 2000 off North Carolina; this animal was at liberty for 4,567 days (12.5 

years) before its recapture event off Rhode Island. Maximum time at liberty for sharks tagged in 

separate research studies conducted off Newfoundland (Templeman 1984), in the Gulf of Maine 

(Jensen 1961), and off British Columbia (McFarlane and King 2003) ranged between 10 and 20 

years.  

It is important to note that the gaps in detections between seasons or years could be a 

function of the deployment schedules for receivers from other institutions; if receivers are not in 

the water year round, then inferences based on detections would have to account for the 

deployment schedules of all arrays.  Future research with these data will re-evaluate detections in 

light of other researcher’s deployment schedules.  Similarly, mark-recapture data used to 

evaluate the distribution of sharks based on recaptures would be affected by the relative amount 

of fishing effort, closures, and timing of both directed spiny dogfish fisheries and incidental 

fisheries.  We did not account for this in the evaluation of mark-recapture data, and would 

recommend that future studies using these data identify and account for fishery-dependent 

conditions that could influence the probability of recapture.   
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So where do sharks at liberty for extended periods of time go?  Campana et al. (2008) 

argue that populations of dogfish off Newfoundland and other parts of Atlantic Canada make 

onshore and offshore migrations between summer and winter habitats, respectively.  Based on 

research completed with PSAT tags, Carlson et al. (2014) noted that some Spiny Dogfish tagged 

off the coast of North Carolina and Massachusetts spent considerable time in exceptionally deep 

waters far east of the continental shelf.  Tagged Spiny Dogfish off North Carolina, in particular, 

moved east and northward away from the continental shelf.  Our data suggest that while some 

tagged sharks remain in coastal continental shelf waters, a component of the population that 

could comprise a hypothetical Mid-Atlantic Spiny Dogfish contingent may venture into deep, 

offshore waters and become unavailable to the fishery (or to acoustic detection gear deployed in 

coastal areas) for extended periods of time (i.e., 99 percent of the tagged sharks were not 

recaptured – perhaps they are unavailable to the fishery due to off-shelf migration?). Spiny 

Dogfish were detected on a Gulf of Maine Ocean Observing System (GoMOOS) buoy floating in 

the central Gulf of Maine, far offshore from any coastal habitats.  A small number of tag returns 

came from deepwater trawl fisheries in areas well east of the continental shelf (data not shown), 

and one tag return came from Iceland (released January 26, 2005 off the Outer Banks of North 

Carolina, and recaptured by longline August 30, 2009 (1,677 days later) approximately 5,091 km 

from the release site in 70 meters of water).  Given that some dogfish seemingly appeared 

between Cape Hatteras and the Cape Cod region without being detected on coastal arrays in 

between, we hypothesize that some of these sharks may complete part of the migratory cycle off 

the continental shelf.   The propensity to be in shallower waters on the continental shelf or deeper 

waters off the continental shelf may be driven by dogfish response to environmental factors.  

Additional research with PSAT tags, or deployment of Remote Operated Vehicles with 
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compatible receivers for acoustic tags, could be used in the future to evaluate spiny dogfish 

movements along the continental shelf.   

The mark-recapture and acoustic data, along with PSAT analyses conducted by Carlson 

et al. (2014) and consideration of previous research on Spiny Dogfish, suggest that some 

modifications to Figure 19  may be appropriate to more accurately depict the northern and 

southern extent of migration for a hypothesized contingent of sharks that migrate through the 

Mid-Atlantic Bight to reach overwinter grounds or summer habitats. A generalized depiction of 

behavior undertaken by Spiny Dogfish that overwinter off the coast of North Carolina is shown 

in Figure 52.  North Carolina-tagged spiny dogfish were frequently recaptured or detected at the 

end points of migration (i.e., North Carolina or southern New England/coastal Massachusetts, 

shaded in yellow circles).  However sharks were not observed to undertake the same migration 

pathway in consecutive years based on acoustic detections, and sharks were frequently either not 

detected on coastal arrays for extended periods of time or had lengthy times at liberty. We 

therefore propose that sharks could make part of the migration in deeper areas of the continental 

shelf or off-shelf (indicated by dashed lines leading to question marks).  Furthermore, PSAT 

studies by Carlson et al. (2014) suggest that dogfish do venture off-shelf.  As shown in Chapter 

4, Spiny Dogfish are extremely sensitive to environmental fluctuations (in particular, water 

temperature) and distribution is known to be influenced by oceanographic conditions (Sargarese 

et al. 2014).  Therefore the migration pathway is depicted as either occurring along the coast 

(hyphenated line) or at or off the continental shelf (solid line), with the exact location on the 

shelf likely dictated by environmental conditions (short arrows between the two pathways 

depicting on- and off-shelf movement).  Finally, there is documented evidence of dogfish 

moving south of Cape Hatteras, both in terms of acoustic detections, conventional tag recaptures, 
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surveys conducted further south (e.g., SC DNR longline survey off Charleston SC), and 

anecdotal evidence and data provided by fishermen (e.g., Johnny Mercer Pier dogfish 

tournament).  The southern extent of the migration is thus expanded by hyphenated lines 

suggesting movement south of Cape Lookout, North Carolina both along the coast and along the 

continental shelf, with arrows also suggestive of on and off-shelf movement.  

 In conclusion, the combined mark-recapture external tag study and acoustic tag study 

represent close to fifteen years of tagging research on Spiny Dogfish, and constitutes the largest 

tagging study on Spiny Dogfish in the northwest Atlantic Ocean.  This chapter discusses general 

trends in two types of data, and identifies the migration patterns of sharks that could be part of 

the proposed Mid-Atlantic Migratory Contingent of Spiny Dogfish.  However, these hypotheses 

can and should be further explored via additional modeling efforts with these data.  Results 

should also be further evaluated in the greater context of studies discussing distribution of Spiny 

Dogfish from wide-ranging survey data (e.g., NEFSC trawl survey data (Sagarese et al. 2014) or 

DFO Canada groundfish trawl survey data (Shepherd et al. 2002)), ongoing tag studies such as 

the NOAA Fisheries’ Cooperative Research Spiny Dogfish Tag Study (2011 to present), and 

high resolution satellite tag data (e.g., Carlson et al. 2014) to further refine understanding of the 

stock structure of Northwest Atlantic Spiny Dogfish.      
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Figure 21. Release locations for acoustically tagged Spiny Dogfish in 2010. Fifteen sharks were 
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Figure 22. Placement of the VEMCO VR2W listening fence south of Cape Hatteras, North 

Carolina off of Hatteras Village in 2009. 
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Figure 23. Acoustic arrays included in the Atlantic Cooperative Telemetry (ACT) network, 

shown in orange, and the Florida Atlantic Coast Telemetry (FACT) project, shown in purple, as 

of 2010. 

 

Figure 24. The VFIN towable unit was attached with a boom (A) to the side of the boat and 

pulled along a survey track (B) until a fish was detected.  A receiver unit (blue box, C) integrated 

the signal and sent data to a computer that also noted cruise track (D). 

 

Figure 25. Shaded regions represent areas sampled during acoustic surveys.  Regions north and 

south of Cape Hatteras were sampled on alternating weeks during each sampling season. 

 

Figure 26. Single barb dart tags used in Spiny Dogfish mark-recapture studies (A), and the 

location of tagging (B).  Source: (A) R.A. Rulifson; (B) L. Bade. 

 

Figure 27. Spiny Dogfish were detected on arrays maintained by a number of other state, federal, 

and academic institutions.  Green dots show the locations where North Carolina-tagged spiny 

dogfish were detected on other acoustic arrays between North Carolina and the Gulf of Maine. 
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Figure 28. Locations of tagged Spiny Dogfish detected through active acoustic surveys 

conducted in February and March of 2009 and 2010. 

 

Figure 29. Detections of 2009-tagged Spiny Dogfish on the Hatteras Acoustic Array.  Red boxes 

indicate the periods in which the acoustic array was deployed.   Horizontal lines are a visual 

guide for tracing the temporal distribution of detections of individually tagged fish (tag ID 

numbers shown on the y-axis). 

   

Figure 30. Detections of 2010-tagged Spiny Dogfish on the Hatteras Acoustic Array.  Red boxes 

indicate periods in which the array was deployed.  Horizontal lines are a visual guide for tracing 

the temporal distribution of detections of individually tagged fish (tag ID numbers shown on the 

y-axis). 

 

Figure 31. Frequency of redetection of tagged Spiny Dogfish on the ECU Hatteras Acoustic 

Array (e.g., six tagged Spiny Dogfish were detected one time on the ECU acoustic array in the 

winter of 2009). 

 

Figure 32. Distribution of Spiny Dogfish detections on the VR2W array in the Hatteras Bight, 

NC. 
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Figure 33. Frequency of individual detection events occurring on the Cape Hatteras Acoustic 

Array (2009 – 2011) by time interval (2009-tagged sharks and 2010-tagged sharks combined). 

 

Figure 34.  Individual detection events of tagged dogfish on the Cape Hatteras Acoustic Array by 

time interval and year. 

 

Figure 35. Radial plot showing the hour within which single detection events first occurred on 

the Hatteras Acoustic Array (all detections between 2009-2011)).  Each “pie piece” shows a one 

hour interval. The length of the pie segment corresponds to the number of detections (range of 3 

to 16 detections). 

 

Figure 36. Latitude of detection of tagged Spiny Dogfish by calendar day for 2009 and 2010-

tagged sharks.  Figure shows detection data provided by institutions maintaining arrays north of 

the Cape Hatteras acoustic array between 2009 and 2011. 

 

Figure 37. Timing of acoustic tag detections from North Carolina-tagged sharks on acoustic 

receivers deployed off the coast of Massachusetts in 2010 by week (e.g., from 6/2/2010 to 

6/8/2010 a total of 73 detections were attributed to 2009-tagged sharks and 11 detections were 

attributed to 2010-tagged sharks). Labels indicate total numbers of 2009 (red) and 2010 (blue) - 

tagged sharks detected each week. 
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Figure 38. Log-transformed travel rate (distance in kilometers between detection points / days 

between detections) by arrival region for sharks initially tagged and released in NC waters. 

 

Figure 39. Reported recapture locations of Spiny Dogfish tagged with external dart tags.  

Recapture locations of sharks released north of Cape Cod (north of the 42º N Latitude line) are 

shown in blue.  Recapture locations of sharks released south of the 42º N Latitude line (either 

along Cape Cod or off Rhode Island) are shown in shades of pink. 

 

Figure 40. Northern recapture locations of North Carolina tagged Spiny Dogfish sharks.  Grid 

cells are colored to represent the number of recapture events.  Cells are labeled with the month(s) 

of recapture events (e.g., 6 = June, 7 = July, etc).  Circled areas are regions where North Carolina 

tagged sharks are consistently captured from late spring through early fall. 

 

Figure 41. Recapture locations of sharks in June, coupled with an analysis of recapture data 

earlier and later in the year, suggests northward movements along Cape Cod in June.  

Alternatively, sharks may make a circuit through the central Gulf of Maine in June. 
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Figure 42. Location of recapture events between October and December, with the strongest 

evidence of alongshore, southward movement near Cape Cod occurring in October. Each colored 

grid cell contains 1 recapture event. 

 

Figure 43. Distribution of recapture locations for tagged Spiny Dogfish off coastal North 

Carolina. 

 

Figure 44. Median days at large by release year of North Carolina-tagged Spiny Dogfish sharks. 

 

Figure 45. Median days-at-large by recapture year of North Carolina-tagged Spiny Dogfish 

sharks. 

 

Figure 46. Location of long term (> 1,000 day) recapture events of North Carolina-tagged Spiny 

Dogfish. 

 

Figure 47. Distance between release and recapture points versus the days at large of North 

Carolina-tagged Spiny Dogfish. 
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Figure 48. Latitude of recapture versus calendar day of recapture for all tags returned to East 

Carolina University. NC = tagged sharks released off North Carolina. MA = tagged sharks 

released off Massachusetts. NS = tagged sharks released off Nova Scotia. Red line shows the 

approximate latitude of Cape Ann, Massachusetts, a generalized northern extent for the proposed 

Mid-Atlantic Contingent of Spiny Dogfish. 

 

Figure 49. Comparison of latitude of external tag recaptures and acoustic tag detections from 

sharks tagged off the coast of North Carolina by calendar day of recapture or detection. The red 

line indicates the approximate latitude of Cape Ann, Massachusetts; only 15 percent of the 

recaptures and detections occurred north of this location.       

  

Figure 50. Location and approximate spatial extent of dogfish aggregations found south of Cape 

Hatteras, North Carolina (Newman et al. 2000; Rulifson and Moore 2009). 

 

Figure 51.  Number and percentage of Spiny Dogfish recaptured (mark-recapture study) and 

redetected (acoustic tag study) in sub-regions of New England.    

 

Figure 52.  Hypothetical migration pathways for North Carolina-tagged spiny dogfish.  Shaded 

circles are generalized depictions of overwintering grounds and summer feeding habitats. 

 



 

 

Tables and Figures 

 

Table 17.   

Year of 

Release 

Number of Tags 

Released 
Location of Release 

1996 990 Nova Scotia 

1997 677 North Carolina 

1998 7,274 North Carolina 

1999 1,292 North Carolina 

2000 904 North Carolina 

2001 0 ---------- 

2002 1,999 North Carolina 

2003 3,000 North Carolina 

2004 3,385 North Carolina 

2005 2,729 
North Carolina (n =1,985) 

Nova Scotia (n =744) 

2006 10,713 North Carolina 

2007 5,285 North Carolina 

2008 920 Massachusetts 

2009 53 North Carolina 

2010 2,671 
North Carolina (n = 40) 

Massachusetts (n = 2,631) 

2011 5,114 Massachusetts 

2012 0 -------- 

Total: 47,006 

Nova Scotia (n = 1,734) 

Massachusetts (n = 8,485) 

North Carolina (n = 

36,607 
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Table 18.  

 

 

NC Array Redetections of Sharks Tagged in 2009 

Tag ID Sex TL 2009 2010 2011 

54052 M 779 X X   

54056 F 833 X     

54060 F 820 X X   

54062 F 837 X     

54065 F 807   X X 

54068 F 814     X 

54069 F 880     X 

54072 F 845     X 

54073 F 845   X X 

54074 F 823   X   

54075 F 809     X 

54077 F 788 X     

54083 F 810     X 

54086 F 840     X 

54088 F 814 X     

54092 F 844 X   X 

54099 F 995 X     
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Table 19.  

 

 

NC Array Redetections of Sharks Tagged in 2010 

Tag Code Sex TL 2010 2011 

63940 F 871 X   

63941 F 855 X   

63942 F 820 X   

63943 F 885   X 

63944 F 964 X X 

63946 F 916 X   

63947 F 881   X 

63948 F 890 X   

63949 F 916 X X 

63951 F 890 X X 

63952 F 945 X X 

63954 F 980   X 

63955 F 868 X   

63958 F 860 X   

63959 F 820   X 

63963 F 870 X X 

63964 M 750   X 

63965 F 810 X X 

63968 F 870 X   

63970 F 950 X X 

63971 F 910 X X 

63972 F 830   X 

63977 F 870 X X 

63978 F 840 X X 

63979 F 855 X X 

63980 F 900 X X 
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Table 20.  

Tag 

Code 
Sex TL Release Location 

2009 2010 2011 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Coastal 

North 

Carolina 

Long 

Island 

Sound 

Delaware 

Bay 

Gulf of 

Maine 

Coastal 

Mass. 

Coastal 

North 

Carolina 

7829 F 852 north of Oregon Inlet 
 

X 
 

X 
     

54052 M 779 north of Oregon Inlet 
 

X 
 

X 
     

54053 F 853 north of Oregon Inlet 
 

X 
       

54054 F 795 north of Oregon Inlet 
 

X 
   

X 
   

54056 F 833 north of Oregon Inlet X 
        

54057 F 826 north of Oregon Inlet 
       

X 
 

54058 F 860 north of Oregon Inlet 
 

X 
       

54059 F 838 north of Oregon Inlet 
 

X X 
    

X 
 

54060 F 820 north of Oregon Inlet X 
  

X 
   

X 
 

54062 F 837 north of Oregon Inlet X 
     

X 
  

54063 F 867 north of Oregon Inlet 
 

X 
       

54064 F 830 north of Oregon Inlet 
       

X 
 

54065 F 807 north of Oregon Inlet X 
  

X 
   

X X 

54066 M 816 north of Oregon Inlet 
 

X 
    

X X 
 

54067 F 824 north of Oregon Inlet 
 

X 
       

54068 F 814 north of Oregon Inlet X 
     

X 
 

X 

54069 F 880 north of Oregon Inlet 
       

X X 

54072 F 845 north of Oregon Inlet 
       

X X 

54073 F 845 north of Oregon Inlet 
   

X 
    

X 

54074 F 823 north of Oregon Inlet 
   

X 
     

54075 F 809 north of Oregon Inlet 
 

X 
      

X 

54077 F 788 north of Oregon Inlet X 
        

54078 F 786 north of Oregon Inlet 
 

X 
       

54082 F 826 north of Oregon Inlet 
       

X 
 

54083 F 810 north of Oregon Inlet 
       

X X 

54084 F 801 north of Oregon Inlet 
 

X 
    

X X 
 

54085 F 832 north of Oregon Inlet 
      

X 
  

54086 F 840 north of Oregon Inlet 
       

X X 

54087 F 849 north of Oregon Inlet 
    

X 
    

54088 F 814 north of Oregon Inlet X 
  

X 
   

X 
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Tag 

Code 
Sex TL Release Location 

2009 2010 2011 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Coastal 

North 

Carolina 

Long 

Island 

Sound 

Delaware 

Bay 

Gulf of 

Maine 

Coastal 

Mass. 

Coastal 

North 

Carolina 

54089 F 808 north of Oregon Inlet 
       

X 
 

54090 F 858 north of Oregon Inlet 
      

X X 
 

54091 F 808 north of Oregon Inlet 
   

X 
     

54092 F 844 north of Oregon Inlet X 
       

X 

54093 F 824 north of Oregon Inlet 
       

X 
 

54095 M 756 north of Oregon Inlet 
       

X 
 

54097 F 843 north of Oregon Inlet 
 

X 
   

X 
  

X 

54099 F 995 north of Oregon Inlet X X 
       

54100 F 885 north of Oregon Inlet 
 

X 
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Table 21.  

Tag 

Code 
Sex TL Release Location 

2010 2011 2012 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Gulf of 

Maine 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Gulf of 

Maine 

Coastal 

NJ/NY 

63940 F 871 Cape Lookout X   X             

63941 F 855 Cape Lookout X   X             

63942 F 820 Cape Lookout X                 

63943 F 885 Cape Lookout         X       X 

63944 F 964 Cape Lookout X       X       X 

63945 F 888 Cape Lookout     X X           

63946 F 916 Cape Lookout X                 

63947 F 881 Cape Lookout     X   X         

63948 F 890 Cape Lookout X         X       

63949 F 916 Cape Lookout X                 

63951 F 890 Cape Lookout X   X   X       X 

63952 F 945 Cape Lookout X   X   X         

63953 F 850 Oregon Inlet                 X 

63954 F 980 Cape Lookout         X       X 

63955 F 868 Cape Lookout X   X X           

63956 F 810 Oregon Inlet     X       X     

63957 F 810 Oregon Inlet                 X 

63958 F 860 Oregon Inlet X                 

63959 F 820 Oregon Inlet     X X X         

63960 F 855 Cape Lookout     X             

63961 F 810 Oregon Inlet     X X           

63962 F 820 Oregon Inlet     X         X   

63963 F 870 Oregon Inlet X       X         

63964 M 750 Oregon Inlet     X   X         

63965 F 810 Wimble Shoals X       X         

63966 F 870 Oregon Inlet                 X 

63967 F 850 Oregon Inlet     X           X  

63968 F 870 Wimble Shoals X               X 

63969 F 830 Wimble Shoals X   X X           

63970 F 950 Hatteras Bight X                 
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Tag 

Code 
Sex TL Release Location 

2010 2011 2012 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Gulf of 

Maine 

Coastal 

North 

Carolina 

Delaware 

Bay 

Coastal 

Mass. 

