
SOFTWARE ENGINEERING AS A SOCIAL PROCESS: A STUDY OF

RESEARCH TRIANGLE PARK

by

Lindsey Lanier

April, 2016

Director of Thesis: Mark Hills, PhD

Major Department: Computer Science

Powered by increased capabilities of online collaboration tools, open source software

development has become a critical component of the development landscape for both

individual developers and for organizations. However, very little is known about how

developers and organizations in regions with a heavy information technology pres-

ence participate in the open source community. This research uses public data from

GitHub, a popular online open source collaboration tool, to gain a better understand-

ing of open source software development activity in one such region, the Research Tri-

angle Park in North Carolina. Research Triangle Park is one of the largest research

parks in the world, and the largest in the United States. Within the 7,000 acre park,

there are currently more than 200 companies employing around 50,000 people in a

number of fields of expertise, with information technology playing a large role. To

explore how developers and organizations in this region are involved in open source

development, we use data mined from GitHub to aggregate information and trends

about the developers and organizations themselves, their open source projects, and

their use of the social media features within GitHub. The data collection tools and

techniques created to enable this research are designed to easily enable similar studies

to be performed for other geographical regions.

SOFTWARE ENGINEERING AS A SOCIAL PROCESS: A STUDY OF

RESEARCH TRIANGLE PARK

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

Lindsey Lanier

April, 2016

Copyright Lindsey Lanier, 2016

SOFTWARE ENGINEERING AS A SOCIAL PROCESS: A STUDY OF

RESEARCH TRIANGLE PARK

by

Lindsey Lanier

APPROVED BY:

DIRECTOR OF THESIS:

Mark Hills, PhD

COMMITTEE MEMBER:

Nasseh Tabrizi, PhD

COMMITTEE MEMBER:

Junhua Ding, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

Table of Contents

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

Research Contribution: 2

2 OVERVIEW OF RESEARCH TRIANGLE PARK 4

2.1 Where is Research Triangle Park? . 4

2.2 Why Research Triangle Park? . 5

3 GITHUB AND THE GHTORRENT PROJECT 8

3.1 GitHub . 8

3.2 The GHTorrent Project . 10

4 RELATED WORK . 14

5 DATA COLLECTION . 19

5.1 User Information . 21

5.1.1 Collecting RTP Users . 21

5.1.2 Calculating Total Number of Years on GitHub 22

5.2 Repository Information . 24

5.2.1 Collecting RTP Repositories 24

5.2.2 Original vs. Forked Projects 25

5.3 Overall RTP Activity . 26

5.3.1 Collecting User Commits and Active Repositories 27

5.3.2 Collecting Pull Requests . 28

5.4 Social Networking - ”Stargazing” . 29

6 DATA FINDINGS . 32

6.1 Key Research Questions . 33

6.2 Users Overview . 34

6.3 Repositories Overview . 36

6.4 Activity Overview . 39

6.5 Popularity Overview . 40

6.6 Average Life of a RTP Project . 42

6.7 Threats to Validity . 43

7 CONCLUSION . 45

BIBLIOGRAPHY . 47

LIST OF TABLES

3.1 List of collections available in the GHTorrent MongoDB instance. . . 11

6.1 Total Original Repositories in RTP 39

6.2 Total Forked Repositories in RTP . 39

6.3 More information on the top 10 active RTP users (have pushed commits

in the last 6 months). This chart shows their total number of projects,

pull requests and stargazers. 41

LIST OF FIGURES

2.1 RTP region as defined by Research Triangle Region Organization [1] . 5

5.1 Example of a MySQL query to pull the information on one user and

the associated results after executing. 20

5.2 Example of a MongoDB query to pull the information on one user and

the associated results after executing. 20

5.3 List of local RTP cities which were collected and used in this research. 23

5.4 MongoDB function used to convert the created date to a proper ISODate. 24

5.5 Aggregation in MongoDB used to get the number of years a user has

been a member on GitHub. Results are projected to a new collection

within our local MongoDB instance. 24

5.6 Sample Python code which pulls the total repository count per user

using PyMongo and the MongoDB Aggregation Framework. 26

5.7 This Python script was used to collect the number of commits per local

project. 28

5.8 Python script used to query for pull requests from the GHTorrent

MySQL database and then insert them into our local MongoDB instance. 30

5.9 A view into the stargazers collection. 31

5.10 Aggregation used to find out how many followers each local repository

contained. 31

5.11 Python script used to calculate the number of followers that each RTP

user has. 31

6.1 Sample Python code which pulls the total repository count per user

using PyMongo and the Aggregation Framework. 34

6.2 This figure shows all RTP cities that have more than 20 users. 36

6.3 This figure shows the Python script used to find RTP users that have

been members on GitHub for more than 7 years and are still active

today. 37

6.4 This bar chart shows users with the most overall repositories in the

RTP region. 38

6.5 This figure shows all users with more than 1000 commits over the last

6 months. 40

6.6 This figure shows the number of followers that each user has (where

the count of followers is greater than 1000). 42

6.7 This figure shows the most popular programming languages in the RTP

region, where the usage count is greater than 1000. 42

6.8 Finding the oldest RTP repository from MongoDB’s shell (query and

result). 43

Chapter 1

Introduction

Open source software development is continuing to grow within information tech-

nology communities. The data capable of being extracted from collaborative devel-

opment platforms gives researchers an opportunity to answer many questions about

open source project activity and trends. However, at this point in time, we know

little about how people are participating in open source development from a regional

perspective. This research is aimed at studying open source activities through public

data within GitHub [2] to understand what the open source software engineering de-

mographic looks like in Research Triangle Park (RTP), NC, one of the most prominent

research parks in the world.

GitHub is a widely used platform for open source software development and col-

laboration. Its extensive features give software developers the capability to join forces

with others from all over the world on a variety of projects, from small projects to

major projects that are being used at the enterprise level. GitHub provides a public

REST API which grants researchers the opportunity to mine and study this data from

an empirical perspective. Using the GHTorrent Project [3], [4] as our foundation for

information, we focus on answering a few key questions throughout this research:

1. What do the metrics look like around individual users and organizations and

their involvement in open source projects in the RTP area?

2. What do the overall numbers look like with regards to projects being developed

by users and organizations in the RTP region? How active are these projects,

and are they still relevant since inception?

3. How do users and organizations in the RTP region use the social media features

available on GitHub?

While the answers to these questions have focused on the RTP region, the scripts

developed for this empirical study can also, with some generalization, be used to

study other geographic areas, which will enable future research including answering

similar questions for other regions and comparing multiple regions. Chapter 2 will go

through key reasons on why RTP was chosen as a strategic location for this research.

Chapter 3 will provide more information around GitHub, with an overview of terms

and associated workflows, as well as an overview of the GHTorrent project. Chapter 4

will discuss related research on this topic, particularly studies into open source data.

Chapter 5 and 6 will go through the methodologies used for data collection and then

provide analysis of the RTP data collected. Lastly, we will wrap up in Chapter 7 with

closing remarks about this research and ideas for future research.

Research Contribution: Through empirical techniques applied to data mined

from project repositories on GitHub, this thesis quantitatively shows how both indi-

vidual developers and organizations participate in open source software development

in the Research Triangle Park region of North Carolina. The process used to extract

and compute over the repository data has been scripted to ensure the reported results

can be easily replicated, while the scripts themselves have been designed to enable

future studies of other technology regions as well as comparative studies of multiple

regions. The data collection tools and techniques created to enable this research are

2

publicly available on GitHub (User ID: LindseyKLanier, [5]) under an open-source

license.

3

Chapter 2

Overview of Research Triangle Park

In this chapter, we first define Research Triangle Park, the region studied in this

thesis. We then explain why this region was chosen for this study, focusing on the

rapid growth of the region and the significant presence of high tech companies and

major universities.

2.1 Where is Research Triangle Park?

Research Triangle Park (RTP) is the largest research and science park in North Amer-

ica, and one of the largest in the world. The park, which stretches 7,000 acres across

Wake and Durham counties was founded in 1959 by the Research Triangle Foundation.

RTP is not a city, but it has its own special county district [1]. The Research Trian-

gle Region Organization, a partnership dedicated to overseeing collaboration between

businesses, government and various other institutions within the region identifies RTP

as the following counties (see Figure 2.1): Chatham, Durham, Edgecombe, Franklin,

Granville, Harnett, Johnston, Lee, Moore, Nash, Orange, Person, Vance, Wake, War-

ren, and Wilson [1]. Additionally, the RTP Organization has stated that the RTP

metro area has a population of 1.3 million people, and that there are 3 million people

within a 60-mile radius of the park [6]. Our project utilized public NC League of

Municipalities (NCLM) data to identify all of the cities in each of the RTP counties

Figure 2.1: RTP region as defined by Research Triangle Region Organization [1]

to assist our research [7].

