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Abstract

Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction
and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level
signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players
involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations,
preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses
using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable
internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential
reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm,
dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable
reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO),
ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that
received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH,
and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene
stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in
reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step
for gene expression assays.
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Introduction

Alcoholism is linked to many different health problems

including cardiovascular and neurological impairments and

increased cancer risks [1]. It is hard to dissect the mechanism of

action of alcohol abuse because it depends on many factors, such

as gender, developmental stage, dose, and duration of alcohol

consumption [2]. A link between hormones and alcohol depen-

dence was also previously proposed [3]. Studies show that alcohol

altered the hormone levels (i.e. progesterone, estrogen) in pre- and

post-menopausal females [4] and in ovariectomized monkeys [5].

The significance of endocrinology in the etiology and mecha-

nism of alcohol dependence and addiction has long been discussed

[3,6]. Transient and permanent hormonal changes might be key

players in alcohol-associated pathologies such as breast cancer [7–

10] and neuro-remodeling phenomena like addiction [6]. These

alcoholism-related diseases are promoted by fluctuations in gene

expressions of some signaling pathways like estrogen and thyroid

hormone receptors [9–11]. Researchers utilized different model

systems, which include mice [12], rats [13], nematodes [14], fruit

flies [15] to investigate the pathways involved in mediating

alcohol’s impact on the body. Despite the number of studies on

ethanol-associated symptoms, many questions remain unanswered

and require further investigations on the behavioral, genetic, and

biochemical levels.

Quantitative real-time PCR (qRT-PCR) is a gold-standard

biotechnique for gene expression analyses. Despite the emergence

of the next generation deep sequencing technology, qRT-PCR

remains the validation tool of choice. Even though qRT-PCR is a

mature biotechnique, it is greatly affected by RNA integrity,

purity, and concentration, primer and enzyme efficiencies,

genomic DNA contamination, pipetting errors, as well as the

choice of proper internal controls (reference genes) [16]. Molec-

ular analyses necessitate reliable normalization to avoid false

positive results, which introduce data misinterpretations and

imprecise conclusions. An ideal reference gene should have a

stable basal expression in different tissues, genders, developmental

stages, and experimental conditions and should have similar
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expression levels to the target genes of interest [17]. So far, there is

no one gene whose expression fulfills these criteria [18] although

housekeeping genes (HKGs) were widely used as reference genes.

The expression levels of HKGs are affected by various experi-

mental conditions [19,20]. Thus, the identification of suitable

reference genes is crucial and should precede gene expression

analyses [17]. With this in mind, several statistical approaches

have been designed to identify relatively more stable reference

genes in response to specific experimental conditions. In this study,

we evaluate the stability of 15 commonly used housekeeping genes

using 5 statistical methods, which included geNorm [21], delta-Ct

(dCt) method [22], NormFinder [23], and BestKeeper [24]. For

more accurate ranking of the reference gene candidates, RefFinder

was designed to provide a comprehensive ranking [25]. These

programs ranked gene candidates based on pairwise comparisons

(geNorm, dCt method, BestKeeper) as well as model-based

approaches (NormFinder) to determine the most suitable genes.

Alcohol consumption is associated with adverse effects on the

cardiovascular and neural systems. Based on the emergent roles of

the hormone system in mediating alcohol-induced anomalies, we

were interested in understanding the link between alcoholism and

estrogen signaling in the heart and brain tissue of Sprague-Dawley

rats. For that, we investigated the effect of chronic ethanol

treatment on the stability of the expression levels of 15

housekeeping genes in rat heart and brain tissue for identifying

most reliable genes as reference genes for gene expression analysis.

To perform this study, we treated Sprague-Dawley rats with

ethanol (ETOH). The effect of ethanol on the stability of 15

reference gene candidates (Table 1) was investigated using rats

with different hormonal backgrounds. The study was based on 6

rat groups. Untreated female (SHAM) and male rats were used as

controls. One group of rats underwent ovariectomy (OVX). The

last group of rats was ovariectomized and then treated with

estrogen hormone (OVXE2). Rats belonging to those two groups

were divided into two subgroups. Half of OVX as well as OVXE2

rats served as control (no ETOH treatment), while the remaining

rats received ETOH.

Materials and Methods

Animal Handling and Treatment
Animal use and handling protocols were pre-approved and

complied with East Carolina University Animal Use and Care

Committee guideline. Female and male Sprague-Dawley (SD) rats

(9–10 weeks old; Harlan, Indianapolis, UN, USA) were used. Male

rats served as control. Female rats were divided into ovariecto-

mized without (OVX) or with and estrogen supplementation

(OVXE2) and sham-operated (SO) groups. Ethanol treatment and

tissue collection following euthanasia were performed as in our

previous studies [26,27]. Tissue isolation quickly followed. Tissue

was flash frozen by liquid nitrogen and then stored at 280uC for

subsequent molecular assays.

