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An issue of great concern as it relates to global warming is power consumption and 

efficient use of computers especially in large data centers. Data centers have an important role 

in IT infrastructures because of their huge power consumption. 

This thesis explores the sleep state of data centers’ servers under specific conditions 

such as setup time and identifies optimal number of servers. Moreover, their potential to greatly 

increase energy efficiency in data centers. We use a dynamic power management policy based 

on a mathematical model. Our new methodology is based on the optimal number of servers 

required in each tier while increasing servers’ setup time after sleep mode to reduce the power 

consumption. The Reactive approach is used to prove the validity of the results and energy 

efficiency by calculating the average power consumption of each server under specific sleep 

mode and setup time. We introduce a new methodology that uses average power consumption  

to calculate the Normalized-Performance-Per-Watt in order to evaluate the power efficiency. 

Our results indicate that the proposed schema is beneficial for data centers with high setup time.  
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CHAPTER 1 – INTRODUCTION 

Data centers are an essential part of Internet services and have a growing role in 

businesses beyond the computer industry, in fact, all networking activity relies on data centers. 

Considering the massive collection of servers, energy consumption should also be understood. 

The energy consumption in data centers is one of the biggest factors contributing to excessive 

expenses [1, 2]. The results of the study show that data centers consume about 2.8% of the total 

electricity in the USA [3]. Moreover, these centers’ energy consumption represents about 3% of 

global energy use [4]. The main consumers of power within data centers are cooling systems and 

computing resources. Researchers estimate that cooling systems contribute around 30% towards 

data centers’ energy consumption [5].    

In response to concerns about growing power consumption in data centers, many 

businesses are attempting a new strategy called green computing. The concept of green 

computing is to save energy, improve efficacy, and achieve environmental protection [6]. Recent 

advances in energy efficiency have yielded huge improvements in both desktop and server 

computer technologies. At the same time, industries are faced with contributing problems that 

relates to computer system, including the energy consumption, exhausted emissions, building 

resources, high maintenance costs, global warming, and high water enterprise [7, 8]. Green 

computing can reduce the energy consumption of computer systems, improve their operational 

efficiency of emissions, and increase recycling efficiency, which could promote environmental 

protection and conservation of energy [9]. 

Today’s data centers are mostly working under AlwaysOn Policy, which wastes a lot of 

power during periods of lower loads [10]. Researchers have proposed various solutions to reduce 
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energy consumption by optimizing servers with a sleep mode. A servers’ setup time is one of the 

recent challenges in dynamic power management. Although several researchers including [10] 

believe that it is not efficient to have a high server setup time, but this research will explain that 

this claim is not always true.  

Current approaches to managing the server sleep state include the predictive approach, 

the Reactive approach, hybrid approaches, and dynamic provisioning approaches in operations 

research amongst others. The primary objective of this thesis is to compare the hybrid and 

Reactive approaches and to show that under specific circumstances the combination of these two 

methodologies can be used as an alternative approach to power management in green data 

centers. 

Chapter 2 is an overview of the taxonomy of green data centers. Chapter 3 will overview 

a related work and explain the challenges that researchers are facing in dynamic power 

management with server systems. Chapter 4 will explain the methodology, and Chapter 5 will 

validate the methodology through the results produced. Finally, a summary of this thesis will be 

presented in Chapter 6. 

Thesis Contribution 

We introduce a new methodology to present the benefit of sleep states in data centers with high 

server setup times. This methodology uses combination of hybrid and Reactive approaches 

which are used to find the minimal number of servers. Then we show that Performance – Per – 

Watt (PPW) can be improved by increasing servers’ setup time under specific range of sleep 

states.  Finally, we demonstrate our results are superior to existing methods including AlwaysOn 

and Reactive policy. 



 

CHAPTER 2 – A TAXONOMY AND SURVEY OF GREEN DATA CENTERS 

From technical aspects, green computing can be studied in software and hardware 

technologies. Software technology includes design methods that enhance program efficiency, 

computing models such as High Performance computing, Distributed computing, and Cloud 

computing. Hardware aspects include technologies that reduce energy consumption, emissions 

footprint, and can increase economic efficiency and recycling technology. 

The green data center study is classified into the following categories: computing, cooling, 

geographical, and network. In this chapter we consider the recent approaches in data centers 

form energy prospective.  

2.1 GREEN DATA CENTER TAXONOMY 

A. Cooling 

There is extensive literature supporting the approaches to make data centers greener. One 

aspect of these approaches is effect of climate condition, which is reported in [11, 12]. The 

authors have reported that evaporative cooling and the use of waste heat from IT equipment were 

sufficient to support direct fresh air-cooling system. They used two methods for fresh air 

cooling: indirect and direct fresh air cooling [11]. In another study the authors [12] present a 

methodology, which consists of classification of cooling efficiency from sampled sensor and 

calculation of the priority metrics from statistics on cooling efficiency classes. One can see the 

features of temperature variation in its inlet temperature1 (65°F to 80°F) and power consumption 

                                                
1 In 2008, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) expanded the 
recommended temperature range at the inlet of the server from 68°F to 77°F (the 2004 level) to 65°F to 80°F. 
However, many data centers traditionally have set their temperatures as low as 55°F. As a result, many data centers 
can save energy simply by raising the thermostat. 
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of IT equipment. To save cooling energy, historical sensor data was used to prioritize IT 

equipment for workload performance. 

