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A B S T R A C T

Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or

at central level in experimental animals. However, there are no dedicated reviews on the involve-

ment of adenosine in mediating the hypotensive response of centrally administered clonidine in

general and specifically in aortically barodenervated rats (ABD). The conscious ABD rat model

exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, com-

pared with conscious sham-operated (SO) rats. The current review focuses on, the role of aden-

osine receptors in blood pressure (BP) regulation and their possible crosstalk with other receptors

e.g. imidazoline (I1) and alpha (a2A) adrenergic receptor (AR). The former receptor is a molec-

ular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD

rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors

is regulated by baroreceptors and how such balance influences the centrally mediated hypoten-

sive responses. The use of the ABD rat model yielded insight into the downstream signaling cas-

cades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
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Introduction

The current review focuses on, the role of adenosine receptors in

BP regulation and their possible crosstalk with other receptors
e.g. imidazoline (I1) and a2A AR in a rat model of surgically-
induced baroreflex dysfunction, the ABD rat. Furthermore,

the current review delineates the role of the downstream adenos-
inergic-signaling pathway in mediating the centrally evoked
hypotension elicited by clonidine and clonidine such as drugs.

The review covers data generated in our laboratory and reported
pertinent studies over the past 10 years, which covered the fol-
lowing: (i) imidazoline I1-receptor and centrally mediated hypo-
tension; (ii) clonidine and aortic barodenervation; (iii) clonidine

and SHR rats; (iv) clonidine effects in the RVLM; (v) clonidine
effects in the NTS; (vi) central adenosine receptor signaling;
and (vii) central MAPK-NOS signaling.

The nucleus of the solitary tract (NTS)

The NTS mediates inhibitory actions of baroreceptors on sym-

pathetic discharge and is considered the main site of termina-
tion of the baroreceptor afferent fibers via both the aortic
depressor nerve and the glossopharyngeal (IX) from the caro-

tid sinus [1–3]. Notably, lesions to the NTS abolish the barore-
flex responses [3]. Several reports have shown important roles
for activation of NTS glutamate [1,3] as well as adenosine

receptors in BP regulation [1,2,4–7].

Rostral and caudal ventrolateral medulla

A large body of evidence supports the view that the RVLM is
the major brain stem area that controls sympathetic drive by
projecting directly to the spinal cord [1,8–10]. Neuronal activa-
tion in the RVLM causes an increase in arterial pressure med-

iated by an increase in peripheral resistance, cardiac output,
and secretion of catecholamines [1]. Electrical and chemical
stimulation of the RVLM produces immediate and marked

increases in arterial pressure. The direct connection with the
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sympathetic preganglionic neurons explains why an alteration
in the RVLM neuronal activity dramatically influences sympa-
thetic neuronal discharge (SND) and arterial pressure (AP)

[1,8–10]. The RVLM-spinal neuronal connection plays at least
two important roles in sympathetic and cardiovascular con-
trol. First, RVLM-spinal neurons set the tone for AP by pro-

viding a basal SND. This tone generating ability explains why
chemical inhibition or lesioning of the RVLM causes a dra-
matic fall in arterial pressure [1]. Second, a dominant aspect

of the RVLM neurons is the control of the baroreflex response.
By serving as a major neuroanatomical target for centrally act-
ing antihypertensive agents including clonidine, moxonidine,
and rilmenidine [3], the RVLM plays a fundamental role in

BP regulation and in the control of BP in treated hyperten-
sives. Similar to the NTS, the RVLM expresses receptors
including the adenosine, a2A adrenergic and imidazoline recep-

tors [11,12]. It is not surprising that the RVLM shares with the
NTS a similar receptor population since it receives inhibitory
projections from the NTS and is involved in mediating barore-

ceptor efferent response via the sympathetic nervous system
[1]. It must also be remembered that the caudal ventrolateral
medulla (CVLM) plays important intermediate role between

the NTS and RVLM, particularly in regulating the baroreflex
function [3]. Unlike the anatomically and functionally (sym-
pathoexcitatory) well defined neurons of the RVLM, the
CVLM neurons are more heterogeneous and scattered [3].