Sample Collection and RNA Extractions
Total RNA extraction was performed for heart and brain tissue

weighing about 100–200 mg according to protocol using mirVana

miRNA Isolation Kit (Life Technologies, CA, USA). Briefly, lysis

buffer was added to each sample. The sample was kept on ice while

being thoroughly homogenized. Then, an acid-phenol extraction

separated RNAs from DNA and proteins. After adding 100%

ethanol, the sample-ethanol mixture was passed through a glass-

filter by centrifugation. Several washes preceded the elution of the

RNA with DNase/RNase-free water. RNA was quantified and its

purity was assessed using the NanoDrop ND-1000 Micro-Volume

UVVis Spectrophotometer (NanoDrop Technologies, Wilmington,

DE).

Reverse Transcription and qRT-PCR
Reverse transcription was performed using TaqMan microRNA

Reverse Transcription kit (Applied Biosystems, Foster City, CA).

Poly(T) was used to reverse transcribe the protein coding genes,

while specific RT primers were used for the non-coding genes. A

total of 1000 ng RNA were used for each RT reaction. RT-PCR

was performed in the thermal cycle at 16uC for 30 min followed

by 42uC for 30 min, 85uC for 5 min and were finally held at 4uC.

For subsequent qRT-PCR, 100 uL DNase/RNase-free water was

added to each RT product.

ViiATM Real-Time PCR System (Applied Biosystem) was used

to quantify the expression levels of 15 reference gene candidates on

a 384-well-plate. SYBR Green PCR master mix was from

SuperArray Bioscience Corp. (Frederick, MD). Specific reverse

and forward primers were used (Table 1). Briefly, 5.5 mL DNase/

RNase free water, 7.5 mL SYBR Green master mix, 1 mL cDNA

(1 ug), 1 mL primer mix were added to each well for a final 15 uL

reaction. Four biological replicates were used. Initially, the

reaction was set at 95uC for 10 min for enzyme activation and

was followed by 40 two-step-cycles of denaturation for 15 sec at

95uC and an annealing/extension step for 60 sec at 60uC.

Data Analysis
Ct values were exported to an excel file. Descriptive statistics

were performed in SPSS (20) and excel. More sophisticated

analyses were performed using five statistical approaches: geNorm

[21], delta-Ct (dCt) method [22], NormFinder [23], BestKeeper

[24] and RefFinder [25].

To prepare geNorm [21] input, the minimal Ct value was used

for normalization of all Ct values for each gene across all samples

(Ctoriginal2Ctmin). Hence, the lowest value was zero. The

difference was then transformed (22(Ctoriginal2Ctmin)). Data was

structured such that the gene and sample symbols were in the first

row and column, respectively. It was then used as input for

geNorm applet. To determine the most stable gene pair, geNorm

performs pairwise variation analyses (SD value) for each gene pair

across all samples. The software assumes that the genes are not co-

regulated and that the transformed expression values of an ideal

gene pair are identical across all samples. Then, the geometric

mean of the SD values for each gene-related pair combinations is

used to compute an M-value. A lower M-value reflects higher gene

stability. What follows is a step-wise exclusion of the gene pairs

with the highest M-values to reach the most stable gene pair. A

beneficial feature of geNorm output is the V-value that reflects the

minimal number of genes required for reliable normalization.

Such is based on calculating a normalization factor ratio starting

with the most stable genes. The program follows a step-wise

inclusion process (Vn/Vn+1) for more genes until there is no

significant change in the normalization factor.

Delta-Ct (dCt) method [22] depends on a concept similar to that

of geNorm. However, it does not require a program specialist and

can be performed using an excel sheet. This method was designed

to overcome limitations associated with small samples like

difficulties in using the same standardized mRNA concentrations

due to possible protein contaminations. Such technical problems

are relieved as genes within one sample are compared to each

other by calculating the dCt value. Sensibly, the gene pair with the

same dCt value (smallest SD) across all samples is considered to be

stable and vice versa. The average of all SD values for each gene

set of pairwise combinations is used to rank the gene stability.

Genes with lower average SD are more stable than others.

Reference Genes for Ethanol and Endocrinology Study
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NormFinder [23] is unique as it takes into consideration not

only the overall intergroup variation (i.e. control vs. treatment),

but also, the intragroup variation (i.e. experimental group

replicates). Sample subgroups are taken into account to calculate

the most stable gene candidate. Their model adds the two sources

of variation to determine the systematic error introduced by the

investigated gene. Therefore, this approach is less sensitive to

misleading expression patterns for coregulated genes. Meanwhile,

the approach takes into account the candidates with less

intergroup variations, which might be mistakenly disregarded in

the pairwise approaches.