B. Computing 

The further studies in green data centers include Distributed Resource Management with 

temperature constraint [13] and Green Resource Management under Fault Tolerance constraint 

[14]. These studies propose new resource management algorithms to optimally control load 

distribution and reduce the operational costs of data centers. There are three major challenges to 

this approach. These include data centers’ stringent IT peak power budget, over heating 

problems, and distributed resource management in data centers in highly desired for system 

scalability [13]. Other publications have focused on minimum energy consumption constraints to 

prevent Service Level Agreement (SLA) violation. Their results show that the energy increase by 

migration has an exponential relationship with the failure rate [14]. A novel approach for 

managing power consumption in modern processors is dynamic voltage and frequency scaling. 

This allows processors to work at a suitable frequency, thus eventually reducing the energy 

consumption of servers [15-17]. Other approaches include the migration of virtual machines such 

that a minimum number of physical machines perform a specific task while the rest are kept idle 

[14]. The authors consider server failure when a server breaks down unusually and timing failure 

when processor can’t finish a task during a specific time. 

The two main approaches for reducing energy consumption in computer servers are 

dynamic voltage frequency scaling, and dynamic power management [18, 19]. While the 

dynamic voltage frequency and scaling focuses on optimizing the energy use of CPUs keeping 

the remaining server components function at their usual energy level, the dynamic power 
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management focuses on saving energy by powering down all the server’s components. The 

significant one is effectiveness of sleep states in data centers [10]. A different study proposes 

optimal power management for each server farm [20]. The method proposed reduces server 

power consumption by turning the servers to sleep mode. Performance metrics used in this 

method are delays and job blocking probability while minimizing the energy consumption. They 

discuss the advantages of sleep states by focusing on i. the variability in the workload trace, ii. 

how they use dynamic power management and iii. at the end the size of the data centers. Their 

results show that sleep state enhances dynamic power management; correct sleep state 

management can thus be very effective in large data centers. In the related article the authors find 

out how many servers to keep active and how much workload to delay to maximize energy 

saving while meeting their latency constraint. In this method they focused on how large of a 

workload they can execute at a given time and how much of the workload can be deferred to a 

later time. This research contributes an linear programing formulation for capacity provisioning 

by using dynamic management on deferent workloads this method determines when and how 

much workload each server should take. It also presents their designs, which are optimization-

based online algorithms relying on the latency requirement [21]. Other authors propose finding 

the minimum number of servers that should be active at a specific time to meet the necessary 

requirements. They explore offline and online solution called “lazy capacity provisioning” that is 

proposed exploited from the offline solution. Their findings show that the lazy capacity materials 

are 3-competitive that it gives a substandard solution not larger than 3 times the optimal solution 

[22].  

One of the effective approaches in computing aspect of green data centers is power 

mapping management. The authors [23] show a new technique that reduces by over an order of 
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magnitude the amount of signaling power necessary to less than 2.5W. They show that USB 

device is able to generate a signal allowing non-intrusive plan(s) to identify the power 

connectivity of a system.  

The related work to reduce CO2 emission in data centers is about the architecture of 

integrated gas district cooling [24]. One of the approaches in this area is to introduce the chilled 

water supply gap model and approaches show a combined gas district cooling and data center 

control model. Their results show the precision of their model strongly depends on the difference 

between room and outdoor temperature, and functioning steam absorption chillers. Their work 

suggests gas district cooling with room and outdoor temperature sensor; steam absorption 

chillers and heat storage tank can reduce CO2 emission. 

Using optimized MapReduce energy efficiency the researchers successfully reduced 

energy consumption by focusing on reducing the energy impact of data movement [25]. They 

proposed an analysis framework for evaluating costly built in MapReduce data movement. They 

use a Hadoop MapReduce computer cluster to evaluate the energy efficiency of MapReduce data 

movement and manage the power and energy of the three major MapReduce data movements: 

Hadoop file system read, Hadoop file system write, and data shuffle. The reasons why they 

focused on data movement are: a) Data movement consumes a lot of energy in data centers 

because it keeps computer servers waiting for data, b) MapReduce right now is a major 

computing archetype in data centers for large scale processing, c) efficient storing and processing 

of large scale data is a practical challenge to most data centers. Many studies have been 

conducted in this area, which include reducing the volume of data in motion using data 

compression, increasing data movement speed using high speed interconnects, and applying 
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dynamic voltage and frequency scaling to reduce CPU power consumption during data 

movement [25]. 

C. Geographical Factors 

There have been some geographical studies related to green data centers. In [24] the 

authors propose a workload-scheduling algorithm to reduce brown energy consumption in 

geographically distributed data centers. They targeted different factors of green energy usage. 

Using their algorithm, users can dynamically schedule their workloads when the solar energy 

supply best satisfies their energy demand. This algorithm achieves the goal of 40% and 21 % less 

brown energy than other green approaches [26]. 

Further research on the geographical determinants of green computing proposes the idea 

to take wind farm location as an example to stabilize the variable and intermittent wind power. 

