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Abstract.   Ecologists are studying increasingly complex and important issues such as climate change and 
ecosystem services. These topics often involve large data sets and the application of complicated quanti-
tative models. We evaluated changes in statistics used by ecologists by searching nearly 20,000 published 
articles in ecology from 1990 to 2013. We found that there has been a rise in sophisticated and computa-
tionally intensive statistical techniques such as mixed effects models and Bayesian statistics and a decline 
in reliance on approaches such as ANOVA or t tests. Similarly, ecologists have shifted away from software 
such as SAS and SPSS to the open source program R. We also searched the published curricula and syllabi 
of 154 doctoral programs in the United States and found that despite obvious changes in the statistical 
practices of ecologists, more than one-third of doctoral programs showed no record of required or optional 
statistics classes. Approximately one-quarter of programs did require a statistics course, but most of those 
did not cover contemporary statistical philosophy or advanced techniques. Only one-third of doctoral 
programs surveyed even listed an optional course that teaches some aspect of contemporary statistics. We 
call for graduate programs to lead the charge in improving training of future ecologists with skills needed 
to address and understand the ecological challenges facing humanity.
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Introduction

Ecological questions and data are becom-
ing increasingly complex and as a result we are 
seeing the development and proliferation of 
sophisticated statistical approaches in the ecolog-
ical literature. While well-designed experiments 
amenable to classic statistical tests aimed at 
rejecting simple null hypotheses still play a pow-
erful role in biological research, many contempo-
rary problems in ecology require the integration 
of empirical (often observational) data, mathe-
matical theory, and sophisticated statistical tools 
(Stephens et al. 2007, Hobbs and Ogle 2011). Just 

as null hypothesis significance testing (NHST) 
rose to prominence throughout the 20th century 
(sensu Fisher 1925, Neyman and Pearson 1933, 
Popper 1959, Platt 1964, Lehmann 1993) and null 
models in ecology in the 1980s further advanced 
the body of ecological knowledge (Strong 1980, 
Simberloff 1983), the current sea change in quanti-
tative rigor and statistical sophistication promises 
to provide the next major wave of insights and 
concomitant leaps in conceptual understanding. 
It is no longer sufficient to only ask “whether” 
or “which” experimental manipulations signifi-
cantly deviate from null expectations. Instead, 
we are moving toward parameter estimation and 
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asking “how much” and in “what direction” eco-
logical processes are affected by different mecha-
nisms (Burnham and Anderson 2002, McCarthy 
2007, Bolker et al. 2009, Symonds and Moussalli 
2011, Denny and Benedetti-Cecchi 2012).

This discussion is not new (e.g., Quinn and 
Dunham 1983), and several authors have pleaded 
for more intensive training in mathematics and 
statistics in ecology (e.g., Johnson 1999, Ellison 
and Dennis 2009, Robeva and Laubenbacher 
2009, Hobbs and Ogle 2011), including students 
frustrated by their lack of training (Butcher et al. 
2007). Indeed, Barraquand et al. (2014) conducted 
a survey of early-career ecologists and found that 
75% (of 937 respondents) were not satisfied with 
their understanding of mathematics and statis-
tics and more than 95% wish they had more sta-
tistics classes. Moreover, the survey revealed that 
these early-career scientists thought that nearly 
one-third of classes in graduate ecology curricula 
should focus on quantitative techniques. While 
there is a clear self-perceived lack of statistics 
training in ecology, no studies have quantita-
tively assessed the level of quantitative training 
received by students.

Many of the greatest challenges facing human-
ity over the next several decades are ecological 
in nature—climate change, loss of biodiversity 
and ecosystem services, emerging pathogens, 
and sustainable management of fisheries, forest, 
and agriculture. Solving these crises will demand 
that we are able to tackle increasingly complex 
problems with big data. These challenges do not 
fit neatly into the confines of null hypothesis sig-
nificance testing and are often not amenable to 
simple experimental designs and manipulations.

