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Decision Support System (DSS) are at the core of business intelligence systems.

Implementation costs for enterprise level Database Management System (DBMS) and

DSS average $10,461 for installation costs. This does not include costs associated with

database migrations or testing, which can double the cost, nor does this quoted price

include the cost of yearly licensing or support agreements. Depending on the software

vendor, there may be additional costs associated with using an application cluster, logical

and virtual partitioning, data guards, and even costs per processor core. It is easy to see

how the cost of operating a database server can grow expensive rapidly. Information Tech-

nology (IT) decision makers and software architects need the ability to choose a DBMS

to suit their application’s needs. To choose the correct DBMS solution a comprehensive

and adaptive benchmark is needed. This benchmark must be capable of predicting how

the performance of a given system will scale, as well as offer an estimation of cost. A

problematic benchmark that is unable to accurately predict these values is worthless and

leads to costly software decision mistakes. To continue to be successful and remain com-

petitive in a given industry it is important for organizations to know their customers, target

and acquire new markets, and look to future trends. This is where database business

intelligence and decision support systems become useful. DSS allow users to data mine

critical information about their work-flows, sales history and trends and have the data read-

ily available so that they may make informed decisions and plan future growth. Business

intelligence tools and decision support systems provide executive officers and members



of management, the tools needed to create complex ad-hoc queries and mine important

data. Presently, IT decision makers and software engineers use the TPC-H decision sup-

port system benchmark as a guide to determining the optimal hardware and database

vendor configurations to utilize for their decision support system. The TPC-H benchmark

is a popular decision support system benchmark. In recent years, however, TPC-H has

become heavily criticized for its many problems. The issues outlined within this thesis can

lead IT decision makers to purchase and implement improper hardware and software so-

lutions. This thesis examines the criticisms and issues of the TPC-H benchmark. Utilizing

Amazon Web Services cloud computing power, we evaluate the Star Schema Benchmark

(SSB), as an alternative to TPC-H. We successfully identify and demonstrate several pre-

viously undefined problems in the TPC-H benchmark. Our results conclude that the SSB

not only resolves the issues inherent in TPC-H, and should serve as a replacement for

TPC-H.
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PREFACE

In this preface I will explain my personal background that led me to take an interest

in business intelligence and decision support system software and where my passion for

wishing to uncover a perfect DSS benchmark comes from.

In January 2006, we founded HomeInsurance.com (at the time called MyStateInsur-

ance.com), an online insurance call center based in Wilmington, NC where we sold prop-

erty and casualty (home and automobile) insurance both on the phone and online. In 2007

we purchased the domain name HomeInsurance.com through a private deal with Brad

Larson, a GoDaddy broker, and Frank Schill a domainer (domain investor) for $1,000,000

and began operating under the name HomeInsurance.com LLC.

When we started, the company had fifteen employees consisting of nine insurance

agents, two sales managers, a call center manager, a web-designer / SEO analyst, Chief

Executive Officer (CEO), and a junior developer. We rented a hosted 3rd-party lead man-

agement system for insurance agencies. It was a well known solution, but lacked key

functionality. Leads had to either be manually entered, or parsed from an email which

required a finicky format to be parsed properly. It offered little in the means for integra-

tions with other systems. The sales and marketing reporting provided were inaccurate,

non-customizable, and did not provide us with the analytics needed to forecast sales, pur-

chase leads, nor the ability to do skills based routing (routing leads to the agents licensed

in those states, or with higher close ratios in certain states, etc.). The system did not offer

the ability to integrate with any big-name telephony systems or automated dialers. Al-

though this rented system was sub-par, it served its purpose while we grew our business

and designed the ultimate system.

Off the shelf software was not cutting it. We sat through countless demonstrations from

software and hardware vendors promising that they could deliver everything we needed

and much more. After the millionth failed vendor demonstration, we noticed that each



vendor had their own tricks and wizardry to make their hardware and software solution for

business intelligence and decision support systems look amazing. Some utilized hardware

with large amounts of ram and disk space, far beyond what would be found in a typical

environment. Some used clever indexing techniques. We could not get an honest answer

on which solution we should go with, or even how to choose one ourselves. Without a

custom software solution tailored to our needs, we would be unable to accomplish the

growth we strived for, nor stay competitive in the market.