BestKeeper [24] determines the stability of the gene candidates

based on the SD of the gene expression levels across samples.

Then, genes with least variable Ct values are used for subsequent

pairwise comparisons, while those with SD.1 are excluded. The

geometric mean of the Ct values of the most highly correlated

genes is used to calculate a BestKeeper index. Then, the software

calculates Pearson correlation coefficient [r] with a P-value to

determine the similarity in the expression levels among the

candidates. Thus, genes with least SDs and highest correlation

with the index are ranked as the most stable genes. This excel-

based applet allows the comparison of only 10 gene candidates.

Therefore, we excluded the genes (18S, B2m, BACT, GAD-

D45AF, and TBP) ranked as the least stable using geNorm, dCt

method and NormFinder.

RefFinder [25] is another web-based interface that was used to

deduce the most stable gene candidates among all methods. For

each gene, RefFinder calculates the geometric mean of the ranks

calculated by each of the previous approaches. Genes with the

lowest rank geometric mean are considered as most stable.

Results

Comparing Gene Stabilities by Descriptive Statistics
We calculated the mean and the standard derivation (SD) of the

Ct values for heart and brain samples together, heart samples

alone, and brain samples alone. In all combinations, GADD45A,

TBP, BACT, 18S rRNA, and HPRT had the most variable

expression levels reflected in their high SD values. On the other

hand, TBP (Ctavg = 33.86), TNKS (Ctavg = 31.60), GADD45A

(Ctavg = 29.69), B2m (Ctavg = 28.53), and HPRT (Ctavg = 26.12)

had the highest Ct values and were therefore the least expressed

among the gene candidates in the heart and brain (Figure 1;

Tables 2 and 3). Thus, TBP, GADD45A, and HPRT are less likely

to be good candidates for normalization.

Regardless of sample combination, the genes with highest

expression levels were the same, which included Z39

(Ctavg = 20.38), GAPDH (Ctavg = 20.32), U6 (Ctavg = 12.69), U5a

(Ctavg = 10.69), and 5S rRNA (Ctavg = 7.77). However, Z39, U6,

5S rRNA, U5a, and U87 had the least variation in their expression

in heart and in brain, respectively. When considering the Ct values

from both tissue, Z39, U2, GAPDH, 5S rRNA, and U87 had the

lowest SD (Figure 1; Tables 2 and 3). Thus, U87, Z39, and 5S

rRNA genes are more stable across groups and in all combina-

tions. With this in mind, we can conclude that Z39 and 5S rRNA

are likely to be used for normalization. However, a gene that is

more highly abundant than the target genes of interest might mask

true changes in expression if used for normalization. On the other

hand, we can’t evaluate others like U87 solely based on basic

statistics because even though its expression was the least variable,

there is still ambiguity in evaluating its relative expression level.

Thus, more sophisticated statistical approaches should be

employed to evaluate a candidate reference gene.

Table 1. A summary of the 15 HKG (housekeeping genes) considered as reference gene candidates in SD rats.

Gene
symbol

Locus
tag

Gene
description

Forward
primer (59R39)

Reverse
primer (59R39)

18S rRNA X01117 18S ribosomal RNA ACTCAACACGGGAAACCTCA TCTTAGTTGGTGGAGCGATT

5S rRNA K01594 5S ribosomal RNA ATCTCGTCTGATCTCGGAA TCTCCCATCCAAGTACTAACC

B2m NM_012512 beta-2 microglobulin AGTAGGAGGTGCTCGATGAAG TCCTGTAGAGCCAGCAACAGG

BACT NM_031144 actin, beta ACTCTGTGTGGATTGGTGGC CGCAGCTCAGTAACAGTCCG

GADD45AF NM_024127 growth arrest and
DNA-damage-inducible, alpha

TACACTGTGTGCTGGTGACG ATCACCGTTCGGGGAATCAC

GAPDH NM_017008 glyceraldehyde-3-
phosphate dehydrogenase

TGACAACTTTGGCATCGTGG GGGCCATCCACAGTCTTCTG

HPRT NM_012583 hypoxanthine
phosphoribosyltransferase 1

GCCTAAAAGACAGCGGCAAG GGCTGCCTACAGGCTCATAG

TBP NM_001004198 TATA box
binding protein

ACCTTATGCTCAGGGCTTGG GTGCCGTAAGGCATCATTGG

TNKS NM_001106084 TRF1-interacting
ankyrin-related
ADP-ribose polymerase

CCTACTCCTAGCACATGGCG AGGTAGGTAAGGCCTCAGGG

U2 K00781 small nuclear RNA ATCTGATACGTCCTCTATCC GTGGACGGAGCAAGCTCCTA

U5a K00783 small nuclear RNA ACTCTGGTTTCTCTTCAGATCG CAGAGTTGTTCCTCTCCA

U6 K00784 small nuclear RNA TTGGAACGATACAGAGAAG TTTGCGTGTCATCCTTGC

U87 AF272707 small nucleolar RNA ACAATGATGACTTATGTTTTTG GCTCAGTCTTAAGATTCTC

UBC NM_017314 ubiquitin C CTCGTACCTTTCTCACCACAGT GACACCTCCCCATCAAACCC

Z39 NR_002705 small nucleolar RNA GTACATGTGATGAAGCAAATC TACATCAGAAAGCGTTTACAG

doi:10.1371/journal.pone.0094311.t001

Reference Genes for Ethanol and Endocrinology Study
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Quantitative Analysis of Reference Candidates Based on
GeNorm