Embracing new methods can bolster paradigm 
shifts and foster new scientific discoveries. In his 
classic essay, Thomas Kuhn (1962) reasoned that 
continuity in “normal” science is interrupted by 
episodes of revolutionary change often spurred 
by development of new tools or technology or 
conceptual approaches that inspire practitioners 
in search of better solutions to old problems. 
Indeed, being able to ask new questions of old 
data is often a launchpad for paradigm shifts. The 
rise of computer programming, computational 
power, and modern statistical approaches may 
provide that launchpad by allowing scientists 
to ask new questions and to extract more infor-
mation from data than ever before. In addition 

to ecology, practitioners in psychology, social 
science, geology, and other fields are now able 
to gain more insights about phenomena occur-
ring in nature from data even when the mecha-
nisms that underlie them are poorly understood 
(Germano 2000).

Many types of commonly collected ecological 
data do not conform to the assumptions of tra-
ditional ecological approaches, and the nature 
of many large-scale manipulative studies results 
in small sample sizes and nested designs or data 
consisting of many zeros that cannot be effec-
tively analyzed using classic tools (Tewksbury 
et  al. 2002, McCoy and Bolker 2008). Further-
more, observational ecological data are often 
messy and may contain excessive numbers of 
explanatory variables (many of which may be 
correlated with one another; e.g., Hughey et al. 
2015). In the past, these difficulties have driven 
ecologists to either simplify their analyses, trans-
form their data (O’Hara and Kotze 2010, Warton 
and Hui 2010), or resort to descriptive or non-
parametric methods (Johnson 1995). The types 
of data available to the modern ecologist often 
necessitate the use of sophisticated computer 
software, potentially including programming, 
for data analysis. Thus, much as the techniques 
used in ecology appear to have changed in recent 
years, so too has the software that ecologists use 
to analyze their data. Given the complexity and 
massive volumes of data that modern ecologists 
have available, and the need to diagnose new 
large-scale environmental problems and fore-
cast impacts from imperfect data, it is impera-
tive that future ecologists (i.e., doctoral students 
in ecology-related programs) receive proper 
training on modern techniques and statistical 
programs.

In this essay, we report a quantitative exam-
ination of recent changes in the use of statistical 
approaches in ecological research and cogitate 
on the academic training of ecologists. The trend 
toward applications of increasingly sophisti-
cated statistics may seem obvious in the litera-
ture, but to our knowledge, it has not been objec-
tively quantified and documented. Our goals 
here are threefold: (1) to document how the use 
of different statistical techniques have changed 
since 1990, (2) to assess the change in the use 
of several commonly cited statistical software 
programs over that same time period, and (3) to 
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assess whether the current curricula of doctoral 
programs in ecology in the United States mirrors 
these trends. We hope that our analysis will 
inspire ecology programs to re-evaluate their 
curriculums and improve quantitative training 
of tomorrow’s ecologists.

Materials and Methods

Evaluating ecological literature and doctoral 
programs

We conducted a full-text literature search of 
seven leading journals in ecology (The American 
Naturalist, Ecology, Ecology Letters, Journal of 
Animal Ecology, Journal of Ecology, Oecologia, and 
Oikos) for the years 1990–2013. To ensure 
complete coverage of the time period, we 
searched the websites JSTOR.org, esajournals.
org, onlinelibrary.wiley.com, and springerlink.
com (websites accessed 7–14 April 2014). To 
quantify the statistical techniques used, we 
searched for 10 terms associated with classic, 
NHST statistical techniques and nonparametric 
approaches, or “contemporary” statistical tech-
niques (Table  1). While many of the techniques 
we label as contemporary are based on long-
standing theory (e.g., Bayesian techniques), this 
classification represents the rise in the use of 
these techniques in recent time. Our search was 
designed to be as unambiguous as possible. 
Search terms were not case sensitive but were 
constrained to whole search values (e.g., search-
ing for “mixed effects” would only return articles 
where the two words were used in succession 
but not when the words were used inde-
pendently). To help control for the fact that 
patterns we might detect could result simply 
from changes in terminology instead of changing 
statistical practices, we searched for one term 
that was program specific, “PROC MIXED,” 
which should return most cited uses of linear 
mixed effects models implemented in the pro-
gram SAS since its release in 1992 (SAS Institute 
1992). Our choice of search terms was not meant 
to be an exhaustive list, but instead to be rep-
resentative of common approaches utilized 
within each class of approaches. Similarly, we 
searched for four of the most commonly used 
statistical programs (Table 1), which collectively 
account for more than half of the statistical 
programs cited in the literature.