After researching for a while, I came across the TPC-H benchmark suite which seemed

to do exactly what we wanted. It was supposed to replicate a decision support system,

be scalable, and provide metrics such as the average cost per hour to run the system as

well as the average queries per minute. We enlisted the help of a database administrator

to help us analyze the results, and what we found was surprising to say the least. The

results of the TPC-H DSS benchmark showed that SQLite would be the fastest, cheapest,

and easiest to scale solution. After consulting with several developers of SQLite (which is

a public domain license, not open source) we were told that not only would SQLite not be

a suitable solution for our scenario, it would not be a good solution for any organization

expecting to have a large data set and many transactions being executed against it. If

we had taken the results of the many TPC-H DSS we would have mistakenly made an

investment in hardware and software to the tune of $50,000 which for a startup company

is not pocket change.

Building on my own SQL knowledge (mostly of MySQL and PostgreSQL) and data

warehousing concepts, I decided to do further research and arrived at a solution that I

felt would allow us to store our archived historical data at an affordable rate, run real time

ad-hoc sales reports, and give us the ability to forecast future sales trends, as well as lead

trends. My own investigations showed that utilizing MySQL, an open-source enterprise

database management system, would allow us to build the DSS of our dreams. Being a

start-up, we opted out of the cost of yearly support licensing. The only upfront cost that



we were faced with was hardware (servers, load balancers, database redundancy, etc.),

which we rented from RackSpace.com as Amazon Web Services was not in existence at

the time.

In 2011, INC. 5000 ranked HomeInsurance.com as one of the top 100 fastest growing

countries in America. We also made a transfer-trade with NetQuote (now BankRate) to

acquire AutoInsuranceQuotes.com for $750,000.

By March of 2012, we had expanded to two call center locations, fifteen sales man-

agers, and over one hundred and fifty licensed sales ages, and thirty telephone proces-

sors. In April of 2012, we sold HomeInsurance.com to Red Ventures, a Charlotte, North

Carolina based customer acquisition firm, for a significant amount of money, after being

in business for barely six years.

I truly believe that the TPC-H benchmark contains many problems that cause compa-

nies to make costly mistakes by trusting the results of the TPC-H performance reports. I

narrowly escaped making a mistake that could have caused us to go out of business in

short order instead of becoming the success story that we are. My motivation is to expose

TPC-H’s problems, and recommend the Star Schema Benchmark as an alternative.



Chapter 1: Introduction

Since their inception in the 1970s, database management systems have become in-

creasingly more prevalent in software applications. The cost of storing data has been

continuously decreasing [1]. This significant decrease in storage costs has allowed com-

panies to accumulate and aggregate large volumes of data continuously and store it indefi-

nitely. With the continuing growth in the amount of data being collected, application perfor-

mance has become a growing concern among organizations. As technology evolves and

customer demands increase, software requirements are becoming increasingly more de-

manding. Customer’s performance expectations of a software application can be greater

than the software’s capability. Database benchmarks are a technique to collect perfor-

mance metrics and identify bottlenecks.

Identifying bottlenecks and problem areas are only one part of the equation. After

identification of the bottleneck, action must be taken to resolve the issue. There are many

ways to tune a DBMS for optimal performance: Structured Query Language (SQL) query

tuning, indexing, caching, data partitioning, and table locking. Query tuning and index

optimization are the twomost common ways to increase database performance. However,

despite these best practices, as will be discussed in Chapter 4, when evaluating hardware

and database vendor solutions this is not always an option that is allowed.

As previously mentioned, organizations generate a lot of data. However, these data

are not always stored in a single easy to manage location. In fact, it is often stored in

different formats across many disparate systems, which can make it difficult to analyze

the organization’s data and generate meaningful reports. A solution to this problem is to

make use of data warehouses and decision support systems which aggregate disparate

data into usable formats [2].