To determine the minimal number of genes required for

normalization, we computed the V-value by geNorm. Starting

with 2 genes, the software sequentially adds another gene and

recalculates the normalization factor ratio. If the added gene does

not increase the normalization factor ratio above the cutoff value

(0.15), then the original pair of genes is enough for normalization.

However, if the new ratio is above 0.15, then more genes should

be included. We combined the heart and brain tissue for input in

geNorm. The first V-value,0.15 was after V7/8 (Figure 2B). This

means that 6 additional genes were required for reliable

normalization. The analysis started with a gene pair (i.e. 2

reference genes) and therefore the total would be 8 HKGs for

normalization. That accounted for more than 50% of the gene list.

In the following paragraphs, we analyzed the rankings based on

5 statistical methods using the input for combined Ct values from

heart and brain tissue. For a higher stringency measure, we only

considered the first 6 ranked genes (,50%) for further analyses.

Figure 1. Descriptive statistics of Ct values for heart and brain samples. (A) 48 samples divided into 12 groups for heart and brain tissue
combined. (B) 24 samples for 6 groups for heart tissue. (C) 24 samples for 6 groups for brain tissue. Mean Ct values calculated from raw qRT-PCR
output for the 15 candidate genes in 6 experimental groups of SD rats (as described in methods). 50% of the values are included in the box. The
median is represented by the line in the box. The interquartile range is bordered by the upper and lower edges, which indicate the 75th and 25th
percentiles, respectively. The whiskers are inclusive of the maximal and minimal values, but exclusive of the outliers, represented as circles.
doi:10.1371/journal.pone.0094311.g001

Reference Genes for Ethanol and Endocrinology Study
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Determining Best Reference Candidates Based on
GeNorm in Both Tissues

GeNorm bases its ranking on the geometric mean of the SD of

each transformed gene set of pair combinations (M-value). The

lower the M-value is, the higher the ranking. U5a and U6 were co-

ranked as most stable genes (M = 0.24). In decreasing order, the

third stable gene was U87 (M = 0.69) followed by 5S rRNA

(M = 0.85), GAPDH (M = 1.05) and U2 (M = 1.15). The highest

M-values ranged between M = 1.32 for UBC and M = 1.83 for

GADD45A. Based on M-value, the other genes (HPRT, BACT,

18S rRNA, and TBP) were considered as the least stable genes

with M-value between 1.15 to 1.32 (Figure 2A).

Determining Best Reference Candidates Based on dCt
Method in Both Tissues

Gene ranking using the dCt method relies on relative pairwise

comparisons. Using raw Ct values, the average SD of each gene set

is inversely proportional to gene stability. As shown in Tables 4

and 5, U87 (1.48) was the top-ranked gene. 5s rRNA (1.55) was

ranked second and was followed by GAPDH (1.56), UBC (1.59),

TNKS (1.64) and U6 (1.69). Oppositely, GADD45A (2.43) 18S

rRNA (2.37), and TBP (2.37) were ranked last, while B2m, BACT,

and Z39 and were among the less stable genes (1.94–1.78).

Table 2. The mean Ct values for each of the 15 gene candidates in descending order.

H+B Mean H Mean B Mean

TBP 33.86 TBP 33.81 TBP 33.90

TNKS 31.60 TNKS 31.35 TNKS 31.84

GADD45A 29.69 GADD45A 29.97 GADD45A 29.42

B2m 28.53 B2m 29.10 B2m 27.95

HPRT 26.12 HPRT 26.16 HPRT 26.07

U87 25.23 U87 25.46 U87 24.99

U2 24.02 U2 24.32 r18S 24.31

r18S 23.39 BACT 23.01 U2 23.72

BACT 22.95 UBC 22.65 BACT 22.89

UBC 22.47 r18S 22.47 UBC 22.29

Z39 20.38 GAPDH 20.17 Z39 21.16

GAPDH 20.32 Z39 19.60 GAPDH 20.47

U6 12.69 U6 13.49 U6 11.90

U5a 10.69 U5a 11.51 U5a 9.87

r5sRNA 7.77 r5sRNA 7.51 r5sRNA 8.03

The values for each input case are shown separately.
doi:10.1371/journal.pone.0094311.t002

Table 3. The standard deviations (SD) for each of the 15 gene candidates in descending order.