All analyses were conducted in R v3.0.2 (R 
Development Core Team 2013). After com-
piling our databases of statistical techniques 
and programs, we compared the proportional 
change in occurrence of different terms over the 
24-yr period. We used generalized linear mixed 
models (GLMMs) fit using the function glm-
madmb (Skaug et al. 2014), assuming a binomial 
error distribution and logit link function to eval-
uate change in the usage of techniques and statis-
tical software. We used binomial GLMMs for two 
reasons: (1) data were proportional—the number 
of articles in a year for each search term/the total 
amount of articles published in that year, and (2) 
it was necessary to include an observation-level 
random effect to control for overdispersion in the 
models. Due to obvious nonlinearities in some of 
the data, we included a second-order polynomial 
effect of year in all models. We used likelihood 
ratio tests to evaluate significance of different 
predictors.

To evaluate the curricula of current ecol-
ogy doctoral programs in the United States, 

Table 1. Search terms used in web searches of articles 
published in seven ecology journals 1990–2013, indi-
cating the number of total articles found and wheth-
er each term was classified into a traditional (e.g., 
NHST) or a “contemporary” statistical framework.

Search term Total articles Framework
Statistical techniques
 “ANOVA” 11,031 Traditional
 “t test” 4054 Traditional
 “Mann–Whitney” 1914 Traditional
 “Linear regression” 4879 Traditional
 “Maximum likelihood” 2728 Contemporary
 “Mixed effects” or 
“random effects”†

2588 Contemporary

 “GLM” 2490 Contemporary
 “AIC” 1942 Contemporary
 “Bayesian” 1133 Contemporary
 “PROC MIXED” 593 Contemporary
Statistical programs
 “SAS Institute” 4359
 “R Development Core 

Team” or “R Core 
Development Team”‡

2169

 “SPSS” 2003
 “JMP” 1097

† The two terms were searched for separately but were 
combined to represent “mixed effects models” as a whole.

‡ Occasionally R is cited incorrectly, with the order of 
terms reversed.
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we searched the websites of 207 schools in the 
United States listed by the Carnegie Classifi-
cation of Institutions of Higher Education as 
“research universities with very high activity” or 
“research universities with high activity” (Indi-
ana University 2015). Four universities were 
included twice because they had two distinct 
but independent ecologically related doctoral 
programs (e.g., UC Davis doctoral programs 
in Ecology and Population Biology) resulting 
in a total of 211 doctoral programs evaluated. 
All websites were accessed June 2015. We first 
determined whether the university had an eco-
logically related doctoral program (e.g., Biology, 
Botany, Zoology, and Ecology and Evolution, 
and others), excluding 57 doctoral programs 
that were clearly not ecological in nature (e.g., 
The University of Alabama Huntsville’s doctoral 
program in Biotechnology). This resulted in 154 
ecological doctoral programs evaluated. We then 
looked for a published curriculum within a given 
program’s website to determine whether any sta-
tistics course was required. Nearly all programs 
(N = 145) had curricula posted, and we assume 
these were at least relatively up-to-date. If a cur-
riculum was available, we evaluated any avail-
able syllabi or course descriptions for the topics 
covered. In the event that a curriculum was not 
available, we searched online course catalogs for 
graduate-level statistics courses listed within the 
program. We also evaluated whether optional 
statistics courses existed as part of the ecology 
program or were cross-listed from other depart-
ments within the university by searching online 
course catalogs and department homepages. If 
optional courses were available, we examined 
any available course descriptions and syllabi to 
see what training these courses provided. We did 
not look for courses offered in other programs or 
departments if they were not cross-listed with 
the ecology program. Data sets are provided as 
Supporting Information: Data S1 for (1) statistical 
techniques and (2) doctoral programs in ecology.

Results

What analyses and computer programs are 
ecologists using?

Our search of statistical techniques returned 
19,526 different papers published between 1990 
and 2013, 64.6% of all papers published in the 

seven journals we searched (searches using no 
search terms indicated a total of 30,190 papers 
were published). The number of papers pub-
lished per year increased substantially, from a 
5-yr average of 167  ±  14 papers (mean  ±  SE) 
during 1990–1994 to 209  ±  13 papers during 
2009–2013. This is partially due to the emer-
gence of a new journal in 1998 (Ecology Letters); 
however, the number of papers published per 
year increased in the other six journals as well, 
by as few as 11 papers in Oecologia to as many 
as 88 papers in Ecology.