Business analytics and business intelligence are important to management as well as

marketing professionals. Business intelligence and decision support systems allow users



to answer questions such as: Who are the company’s best sales performers? What are

some areas we need to improve upon? DSS help turn disorganized data into actual infor-

mation, improve efficiency, gain sales and market intelligence, which yields competitive

intelligence. Studies show that there exists a positive correlation between the usage of de-

cision support systems and corporate performance [3]. But which DSS system should be

chosen? Which database vendor should the DSS run on? There are an ample amount of

database vendors and software solutions that provide business intelligence and decision

support systems. This abundance of software options presents a challenge for IT deci-

sion makers. With this abundance of vendors to choose from it can easily become over-

whelming for a user to choose the appropriate set of tools for their organization. Database

benchmarks such as TPC-H and the Star Schema Benchmark attempt to ease the process

of choosing a database system capable of running a decision support system.

The goal of a benchmark is to ease and assist the process of making informed deci-

sions and comparisons between DBMS solutions. Database management systems are at

the core business intelligence solutions. The task of evaluating a database system’s per-

formance is not a trivial task and can become cumbersome, leading to some IT decision

makers blindly choosing a solution and forcing it to fit. Factors such as architecture differ-

ences, disk caching, compression choices, and indexing choices all play into a system’s

overall performance.

As of today, there is only one industry-wide accepted and widely-adopted organization

tasked with defining DBMS benchmark standards: Transaction Performance Process-

ing Council (TPC). The TPC has three core benchmarks: TPC-C for measuring Online

Transaction Processing (OLTP) performance, TPC-H for ad-hoc decision supporting, and

TPC-E to simulate OLTP workloads of a brokerage firm [4]. Another alternative to TPC is

Standard Performance Evaluation Corporation (SPEC).

Although the standards developed by TPC have served their purpose over the years,

as technology has evolved, the TPC standards have their lost relevance. As a result of

2



this antiquation, many attributes of the TPC standards are outdated and no longer re-

flect industry best practices, or real-world scenarios, leaving the IT industry in need of an

overhaul and replacement for the TPC-H decision support system benchmark.

Why is database benchmarking important or relevant? There are several reasons for

organizations to perform database benchmarking. For a business to become successful

and implement their goals, it is imperative that they have a complete and concise under-

standing of their data. Sales trends and customer demographics are a few metrics that

organizations use to predict growth and forecast future sales. Benchmarks are useful

for discovering bottlenecks, constraints on concurrent users, and the maximum size of a

database. The metrics weigh heavily on the cost needed to implement a scalable system,

which organizations must consider carefully when choosing a solution.

Cost savings and operational efficiency are important to businesses implementing

database management solutions. Organizational workloads and large volumes of data

play an important part in database evaluation decisions. Organizations must determine if

a relational database should be implemented, or if a NoSQL key-store could be a better so-

lution. There are many database vendors to choose from. Microsoft SQL Server, MySQL,

Oracle, and DB2 make up most database systems used in production enterprise level ap-

plications. If an organization is not equipped with the benchmarking tools needed to make

an informed decision, costly IT mistakes can occur as a result. In a study conducted by

the National Institute of Standards and Technology (NIST) and Research Triangle Institute

(RTI), it was shown that software errors and IT mistakes cost United States businesses

$59.5 billion dollars every year. While many of these mistakes were unrecoverable, nearly

1/3rd ($22.2 billion) of these software mistakes could have been avoided or caught earlier

with improved testing infrastructure and benchmarking tools [5].

Companies that employ decision support systems are five times more likely to make

quicker decisions than those organizations who do not utilize DSS [6]. By 2017 it is pro-

jected that over 50% of organizations will use business intelligence and decision support

3



systems to guide the company’s directions [6]. By 2019, businesses will spend over $20

Billion dollars per years on DSS systems. It is easy to see how costly a mistake can be

by choosing the wrong DSS vendor. It is projected that 90% of organizations hire a Chief

Data Officer (CDO) [6].