However, functional and retrograde studies revealed projec-
tions from the NTS to the CVLM, which sends tonic sympath-
oinhibitory projections to the RVLM [3].
The aortic barodenervated (ABD) rat model

Various genetic models of hypertension, knockout mice, pheo-

chromocytoma (PC12) cells and anesthetized animals have
been used extensively to outline the signaling cascades trig-
gered by adenosine, imidazoline (I1) and a2A adrenergic recep-

tor activation [13–26]. However, little is known about the role
of these receptors in BP control or BP responses to centrally
acting drugs in conscious rats. Notably, clonidine-evoked

hypotension is evident in conscious or anesthetized hyperten-
sive rats [27–29], but only occurs in anesthetized normotensive
rats [25,30]. In conscious intact rats, the hypotensive response
elicited by clonidine is virtually absent in marked contrast to

the case in the conscious aortic barodenervated rats.
Following denervation, acute rises in BP, heart rate, and
peripheral resistance are apparent in the ABD rat while cardiac

index and stroke volume were not altered. Forty-eight hours
later, when cardiovascular measurements were conducted in
the absence of anesthesia, the reductions in cardiac index

and stroke volume were paralleled by a return of the BP of
conscious ABD rats to sham-operated levels while the periph-
eral resistance remained significantly elevated. Compared to
sham operated rats, clonidine (30 lg/kg, i.v.) elicited greater

decreases in BP in ABD rats via decreases in cardiac index
and stroke volume because peripheral resistance did not
change [31–33]. However, these studies focused on the role

of baroreceptor dysfunction and sympathetic nervous system
over-activity as underlying causes for the enhanced response
to some centrally acting hypotensive drugs [31,34]. Other

reported studies built on these findings to delineate the central
pathways and cellular mechanisms implicated in this response
in the ABD rat. Specifically, this review focuses on studies that
elucidated the role of central adenosine receptor signaling in
the conscious ABD rat model and their involvement in cen-

trally mediated hypotension.
Adenosine receptors in the CNS

The high affinity A1 and the A2A receptors in the brain are ton-

ically activated by extracellular adenosine, which set the basal
‘‘purinergic’’ tone seen in most systems. This notion is sup-
ported by the ability of caffeine to antagonize the actions of
endogenous adenosine and reversing the tonic inhibition [35].

Four different adenosine receptors have been characterized
pharmacologically, structurally and functionally and are
denoted A1, A2A, A2B and A3 [35–37].
Role of central adenosine receptors in blood pressure control

The primary neurons that regulate sympathetic outflow
located in the NTS and the RVLM, express adenosine recep-

tors [1,2,12,13,23,38–43]. While activation of the A1 receptor
by adenosine, or by the more selective agonist N6-cyclopentyl-
adenosine, causes a pressor response, adenosine A2A receptor
activation by adenosine, or by the more selective agonist, 2-

p-(2-carboxyethyl) phenylethylamino-50-N-ethylcarboxamido-
adenosine (CGS21680), causes a depressor response [2,44–47].
Adenosine receptor signal transduction mechanisms

The original delineation of adenosine receptors is based on
their regulation of cyclic adenosine monophosphate (cAMP)
levels. The A1 and A3 receptors mediate a reduction in

cAMP via Gai/o whereas the A2A receptor mediates elevation
in cAMP via Gas [20,48–50]. Notably, the A2A and A2B are
also linked to Gaq and the activation of PKC [20,21,51].
Contrary to previous views where receptor activation leads

to a sequential downstream signaling paradigm, recent evi-
dence suggests that single receptor activation may converge
on a multitude of downstream signaling cascades. In line with

this concept, adenosine receptor activation results in the phos-
phorylation of the mitogen-activated protein kinase (MAPK
p44/42), also known as pERK1/2, through either PLC-DAG

or the PKA pathways [20]. The well-conserved and diverse
MAPK family, which covers three main groups, the extracellu-
lar signal-regulated protein kinases (ERK), the stress-activated
protein kinases (SAPK; p38) and the c-Jun N-terminal kinases