The proportion of ecology papers utilizing clas-
sic ANOVA or the nonparametric Mann–Whitney 
U test has decreased in recent years, and the 
usage of linear regression has appeared to level 
off (Fig.  1). The fit of models to both ANOVA 
and linear regression was improved by the poly-
nomial term (Table  2). GLMMs indicated that 
in general, ANOVA has decreased by 13% since 
1990 and 40% since its peak usage in 2001, and 
Mann–Whitney U tests by 71%. There has been 
no change in usage of t test (Fig. 1, Table 2). Ordi-
nary least squares (OLS) regression has steadily 
increased by approximately 2% per year (Fig. 1).

In contrast to most NHST techniques, usage 
of contemporary statistical terms—terms asso-
ciated with sophisticated modeling frameworks 
and non-Gaussian error distributions (e.g., 
“GLM,” “maximum likelihood,” “mixed effects,” 
or “random effects”) or with model selection 
based and information theoretic approaches 
(e.g., “AIC” or “Bayesian”) all increased sub-
stantially since 1990 (Fig. 2). Usage of GLM has 
more than doubled, maximum likelihood has 
increased nearly six times, Bayesian statistics 
and mixed effects models have both increased 
approximately 31 times, and AIC has increased 
more than 100 times. In 2013, hierarchical or 
mixed effects models were mentioned nearly as 
frequently as classic ANOVA (Figs. 1 and 2). The 
fit of models was improved by the polynomial 
term in all cases except for Bayesian statistics 
(Table  2). The polynomial term indicated that 
usage of GLM may be leveling off (Fig. 2). Simi-
lar to our more generic search terms, the usage of 
the SAS function PROC MIXED for conducting 
linear mixed effects models has increased since 
first being published in 1992, but the polynomial 
term indicates that usage has actually declined 
in recent years (Fig. 2).
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Along with the rise of contemporary statis-
tical techniques, we also found a major shift in 
the programs that ecologists are using to analyze 
their data. From 1990 through 2008, SAS was the 
dominant program cited by ecologists (Fig.  3). 
However, while recent usage of SAS, JMP, and 
SPSS has been flat or decreasing, citations of the 
open source program R have increased dramat-
ically. Despite only being first cited in 2003, by 
2013 R was cited more than three times more 
often than any other program and in one-third of 
all ecology articles we surveyed (Fig. 3).

Statistical training in ecology?
Of the initial 211 doctoral programs we eval-

uated, 154 had programs related to ecology. In 
stark contrast to the rise of contemporary sta-
tistical techniques being published in ecology 

journals (Fig. 2), only 25% (38) of the 154 doctoral 
programs that we evaluated required students 
to take a biostatistics course (Fig.  4) and only 
10 of those programs went beyond classic 
approaches (e.g., ANOVA, OLS regression). More 
than one-third of programs had no statistics 
course listed anywhere in their curriculum or 
course catalog. Approximately half of programs 
had optional biostatistics courses available to 
students, and of those two-thirds covered some 
aspect of contemporary statistical approaches 
being used in the literature in some form (Fig. 4).

Discussion

The experimental and analytical techniques 
that are commonly used in ecology are 
constantly evolving. Analyzing trends in the 

Fig. 1. Changes in the occurrence of search terms indicating four different statistical techniques generally 
associated with traditional null hypothesis significance testing (NHST) from 1990 to 2013. Changes in usage are 
shown for ANOVA, t test, Mann–Whitney U test, and linear regression. Data are the proportion of total papers 
in seven top ecology journals utilizing each technique. The colored lines in each panel are the predicted best fits 
from binomial generalized linear mixed models including either only year as a predictor (solid line) or year + year2 
(dashed line).
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analytical approaches of our field since 1990 
clearly demonstrates that the frequency with 
which sophisticated methods are being used 
is accelerating. Whereas usage of approaches 
like ANOVA has declined in recent years, 
techniques such as mixed effects models and 
Bayesian inference have increased rapidly over 
the same time period (Figs.  1 and 2). This 
trend does not diminish the power and impor-
tance of traditionally used methods, but instead 
reflects the reality that ecological questions and 
data are increasingly complex and cannot, and 
often should not, be coerced to fit the assump-
tions and structure of traditional “normal” or 
nonparametric approaches (O’Hara and Kotze 
2010, Warton and Hui 2010). With pervasive 
access to tremendous computing power, ecol-
ogists are now more able than ever to analyze 
non-Gaussian error distributions with tech-
niques such as generalized mixed effects models 
(Pinheiro and Bates 2000, Gelman and Hill 
2006, Bolker et  al. 2009, O’Hara and Kotze 
2010, Warton and Hui 2010). Similarly, modern 
information theoretic approaches allow ecolo-
gists to statistically choose among competing 