2.2 Why Research Triangle Park?

Many reasons can be attributed to our choosing of RTP and its surrounding com-

munities for initial research into local open source activities. Over the last decade,

numerous media outlets and journalists have continuously given this region nicknames

such as Start-up Capital of the South [8] and The Next Silicon Valley [9]. Between

2000 and 2012, Raleigh’s population grew 47.8 percent, which topped Forbes’s list of

fastest growing metropolitan areas in the country. This number was more than three

times the overall growth of all other metropolitan areas [10]. The Google for En-

trepreneurs Network has invested in 3 different locations in Raleigh/Durham (RDU)

5

for what they call ”American Underground”. American Underground is referred to as

a ”Start-Up Incubator” where software groups can rent space for their teams to meet

and work [11]. The Research Triangle Park Organization continues to drive their

mission to ”change the course of history” by bringing people together and fostering

innovation and creativity in the RTP community [12]. They’ve recently open up a

new center, The Frontier, with free space for teams to collaborate and participate in

a variety of networking events [13].

Outside of the start-up communities, many big technology players have a presence

in RTP–Red Hat, Citrix, Cisco, NetApp, IBM, Microsoft, Google, SAS, and others,

with more news about others following every year. There are several local prestigious

universities including the University of North Carolina Chapel Hill, North Carolina

State University, and Duke University, all of which are consistently producing top

talent within the science, math and technology industries. According to the Research

Triangle Park Organization [12], local companies and organizations have won Nobel

Prizes and the Pulitzer. To date, they’ve recorded that there have been 245 company

start-ups, 3,256 patents, and 1,970 trademarks.

At the beginning of 2016, the North Carolina State of Technology Industry Report

was released. We found some of the statistics produced by this group (NC Technology

Association and Economic Leadership of Raleigh) relevant to reasons we chose the

RTP region, even though they were specific to the state as a whole [14].

A few of the highlights from this report included:

• North Carolina is the #2 state in Information Technology (IT) employment
growth from 2009-2014.

• North Carolina is the #4 state for University Technology Licenses and Options
Executed with 242 licenses and options in 2014.

• Future North Carolina tech sector growth is expected to outpace national and
American South averages.

6

• Over the past year technology employment grew by 3.6 percent, and technology
establishments grew by 5.2 percent.

These statistics can serve as a proxy for choosing to do research on other areas

with a large and growing presence in the information technology industry.

7

Chapter 3

GitHub and The GHTorrent Project

In this chapter, we will give an overview of GitHub as a platform as well as the

GHTorrent project and it’s associated data source. GitHub and GHTorrent provide

data which is the foundation to the research performed in this thesis.

3.1 GitHub

GitHub is a web-based platform used for version control and collaboration between

developers. Users can choose to utilize standard Git commands in a terminal to

manage their code on GitHub or use the GitHub graphical user interface (GUI) and

associated features on GitHub.com. As of February 2016, there were 12 million people

collaborating across 31 million repositories on GitHub [2]. Users wanting to create a

GitHub account for their projects have two options, public (free) and private (paid).

Public repositories are heavily used by open-source teams to allow for code storage

and collaboration from users all over the world. GitHub gives users the option to

create ”organizations” to more easily manage teams. Organizations allow teams to

group one or more projects under one umbrella. Multiple owners can be mapped to

organizations for settings and permissions management.

This research pulls data on GitHub’s source code management features with a

focus on mining RTP specific statistics as well as looking into the involvement that

RTP users have in the social networking aspect of the platform. Source code packages

hosted on GitHub are referred to as repositories. We utilize the GHTorrent Project

[4] for data collection of RTP specific (public) repositories. Public repositories can

be browsed and contributed to by not only the owner but anyone else interested

in downloading a local copy. Changes by GitHub users can be submitted to the

repository owner for review in the form of a ”pull request”. Changes are saved to

repositories through what are known as ”commits”. There are various workflows that

could be implemented for GitHub projects. One popular option is to utilize ”forking”

and ”pull requests”. A ”fork” is a clone of a repository, saved as a new repository

on one’s own GitHub account. Users might implement their own enhancement to the

cloned application, or could also work on an associated ”issue”. One or more commits

can be pushed to this clone. Once the developer is finished with their changes, they

can then submit a ”pull request” to the original repository owner for review. If the

repository owner is happy with the changes, they can merge the ”pull request” into

a branch on the original repository. This is the main workflow that we focus on

throughout this research.

During the data collection phase of this research, we noted some important de-

tails about commits which were unexpected. The author for any given commit is the

user who wrote the code to be committed, the committer is the user who pushed

this code into the main software repository. Git allows users to commit on behalf of

another person, hence the commit can be pushed by someone who did not author it.

Depending on the workflow used to commit the code change, the author/committer

information can vary. For example, if a user commits a code change through the com-

mand line on their local machine they can include author and committer information

as free text form (not ideal if they spell their e-mail address wrong). GitHub has a

large knowledge base which documents its various features, including a help article

9

which explains this commit information further [15].

There are also many useful social networking features available on GitHub. GitHub

allows users to follow friends and track what they are working on. Users can also fol-

low particular repositories and see associated updates, also known as ”stargazing”.

GitHub also provides an interface which shows which repositories are trending at any

given time, and which can be sorted by programming language.

3.2 The GHTorrent Project

GHTorrent was created for the software research community, a place to easily come

to query specific sets of open source repository data without having to go through the

GitHub REST API directly. GHTorrent has a relational database (MySQL) which

stores structured data on users, repositories, commits, etc. GHTorrent stores the bulk

of its data in a MongoDB instance. MongoDB is a type of NoSQL database which

utlizes JSON and allows for rapid changes and agile development. MongoDB stores

data in the form of JSON documents within what they call ”collections”. Collections

can compare slightly to a relational database’s ”table” but they are quite different

themselves in that they are dynamic, flexible and do not need to have a defined

schema. The collections included in GHTorrent’s MongoDB instance are outlined in

Table 3.1. MongoDB provides advanced querying operations such as Map-Reduce

and aggregation which gives data miners flexibility when conducting their research

[16]. GHTorrent chose this technology to be able to more easily manage the large

collections of dynamic data as well as accommodate changes to the GitHub schema

quickly, among other reasons such as giving the research community flexible options

for querying [3].

The GHTorrent project included 4TB of data in their MongoDB instance (as

10

Collection name Github API URL
commit comments #user/#repo/commits/#sha/comments

commits repos/#user/#repo/commits
events events

followers users/#user/followers
forks repos/#user/#repo/forks
issues /repos/#owner/#repo/issues

issue comments repos/#owner/#repo/issues/comments/#comment id
issue events repos/#owner/#repo/issues/events/#event id
org members orgs/#org/members

pull request comments repos/#owner/#repo/pulls/#pullreq id/comments
pull requests repos/#user/#repo/pulls

repo collaborators repos/#user/#repo/collaborators
repo labels repos/#owner/#repo/issues/#issue id/labels

repos repos/#user/#repo
users users/#user

watchers repos/#user/#repo/stargazers

Table 3.1: List of collections available in the GHTorrent MongoDB instance.

of January 2015) [4] but according to more recent updates on their Twitter feed

[17] (@ghtorrent), it has been constantly growing and aims to pull not only more

recent data but to store the entire historical GitHub data source. Their Twitter

feed (@ghtorrent) keeps the community up to date with regular posts, most recently

noting that Microsoft has agreed to sponsor the project on Azure for the next 2

years. GHTorrent’s users collection was recently geocoded using OpenStreetMap

(OSM) data and interestingly, the code for geocoding was provided by a local RTP

contributor (GitHub Login: DerekTBrown). This particular feature was extremely

helpful for our research in that we could query users based off their geocoded city or

state instead of parsing the free text location field ourselves.

As documented in [3] which was written during the initial stages of GHTorrent’s

development (2012), there are several challenges that researchers would face if they

decided to use the GitHub REST API directly, challenges that the GHTorrent project

11

has overcome through their provided data source. One of the main challenges is that

the GitHub data source is massive. Unless you know exactly what you are looking

for and where to look for it, it may take days to search through the collections given

the 5000 request/hour limit per API key. The GHTorrent project has done the heavy

lifting for us by reverse engineering and documenting the GitHub schema and REST

API. Having that information readily available saves researchers much time from

having to do this themselves.