(JNK), is involved in cell cycle progression, proliferation and
differentiation in all organisms including mammals.
Adenosine receptor signaling may enhance or inhibit prolifer-

ation of a variety of cell types depending on the adenosine
receptor (or combination of adenosine receptor) subtypes
and the tissue type. All adenosine receptors activate at least

one MAPK. For example, the Gas-coupled adenosine A2A

receptor activation enhances ERK1/2 phosphorylation as sum-
marized in Fig. 1.

Reported studies including ours implicated central adeno-
sine receptors in BP modulation in at least some forms of
hypertension. Microinjection of adenosine into the nucleus
tractus solitarius (NTS) elicited enhanced depressor and

reduced pressor responses in the SHR compared to its



Fig. 1 ERK1/2 activation following stimulation of A2A receptor

based on findings obtained from receptor transfected CHO cells,

PC12 cells and human endothelial cells. Abbreviations are: cyclic

adenosine monophosphate (cAMP); protein kinase A (PKA); Raf-

1 is a serine/threonine-specific kinase (Raf-1); G protein (specif-

ically a small GTPase) (RAS). Adopted with modification [20].
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respective control, the WKY rat [13]. These findings inferred
alteration in the central adenosine receptor signaling as a result
of hypertension or due to baroreceptor dysfunction, which is a
hallmark of hypertension. As detailed below, similar altera-

tions occur in adenosine receptor function in the aortic barode-
nervated (ABD) rat, which shares with the SHR a reduced
baroreceptor function [31,52,53]. These findings suggest a func-

tional link between baroreceptor function/dysfunction and cen-
tral adenosine receptor signaling in the ABD rat model.

Imidazoline receptors and centrally acting antihypertensive

agents

In clinical or experimental hypertension, central sympatholyt-

ics such as clonidine, rilmenidine and moxonidine reduce sym-
pathetic tone and renin release, which ultimately reduces
peripheral resistance and BP [54]. These centrally acting med-
ications lower BP primarily by targeting the RVLM neurons in

the brain stem to cause inhibition of the activity of bulbospinal
sympathoexcitatory presympathetic neurons [11,55].
Additionally, clonidine-like drugs can reduce norepinephrine

released by activating peripheral presynaptic a2A adrenergic
receptors on axon terminals of postganglionic sympathetic
neurons [55].

There has been an ongoing debate regarding the primary
target in the medulla oblongata that is mediating the central
sympathoinhibitory action of central sympatholytic drugs.

Originally, for clonidine-like drugs, it was thought that the pri-
mary target was the a2A AR. However, in 1984, Bousquet et al.
[56] proposed that activation of the imidazoline I1 receptor in
the RVLM accounts for the central sympathoinhibition caused

by clonidine. The fact that direct administration of a-adrener-
gic receptor agonists with a phenylethylamine structure into
the RVLM did not mimic the effects of agonists with imidaz-

oline structure supported the imidazoline receptor hypothesis
[56,57]. Further, blockade of the a2A AR in the RVLM did
not reverse the hypotension elicited by local imidazoline I1
receptor activation [58,59]. On the contrary, the hypotensive
action of clonidine analogues was attenuated by microinjec-

tions of idazoxan or efaroxan, antagonists with imidazoline
structures, into RVLM [11,60–62]. Several imidazoline prefer-
ring compounds such as rilmenidine and moxonidine possess

preferential binding to the I1 receptor over the a2A AR com-
pared to clonidine, which is a mixed I1/a2A AR agonist
[11,55,63–65]. However, functional studies in a2A AR knock-

outs have shown that despite rilmenidine and moxonidine
I1R selectivity, the a2A AR is an important mediator of their
hypotensive action [58,66–69]. Other studies have suggested
synergy between the a2A AR and the I1 receptor signaling

pathways [14,15]. The imidazoline binding site is a separate
entity based on binding and functional studies that demon-
strated the ability of selective I1 receptor agonists (LNP509)

to lower BP when microinjected into the brain stem of
D79N mice [14,68,70]. D79N mice constitute a functional
a2A AR knockout model, which has been useful in elucidating

the role of a2A AR in several functions including hypotension
and sedation [71].