explanatory models based on how well they 
capture and account for deviation in a data 
set instead of the classic approach of comparing 
against a model of no effect (Burnham and 
Anderson 2002, McCarthy 2007). Further still, 
ecologists are increasingly able to “roll their 
own” statistics such that parameters for appro-
priate ecological models are estimated directly 
from data rather than extrapolating from canned 
approaches (Hilborn and Mangel 1997, Bolker 
2008).

Along with shifting views about best practices, 
the trends we document here can be attributed 
to four factors that have been occurring over the 
past several decades, most of which stem from 
advancements in technology. First, the rate at 
which ecologists collect data has increased by 
orders of magnitude. It is now commonplace for 
automated data loggers, GPS trackers, remote 
sensing, and crowd sourcing to collect thou-
sands or hundreds of thousands of data points 
about environmental variables (Porter et  al. 
2005) or animal movements (Kays et  al. 2015). 
Secondly, there has been a rise in powerful desk-
top and supercomputing available to anyone in 

Table 2. Analysis of trends in statistical usage as inferred from the occurrence of search terms in seven ecology 
journals 1990–2013.

Search term Predictor AIC χ2 P-value
Polynomial 

improves fit?

ANOVA Year 273.38 1.63 0.20 Y
Year + Year2 231.23 44.15 <0.0001

t test Year 221.16 2.08 0.15 N
Year + Year2 221.62 1.53 0.22

Linear regression Year 217.06 26.13 <0.0001 Y
Year + Year2 209.73 9.34 0.002

Mann–Whitney Year 188.48 49.20 <0.0001 N
Year + Year2 188.64 1.84 0.18

AIC Year 185.65 72.86 <0.0001 Y
Year + Year2 154.00 33.65 <0.0001

Bayesian Year 171.58 59.60 <0.0001 N
Year + Year2 170.07 3.52 0.06

GLM Year 195.46 38.17 <0.0001 Y
Year + Year2 188.70 8.75 0.003

Mixed effects or random effects Year 177.81 92.73 <0.0001 Y
Year + Year2 174.60 5.21 0.02

Maximum likelihood Year 192.85 70.21 <0.0001 Y
Year + Year2 184.65 10.19 0.001

PROC MIXED Year 165.16 40.27 <0.0001 Y
Year + Year2 122.75 44.41 <0.0001

Notes: Occurrence of each term was analyzed using a binomial generalized linear mixed model with (1) year alone or (2) 
year  +  year2 as predictors. AIC scores, chi-square statistics, P-values, and whether the addition of the polynomial term 
improved model fit are shown.
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a university setting. Third, and partly as a result 
of the increase in computing power available, 
there has been an explosion in new analytical 
techniques (e.g., Pinheiro and Bates 2000, Gel-
man and Hill 2006, McCarthy 2007, Bolker 2008, 

Legendre and Legendre 2012). The rise of power-
ful, freely available, open source analytical soft-
ware like R (R Development Core Team 2013) and 
associated wiki’s, blogs, and listservs where users 
consult with specialists and find code written by 