In order to overcome the 5000 request/hour limit per API key, GHTorrent designed

their workflow to be distributed, with the research community donating SSH keys to

allow for extra workers and concurrency across a cluster of machines. SSH keys can

be donated by members of the GitHub community 1. GHTorrent uses the REST API

[18] (Events Stream) to collect static repository information as well as other events

such as associating commits with users and repositories. They have a messaging

layer (RabbitMQ) which sits between the events stream and aids with pushing out

further requests to the API from there. A single event can ultimately lead to many

downstream requests to gather more information from other parts of the REST API.

GitHub’s event stream is constantly flowing with new information as users are working

inside projects. For example, each commit fires off a number of creation requests to

other parts of the overall schema. A documented limitation for this is that the event

stream handles all additive actions but does not report deletions. [4]

As with all large scale projects, there are challenges and limitations documented

for GHTorrent. As highlighted in the previous section, it is possible for the author

and the committer to be two different people and there can sometimes be issues with

the mapped user credentials when commits are pushed via the command line (free

text is allowed). If GHTorrent is unable to map the user to a commit, it creates a

1We donated SSH keys to enable this.

12

fake user entry until the next request is created when it will attempt to resolve the

fake entry. As of 2013, there were several thousand fake users in the data source.

Another potential problem with the quality of the data is staying on track of any

regular updates to the GitHub schema itself. As GitHub makes changes to its overall

schema, the GHTorrent project has to closely monitor in case any changes are required

to its processes. Another potential problem with the quality of this data source is

that there are known periods of missing data from the event stream due to an error

in a couple of the GHTorrent scripts—these periods include a few days in March 2012

and mid-October through mid-November 2012. [4]

13

Chapter 4

Related Work

There have been a large number of studies done on open source software, particularly

the mining of GitHub data to gain a better understanding of how the widely popular

tool is being used across the globe. Due to the incredibly large nature of GitHub as a

platform (as highlighted in Chapter 3), it is important for researchers to understand

first the questions they want to answer and second the various options they have

available to collect GitHub data prior to starting the mining process. Cosentino, Luis

and Cabot collected 231 works on mining GitHub, eventually narrowing these down

to a set of 93 which they use to try and better understand how GitHub repositories

are being mined, how the data ends up being used and how associated limitations are

presented and addressed [19]. They discuss overall limitations with the use of various

GitHub datasets and the fact that they are not always current or consistent. They also

found that two thirds of the 93 selected works did not provide enough information

for future comparative studies to replicate the work. They discuss limitations of

their own study and conclude by highly suggesting that researchers ensure datasets

and instructions to replicate studies on mining GitHub are shared with the research

community.

Prior to beginning this research on the RTP area, ideas on what we wanted to

focus on were formed through the perusal of various published papers. Related work

on topics such as the impact of geography on contributions in GitHub, determination

of local skill sets based off GitHub data, programming language trends, the impact

social networking features have on users as well as a study that looked to determine

the promises and perils of mining GitHub through user surveys will be cited and

discussed further in this chapter. The most important piece of research that we

initially focused on was the GHTorrent project created by G. Gousios. Much of

the information sourced from this project’s public research is already outlined in

Chapter 3. We were able to use the GHTorrent data source as a means to quickly get

started in searching for RTP specific data on users, their repositories and overall open

source activity, which we later use to answer questions on what the social engineering

demographic looks like in RTP.

A study was done by a group of researchers (including Gousios from GHTorrent)

on the promises and perils of mining GitHub [20]. At that point, there were no known

studies of the quality and properties of data available through GitHub. This research

was focused around trying to gain a better understanding of how users take advan-

tage of the various capabilities that they are exposed to within GitHub, particularly

committing, submitting pull requests and issues. Out of the 1,000 surveys sent to

active users who had listed their e-mail address on their GitHub account, only 240

responses came back. Although the sample was small, the researchers were able to

collect some valuable information which they share as part of their research. This

study concluded, in summary, by showing that most repositories are inactive and only

created for personal reasons. We can conclude similar results as part of our research

on the RTP area given the number of repositories that were created and never touched

again. These researchers also found out through a survey, that many developers host

their code on GitHub for the sole reason of free hosting, having no desire to ever

open it up for collaboration. In addition, 38% of users involved in the survey said

15

they use GitHub primarily for their own projects, with no intention of collaboration

with other developers. Due to these findings, the authors provide recommendations

based on their research to suggest the best way to study GitHub data as a whole by

explaining in detail some of the different workflow use cases that they are aware of

for personal and project work.

In today’s communities (from our experience), development of software is quite

often split between different regional teams. As audio/video collaboration technolo-

gies continue to advance, the distance of these teams matter less. However, there are

still many instances where regional clusters contain concentrated software engineering

industries—RTP being an example as we are demonstrating through this research.

Takhteyev and Hilts did research on the geography of open source software through

GitHub [21]. These researchers came up with a unique method to study regional

teams and their associated involvement in open source projects. They started with a

single account (one of GitHub’s founders) and began collecting more accounts and in-

formation based off of their connections, ending up with a sample of 70,414 accounts.

As we mentioned previously, the location field in a GitHub user’s public profile is free

text and hence difficult to query directly. This team created a method to code the

location using Geonames.org, Yahoo’s GeoAPI, as well as some manual intervention.

They were able to conclude (based on sample accounts) that 39% of all GitHub ac-

counts are located in the United States, the remaining 61% being spread across the

globe (second largest country being the United Kingdom at 7%). The top 5 clusters

identified in the United States were San Francisco, New York, Boston, Seattle, and

Chicago.

David Rusk and Yvonne Coady from the University of Victoria did some research

on analyzing the popularity of programming languages in their local community (Vic-

toria, BC, Canada) in 2014 [22]. One of the goals to this research was to give employ-

16

ers as well as potential employees a better idea of what the local skill sets look like

through a talent pool repository as well as an overview of the common technologies

used in any given location. This team created a tool which pulled data out of the

GitHub REST API and dumped it into a MongoDB instance. It is unclear why they

did not use the GHTorrent data source as it was cited as related work and all of this

information could have been pulled directly from the GHTorrent MySQL instance

itself. They were able to create some visualizations similar to what was done during

the data analysis phase of this project and provided these to local developers and

businesses for feedback. They discussed that most of the developers found the infor-

mation quite helpful, some being a bit concerned with developer privacy given the

researchers were publishing names and other bits of personal information within the

project itself. Others pushed back and highlighted the fact that these profiles were

already public to begin with and that listing them within the project was a required

feature. Employer feedback was also positive, they were happy with the fact that

they could find developers with specific skills, code samples they’ve written, as well

as contact information all in one place. Their aim was to be able to expand this to

other locations as part of future work. As our research looks at similar metrics for

the RTP region, publishing this data could prove useful in the future.

In 2013, Begel, Bosch and Storey conducted interviews with 4 leaders from the

software development industry to try and gain a better understanding around the

social networking aspects of open source software development [23]. Brian Doll, an

engineer in the marketing space for GitHub was interviewed as part of this initiative.

We found some of his answers particularly interesting and could relate them back

to some of the questions we were looking to answer as part of this research. Storey

asked Doll, ”How does social networking play a role in the services you provide?”

Doll then started describing a recent e-mail he had received from a past colleague

17

who had mentioned he was following his activity on GitHub, such as the repositories

he had starred. In this way, users are able to keep up with various projects that their

connections are watching or actively participating in. We explain how often RTP

users are utilizing this feature as part of our local research. Doll was also asked how

other relationships were formed on GitHub, outside of the stargazing technique. He

started describing some of the use cases for creating a GitHub organization user type

which is something we look at the usage of for our local research. Doll mentions that

it is quite common for projects to be managed in this way on GitHub because ”it’s the

cleanest way for them to give permissions to several developers with different levels

of access to the code.” Another important point that Doll makes in this interview

is the importance that GitHub sees in ensuring users can put a face to the name of

the project’s main developer. This way, the user who is doing the bulk of the work

is getting the actual credit for it. For this reason, GitHub keeps the user login ID in

the URL structure of each repository, and also makes heavy use of avatars in activity

feeds. This point is interestingly related to the current controversy over privacy

between GHTorrent project and GitHub users [24]. Doll also discusses his opinion

around the benefit of open source software development for people looking to get a

job within a programming company, regardless of experience, and discusses articles

that he has read which claim GitHub as being the new resume for programmers.