H+B SD H SD B SD

GADD45A 2.67 GADD45A 2.94 TBP 2.73

TBP 2.58 TBP 2.48 GADD45A 2.41

BACT 2.07 BACT 2.05 BACT 2.13

r18S 1.80 HPRT 1.81 HPRT 1.71

HPRT 1.74 r18S 1.51 r18S 1.60

UBC 1.35 UBC 1.30 UBC 1.41

B2m 1.25 B2m 1.28 TNKS 1.28

TNKS 1.22 TNKS 1.14 U2 1.01

U6 1.05 GAPDH 0.90 GAPDH 0.94

U5a 1.02 U2 0.84 B2m 0.93

Z39 1.01 Z39 0.54 U6 0.85

U2 0.97 U6 0.45 U5a 0.76

GAPDH 0.93 r5sRNA 0.41 r5sRNA 0.75

r5sRNA 0.65 U5a 0.37 Z39 0.71

U87 0.32 U87 0.27 U87 0.14

The values for each input case are shown separately.
doi:10.1371/journal.pone.0094311.t003
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Determining Best Reference Candidates Based on
NormFinder in Both Tissues

Complimentary to the pairwise comparisons, NormFinder tests

the stability of genes within each sample group as well as between

groups. When considering both heart and brain tissue, the total

number of sample groups was 12, each having 4 biological

replicates. U87 (0.76) was the gene with the least inter and intra-

variation in expression levels; thus, U87 would be the most reliable

reference gene. The stability values ranged from 0.82 to 1.11 for

the other 5 candidate genes (UBC, GAPDH, 5S rRNA, TNKS,

and HPRT) (Table 5). Interestingly, based on geNorm, UBC and

HPRT were among the least stable genes. This result is based on

low intragroup, yet similar intergroup variation. Recalling the

model-based approach, NormFinder prevents the exclusion of

genes which might have consistent intergroup expression levels.

Not necessarily ‘similar’, these genes have ‘minimal’ intergroup as

well as intragroup variation. Nevertheless, a drawback in

NormFinder is the requirement of a minimum of 8 samples/

group. For many gene expression studies including our own, it is

challenging to have such a large sample size. Taken together, the

differences in methodologies might be a reason behind the

inclusion of these two genes among the most stable candidates.

Determining Best Reference Candidates Based on
BestKeeper in Both Tissues

Due to the input size limitation, BestKeeper only analyzed 10

genes, which were ranked the most stable based on other three

programs (geNorm, dCt method, and Normfinder). BestKeeper

provided a two-way ranking, which separated the correlation of

expression among the genes from the overall variations in

expression levels (SD). From each approach, we considered the

top 3 genes. Those computed to be highly correlated with p-values

,0.05 were UBC ([r] = 0.71), U6 ([r] = 0.70), and HRPT

([r] = 0.67) at p = 0.001. On the other hand, based on BestKeeper,

U87 (SD = 0.26), 5S rRNA (SD = 0.53), and GAPDH (SD = 0.74)

had the least variable expression levels across all heart and brain

samples. 5S rRNA was fairly but significantly correlated with the

other genes ([r] = 0.47, p = 0.001), while the weaker correlation of

U87 and GAPDH was not statistically significant (Table 6).

Statistically speaking, this trend is sensible. When the homogeneity

of a group increases, the variance (SD) decreases as in the case of

U87, 5S rRNA, GAPDH, and Z39 and [r] tends to zero [28]. In

fact, BestKeeper calculated the least SD values for these 4 genes.

Thus, these genes will share less variation with the others in

pairwise variation and will therefore have the least correlation

coefficient. That does not render them unsuitable as reference

genes candidates and stresses on the importance of taking both

criteria ([r] and SD) to choose the best candidate(s). The inclusion

of the top three from the [r]-based and SD-based ranking was

consistent with 4 out of 6 best ranked genes in geNorm, and 5 out

of 6 top genes in dCt-method and NormFinder (Table 5). In

addition, consistent with NormFinder, UBC and HPRT were also

ranked among the top 6 by BestKeeper (Table 6). Comparing

among the different methodologies helped remove the doubt in

NormFinder’s result which might have aroused from its require-

ment of a larger sample size.

Comprehensive Ranking of Best Reference Genes Using
RefFinder in Both Tissues

Based on the geometric mean (GM) of the rankings obtained

from 4 complementary statistical approaches, U87 was the

preferred candidate (GM = 1.32). The remaining highly ranked

candidates were 5S rRNA, GAPDH, U6, U5a, and UBC with

GM values ranging from 2.83 to 5.18, respectively. On the other

hand, B2m, BACT, 18S rRNA, TBP, and GADD45A all had GM

values higher than 10 (Table 5). These 5 candidates had the lowest

ranking and less likely to serve as reliable reference genes for

normalizing gene expression.