Fig.  2. Changes in the occurrence of search terms indicating six different statistical techniques generally 
associated with modern modeling and inference based statistical approaches from 1990 to 2013. Changes in 
usage are shown for GLM, maximum likelihood, AIC, Bayesian methods, mixed effects models and PROC 
MIXED, the SAS function for conducting mixed effects models. Specific search terms are listed in Table 1. Data 
are the proportion of total papers in seven top ecology journals utilizing each technique. The colored lines in 
each panel are the predicted best fits from binomial generalized linear mixed models including either only year 
as a predictor (solid line) or year + year2 (dashed line).
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ecologists for ecologists allows the powerful com-
bination of new methods and large data sets to 
be harnessed by us all. This process has democ-
ratized statistical inference, giving the average 
ecologist the power to conduct analyses previ-
ously reserved only for statisticians. Although 
the analyses that one can conduct in R are often 
achievable in a program like SAS, the community 
of ecologist statisticians using R has proliferated 
rapidly and may be driving change in techniques 
we document here (although it is admittedly 
impossible to tease apart cause and effect in this 
case). This community of users, who share code 
and advice about analyses, has enabled a great 
number of ecologists to conduct advanced anal-
yses on their data. Indeed, the flexible nature of 
statistical programming is what allows those so 
inclined to “roll their own” statistics. Further-
more, the fact that R and other open source soft-
ware is free has empowered a global community 
of users, including those in developing nations 
that may not have access to commercial costly 
programs. The fourth and final factor driving the 
change in statistical practices is that a number of 
seminal books and papers have fundamentally 
changed the way many people think about data 
analyses. To give just one example, Burnham 
and Anderson’s (2002) book on model selection 
and inference has been cited nearly 30,000 times 
since its publication in 2002 according to Google 
Scholar (website accessed 8 December 2015).

With these changes in mind, it is paramount 
that the next generation of ecologists attain train-
ing that reflects the changes observed in the dis-
cipline (Butcher et  al. 2007), lest those students 
become professionals without the proper training 
to critique, interpret, and synthesize current liter-
ature. Similar calls have been made at the level 
of undergraduate education (AAAS 2011). The 
spread of contemporary statistical techniques 
we document here means that at least some stu-
dents are gaining this information, but this does 
not appear to be the norm. We found that only 
6.5% (10 of 154) of ecology programs required a 
statistics course that covered any aspect of con-
temporary statistics, and only 36% (56 of 154) of 
programs offered an optional course in advanced 
statistics (Fig.  4). We strongly believe that all 
professional ecologists should be able to under-
stand, interpret, evaluate, and implement the 
approaches that are clearly becoming the norm 
in our field and that the current training being 
required by doctoral programs is insufficient.

Because our search was constrained to only 
consider courses that were listed directly or 

Fig.  3. Changes in the usage of four leading 
statistical programs from 1990 to 2013. Gray circles 
indicate the program JMP, blue circles indicate the 
program R, red circles indicated the program SAS, and 
green circles indicate the program SPSS. Data are the 
proportion of total papers in seven top ecology 
journals utilizing each technique. Fig.  4. The proportion of doctoral programs in 

ecology or related fields in the United States that have 
required or optional statistics classes as a part of their 
curriculum, and if those courses include only 
traditional null hypothesis significance testing (NHST) 
approaches or if they teach some aspect of advanced 
contemporary statistics (e.g., Bayesian statistics or 
generalized linear mixed effects models).



9 August 2016 v Volume 7(8) v Article e01394 v www.esajournals.org

﻿� TOUCHON AND McCOY

cross-listed in ecology curricula, we were unable 
to quantify courses that may be available as 
generically listed seminar courses or that are 
offered in specialized statistics departments at 
some schools. Similarly, we know anecdotally of 
several doctoral programs that do offer optional 
“special topics” courses that provide contem-
porary statistical training. Thus, we feel our 
findings accurately represent the current level 
of required training for graduate students, but 
probably underestimate the amount of optional 
training available to students in the top doctoral 
programs. Regardless, we feel that ecology pro-
grams should be leading the charge to ensure 
that all academic and professional ecologists are 
quantitatively competent, and that it should not 
be the obligation of students alone to find and 
attain such training.

Suggestions for improving ecological statistics 
education

Our goal here is not to chastise the current 
state of ecology or ecological doctoral programs. 
Instead, we hope to inspire and encourage more 
prominent recognition of the ecological chal-
lenges the world faces and the opportunity to 
train graduate students to face them. Import
antly, most students receiving graduate degrees 
in ecology will not stay in academia, but will 
find jobs working in the private sector, with 
nonprofit organizations or with government 
agencies. Indeed, it may actually be more 
important for these professionals to be able to 
interface with academic ecologists and under-
stand and critically evaluate contemporary lit-
erature published in the top journals in order 
to make competent and informed policy and 
management decisions. Ideally, all ecologists 
would receive advanced training in mathemat-
ical and statistical theory; however, such change 
over the short term is unlikely. Nevertheless, 
we have several recommendations that consti-
tute fairly modest changes to current practices 
that would initiate positive change.