18

Chapter 5

Data Collection

This chapter will walk through the data collection method that was developed for

this thesis. The GHTorrent project was chosen as our main source to collect GitHub

data on local projects in order to gain a better understanding of what the local open

source community looks like in RTP. The ultimate goal of this research was to not

only study our region, but to also develop a method that could be reused for future

research on other locations through the consolidation of Python and SQL scripts that

were created. As explained in Chapter 3, the GHTorrent project offered an offline

mirror of public data pulled from the GitHub REST API and allowed us to get started

on our investigations immediately. GHTorrent provides two methods to collect data,

a MySQL instance which includes structured meta-data and a MongoDB instance

which includes in-depth GitHub information in the form of JSON documents. An

example of a query and associated results from both MySQL and MongoDB can be

found in Figure 5.1 and Figure 5.2 respectively. These figures give an idea of how

much more information is stored in the GHTorrent MongoDB versus MySQL instance.

In the beginning of the data collection phase, specific meta-data (which will be

discussed further in future sections in this chapter) was pulled on RTP users and

repositories by running SQL scripts against the GHTorrent MySQL database. We

then used the meta-data collected and queried the GHTorrent MongoDB collections

MySQL Query :
s e l e c t id , l og in , name , l o c a t i o n

from use r s
where l o g i n = ’ l i n d s e y l a n i e r ’

Resu l t s :

id login name location
5641774 lindseylanier Lindsey Lanier USR

Figure 5.1: Example of a MySQL query to pull the information on one user and the
associated results after executing.

MongoDB Query :
> db . u s e r s . f i nd ({” l o g i n ” :” l i n d s e y l a n i e r ”}) . p re t ty ()

Resu l t s :
{

” i d ” : ObjectId (”56 c563256480fd331e002493 ”) ,
” l o g i n ” : ” l i n d s e y l a n i e r ” ,
” id ” : 8949639 ,
” ava t a r u r l ” : ” https :// avatars . g i thubusercontent . com/u/8949639?v=3”,
” g r ava ta r i d ” : ”” ,
” u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r ” ,
” html ur l ” : ” https :// github . com/ l i n d s e y l a n i e r ” ,
” f o l l o w e r s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / f o l l ow e r s ” ,
” f o l l ow i n g u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / f o l l ow ing {/ o the r u s e r }” ,
” g i s t s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / g i s t s {/ g i s t i d }” ,
” s t a r r e d u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / s t a r r ed {/owner}{/ repo }” ,
” s u b s c r i p t i o n s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / s ub s c r i p t i o n s ” ,
” o r g an i z a t i o n s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / orgs ” ,
” r e p o s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / repos ” ,
” e v en t s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / events {/ pr ivacy }” ,
” r e c e i v e d e v e n t s u r l ” : ” https :// api . g ithub . com/ use r s / l i n d s e y l a n i e r / r e c e i v ed ev en t s ” ,
” type” : ”User ” ,
” s i t e admin ” : f a l s e ,
”name” : nul l ,
”company” : nul l ,
” blog ” : nul l ,
” l o c a t i on ” : nul l ,
” emai l ” : nu l l ,
” h i r e ab l e ” : nu l l ,
” b io ” : nu l l ,
” pub l i c r epo s ” : 6 ,
” p u b l i c g i s t s ” : 0 ,
” f o l l ow e r s ” : 0 ,
” f o l l ow ing ” : 0 ,
” c r e a t ed a t ” : ”2014−09−28T18 : 1 5 : 4 2Z” ,
” updated at ” : ”2016−01−06T02 : 3 3 : 1 5Z”

}

Figure 5.2: Example of a MongoDB query to pull the information on one user and
the associated results after executing.

(see Table 3.1 for the full list of available collections) for further information. The

meta-data was needed to meet GHTorrent’s various index requirements on their Mon-

goDB instance. Due to the massive data source and heavy loads, indexes are required

as GHTorrent’s MongoDB instance has a 100 second time limit (non-indexed searches

easily surpass this). PyMongo [25], a Python/MongoDB library was used to connect

20

to the GHTorrent MongoDB instance programatically (although connections using a

command prompt were also available and used on occasion for searches). The results

from the queries executed against the GHTorrent MongoDB instance were stored in

a locally created MongoDB instance for analysis.

Subsequent sections of this chapter will show a common theme around the method

we used to both collect and analyze GitHub data in our local MongoDB instance,

namely utilizing MongoDB’s aggregaton framework [26]. The aggregation framework

provides the capability to write queries and perform powerful transformations on

collections that surpass the basic MongoDB ”find” operation. We will show the ways

aggregation was utilized in this project to calculate data points such as the number of

original repositories per user, the number of forked repositories per user, the number of

pull requests submitted per user, the number of years each user has been a member of

GitHub, programming language popularity, etc. Once the data was aggregated (and

new collections were formed), we were able to drill into the various bits of information

deeper to gain a better understanding of local activity and answer questions about

the users and their associated repositories. The basic MongoDB ”find” operation was

also used in order to search the newly created collections to pull back datasets used

to create the various figures presented in this research.

5.1 User Information

5.1.1 Collecting RTP Users

Before starting to look into the Research Triangle Park data, we first had to identify

which cities this region consisted of. As discussed in Chapter 2, the Research Triangle

Organization [1] identified the RTP region by county and later we found that the

NCLM [7] had a list of associated cities per county. There were a total of 90 cities (see

21

Figure 5.3) that we were then able to query the GHTorrent MySQL database instance

with. This initial step was required as we couldn’t directly start using the GHTorrent

MongoDB instance due to the users collection having an index requirement on login

name (we could not query the GHTorrent MongoDB instance directly on the location

field alone without timing out). Additionally, the geocoding of user locations is only

available in their MySQL instance. From the GHTorrent MySQL instance, we were

able to export the list of users to a comma separated value (CSV) file. We then wrote

a Python script which would iterate through the CSV file and query the GHTorrent

MongoDB instance for users by their login name, saving the results to a new collection

within our local MongoDB instance. This newly formed users collection gave us the

beginning of what would later become a 25GB database of RTP GitHub data.

5.1.2 Calculating Total Number of Years on GitHub

One of the questions we sought to answer was the average number of years that local

users had been GitHub members. Per Wikipedia, GitHub was founded 8 years ago in

February of 2008 [18]. We were interested in understanding if there were any local,

active users that had been around since the start. In order to do this, we had to run

a few different PyMongo scripts. The first thing that had to occur was the conversion

of the ”created at” date in the users collection to an ”ISODate”. The date field that

we pulled from GHTorrent’s MongoDB instance was not a proper date format. We

were not able to run any aggregation functions on the date until it was converted

(see Figure 5.4 which shows an example of how easily we are able to do this with

Javascript). Next, we used aggregation to get the number of years the user had been

a member and projected the output to a new collection (see Figure 5.5). Once this

collection was created, we were able to query for users that had been a member for

any specified number of years.

22

1. Aberdeen

2. Angier

3. Apex

4. Bailey

5. Benson

6. Black Creek

7. Broadway

8. Bunn

9. Butner

10. Cameron

11. Carrboro

12. Carthage

13. Cary

14. Castalia

15. Centerville

16. Chapel Hill

17. Clayton

18. Coats

19. Conetoe

20. Creedmoor

21. Dortches

22. Dunn

23. Durham

24. Elm City

25. Erwin

26. Four Oaks

27. Foxfire Vil-
lage

28. Franklinton

29. Fuquay-
Varina

30. Garner

31. Goldston

32. Henderson

33. Hillsborough

34. Holly Springs

35. Kenly

36. Kittrell

37. Knightdale

38. Leggett

39. Lillington

40. Louisburg

41. Lucama

42. Macclesfield

43. Macon

44. Mebane

45. Micro

46. Middleburg

47. Middlesex

48. Momeyer

49. Morrisville

50. Nashville

51. Norlina

52. Oxford

53. Pine Level

54. Pinebluff

55. Pinehurst

56. Pinetops

57. Pittsboro

58. Princeton

59. Princeville

60. Raleigh

61. Red Oak

62. Robbins

63. Rocky Mount

64. Rolesville

65. Roxboro

66. Sanford

67. Saratoga

68. Selma

69. Sharpsburg

70. Siler City

71. Sims

72. Smithfield

73. Southern
Pines

74. Speed

75. Spring Hope

76. Stantonsburg

77. Stem

78. Stovall

79. Tarboro

80. Taylortown

81. Vass

82. Wake Forest

83. Warrenton

84. Wendell

85. Whispering
Pines

86. Whitakers

87. Wilson

88. Wilson’s Mill

89. Youngsville

90. Zebulon

Figure 5.3: List of local RTP cities which were collected and used in this research.