Gulf of 

Maine 

Coastal 

NJ/NY 

63971 F 910 Wimble Shoals X   X   X         

63972 F 830 Oregon Inlet         X         

63973 F 820 Oregon Inlet             X   X 

63974 F 820 Oregon Inlet     X             

63975 F 870 Oregon Inlet     X             

63976 F 820 Wimble Shoals X   X             

63977 F 870 Hatteras Bight X   X X X         

63978 F 840 Hatteras Bight X   X X X   X     

63979 F 855 Hatteras Bight X   X   X     X   

63980 F 900 Hatteras Bight X   X   X       X 
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Table 22.  

 

 

 

North to South 
Year Tagged 

South to North 

2009 2010 2011 2009 2010 2011 

7 (13)* 3 (6)** 7 (13)** 2009 (n = 53) 1 (2)* 5 (9)** 0 

----- 5 (12.5)** 10 (25)** 2010 (n = 40) ----- 14 (35)** 8 (20)** 

7 (13) 8 (9)^ 17 (18)^ Total (n = 93) 1 (2) 19 (20)^ 8 (9)^ 

*Based on detections on the acoustic array. 

**Based on subsequent detections on either side of Hatteras Shoals, on consecutive detections on arrays 

north of Cape Hatteras and then south of Cape Hatteras (or vice versa), or redetection on a non-ECU, 

northern array in the same year as release. 

^In 2010, a total of 93 animals were at large. 
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Table 23.   

 

 

Number of Tagged Fish # of Independent Detection Events 

50 0 

11 1 

3 2 

6 3 

14 5 

5 10 

2 15 

1 25 
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Table 24.  

 

 

Recapture Location 

Release Location 
Recapture 

% by 

Location 
Nova 

Scotia 
Massachusetts 

North 

Carolina 

Iceland 0 0 1 0.16 

Canada 6 0 1 1.13 

Newfoundland 1 0 0 0.16 

New Brunswick 1 0 2 0.48 

Nova Scotia 30 1 20 8.24 

Prince Edward Island 0 0 1 0.16 

Gulf of Maine 1 0 0 0.16 

New England 0 0 1 0.16 

Maine 2 4 11 2.91 

New Hampshire 0 1 17 2.91 

Massachusetts 10 89 116 37.32 

Rhode Island 0 10 40 8.24 

New York 0 1 9 1.62 

New Jersey 0 9 50 10.18 

Delaware 0 0 3 0.48 

Maryland 0 2 5 1.29 

Virginia 0 5 24 4.85 

North Carolina 0 7 104 18.09 

 Overall Recapture Percentage by Release Location  

Total # Recaptured 51 139 410 619 

Total Released 1,734 8,485 36,607 46,826 

Recapture Percent 2.94 1.64 1.12 1.32 
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Table 25.   

 

 

Release 

Year 

Recapture Year 
Total 

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

1997 15 9 1                             25 

1998   55 9   1       1 1               67 

1999     10 1 2                         13 

2000       15 2 3 1 2 1   1         1   26 

2002           6 5 4 2   1   1 1       20 

2003             9 4 1 1 3   1         19 

2004               7 10 4 4 1   4 1 1 1 33 

2005                 6 7 4 1 4     2 1 25 

2006                   41 32 17 15 4 6 4 2 121 

2007                     33 7 6 1 1 2   50 

2010                           2       2 

2011                             2     2 

Total 15 64 20 16 5 9 15 17 21 54 78 26 27 12 10 10 4 403 
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Table 26.  

 

 

Distance 

(km) 

Percentage of 

Total 

Cumulative 

Percentage 

0 to 5.0 3.66 3.66 

5.1 to 10 3.66 7.32 

10.1 to 25 14.63 21.95 

25.1 to 50 12.20 34.15 

50.1 to 100 32.93 67.07 

100.1 to 200 13.41 80.49 

200.1 to 500 14.63 95.12 

500.1 to 

1,000 3.66 98.78 

1,000.1 + 1.22 100.00 
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Figure 19.  
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Figure 20.  
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Figure 21.  
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Figure 22.  
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Figure 23.  
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Figure 24.  
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Figure 25.  
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Figure 26.  
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Figure 27.  
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Figure 28.  
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Figure 29.  
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Figure 30.  
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Figure 31.   
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Figure 32.  
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Figure 33.   
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Figure 34.  
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Figure 35.  
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Figure 36.  
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Figure 37.  
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Figure 38.  
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Figure 39.  
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Figure 40.  
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Figure 41.  
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Figure 42.  
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Figure 43.  
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Figure 44.   
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Figure 45.  
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Figure 46.   
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Figure 47.  
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Figure 48.  
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Figure 49.   
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Figure 50.  
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Figure 51.  
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Figure 52. 

 

 

 

 

 

 

 



 

 

CHAPTER 4: INFLUENCE OF ENVIRONMENTAL CONDITIONS ON 

OVERWINTERING SPINY DOGFISH IN THE HATTERAS BIGHT, 

NORTH CAROLINA.   

Abstract 

Understanding the environmental conditions that influence localized distribution and migration 

patterns of commercially exploited fish species allows better prediction of fish behavior.  In turn, 

better prediction allows for the development of appropriately scaled management plans and 

continued agency responses to such issues as new demands on resources, unexpected changes in 

the status of populations, or long term response of species range and abundance to climate 

change.  Acoustic detection data were compared to concurrently collected environmental data to 

evaluate the factors influencing presence of Spiny Dogfish (Squalus acanthias) overwintering in 

coastal waters just south of Cape Hatteras, North Carolinas, in northern Raleigh Bay, known as 

the Hatteras Bight, NC in 2009 and 2010. Spiny Dogfish (“dogfish”) often were detected in the 

Hatteras Bight at times during directional shifts in water current within the water column or 

during periods where vertical profiling of horizontal currents was recorded.  Increased presence 

and abundance was positively associated with cooler water temperatures.  Acoustically tagged 

dogfish moved into the Hatteras Bight during favorable weather conditions (high pressure, lower 

wind speed/gusts, lower wave height) and their presence was recorded on the array when wind 

direction prevailed from the north or northwest (i.e., when the area is sheltered by land).  Dogfish 

appear to move close to shore when offshore water temperatures increase due to the influence of 

the Gulf Stream, and when weather conditions are such that nearshore conditions are either 

sheltered from the weather (i.e., wind from the north or northwest) or during a time when mild or 
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calm winds out of the south are present (i.e., no high energy systems such as nor’easters with 

wind directions from the south to southeast).  The identified relationships between dogfish 

presence and environmental factors in the Hatteras Bight, including the first comparison of Spiny 

Dogfish presence to current patterns, provides examples of the type of conditions under which 

dogfish may be detected in areas previously considered undesirable to the species.  If appropriate 

microhabitats are available for dogfish, then the functional extent of the dogfish range could 

extend much further south along the U.S. coastline than the current southern boundary of the 

management unit.  

Introduction 

Understanding the environmental conditions that influence localized distribution and 

migration patterns of commercially exploited fish species allows better prediction of fish 

behavior.  In turn, better prediction allows for the development of appropriately scaled 

management plans and continued agency responses to such issues as new demands on resources, 

unexpected changes in the status of populations, or long term response of species range and 

abundance to climate change.  For example, knowledge of general habitat associations, 

distribution and migration patterns can allow managers to maximize efficiency in survey design 

by ensuring adequate sampling in areas that could functionally support populations (Smith 1990; 

Smith et al. 1991), and delineation of appropriate management boundaries. 

Organisms select habitats that maximize survival, growth and reproductive potential 

(Lucas and Baras 2001), but suitability within these habitats may not be permanent due to 

seasonal changes or ontogenetic requirements (Metcalfe et al. 2002).  Both biotic and abiotic 

factors may influence selection of appropriate habitat (Sims 2003).  Localized distribution of fish 
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and sharks can be affected by small and large scale variations in the physical, oceanographic, or 

biotic environment (Carvalho 1993; Langton et al. 1995).  Migrations of many fish species along 

the mid-Atlantic typically reflect seasonal progressions in response to tolerable isotherms (Able 

and Grothues 2007). Specific environmental factors known to influence fish and shark 

migrations include light level, water temperature, hydrology, meteorology, water quality, and the 

interactions between multiple stimuli (individually reviewed in Lucas and Baras 2001; Able and 

Grothues 2007).   

Studies have inferred habitat preferences of Spiny Dogfish (ASMFC 2002; Shepherd et 

al. 2002; Sosebee and Rago 2006; Sargarese et al. 2014), a small coastal shark seasonally 

common in coastal regions of the Northwest Atlantic, but also known as a deepwater shark 

species that is abundant off the continental shelf.  Habitat association research suggests that 

Spiny Dogfish are strongly associated with the 8ºC (47ºF) isotherm, but are commonly found 

from 6 to 9ºC (Shepherd et al. 2002).  Shepherd et al. (2002) also noted depth associations from 

Canadian trawl survey data; sharks were found between 88 and 184 meters of depth, but males 

had a stronger association with deeper water and females with shallower water.  Sargarese et al. 

(2014) noted that the proportion of mature female Spiny Dogfish caught in federal trawl surveys 

was related to temperature in the Mid-Atlantic Bight, and suggested that oceanographic factors 

like water temperature could influence population-level trends in distribution and sexual 

segregation (i.e., sharks were associated with warmer water temperatures, females in particular).    

Most research associating Spiny Dogfish distribution and catch-per-unit effort has been 

undertaken in the northern half of the known Northwest Atlantic dogfish range across extremely 

large spatial scales (e.g., Shepherd et al 2002 and Sargarese 2014).  Tolerance ranges for 
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environmental factors such as temperature are therefore generalized across a wide range of 

habitats so it is unsurprising that there is variability between associations for temperature and 

depth for Spiny Dogfish in the northern and southern extents of its range (e.g., Massachusetts 

versus North Carolina).  The federal management unit for Spiny Dogfish (and the southern 

extent of most sampling and research) ends at Cape Hatteras; however, extremely large schools 

are known to venture into coastal waters of southeastern North Carolina.  Rulifson and Moore 

(2009) noted that six dogfish aggregations with an estimated one million dogfish were found 

south of Cape Hatteras, North Carolina, in temperatures that ranged between 8ºC and 15.7ºC and 

in depths between 10 and 16 m.  Hickman et al. (2000) noted no evidence of a strong linear 

relationship between dogfish catch, latitude, depth, or water temperature in North Carolina 

waters.  Given the complex oceanography of the area (i.e., confluence of the Labrador Current 

and the Gulf Stream) it is likely that a cold water species such as the Spiny Dogfish will be 

sensitive to changes in environmental conditions in this area.  In order to address the lack of 

information on Spiny Dogfish habitat associations in the southern part of the range, we compared 

acoustic detection data with environmental data collected in situ and recorded at local weather, 

tide and buoy stations. In particular we asked the following questions:  

 Is dogfish presence/absence or movement related to the presence of particular current 

profiles (magnitude, direction, vertical profiling/layering of horizontal currents)? 

 Is dogfish presence/absence or movement related to bottom water temperatures? 

 Are dogfish detections or movements concurrent with predictable cycles in water 

movement (i.e., tidal cycles) or with extreme events (i.e., storms)? 

 Under what conditions do dogfish move close to shore in the Hatteras Bight? 
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Answers to these questions will provide better understanding of how and where Spiny  

Dogfish aggregate during the overwintering period, and allow commercial fishers to either 

target or avoid these aggregations during winter fishing effort. 

Methods 

In 2009 and 2010 we tagged 93 Spiny Dogfish with Vemco V16 acoustic transmitters 

north and south of Cape Hatteras, North Carolina.  Pilot study data indicated that receiver 

spacing of 800 m (each of 400-m radius) was sufficiently close to detect a fish and reduce the 

risk of sharks swimming between receivers without being detected.  Acoustic receivers (model 

VR2W) were deployed in an array consisting of a single line of acoustic receivers deployed at 

approximately 800-m intervals in 2009 with an array length of roughly 9.65 km (~6 miles, 2009). 

In 2010, acoustic receivers were deployed up to 1,000 m apart in order to maximize array 

coverage; array length during that year was 16.09 km (~10 miles, 2010).  Arrays were deployed 

in winter and spring of 2009 and 2010.  When a tagged shark swam within range of the acoustic 

receiver, a date/time stamp and tag ID was recorded by the receiver.  Mobile tracking surveys 

were also conducted for tagged Spiny Dogfish between Oregon Inlet, North Carolina and Cape 

Lookout, North Carolina with a towable VFIN omnidirectional hydrophone.  Data from acoustic 

receivers and mobile surveys were downloaded, formatted, and analyzed to identify trends in 

migration and local movements (for details see Chapter 3), to compare against environmental 

data to evaluate microhabitat selection (this chapter), and to improve understanding of factors 

that influence  distribution in the southern extent of the Spiny Dogfish range.  

In 2009, three Teledyne Workhorse Acoustic Doppler Current Profilers (ADCPs) were 

deployed along the acoustic array at sites 2, 6, and 12 (approximately 1.15, 3.75, and 8.5 km) 
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from shore, respectively).  In 2009 we initially deployed ADCPs on metal stands (Figure 53); 

however, these stands were quickly silted in, were dangerous for divers to deploy due to sharp 

edges on the stand, and offered little protection to ADCPs from commercial fishing gear towed 

through the area.  The ADCP deployed at site 2 in 2009 was dragged offsite and the stand was 

damaged, presumably from shrimp trawler activity in the area.  The other ADCPs exhibited some 

evidence of interaction with fishing gear.   In 2010, we deployed a single ADCP with an acoustic 

trawl shield (Figure 53B) at Site 7 (approximately 11 km from shore). The trawl shield was 

designed to protect the ADCPs from fishing gear, and this proved to be a much more durable 

platform for ADCP deployment.   

Outside Data Sources.  Tide data were downloaded from the Tides and Currents 

webpage maintained by the National Oceanic and Atmospheric Administration (NOAA) for 

Hatteras Inlet(35°12'31" N latitude, 75°42'15" W longitude), North Carolina 

(http://tidesandcurrents.noaa.gov/). Tidal height data are recorded in meters from Mean Low 

Low Water (MLLW).  Tide data are recorded every 6 minutes. 

Weather data were acquired from two sources.  The National Data Buoy Center has 

archived data from multiple data buoys in the region, including data from buoys off the Cape 

Lookout shoals (Station CLKN7;  34°37'18" N latitude, 76°31'30" W longitude ), at Monitor 

National Marine Sanctuary (Station 40125; 35°0'22" N latitude, 75°24'7" W longitude), and 

Hatteras Inlet.  Available data from 2009 and 2010 were downloaded from the National Data 

Buoy Center website (http://www.ndbc.noaa.gov/).  After examination of data from different 

buoys in the region, it was determined that the only buoy that recorded wind speed and direction 

data throughout the deployment duration in winter 2009 and 2010 was the data buoy deployed at 



  

227 
 

Cape Lookout Shoals.  Wind speed (m/s) data were averaged over an eight-minute period for 

buoys and a two-minute period for land stations, and reported hourly in the available datasets.  

Gust speed was the peak 5 or 8 second gust wind speed (m/s) measured during the eight-minute 

or two-minute period, and reported hourly.  Wind direction was recorded as the direction from 

which the wind was coming in degrees clockwise from true N during the same period used for 

Wind Speed.  Sea level pressure (hPa) is the atmospheric pressure at sea level, and is measured 

at several of the data buoys.  Higher sea level pressure is generally associated with improved 

weather conditions, while decreasing sea level pressure can be indicative of a weather system.  

The second source of weather information used as a general reference is the Mariner’s Weather 

Log, a publication of the National Weather Service (http://www.vos.noaa.gov/mwl.shtml).  The 

Mariner’s Weather Log documents most significant weather systems that form in the North 

Atlantic.  Contextual information regarding each system, such as date of formation, duration, 

system characteristics, and movement through the North Atlantic, are reported.   

Sea condition data also were available from the data buoys mentioned above.  The 

Monitor National Marine Sanctuary data buoy was the closest in the region to the receiver array 

that consistently recorded significant wave height (in meters, calculated as the average of the 

highest one-third of all of the wave heights during the 20-minute sampling period), dominant 

wave period (period in seconds with the maximum wave energy), average wave period (in 

seconds, of all waves during the 20-minute period) over the two-year wintertime deployment 

period, and surface water temperature (used as a proxy for surface water temperature at the 

offshore end of the acoustic array).  These data were not recorded at other data buoys.  
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Other data downloaded and considered in analyses included minutes of darkness per day, and 

moon phase tables were downloaded from a website maintained by the U.S. Naval Observatory 

(http://aa.usno.navy.mil/data/index.php). 

Satellite imagery (Advanced Very High Resolution Radiometer, AVHRR) for days of 

interest were downloaded from Rutgers University’s Coastal Ocean Observing System 

(RUCOOL) laboratory (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0&product=sst).  

RUCOOL processes raw satellite data and posts approximately nine images per day on a 

searchable website.  Where possible, satellite images closest to the periods of fish detection on 

the array were used. When the satellite images were obscured by clouds or otherwise contained 

missing data, the best images from the day were selected for use in contextual analyses of other 

data sources (e.g., bottom and surface temperature recorded by ADCPs and data buoys).        

  Data Analyses. ADCP data were downloaded into WinADCP, proprietary software 

developed by Teledyne RD Instruments that allows the user to visualize, select, and save 

portions of large ADCP datasets, and to export data into either text or Matlab formats.  Data 

were exported into text format for import into Excel, and exported into Matlab format for 

additional data visualization and analysis. 

Cumulative frequency distributions were generated to examine the naturally occurring 

range of independent variables (e.g., water temperature, wind speed, wave height, etc) in the 

environment across the periods when most Spiny Dogfish were detected on the acoustic array in 

the Hatteras Bight.  Lepeltier (1969) noted that the use of cumulative frequency distribution 

curves in analyzing geological data provided a useful way to visually compare large and complex 

datasets, and to identify variability in distribution curves that might be further analyzed.  For 
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comparison purposes, cumulative frequency distributions were also generated that described the 

span of conditions under which Spiny Dogfish were detected on the acoustic array.  The 

cumulative frequency curves for each were plotted on the same graphs (Figure 54) to determine 

whether shark detections were occurring across the full range of different environmental 

variables recorded in the environment (i.e., no relationship) or if shark detections were 

disproportionately occurring within specific environmental data bins.  Additionally, general 

linear models were explored to identify variables, or suites of variables, that explained presence 

and absence of Spiny Dogfish on the acoustic array in SAS JMP version 10. General linear 

models provided a flexible means to fit responses that do not fit the usual requirements of least 

square distribution models (e.g., data are not normally distributed; handles data with numerous 

zeros such as binomial and count variables; data do not appear to have a linear relationship).   

Results 

Environmental Conditions in the Hatteras Bight.  The magnitude and direction of 

nearshore ocean currents in Hatteras Bight during the appearance of tagged Spiny Dogfish 

indicated that strongest currents were in the top layers of the water column at these times.  

Dogfish were detected from February through March in 2009 and from January through March 

in 2010.   For 2009 the overall current magnitude data for each ADCP deployment site were 

averaged across data collected from each 1-meter depth bin for the February to March period.  

Waters closest to the beach appeared to be well-mixed as indicated by consistent changes in 

current magnitude throughout the water column (top plot, Figure 55).  However, at the mid-

distance (Site 6) and farthest locations (Site 12) water currents were fastest (shown in red) in the 

upper parts of the water column.  
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Water current data collected in 2009 in the Hatteras Bight suggested that this 

environment was highly dynamic, and that prevailing currents may have been influenced by tides 

and vertical profiling/layering of horizontal currents in the water column.  Overall current 

magnitude tended to be faster in the upper parts of the water column, especially at ADCP sites 

further offshore (Figure 55).  The magnitude of the east-west directional component (Figure 56) 

was much greater than the magnitude of the north-south component (Figure 57), as evidenced by 

the darker red and blue colors in the former and the lighter colors in the latter.  Furthermore, the 

east-west directional component appeared to be mostly consistent throughout the water column 

(especially at Site 2), implying that the various water parcels are moving collectively in an east-

west direction.  However, the north-south directional component appears more stratified, 

especially at locations mid-distance and farthest from the beach (Sites 6 and 12).   

Water temperatures in Hatteras Bight during the study period changed seasonally and 

temporally, and exhibited some vertical profiling/layering of horizontal currents with depth in 

2009 (Figure 58). Bottom water temperatures in the Hatteras Bight were relatively high in mid-

February before decreasing the last week of February and the first week of March.  Bottom 

temperature farthest from shore (Site 12) was usually warmer than the shallower sites, and 

bottom temperature at Site 2 was usually cooler than at deeper sites (Figure 58). During this 

four-week period, bottom temperatures at Site 6 reflected the influence of shifting currents, 

alternating between being more similar to Site 2 than Site 12 (and vice versa).   