Their results are based on the real climate traces from 607 wind farms that can save 59.5% of 

energy. Their algorithm relies on the weight of the portfolio, which is out of renewable energy 

portfolio optimization. If the algorithm removes one location its weight is set to zero. and if it is 

selected by the algorithm its weight is assigned a percentage of the balance of the total installed 

capacity constructed there [27]. 

The review of our study is summarized in Table 1 [28]. 
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Table 1. Taxonomy Summary of Green Data Centers 
Branch Approach Methodology Comments References 

Cooling  
 

equalizing effect of 
1.3 degree C in server 
room thermal 
environment  

Classification , 
Optimization  

 [3]  

Computing Resource management 
with temperature 
constraints  

Optimization 
 

Good way to reduce 
temperature  

[4]  

Computing Resource management 
under fault tolerance  

Experimental, 
Optimization  

Good to reduce 
operational cost  

[5]  

Computing Effectiveness of sleep 
state  

Experimental  Adaptive sleep modes 
  

[16]  

Computing Server sleep scheduling  
 

CMDP 
 

Assign jobs to specific 
time slot 
 

[17] 
 

Computing Server workload 
Delay scheduling  

CMDP 
/Optimization 
 

 [18] 
 

Network Power  Mapping 
management  
 

Simulation, 
Optimization 
 

Reduce effective cost 
from power 
consumption 
 

[10] 
 

Architecture Energy efficient gap 
model for gas district 
cooling systems  

Simulation  Good method to reduce 
heat 
 

[20] 
 

Computing 
/Network 
 

Optimizing Map 
Reduce energy 
efficiency 
 

Optimization 
 

 
Good For heterogeneous 
environment 
 

 
[21] 

Geographical/Cloud 
 

Energy 
efficient  workload 
scheduling  
 

Optimization  
 

 [22] 
 

Geographical 
 

Stabilizing the variable 
in wind farms 
 

Analytical modeling  
 

Suitable for big data 
centers 
 

[23] 
 

     

 



 

CHAPTER 3 – RELATED WORKS 

In this section, the related work in data center dynamic power management is discussed. 

The prior work in different aspects of dynamic power management will be explained and 

highlighted. In order to demonstrate the resulting method as superior, one must explore related 

systems and analyze the tradeoffs in various approaches. 

When using power management, in order to improve the energy efficiency of data 

centers, three techniques are commonly employed: selected servers shutdown, frequency and 

voltage provisioning, and dynamic power management [29]. There are three different kinds of 

dynamic power management: predictive and Reactive [30]. The predictive approaches will 

envision the future request rate using previous data in order to recognize when the servers must 

be turned on [30]. On the other hand, the Reactive approaches will react to the request 

immediately by turning the servers on or off. There is also another branch, which is the hybrid 

approach. The hybrid approach includes both predictive and Reactive methods 

3.1 Predictive Approaches 

One of the approaches in this area is to use different types of predictive policies, such as 

exponentially weighted average, moving window average, and linear regression in order to 

predict the future request rate and add or remove servers based on the results. The authors 

determined that using moving window policies and linear regression enabled the best results for 

the workload traces that they considered. Thus, this methodology provides a means to more 

efficient power consumption than static approaches have in the past [31]. 

In another approach, researchers used auto regression policy to predict the request rate for 

specific arrival patterns and used the result of this calculation to determine the threshold policies 
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that were able to trigger the servers on and off. Their dynamic power management policy is 

energy efficient for periodic request rates repeating on a daily basis [32]. 

3.2 Reactive Approaches 

In [33] the authors used a theoretical method as a control in order to manage resources to 

applications in a multi-tier data center. They used specific queuing theory to predict response 

time and allocated resources based on the estimated response time and power consumption. 

Approach used by the author involved using a Reactive feedback mechanism to monitor a multi-

tier web application. The author evaluated CPU utilization and response time and changed the 

number of servers based on these calculations, making the point that using multiple sleep states 

in servers could have significant improvement in energy savings [34]. 

There are some other approaches which mostly study modeling and dynamic 

provisioning on the performance side of multi-tier, and the approaches barely focus on power 

consumption [35, 36]. 

In [10] the authors proposed two different approaches called: Reactive and SoftReactive. 

Their results are achieved under different traces. Sleep states appreciate dynamic power 

management. They describe certain types of traces, evaluate them, and figure out which is the 

best match for sleep states.  Reactive approach responds to changes in requests and loads by 

turning the servers to sleep mode and waking them back up when the load increases. There has 

been big concern for the Reactive policy; In Reactive policy the servers go off so quickly when 

not needed, but when the loads rise, it takes time for servers to come back on again. So, to cure 

this problem, they introduce another policy called SoftReactive. In SoftReactive approach, the 

server goes to idle mode for a short time before it turns off. This delay in transition gives the 
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opportunity for the server to wait for possible arrival load. If the server gets requested during the 

delay time, then the server goes back to the regular mode. The researchers set timers for each 

server to turn off, and the idea prevents the mistake of turning the server on at the wrong time. 

The problem raises in this methodology when the researchers put too many servers in the idle 

mode. To solve this issue, they introduced a routing plan, which distributes jobs onto the low 

amount servers, so the unneeded servers will go into sleep mode. 