Although it is not known whether the I1 and a2A AR are

operating in parallel or in series, there is evidence that the I1
receptor downstream signaling is distinct from that of the a2A
AR receptor. Several reports have shown that in PC12 cells,
which exhibit neuronal phenotype when differentiated, activa-

tion of the I1 receptor involves the phosphatidylcholine-selective
phospholipase-C (PC-PLC) and PKC (b11 and f isoforms) path-
way and the increased formation of the second messenger diac-

ylglycerol (DAG). As a consequence of the activation of PKC,
ERK1/2 phosphorylation is increased [19,72–74]. These cellular
events contribute to I1 (rilmenidine) mediated hypotension

because similar to I1 receptor blockade (efaroxan), PC-PLC
(D609), or pERK1/2 (PD98059) inhibition abrogated the hypo-
tensive response and the corresponding cellular events elicited

by the I1 receptor activation [18,19,22,72,74]. Noteworthy,
other neuromodulators in the CNS, including L-glutamate and
adenosine, which also enhance ERK1/2 phosphorylation
[20,75] might be implicated in I1 receptor signaling. In support

of this notion, L-glutamate release increases following clonidine
or rilmenidine administration [17,76–78] and L-glutamate
releases adenosine [79,80] (Fig. 2).
Crosstalk between adenosine and imidazoline receptors signaling

underlies clonidine-evoked hypotension in conscious ABD rats

Evidence for the involvement of central adenosine receptors in
clonidine-evoked hypotension is supported by a number of
pharmacological studies. The finding that systemic administra-

tion of theophylline virtually abolished the hypotensive effect
of clonidine inferred a central interaction of these two drugs
because clonidine lowers BP via a central mechanism of action
[81], and theophylline gains access to the CNS to block central

adenosine receptors [13]. This finding was consolidated by the
observation that intracisternal, but not systemic, administra-
tion, of the water-soluble adenosine receptor blocker 8-p-sul-

phophenyl-theophylline (8-SPT) attenuated clonidine-evoked
hypotension. The inability of systemic 8-SPT, which blocks
peripheral, but not central, adenosine receptors [13,23] to influ-

ence clonidine-evoked hypotension [82] bolsters the conclusion
that central adenosine receptors are implicated in clonidine-



Fig. 2 Schematic overview of a potential I1 and adenosine

receptors crosstalk. Reference is made to the signaling cascades of

the adenosine A1 and A2A receptor subtypes. Adenosine A2A

receptor activation with the nonselective agonist adenosine or the

more selective agonist CGS21680 leads to enhanced expression of

pERK1/2 via a cAMP-dependent or independent mechanism. I1
activation with its respective agonist, clonidine or rilmenidine,

enhances expression of pERK1/2 via a PC-PLC pathway. pERK1/

2 activates neuronal nitric oxide synthase (NOS) which causes

increased production of NO and decreased sympathetic neuronal

activity.
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evoked hypotension. Further, central administration of
SCH58261, a selective A2A receptor blocker [83,84], virtually

abolished the clonidine-evoked hypotension [82]. Together,
these findings suggest the dependence of clonidine-evoked
hypotension on central adenosine A2A receptor.