Analysis of ADCP current data collected between mid-February and mid-March of 2010 

reflected periodicity in the environment and some changes in water temperature by as much as 

seven degrees within two weeks (Figure 59).  Similar to the current magnitude data collected at 
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Site 12 in 2009, the overall current magnitude data recorded at Site 7 in 2010 were variable 

through the water column.  There was a strong eastward directional component in the first week 

of the month-long period depicted in the plots. During this week, the bottom two-thirds of the 

water column appeared to be moving predominantly in a northward direction.  There were 

several other instances where the east-west directional component appeared consistent 

throughout the water column.  The north-south directional component tended to be more 

stratified than the east-west directional component, although there were times when the north-

south directional component was also consistent throughout the water column.  Bottom water 

temperatures were colder in mid-February (~8ºC), increased through the beginning of March to 

roughly 15 ºC, and then decreased for a brief time before rising back to roughly 15ºC.    

Although not a universal rule, dogfish often showed up on the acoustic array when ADCP 

data indicated either strong vertical profiling/layering of horizontal currents in the water column 

indicative of multiple layers of water, or around times when a big change in water column 

directionality was noted.  However, as the following examples show, it is important to consider 

more than just a single source of information to fully understand potential drivers of dogfish 

behavior.   

Detection Year 1: February 10, 2009.  On February 10, 2009, Tag #54099 was detected 

357 times between 11:18 and 18:30. The shark was detected between Sites 5 and 10 during this 

time, and made a gradual offshore movement (Figure 60).  During this time a notable pulse of 

faster moving water was visible at both Site 2 (Figure 61) and at Site 12 (Figure 62) in the upper 

half of the water column.  Velocity components were further divided for East/West (“v 

component”) and North/South (“u component”) components in the middle and bottom plots 
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shown in each figure.  Water column parcels were moving predominantly in a westerly (onshore) 

direction throughout the day that this shark was detected.  However there were dynamic changes 

in north-south directionality through the day in the upper parts of the water column, which could 

be a function of the tidal cycle (Figure 64).   

Analysis of depth bins representative of “layers” (see Appendix 4) within the water 

column at Site 12 indicated that this shark was detected during a time of relatively low current 

velocities, and when the velocity of shallow, middle and deep water column layers (overall, and 

in the u- and v-directional components) were very similar during the periods of detection.  The 

ADCP detected a bottom water temperature change during February 11-12, 2009 whereby water 

temperatures warmed by roughly 5º C.  This shark was detected on the acoustic array twice 

before the temperature shift (on February 8
th

 and February 11
th

), and was detected at Site 1 early 

in the evening on February 12
th 

(Figure 63).   

Detections occurred immediately after the wind direction changed from southward to 

northward (Figure 65).  Wind direction is shown in Figure 65; however, caution is encouraged in 

the interpretation of this plot since wind directions of 0 degrees and 360 degrees are both 

equivalent to a northerly wind.  Wind speeds recorded at Cape Lookout Shoals imply that this 

shark was detected on the Hatteras Bight acoustic array at times when the wind speeds were 

relatively light (Figure 66). Two noteworthy cyclonic weather systems affected the mid-Atlantic 

region on either side of this detection window; one event developed over the mid-Atlantic on 

February 4
th

 and moved northeast across Newfoundland the next day, and a second formed off 

Florida on Feb 16th and subsequently moved northeast into the north Atlantic Ocean (attaining 

hurricane force winds within a 24 hour period of time) (Bancroft 2009). Compared to Feb-March 
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2010; however, the same time period in 2009 was relatively quiet with respect to the prevalence 

of major storm systems in the mid-Atlantic (e.g., see Bancroft 2010).  

Detection Year 2: February 28 – March 6, 2010.  Eleven Spiny Dogfish were detected 

on the acoustic array between February 28 and March 6, 2010. A number of these sharks were 

detected in shallow waters during the early part of this week, and later detected in deeper waters 

(Figure 67).  In order to understand the potential drivers of offshore movement, ADCP water 

column profile data from the week in question and covering the time period when sharks were 

detected at sites 6-10 were analyzed (Figure 68; Figure 69).  During a period when several sharks 

were detected at inshore sites, the overall current velocity at offshore sites (recorded at Site 7) 

was relatively low (Figure 68) and water direction appeared to deviate between largely 

northward and south-westward directions at regular intervals.  

Two peaks in overall current magnitude were observed; the first occurred between March 

3 – March 4 in the upper half of the water column when dogfish were detected on inshore 

receivers, and the second occurred at roughly the same time on March 5 when dogfish were 

detected on offshore receivers (Figure 67; Figure 68; Figure 69).  Visual examination of data 

plots suggests that the second peak in water velocity corresponded with a pulse of water moving 

northward (red throughout nearly the entire water column) during mid-morning (Figure 69).  The 

ADCP then recorded relatively low overall current magnitude, with particles in the water moving 

southwest, in the bottom half of the water column.  Sharks were detected at offshore sites before 

and after the pulse of faster, northward moving water was detected by the ADCP (Figure 69) 

between 7:30 – 8:04 and between 14:19 and 06:54.  The second set of detections also occurred 
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when a narrow bottom layer of water was moving south and much of the remaining water was 

moving north (Figure 69).  

Analysis of depth bins representative of “layers” (see Appendix 1) within the water 

column at Site 7 indicated that these sharks were detected during a time when surface and middle 

“layers” were similar, and fluctuated with the bottom layer with respect to which layers had 

higher overall current magnitude (Figure 70).  The bottom layer tended to have more southward 

directional movement when sharks were detected offshore than the middle or surface layers (see 

third plot, showing v-directional component data).  During the week of February 28 – March 6, 

the water temperature decreased from over 15ºC to roughly 10º C; sharks were detected at 

offshore sites on the array at times when bottom temperature were cooler (mostly between 10-

13º C).  Examination of satellite data suggested that there was a push of warm water in the 

Hatteras Bight early in the week, but toward the end of the week cold water had extended 

southward beyond Cape Hatteras and into the Hatteras Bight.   

When compared to tide, buoy and weather data, some additional trends were apparent in 

this week.  For example, detections occurring at onshore sites occurred throughout an entire tidal 

cycle early in the week, but sharks were detected primarily at offshore sites during low tide 

(Figure 71).  When sharks were detected at onshore sites early during the week of interest, wind 

speed was highly variable (Figure 72).  Moving counterclockwise from the top of the circle, the 

first detection period featured westerly winds, northerly winds and then back to a northwesterly 

wind direction.  The second detection period occurred when winds changed from moving 

towards the southwest to moving north.  Wind direction was blowing predominantly from the 

north and northwest during the time period when sharks were detected offshore (red boxes).  
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Figure 73 shows wind speed (sustained and gusts) during the week that these sharks were 

detected on the acoustic array.  Sharks were detected at nearshore acoustic receivers when wind 

speed was relatively low, and at offshore acoustic receiver sites after a notable peak in wind 

speed was recorded.  Caution is encouraged in the interpretation of this plot since wind directions 

of 0 and 360 are both equivalent to a northerly wind.   

Mobile Tracking Surveys.  ADCP data collected concurrently with mobile tracking 

surveys indicated that some sharks were detected in locations where surface and bottom “layers” 

either appeared to be moving in the same direction, in locations where some observable vertical 

profiling/layering of horizontal currents was present, and in locations where the entire water 

column appeared to shift direction in water movement (Figure 74).  In other words, mobile 

tracking survey detections did not coincide routinely with a consistent predictable pattern of 

water column structure or movement in the water column; however, the sample size was small.  

For example, data collected at the detection location for 63949 showed water particle movement 

in east and southern directions throughout much of the water column.  Data collected at the 

detection site of Tag# 63951 (Figure 74, far left column) indicated that the shark was detected in 

a location where the water column shifted from moving in a northward direction to moving in a 

southward direction.   This could happen due to tidal or alongshore current processes.  Two 

sharks (63944 and 63952, Figure 74, right two columns) were detected in locations where most 

of the water column moved in an easterly direction. However, the bottom parts of the water 

column had relatively little movement in the east or west direction.  Refer to the map library for 

2010-tagged sharks in Appendix 3 to see exact locations for these detections.   
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Modeling Detection Data and Localized Environmental Data: Cumulative 

Frequency Distribution Analysis.  Cumulative frequency distribution analyses showed the 

distribution of different variables as they occurred in the environment.  For comparison purposes, 

the range of each environmental variable across which detections occurred was also shown.  As 

explained above, the line depicting the range of conditions across which detections occurred, in 

comparison to the line depicting the natural range of occurrence of environmental conditions, 

indicated whether dogfish detections occurred disproportionately within certain variable bins 

(relative to their availability in the environment).   

Spiny Dogfish were detected by the acoustic array when bottom water temperatures 

nearest to the shoreline were cooler (e.g., 95% of dogfish detections occurred when bottom water 

temperatures at the shallow site were less than or equal to 12ºC) and offshore bottom water 

temperatures were warmer (Figure 75).  Furthermore, the cumulative frequency distribution of 

surface water temperature data suggested that dogfish were detected more often when surface 

water temperatures (at Monitor National Marine Sanctuary) were cooler. Results analyzed by 

cumulative frequency analyses varied by location.  Bottom water temperatures were only 

available for 2009 at shallow and mid-depth ADCP sites because ADCPs were not deployed at 

these locations in 2010.  Bottom water temperatures at the deep sites (which were somewhat 

close together) reflected conditions at the offshore ADCP deployment sites in 2009 and 2010.  

Offshore surface water temperatures, recorded at the Monitor National Marine Sanctuary buoy, 

were recorded in both 2009 and 2010.   

Cumulative frequency distribution curves suggest that dogfish were often detected on the 

acoustic array at times when wind speeds were lower and wave heights were smaller (Figure 76).  
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When dogfish data were plotted against these data these observations were supported; however 

recorded wave heights (Figure 77) and wind speed (Figure 78) tended to be lower in 2009 when 

fewer dogfish were detected on the array.  Air pressure cumulative frequency distributions 

implied that dogfish detections occurred more often when air pressure was lower. This is 

counter-intuitive, implying that dogfish show up on the acoustic array in poor weather 

conditions.  However, when considering plots of dogfish detections against recorded air pressure 

it was apparent that dogfish were recorded by the array during high pressure peaks. Variability 

from one year to the next may have influenced results from these analyses.  The 2010 air 

pressure readings tended to be lower overall in comparison with the same time period in 2009 

(Figure 79). 

Coarse patterns depicting a relationship between current flow and dogfish detections 

were identified in the data.  Cumulative frequency distribution curves generated from data 

collected by ADCPs at the deepest site in 2009 (Site 12) and in 2010 (Site 7) suggest that dogfish 

detections on the acoustic array occurred less often when the magnitude of water movement in 

the bottom later was less (i.e., dogfish may be recorded by the array when offshore currents are 

faster), and more often when surface water layer movement is moderate (i.e., between 100-200 

mm/s) (Figure 80).  Also the bottom layer directional u-component (east vs. west) velocities were 

relatively similar to the environmental range of occurrence, suggesting that dogfish may have not 

selected for specific directionalities.  Finally, the distribution curve for the v-component (north 

vs. south) in both surface and bottom layers indicated that dogfish detections may be occurring 

more often during times of minor to moderate magnitude flows in the northward direction.  
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Modeling Detection Data and Localized Environmental Data: General Linear 

Modeling.  General linear models were constructed to test variables independently and by 

different combinations of variables on the presence and absence of dogfish detections by the 

Hatteras acoustic array (Table 27; Table 28).  Models were compared using Akaike’s 

Information Criterion (AIC) score (Akaike 1973).  In addition, due to potential correlations 

between variables, principle components analysis (PCAs) and factor analysis were used to 

generate new independent variables based on ADCP data and non-ADCP data.  A PCA run on 

ADCP data collected by ADCPs deployed in 2009 and 2010 at the offshore end of the array 

evaluated the overall magnitude, east-west (u) velocity component, and north-south (v) velocity 

component of each of three “layers” identified in the water column (see Appendix 4).  The PCA 

indicated that a subsequent factor analysis should contain 4 factors.  Rotated factor loading 

scores indicated that Factor 1 comprised the u-component variables of all three layers, Factor 2 

comprised the overall magnitude data collected in each layer, Factor 3 comprised the v-

component data from the surface and mid-water column layers, and Factor 4 was dominated by 

the v-component data from the middle and bottom water column layers.   

A PCA run on externally collected environmental data (wave height, pressure, air 

temperature, water temperature, moon fraction percent, minutes of darkness per day, tide height, 

wind speed, and wind gusts) resulted in eigenvalues indicating that three factors were appropriate 

in a subsequent Factor Analysis.  Rotated factor loading scores from the Factor Analysis 

indicated that Factor 1 was dominated by wave height, wind speed, and wind gusts (all positive).  

The variables with the strongest factor loading scores for Factor 2 included air pressure (positive) 

and air temperature (negative).  The variables with the strongest factor loading scores for Factor 

3 included the moon fraction percent (positive) and tide height (positive).  In this model, surface 
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water temperature and minutes of darkness had moderate loading scores in Factor 3, and Factors 

2 and 3, respectively.   

Models testing the effects of single variables on the presence/absence of dogfish 

detections tended to have higher AIC scores than models with multiple variables (Table 27).  

Other models using different combinations of externally collected data and ADCP data had 

worse AIC scores.  The models that were run solely on the rotated factor scores (#5 and #6, see 

Table 28) produced worse AIC scores than models based on the raw data; however, Factor 1 was 

noted to have a strong significant effect on presence/absence of dogfish detections.  These 

models indicated that several environmental variables had a driving influence on the presence or 

absence of Spiny Dogfish detections, especially the timing, water temperature and weather 

conditions.  Model parameters and diagnostics are shown for the three best models (based on 

AICc scores) in Table 29, Table 30, and Table 31.  Of all modeling efforts completed, a binomial 

GLM model (logit link, firth adjustment method controlling for bias) explaining the presence and 

absence of dogfish detections against non-ADCP, environmental data (“externally collected 

data”) had the best AIC score (Table 29).  Examination of effects tests suggested that the 

significant variables in this model represented the timing of detections (year, week within a year) 

and water temperature.   

Discussion 

Habitat selection studies in northwestern Atlantic Spiny Dogfish to date have focused on 

the comparison of catch-per-unit-effort (CPUE) data collected on federal trawl surveys to 

environmental data (e.g., salinity, temperature and depth data collected concurrently with trawl 

catches) to examine associations across broad geographic ranges.  For example, Shepherd et al. 
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(2002) and Sargarese et al. (2014) identified salinity, depth, and temperature associations for 

male and female Spiny Dogfish across the extent of surveys completed by the U.S. and Canadian 

governments in the U.S. EEZ (Maine to North Carolina) and in the EEZ of the Canadian 

maritime provinces, respectively.  To our knowledge, this study represented the first research 

program in the northwestern Atlantic to identify factors that could influence habitat selection of 

individual Spiny Dogfish.   Since there were no habitat studies available for direct comparison 

and discussion, there is value in considering habitat studies involving other coastal 

elasmobranchs to identify other potentially important environmental variables that may drive 

microhabitat selection in coastal elasmobranchs (including Spiny Dogfish).   

Physical aspects of habitat are often important for species that utilize multiple types of 

coastal habitats, such as estuaries, inlets, reefs, and bathymetric features like shoals or canyons.  

We detected dogfish in proximity to complex bathymetric features (e.g., continental shelf break, 

Hatteras Inlet, near shorelines, and in proximity to shoal and reef habitats).  Simpfendorfer et al 

(2010) studied fine scale movement patterns of Smalltooth Sawfish (Pristis pectinata) and 

identified physical habitat parameters (proximity to shoreline, substrate type) and tide as 

important factors influencing the distribution of tagged individuals.  We did not analyze 

proximity to shoreline or substrate type in the models included in this chapter; however, Scott 

(1982) studied 22 species of groundfish and their associations with sediment size on the Scotian 

Shelf.   Spiny Dogfish were reported as generalists compared to other species because they were 

associated with both coarse and fine grain substrates.  We did analyze tidal height, and dogfish 

were often detected on the acoustic array at tidal heights slightly above mean low low water 

(MLLW).  Further analysis of dogfish detection data with tide data using harmonic analysis 

might provide additional information on dogfish occurrence in relation to tidal cycles.   
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This research project, and recent other projects completed by the Rulifson lab, support 

the concept that Spiny Dogfish are found in a tremendous variety of environmental conditions 

(Bigelow and Schroeder 1953), and have broad tolerance ranges for oceanographic conditions 

(Shepherd et al. 2002; Sargarese et al. 2014).  The Hatteras acoustic array was deployed in a 

somewhat homogeneous habitat with respect to substrate type – the immediate area around the 

array consists mostly of sandy bottom.  However there are locations with hard bottom reef 

further offshore, in the vicinity of Diamond Shoals and in Hatteras Inlet.  Furthermore, tagging 

data published in this dissertation indicate that dogfish also move off the continental shelf into 

deeper waters.  We did not observe an affinity of Spiny Dogfish for a singular current profile 

type, and mobile tracking data did not indicate affinities for specific habitats.  North of Cape 

Hatteras, some Spiny Dogfish were detected via mobile tracking surveys in sloughs within reef 

and shoal habitats, and on the northern edge of Diamond Shoals.  The intended study design of 

mobile tracking surveys was to cover as much ground as possible and to identify site “fixes” of 

tagged Spiny Dogfish, and not necessarily to do intensive long-term tracking of individually 

tagged Spiny Dogfish.  There is certainly a need for this type of research to further explore 

associations of Spiny Dogfish with physical habitat types in overwintering habitat off coastal 

North Carolina.   

Relationships between water temperatures and detections by the Hatteras Bight acoustic 

array were observed in this study; sharks were often detected at offshore locations when bottom 

temperatures were less than 13ºC, and were detected at inshore receiver sites when offshore 

water temperatures were warm (due to the influence of the Gulf Stream).  Adult Spiny Dogfish 

are known to have an affinity for water temperatures between 7 and 11º C (Stehlik 2007), but 

these sharks are tolerant of a wide range in water temperature.  This likely enables them to 
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successfully adapt to an environment like the Hatteras Bight, where they can experience 

extremely cold water temperatures (4ºC) and the much warmer Gulf Stream (25-30ºC) in 

relatively close proximity.  While principally a marine species, Spiny Dogfish are known to 

occur in the sounds and estuaries of North Carolina from November through June (Bangley and 

Rulifson 2014), so variables such as dissolved oxygen and salinity may be just as important to 

Spiny Dogfish in inshore regions as these other species.  Elasmobranchs adapted to live in 

estuaries may respond to different environmental drivers due to increased tolerance of brackish 

waters (e.g., Bull shark, (Carcharhinus leucas) Ortega et al. 2009 and Drymon et al. 2014; 

coastal sharks of Georgia, Belcher and Jennings 2010; Bonnethead (Sphyrna tiburo), Atlantic 

Sharpnose (Rhizoprionodon terraenovae), and Blacktip (C. limbatus) shark, Smith 2012).  In 

addition to water saltiness, water temperature was also observed to be an important predictor 

variable for juvenile Lemon sharks (Negaprion brevirostris) off southeastern Florida (Reyier et 

al. 2014); Leopard sharks off southern California (Nosal et al. 2014); Lemon sharks off Bimini 

(Morrissey 1991); Gray Smoothhound (Mustelus californicus) in restored coastal estuarine 

habitats of coastal California (Espinoza 2010); Bull sharks in a coastal Alabama estuary 

(Drymon et al. 2014); and three elasmobranchs in Tomales Bay, California - the Bat Ray, 

Myliobatis californica, the Leopard shark, Triakis semifasciata, and the Brown Smoothhound 

shark, Mustelus henlei (Hopkins and Cuch 2003).   

Sims et al. (2006) further explored the bioenergetics of microhabitat selection of 

Scyliorhinus canicula through a study that used short- and long-term acoustic and archival tag 

studies.   Sharks were observed to actively avoid spending long periods in warm water 

temperatures, even when food resources were extremely abundant.  Rather, these sharks would 

make brief excursions into warmer water to ingest food and then return to cooler water to rest 
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and digest (a “hunt warm-rest cool” strategy).   Although our research did not explore 

microhabitat selection at the bioenergetic level, Spiny Dogfish are known to have affinities for 

specific temperatures, and detections were observed on the acoustic array seemingly in response 

to temperature fluctuations that occur in the Hatteras Bight as a result of the confluence of the 

Gulf Stream and Labrador Current (and also the effluence of cold estuarine water through the 

inlets of the Outer Banks and from Chesapeake Bay).   