What makes a database benchmark both worthy and successful? Howwell a database

will perform is directly correlated to the performance of the underlying software algorithms,

instead of by raw hardware speed alone as previously thought [7]. Fortunately, four laws

were created by Jim Gray to serve as guidelines for creating successful database bench-

marks [7]. A benchmark that adheres to these criteria will explicitly define rules pertaining

to the execution of these queries and how the rules weigh heavily on the fairness of the

tests.

Table 1 depicts Gray’s four laws of good characteristics for good benchmarks. These

four laws defined by JimGray will become useful in Chapter 6 and Chapter 7 as we present

our findings against TPC-H and for the Star Schema Benchmark.

Table 1: Gray’s four laws of good benchmarks
Relevance It must measure the peak performance and price/performance of sys-

tems when performing typical operations within that problem domain.

Portable It should be easy to implement the benchmark on different systems
and architectures.

Scalability The benchmark should apply to small and large computer systems.
It should be possible to scale the benchmark up to larger systems,
and to parallel computer systems as computer performance and ar-
chitecture evolve.

Simple It benchmark must be understandable, otherwise it will lack credibility.

Research Contribution: Through empirical techniques this thesis quantitatively shows

that the TPC-H decision support system is antiquated and no longer relevant, biased

against certain vendors, and has inherent problems that can lead to making costly IT pur-

chasing mistakes. We have also evaluated the Star Schema Benchmark as a replacement

4



to TPC-H and have shown that it not only addresses and rectifies all the issues defined

within this paper, it also simplifies the benchmarking process and provides more freedom

to vendors.

This thesis will unfold as follows -

• Chapter 2 will provide the background of DBMSs, and normalization/denormaliza-

tion.

• Chapter 3 explores relevant related work in detail.

• Chapter 4 will introduce the TPC-H benchmark in detail.

• Chapter 5 will introduce and discuss the Star Schema Benchmark.

• Chapter 6 will discuss the methodology conducted to evaluate the Star Schema

Benchmark.

• Chapter 7 will present the results of the experiments and evaluate their significance.

• Chapter 8 will summarize our work and conclude.
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Chapter 2: Background

This thesis assumes that the reader has a certain level of familiarity with database

concepts and a basic understanding of SQL queries. This chapter also introduces terms,

concepts, and theories that the reader may not be familiar with, such as database indexing,

set operations, and relational algebra.

2.1 Data Warehouses

What is a data warehouse? First, let’s say what a data warehouse is not. A data ware-

house is not a product like Oracle or MySQL. It is not a technology, as there are many

ways to implement a data warehouse. It is however a database, and much more. Data

warehouses provide us with a single version of the truth, performance, simplicity, and data

persistence. Data do not originate in a data warehouse. Data are pulled in (integrated)

from an organization’s source systems such as a CRM, financial system, operation sys-

tems, etc. By integrating data from these various sources, the data warehouse becomes

a central repository. Not only do internal data sources need to be integrated, but occa-

sionally externally available sources such as fiscal reports from stock charts, or weather

reports will require integration. By integrating data from these various sources, the data

warehouse becomes a central repository with all the organization’s relevant information.

Why use a data warehouse? As mentioned above, we have all the data we need about

our customers, human resources, and operational systems. Why add one more piece of

technology to the mix? Why would the user or application not go directly to each source

of data, collect them and aggregate the data themselves? How are decisions made? An

organization’s success depends on the cumulative ability to make successful outcomes.

Decisions are best made when decision makers best understand the environment that in-

fluence that decision’s outcome. Relevant and accurate information is the key to providing



them with this information. This is why a data warehouse / decision support system can

be one of the most powerful tools at an organization’s fingertips.

An organization may have many business systems that track the same information.

An organization may have sales information in its CRM system, operation systems, etc.

If a user or application asks for information on a list of sales on a specified day, it may be

difficult to give an accurate answer if the user is attempting to collect data from manually

from many different sources. However, when a user interacts with a data warehouse, all

the data have been collected and integrated, and all the business logic is applied when

the user attempts to retrieve that information.