Although Bousquet et al. [85] classified clonidine as ligand
at the imidazoline-binding site, clonidine is still considered a
mixed I1/a2A AR agonist [27,85]. Therefore, it was difficult

to ascertain the type of receptor, I1 or a2A, whose activation
triggers central adenosine signaling. Findings from our labora-
tory indicate that the central hypotensive response elicited by

selective activation of the central I1 (rilmenidine) or a2A (a-
MNE) receptor was attenuated by central adenosine receptor
blockade [82]. It is imperative to note that although a-MNE
is considered a ‘‘pure’’ a2A receptor agonist [65], the selective

I1 agonist rilmenidine also exhibits a2A agonist activity
[27,55]. Together, these findings raise the interesting possibility
that a2A receptor activation might also trigger central adeno-

sine receptor signaling [82]. However, an alternative explana-
tion is that I1 activation by rilmenidine might depend on a
downstream a2A AR activation as proposed by Head [66].

Collectively, these findings suggest that the adenosinergic sys-
tem plays a critical role in mediating centrally mediated hypo-
tension. However, the use of non-selective adenosine receptor
blockers (theophylline or 8-SPT) in these earlier studies pre-

cluded ascertaining the adenosine receptor subtype implicated
in the mediation of clonidine-evoked hypotension. Building on
the A2A receptor as a viable candidate because its activation
within the brain stem leads to hypotension [4], data from our

laboratory confirmed A2A involvement because the selective
A2A receptor antagonist SCH58261 virtually abolished cloni-
dine-evoked hypotension in conscious ABD rats [82].

Reciprocal roles for central A1 and A2A in blood pressure

regulation

A number of studies including ours demonstrated functionally
opposite roles for central A2A and A1 adenosine receptors in
BP regulation because they mediate depressor, and pressor

responses, respectively [2,4,6,47]. These findings lead to the
postulate that concomitant activation of the adenosine A1

receptor might counterbalance (mask) the adenosine A2A-

dependent hypotensive action of clonidine, as discussed above.
Our laboratory showed that upregulations of a2A AR and

I1 receptors were paralleled with similar A2A receptor upregu-
lation in the same brain stem areas of the ABD rat model [29].

The latter confirms and extends earlier findings, which demon-
strated the upregulation of a2 and I1 receptors in the same ani-
mal model [32,86]. It might be argued that aortic

barodenervation caused nonspecific upregulation of adenosine
A2A as well as the a2A AR and I1 receptors because they fol-
lowed the same pattern in the investigated brain stem nuclei.

However, such parallel upregulation might be physiologically
relevant because: (i) the A2A receptor, the a2A and the I1 recep-
tors in the NTS and RVLM are spatially associated, (ii) all
three receptors mediate hypotension [2,55,65,86], and (iii) their

shared signaling pathways make it highly likely that these
receptors physiologically interact [18–20]. These findings are
consistent with a key role for central adenosine A2A in cloni-

dine evoked hypotension in conscious ABD rats [82].

Overexpressed adenosine A2A receptor in brain stem is

functionally relevant

Immunohistochemical evidence demonstrated approximately
twofold increase in the number of A2A receptors in the NTS

and RVLM of ABD, compared to SO, rats [87]. These findings
were functionally relevant because the selective adenosine A2A

agonist CGS21680 elicited significantly greater dose-dependent

hypotensive responses in the ABD, compared to SO, rats [29].
Notably, particularly in the NTS and RVLM, the A2A receptor
activation produces sympathoinhibition and hypotension
[2,12,47], which are shared by clonidine and similar drugs

[18,31,82,86]. Together, these findings establish a link between
the anatomical and functional upregulation of brain stem aden-
osine A2A receptor in the ABD rat [31,32]. Equally important,

these findings might explain, at least partly, the enhanced hypo-
tensive response elicited by clonidine in ABD rats [31,82] and its
dependence on central adenosine A2A receptor signaling [82].