Predator adaptation to prey behavior has been observed in other elasmobranchs (e.g., 

Broadnose Sevengill sharks, Notorynchus cepedianus, Barnett et al. 2010; White sharks, 

Carcharodon carcharias, Jewell et al. 2013), and we suspect that Spiny Dogfish in the Hatteras 

Bight may have taken advantage of the abundance of prey in proximity to Hatteras Inlet.  Nosal 

et al. (2013) used active tracking methods to study movement patterns of Leopard sharks (Triakis 

semifasciata) near the head of a submarine canyon off southern California.  The authors noted 

that sharks exhibited tendencies to distribute into different habitats based on time of day, 

possibly following the abundance of prey, and actively utilized habitats with specific substrate 

types.   

Habitat selection also may be related to differences in sexual behaviors.  Most of the 

Spiny Dogfish tagged and tracked with acoustic tags in this research project were female, and 

nearly all of the repeat detection data on the Hatteras Array (and beyond) were from females.  

However, sexual segregation of male and female Spiny Dogfish schools was well reported in the 

literature (e.g., Bigelow and Schroeder 1953; Nammack et al. 1985; Shepherd et al. 2002; 

Sargarese et al. 2014), and happens to some extent off the North Carolina coast (R.W. Laney, J. 

Osborne and R.A. Rulifson; East Carolina University and ASMFC, unpublished data).  
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Similarly, Dell’Apa et al. (2014) hypothesized that sexual segregation of Spiny Dogfish off Cape 

Cod may be a result of female avoidance of males.  Sexually segregated behavior is also known 

in other elamobranchs (Kock et al 2013).  Sims et al. (2001) explored behavior of male and 

female Lesser Spotted catsharks (Scyliorhinus canicula) in coastal habitats using active acoustic 

tracking (n = 4) and mark-recapture (n = 62) studies.  Movements for males and females in this 

study varied by time of day.  Males selected shallower habitats during crepuscular and nighttime 

periods and deeper waters during the day; male behavior was hypothesized to be driven by 

availability in food resources. Females tended to shelter in caves or under rocks in shallow areas 

not selected for by males, and the authors hypothesized that this behavior was likely a 

reproductive behavior (avoiding males to conserve energy).   

ADCPs have been used to study microhabitat selection of animals, although these studies 

often focus on flow aspects important to riverine species (e.g., McDonald et al. 2010 analyzed 

water velocity with an ADCP for input into a model describing effects of flow and sediment 

transport in White Sturgeon spawning habitat) or on the distribution and biology of the 

backscatters (i.e., plankton and nekton).  For example, Roe et al. (1996) identified changes in the 

water column profile detected during ship-based surveys at major current fronts and eddies, 

hypothesizing that the changes at fronts and eddies are visible in water column profiles due to 

aggregation and diel behavior of plankton and nekton in the water column.  Davoren et al. (2007) 

used ADCPs to study the diel vertical migration of zooplankton as part of an overall study of 

Capelin (Mallotus villosus) behavior. Several studies have used ADCPs to aid in microhabitat 

selection studies of marine fishes.  Vessel mounted ADCPs were used to examine and 

characterize (turbidity, small scale oceanography, current flow and profiled bottom topography) 

Black Jewfish (Protonibea diacanthus) aggregation sites off the Northern Territory, Australia 
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(Meekan et al. 2008).  ADCP data were used to generate a 3-dimensional map of the study area 

and to characterize current flow patterns in key sites.  Affinity to specific current flow patterns 

such as eddies were not observed because currents were found to be unidirectional and the water 

column well-mixed; however, the authors did note a relationship to local tidal cycles.  Kopach 

(2004) hypothesized that gray whale habitat selection (in relation to the current flow patterns 

affecting planktonic prey) may be affected by fine scale current flow patterns, but results 

indicated that whales did not select for specific current velocities.   

No studies were found linking fine scale oceanographic data recorded by ADCPs to 

Spiny Dogfish distribution and behavior.  Given the dynamic nature of the Hatteras Bight (i.e., 

tidal flow, alongshore currents, confluence of two major currents), it was difficult to elucidate 

whether detections occurred under specific flow regimes.  Our results indicate that Spiny 

Dogfish detections occurred more often when offshore currents were moderate in speed and 

flowing northward in models that only considered ADCP data.  However, other models 

combining ADCP and externally collected environmental data suggested that magnitude and the 

east-west velocity component might be important as well.  Therefore, further experimentation 

and the development of more sophisticated models are needed to better characterize specific flow 

patterns and determine if any are highly predictive of dogfish detections. Additional studies 

should also include the deployment of ADCPs and acoustic receivers across more complex 

environments in two-dimensional arrays, and the use of tags with pressure and temperature 

sensors to help refine observations.  We only deployed a single line of acoustic receivers and a 

small number of ADCPs in a relatively homogeneous habitat. Spiny Dogfish may have been 

cued to move inshore due to environmental conditions in an unsampled or more complex habitat 

(e.g., adjacent shoals, the shelf break, hardbottom reefs).  Improved understanding of prey 
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resource distribution and environmental factors influencing prey presence and absence would 

likely aid in understanding distribution patterns of Spiny Dogfish, and is consistent with 

increased calls for ecosystem based fisheries management by major interjursidictional fishery 

management institutions (e.g., ASMFC, federal fishery management councils, NMFS, USFWS). 

This research suggests that dogfish detections on the acoustic array may be linked to 

water temperature and weather patterns.  Data has not conclusively suggested that dogfish are 

responding to certain vertical water column profiles on a microscale; however, these animals are 

capable of rapid movements, are often detected on the array for short periods of time (see 

Chapter 3), appear to be responsive to water temperature, and are hypothesized to follow prey 

moving through the area.  While they may not be responding to a specific directionality of water 

movement, given the dynamic nature of the currents in the area, it is not unreasonable to infer 

that dogfish may be directly or indirectly responding to the movement of water masses around 

the area (e.g., tidal influxes, alongshore currents, location of the Gulf Stream, cold water pushes 

around Cape Hatteras, location of eddies, etc).  The location of these water masses is likely 

influenced by weather.  Given the stark differences in the Gulf Stream and Labrador Current, 

water temperature can be a signal of the presence and processes affecting the different 

oceanographic currents in the study area.  For example, we related the onshore presence and 

offshore movement to water temperatures measured in situ and from satellite imagry between 

February 28, 2010 and March 7, 2010.  These movements occurred at times 1) when a cold water 

refuge may have been available along shore and offshore water temperatures were warmer due to 

the location of the Gulf Stream, 2) a significant winter storm event occurred along the eastern 

United States between March 1-3, and 3) the ingress of the Labrador Current around Cape 

Hatteras and into the Hatteras Bight was noted following the weather event.    Since these sharks 
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are highly responsive to local conditions, future analyses would be aided considerably from an 

oceanographic evaluation of currents in response to weather events. 

Conclusions 

Due to a large combination of environmental variables that can act to influence distribution 

of marine animals, it was difficult to isolate a single factor that may be of greatest importance in 

predicting Spiny Dogfish distribution and habitat selection.  However, by examining dogfish 

detections and relating them to environmental data collected in the same area we were able to 

provide answers to the questions initially posed for the research project: 

 Is dogfish presence/absence or movement related to the presence of particular current 

profiles (magnitude, direction,vertical profiling/layering of horizontal currents)? 

 

Dogfish often were detected on the Hatteras Array at times when changes in water 

column direction were noted or during periods where strong current vertical 

profiling/layering of horizontal currents was visible in the water column.   Dogfish 

detections occurred disproportionally more often when the offshore ADCP site 

experienced minor to moderate northward currents.  Models suggested a potential 

relationship between shark presence and increasing magnitude of northward currents (v-

component), but also suggested that the east-west directionality (u-component) could be 

important. 

 

 Is dogfish presence/absence or movement related to bottom water temperatures? 
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Yes. There is a clear indication that dogfish detections were disproportionately greater 

during  cooler water temperatures.  Dogfish detections at offshore sites were often 

recorded at times when offshore bottom water temperatures were colder (i.e., less than 

12ºC); when offshore water temperatures were warmer (warmer than 15º) dogfish 

detections usually occurred close to shore. 

 

 Are dogfish detections or movements concurrent with predictable cycles in water 

movement (i.e., tidal cycles) or with extreme events (i.e., storms)? 

 

Yes. Dogfish appear to move into the Hatteras Bight during favorable weather conditions 

(high pressure, lower wind speed/gusts, lower wave height) and are often detected when 

wind direction is from the north or northwest (i.e., when the area is sheltered by land).  

Model results imply a potential relationship between dogfish presence, increasing air 

pressure, and cooler air temperature.  

 

 

 Under what conditions do dogfish move close to shore in the Hatteras Bight? 

 

Dogfish appear to move close to shore when offshore water temperatures increase due to 

the influence of the Gulf Stream, and when weather conditions are such that nearshore 

conditions are either sheltered from the weather (i.e., wind from the north or northwest) 

or during a time when winds out of the south are weak or calm (i.e., no high energy 

systems such as nor’easters with wind directions from the south to southeast). 
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Table 27.  Examples of binomial General Linear Models tested in SAS JMP comparing the 

presence or absence of dogfish on the acoustic array testing the effects of independent 

environmental variables and simple combinations on dogfish detection presence and absence on 

the acoustic array. 

 

Table 28.  Examples of complex binomial (presence/absence) General Linear Models tested in 

SAS JMP comparing the presence/ absence of dogfish with combinations of externally collected 

environmental data and ADCP data. Factor variable names are further identified with to indicate 

if they are calculated from environmental data collected externally (“Env”, which is also 

inclusive of ADCP collected bottom water temperature) or if they were derived from particle 

movement data collected by acoustic Doppler current profilers (“ADCP”). 

 

Table 29.  Model parameter results for the best General Linear Model (per AICc scores) derived 

from external environmental data and ADCP data.  Parameter and effects tests are shown for all 

variables included in the model. Week number was an ordinal variable, and the General Linear 

Model platform of JMP produced parameter estimates for each week (italics) in addition to an 

effects test* for the variable.  Whole model test statistics, including the AICc score, are shown in 

the lower right corner of the table.  
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Table 30.  Model parameter results for the second best General Linear Model (per AICc scores) 

derived from external environmental data and ADCP data.  Parameter and effects tests (identical) 

are shown for all variables included in the model.  Whole model test statistics, including AICc 

score, are shown at the bottom of the table.  

  

Table 31.  Model parameter results for the third best General Linear Model (per AICc scores) 

derived from external environmental data and ADCP data.  Parameter and effects tests (identical) 

are shown for all variables included in the model.  Whole model test statistics, including AICc 

score, are shown at the bottom of the table.  

 

Figure 53. Acoustic Doppler current profiler (ADCP) deployment configurations in 2009 (A) and 

2010 (B). Deployment locations from 2009 (blue circles) and 2010 (red circle) are shown in 

maps that also depict acoustic receiver deployment sites (clear circles).  

 

Figure 54. Schematic of a cumulative frequency distribution analysis comparing the full range of 

environmental variables observed in the Hatteras Bight versus the range of variables occurring at 

times when Spiny Dogfish were detected on the Hatteras Bight acoustic array.  Curve A depicts 

the percent cumulative frequency of the occurrence of a range of binned environmental variables 

recorded within the study region.  Curve B (dashed line) depicts a curve whereby Spiny Dogfish 

are detected across a range of environmental variables that are disproportionately higher (i.e., 

they may be selecting for warmer water temperatures, higher current velocity, etc).  Curve C 
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(two lines) depicts a curve whereby Spiny Dogfish are detected across a range of environmental 

variables that are disproportionately lower (i.e., they may be selecting for cooler water 

temperatures, lower current velocity, etc).   

 

Figure 55. Overall current magnitude (m/s) data collected by ADCPs deployed on the ocean 

floor at three sites within the Hatteras Bight from mid-February to mid-March 2009.  Data were 

averaged across 1-meter depth bins.  The color bar represented a velocity range of 0 to 0.5 m/s.  

The depth bin closest to the ADCP and the top 10 percent of depth bins were not shown due to 

the potential for data errors.  

 

Figure 56.  East/West (u) directional component velocity data collected by ADCPs deployed on 

the ocean floor at three sites within the Hatteras Bight from mid-February to mid-March 2009.  

Data were averaged across 1-meter depth bins.  The color bar represent a velocity range of -0.5 

to 0.5 m/s; negative blue values correspond to particle movement velocity in a westward 

direction while red positive values correspond to particle movement velocity in an eastward 

direction.  The depth bin closest to the ADCP and the top 10 percent of depth bins were not 

shown due to the potential for data errors.    

 

Figure 57. North/South (v) directional component velocity data collected by ADCPs deployed on 

the ocean floor at three sites within the Hatteras Bight from mid-February to mid-March 2009.  

Data were averaged across 1-meter depth bins.  The color bar represents a velocity range of -0.5 
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to 0.5 m/s; negative blue values correspond to particle movement velocity in a southward 

direction while red positive values correspond to particle movement velocity in a northward 

direction.  The depth bin closest to the ADCP and the top 10 percent of depth bins were not 

shown due to the potential for data errors.  

 

Figure 58. Bottom water temperature (ºC) recorded at ADCP deployment sites from mid-

February to mid-March, 2009.   

 

Figure 59. Overall current magnitude (m/s, top plot), east-west (u) directional component 

velocity (m/s, second from top plot), north-south (v) directional component velocity (m/s, third 

from top plot), and water temperature (ºC, bottom plot) data collected by the ADCP deployed at 

Site 7 in 2010.  Data are averaged across 1-meter depth bins in the top three plots. The color bar 

in the top plot represents a velocity range of 0 to 0.5 m/s.  The color bars in the middle plots 

represent a velocity range of -0.5 to 0.5 m/s; negative blue values correspond to particle 

movement velocity in a southward direction while red positive values correspond to particle 

movement velocity in a northward direction.     

 

Figure 60. Relatively movement plot showing detection location of a shark with acoustic tag 

#54099. Y-axis shows the relative location of receivers along the acoustic array. X-axis shows 

the time period of interest (11:18 to 18:30 on February 10, 2009).    
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Figure 61. ADCP data collected at Site 2 during a day (February 10, 2009) when a tagged shark 

made an observable offshore movement.  The data values reflect both direction (i.e., in the 

bottom plot, red positive values represent particle movement in a northern direction and negative 

blue values represent particle movement in a southerly direction) and particle velocity (m/s).  

The shark was detected on the acoustic array between 11:18 and 18:30. 

 

Figure 62. ADCP data collected at Site 12 during a day (February 10, 2009) when a tagged shark 

made an observable offshore movement. The data values reflect both direction (i.e., in the 

bottom plot, red positive values represent particle movement in a northern direction and negative 

blue values represent particle movement in a southerly direction) and particle velocity (m/s).  

The shark was detected on the acoustic array between 11:18 and 18:30. 

 

Figure 63. ADCP data collected at Site 12 showing current magnitude and directional u- and v-

component velocity from representative depth bins of the shallow, middle, and deep water 

column layers. Also shown is a plot of bottom temperature recorded by the ADCP, and 

screenshots of satellite images. Data Sources: ECU ADCP data, Rutgers Coastal Ocean 

Observing System (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0&product=sst). 
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Figure 64.  Tidal height (m, from MLLW) as recorded at Hatteras Inlet on February 10, 2009.  

The red box indicates a period where a tagged shark made an onshore (site 5) to offshore (site 

10) movement.  Data Source: NOAA National Ocean Service Tide and Current data, 

http://tidesandcurrents.noaa.gov/. 

 

Figure 65. Radial plot showing wind direction by date, as recorded at Cape Lookout Shoals.  

Wind direction is the direction the wind is coming from in degrees clockwise from true N (0 to 

360 degrees). The red box indicates a period where a tagged shark made an onshore (site 5) to 

offshore (site 10) movement.  Data Source: NOAA National Data Buoy Center. 

 

Figure 66. Wind speed (m/s) as recorded at Cape Lookout Shoals. Black boxes show 

approximate times that the tagged shark was detected on the acoustic array. Data Source: NOAA 

National Data Buoy Center 

 

Figure 67. Relative movement plots for eleven Spiny Dogfish detected on the Hatteras Bight 

acoustic array between February 28 and March 6, 2010. 

 

Figure 68.  ADCP data during a week where 11 Spiny Dogfish were detected on the Hatteras 

Bight acoustic array.  The data values reflect both direction (i.e., in the bottom plot, red positive 

values represent particle movement in a northern direction and negative blue values represent 



  

263 
 

particle movement in a southerly direction) and particle velocity (m/s).  The sharks were detected 

on the acoustic array between 07:00 on 3/5/2010 and 07:00 on 3/6/2010. 

 

Figure 69. ADCP data during two-day period where several Spiny Dogfish were detected on the 

Hatteras Bight acoustic array at offshore sites.  The data values reflect both direction (i.e., in the 

bottom plot, dark blue positive values represent particle movement in a northern direction and 

negative red values represent particle movement in a southerly direction) and particle velocity 

(m/s).  The sharks were detected on the acoustic array between 07:00 on 3/5/2010 and 07:00 on 

3/6/2010. 

 

Figure 70. ADCP data collected at Site 7 showing current magnitude and directional u- and v-

component velocity from representative depth bins of the shallow, middle, and deep water 

column layers. Also shown is a plot of bottom temperature recorded by the ADCP, and 

screenshots of satellite images. Data Sources: ECU ADCP data, Rutgers Coastal Ocean 

Observing System (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0&product=sst).  

 

Figure 71. Tide data recorded at Hatteras Inlet during a week when eleven sharks were detected 

on the Hatteras Bight acoustic array (2/28/2010 - 3/6/2010).  Boxes indicate times when several 

sharks were detected on onshore (black) and offshore (red) sites.  
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Figure 72. Wind direction, as recorded at a buoy deployed at Cape Lookout Shoals at the 

southern end of the Hatteras Bight.  The circumfral axis depicts date and time stamps.  The 

central axis depicts the direction wind is coming from in degrees (0-365º) Boxes depict times 

when sharks were detected at inshore (black) and offshore (red) acoustic receiver sites.   

 

Figure 73. Sustained (blue) and gust (red) wind speed during a week when sharks were detected 

at onshore (solid line, black box) and offshore (dash line, black box) offshore sites. 

 

Figure 74. ADCP data collected at locations close to shore in the Hatteras Bight, where Spiny 

Dogfish were detected in mobile tracking surveys conducted from commercial fishing vessels.  

After detections were logged, an ADCP collected data for approximately five minutes at each 

location. 

 

Figure 75. Cumulative frequency distribution curves comparing the range of conditions naturally 

occurring in the Hatteras Bight and the range of conditions across which detections occurred on 

the acoustic array (bottom water temperature at ADCP detection sites and surface water 

temperature recorded by the Monitor National Marine Sanctuary data buoy). 

 

Figure 76. Cumulative frequency distribution curves comparing the range of conditions naturally 

occurring in the Hatteras Bight and the range of conditions across which detections occurred on 
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the acoustic array.  Air pressure (hPa) and significant wave height (m) were recorded at the 

Monitor National Marine Sanctuary data buoy, tidal height was recorded at Hatteras Inlet, and 

windspeed was recorded from a buoy deployed off Cape Lookout. Data Sources: National Data 

Buoy Center, NOAA Tides and Currents, NOAA National Ocean Service. 

 

Figure 77. Comparison of significant wave height (blue line) measured at a data buoy deployed 

at Monitor National Marine Sanctuary in the Hatteras Bight and detections of Spiny Dogfish on 

the Hatteras Bight acoustic array in 2009 and 2010. 

 

Figure 78. Comparison of wind speed (red line) measured at a data buoy deployed at Monitor 

National Marine Sanctuary in the Hatteras Bight and detections of Spiny Dogfish on the Hatteras 

Bight acoustic array in 2009 (top chart) and 2010 (bottom chart). 

 

Figure 79. Comparison of air pressure (red line) measured at a data buoy deployed at Monitor 

National Marine Sanctuary in the Hatteras Bight and detections of Spiny Dogfish on the Hatteras 

Bight acoustic array in 2009 (top chart) and 2010 (bottom chart). 

 

Figure 80. Cumulative frequency distribution curves comparing the range of conditions naturally 

occurring at the deep (offshore) ADCP deployment sites in 2009 and 2010 (combined) in the 

Hatteras Bight and the range of conditions across which Spiny Dogfish detections occurred on 
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the acoustic array. In the u- and v-component velocities (second and third row), the magnitude of 

the measurement is a reflection of how fast the water is moving in an east vs. west or north vs. 

south direction, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tables and Figures 

Table 27.  