 

3.3 Hybrid Approaches 

Hybrid approach includes both predictive and Reactive approaches. Predictive methods 

are used in long-term workload trends, and Reactive methods are used in short-term 

unpredictable trends [30].  

In a different study [37], the authors first used the Reactive method for unpredictable 

trends in request rate and later used the predictive method for long-term trends in request rate. 

Separately, the authors proposed a solution called PowerNap that has a way to switch its state 

from high performance to low power (sleep mode) and vice versa to respond to the rapid server 

loads. Using this methodology, the authors were able to put the servers in sleep mode long before 

the servers go into idle mode, so they are actually replacing the low server utilization periods 

with an energy efficient sleep mode [38].  

Further study reported in [29], where the authors introduce new methodology consisting 

of multiple approaches. They use dynamic provisioning, frequency scaling, and dynamic power 

management methods to make multi-tier data centers more energy efficient. They propose two 

algorithms; one focuses on the optimal number of servers by dynamically provisioning them, and 
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the other algorithm, mostly focuses on the CPU speed and the duration of sleep states for each 

server. 

Unfortunately, thus far, based on our extensive literature review, hybrid approaches have 

had problems predicting workloads and Reactive approaches, but this thesis reports on our 

attempt to overcome this problem by combining some aspect of hybrid and Reactive approaches 

together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 4 – METHODOLOGY 

In this chapter, the methodology based on two previous approaches using dynamic power 

management will be described. The goal of this research is to point out the fact that, under 

specific conditions, two different methodologies can be combined as an improved green 

approach, in the field of dynamic power management in data centers. 

The methodology involves one front-end load generator and one front-end load balancer, 

which distributes request from the load balancer to expected application servers. The load 

balancer is also being responsible for turning the application server to sleep mode and waking 

them up. There are also several Memcached, servers to fetch data required to service the requests 

[10]. Memcached “is an in-memory key-value store for small chunks of arbitrary data (strings, 

objects) from results of database calls, API calls, or page rendering.” Furthermore, power 

management techniques are applied on the front-end application server side.  

In this methodology, we calculate the optimal energy consumption using (Eq. 1) [29], 

then we differentiate E with respect to CPU speed, and then we converted to the power 

consumption using (Eq. 2). The goal of this conversion is we used 𝑇02563 based on the 95 

percentile of customers response time. Our methodology uses TPC-W [39] based workload in 

multi-tier data center. 

𝐸 = 	𝑃(𝑠, 1.0)[(𝑇 − 𝑡)(𝜌(1 − 𝑘) + 𝑘) + 𝑡𝑘′]   (1) 

Where	𝑃	is the power consumption, 𝜌 represents the utilization of a system, 𝑠 represents 

the CPU speed, t represents sleep state duration, k represents the ratio of the idle power 
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consumption to the peak power consumption, kLrepresents the ratio sleep power consumption to 

peak power consumption and 𝑇 represents time interval length. 

𝑃 = M
NOPQRS

        (2) 

Where P is a power consumption, E represents energy consumption and  𝑇02563 is the 

setup time . 

 𝐸 = 250	(𝑊ℎ) is our optimal energy consumption as we are using the same conditions 

for our evaluation that is reported in [29], where 1.2 < 𝑠 <3.0,  0 < k < 1, and 0 < kL< 1. 

The parameters of interest include the average power consumption, setup time, response 

time and the number of active servers. Setup time is defined as the time that servers take to turn 

back on from sleep mode. Although, long setup times are not recommended commonly, we will 

show that if specific time slots are considered in our calculation in combination with the specific 

number of servers, it can be efficient to use long setup times. Improving energy efficiency by 

increasing the servers’ setup time is our main focus in this research.  

Our consideration for hybrid aspects include the CPU speed and also how to get to the 

minimal number of servers. So we get the expected minimal number of servers using (Eq. 3) 

[29]. The minimal number of servers from (Eq. 3) should meet the SLA requirement, and can 

help to achieve good ratings in the power saving approach.  The CPU utilization can be obtained 

by monitoring the supported tools by operation systems. Then we analyze the number of requests 

by a server in different time frames. 

  𝑣Y = 	
Z[\][

N^_`\a[
               (3) 
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 Where, 𝑣Y represent the minimal number of servers in each tier, 𝐿Y is number of queued 
for each tier, 𝑟Y is number in incoming request for each tier, 𝑇cZd is the target response time and  
𝜏Y is estimated throughout tier 𝑖. 

			  

𝐹𝑟𝑜𝑛𝑡 − 𝑒𝑛𝑑	𝑠𝑒𝑟𝑣𝑒𝑟𝑠 = ]
kl

   (4) 

	Where  r represents request rates. 

In our approach, the number of servers from (Eq. 3) will be validated with the peak 

number of requests in (Eq. 4) [10]. Each front end server can handle 60 𝑟𝑒𝑞 𝑠 as the we are 

considering the same condition reported in[10]. This result is based on a 𝑇mn threshold of 500 

form the results mentioned in Figure 2. In this research we compare the results with the 

AlwaysOn policy and Reactive policy.  Note that in the real world, the request rate cannot be 

calculated in advance, but we assume the request rate in advance from the AlwaysOn policy. 