23

db . githubRTPUsers . f i n d () .
forEach

(
func t i on (element)
{

element . c r e a t e d a t = ISODate (element . c r e a t e d a t) ;
db . githubRTPUsers . save (element) ;

}
)

Figure 5.4: MongoDB function used to convert the created date to a proper ISODate.

db . githubRTPUsers . aggregate (
[

{ $ p r o j e c t : { i d : 0 ,
item : ” $ l o g i n ” ,
d i f f d a y s :{
$d iv ide :

[{ $subt rac t : [new ISODate () , ” $ c r e a t e d a t ”]}
,1000 ∗ 60 ∗ 60 ∗ 24 / 365]}}} ,

{” $out ” :” calculated memberForYears ”}
])

Figure 5.5: Aggregation in MongoDB used to get the number of years a user has
been a member on GitHub. Results are projected to a new collection within our local
MongoDB instance.

5.2 Repository Information

5.2.1 Collecting RTP Repositories

Once the local users baseline had been established, we began looking into what these

users were working on within the open source world of GitHub. The next baseline

that we took was user owned GitHub repositories. Again, due to required indexes

(repository name and owner login name) in the GHTorrent MongoDB repositories

collection, we needed to pull some meta-data out of the GHTorrent MySQL instance

before we could query. We used the previous users CSV file to query the GHTorrent

24

MySQL instance (projects table) for everything where the owner’s login name was

equal to our user’s login name. We exported this information to a new CSV, imported

it into our local MongoDB instance, and used it to pull more information on user’s

repositories from GHTorrent’s MongoDB into our local MongoDB instance. This

new collection gave us pertinent information about local GitHub repositories which

we later used to answer our research questions in the data analysis phase.

As mentioned in the introduction of this chapter, MongoDB provides an aggrega-

tion framework which was used to sort through much of this data. Figure 5.6 shows

an example of calculating the total number of repositories by user with the Mon-

goDB aggregation framework (using PyMongo). Here we set up a ”pipeline” using

the group, sort, project, and out operators. In this particular example, we sought

to group the count of repositories by the owner’s login name and sort the results in

descending order. Each aggregation created a new document that was projected to a

new collection in our local MongoDB instance. The results of this aggregation query

helped us address questions we had around how many repositories each RTP user

had created. As part of this research, we were also interested in understanding which

cities in the region had the most repositories. In order to do this, we created a new

collection using the same method just described (MongoDB aggregation framework).

These results were captured and are discussed in the next chapter on data findings.

5.2.2 Original vs. Forked Projects

In order to determine original versus forked projects from our collection of local RTP

projects, we needed to take a look at the ”fork” field for each repository. The ”fork”

field takes a boolean value of True or False. We wrote a Python function that would

count the number of original projects per user as well as the number of forked projects

per user. Two separate collections were created in our local MongoDB instance and

25

de f r epo count by use r () :
pip = [

{” $group ” : {” i d ” : ”$owner . l o g i n ” , ” count ” : {”$sum ” : 1}}} ,
{” $ so r t ” : SON([(” count ” , −1) , (” i d ” , −1)])} ,
{” $ p r o j e c t ” : {” i d ” : 1 , ” count ” :1}} ,
{” $out ” : ” calculated repoCountByUser ”}

]
u s e rReposCo l l e c t i on . aggregate (pip)

Figure 5.6: Sample Python code which pulls the total repository count per user using
PyMongo and the MongoDB Aggregation Framework.

the data was later analyzed to help us understand if local users were forking existing

projects more often than creating new projects.

5.3 Overall RTP Activity

Once we had established a baseline of GitHub users and associated repositories, we

could start calculating RTP users’ overall activity. As discussed, one piece of this

research that particularly interested us was to find out how many users were actually

active open source community members, in other words, how many users are actively

contributing towards live projects. For this, we wanted to ignore users that joined for

one project or homework assignment, for example, and never came back again.

In order to gain an understanding of the overall GitHub activity in RTP, we

investigated from a few different angles. We first aimed to understand trends in overall

activity over the lifetime of a local user account and then wanted to understand who

is still currently active. We are defining ”active” in this research as making a commit

to a repository over the last 6 months. In order to determine overall activity, we

created the following questions to guide us:

1. Total number of commits by owner

26

2. Total number of active repositories based off commits

3. Total number of forks

4. Total number of pull requests

5. Total number of stargazers

Question 1-2 are covered in section 5.3.1. Question 3 was covered already in

section 5.2.2. Question 4 is covered in section 5.3.2 and question 5 is in section 5.4.

The results from each data collection method are captured in Chapter 6.

5.3.1 Collecting User Commits and Active Repositories

As part of the study of overall activity within our local scope, we sought to understand

what the total number of commits per project looked like. In order to collect this

information, we used the meta-data located in the GHTorrent MySQL instance in

combination with our already existing collection of local users in our local MongoDB

instance. We queried the GHTorrent MySQL instance for the name of the repository,

the owner name, the count of commits as well as the last commit date. Figure 5.7

shows the script in detail. Due to the massive volume of commit data, we let this

script run overnight as it took several hours to complete. During the initial run,

we ran into errors that were not caught in the code. MongoDB requires UTF-8

encoding and hence any entries which were not UTF-8 that we tried to insert into our

local MongoDB instance failed (Error Message: bson.errors.InvalidStringData:

strings in documents must be valid UTF-8). We altered the script to translate

these field names to binary to get past this, logging any future failure details to a new

collection. The subsequent run of this script did not give us any failures, however.

The total number of commits per project (as well as their associated timestamps)

27

de f commit numbers () :

query = ” s e l e c t p . name , u . l og in , u . name ,
max(c . c r e a t ed a t) , count (c . id)
from p r o j e c t s p , u s e r s u , commits c ”\
” where u . id = p . owner id ”\
” and c . p r o j e c t i d = p . id ”\
” and u . l o g i n = %s ”\
” and p . name = %s ”\
” group by p . name , u . l og in , u . name”

r epo sL i s t = use rReposCo l l e c t i on . f i nd (
{} ,{” owner . l o g i n ” : 1 , ”name” : 1})

i = 0
try :

f o r x in r epo sL i s t :
i f (i > 16969) :

mySqlCursor = mySqlDB . cur so r ()
mySqlCursor . execute (query , (x [’ owner ’] [’ l og in ’] , x [’ name ’]))
data = mySqlCursor . f e t c h a l l ()
f o r row in data :

myLocalDB . t e s tC o l l e c t i o n . i n s e r t ([
{” project name ” : row [0] ,
” owner log in ” : row [1] ,
”owner name ” : bson . Binary (s t r (row [2])) ,
” la s t commit date ” : row [3] ,
” commit count ” : row [4] }])

p r i n t ”done with ” , x [’ owner ’] [’ l og in ’] , x [’ name ’] , i
i+=1
pr in t x [’ owner ’] [’ l og in ’] , x [’ name ’]

except Exception , e :
myLocalDB . r e j e c t s . i n s e r t ({” f a i l e d ” : i })

Figure 5.7: This Python script was used to collect the number of commits per local
project.

were useful is helping us answer defined questions on RTP user activity and current

participation in the open source community.

5.3.2 Collecting Pull Requests

In order to determine overall user activity, we needed to understand how many pull

requests had been submitted by each RTP user. For this, we pulled data directly

28

out of the GHTorrent MySQL database and inserted it into our local MongoDB

instance. The SQL query we used performed a union of two select statements. The

first statement joins locally owned repositories on the head repository ID in the pull

requests table and the second statement joins on the base repository id in the pull

requests table. This is done to ensure we collect any repositories that have been

forked. The script used for collecting the pull requests is shown in Figure 5.8.

5.4 Social Networking - ”Stargazing”

In addition to overall open source activity, we were interested in understanding the

popularity of local users and their work. One way to do this was to look into how

many users had repositories which were being ”starred” or ”followed”. We wrote a

Python script to query the GHTorrent MongoDB instance (watchers collection), using

our collected list of RTP users and their owned repositories. We inserted the results

from this script into a new collection in our local MongoDB instance. Figure 5.9

shows an example of what one of these entries looks like.

After the list of ”stargazers” had been collected, we again used the MongoDB

aggregation framework to find out which local repositories were the most popular.