Model 

Number 
Independent Variables Whole Model Test 

AICc 

score 

1 Wave height 
Χ

2 
= 49.36, df = 1, p < 

0.001 
1255 

2 Air pressure 
Χ

2 
= 3.86, df =1, p = 

0.0494 
1331 

3 Air temperature Χ
2 

= 0, df =1, p = 1.00 1342 

4 
Offshore surface water 

temperature 
Χ

2 
= 7.54, df =1, p = 0.006 1320 

5 Moon fraction (percent) 
Χ

2 
= 9.87, df =1, p = 

0.0017 
1331 

6 Minutes of darkness per day 
Χ

2 
= 38.83, df =1, p < 

0.001 
1302 

7 Tide height (m) Χ
2 

= 4.58, df =1, p < 0.001 1337 

8 Flood or Ebb tide  Χ
2 

= 0.31, df =1, p = 0.58 1341 

9 

Bottom temperature at end of 

array (deep ADCP deployment 

site) 

Χ
2 

= 19.56, df =1, p < 

0.001 
1322 

Additive Models 

10 Wave height, air pressure 
Χ

2 
= 88.15, df =2, p < 

0.001 
1213 

11 
Wave height, air pressure, air 

temperature 

Χ
2 

= 110.24, df =3, p < 

0.001 
1192 

12 
Wave height, air pressure, air 

and water temperature 

Χ
2 

= 110.06, df =4, p < 

0.001 
1187 

13 

Wave height, air pressure, air 

and water temperature, moon 

fraction 

Χ
2 

= 130.12, df =5, p < 

0.001 
1169 

14 

Wave height, air pressure, air 

and water temperature, moon 

fraction, minutes of darkness 

Χ
2 

= 165.35, df =6, p < 

0.001 
1135 

15 

Wave height, air pressure, air 

and water temperature, moon 

fraction, minutes of darkness, 

tide height 

Χ
2 

= 168.14, df =7, p < 

0.001 
1135 

16 

Wave height, air pressure, air 

and water temperature, moon 

fraction, minutes of darkness, 

tide height, flood or ebb tide, 

bottom temperature 

Χ
2 

= 181.60, df =9, p < 

0.001 
1126 
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Table 28.   
 

Model 

Number 

Independent Variables Effects Tests 

(<0.05) 

Effects Tests 

(<0.001) 

AICc 

score 

Whole 

Model Test 

1 Year, air pressure, air 

pressure x year, offshore 

surface water temperature, 

tide height, Flood or Ebb 

Tide, week number, wind 

speed 

 

 Year, offshore 

surface water 

temperature, 

week number 

1066 Χ
2 

= 282.97, 

df = 15, p < 

0.001 

2 Wave height, air pressure, 

offshore surface water 

temperature, air 

temperature, moon fraction 

(percent), minutes of 

darkness per day,  Flood or 

Ebb Tide, tide height, wind 

speed, wind gusts, ADCP 

deep site bottom layer 

conditions  

 

Air pressure, 

air temperature, 

u- and v-

component in 

middle water 

column layer, 

u-component in 

bottom water 

column layer 

Wave height, 

moon fraction 

(percent), 

minutes of 

darkness 

1119 Χ
2 

= 208.27, 

df = 19, p < 

0.001 

3 ADCP magnitude, u-

component, and v-

component data for 

surface, mid, and bottom 

water column layers at 

offshore end of array in 

2009 and 2010 (i.e., 9 

variables) 

 

Middle water 

column v-

component, 

bottom layer 

magnitude 

Surface 

magnitude 

1295 Χ
2 

= 62.80, 

df = 9, p < 

0.001 

4 Factor Scores: externally 

collected environmental 

variables (n = 3 Factors) 

 

Factor 2 (Env), 

Factor 3 (Env) 

Factor 1 (Env) 1257 Χ
2 

= 36.93, 

df = 3, p < 

0.001 

5 Factor Scores: ADCP data 

at offshore site     (n = 4 

factors) 

 

Factor 3 

(ADCP) 

 1333 Χ
2 

= 62.80, 

df = 9, p < 

0.001 

6 Combined Factor Scores 

from Model #4and Model 

#5 

Factor 3 

(ADCP), 

 Factor 2 (Env) 

Factor 1 (Env) 1254 Χ
2 

= 48.35, 

df = 7, p < 

0.001 
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Table 29. 

 

Data 

Modeling 

Type 

Source 

Parameter Estimates   Effects Test* 

Estimate 
Chi 

Square 

Prob > 

Chi 

Square 

  DF ChiSquare 
Prob > 

ChiSq 

-------- Intercept 40.739 28.372 0.127         

Ordinal Year -2.365 0.306 <0.0001   1 99.512 <0.001 

Nominal Air Pressure -0.0338 0.027 0.196   1 1.67 0.196 

Cross / 

Interaction 

Effect 

Air Pressure x 

Year 
-0.0484 0.031 0.167   1 1.912 0.167 

Nominal 
Surface Water 

Temperature 
-0.055 0.0176 0.002   1 9.513 0.002 

Nominal 
Tide Height 

(m) 
-1.228 1.206 0.339   1 0.914 0.339 

Categorical 
Flood or Ebb 

Tide (F or E) 
0.056 0.084 0.526   1 0.402 0.526 

Nominal 

Windspeed 

(Cape 

Lookout) 

0.062 2.795 0.0946   1 2.795 0.095 

Ordinal Week Number         8 180.278 <0.0001 

Ordinal 
Week Number 

[7-6] 
-1.109 4.124 0.0423   Whole Model Test 

Ordinal 
Week Number 

[8-7] 
-1.512 18.862 <0.0001   Model 

-Log 

Likelihood 
Chi Sq  

Ordinal 
Week Number 

[9-8] 
-0.214 0.665 0.415   Difference 141.48 282.973 

Ordinal 
Week Number 

[10-9] 
-0.254 0.996 0.318   Full 517.158   

Ordinal 
Week Number 

[11-10] 
1.803 36.186 <0.0001   Reduced 658.644   

Ordinal 
Week Number 

[12-11] 
-0.104 0.004 0.95     DF 

Prob > 

ChiSq 

Ordinal 
Week Number 

[13-12] 
2.913 17.49 <0.0001     15 <0.001 

Ordinal 
Week Number 

[14-13] 
-1.002 0.198 0.656   

AICc: 

1066.51 
    

Response variable: Presence / absence 

Predictor variables: Year, Air Pressure, Year x Air Pressure, Surface Water Temperature, Tide Height (m), Flood or 

Ebb tide category, Week Number, Wind Speed (Cape Lookout). 

General Linear Model, binomial distribution, logit link, Firth Adjusted Maximum Likelihood 
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Table 30. 

Data Modeling 

Type 
Source 

Parameter Estimates^ / Effects Test 

Results* 

Estimate^ 
Std 

Error^ 

Chi 

Square^* 

Prob > 

Chi 

Square^* 

-------- Intercept -52.305 14.363 13.709 0.0002* 

Nominal Wave Height (m) 1.219 0.180 55.178 <.0001* 

Nominal Air Pressure  0.040 0.015 7.566 0.0059* 

Nominal Air Temperature 0.078 0.025 10.036 0.0015* 

Nominal 
Surface Water 

Temperature 
0.017 0.022 0.640 0.4235 

Nominal Moon Fraction (%) -1.267 0.293 19.252 <.0001* 

Nominal Minutes of Darkness 0.016 0.004 24.751 <.0001* 

Nominal Tide Height (m) 1.391 1.233 1.296 0.2549 

Categorical Flood or Ebb Tide 0.102 0.086 1.385 0.2392 

Nominal Wind Speed  0.048 0.044 1.160 0.2815 

Nominal Wind Gust 0.039 0.041 0.924 0.3363 

Nominal Surface Magnitude 0.002 0.002 1.459 0.227 

Nominal Surface u-comp -0.002 0.002 1.441 0.23 

Nominal Surface v-comp 0.000 0.002 0.068 0.794 

Nominal 
Mid Layer 

Magnitude 
0.002 0.002 0.811 0.3678 

Nominal Mid Layer u-comp 0.004 0.002 5.372 0.0205* 

Nominal Mid Layer v-comp -0.004 0.002 7.007 0.0081* 

Nominal Bottom magnitude -0.003 0.001 3.685 0.0549 

Nominal Bottom u-comp -0.001 0.001 2.023 0.1549 

Nominal Bottom v-comp 0.003 0.001 6.106 0.0135* 

Whole Model Test 

Model -Log Likelihood Chi Sq  DF 

Prob > 

Chi 

Square 

AICc 

Difference 104.137 208.274 19 <0.0001 1119 

Full 539.28         

Reduced 643.417         
Response variable: Presence / absence 

Predictor variables: Air Pressure, Air Temperature, Surface Water Temperature, Moon Fraction (%), 

Minutes of Darkness, Tide Height, Flood or Ebb Tide, Wind Speed and Gust, ADCP data recorded at the 

deep site in 2009 and 2010 (averaged across surface, middle and bottom “layers” in the water column). 

General Linear Model, binomial distribution, logit link, Firth Adjusted Maximum Likelihood 
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Table 31. 

Data 

Modeling 

Type 

Source 

Parameter Estimates^ / Effects Test 

Results* 

Estimate^ 
Std 

Error^ 

Chi 

Square^* 

Prob > 

Chi 

Square^* 

-------- Intercept -40.109 13.947 8.293 0.004 

Nominal Wave Height (m) 1.18 0.157 70.604 <0.0001 

Nominal Air Pressure  0.031 0.014 4.789 0.0286 

Nominal Air Temperature 0.085 0.023 13.856 0.0002 

Nominal 
Surface Water 

Temperature 
0.025 0.02 1.594 0.2067 

Nominal Moon Fraction (%) -1.203 0.276 19.549 <0.0001 

Nominal Minutes of Darkness 0.015 0.003 27.298 <0.0001 

Nominal Tide Height (m) 1.967 1.222 2.671 0.1022 

Categorical Flood or Ebb Tide 0.105 0.084 1.556 0.2122 

Nominal 
Bottom Temperature 

(Deep Site ADCP) 
-0.117 0.035 11.794 0.0006 

Whole Model Test 

Model -Log Likelihood Chi Sq  DF 

Prob > 

Chi 

Square 

AICc 

Difference 90.802 181.604 9 <0.001 1126 

Full 552.813         

Reduced 643.615         
Response variable: Presence / absence 

Predictor variables: Wave Height (m), Air Pressure (kPa), Surface Air Temperature, Surface Water 

Temperature, Moon Fraction (%), Minutes of Darkness, Tide Height (m), Flood or Ebb Tide, Bottom 

Water Temperature (measured by ADCP at deep deployment site in 2009 and 2010). 

General Linear Model, binomial distribution, logit link, Firth Adjusted Maximum Likelihood 
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Figure 53.  
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Figure 54.  
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Figure 55. 
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Figure 56. 
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Figure 57. 
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Figure 58.  
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Figure 59. 
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Figure 60. 
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Figure 61.  
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Figure 62.  
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Figure 63.  
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Figure 64.  
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Figure 65.  
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Figure 66.  
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Figure 67.  
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Figure 68.  
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Figure 69.  
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Figure 70. 
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Figure 71.  
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Figure 72.   

 

 

 

 

 

 

 

 



  

292 
 

Figure 73.  
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Figure 74. 
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Figure 75.  
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Figure 76.   
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Figure 77.  
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Figure 78.  
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Figure 79.   
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Figure 80.  

   

 

 

 

 

 

 



 

 

CHAPTER 5: THE SPINY DOGFISH CONTINGENT HYPOTHESIS – 

PROPOSED DELINEATION OF MID-ATLANTIC AND GULF OF MAINE 

MIGRATORY CONTINGENTS  

Abstract 

Fisheries managers and biologists have not conclusively explained the rapid rebuilding of the 

Spiny Dogfish stock in the northwestern Atlantic Ocean; however, recent research has implied 

that the stock structure may be more complex than previously thought.  Using data presented in 

this dissertation and previously published research, this chapter evaluates the Spiny Dogfish 

Contingent Hypothesis, which hypothesizes the presence of as many as five behavioral 

contingents of dogfish.  Contingents are groups of genetically indistinct fish engaged in 

predictable, divergent movement patterns and seasonal migrations that connect feeding, 

overwintering, and spawning areas.  Although contingent theory is widely recognized in the 

fishery literature, this review found that management is typically not conducted at the contingent 

level.  Practical applications of contingent management for the Spiny Dogfish fishery are 

discussed, along with possible socio-economic implications of shifting from a single-unit stock 

management plan to a contingent-based management plan.        

Introduction: The Contingent Hypothesis 

Current fishery management models typically rely on the compartmentalization of fishery 

resources into manageable units, which are sampled and compared to reference parameters (e.g., 

spawning stock biomass, abundance indices, age-at-maturity, recruitment, etc.).  These 

management units are usually described as a “stock”; however, this term has been broadly 

defined across the fisheries literature.  Simply put, a stock can be described as a group of fish 
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that maintains and sustains itself over time in a definable area (Booke 1981).  A fishery can be 

classified into varying levels of complexity based on how many stocks are managed 

simultaneously by an agency.  A “single stock fishery” assumes that the entire managed 

population within this fishery is a single group that exhibits common behavior patterns and is not 

genetically distinct (e.g., American Eel), whereas a “multi-stock fishery” usually constitutes 

several behaviorally or genetically distinct groups of fish (FAO 2010).  The Food and 

Agricultural Organization of the United Nations (FAO UN) noted on its website that “the 

greatest source of error in fisheries stock assessment and management is to underestimate the 

extent of a unit stock” (http://www.fao.org/fishery/topic/14787/en).     

The extent of a management unit, or stock, is simply the physical (“where”), biological 

(“who”), and functional (“why”) framework used to identify and manage an available resource 

(Secor 1999).  A defined management unit may or may not constitute a biological or ecological 

entity such as a “population” or a “species” (Secor 2005).   Management units are often defined 

by biological or genetic structure (required for advanced protection under U.S. laws like the 

Endangered Species Act).  However there are times when recognizing population structure based 

on spatial scales, spatial features, or behavior may be as important.  For example, Gulf of Maine 

Atlantic cod stocks are thought to be comprised of many groups that exhibited unique behaviors, 

including the utilization of different migration corridors to partially isolated spawning grounds  

that were susceptible to particularly heavy fishing pressure (Ames 2003).  Lack of recognition of 

these unique subgroups, and appropriately scaled management, is one factor that led to some of 

these groups becoming functionally extinct and the slow recovery of Atlantic Cod populations in 

the Gulf of Maine (Ames 2003; Robichaud and Rose 2004).   Secor (1999, 2005) proposed that 
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groups of fish that exhibit unique behaviors, but are otherwise not genetically distinct from each 

other, may warrant separate management approaches as discrete “contingents” of fish.   

The contingent hypothesis was developed by Clarke (1968) to describe a unique group of 

fish that “engage(s) in a common pattern of seasonal migration between feeding areas, wintering 

areas, and spawning areas”, and,  once established, “maintain its integrity by engaging in a 

distinct pattern of seasonal migration not shared by fish of other contingents.”  Contingents can 

be, but are not necessarily, genetically distinct sub-populations (Clark 1968).  Clark’s contingent 

hypothesis was initially developed to describe unique behaviors observed in tagged Striped Bass 

in the Hudson River, Long Island Sound and the New York Bight. One contingent was identified 

as having migration patterns that were wholly contained within the Hudson River estuary, and 

moved between overwintering grounds in the river to summer habitats in the bays and estuary 

(“Hudson Estuary Contingent”).  A second contingent, the “Hudson-West Sound Contingent”, 

was hypothesized to spend the summers in Long Island Sound and winters in the Hudson River.  

A third contingent, the “Hudson-Atlantic” contingent was proposed to move into the Hudson 

River only for spring spawning and spent summers and winters in an unspecified location.  

Contingent theory was traditionally identified as reflective of divergent behavior from the same 

population (Clark 1968), and divergent behavior may result from conditions experienced during 

early life history (Secor et al. 1999).  Life strategy contingents have since been documented in 

the Hudson (Secor et al. 1999; Zlokovitz et al. 2003) and Roanoke Rivers (Zurlo 2014) via 

otolith microchemical analysis for Striped Bass.   Based on subsequent usage in the literature, 

contingents may be defined based on broad behavioral descriptions, such as whether the groups 

of fish in question are resident or migratory (Elsdon and Gillanders 2006), or from more specific 

classifications of behavior (Clark 1968), and may collectively comprise a metapopulation (e.g., 
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Smedbol and Wroblewski 2002). Contingents may also overlap in time and space; for example, 

the contingents initially identified by Clark (1968) migrated back into the Hudson River to 

overwinter and for spawning, but spent summers in different locations.  

The contingent hypothesis was not initially accepted for several reasons: small sample 

sizes; only juvenile males and immature females were tagged (ontogenetic migration or sex-

specific migration could have been interpreted as contingent behavior); and the study was 

conducted over a short time period and therefore did not cover the lifespan of study specimens, 

which made it difficult to assess whether contingent membership varied across the lifespan of a 

fish (Waldman 1986; Waldman et al. 1990; Secor 1999).  Secor (1999) re-evaluated the 

contingent hypothesis using otolith microchemistry, finding unique behaviors that persisted 

throughout the lifespan of individual striped bass (“resident”, “estuarine” and “migratory”).  

Contingent theory has since been applied to describe many examples of divergent behavior 

patterns observed within fish populations (this chapter).   

How Are Contingents Maintained? Contingents reflect observable patterns in behavior; 

however, membership within a contingent can be fluid, and may vary through the lifespan of a 

member (Secor et al. 1999). Contingents that are not wholly contained often intermix with each 

other (e.g., Studholme et al. 1999).  Stocks with multiple behavioral contingents may exhibit 

partial migration (i.e., a population  may consist of both resident and migratory contingents),  

which results in portions of a population or stock utilizing different types of habitats or 

undertaking separate behaviors (Secor 1999).  In contrast to Secor (1999), in which contingent 

adoption is based on early life history divergence due to energy allocation, McQuinn (1997) 

proposes that divergent behavior was the result of migratory behavior “learned” during the first 



  

304 
 

spawning migration and reinforced in subsequent migrations (Secor 1999).  Entrainment and 

persistence of certain behavior patterns likely happen as young recruit into contingents or as 

members of contingents stray between contingents; in cases where contingents are depleted or 

there are no older members of a contingent to “teach,” then certain migration routes, or 

overwintering or reproductive grounds may become unavailable to a stock (Petitgas et al. 2010).  

Straying between contingents may be a result of learned behavior as a result of intermingling fish 

stocks (i.e., fish adopting one life history strategy that intermix and recruit into a different 

contingent “learn” the new behavior) (McQuinn 1997).  One interesting question that should be 

further explored is whether there is a threshold of intermingling or mixing that would nullify the 

application of contingent theory.     

This type of population structuring may enhance the ability of stocks to withstand 

disturbance and promote long-term stability and health of fish stocks.  Kerr et al. (2009) notes a 

correlation between environmental conditions and the prevalence of different behavioral 

contingents, implying that partial migration may be an adaptation to inter-annual variability in 

environmental conditions.  Contingent structuring of a Chesapeake Bay White Perch population 

may be a response to conditions experienced in the early life history of fish (Kerr et al. 2008).    

White Perch (Morone americana) recruitment to migratory contingents is high during years of 

high flow in riverine environments (Kerr et al. 2009). Recruitment to resident contingents is 

higher in low flow years, and absolute in drought years.   Contingents adopting different 

behavioral strategies may in turn experience differences in vital rates and productivity as a result 

of exposure to different environmental conditions (Kerr et al. 2010).  Complex structuring of 

contingents within a population may enhance resiliency, especially if divergent behaviors 

exposes certain contingents to periodic, favorable conditions that promote high yield and buffers 



  

305 
 

population level responses against unfavorable conditions (Secor 2007; Kerr et al. 2010).  Kraus 

and Secor (2004) hypothesize that resident contingents lead to long term stability (i.e., a 

population can maintain its integrity and persist despite disturbance), whereas dispersive 

contingents contribute to population-level productivity and enhance overall resilience (i.e., 

ability to return to an equilibrium state after disturbance) (definitions and further analysis of 

concepts are available in McCann 2000; Kerr et al. 2010; Petitgas et al. 2010).  Disruption of 

biological mechanisms supporting persistence of contingent behavior (and completion of 

contingent life cycles) can undermine the health of stocks and contribute to stock depletion or 

collapse (Petitgas et al. 2010).  Petitgas et al. (2010) note that in cases where contingent behavior 

is damaged as a result of overexploitation, recovery of collapsed stocks may take much longer 

than expected, and depends on the re-establishment of behavioral patterns.  Depleted stocks that 

still retained contingent behavior recovered much more quickly.     