ERK1/2-NOS activation underlies centrally mediated

hypotension

As discussed earlier, ERK1/2 phosphorylation constitutes
important signaling event in clonidine-evoked hypotension.
Noteworthy, pERK1/2 involvement in I1 receptor-evoked



Fig. 3 Conceptual overview of the major findings discussed in

this review. Upregulation of A2A (large circle) and the molecular

targets for clonidine (I1/a2A, large circles) are more evident in

ABD rats (right hand side) compared to sham-operated, SO, rats

(left hand side, small circles). Note the downregulation of A1

(small circle) in ABD compared to SO rats (large circle) in the

NTS and RVLM. Direct (CGS21680) or indirect (clonidine)

central A2A activation enhances pERK1/2 expression, which

subsequently phosphorylates NOS (increased NO) and ultimately

reduces BP. Blockade of central A2A receptor (SCH58261) or

inhibition of NOS (L-NAME) abrogated clonidine-evoked hypo-

tension, but only the former abrogated clonidine-evoked elevation

in pERK1/2 expression. Intracisternal A1 receptor blockade

(DPCPX) (large circle) unravels clonidine-evoked hypotension

and enhances pERK1/2 expression in conscious normotensive

rats. Central A1 receptor is downregulated in the NTS and RVLM

(small circle) in ABD compared to SO rats (large circle), which is

paralleled by an attenuated pressor response to adenosine A1
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hypotension has been based on two findings: (i) pERK1/2
expression in the RVLM is enhanced in association with cen-
trally mediated hypotension elicited by rilmenidine, but not

by a-methylnorepinephrine [18] and (ii) the ERK1/2 phosphor-
ylation inhibitor PD98059 significantly attenuated rilmenidine-
evoked hypotension [18]. By the same token, the exaggerated

hypotensive response elicited by central A2A receptor activa-
tion with i.c. CGS21680 in ABD rats might involve enhance-
ment of ERK1/2 phosphorylation [87]. Further, central A2A

receptor blockade, which virtually abolished clonidine-evoked
hypotension [82], abrogated the associated increase in brain
stem ERK1/2 phosphorylation (pERK1/2). The latter findings
suggest the involvement of the A2A receptor signaling in the

centrally evoked hypotensive response elicited by clonidine
and other I1R agonists. It was reasoned that NOS activation
(phosphorylation) is triggered by pERK1/2 based on an estab-

lished signaling pathway in cultured cells [88,89], and because
NOS-derived NO causes sympathoinhibition and hypotension
[90]. This intriguing possibility is supported: (i) by pharmaco-

logic inhibition of ERK1/2 phosphorylation attenuated cloni-
dine-evoked hypotension and ERK1/2 and NOS
phosphorylation in the RVLM and (ii) while L-NAME abro-

gated clonidine-evoked hypotension without affecting the
enhanced ERK1/2 phosphorylation in the RVLM [87]. These
findings are consistent with a role for pERK1/2 as an upstream
activator of NOS [87,91] and bolster the conclusion that

pERK1/2 plays a pivotal role in centrally-mediated hypoten-
sion via downstream NOS activation (enhanced NO produc-
tion). Further, these reported findings rule out the possibility

that ERK1/2 phosphorylation was consequence of clonidine-
evoked hypotension in the ABD model system. Together, these
findings delineate the molecular events in the brain stem trig-

gered by central adenosine A2A receptor activation and suggest
a biological relevance for the pERK1/2-NOS pathway in-vivo.
By contrast, we showed that the latter signaling pathway con-

tributes to the central CB1R-mediated pressor response [92] via
GABA dependent mechanisms. Future studies are needed to
address this controversy because the adenosine A2 receptors
are expressed on GABAergic neurons of the medulla oblon-

gata of the developing rat brain.

Why clonidine fails to lower BP in conscious normotensive rats?

Many reported findings, including ours showed that clonidine
does not lower BP [31,34,93,94] or influence ERK1/2 phos-
phorylation in the NTS and RVLM [87] in conscious normo-

tensive rats. By contrast, as discussed above, clonidine
enhances pERK1/2 expression and lowers BP in conscious
ABD rats via adenosine A2A receptor dependent mechanisms.