Figure 5.10 shows what this query looked like. One thing to note for this collection

is that if a user is a contributor on a project then the stars for that project end

up in our list - some examples of this are shown in Chapter 6 (Data Findings).

Lastly, we utilized aggregation to find out how many followers each local user had

(see Figure 5.11).

29

de f getPul lReqs () :

query = ”(s e l e c t u . l og in , p . name , count (∗)
as ’ prcount ’ , ’ head ’ as ’ repotype ’”\

” from p r o j e c t s p , u s e r s u , p u l l r e q u e s t s pr ”\
” where p . owner id = u . id ”\
” and pr . head repo id = p . id ”\
” and p . de l e t ed i s f a l s e ”\
” and p . fo rked f rom i s nu l l ”\
” and u . l o g i n = %s ”\
” group by p . id ”\
” order by count (∗) desc)”\
” UNION”\
” (s e l e c t u . l og in , p . name , count (∗)

as ’ prcount ’ , ’ base ’ as ’ repotype ’”\
” from p r o j e c t s p , u s e r s u , p u l l r e q u e s t s pr ”\
” where p . owner id = u . id ”\
” and pr . ba s e r epo i d = p . id ”\
” and p . de l e t ed i s f a l s e ”\
” and p . fo rked f rom i s nu l l ”\
” and u . l o g i n = %s ”\
” group by p . id ”\
” order by count (∗) desc)”

myUsers = githubRTPUsers . f i nd ({} ,{” l o g i n ” : 1}) # f i r s t f i nd a l l usernames

i = 0
try :

f o r x in myUsers :
mySqlCursor = mySqlDB . cur so r ()
mySqlCursor . execute (query , (x [’ l og in ’] , x [’ l og in ’]))
data = mySqlCursor . f e t c h a l l ()
f o r row in data :

myLocalDB . ca lcu lated pu l lReqByUser . i n s e r t ([
{” l o g i n ” : row [0] ,
”name” : row [1] ,
” prcount ” : row [2] ,
” repotype ” : row [3] }])

p r i n t ”done with ” , x [’ l og in ’] , i
i+=1

except Exception , e :
p r i n t e
myLocalDB . r e j e c t s . i n s e r t ({” f a i l e d ” : i })

Figure 5.8: Python script used to query for pull requests from the GHTorrent MySQL
database and then insert them into our local MongoDB instance.

30

> db . githubRTPStargazers . findOne ()
{

” i d ” : ObjectId (”539 eb518bd35432a2004564c ”) ,
” f o l l ow i n g u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ f o l l ow ing {/ o the r u s e r }” ,
” e v en t s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ events {/ pr ivacy }” ,
” o r g an i z a t i o n s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ orgs ” ,
” u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos ” ,
” g i s t s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ g i s t s {/ g i s t i d }” ,
” html ur l ” : ” https :// github . com/HagamosVideojuegos ” ,
” s u b s c r i p t i o n s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ s ub s c r i p t i o n s ” ,
” repo ” : ”BombaFiesta−Unity3D−Fut i l e ” ,
”owner” : ” edbar t l ey ” ,
” ava t a r u r l ” : ” https :// avatars . g i thubusercontent . com/u/6969130?” ,
” r e p o s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ repos ” ,
” r e c e i v e d e v e n t s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ r e c e i v ed ev en t s ” ,
” g r ava ta r i d ” : ”028308 b2ed248bbd76fa686f0855006e ” ,
” s t a r r e d u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ s t a r r ed {/owner}{/ repo }” ,
” s i t e admin ” : f a l s e ,
” l o g i n ” : ”HagamosVideojuegos ” ,
” type” : ”User ” ,
” id ” : 6969130 ,
” f o l l o w e r s u r l ” : ” https :// api . g ithub . com/ use r s /HagamosVideojuegos/ f o l l ow e r s ”

}

Figure 5.9: A view into the stargazers collection.

db . githubRTPStargazers . aggregate (
[

{$group : {
i d : ” $repo ” ,

t o t a l : {$sum : 1}}} ,{ $ so r t :{ t o t a l :−1}
}

])

Figure 5.10: Aggregation used to find out how many followers each local repository
contained.

de f s t a r g a z i n g () :
pip = [

{” $group ” : {” i d ” : ”$owner ” , ” count ” : {”$sum ” : 1}}} ,
{” $ so r t ” : SON([(” count ” , −1) , (” i d ” , −1)])} ,
{” $ p r o j e c t ” : {” i d ” : 1 , ” count ” : 1 , ”owner ” : 1 , ” repo ” :1}} ,
{” $out ” : ” c a l c u l a t e d t o t a l S t a r g a z e r s ”}

]
s t a r g a z e r s C o l l e c t i o n . aggregate (pip)

Figure 5.11: Python script used to calculate the number of followers that each RTP
user has.

31

Chapter 6

Data Findings

Once the data collection method was developed and implemented, we started mining

through the information collected in an attempt to answer the key questions described

in chapter 1 for the RTP region. We broke down those high level questions into more

specific items described in section 6.1. To find out about GitHub users in the RTP

region, we provide answers to questions one through five. In order to see what the

overall numbers look like in terms of projects developed out of the RTP area as well

as their associated activity and current relevance, we answer questions six through

twelve. Finally, in order to gain a better understanding of how RTP users are taking

advantage of GitHub social networking features, as well as their overall popularity,

we answer questions thirteen through fifteen.

We found that the easiest way to illustrate a lot of these findings was to create

visual representations of the data collected. For this, we used Plot.ly, an open source

framework for developing data visualizations in various languages [27]. Figure 6.1

shows an example of the creation of a bar chart using this framework. The remainder

of this chapter is broken down into specific sections dedicated to answering the key

research questions. We first go into an overview of RTP users, then drill into RTP

specific repositories, overall open source contribution activity and lastly look into the

usage of social networking features available on GitHub.

6.1 Key Research Questions

1. How many users does the RTP area have overall?

2. How many users does the RTP area have by type (User vs. Organization)?

3. What is the average number of repositories per user in RTP (overall)?

4. How long have local users been GitHub members? How many users have been

around since GitHub started?

5. What city has the most users?

6. What is the repository count by User?

7. What is the repository count by Organization?

8. Who has the most repositories overall in the RTP area?

9. Are users creating original repositories or forking existing repositories or collab-

orating more often?

10. What do the commit numbers look like for local RTP repositories?

11. How many of the RTP repositories are active (for this research, active is defined

as repositories which contain changes that have been committed at some point

over the last 6 months)?

12. What is the average life of a local project?

13. Are many local users being ”followed”?

14. Are local repositories being starred often?

15. What are the most popular programming languages?

33

de f userCountByCity BarChart () :
r e s u l t s = userCountByCity . f i nd ({” count ” :{” $gte ” : 20}})

x = []
y = []

f o r i in r e s u l t s :
x . append (i [’ id ’])
y . append (i [’ count ’])

p l o t l y . o f f l i n e . p l o t ({
”data ” : [

Bar (x=x , y=y ,
marker=d i c t (
c o l o r =’rgb (158 ,202 ,225) ’ ,
l i n e=d i c t (

c o l o r =’rgb (8 , 48 , 107) ’ ,
width=1.5

) ,
) ,
opac i ty =0.6)

] ,
” layout ” : Layout (

t i t l e =”Number Of Users By City (User Count Greater Than 20)” ,
annotat ions=[
d i c t (

x=xi ,
y=yi ,
t ex t=s t r (y i) ,
xanchor=’ center ’ ,
yanchor=’bottom ’ ,
showarrow=False ,

) f o r xi , y i in z ip (x , y)]
)
})

Figure 6.1: Sample Python code which pulls the total repository count per user using
PyMongo and the Aggregation Framework.

6.2 Users Overview

In this section, we will focus on answering questions one through five from section

6.1. We will find out how many users the RTP area has overall, by both User and

Organization type. We will also find out how many repositories each user has on

average, how long they have been members and which city in the region has the most

34

users. The collection of RTP users was the most important dataset in this research

as everything else was built upon them. As discussed in chapter 2, RTP is a very

prominent location for the information technology industry as a whole. We suspected

we would find open source activity in the area but did not have any baselines from

other locations to compare to. We managed to find 3,234 total RTP users (again, only

being able to find users that had their location listed on GitHub). This means only

.1% of the RTP population (as also discussed in chapter 2, there are 3 million people

living in a 60 mile radius of the park) are members of GitHub. Of these, 47 percent of

them were located in Raleigh. Figure 6.2 shows a bar chart created with Plot.ly with

the number of RTP users by city. This chart only shows 8 cities as we filtered out all

cities that had less than 20 users. Out of the 90 cities identified through NCLM (see

5.3), only 33 contained users contributing on GitHub. Raleigh, Durham and Chapel

Hill had the highest number of users in the area which is understandable given these

locations are home to the major research universities as well as many of the large

technology companies referenced in chapter 2. We also looked into the total number

of RTP users by user type, finding that the majority of accounts were ”User” - 2,982

with the remaining 252 being of type ”Organization”.