The Spiny Dogfish Contingent Hypothesis: Overview 

Spiny Dogfish (Squalus acanthias) were long assumed to exhibit a general northward-

southward and on-shore offshore movement between summer and winter habitats (Burgess 2002; 

MAFMC 1999; ASMFC 2002).  U.S. and Canadian shark biologists met in 2007 to discuss 

Spiny Dogfish stock structure, migration, abundance trends, and current state of knowledge of 

the Canadian component of the northwest Atlantic dogfish stock (Campana et al. 2008).  

Analyses of tagging data completed at this meeting suggested the potential for a Spiny Dogfish 

metapopulation of dogfish, with “groups” of dogfish identifiable in the Gulf of St. Lawrence, the 

Scotian Shelf, the Bay of Fundy, coastal regions of Newfoundland, and off Massachusetts and 

North Carolina.  Campana et al. (2008) hypothesized that Canadian dogfish “groups” were 

residential and exhibited onshore-offshore migration.  Southern (U.S.) populations of dogfish 
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were proposed to undertake north-south migrations in response to seasonal changes in the 

availability of preferred temperatures along the east coast of the United States.  In 2010, shark 

experts at the Transboundary Resource Assessment Committee (TRAC) meeting hypothesized 

that Spiny Dogfish form unique migratory contingents since tagging studies have indicated the 

potential for complex population structuring within a single unit stock (Figure 81; TRAC 2010). 

Two migratory contingents were proposed, one that exhibited a north-south seasonal migration 

between North Carolina and Cape Cod, and another that exhibited a gyre-like migration around 

the Gulf of Maine.  The latter included sharks found in the Bay of Fundy, and featured limited 

exchange with Scotian Shelf Spiny Dogfish.  In addition, the resident groups observed off the 

Scotian Shelf, in the Gulf of St. Lawrence, and off Newfoundland were proposed to be separate 

contingents.    

One purpose of this dissertation is to evaluate the contingent hypotheses and determine 

whether definitive supporting evidence exists from multiple tagging studies.  In the discussion 

below, I characterize the potential Mid-Atlantic Spiny Dogfish Contingent based on Clark’s 

hypothesis of unique behaviors connecting reproductive, feeding, and overwintering grounds 

(albeit for a shark instead of an anadromous fish).  This dissertation is largely focused on the 

behavior of the Mid-Atlantic Spiny Dogfish, and I review data presented in Chapter 3 that 

establish the northern and southern extents of range.  Our analysis of dogfish detection data 

against environmental data (Chapter 4), coupled with what is known regarding distribution of 

dogfish across broader scales, highlights the species’ sensitivity to fluctuations within the 

environment.  A southern functional extent is also discussed, based on consideration of 

additional environmental information and records of interactions south of Cape Hatteras.  To our 

knowledge this is the first time that the contingent hypothesis has been directly applied to 
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elasmobranchs; however, there are multiple studies of shark metapopulations which suggest that 

groups of sharks exhibit some degree of population structuring and philopatry for specific 

feeding, reproductive and overwintering areas (e.g., Hueter et al. 2005; Ashe et al. 2015; 

Sandoval-Castillo and Beheregaray 2015). 

Classification of Spiny Dogfish into some contingents may be appropriate because 

distinct behavior patterns have been observed through multiple tagging studies (Hickman et al. 

2000; Rulifson et al. 2002; Campana et al. 2008; TRAC 2010; this dissertation) which may 

connect overwintering habitats in the southern extent of the range to feeding grounds further 

north. This dissertation does not irrefutably prove nor disprove the existence of contingents.  

Strict interpretation of Clark’s 1968 hypothesis suggests that there is no intermixing between 

contingents.  The Spiny Dogfish Contingent Hypothesis as originally described offered a clear 

separation between the Mid-Atlantic migratory contingent and the Gulf of Maine migratory 

contingents, with Cape Cod serving as a boundary.  Our research does not support absolute 

separation of the proposed contingents at Cape Cod.    Up to a quarter of Spiny Dogfish tagged 

off North Carolina venture into areas hypothesized to be part of the migratory route undertaken 

by the Gulf of Maine contingent.  In particular, large numbers of Spiny Dogfish were recaptured 

or detected on receivers along Cape Cod and up the coast of Massachusetts to Cape Ann.  

Coastal Massachusetts, including Cape Cod, may be an area of spatial overlap between 

migratory contingents and some degree of mixing may occur between contingents.  Smaller 

numbers of North-Carolina tagged spiny dogfish were both detected and recaptured of Maine, in 

the central Gulf of Maine or Atlantic Canada, areas that are clearly beyond the areas frequented 

by a large proportion of North-Carolina tagged spiny dogfish.  These Spiny Dogfish, which are 

hypothesized to be part of the Mid-Atlantic contingent, may have adopted the behaviors of a 
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separate contingent (e.g., the Gulf of Maine or the Scotian Shelf Contingents).  However, I 

believe this Hypothesis should not be seen as depicting an absolute definition of migration 

pathways for each proposed Contingent, per Clark’s definition.  Rather it should reflect some of 

the ideas expanded upon by Secor (e.g., 1999, 2003) and others as Contingent Theory has 

continued to be evaluated under different case studies.     

 

The Spiny Dogfish Contingent Hypothesis: Description of the Proposed Mid-

Atlantic Migratory Contingent 

Summer Habitats: Northern Extent of Proposed Contingent Range. The original 

Spiny Dogfish contingent hypothesis proposed in TRAC (2010; Figure 81) suggested that New 

England, and especially the Cape Cod area, was the natural intermixing ground for the US and 

Canadian stocks.  Cape Cod was hypothesized to serve as a natural boundary between a proposed 

Mid-Atlantic Contingent and a Gulf of Maine Contingent of Spiny Dogfish.  Migration to 

summer habitats in the northern extent of the range was initiated in March and appeared to take 

roughly two months, based on mark-recapture and acoustic tagging data presented in Chapter 3.  

Recapture data suggested that the northward migration took place over a longer period of time 

than the southward migration into overwintering grounds.  Recapture data also suggested that 

Spiny Dogfish appear to distribute north around Cape Cod in June, with the return migration 

occurring in October.  To further test the hypothesis that Cape Cod constituted mixing grounds 

between proposed contingents, the Rulifson lab conducted a tagging experiment off Cape Cod to 

identify the amount of mixing that occurred between the Mid-Atlantic Bight and the Gulf of 

Maine contingents, and to evaluate sexual segregation north and south of Cape Cod (Rulifson et 

al. 2012; Dell’Apa et al. 2014).  The 42º N latitude line was proposed as a boundary based on 
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recommendations from commercial fishermen.  Sharks were tagged north and south of Cape Cod 

and along Cape Cod (just south of the 42ºN latitude parallel).  Overall the estimated average rate 

of intermixing between sharks on the north side and sharks on the south side of Cape Cod, based 

on external tag return data, was 28 percent.  The rate of intermixing of sharks tagged south of 

Cape Cod (i.e., they were recaptured north of Cape Cod) was higher than the rate of intermixing 

of sharks tagged north of Cape Cod.  However, the acoustic tag and mark-recapture data 

suggested that Spiny Dogfish tagged to the south do venture north of Cape Cod.  In particular, a 

large number of tag returns were received from sharks captured between Cape Cod and Cape 

Ann, in coastal waters of Massachusetts (in particular, along Cape Cod and within Cape Cod Bay 

and Massachusetts Bay).  The distribution of recaptures was consistent with the areas with the 

greatest catch per unit effort for the NOAA Fisheries NEFSC fall bottom trawl survey (McMillan 

and Morse 1999).   

Fifteen of 93 (16 percent) North-Carolina tagged sharks were redetected on acoustic 

arrays maintained by the Gulf of Maine Ocean Observing System (GoMOOS)  north of Cape 

Ann and in the middle of the Gulf of Maine.  Fifty-three of 410 (approximately 13 percent) of 

tag returns analyzed for this dissertation were returned from New Hampshire, Maine, or the 

Canadian Maritimes (north of the proposed terminus at Cape Ann).  Results suggested that the 

northern extent of the proposed Mid-Atlantic contingent extends to Cape Ann, Massachusetts, 

with a small number of sharks (less than 20 percent) moving further north into the areas utilized 

by the proposed Gulf of Maine contingent.   

Overwintering Habitats: Southern Extent of Contingent Range.  Our research 

strongly supported the idea that the southern Mid-Atlantic Bight (and areas further south) may 
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serve as overwintering grounds for a unique group of Spiny Dogfish due to the fact that 1) 

notable numbers of acoustically tagged sharks were redetected over the duration of the study 

(sometimes in consecutive years, sometimes after 2-3 years), and 2) that many sharks tagged 

with external dart tags were often recovered subsequent years after tagging within a relatively 

short distance of the release location. Based on external conventional tagging and acoustic 

tagging, the southward migration to overwintering habitats is initiated in October.  Spiny 

Dogfish were reported by commercial fishermen to show up as early as November (D. 

Hemilright, pers comm.), a contention that was supported by a small number of tag returns from 

the mark-recapture study.  Tag returns from North Carolina usually began in earnest in 

December, the same month that tagged Spiny Dogfish showed up on the Hatteras Bight acoustic 

array in the winter of 2010-2011.  The southern extent of the hypothesized Mid-Atlantic 

contingent appeared to be depicted in Figure 81 as Cape Hatteras, North Carolina.  However, the 

results of both the acoustic and mark-recapture study implied that Spiny Dogfish do migrate 

around Cape Hatteras.  In 2009, acoustic tagging was focused solely on sharks captured north of 

Cape Hatteras; thirteen percent of tagged sharks were redetected south of Cape Hatteras in the 

same year of tagging.  In subsequent years, as many as 25 percent of the tagged animals at liberty 

were re-detected south of Cape Hatteras.  Numerous other studies have noted large numbers of 

Spiny Dogfish between Cape Hatteras and the North Carolina-South Carolina line (Hickman et 

al. 2000; Newman et al. 2002).  Sufficient numbers of Spiny Dogfish exist off Wilmington, NC 

to support an annual dogfish-fishing tournament in January; in 2010 approximately 66 dogfish 

were captured by anglers participating in the tournament (A. Baird, pers. comm., Dec 2013).  

Spiny Dogfish have also been captured in surveys conducted by the South Carolina Department 

of Natural Resources (B. Frazier, South Carolina Department of Natural Resources, Marine 
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Resources Division, Charleston).  Many of these reports of Spiny Dogfish occur at times when 

water temperatures are unusually cool in these areas.  However, Spiny Dogfish have also been 

noted south of Cape Hatteras later in the spring than the timing of departure implied by tagging 

and mark-recapture data in water temperatures that are much higher than the previously assumed 

tolerance limits for Spiny Dogfish (22-28ºC; Bangley and Rulifson 2014).   A longline survey for 

sharks conducted by the University of North Carolina-Wilmington off Cape Lookout, North 

Carolina in Onslow Bay notes the presence of Spiny Dogfish in late spring (April and May) in 

1978, 1979, 1986, 1989, and 1999.  The southern functional extent of Spiny Dogfish very likely 

may extend well south of Cape Hatteras along the continental shelf.  Appropriate conditions 

likely also exist for this species off the continental shelf, under and seaward of the Gulf Stream. 

It is unclear why dogfish would remain off the coast of North Carolina for so long in a 

given year, unless sufficient thermal refugia exist or the bioenergetic trade-off is such that 

dogfish tolerate unfavorable conditions long enough in order to take advantage of abundant prey 

resources (e.g., many species of anadromous fish move through the area to complete spring 

spawning activity).  I observed dramatic differences in water temperature between regions close 

to shore (due to cold water outflow from the Pamlico-Albemarle Sound estuary system) and 

water temperatures offshore that may be influenced by the Gulf Stream, and I noted several 

instances where acoustically-tagged dogfish moved onshore when temperatures increased 

offshore (and vice versa). Given the narrow width of the continental shelf off southeastern North 

Carolina, dogfish would not have to travel far in order to reach the shelf break and presumably 

colder waters underneath the Gulf Stream and on the abyssal plain.  I also hypothesize that 

movements around Cape Hatteras may be linked to changes in available temperature regimes and 

weather patterns.   
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The Migration Pathway.   The original Spiny Dogfish Contingent Hypothesis noted 

distinct seasonal migration patterns to feeding and overwintering grounds (Clark 1968; Secor 

1999; Figure 81).  I used mark-recapture and acoustic tagging, along with substantial evidence 

from other surveys and research programs, to delineate a potential northern and southern extent 

for the TRAC-proposed Mid-Atlantic Contingent of Spiny Dogfish. However the same behavior 

was typically not observed in acoustically-tagged individuals in consecutive years.  For example, 

in 2009, large numbers of sharks occurred consecutively in North Carolina and Delaware Bay 

from the late winter through late spring.  Sharks were then sporadically detected on arrays in the 

Gulf of Maine and New England, but not in large numbers.  In the fall of 2009, a moderate 

number of Spiny Dogfish were again detected on the acoustic array, before returning to North 

Carolina waters in 2010.  A large number of 2009-tagged sharks showed up later in the year on 

acoustic arrays in the Gulf of Maine and New England, and several of these sharks showed up 

back in North Carolina waters in winter 2011.  By comparison, 2010 tagged dogfish were 

strongly present on acoustic arrays off North Carolina (in winter of 2010 and 2011), coastal 

Massachusetts (summer and fall 2010), and on acoustic arrays deployed off New York and New 

Jersey in 2011.  Collectively, these data suggest that dogfish may not undertake the same 

migration pathways on an annual basis. Furthermore, dogfish periodically disappeared for 

periods of time, as exemplified by few 2009-tagged dogfish being detected in large numbers on 

any acoustic array in the northern part of the range, and individual dogfish only showing up on 

the Cape Hatteras acoustic array in Year 2 or Year 3 of our study.  The mark-recapture tagging 

study suggests that some dogfish become unavailable to the fishery for multiple years in a row, 

based on extremely lengthy amounts of time between release and recapture of tagged Spiny 

Dogfish.  I therefore hypothesized that 1) dogfish may vary the exact migration pathway based 
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on environmental conditions between North Carolina and the Gulf of Maine, 2) that some 

individuals complete part of the migration off the continental shelf or beyond the range of any 

coastal acoustic arrays, and 3) some dogfish may remain off the continental shelf for extended 

periods of time before returning to feed or overwinter on the continental shelf.  Additionally, I 

propose some additional modifications to the Spiny Dogfish Contingent Hypothesis that 

encompass the migration pathways noted from mark-recapture and acoustic tagging studies 

presented in this dissertation (Figure 82).  Some evidence is available which implies dogfish 

movement off the continental shelf.  A small number of tagged Spiny Dogfish were recaptured 

far off the continental shelf (R.A. Rulifson, East Carolina University, Greenville, NC, pers 

comm.).  Additional research completed by Carson et al. (2014) noted that Spiny Dogfish tagged 

and released with satellite tags off the coast of North Carolina disperse either along the 

continental shelf, or eastward into deep waters off the continental shelf, sometimes beyond the 

extent of the U.S. Exclusive Economic Zone. 

  Spiny Dogfish Reproductive Behavior: Contingent or Metapopulation?  Contingent 

behavior is partially defined by Clark (1968) as a unique migration pathway that is inclusive of 

reproductive grounds; however, contingent theory usually refers to divergent behaviors that 

result in different groups of fish dispersing spatially along unique migration pathways (Kraus 

and Secor 2004).  Contingents are thought to have a common reproductive ground (Kraus and 

Secor 2004).  Metapopulations, on the other hand, are comprised of discrete, persistant sub-units 

within a stock that may home to specific spawning and feeding habitats.  These sub-units are 

spatially linked to each other and experience some degree of exchange between sub-units 

(Hanski and Gilpin 1997).  Metapopulation theory as applied to marine fish stocks is highly 

dynamic, as sub-units within a metapopulation may undergo temporary extinction, 
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recolonization, expansion, contraction, or development in new areas (Smedbol and Wroblewski 

2002).   Exact pupping grounds for Spiny Dogfish are unknown, but pregnant females with near-

term pups, neonates and juveniles are known to occur in a handful of areas. The location of 

known pupping areas could provide additional evidence to discern whether it is more appropriate 

to regard Spiny Dogfish as contingents or as a metapopulation.  Furthermore, consideration 

should also be given to the reproductive grounds where mating occurs.  Contingent theory as 

applied to diadromous fishes often has genetically indistinct groups of fish converging at some 

point during a migration cycle.  Knowing if spiny dogfish contingents spatially overlapping off 

New England in the summer were inter-breeding could further explain the genetically indistinct 

nature of the stock and refine understanding of stock structure (and perhaps provide additional 

arguments to accept or refute the Spiny Dogfish Contingent Hypothesis). 

Pregnant Spiny Dogfish off the northeastern United States are suspected to migrate 

offshore or to Georges Bank to give birth on the edge of the continental shelf (Jensen 1966; 

Nammack et al. 1985; Campana et al. 2009), perhaps in fall and winter (Soldat 1979; Nammack 

et al. 1985; Burgess 2002).  Spiny Dogfish have a gestation period of 1.5-2 years (Nammack et 

al. 1985; NEFSC 2006), which would conceivably permit a pregnant Spiny Dogfish to complete 

at least one seasonally-based migration circuit (based on our tagging data).  Sulikowski et al. 

(2013) noted large number of neonates in trawl surveys conducted off Block Island, RI and 

suggest that this region may also constitute pupping grounds.  These neonates were found in 

February 2012.  Were the 32,000+ neonate dogfish estimated to have been trawled up by 

Sulikowski et al. (2013) part of a specific group?  Existing evidence is unclear on whether 

dogfish parturition is isolated to specific areas, or if it occurred along the entire length of the 

shelf break between Georges Bank and North Carolina.  If the latter, then the neonate dogfish 



  

315 
 

observed by Sulikowski et al. (2013) could be part of the hypothesized Mid-Atlantic Contingent; 

however, given the known migratory and overwintering behavior of Spiny Dogfish in the Gulf of 

Maine it was also possible that these are proposed Gulf of Maine Contingent dogfish. 

Pregnant females and young Spiny Dogfish were documented to occur off the continental 

shelf in the mid-Atlantic Bight (Burgess 2002; Castro and Peebles 2011).  Results from the 13-

year mark-recapture study analyzed in Chapter 3 suggest that over 75% of wintertime (Jan – 

March) recaptures of the dogfish tagged and released off North Carolina occurred off Virginia 

and North Carolina.  Females carrying near-term pups (Stage V, Moore 1998 and Register 2006) 

were found along the shelf break of Mid-Atlantic Bight waters of North Carolina and Virginia on 

annual spring bottom trawl surveys conducted by the Northeast Fisheries Science Center (K. 

Sosebee, pers comm.) and on the shelf in coastal habitats on the U.S. Fish and Wildlife Service-

led Cooperative Winter Tagging Cruise (a trawl survey conducted off North Carolina and 

Virginia in January or February of a given year; ASMFC, ECU, MDDNR, NCDMF, NMFS, and 

USFWS, unpublished data).  Pregnant female dogfish were also often captured for reproductive 

research purposes using commercial fishing gear in a number of studies off the coast of North 

Carolina (e.g., Rulifson et al. 2002; Register 2007).  Although the composition of the female 

reproductive stages varied by study, between 25 to 45 percent of the pups were full term (Stage 

V).  We observed females on the Cooperative Winter Tagging Cruise periodically birthing full-

term pups on the deck or in the trawl net, possibly as a stress response to capture.  Young 

juveniles were occasionally encountered by small mesh gillnet fishermen in the Hatteras Bight 

(C. Hickman, pers comm.; Rulifson et al. 2013).  However, compared to the number of females 

with near-term pups, the number of neonates and juveniles found in coastal waters of North 

Carolina were relatively small. Tagged juvenile Spiny Dogfish released in the Hatteras Bight 
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were never redetected on coastal arrays in North Carolina or further north (Rulifson et al. 2013).  

Juveniles observed on the shelf near Cape Hatteras may have been temporary residents in coastal 

habitats before moving offshore, or up into the middle of the water column and therefore not 

susceptible to fishing gear (Beamish and Sweeting 2009).    