Performance can be broken down into two areas. If we go to a system of record, and

attempt to run the type of queries that would need to be generated for analytical decision

making, it would be trivial to bog this system down, causing issues in production. The

reason for this is because system of records is typically built and tuned for transactional

operations. A decision maker may wish to see this year’s sales by quarter, quarter over

quarter, compared to last year, which can include millions of rows and comparisons of

data, something a system of record structure would not be well suited for. The business

user needs answers to their questions, with the best performance possible. One role of a

data warehouse is to deliver a well performing repository where questions are answered

in a timely manner.

Applications have back-end databases that are highly normalized for transactional pro-

cessing, small reads and writes, which is perfect for these transactional operations, but

not so for business answers. A data warehouse provides users a simple method to nav-

igate data. Data are organized in such a way that it is intuitive and easy to obtain data

answers. In a system of record, a user may be allowed to update information, such as

a phone number or an address. The application may or may not store a full history. It

may only store the current version. A data warehouse contains a full audit trail for its data.

If a user wanted to know information about sales by an area, and only the most recent
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address is stored, it is impossible to gain insight because we have lost our historical data.

Data warehouses maintains the data persistence at a level the organization needs.

Inmon defined four crucial properties of data warehouses: subject-orientation, integra-

tion, time variation, and non-volatile data. These properties of data warehouse can be

seen in Table 2. More information on Inmon will be discussed in Section 3.6.

Table 2: Characteristics and properties of data warehouses

Subject-Oriented Used to analyze a subject area.

Integrated Integrates data from multiple data sources.

Time-Variant Historical data are kept in a data warehouse.

Non-volatile Once data are in the data warehouse, the data will not

be changed or altered in any way.

2.1.1 Schema Design

Data modeling and schema design consist of three main stages: conceptual, logical

and physical. The complexity of the data model or schema increases significantly as

stages are progressed. Since the data model can become complex rapidly, it is important

to always start with the conceptual stage of data modeling. By starting with the concep-

tual stage this helps ensure that the user understands the different entities, relationships,

and how they relate to one another at a higher level. In data warehousing projects the

conceptual and logical models are occasionally combined into a single model [8].

The conceptual stage models information gathered from organizational business re-

quirements and identifies the highest-level relationships that exists between different en-

tities. Models at the conceptual stage contain only the entities that describe the data and

the relationships, meaning that features such as attributes and primary keys are excluded.

The logical design stage looks at the logical relationships among data sets. The data
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are arranged into a series of logical relationships by identifying relationships that exist

between entities in the data model. This stage is only concerned with high level design

[9].

The primary concern of the physical design stage is determining the most efficient

method for storing and retrieving data sets. Database systems make use of indices and

materialized views to efficiently process complex queries. Determining the best fitting

indices and views is a complex modeling problem. Index look-ups and table scans can

be effective for data-selective queries, whereas data-intensive queries on the other hand

can require costly sequential scans.

2.2 Query Optimization

Accurate estimation is one of the most difficult problems in query optimization. Query

optimization attempts to identify the optimal path (measured as minimum execution time)

for a given query. Optimization begins by parsing the query and considering possible

query plan paths. The results of parsing are passed to the query optimizer. Processing

times vary greatly among each possible query path. The purpose of query optimization is

to find the path to process a given query in minimum time.

The optimized query path produced by the query optimizer is only an approximation of

the query’s optimum path. Query optimization has the potential to be a time-consuming

task which results in a trade-off between the time needed to calculate the optimum query

plan, and the quality of the chosen query path. The optimizer may not always choose the

optimum query plan on its own. Each database system has its own method for weighing

the optimization paths and determining the ideal solution.