  A peak request of 800 𝑟𝑒𝑞 𝑠 is assumed in [10], so we use the same peak request  for 

specific benchmark dynamically over 30 minutes, and our dynamic power management scheme 

calculates the number of servers for each tier during the next time interval. Based on (Eq. 4) , 

oll
kl

 =14  servers for the AlwaysOn policy are needed at all times, but this number can vary in 

our methodology.  

With Reactive policy, the servers react to the ongoing request rate and can adjust their 

capacity in real time. However, in our approach it has been said that Reactive policy suffers from 

long setup times.  We show that it can prove power efficient to use it in our way. The 

methodology demonstrates, when we increase the servers’ setup time and also use the minimal 
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number of servers and which is calculated in (Eq. 3) and (Eq. 4), remarkable results will be 

obtained in field of power efficiency. 

Our approach sets the servers to sleep mode if  

• The actual number of servers are more than ]
kl

 assuming the servers are called 

back from sleep   

• There is delay in the incoming requests.   

In order to determine for how long, the servers are put in sleep mode and the response 

time for each request is estimated. (Eq. 5) [29] is used to get to approximate response time in 30 

minutes setup time.  

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑡𝑖𝑚𝑒 = (	Z[\s)t	
0	

         (5) 

Where,	𝐿Y is the number of requests, 𝑛 is the number diciplines that CPU need to process the 

request and 𝑠 is the CPU speed.  

 

The sorted response time and 𝑇mn of response time for the TCP-W benchmark for each 

time slots are shown in Figures 1 and 2. As shown in Figure 2, the 𝑇mn	starts from 𝑇= 12 minutes, 

so in our calculation we exclude time frames before 𝑇= 12 minutes to meet The SLA limit of 

2000ms. The hybrid approach keeps the response time below 2000ms, thus making it easier to 

allocate the expected number of servers [29]. 
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Figure 2:  𝑇mn response time 

 

 Figure 1: Sorted response time 
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We also need to get the the average power consumption,	𝑃-./, for our calculation. The 

approach was to replicate the influence of using sleep state, by not sending the request to the 

server when it is marked for sleep and changing its power consumption by 𝑃01223. To prove our 

approach is energy efficient we use NPPW, but before NPPW is calculated, PPW, is required. 

We need PPW for both Reactive and AlwaysOn policy [10].  

4.1 𝐀𝐥𝐰𝐚𝐲𝐬𝐎𝐧	𝐏𝐨𝐥𝐢𝐜𝐲 

AlwaysOn is a static power management policy, which most of the industries nowadays 

are using. The policy has a constant number of active front-end servers at all times. To figure out 

how many servers this policy uses, the amount of request rates that each front-end server can 

handle must be observed [10]. This is the critical point, when the 95th percentile of certain 

threshold will be implemented.  

This policy is designed to meet peak request rate, but it does not have the ability to 

envision when peak request rate occurs. The average power consumption for the AlwaysOn 

policy is always high. Moreover, the 95th percentile of response time and average power 

consumption under AlwaysOn are unchanged in a favor of sleep states. That is why the 

AlwaysON policy was chosen to compare the approach established by this research and the 

Reactive approach.    

4.2	𝐀𝐯𝐞𝐫𝐚𝐠𝐞	𝐏𝐨𝐰𝐞𝐫	𝐂𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧	Calculation 

In this section we explain how to calculate the average power consumption,	𝑃-./, in our 

Reactive approach. To get the 𝑃-./for specific setup time, the power consumption in that time 

must be calculated first. 𝑃-./	is different for various setup times when the 𝑃01223 is zero. The 
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𝑃-./	is calculated based on setup times which starts from time slot 12 minute.  Paragraph three 

also mentioned that 𝑇02563 = 12	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 is the the start point of our 𝑇mn  of response time. First 

we calculate the 𝑃-./when the server 𝑃01223is zero and then increase the setup time in this state to 

get power consumption. Although  𝑇02563 = 12	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 is a start point of our 𝑇mn  of response 

time, we start the calculation from 𝑇02563 = 15	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 because based on our calculation the 

power consumption before 𝑇02563 = 15	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 is not efficient. After the first calculations of  

𝑃-./ for 𝑃01223 = 0 then  𝑃01223 increases [10]. We predict 𝑃-./ for a given   𝑇02563 and  𝑃01223 by 

analyzing the results as in [10]. Note that, all the results for 𝑃-./	is in Reactive mode. Figure 3 

shows the results for 𝑃-./. 

 

 

 0 28 56 84 

15 1000 1279 1558 1837 

16 937 1216 1495 1774 

17 833 1161 1440 1719 

18 883 1112 1391 1678 

19 789 1068 1347 1620 

Figure 3: Results for our approach with respect to 𝑃-./ 
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As seen in Figure 3, 𝑃-./ decreases when we increase the 𝑇02563  at the same 𝑃01223. On 

the other hand, when 𝑃01223 increases, 𝑃-./ increases at the constant level of the 𝑇02563. For 

instance, for 𝑃01223 = 0, when  the 𝑇02563  increases  from 15 minutes to 19 minutes, 𝑃-./	 

decrease from 1000 Watts to 789. On the other hand, for 𝑇02563 = 19	 minutes,  𝑃-./	boost from 

789 Watts to 1620 watts. We will explain later in this chapter that low 𝑃-./	 is so beneficial for 

our system. 