Our research demonstrates that large, reproductively mature females (>800 mm TL) 

tagged and released with both acoustic and conventional mark-recapture tags completed 

migration circuits between North Carolina and Massachusetts, and sometimes returned to coastal 

North Carolina waters in consecutive years.  Our mark-recapture tag return data comparing 

distance of travel between release and recapture sites and days at large suggests a strong cyclic 

pattern in the geographic distribution of dogfish through time.  Therefore, it is possible that 

overwintering habitats in the southern extent of the proposed Mid-Atlantic Contingent range may 

serve as an important part of the dogfish reproductive cycle. Given that we know individuals 

(this study) or large schools of dogfish (Newman et al. 2000) do not remain in coastal areas of 

the Hatteras Bight for extended periods of time, and that individually tagged sharks move on and 

off the shelf in response to environmental conditions (Chapter 4), it is possible that presumptive 

Mid-Atlantic Contingent sharks may move offshore to give birth (or that small numbers of 

sharks give birth in inshore waters).  Hanchet (1988) suggests that pregnant Spiny Dogfish move 

inshore during the first year of gestation, and offshore during the second year to give birth at the 

start of winter (i.e., May to June in the southern hemisphere).  Pregnant females found off the 

coast of North Carolina may therefore also be within the first year of gestation before 

disappearing offshore to parturition sites.  This provides a possible explanation for why some 

tagged dogfish may not have been detected on coastal arrays in consecutive years.   



  

317 
 

Management of Behavioral Contingents 

I have used the data presented within this dissertation to make a potential case for the 

delineation of a Mid-Atlantic Migratory Contingent of Spiny Dogfish.  The question remains 

whether it is appropriate to manage at the contingent resolution for this species, if contingents 

truly do exist.  In order to address this, I make a case for management at the appropriate unit 

stock through examination of fisheries in which stock collapse can be partially attributed to a 

misunderstanding of stock structure.  I review examples where management at the contingent 

level is plausible, and I also consider cases in which contingents are recognized but the 

resolution of management is higher (coarser) than at the level of contingent.  Finally I discuss 

whether Spiny Dogfish could be managed at a contingent level, noting that Spiny Dogfish have 

undergone a revolution in management that responds to greater local and regional fishery needs 

which indirectly reflects the behavior of the proposed northern and Mid-Atlantic Migratory 

Contingents.   

Consequences of Stock Management at Inappropriate Resolutions.  Identification and 

delineation of appropriate stock units are essential for understanding the true state of a fish stock, 

and for the creation of effective and sound fishery management measures (Stephenson 1999).  

Modern fisheries management strategies and stock assessments assume discrete populations 

(Stephenson 1999); however, simply identifying the stock to be managed or assessed can be a 

challenge.   Most applied population models used in stock assessments are developed to describe 

a known group of fish with homogeneous vital rates (e.g., growth, maturity, mortality) and a 

closed, definable life cycle (Cadrin et al. 2014).    Often, fishery managers must attempt to 

describe stocks and predict appropriate levels of harvest with incomplete information, usually at 

a much simpler scale and under a tight set of assumptions that do not actually reflect the full 
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range of environmental, biological and anthropogenic factors that affect the status and health of 

fish stocks.  Simply defining the management unit can be a great challenge, since it can be based 

on many things (e.g., population structure, behavior, genetic delineation of stocks, geophysical 

boundaries, political/jurisdictional boundaries, etc).  Secor (2013) summarizes three criteria that 

affect the definition of stock structure: 1) identification of the stock; 2) evaluation of the stock 

unit area, or the geographic boundaries that contain the movements and processes associated 

with a stock; and 3) the long term stability of a stock and its boundaries (Begg et al. 1999; Cope 

and Punt 2009; Link et al. 2011).     

Many migratory species were initially managed as single-stock fisheries until population 

declines forced managers to consider alternatives that redefined the unit stock.  Multiple 

spawning units have long been known to exist for Striped Bass (Morone saxatilis), Atlantic Cod 

(Gadus morhua), Atlantic Herring (Clupea harengus) and Pacific (Oncorhynchus spp.) and 

Atlantic (Salmo salar) salmon, but management of these species was initially focused on single 

unit stock approaches that disregarded complex population structures and the importance of 

individual spawning groups (Sinclair 1988; Sinclair and Iles 1988; Stephenson 1999). 

Overfishing and erosion of population sub-components, even under management thought to 

occur at the appropriate scale for overall stock units, may still occur (Stephenson 1998), as is 

evidenced by the collapse of northwest Atlantic Cod off the coasts of the United States and 

Canada.     

The collapse of the Gulf of Maine Atlantic Cod through the second half of the 20th 

century provided an excellent example of the critical need to identify stock structure, and 

manage fishery resources at an appropriate scale.  Despite improved scientific understanding of 
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cod meta-population structure (Wise 1963; Serchuk and Wigley 1993; Myers et al. 1997) and 

repeated warnings from scientists about the decline in cod populations, the New England Fishery 

Management Council (NEFMC) still permitted unsustainable harvest levels (Dobbs 2000).  

System-wide assessments did not capture the status and importance of individual population 

subgroups (Ames 2003).  The U.S. identified three to four different stocks of cod through the 

1990s in the Gulf of Maine.  These stocks were comprised of many contingents that exhibited 

unique behaviors, including different migration corridors to partially isolated spawning grounds 

(Ames 2003).  Certain contingents of cod were exposed to such high levels of directed fishing 

that they became functionally extinct, and have yet to recover via meta-population processes of 

exchange and colonization (Robichaud and Rose 2004).   

A concurrent collapse of cod was also noted in Canadian waters for six of seven cod 

populations by the early 1990s. Many biologists noted that the inability to control fishing 

mortality was largely to blame for poor stock health (Hutchings and Myers 1994; Myers et al. 

1997).  In particular, fishing mortality was consistently underestimated and underreported; the 

ability of fleets to continue to catch fish efficiently at low abundance levels due to the efficiency 

of fleets and increased effort (and concurrent assumption that catch per unit effort can be 

comparable to stock abundance); and increased discarding and non-reporting of small fish.  As a 

result, the population abundance of cod was overestimated in stock assessment models, and 

fishing mortality was underestimated (Myers et al. 1997).   Robichaud and Rose (2001) noted a 

significant difference between the spatial extent of stocks (as management units) and the total 

range of cod populations off Newfoundland, Canada. 
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Delineating a stock includes a geographic component, such that fishery managers must be 

able to adequately identify and audit the internal dynamics of groups of fish against the effects of 

fishing activities within a specified area (Cadrin and Secor 2009).  Identifying the physical 

boundaries of where a stock may be distributed is critical in ensuring that data are collected on 

the entirety of the stock for a more complete audit.  It is not unusual for fishery management 

boundaries to be mismatched with the spatial distribution of populations, since stocks may be 

operationally defined by geopolitical boundaries, the geographic extent of fishing, or other 

physical aspects of the fishery (Cadrin and Secor 2009).  A lack of understanding of the 

geographic scope and extent of a stock can undermine management efforts.  Migratory species in 

U.S. territorial waters that cross jurisdictional boundaries may be exposed to varying degrees of 

management by states, interstate commissions, and the federal government.  Armstrong et al. 

(1998) note that successful management of Atlantic salmon depends more than just identifying 

and protecting adult fish, since there are a tremendous number of factors at multiple scales that 

can affect reproductive success.  These factors may vary from very large (climate change) to 

very localized (fish passage) or very direct (fishing mortality) management issues that must all 

be managed for in the maximization of cohort survival to adulthood and a reproductive event.   

Management of Contingents.  Successful management of contingents, at its core, 

requires a robust understanding of life history strategies that may drive the adoption of different 

behaviors within a population.  Identification of contingents is particularly robust in the literature 

dealing with diadromous species whose populations also display partial migration.  This 

phenomenon occurs when a fraction of a population migrates and the remainder stays resident to 

a particular area.  Partial migration is extremely widespread, distributed across orders of fish, 

occurs in a variety of habitats, and occurs across multiple scales (Chapman et al. 2012). The 
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adoption of different behavioral strategies may result in groups characterized by different vital 

rates (e.g., productivity, growth rates).  Gillanders et al. (2015) identified partial migration in 

Black Bream (Acanthopagrus butcheri) otoliths collected from fish in the Murray River, 

Australia.  Inclusion of contingent type (resident or migrant) improved the ability of models to 

explain variation in growth rates 56 times more than models that simply used age as a variable.  

Such spatial structuring within populations may represent a means of bet-hedging against 

competition and unfavorable environmental conditions (Secor 2007; Kerr et al. 2010). Petitgas et 

al. (2010), in reviewing and applying the contingent theories established by Secor (1999) to 

Atlantic Cod, noted that resident contingents confer stability, whereas migratory contingents 

confer productivity, and connectivity between the two tends to increase stock size. Strong year 

classes produced by resident contingents supported recovery for depleted populations.   Fisheries 

that disproportionately exploit one behavioral contingent may lead to population decline if 

environmental conditions favor the strategy of the overfished contingent.   

Management can prioritize the conservation of one or more contingents depending on 

management goals.  Kraus and Secor (2004) identified a resident freshwater contingent of white 

perch and a migratory brackish water contingent. They noted that if biomass production is the 

primary goal of management, then protection of brackish juvenile habitats of White Perch should 

be prioritized since the brackish water contingent of white perch had higher growth and survival 

rates.  If long-term viability is important, then protection of freshwater contingent habitats should 

be prioritized (in this case, freshwater habitats are spatially restricted and vulnerable, but support 

the reproductive potential of white perch during poor recruitment years).  The most effective 

management plan would have to consider the health and protection of habitat for each contingent 

(Kerr et al. 2010).  Through simulation modeling, Kerr et al. (2009) noted the sensitivity of 
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population stability, productivity, and resilience to the proportion of behavioral contingents 

within a population.  Increased numbers of migratory contingents of white perch yielded 

increased productivity and resilience but decreased stability, whereas increases in the proportion 

of the resident contingent conferred stability but decreased productivity and resilience.  Kerr et 

al. (2009) conclude that contingents play different roles in the dynamics of populations.  Partial 

migration and contingent theory are thus key concepts in decision-making regarding fisheries 

management due to observed differences in growth rates, differential exploitation on the most 

productive components of a stock, affects on sex ratios or age structure, and otherwise reduced 

phenotypic and genotypic diversity (Chapman et al. 2012).   

Management actions for stocks that are known to have unique behavioral contingents 

should be crafted to be broad enough to protect all contingents, if management at the contingent 

level is not practical.  Common Snook (Centropomus undecimalis) is a catadromous subtropical 

species common in Florida that provides an important recreational fishery there. The species is 

thought to use riverine habitats in the winter (overwintering and feeding) and estuarine habitats 

in the summer (spawning).  Population declines were observed anecdotally through the 1950s, 

and eventual sampling completed by the Florida Fish and Wildlife Conservation Commission 

indicated that populations had declined 70 percent between 1977 and 1981 (FL FWC, 

http://myfwc.com/research/saltwater/fish/snook/management/). Recent research by Lowerre-

Barbieri et al. (2014) suggests that Common Snook contingents may use different overwintering 

habitats (some exhibit typical catadromous behavior of moving into fresh water to feed and 

grow, whereas others remained in the estuary year-round).  Current management measures exist 

to sufficiently protect both contingents.  Management of the species is focused on maximizing 

standing stock biomass across the state through bag limits, closures, and slot limits.  For 
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example, the Florida snook fishery is closed during the months of January and February to 

protect overwintering snook, and from June through August to protect spawning aggregations 

(Florida Fish and Wildlife Conservation Commission, 

http://myfwc.com/research/saltwater/fish/snook/management/).  Since these regulations are not 

spatially implemented, they provide protection for both contingents observed by Lowerre-

Barbieri et al. (2014).    

Sometimes certain contingents are subject to greater fishing pressure due to ease of 

access by fishery participants.  Sargarese and Frisk (2011) studied contingents of Winter 

Flounder (Pseudopleuronectes americanus; an inshore contingent that lives in coastal bays, a 

contingent that is connected to multiple inshore areas, and a dispersive contingent that moves 

from offshore to onshore in winter to spawn).  Inshore populations of Winter Flounder have 

declined since the 1980s, possibly as a result of excessive exploitation of inshore populations 

that are subject to greater effort from commercial and recreational fisheries. Fisheries focused on 

a particular contingent may also disrupt critical life history behaviors or focus effort on the most 

fecund individuals within a stock.  Collins et al. (2015) studied inshore and offshore spawning 

components (“contingents”) within the same unit stock of Hogfish (Lachnolaimus maximus) in 

the eastern Gulf of Mexico due to differences in growth rates and mortality experienced within 

the first 2-3 years of life.  Offshore contingents are characterized by larger, more fecund adults; 

faster growth experienced by juveniles; and sexual transitions (female to male) occurring in fish 

that are larger and older than inshore contingents.  The transition from female to male can take 

time, males are the larger fish, excessive fishing pressure on the largest means a sexually 

selective fishery, or a fishery that targets the most fecund fish.  The nearshore contingent has 

greater fishing pressure, less harem stability and reduced spawning periods vs. the offshore one.  
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Larger Hogfish offshore may buffer loss of reproductive potential from the more heavily fished 

inshore contingent.  Collins et al. (2015) recommended the use of spatially explicit Hogfish stock 

assessments to acknowledge potential roles of offshore and inshore contingents in overall 

population status.  

Some contingents undertaking different behavioral patterns or partial migration may be 

subject to successive, high levels of fishing pressure.  Tsukamoto et al (1998) noted populations 

of silver European (Anguilla anguilla) and Japanese (Anguilla japonica) eels captured from the 

North Sea and the South China Sea that did not appear, based on otolith microchemical analyses 

of Sr:Ca ratios, to have a freshwater phase.   Identification of marine contingents is prevalent in 

coastal and riverine studies.  Behavioral contingents were recently identified in Japanese Eel  

(Tzeng et al. 2002), whereby Sr:Ca ratios in otoliths suggested that three contingents of eel were 

present and were behaviorally distinguished by elver residency in freshwater, saltwater, or both. 

Lin et al. 2012 used otolith microchemistry to identify estuarine, freshwater and marine 

contingents of Japanese Eel.  Eels from one contingent (estuarine) made up the majority of 

recaptures.  However, results also suggested that yellow-phase eels have a relatively small home 

range in sampled riverine habitats, and the authors noted the risk of localized depletion and 

overfishing of yellow-phase eels in freshwater habitats.   Lamson (2005) noted the presence of 

three contingents in a sampled population of American Eel (Anguilla rostrata) (freshwater, 

facultative (inter-habitat shifters), and marine), with observed differences in growth rates 

between the three contingents that could have implications for population modeling and stock 

assessments.  Lamson (2005) also noted that the freshwater and facultative contingents 

experience an extended duration of cumulative exposure to commercial fishing, suggesting that 
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freshwater fisheries be managed more conservatively than marine fisheries in order to protect 

these more vulnerable contingents.   

Contingents may be recognized as part of the life history or in a stock assessment, but 

may not serve as the basis for the definition of a formal management unit or be managed 

separately within a fishery management plan.  Atlantic Mackerel are recognized to be part of two 

major contingents that are harvested in Canadian and U.S. waters that experience different 

growth rates (Sette 1950).  One contingent spawns in the mid-Atlantic Bight and moves 

northward into waters of the Gulf of Maine and Nova Scotia, whereas the other moves from 

offshore overwintering habitats along the coast of Newfoundland to the Gulf of St. Lawrence for 

spawning (Studholme et al. 1999).  Between 1973 and 1977, total allowable catches (TACs) 

were set for different contingents (MAFMC 1998).  Moores et al. (1975) hypothesizes that the 

international fishery was supported in greater proportion by the northern contingent.  However, a 

lack of genetic differentiation or distinctions between contingent contribution to total population 

resulted in the stock being managed as a single transboundary unit stock after 1975 (Anderson 

1982; MAFMC 1994; Studholme et al. 1999).  Three migrating groups of Bluefish (Pomatomus 

saltatrix) are known to occur offshore of New Jersey (an inshore, mid-shelf, and an offshore 

contingent) (Freeman and Turner 1977); however, the Bluefish management plan is based on a 

single unit stock.  Sometimes structuring at the contingent level may represent too fine a 

resolution for practical management.  For example, Mather et al. (2013) noted that tagged 

Striped Bass from a coastal Massachusetts estuary consistently undertook at least nine different 

routes to at least three overwintering destinations. As evidenced in the discussion above, many 

species whose population structure is comprised of multiple contingents experience intermixing 

between contingents.  A lack of understanding of the spatial structure of these populations can 
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contribute to bias in sampling and population estimation.  The Atlantic Herring (Clupea 

harengus) interstate fishery management plan acknowledges the potential for overestimation of 

abundance on surveys from herring of different groups mixing and becoming highly available 

(locally) to the survey (ASMFC 1993).  Periodic high abundance of one contingent may mask 

declines in another contingent (Sargarese and Frisk 2011).  Kerr et al. (2010) suggest either 

management of contingent relative abundance through habitat or conservation efforts (assuming 

that abundance is linked to a preferred habitat state), or management of separate contingents 

within a population or stock in such a way that fishing effort is focused on the most productive 

contingents.   

Is Management of Proposed Spiny Dogfish Contingents Appropriate?  The above 

discussion highlights the importance of accounting for unique behavioral contingents in the 

development of management plans.  The research covered within this dissertation and previous 

tagging studies analyzed by Campana et al. (2008) and at the 2010 TRAC suggest that 

northwestern Atlantic Spiny Dogfish population structure may be more complex than previously 

thought, and is hypothesized to be comprised of multiple behavioral contingents.  Spatial 

structuring and partial migration has been observed in migratory and resident Pacific Spiny 

Dogfish (Squalus suckleyi), which are closely related to the species covered in this dissertation, 

off the Pacific Northwest coasts of the United States and Canada (McFarlane and King, 2003).  

The question of whether it is appropriate to manage Spiny Dogfish at the contingent level 

remains, and should be evaluated as new information regarding stock structure is elucidated in 

future analyses of these data and through new research programs. 
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This dissertation provides some new migratory information on sharks that could comprise 

the proposed Mid-Atlantic Migratory Contingent, but does not irrefutably prove nor disprove the 

Spiny Dogfish Contingent Hypothesis.  Given the overlap in behavior, the fact that acoustically-

tagged spiny dogfish did not undertake the same migration pathway each year between summer 

and winter habitats (likely due to environmental conditions encountered along the way), and the 

lack of genetic distinction, arguments could also be made using these data in favor of a single-

stock hypothesis that wholly disregards the incorporation of Contingent Theory.  Mark-recapture 

data comparing latitude of recapture by calendar day (see Figure 48 and Figure 49) could be 

interpreted as spiny dogfish undertaking similar behaviors based purely on latitude of recapture, 

especially since the amount of tagging effort undertaken off New England is a fraction of what 

was undertaken off North Carolina.  I recommend that future research projects continue to refine 

the boundaries and behaviors of Gulf of Maine and Mid-Atlantic Spiny Dogfish to verify or 

validate that contingents exist, and evaluate growth rates and production between known 

members of each proposed contingent to further evaluate the need for management at a 

contingent level.   

 From an international management perspective, the analyses presented in Campana et al. 

(2008) and TRAC (2010) suggest that U.S. and Canadian Spiny Dogfish should not be managed 

in isolation (in part due to a proposed 10-20% mixing between dogfish in U.S. and Canadian 

waters).  Contributors to both reports believed that sufficient evidence exists to suggest the 

presence of multiple groups of dogfish in Atlantic Canada, including 3 known residential groups 

of Spiny Dogfish off Newfoundland, the Scotian Shelf, and in the Gulf of St. Lawrence that 

complete seasonal onshore-offshore migrations, and 2 known migratory groups of dogfish that 

move around the Gulf of Maine and between the Mid-Atlantic and the Gulf of Maine.  
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Furthermore, recruitment in Canadian waters was thought to be somewhat dependent on U.S. 

dogfish; and that colonization, extended residency, and departure of dogfish aggregations from 

Canadian waters have all been hypothesized for certain groups of dogfish based on tagging and 

survey data (Campana et al. 2008).  As a result of evidence implying more complex stock 

structure, the Transboundary Resource and Assessment Committee (TRAC) examined two 

projection models that either considered two components that intermixed (a northern resident and 

a southern migratory population) or a single unit stock (TRAC 2010).  However, neither model 

was accepted by the TRAC due to unsatisfactory model fits to time series data from research 

surveys and strong influences from initial starting conditions.  The 2010 TRAC report 

specifically referenced a need for additional tag studies to clarify movement patterns and mixing 

rates, and to further explore the models comprising single and multi-unit stocks.  Since U.S. 

fisheries management agencies can only manage stocks under the authority of the Magnuson-

Stevens Act in U.S. waters, and special international management provisions have not been 

established for spiny dogfish as of yet, the management discussion that follows is primarily 

focused on dogfish that are hypothesized to constitute the proposed Gulf of Maine and Mid-

Atlantic migratory contingents.  