Figure 2. Quantitative and qualitative analysis based on geNorm. (A) Ranking of the 15 gene candidates based on the M-value. Three inputs
were used for analysis: Heart and brain combined (48 samples/12 groups), heart alone (24 samples/6 groups), and brain alone (24 samples/6 groups).
(B) Determination of the minimal number of reference genes based on V-value for the 3 input combinations. Y-axis represents the ratio of (Vn/Vn+1)
where 0.15 is the cutoff value. X-axis: Vi/j where ‘‘i’’ starts with 2 genes and ‘‘j’’ starts with 3. geNorm starts by a gene pair, and tests whether the
inclusion of a 3rd gene adds significant variation. This process is repeated to cover all the genes in the list.
doi:10.1371/journal.pone.0094311.g002
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RefFinder Ranking of Gene Candidates for Heart Hand
Brain Tissue

The first analysis was performed for all samples together to

identify a common reliable reference gene. Then, we also analyzed

brain and heart samples separately to see whether or not there was

a difference between tissues.

Based on RefFinder, the 6 most reliable reference genes were

the same for brain or heart samples. However, their ranks were a

little different between heart and brain. For heart tissue, the order

of best reference genes was as follows: U87 (GM = 1.97), U5a

(GM = 2.45), 5S rRNA (GM = 3.03), U6 (GM = 3.36), GAPDH

(GM = 3.81) and Z39 (GM-5.18) (Table 7). However, 5s rRNA

(GM-1.73) was the top ranked gene when using samples from the

brain tissue; the following best candidates were Z39 (GM = 2.00),

U87 (GM = 2.66), U5a (GM = 2.78), U6 (GM 4.36), and GAPDH

(GM = 6.48) (Table 8).

Unlike the results from combined tissue, the first V-value,0.15

was at V2/3 (Figure 2). Thus, only 2 stable reference genes were

needed for gene expression analysis in heart or brain tissue. A

closer look at the data in Figure 2, the average of V-values for

combined heart and brain tissue was 0.18. Individually, the

average V-value for the heart and brain were 0.13 and 0.14,

respectively. Thus, the gene candidates were merely more stably

expressed in the heart tissue than in the brain tissues. However,

though the genes’ expressions were consistent and stable within

each tissue, it was different between the heart and brain. This can

be inferred from the dramatic increase in the V-value average

when both tissues were combined for analysis.

The top six most stable reference gene candidates were same for

heart and brain tissues. The choice of the gene pair depends on the

estimated expression levels of the targeted genes of interest. If the

expression profiles of the genes of interest is unknown, then

choosing reference candidates from the low and high extremes

would be recommended such as U87 and 5S rRNA.

Discussion

Housekeeping genes are commonly used for normalizing gene

expression because they are thought to be consistently expressed

cross different tissues and among different treatment. However,

this was challenged recently. Current studies show no one gene

remains stable throughout all experimental conditions. Ideal

reference genes vary with different species, strains, developmental

stage, tissue and even different sampling times [29]. To maintain

the integrity of qRT-PCR as a powerful ‘‘discovery’’ and

‘‘validation’’ biotechnique, the choice and the number of reference

genes used should be customized to every experiment setting.

Thus, the first task is to identify reference gene candidates from

either systematic gene expression studies like microarrays or by

compiling a gene list from previous studies with similar experi-

mental conditions. Subsequently, their relative stability is com-

pared using statistical approaches. In our study, we followed the

same workflow to determine reliable reference genes in SD rats.

Normalizing to the top-ranked genes will reveal possible roles of

hormonal/gender differences, mainly estrogen levels, in alcohol-

ism. Below, we highlight the significance of our study by discussing

some shortcomings associated with employing single statistical

approaches in reference gene identification. In the end, we show

the advantages of our combinatorial approach and present

recommendations of control gene candidates to use or to avoid

in similar experimental settings.
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Comparing RefFinder Results Across Tissue
Combinations

The top 6 most stable reference candidates in the bi-tissue input

were U87, 5S rRNA, GAPDH, U6, U5a, and UBC. In the single-

tissue input, the top 6 were similar and only with a slight difference

in the order. Results for the combined and separate inputs differed

by only one reference gene ‘Z39’. This means that Z39 was stable

within each tissue (SD,1), but its expression differed between

heart (Ctavg = 19.660.5) and brain (Ctavg = 21.1660.7). Moreover,

U5a (DCtavg = 1.64) and U6 (DCtavg = 1.59) also had the highest

Ctavg difference between heart and brain tissue (Table 2). Even

though the SD for Z39, U5a, and U6 was ,1 in heart or brain

tissue, their expression varied between heart and brain. Due to the

inter-tissue variation, using Z39, U5a, and U6 in combined gene

expression analysis is not recommended. In all input combina-

tions, 18S rRNA, TBP, GADD45A, and BACT were the least

stable among the 15 tested genes. These genes might cause

inaccurate conclusions in gene expression normalizations for heart

and/or brain tissue and therefore should not be used as reference

genes.