4.3 Performance Per Watt (PPW) 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 

PPW is extremely important to our calculations. Note that higher PPW is better to get to 

the improved energy efficiency. (Eq. 6) shows that for each specific 𝑇02563, we get the same 

value of 𝑇mn by increasing 𝑃01223 . So the calculation has only five different 𝑇mn values as we are 

considering five different 𝑇02563.	𝑇mn increases as 𝑇02563 increases.   Figure 4 shows the PPW 

calculation. The results for PPW show that by increasing 𝑃01223 at specific  𝑇02563, PPW decrease 

and by contrast, when 𝑃01223 is constant, PPW increases by increasing 𝑇02563. That is why when 

we have the maximum value of PPW when  𝑇02563=  19 minutes and   𝑃01223= 0. Note that, PPW 

for AlwaysOn is unaffected by changes in 𝑃01223 and 𝑇02563 and it has a constant value of 1.7 ∙

	10�k	 𝑚𝑠. 𝑤𝑎𝑡𝑡𝑠 �s  which reported in [10]. We will use these values of PPW in the next 

chapter to compute NPPW. 

𝑃𝑃𝑊 = s
�� ¡.N¢£

     (6) 
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 0 28 56 84 

15 2*10�k 1.5*10�k 1*10�k 1*10�k 

16 2*10�k 1.8*10�k 1.5*10�k 1.3*10�k 

17 3*10�k 2*10�k 2*10�k 1.6*10�k 

18 5*10�k 4*10�k 3*10�k 2*10�k 

19 6*10�k 4*10�k 4*10�k 3*10�k 

Figure 4: Results for our approach with respect to PPW 
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CHAPTER 5 – RESULTS 

We computed PPW for various sleep states duration from chapter 4. Now these values 

are used to prove that not only are our results superior to the AlwaysOn policy, but they are also 

superior to the Reactive approach [10]. To prove this we will need to get NPPW for all 𝑇02563 

and  𝑃01223. (Eq. 7) shows how to calculate NPPW by normalizing PPW for Reactive by PPW for 

AlwaysOn. 

𝑁𝑃𝑃𝑊 =	 ��¥
��¥`¦§�¨O©ª    (7) 

      

When NPPW exceeds 1, it demonstrates that our approach is superior to AlwaysOn. This 

means that our result is more energy efficient. By using the optimal number of servers 

(approximately 60 servers) that is based on our calculation (Eq. 3) and (Eq. 4)  and also 

comparable results reported in [10], the results that are shown in Figure 4 are observed. The 

results from Figure 4 are then used as 𝑃𝑃𝑊 in (Eq. 7) to calculate NPPW. As mentioned in 

chapter 4, for AlwaysOn Policy 𝑃𝑃𝑊 = 1.7 ∙ 	10�k	 𝑚𝑠. 𝑤𝑎𝑡𝑡𝑠 �s . 

Figure 5 shows our result for NPPW for slowly varying traces. White regions 

demonstrate higher NPPW, where NPPW > 1 argue that our approach is superior to AlwaysOn 

Policy. 
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 0 28 56 84 

15 1.17 0.89 0.59 0.59 

16 1.17 1.06 0.89 0.76 

17 1.76 1.17 1.17 0.94 

18 2.9 2.35 1.76 1.17 

19 3.53 2.35 2.35 1.76 

Figure 5: Normalized-Performance-Per-Watt (NPPW) under our approach 

 

Figure 5 shows that NPPW increases as 𝑇02563 increases and 𝑃01223 decreases. As an 

illustration we have a maximum NPPW of 3.53 when the 𝑇02563 = 19	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 𝑃01223 = 0. 

Our findings show that by using our new methodology, adopting sleep states under 

Reactive and hybrid policy can provide demonstrable benefit in terms of NPPW when we 

increase the servers setup time. Using the specifications form calculation and the result of 

NPPW, we were able to achieve significant improvements in energy efficiency compared to 

AlwaysOn policy and previous Reactive approach 

 Figure 6 shows that the results of our method compared to those previously acquired by 

other groups while scaling the number of servers up from 14 to 60, magnification increases 
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NPPW. While not usually recommended, the results make our approach more desirable as 

compared to AlwaysOn and Reactive policies. 

 

 

 

Figure 6:  Effect of scaling on NPPW and comparison of our results to Reactive 

 

 

 

 



 

CHAPTER 6 – CONCLUSION 

 

In this research we classified the different aspects of green data centers and summed up 

them in Table 1. The new methodology was then introduced to examine the benefit of sleep 

states with high server setup times. The methodology uses the combination of Reactive and 

hybrid approaches, which is used to find the minimal and optimal number of servers. The 

methodology needed 95th percentile of response time, that was calculated for the specific setup 

time.  We used specific ranges of sleep states with different high setup times and proved that it 

can boost PPW. The PPW results validate our results to be superior to AlwaysOn. Then We 

calculated NPPW and proved that our approach is also superior to previous Reactive approach 

under specific circumstances. Finally, we compared our result by increasing the number of 

servers with Reactive approach; our examination shows the effectiveness of sleep states when 

the number of servers increases. In particular, the results express that the proposed schema 

introduced in this thesis can reduce the power consumption by 48% relative to static provisioning 

and AlwaysOn policy. 