Another metric that we were interested in gathering was how long the local RTP

users had been members on GitHub. As mentioned in the previous chapter, GitHub

has been around for 8 years now. We were curious to find out how many local users

had created their accounts when the service went live. There ended up being around

130 users that have had their accounts for 7-8 years. Out of these accounts, 61% (80

users) have been active (or submitted a commit) over the last 6 months. Figure 6.3

shows the script used to determine active users who have been members on GitHub

for over 7 years. It was interesting to note that over half of the oldest users were still

active on GitHub.

35

Figure 6.2: This figure shows all RTP cities that have more than 20 users.

6.3 Repositories Overview

In this section, we will present an overview of the RTP repositories found during the

data collection phase through answering questions six through nine from section 6.1.

We will learn how many repositories have been created out of RTP (overall and by

user type), as well as which RTP user has the most repositories. In total, we were

able to find 34,825 total RTP user repositories. Of these, 31,843 were owned by a

36

de f a c t i v e o l dUs e r s () :
d = datet ime . datet ime (2015 , 8 , 10 , 12)
r e s u l t s = memberForYears . f i nd ({” d i f f d a y s ” :{” $gte ” : 7}})

. s o r t (” d i f f d a y s ” ,−1)

count = 0
f o r i in r e s u l t s :

totalCommits = ac t i v eUs e r sCo l l e c t i o n . f i nd ({” owner log in ” : i [’ item ’] })
f o r x in totalCommits :

i f x [’ l a s t commit date ’] > d :
p r i n t ’ Act ive : ’ , x [’ owner log in ’] , ’ ’ ,

x [’ project name ’] , ’ ’ ,
x [’ l a s t commit date ’]

count += 1

Figure 6.3: This figure shows the Python script used to find RTP users that have
been members on GitHub for more than 7 years and are still active today.

”User” type, while 2,982 were owned by an ”Organization” type. There was a large

amount of information available about each one of these repositories. Each repository

contained an entry in a collection within our local MongoDB instance. These entries

specified a number of items, including the owner details, the number of forks, whether

or not the repository was a fork itself, the programming language used, the number of

watchers, the create date, last updated date, as well as several API URLs that could

be used to perform a number of actions on GitHub (view comment, view issues, view

events, download the repository, etc.).

We calculated that RTP users have created an average of 12 repositories. The

user with the most repositories had created 351, while there were a large number of

users that had only created one repository. Figure 6.4 is a chart created to show the

users with the most repositories (breaking it down to users with more than 120 owned

repositories). This does not necessarily mean they are active repositories and in fact

could have been created and only used as a means of storage and never opened up

for collaboration nor as a source code repository. The user with the most number of

repositories was created as an ”Organization”, the account is still active today but

37

351pixbit

223jmxpearson

193battlemidget

192BanzaiMan
155apsaltis

151Rleahy22

139connyay

131vbatts
131pmuellr

129thewtex
127jcfr

121ryanfb

0 351
Repository Count By User

Figure 6.4: This bar chart shows users with the most overall repositories in the RTP
region.

not all 351 repositories are currently being contributed to. We will assess the activity

of all repositories in section 6.4.

The next piece of information gathered about overall repositories in the RTP

region was the total number of original versus forked projects. We were interested in

understanding if users created original projects more often than forking from already

existing projects. Table 6.1 and 6.2 show the findings from these calculations. After

sampling this data, we found out that around 40% of the projects in RTP are forked

and 59% are original. This does not exclude inactive repositories. What this tells

us is that while more than half of the repositories are original projects created by

38

Forked Repositories Total Users
15,244 2099

Table 6.1: Total Original Repositories
in RTP

Original Repositories Total Users
19,745 2518

Table 6.2: Total Forked Repositories
in RTP

the RTP owner, there are still a large number of projects that have been forked from

already existing projects with a possible intent to collaborate.

6.4 Activity Overview

We did some investigating into how many local users were active while seeking to

answer questions ten and eleven. We find out what the commit numbers look like for

RTP repositories, as well as the overall activity of RTP users. As discussed previously,

we defined a user as being ”active” if they have made a commit sometime over the

last 6 months. We found that 2,559 unique users had made a commit over the last

6 months on GitHub which we seemed quite high. We can’t necessarily say that

79% of RTP users are active on GitHub, however, due to the fact that was discussed

in chapter 3, when committing a change in GitHub, the author field is free text in

many cases. We can see this quite clearly in the collected dataset on commits. There

are unfortunately many users who lazily entered data such as their first name only

(i.e. ”Ben”) instead of their full name, e-mail address or login name as an identifier.

As part of future research, it would be useful to programatically attempt to match

authors to their rightful GitHub account, similar to what the GHTorrent project does

(as discussed already in section 3.2). This way we would be able to calculate a more

accurate number on the total number of active users in the area.

We were able to say for certain that there are 6,756 unique RTP owned repositories

that are active on GitHub, since this field cannot be free text. This means that of all

the repositories owned by RTP users, 19% of them are active. Figure 6.5 shows all

39

11312OpenNMS

3665tee3
3145bredelings

2809duke-libraries
2788mautic
2738caktus
2684automatak

2407waldenraines
2357pencilblue

2234UNC-Libraries
2149jhinkey

2077deads2k

0 11.312
Total Commits per User

Figure 6.5: This figure shows all users with more than 1000 commits over the last 6
months.

users with more than 2,000 commits over the last 6 months. We looked a bit further

into the top 10 active users (by login ID) to find out more information about them.

All 10 of these users have made more than 2,000 commits to projects over the last 6

months (see Table 6.3). As we can see, 70% of these users are set up as Organizations

on GitHub, which makes sense in that there would be more commits than ”User”

projects where there may be only one contributor. It was hard to identify a specific

trend between these numbers. For example, these project owners either heavily utilize

pull requests, or they don’t. This observation could be explained by the fact that

users and organizations utilize different workflows as already discussed in section 3.1.

6.5 Popularity Overview

Finally, after reviewing metrics on RTP users, their repositories and overall activity

on GitHub, we decided to take a look into the data to find out how ”popular” our

local users and projects were. In this section, we will discuss questions twelve through

40

User ID User Type Member Since City # Projects # Pull Reqs # Stargazers
OpenNMS Organization Dec-12 Pittsboro 66 864 254

tee3 User Mar-10 Raleigh 18 2 5
bredelings User Oct-09 Durham 8 2 15

duke-libraries Organization Oct-12 Durham 52 2310 40
mautic Organization Aug-13 Raleigh 14 718 479
caktus Organization Apr-10 Durham 89 1602 856

automatak Organization Jan-13 Raleigh 10 42 81
waldenraines User Apr-13 Raleigh 17 0 0

pencilblue Organization Feb-14 Raleigh 15 751 1257
UNC-Libraries Organization Jan-11 Chapel Hill 28 766 157

Table 6.3: More information on the top 10 active RTP users (have pushed commits
in the last 6 months). This chart shows their total number of projects, pull requests
and stargazers.

fifteen. We will seek to find out if many RTP users are being ”followed” or ”starred”.

We will also find out what the most popular programming language is. As mentioned

in chapter 3, GitHub gives us an easy way to do this with their built in social media

features such as ”stargazing”. We were able to dig into the collected data to find out

that some of our users are actually somewhat popular. 1,253 users (39%) contain at

least one follower. We have 2 local users that have more than 10,000 followers. Figure

6.6 gives us a view of the number of stargazers that each user has (where the total

number of followers is greater than 1000). The RTP user with the most stargazers is

an author of a book on PHP, who lives and works in Chapel Hill.

Another metric we collected was the overall programming language popularity in

this region. We aggregated the repository collections and counted the number of oc-

currences for each language, ignoring any projects that did not have the programming

language listed (8,459 or 24% did not have one listed). Figure 6.7 shows the number

of projects that use each language in a bar chart where usage count is greater than

1,000, with JavaScript leading the way. We note that this information is what comes

back from GitHub, it is important to remember that many projects will likely have

more than one associated programming language.