First, graduate programs should require sta-
tistics training for all students. Improving grad-
uate training will have a trickle-down effect on 
undergraduate education as well (AAAS 2011). 
Indeed, the need for improved training in statis-
tics and quantitative analysis is reflected in the 
increased emphasis of “Data-based and Statistical 

Reasoning” in the recent revision of the MCAT—
the Medical College Admission Test (Association 
of American Medical Colleges 2011). Second, the 
pedagogical philosophy of many introductory 
statistics courses could, and probably should, be 
changed. Most introductory statistics courses and 
text books for students in the life sciences focus 
solely on central limit theory, Gaussian error dis-
tributions and NHST, rarely introducing alterna-
tive error distribution families, or the gamut of 
more sophisticated, highly useful approaches for 
analyzing data. It has been our experience that 
introductory biostatistics courses focused purely 
on NHST also often fail to introduce students to 
the explicit interconnectedness of their data and 
the statistical models they are applying to the 
biological questions about which they are inter-
ested. We believe that considerable progress in 
statistical training could be achieved with min-
imal increases in required coursework. We pro-
pose introductory statistics courses should focus 
less on how to detect “if there are effects” and 
more on the mechanics of model fitting, param-
eter estimation, and obtaining and interpreting 
measures of uncertainty and confidence. In fact, 
courses taught with a more contemporary per-
spective address many of the topics covered in 
traditional biostatistics courses (e.g., one-way 
ANOVA, OLS regression) while simultaneously 
introducing contemporary techniques (Bolker 
2008, Hector 2014). If ecology programs lack fac-
ulty suited to teaching the sorts of courses that 
integrate programming and statistics, then at a 
minimum the program or department should 
facilitate student learning by bringing in outside 
instructors for intensive short courses and work-
shops. Third, students should be introduced 
to some form of computer programming (e.g., 
courses can be taught in R [see Fig.  3], Python, 
Julia, etc.). Although the need for computer pro-
gramming may not be obvious to some readers, 
the use of programming environments (i.e., R, 
SAS, Python, and others) is prerequisite to the 
implementation and documentation of many 
modern approaches. Three features of statisti-
cal analysis that are enhanced by programming 
knowledge include: (1) “literate programming,” 
which is the practice of embedding source com-
puter code inside of detailed documentation that 
clearly explains in natural language the tasks 
being performed (Knuth 1984). (2) Learning how 
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to code ones analyses enhances “transparency 
and repeatability” (Ellison 2010, Hampton et al. 
2014). Coding is more repeatable and transpar-
ent than point-and-click (or canned) statistical 
programs because code can be easily passed 
on to a collaborator or reviewer and mistakes 
can be traced and corrected. Many journals are 
now allowing or requiring analytical code to be 
submitted along with data as a supplement. (3) 
Although canned statistics packages are increas-
ingly able to perform many contemporary analy-
ses (e.g., generalized linear mixed models), they 
do not offer the flexibility to develop analyses 
that are specifically tailored to a particular ques-
tion or mechanistic model (Hilborn and Mangel 
1997, Bolker 2008). Importantly, given that most 
new statistical techniques are not available in 
easy-to-use, point-and-click formats, knowledge 
of statistical programming will also enhance the 
ability of ecologists to adapt and utilize new 
techniques as they emerge in the future.

Finally, as an alternative to changing peda-
gogy outright, ecology doctoral programs could 
promote avenues for quantitatively gifted stu-
dents to pursue their dissertations through the 
development and application of statistical the-
ory using other people’s data. This would facil-
itate training of specialists focused specifically 
on questions at the interface of statistics, mod-
eling, and the unique problems faced by ecol-
ogists. Indeed, this approach would also allow 
less quantitatively trained or interested students 
to rely more heavily on the expertise of others, 
and to form valuable collaborations, rather than 
analyzing their own data in potentially subopti-
mal ways. While each of our recommendations 
is already in practice to varying degrees in many 
graduate programs around the country, these 
programs remain the exceptions rather than the 
norm.

In closing, when Quinn and Dunham (1983) 
argued against the simplicity of null vs. alterna-
tive hypothesis testing more than 30 yr ago, the 
types of analyses that are now routinely con-
ducted were impossible for the average ecologist. 
Now, however, we have access to the computa-
tional power to make new conceptual advances 
at the frontier of ecology. We must ensure that we 
take advantage of these advances so that the next 
generation of ecologists are not still making these 
arguments 30 yr from now.
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