 

  

 

 

 

 

 

 



 

REFERENCES  

[1] Barroso, Luiz André, and Urs Hölzle. "The case for energy-proportional computing." 

Computer 12 (2007): 33-37. 

[2] Raghavendra, Ramya, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and 

Xiaoyun Zhu. "No power struggles: Coordinated multi-level power management for the data 

center." In ACM SIGARCH Computer Architecture News, vol. 36, no. 1, pp. 48-59. ACM, 

2008. 

[3] www.cisco.com/en/US/prod/collateral/switches/ps5718/ps10195/ CiscoEMSWhitePaper.pdf 

[4] A. Rallo, “Industry Outlook: Data Center Energy Efficiency.” [Online]. Available: 

http://www.datacenterjournal.com/it/industry-outlook-datacenter-energy-efficiency/. [Accessed: 

02-Sep-2014]. 

[5] Cavdar, Derya, and Fatih Alagoz. "A survey of research on greening data centers." In Global 

Communications Conference (GLOBECOM), 2012 IEEE, pp. 3237-3242. IEEE, 2012. 

[6] Zhang, Xiaodan, Lin Gong, and Jun Li. "Research on green computing evaluation system and 

method." In Industrial Electronics and Applications (ICIEA), 2012 7th IEEE Conference on, pp. 

1177-1182. IEEE, 2012. 

[7] Li, Qilin, and Mingtian Zhou. "The survey and future evolution of green computing." In 

Proceedings of the 2011 IEEE/ACM International Conference on Green Computing and 

Communications, pp. 230-233. IEEE Computer Society, 2011. 

[8] http://www.zdnet.com.cn/server/2007/1210/676572.shtml. 



 

 
 

27 

[9] Guo Bing, Shen Yan, and Shao ZL, “The Redefinition and Some Discussion of Green 

Computing”, Chinese Journal of Computers, vol. 32, Dec. 2009, pp. 2311-2319. 

[10] Gandhi, Anshul, Mor Harchol-Balter, and Michael A. Kozuch. "Are sleep states effective in 

data centers?." In Green Computing Conference (IGCC), 2012 International, pp. 1-10. IEEE, 

2012. 

 

[11] Endo, Hiroshi, Hiroyoshi Kodama, Hiroyuki Fukuda, Toshio Sugimoto, Takashi Horie, and 

Masao Kondo. "Effect of climatic conditions on energy consumption in direct fresh-air container 

data centers." Sustainable Computing: Informatics and Systems (2014). 

[12] Mase, Masayoshi, Jun Okitsu, Eiichi Suzuki, Tohru Nojiri, Kentaro Sano, and Hayato 

Shimizu. "Cooling efficiency aware workload placement using historical sensor data on IT-

facility collaborative control." In Green Computing Conference (IGCC), 2012 International, pp. 

1-6. IEEE, 2012. 

[13] slam, Mohammad A., Shaolei Ren, Niki Pissinou, Hasan Mahmud, and Athanasios V. 

Vasilakos. "Distributed resource management in data center with temperature constraint." In 

Green Computing Conference (IGCC), 2013 International, pp. 1-10. IEEE, 2013. 

[14] Ghoreyshi, Seyed Mohammad. "Energy-efficient resource management of cloud datacenters 

under fault tolerance constraints." In Green Computing Conference (IGCC), 2013 International, 

pp. 1-6. IEEE, 2013. 

 



 

 
 

28 

[15] Garg, Saurabh Kumar, Chee Shin Yeo, Arun Anandasivam, and Rajkumar Buyya. 

"Environment-conscious scheduling of HPC applications on distributed cloud-oriented data 

centers." Journal of Parallel and Distributed Computing 71, no. 6 (2011): 732-749. 

[16] Von Laszewski, Gregor, Lizhe Wang, Andrew J. Younge, and Xi He. "Power-aware 

scheduling of virtual machines in dvfs-enabled clusters." In Cluster Computing and Workshops, 

2009. CLUSTER'09. IEEE International Conference on, pp. 1-10. IEEE, 2009. 

[17] Kim, Kyong Hoon, Rajkumar Buyya, and Jong Kim. "Power Aware Scheduling of Bag-of-

Tasks Applications with Deadline Constraints on DVS-enabled Clusters." In CCGRID, vol. 7, 

pp. 541-548. 2007. 

[18] Pouwelse, Johan, Koen Langendoen, and Henk Sips. "Energy priority scheduling for 

variable voltage processors." In Low Power Electronics and Design, International Symposium 

on, 2001., pp. 28-33. IEEE, 2001. 

[19] Benini, Luca, Alessandro Bogliolo, and Giovanni De Micheli. "A survey of design 

techniques for system-level dynamic power management." Very Large Scale Integration (VLSI) 

Systems, IEEE Transactions on 8, no. 3 (2000): 299-316. 