41

12571codeguy

11682fogleman

7856jlong

6249alebcay

3798twotoasters
2586cognitect

2428smashingboxes

1564jaymedavis

1554clojure-cookbook

1553alandipert

1304mapier

1257pencilblue

1204kconner
1187stuarthalloway

1145bwsewell
1073yfactorial

0 125.71
Total Stargazers per User

Figure 6.6: This figure shows the number of followers that each user has (where the
count of followers is greater than 1000).

5467JavaScript

4527Ruby

3457Python

2062Java
1349CSS

1255PHP
1069Shell

0 5.467
Top GitHub Programming Languages in RTP

Figure 6.7: This figure shows the most popular programming languages in the RTP
region, where the usage count is greater than 1000.

6.6 Average Life of a RTP Project

One of the additional data points that we decided to collect was what the average life

of a GitHub project owned by a user in RTP looked like (question fifteen). We found

42

> db . githubRTPUsersRepos
. f i n d ({} ,
{”owner . l o g i n ” : 1 , ” c r e a t e d a t ” :”1” ,” name ” : 1})

. s o r t ({” c r e a t e d a t ” : 1})

. l i m i t (1)
> {

” i d ” : ObjectId (”52 bedd67bd3543677400823a ”) ,
”owner” : { ” l o g i n ” : ” b s c o f i e l d ” } ,
”name” : ”depth−charge ” ,
” c r e a t e d a t ” : ISODate(”2008−02−27T12 : 4 2 : 1 0 Z”)

}

Figure 6.8: Finding the oldest RTP repository from MongoDB’s shell (query and
result).

out that the oldest RTP repository was created less than a month after GitHub was

founded, ”depth-charge”. Figure 6.6 shows the query used to find this information

in our local MongoDB database. This particular repository was created 8 years ago

and hasn’t been updated since.

Finally, we also found that the average life of a RTP project is 102 days. This

was calculated by subtracting the created date from the last commit date and then

averaging the entire gathered list. We found that the shortest project was 1 day and

that there are plenty of projects that are still ongoing and active.

6.7 Threats to Validity

Due to the quality of data that we were able to retrieve for this project, there are

several threats to validity that must be mentioned. As already discussed, it is im-

portant to remember that the location field in GitHub is not required, hence there is

likely a large population of users that are left out of our research because they haven’t

given a location or have possibly given an inaccurate one. This was a limitation with

our research due to the fact that we were heavily interested in querying for users

43

that lived in such a specific location. Additionally, it was difficult for us to find out

the exact number of commits per user. This is because users are able to enter free

text into the authors field when committing a change in the GitHub shell (command

line). This impacted the results from the mining for overall activity in the RTP re-

gion. We looked into pulling data from other sources to supplement the information

from GitHub. An example source being LinkedIn, which was unsuccessful due to

restrictions with the licensing of their REST API.

44

Chapter 7

Conclusion

The purpose of this research was to shed light on the open source activities in the

Research Triangle Park region using information mined from GitHub. We began

the data collection phase by gathering metrics around how many people in the RTP

area were involved in open source projects (from both personal and organizational

levels). This information was then used to explore repositories developed out of the

RTP area, looking into characteristics such as the programming languages used, their

associated activity, and current relevance of the various projects. Lastly, we explored

how RTP users were involved in the social media aspects of GitHub. In summary,

we found that, as a whole, the RTP region is not heavily involved in the open source

community, but we were able to identify a number of users that were prominent on

the platform both from the single user and organizational perspective.

As part of future research, it would be interesting to extend these experiments to

cover other locations with a similar technology industry profile, providing additional

context for the current results and providing insight into how open source development

differs in different parts of the United States and in technology hubs in other countries.

It would also be interesting to add a temporal aspect to this research, exploring

how open source development activities change over time. Teams and individual

developers could also use this work to find out which cities have the most users,

repositories, open source activity, and overall popularity, potentially by providing

this data through a portal. Lastly, it would also be interesting to compare findings

such as the most popular programming languages to the job requirements in the local

markets to see if any trends can be identified. The scripts developed for this thesis,

used as part of the data collection and analysis phases, are themselves available on

GitHub under an open-source license.

46

BIBLIOGRAPHY

[1] “Research Triangle Region - NC.” [Online]. Available: http://www.
researchtriangle.org/about-rtrp

[2] “GitHub,” Jan. 2016. [Online]. Available: https://github.com

[3] G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a firehose,” in
2012 9th IEEE Working Conference on Mining Software Repositories (MSR),
Jun. 2012, pp. 12–21.

[4] G. Gousios, “The GHTorrent dataset and tool suite,” in 2013 10th IEEE Working
Conference on Mining Software Repositories (MSR), May 2013, pp. 233–236.

[5] “Masters thesis scripts - lindseyklanier.” [Online]. Available: https://github.
com/lindseyklanier/masters thesis

[6] R. Weddle, “Research Triangle Park - North Carolina Digital History.” [Online].
Available: http://www.learnnc.org/lp/editions/nchist-recent/6177

[7] “North Carolina League of Municipalities.” [Online]. Available: http:
//www.nclm.org/resource-center/municipalities/Pages/By%20County.aspx

[8] “Durhams American Underground Leads Nation on Entrepreneurial Diversity,
Sees Major Increase in Funding | American Underground.” [Online].
Available: http://americanunderground.com/durhams-american-underground-
leads-nation-on-entrepreneurial-diversity-sees-major-increase-in-funding/

[9] “4 U.S. regions rivaling Silicon Valley.” [Online]. Available: http://mashable.
com/2015/10/05/next-silicon-valley-us-cities/#NseaXjYYWSqi

[10] J. Kotkin, “America’s Fastest- And Slowest-Growing Cities - Forbes.” [On-
line]. Available: http://www.forbes.com/sites/joelkotkin/2013/03/18/americas-
fastest-and-slowest-growing-cities/#4d4e74961acb

[11] “American Underground.” [Online]. Available: http://americanunderground.
com/

[12] “The Research Triangle Park Organization,” Jan. 2016. [Online]. Available:
http://www.rtp.org/about-us/

[13] “The Frontier.” [Online]. Available: http://www.rtp.org/about-us/the-frontier/

[14] “NC State of Technology - 2016 Industry Report.” [Online]. Available:
http://www.nctechnology.org/resources/sotir.aspx

[15] “Why are my commits linked to the wrong user? - User Documentation.”
[Online]. Available: https://help.github.com/articles/why-are-my-commits-
linked-to-the-wrong-user/

[16] “MongoDB for GIANT Ideas.” [Online]. Available: https://www.mongodb.com/

[17] “GHTorrent (@ghtorrent) | Twitter.” [Online]. Available: https://twitter.com/
ghtorrent

[18] “GitHub - Wikipedia, the free encyclopedia.” [Online]. Available: https:
//en.wikipedia.org/wiki/GitHub

[19] J. Cabot, “Should developers believe reports based on GitHub mining
results?” Mar. 2016. [Online]. Available: http://modeling-languages.com/
believe-research-github-mining/

[20] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The Promises and Perils of Mining GitHub,” in Proceedings of the
11th Working Conference on Mining Software Repositories. ACM, 2014, pp.
92–101. [Online]. Available: http://dl.acm.org/citation.cfm?id=2597074

[21] Y. Takhteyev and A. Hilts, Investigating the geography of open source
software through GitHub. Working Paper, 2010. [Online]. Available: http:
//takhteyev.org/papers/Takhteyev-Hilts-2010.pdf

[22] D. Rusk and Y. Coady, “Location-Based Analysis of Developers and Technologies
on GitHub,” in 2014 28th International Conference on Advanced Information
Networking and Applications Workshops (WAINA), May 2014, pp. 681–685.

[23] A. Begel, J. Bosch, and M. A. Storey, “Social Networking Meets Software Devel-
opment: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder,”
IEEE Software, vol. 30, no. 1, pp. 52–66, Jan. 2013.

[24] “The Issue 32 incident An update.” [Online]. Available: http://gousios.gr/
blog/Issue-thirty-two/

[25] “PyMongo 3.2.1 Documentation PyMongo 3.2.1 documentation.” [Online].
Available: https://api.mongodb.org/python/current/

48

[26] “Aggregation MongoDB Manual 3.2.” [Online]. Available: https://docs.
mongodb.org/manual/aggregation/

[27] “plotly.” [Online]. Available: https://plot.ly/python/

49