Comparing Among Different Methods and Tissue
When considering all brain and heart tissue samples together,

U87, 5S rRNA, and GAPDH were commonly ranked among the

top 6 most stable reference genes in all 5 statistical approaches. On

the other hand, only ‘U87 and U5a’, and ‘U87, U5a, U6, and

Z39’ were ubiquitously ranked among the top 6 across 5 methods

in each of the heart tissue, and brain tissue, respectively. As shown

in Figure 3, seniority of U87 was common to all statistical methods

and all tissue combinations. If the targeted genes of interest are

expressed at a lower level, we recommend the use of U87 with

GAPDH for the two tissues. If the targeted genes are expressed at

a higher level, then 5S rRNA and U87 would be better for

normalization. U87 and U5a were commonly ranked among the

best in each of heart and brain tissue. Thus, for gene expression

analysis concerned with heart tissue or brain tissue, U87 and U5a

would serve as better reference genes.

Fallibility of Normalizations to Single Commonly Used
HKGs

There is a wealth of resourceful studies that identified

experiment-specific reference genes for normalization. We sum-

marized some of the results for investigations that employed

similar experimental conditions (i.e. rats, estrogen, and alcohol).

Table 9 shows different HKGs as better reference genes for

different tissue, treatments, treatment times, strains, species, and

statistical methods. This suggests the necessity of conducting

preliminary studies to use reference genes adapted for particular

experimental conditions. In our study, U87, 5S rRNA, GAPDH

and U5a were ranked as the top gene candidates using a

combination of 5 statistical approaches. Even though, 5S rRNA

was stable in rat liver treated with hepatotoxins [30], both U87

and 5S rRNA were among the least stable in SD rats suffering

from oxygen-induced retinopathy [31]. While some studies

reported GAPDH to be a relatively stable housekeeping gene in

heart and brain tissue [29,32–34], its expression was nevertheless

affected by treatments such as MB in rat brain [35], estrogen in

ovariectomized C57BL6 mice [36], male and female fathead

minnow fish [37], and RARAW 264.7, ATDCDC5 and HFLS

cells [38].

On the contrary, 18S rRNA was among the least stable gene

candidates in our settings. This is in agreement with other studies

using carotid body from different SD strains under different

oxygenation levels [39], oligodendrocyte cells from age-asynchro-

nized Winstar rats treated with LXR agonist [40], male flinder rat

hippocampus treated with MB [35], and liver of hypophysecto-

mized male and female SD rats [41]. However, 18S rRNA was

considered a good reference gene in Winstar rat livers treated with

hepatotoxins [30], human livers with alcoholic liver disease [42],

the uterus of ovarietomized C57BL6 mice treated with estradiol

[36], and in liver and gonads of male and female fathead minnow

fish [37]. We also showed that TBP was unstable and that was

supported by another study on heart tissue of young and adult SD

rats subjected to PHDI treatments under different oxygen

pressures [33]. However, that was not the case in the heart of

Zucker obese rats under different glycemic states [43], nor in the

hippocampus of SD rats with TBI [34]. TBP was also considered

stable in response to estrogen in multiple tissue of the fathead

minnow fish [37].

The Importance of Using More than One Statistical
Approach

No one statistical approach can cover all variables associated

with gene expression studies. Therefore basing conclusions on one

method can be associated with false positive results and misleading

conclusions. In our study, we followed a round-about approach to

determine good reference candidates for reliable normalization of

gene expression data in Sprague-Dawley rats. This allowed us to

correct for some inaccurate ranking such as geNorm’s raking of

UBC, which was corrected by NormFinder. Also, based on the

systematic interpretation, we were able to get a clearer picture on

the minimal number of reference genes required for reliable

normalization. After removing Z39, U5a and U6, only 3 genes are

enough to serve as reference genes for analysis on heart and brain

tissue combined. This makes the study more practical (8 vs. 3

control genes) and reliable at the same time.

In conclusion, it is difficult to ascertain whether the inconsis-

tency or variability in the stability of the housekeeping genes arises

from the employment of different statistical methodologies or

different treatments. For example, in two studies concerned with

rat liver, GAPDH was stable after TCDD treatment based on

Figure 3. Van Diagram that summarizes the commonly ranked
top gene candidates. Firstly, the top 6 genes ranked by each of the
geNorm, dCt method, NormFinder, BestKeeper, and RefFinder were
compared for each input: Heart+brain, heart, and brain samples. Only
genes common for all 5 methods were chosen for each input. Those
genes were then compared among all input combinations and
presented in the diagram above.
doi:10.1371/journal.pone.0094311.g003

Reference Genes for Ethanol and Endocrinology Study

PLOS ONE | www.plosone.org 12 May 2014 | Volume 9 | Issue 5 | e94311



Table 9. A minireview of the reference gene candidates ranked as top or least stable in different experimental settings using
higher organisms.