[20] Niyato, Dusit, Sivadon Chaisiri, and Lee Bu Sung. "Optimal power management for server 

farm to support green computing." In Proceedings of the 2009 9th IEEE/ACM International 

Symposium on Cluster Computing and the Grid, pp. 84-91. IEEE Computer Society, 2009. 

[21] Adnan, Muhammad Abdullah, Ryo Sugihara, Yan Ma, and Rajesh K. Gupta. "Energy-

optimized dynamic deferral of workload for capacity provisioning in data centers." In Green 

Computing Conference (IGCC), 2013 International, pp. 1-10. IEEE, 2013. 



 

 
 

29 

[22] Minghong, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. "Dynamic right-sizing 

for power-proportional data centers." IEEE/ACM Transactions on Networking (TON) 21, no. 5 

(2013): 1378-1391. 

[23] Ferreira, Alexandre, Wael El-Essawy, Juan C. Rubio, Karthick Rajamani, Malcolm Allen-

Ware, and T. Keller. "BCID: An effective data center power mapping technology." In Green 

Computing Conference (IGCC), 2012 International, pp. 1-10. IEEE, 2012. 

[24] Okitsu, Jun, Mohd Fatimie Irzaq Khamis, Nordin Zakaria, Ken Naono, and Ahmad Abba 

Haruna. "Toward an architecture for integrated gas district cooling with data center control to 

reduce CO 2 emission." Sustainable Computing: Informatics and Systems (2014). 

[25] Wirtz, Thomas, Rong Ge, Ziliang Zong, and Zizhong Chen. "Power and energy 

characteristics of MapReduce data movements." In Green Computing Conference (IGCC), 2013 

International, pp. 1-7. IEEE, 2013. 

[26] Chen, Changbing, Bingsheng He, and Xueyan Tang. "Green-aware workload scheduling in 

geographically distributed data centers." In Cloud Computing Technology and Science 

(CloudCom), 2012 IEEE 4th International Conference on, pp. 82-89. IEEE, 2012. 

[27] Dong, Chuansheng, Fanxin Kong, Xue Liu, and Haibo Zeng. "Green power analysis for 

geographical load balancing based datacenters." In Green Computing Conference (IGCC), 2013 

International, pp. 1-8. IEEE, 2013. 

[28] Azimzadeh, Aryan, Nasseh Tabrizi. " A Taxonomy and Survey of Green Data Centers." In  

International Conference on Computational Science and Computational Intelligence (CSCI), 

2015 International, pp. 128-131. IEEE, 2015. 



 

 
 

30 

 

 

[29] Lim, Seung-Hwan, Bikash Sharma, Byung Chul Tak, and Chita R. Das. "A dynamic energy 

management scheme for multi-tier data centers." In Performance Analysis of Systems and 

Software (ISPASS), 2011 IEEE International Symposium on, pp. 257-266. IEEE, 2011. 

[30] Gandhi, Anshul. "Dynamic Server Provisioning for Data Center Power Management." PhD 

diss., Intel, 2013. 

[31] Krioukov, Andrew, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler, and Randy 

Katz. "Napsac: Design and implementation of a power-proportional web cluster." ACM 

SIGCOMM computer communication review 41, no. 1 (2011): 102-108. 

[32] Chen, Gong, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao. 

"Energy-Aware Server Provisioning and Load Dispatching for Connection-Intensive Internet 

Services." In NSDI, vol. 8, pp. 337-350. 2008. 

[33] Abdelzaher, Tarek, Yixin Diao, Joseph L. Hellerstein, Chenyang Lu, and Xiaoyun Zhu. 

"Introduction to control theory and its application to computing systems." Performance Modeling 

and Engineering (2008): 185-215. 

[34] Horvath, Tibor, and Kevin Skadron. "Multi-mode energy management for multi-tier server 

clusters." In Proceedings of the 17th international conference on Parallel architectures and 

compilation techniques, pp. 270-279. ACM, 2008. 



 

 
 

31 

[35] Urgaonkar, Bhuvan, Prashant Shenoy, Abhishek Chandra, and Pawan Goyal. "Dynamic 

provisioning of multi-tier internet applications." In Autonomic Computing, 2005. ICAC 2005. 

Proceedings. Second International Conference on, pp. 217-228. IEEE, 2005. 

[36] Urgaonkar, Bhuvan, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser 

Tantawi. "An analytical model for multi-tier internet services and its applications." In ACM 

SIGMETRICS Performance Evaluation Review, vol. 33, no. 1, pp. 291-302. ACM, 2005. 

[37] Gandhi, Anshul, Yuan Chen, Daniel Gmach, Martin Arlitt, and Manish Marwah. 

"Minimizing data center sla violations and power consumption via hybrid resource 

provisioning." In Green Computing Conference and Workshops (IGCC), 2011 International, pp. 

1-8. IEEE, 2011. 

[38] Meisner, David, Brian T. Gold, and Thomas F. Wenisch. "PowerNap: eliminating server 

idle power." In ACM Sigplan Notices, vol. 44, no. 3, pp. 205-216. ACM, 2009. 

[39] TPC-W: Benchmarking An E-Commerce Solution. http://wwws.tpc.org/ 

information/other/techarticles.asp. 

 

 

 