These findings set forth the postulate that concomitant adeno-
sine A1 receptor activation serves a negative (counterbalanc-
ing) role against adenosine A2A receptor signaling triggered
by clonidine in conscious normotensive rats. In support of this

hypothesis are the findings that clonidine significantly reduced
BP and increased brain stem pERK1/2 expression following
central adenosine A1 receptor blockade (DPCPX) in conscious

normotensive rats [29]. Interestingly, these molecular and BP
responses were similar to those elicited by clonidine in ABD
rats [31,82]. Collectively, these findings support a dampening

role for central adenosine A1 receptor against clonidine-
evoked hypotension and advance our knowledge in this area
of research because central adenosine A1 receptor blockade
(i) unmasked clonidine-evoked hypotension and the enhanced
phosphorylation of brain stem pERK1/2 in conscious normo-

tensive rats and (ii) had no effect on the neurochemical
(pERK1/2) or the hypotensive response elicited by clonidine
in ABD rats. These findings are consistent with opposite roles

for central A1 (pressor) and A2A (depressor) receptor activa-
tion [2,6] and further support a pivotal role for brain stem
pERK1/2 in the hypotensive action of clonidine and similar

drugs [18].
Finally, it is imperative to comment on the differential

expression of the adenosine A1 receptor in the NTS and
RVLM of SO and ABD rats. We demonstrated an inverse rela-

tionship between the level of adenosine A1 receptor expression
and the BP response to clonidine [29] in marked contrast to a
direct relationship between A2A receptor expression in the

same brain nuclei and the hypotensive effect of clonidine in
ABD rats [29,87]. It is likely, therefore, that the balance
between the A1 and the A2A adenosine receptor populations
receptor activation (CPA) in ABD, compared to SO, rats.
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in the brain stem determines the magnitude of the BP response
elicited by clonidine and perhaps other centrally acting drugs.
Tipping the balance toward adenosine A2A dominance might

explain the enhanced clonidine-evoked hypotension in con-
scious ABD rats [82,87] and SHRs [13]. It is also important
to discuss the role of the NTS adenosine A1 receptor in BP reg-

ulation and how it might be impacted by anesthesia. In gen-
eral, anesthesia dampens the NTS A1-mediated pressor
response because Machado and de Paula [95] showed that

intra-NTS adenosine produced pressor response via activation
of the local A1 receptor in conscious rats. These findings
explain, at least partly, why systemic or intracisternal clonidine
lowers BP in anesthetized, but not in conscious rats. Consistent

with this knowledge, as discussed above, suppression of aden-
osine A1 (and concomitant upregulation of A2) receptors in the
brain stem occurs in the ABD rat and clonidine lowers BP in

this animal model in the conscious state [82]. Nonetheless,
the NTS neurons are heterogeneous because our reported stud-
ies showed that under the same experimental condition (anes-

thetized rats), microinjection of adenosine into the rostral and
caudal NTS produced pressor and depressor responses, respec-
tively [13]. Whether the adenosine A1/A2 ratios are different in

these two subareas of the NTS remains to be elucidated.

Conclusions

The reviewed pharmacological and molecular findings support
a differential role of adenosine A2A and A1 receptors in medi-
ating and opposing clonidine-evoked hypotension, respec-
tively. This review also provides a brief account on the role

of pERK1/2-NOS-NO activation in brain stem nuclei as a
molecular mechanism for the centrally mediated hypotension
elicited by direct and indirect activation of the central A2A

receptor by CGS21680 and clonidine, respectively. Further,
the reviewed findings support the conclusion that pERK1/2
is a mediator and not a result of the hypotension elicited by

direct or indirect A2A receptor activation. This is the first
review that discussed the novel mechanism that central A1

receptor signaling masks clonidine-evoked hypotension in con-

scious normotensive rats (summarized in Fig. 3). Since cloni-
dine is clinically used for the management of hypertension,
possible drug interactions with the adenosine agonists and
antagonists that cross the blood brain barrier might have clin-

ical implications.
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