Model
system

Experimental
condition

Statistical
method

Genes
Ranked Reference

Top Least

Young adult male Sprague-Dawley (SD) rats, New
Zealand White (NZW) rabbits

Intervertebral disc (IVD) geNorm,
NormFinder,
BestKeeper

HPRT1, CYCA PMC 3118343 [45]

Fischer 344 (F344,
resistant to OIR) and Sprague-Dawley
rats (SD, susceptible to OIR)
(both albino inbred)

Oxygen-induced
retinopathy,
Different strains, Different
development stage

Basic Statistics U6,
MIR-16

U87, 5S,
4.5S

PMID 23441123, PMC
3580969 [31]

Timed-pregnant
Sprague-Dawley rats;

Dissected carotid body; Norm/
hyper/hypo-oxial; Different
developmental timing; Different
strains

geNorm,
NormFinder
BestKeeper

18S, Actin PMID 22023793[39]

Adult Sprague-Dawley rats Surgically isolated 8 different liver
cells at different times of liver
regeneration

geNorm ACTB, B2M, UBC GAPDH PMID 20339955[44]

TCDD-sensitive inbred
Long-Evans rats

TCDD, Liver spleen hypothalamus Basic Statistics PGK1, GAPDH PMID 16466705[32]

Sprague–Dawley (SD)
neonatal + adult rat

Heart, PHDI treatment, Normoxia;
hypoxia

geNorm,
NormFinder

GAPDH,
ACTB, B2M

TBP PMC 3294216[33]

Wistar Rat brain cells: astrocytes and
OLG cultures; OLG from mature +
neonatal rats

No treatment, LXR agonist geNorm;
NormFinder

CYCA, PGK1,
PRPL13A,
YWHAZ,
CYCA,
PGK1,
PRPL13A

GAPDH,
18S, HMBS,
GAPDH, 18S

PMID 20036692[40]

Obese Zucker rats Heart geNor SDHA,
TBP, HPRT1

PMID 22493144[43]

Obese Zucker rats Kidney geNor TBP,
GAPDH,
ACTB

PMID 22493144[43]

Obese Zucker rats Pulmonary geNor ACTB,
YWHAG,
SDHA

PMID 22493144[43]

Male flinders rats Hippocampus, Methylene Blue NormFinder;
geNorm

YWHAZ, CYCA,
RPL13A, HPRT1

GAPDH, ACTB,
18S

PMID 18241047 [35]

Male and female
Sprague-Dawley rats

Liver, Hypophysectomy Basic Statistics Tubulin,
G3DPH,
Bactin, TAT,
Cyclophilin,
18S

PMID 16724986[41]

Adult male Sprague-Dawley Collagenase-intracerebral
hemorrhage in RBG and
LBG, 5 hr and 24 hrs

geNorm GAPDH, HPRT,
B2MG, GUSB

PMID 20089183[29]

Adult Male Wistar rats Liver, Acetaminophen
(AA),
Carbon tetrachloride
(CT),
D-galactosamine (GA),
Thioacetamide (TA)

geNorm;
NormFinder;
BestKeeper

MIR-16, 5S, B2M,
18S

PMID 22563491[30]

Adult male Sprague-Dawley rats 3 days following traumatic
brain injury (TBI),
Cerebral
cortex, Hippocampus

geNorm HPRT, SDHA,
GUSB, B2MG, TBP,
GAPDH

PMID 18711751[34]

RARAW 264.7 (Mouse leukaemic
monocyte macrophage), ATDCDC5
(chondrogenic) and HFLS (Human Fibroblast-Like
Synoviocytes)

Estrogen GAPDH PMID 21472208[38]

Humans Alcoholic liver disease Basic
statistics

18S, SFRS4 Bactin, GAPDH PMID 21913943[42]

Reference Genes for Ethanol and Endocrinology Study

PLOS ONE | www.plosone.org 13 May 2014 | Volume 9 | Issue 5 | e94311



geNorm [44], but it was not when using other statistical methods

in liver cells under different conditions [32]. What is noteworthy is

that the ranking of the reference genes is always relative and that

can change simply by changing a few candidates in the gene list.

Therefore, despite the superfluous publications, research con-

cerned with the determination of reference remains juvenile. With

more efforts being dedicated to tackle this issue, a meta-analysis

would help reveal patterns that might redirect and standardize our

normalization methods for more accurate interpretation of results.
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