Spiny Dogfish have long been managed in the U.S. as a single unit stock, but in recent 

years the management strategies undertaken by U.S. federal and interstate management agencies 

have been increasingly tailored to allow adaption to local and regional abundance and 

availability of the species to commercial fisheries.  The fishery management plans (FMPs) were 

initially designed to reflect seasonal availability to the fishery.  NMFS created two fishing 

periods, May 1 through October 31 and November 1 through April 30.  The assignment of quota 

to each semi-annual period in both ASMFC and federal FMPs was based on historical landings 
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data. However, due to the species distribution and availability to fisheries the entire federal quota 

was taken within three months in the first year of federal implementation (ASMFC 2002).  

Dogfish were available year-round to New England fisheries, but were only seasonally available 

to Mid-Atlantic fisheries in high enough volume to make a fishery economically viable. During 

the 2011-2012 fishing year, the Period 2 quota for Spiny Dogfish was reached in mid-January of 

2012, which resulted in the exclusion of Mid- Atlantic fishermen from the most productive part 

of their fishery.  Under Amendment 3 to the Spiny Dogfish federal FMP, the seasonal allocation 

of the commercial quota was eliminated for federal waters.  This action was intended to improve 

accessibility to the dogfish resource in federal waters, eliminate confusion with interstate 

management actions, and better align federal management with interstate management (79 FR 

41141; July 15, 2014). 

The interstate FMP developed by the Atlantic States Marine Fisheries Commission has 

been adjusted through time to address the equity concerns raised by fishermen.  States at the 

extreme southern end of the Spiny Dogfish range felt that they were not provided fair 

opportunity to harvest a portion of the quota.  Spiny Dogfish were available year round to 

fishermen off southern New England; however, mid-Atlantic fishermen (in particular those from 

North Carolina and Virginia) had much less time to participate in the fishery and had to compete 

with fishermen up through Maine (ASMFC 2011).   The timing of dogfish arrival in the southern 

half of the range has varied in recent years.  Addendum II was implemented by ASMFC in 2008 

to remove the seasonal allocation scheme and instead divide the interstate quota up between 

management regions so that each received a percentage share (ASMFC 2008); 58 percent was 

allocated to the northern region (Maine through Connecticut), 26 percent was allocated to a more 

southern region (New York through Virginia), and 16 percent was allocated to North Carolina.  
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Addendum II to the ASFMC FMP included a specific allocation for North Carolina because 

dogfish were not becoming available until late in the season. The result of this management 

change in North Carolina was immediately felt by the local fishery.  In the 2007 fishing year 

(May 2007 – April 2008), the North Carolina commercial fishery landed 127,747 pounds of 

Spiny Dogfish. In the 2008 and 2009 fishing years, North Carolina landed 1.4 million and 1.7 

million pounds of dogfish, respectively.  While this was an improvement, there was still 

contention that states in the southern region did not have fair and equitable access to the dogfish 

resource.  The management structure was adjusted again in 2011, when ASMFC implemented 

Addendum III to dissolve the southern region and allocate percentages of the quota to states 

based on historical landings in order to preserve access (ASMFC 2011).  Mid-Atlantic fishermen 

still noted fluctuations in dogfish availability from one year to the next; however, their access to 

the fishery was more strongly protected under the current interstate management plan and recent 

amendments. Recent management actions undertaken by ASMFC include setting possession 

limits for the northern region, but allowing southern states to set their own possession limits. 

Some of the contingent-level management strategies suggested for other species have 

already been tried for the Spiny Dogfish fishery.  The lack of management in the 1980s and 

1990s meant that the proposed Mid-Atlantic contingent of dogfish was heavily exploited 

throughout the continental shelf phase of its migration cycle.  Management strategies based on 

seasonal quotas did reflect the temporal availability of dogfish throughout the Mid-Atlantic and 

were originally designed around a “north in summer, south in winter” migration of the stock; 

however, there was no spatial component that assured the distribution of landings would follow 

the availability of the stock.  After the implementation of management, the fishery remained 

concentrated in New England waters until the ASMFC developed regional interstate 
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management measures that separated New England fisheries from mid-Atlantic fisheries.  If 

spatial and seasonal restrictions (May to Oct and Nov to April) had been simultaneously 

implemented (by the same management body), then a framework could have been in place to 

have management actions reflect the presumed distribution of a Mid-Atlantic contingent.  For 

example, if quota had been distributed to a southern fishery for only the time period of 

November through April, then protection of a proposed Mid-Atlantic migratory contingent could 

have been achieved through quota monitoring and subsequent closure of the fishery.  However, 

the spatial extent of southern and northern regions, as later defined in ASMFC management 

plans, would not have covered the biological range of a defined mid-Atlantic contingent. Thus, 

even if a “southern fishery” was closed due to excessive fishing mortality and landings, any Mid-

Atlantic contingent would still be subject to overfishing once the stock moved into the 

“northern” region in summer.  The current management strategy retains the northern region, but 

splits the stock between states that comprise the southern extent of the proposed Mid-Atlantic 

contingent range.  This strategy better meets the social and economic needs of the fishery, but the 

boundaries may not reflect the biology of the Mid-Atlantic contingent, if it truly exists.   

Based on the migration patterns identified from my research, regional management based 

on behavioral contingents could constitute moving the regional split utilized by ASMFC to a 

dividing line somewhere between Cape Ann and Cape Cod, Massachusetts (Cape Cod would 

likely be an easier landmark to work with than Cape Ann).  Since a change back to simple 

regional quota management is unlikely given the documented issues with equitable access 

between the states, the proposed regions could include a Gulf of Maine region (Maine through 

Massachusetts) and a mid-Atlantic region with quotas for individual states based on historical 

participation in the fishery (Massachusetts through North Carolina). The overall quota would 
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have to be reallocated between the two regions through rulemaking, and then apportioned to 

states in the Mid-Atlantic region based on historical composition of the fishery.  Since the 

division between contingents would occur along a geographic feature and not a geopolitical 

feature (e.g., Cape Cod), managers would have to decide whether to allow individuals on either 

side of Cape Cod to participate in the other fishery in the event of a closure.  However, most 

fishermen in areas north of the 42º N latitude parallel frequent fishing grounds to the north of this 

line, and fishermen in areas south of the 42ºN latitude parallen tend to remain south due to the 

local availability of dogfish close to home and lengthy travel times that would be required to 

traverse around Cape Cod (Rulifson et al. 2012).    NMFS and the ASMFC would have to 

monitor landings from each region, and, in the event that landings exceed quota, consider closure 

of regional fisheries and implementation of accountability measures in subsequent years.  

In order to justify a regional split, the “vital rates” (biomass, reproduction, growth) would 

need to be quantified for each proposed contingent, along with overall contribution of each 

contingent to the Northwest Atlantic reproductive biomass and to the fishery.  Relative indices of 

abundance would need to be developed for each contingent, which either necessitates the ability 

to distinguish individuals captured in areas of spatial overlap or sampling of areas that are 

utilized by a particular contingent (e.g., overwintering grounds off the Mid-Atlantic and Georges 

Bank?).  If the best opportunity to sample stocks is during the summer during periods of spatial 

overlap between proposed contingents, science would need to develop a way to more 

conclusively identify individuals from each contingent, either through morphometrics, rapid bio-

assays or other molecular techniques, or perhaps through continued development of analyses of 

hard parts (e.g., contingent membership in diadromous fishes can be inferred from otolith 

microchemistry; perhaps similar approaches could be utilized on the spines or vertebral columns 
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of Spiny Dogfish).  From a management perspective, if the percent contribution of proposed 

contingents towards a breeding stock was known, then managers would have additional 

justification to protect the most productive contingents.   

There would likely be some resistence to management at the contingent level.  This type 

of a management program would require the cessation or alteration of programs that are 16 years 

in development and enacted through the cooperation of multiple management bodies (the federal 

government, two councils, the ASMFC, and fourteen states).  There would likely be institutional 

resistance to a proposed change without substantial biological justification.  Furthermore, the 

management and socio-economic implications of this type of change may prevent this from 

being a realistic option given that 1) the stock is now considered rebuilt and the perceived need 

for further restructuring of management may not make this a priority; and 2) the proportion of 

new recruits to the overall fishable U.S. dogfish stock that come from any Mid-Atlantic 

contingent are unknown.  This type of a change could have negative socio-economic effects on 

the fishery, but changes would likely be most pronounced in select areas that rely most heavily 

on the dogfish fishery.  For instance, states with high production like North Carolina, Virginia, 

and New Jersey could be subjected to quota changes under a reallocation scheme that might not 

be favorable once Massachusetts landings are incorporated.  Massachusetts consistently has the 

greatest number of participants and landings in the Spiny Dogfish fishery (MAFMC 1999; 

ASMFC 2002; ASMFC 2013).  It might be challenging to identify and account for historical 

landings in the two regions that would border Massachusetts.  Splitting the region into Gulf of 

Maine and Mid-Atlantic management regions (with further subdivisions by state) could generate 

confusion regarding fishery regulations between the regions and states, and could reduce the 

options available to commercial fishermen in case of inclement weather (i.e., fishing inside the 
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hook of Cape Cod could generate profit in poor weather because Cape Cod Bay is somewhat 

sheltered).  However, a regional closure on one side of Cape Cod would not affect fishing 

opportunities on the other side of the Cape.  Fishermen on the north side of Cape Cod tend to 

remain on the north side of Cape Cod, and vice versa (M. Pratt, pers comm., 2009). Quota 

monitoring reinforced with regional closures might also slow down the market production of 

Spiny Dogfish in certain areas. The Spiny Dogfish Advisory Panel for the Mid Atlantic Fishery 

Management Council noted that flooding the market with a lot of product is harmful, and on 

Cape Cod the local processors have instituted mandatory days off since 2013 to slow down the 

volume that was coming to processors (MAFMC 2015).      

The rapid decline and recovery of Spiny Dogfish stocks in the 2000s is worth 

remembering, as science cannot yet explain how a species that was supposed to take decades to 

rebuild did so in a fraction of the time expected.  Although the stock was successfully rebuilt, we 

are not much closer to understanding the population level mechanisms that enabled recovery and 

therefore cannot manage the stock in a way that fully protects these mechanisms. 
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APPENDIX 2. MAP LIBRARY OF ACOUSTIC DETECTIONS – 2009 
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APPENDIX 3. MAP LIBRARY OF ACOUSTIC DETECTIONS – 2010 
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APPENDIX 4. IDENTIFICATION OF WATER COLUMN “LAYERS” 

USING ACOUSTIC DOPPLAR CURRENT PROFILER (ADCP) DATA  

Introduction 

In Chapter 4, we analyzed Acoustic Doppler Current Profiler (ADCP) data to evaluate 

microhabitat selection by Spiny Dogfish in an extremely dynamic region.  The Hatteras Bight 

was subject to tidal flow through inlets, alongshore currents, significant weather events, and was 

adjacent to the wintertime boundary of the Gulf Stream and the southernmost extent of the 

Labrador current.   Therefore variability in the water column profile was unsurprising, and a 

comparison of Spiny Dogfish detection data against ADCP data was undertaken to improve 

understanding of the environmental cues that drive behavior of these sharks.  

ADCPs use backscattered sound to estimate the direction and speed of particle 

movement, and are capable of generating profiles of the water column by averaging ADCP data 

collected within a vertical section of the water column (i.e., a “bin”) (Teledyne RD Instruments 

2011).  Depending on the type of analysis, we might consider overall current magnitude (m/s), 

directional velocity in u- and v-components (m/s), or overall direction of movement in specific 

depth bins, or in “layers” of the water column that are comprised of groups of adjacent bins 

which may be similar.   For example, bins near the bottom of the water column may exhibit 

similar patterns in current speed and direction, and bins near the surface of the water column 

may be likewise grouped.  The purpose of this analysis was to classify the depth bins into 

separate “layers” of the water column that could be used in subsequent analyses with Spiny 

Dogfish detection data. 
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Methods 

ADCPs were deployed at three locations in 2009, and at one location in 2010 (Figure 83).  

Data were downloaded from the ADCPs, visualized in WinADCP, and exported to excel and 

matlab data formats.  Data were plotted to identify the maximum depth ranges in each location 

(Figure 84) and to identify bins with a large proportion of missing data that should be excluded 

from analyses.  It is common practice to exclude data collected within the first ADCP bin (i.e., 

those data closest to the ADCP head) because they may be subject to a higher amount of error.  

The echo from a hard surface such as the sea surface or bottom is so much stronger than the echo 

from scatterers in the water that it can overwhelm the side lobe suppression of the transducer 

(Teledyne RDI Instruments 2011). Kohut et al. (2006) recommend that for an ADCP with a 

Janus configuration (i.e., 4 beams), sidelobe contamination is expected to affect the top 10% of 

surface bins.  Therefore the bins representing the top 10 percent of the water column were also 

excluded from analyses.  

Magnitude and error velocity data were subjected to goodness of fit tests for normality. In 

all cases, data were transformed using a variety of techniques and tested; however, all 

transformations tested indicated that non-parametric analyses were best. 

Error velocity is the difference between multiple estimates of vertical velocity computed 

for each depth bin by the ADCP (Teledyne RDI Instruments 2011).  A non-parametric 

Spearman’s rho (ρ) correlation analysis of velocity error was completed in order to analyze the 

variability in the error between bins, with the assumption that adjacent bins subject to similar 

conditions would be have similar velocity error. Spearman’s rho tests generate correlation 

coefficients computed on the ranks of the data values instead of on the values themselves. 
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Multivariate statistics were used to explore and reduce the ADCP data into a smaller 

number of variables that represent layers of the water column (using software JMP 10).  

Principle Components Analysis, or “PCA” (Hotelling 1933; Hatcher and Stepanski 1994) is a 

variable reduction procedure that generates artificial variables that represent a number of 

correlated variables and account for most of the variance in observed data.   These components 

account for a greater amount of variance than has been contributed by one variable.  Output from 

a PCA includes the generation of eigenvalues for each principle component, which indicates the 

amount of variance accounted for out of the total variance (Manly 2005).  The output of a PCA 

can guide input for a factor analysis.  Factor analysis, in comparison to a PCA, assumes that 

covariation in observed variables is due to an underlying causal structure; perhaps in the case of 

the ADCP data, by variability as a result of oceanographic conditions and vertical 

profiling/layering of horizontal currents of the water column.  Provisional factor loadings are 

assumed to be equivalent to the number of principle components that meet the Kaiser criterion of 

eigenvalues greater than or equal to 1.0 (Kaiser 1960; Manly 2005).  Rotated factor score tables 

produced from the factor analysis were examined to identify depth bins that had the highest 

factor loading scores for each factor.  Manly (2005) suggests that factor loadings greater than 0.5 

and 0.7 constitute moderate and large loadings, respectively.  Water column “layers” were 

identified by grouping the depth bins by factor loading scores. 

Results 

Deployment locations for 2009 and 2010 are shown together in Figure 83a, and by year 

in Figure 83b and Figure 83c.  Depth ranges for these locations are shown in Figure 84; the 

maximum depth reflects the maximum number of bins considered for inclusion in additional 
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analyses.  Summary statistics were then generated for each bin to identify trends and to analyze 

the amount of missing data.  For example, Figure 84 and Figure 85 shows that while the recorded 

maximum depth of ADCP data collected at Site 7 (2010) was approximately 24 meters, there 

was a large amount of missing data in depth bins 19-24.  These bins were therefore excluded 

from additional analyses.  In several cases, the removal of these depth bins also accounted for 

sidelobe contamination that is expected to occur in the top 10% of data bins near the surface (for 

ADCPs mounted on the ocean floor).  Data bins retained for analysis and display are shown in 

Table 32.       

Spearman’s Rho correlation coefficients were derived for velocity error derived for each 

depth bin for ADCP data collected between February 1 and March 31 of each year (i.e., the time 

span when most detections occurred).  Table 33 shows an example of the output organized in a 

color coded table, coded according to the following color scheme:  

 

The weaker correlations occurred between 1) depth bins that were not adjacent to each 

other in the water column, and 2) adjacent depth bins at the surface and bottom of the water 

column.  The strongest correlations occurred in depth bins that are in deeper water, such as those 

between depth bin 14 and depth bin 15 (ρ = 0.7344).  These trends were observed across all sites 

and years. 
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Eigenvalues produced from Principle Components Analyses were used to identify the 

number of factors that could be used in subsequent analyses (Figure 86).  Three components had 

eigenvalues derived from data collected at Site 7 (2009) and Site 12 (2010) that met the Kaiser 

criterion.  Two components had eigenvales derived from data collected at Site 6 (2009) that met 

the Kaiser criterion.   Only one component had an eigenvalue derived from data collected at Site 

2(2009) that met the Kaiser criterion; however, the second component had an eigenvalue that 

was extremely close to meeting this threshold (0.9828).  Therefore, I selected 3 factors for Factor 

Analyses run on data from Site 7 (2010) and Site 12 (2009) and 2 factors for Factor Analyses run 

on data from Site 6 and Site 2.  

Rotated factor loading scores were used to identify “layers” in the water column (Figure 

87). Factor scores are generally color coded such that warmer colors (e.g., red and orange) reflect 

the highest factor scores and cooler colors (e.g., green and blue) reflect low to moderate factor 

scores. Depth bins with the highest factor scores are grouped together in boxes, and represent 

different “layers”.   In cases where a depth bin had moderate to high scores in two factors, the 

depth bin was assigned to the Factor that had the highest factor score.  For example, under Site 7 

(2010), depth bin number 7 (“mag7”, which was 7 meters from the ADCP head) had a Factor 2 

score of 0.5359 and a Factor 3 score of 0.7403.  This depth bin was assigned to the “layer” 

identified by strong factor scores under Factor 3. Table 34 shows the final assignment of depth 

bins to “water column layers”. Sites 7 and 12 had three identifiable water column layers based on 

results from factor analyses, and Sites 6 and 2 had two identifiable water column layers.  Visual 

examination of ADCP data over different time periods suggested that it was not unusual to see 

“layers” in the water column, distinguishable either by variations in current magnitude (m/s) and 

directional u- and v-components (Figure 88).   
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Discussion 

Acoustic Doppler Current Profilers are designed to detect backscattered acoustic waves 

propagated back to the ADCP unit after striking an object (e.g., particles or plankton) in the 

water column.  Because these systems can simultaneously measure particle (and hence, water) 

speed and direction at multiple points simultaneously, they are often used to profile the entire 

water column and can aid in the identification and study of flow dynamics and circulation 

patterns of the water column (including the identification of “layers” within a study area that 

might exhibit different flow patterns).  ADCPs have been used successfully to study flow 

dynamics both surface mounted on vessels (e.g., Griffiths and Roe 1993; Roe et al. 1996; 

Bourles et al. 1999) and moored to the bottom (e.g., Kohut et al. 2004).  

In many cases, visual examination of the data appears to be enough to identify discrete 

layers in the water column.  Roe et al. (1996) also identified as many as 16 “layers” in the water 

column within the top 350m, ranging from 10m to over 100m in thickness.  Griffiths and Roe 

(1993) noted that it is common to see two or three “biological layers” in sonar records collected 

in the Atlantic.    
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Figure 86.  Output from Principle Components Analyses run on ADCP data collected at each 

site.  Eigenvalues shown on the left side of each figure were used to determine the number of 

factors that were included in a subsequent Factor Analysis. 

 

Figure 87.  Factor loading scores for Factor Analyses run on ADCP data collected at each ADCP 

deployment site. 

 

Figure 88. ADCP data collected at Site 7 in 2010 during a time period when fish were detected 

on an adjacent acoustic array (March 1, 2010). 

 

 

 

 

 

 

 

 

 



 

 
 

Tables and Figures 

Table 32.  

 

 

Deployment Site (Year) Bin Numbers (each bin = 1 meter of 

depth) 

Site 7 (2010) 2-18 

Site 12 (2009) 2-18 

Site 6 (2009) 2-15 

Site 2 (2009) 2-10 
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Table 33.  
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Table 34.  

 

 

Deployment Site 

(Year) 

Surface “Layer” Mid “Layer” Bottom “Layer” 

Site 7 (2010) 12 – 18 7 - 11 2 - 6 

Site 12 (2009) 12 - 18 8 – 11 2 - 7 

Site 6 (2009) 8 – 15 n/a 2 - 7 

Site 2 (2009) 6 - 10 n/a 2 - 5 
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Figure 83.  
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Figure 84.  
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Figure 85.  
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Figure 86.  
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Figure 87. 

 

 

 

 

 

 

 

 

 



 

461 
 

Figure 88.  
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APPENDIX 6: INSTITUTIONAL REVIEW BOARD (IRB) HUMAN 

SUBJECT RESEARCH PLAN 

 

A human subject research plan was initiated for this research project. However, that aspect of the 

dissertation was dropped in consultation with my research advisor and committee in 2010 and 2011.  

The study was officially closed with the IRB in Fall 2015. 
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