These optimization methods work by associating a cost (weight) with each plan and

choosing the plan with the lowest cost. Examples of factors that are weighed when es-

timating cost are Input Output (I/O) operations, disk buffer space, disk storage service
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time, and the cardinality of the data. Possible access paths through primary and sec-

ondary indices are examined. Relational table join techniques are analyzed to determine

the set of query plans. The order tables are joined weighs heavily on the query plan’s

performance. The unique paths for each relation are computed and the optimizer logs

the optimal method to scan the relation, and the optimal method to produce record sets

in a given sort order. The optimizer considers combining each pair of relations for when

a join condition exists. The optimizer will consider the available join algorithms for each

pair. The cheapest path to join each pair of relations, and sort order is preserved. Since

optimization involves estimations, produced query plans may not be the optimal solution.

Such plans require manual examination to be tuned for performance.

2.3 Indices

Indexing is a performance enhancement method for sorting records on multiple fields.

Indices create an additional data structure which holds the column’s value. A pointer to

the record is stored [10]. The data structure is sorted which allows algorithms such as

binary search to be performed on it. An index reduces or eliminates the need to access

the base tables when all projection columns are present in index scans. Searching on

a field that is not sorted requires a linear search to be performed. On average, a linear

search requires O(n) block accesses, where represents n is the number of blocks a table

utilizes. However, if a field is sorted, a binary search may be performed. Binary search

has an average case of O(logn) and a worse-case of O(n) block accesses. Thus, the

performance increase is substantial.

There are different types of database indexing architectures and methods that can be

performed when creating indices on a database table. Examples of indexing methods

include B+-trees and B*-trees, and hashing variants such as linear and spiral hashing.

Indices can be clustered, or non-clustered [11]. Indexing is the single most important tool
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for performance optimization. Proper indexing requires a knowledge of the business data

and the implications of a specific index. The more index records that can fit into a single

block of memory, the faster the queries will be. Understanding index layouts is crucial in

index and storage engine decisions.

A clustered index alters the way that the data are stored. When a clustered index is

created on a column or set of columns, the table data are sorted by that column selection.

Clustered indices store rows physically on the disk in the same order as the index [12].

This physical storage of the clustered data means only one clustered index on a table may

exist. A clustered index stores close values physically close to one another on the disk.

The benefit of storing similar data close to each other is rapid scan and retrieval of records

that fall into a range of clustered index values [13].

With non-clustered indices, a second list contains pointers to the physical rows. Unlike

clustered indices, it can have many non-clustered indices on a single table [13]. Each

additional index will increase the time it takes to write new records. The lowest level of the

index contains information that allows the database server to navigate to the data pages it

needs. Under certain conditions, the overhead associated with non-clustered indices may

be deemed too great by the query optimizer and the database server will resort to a table

scan to resolve the query [13].

A covering index incorporates at least all the columns needed for the query execution,

without having to perform additional clustered index lookups. Covering indexes have a

performance penalty for INSERT and UPDATE operations [13].

2.4 Materialized Views

Views are named SQL queries which provide simple data models as well as implement

security constraints. A normal view is a query that defines a virtual table. Virtual tables

mean that the data are not sitting in a physical table, instead the data are created ad-hoc at
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run-time. A materialized view is a view where the query is executed and the result saved

in a physical table. Data in materialized views are precomputed, meaning that the query

is not run with each access to the view. The data in a materialized view remains the same

until it is manually refreshed [14].

2.5 Table Scans

A full table scan means that the database system must iterate over all the rows of a

database table. A table scan will occur when an index does not exist on a column specified

in the query’sWHERE clause. Every row in the table will be evaluated to see if theWHERE

clause’s conditions match. Regardless if an index exists on the column(s) matched in the

WHERE clause, the database optimizer may choose to execute a full table scan if the

overhead for using an index is too high [15].

An example when using an index may take longer than a full table scan is when the

number of rows in a table is relatively small. Some comparison operators prevent the use

of an index, such as not, not equals, or when a wild-card operator is used on both sides

of the operand.

2.6 Operations

Projection

A database projection is an operation of relational algebra. Projection discards those

values that are not part of the subset of columns in a relation. One downside to indexing

is that these indices require additional space on the disk. Relational algebra allows query-

ing, updating, inserting, and deleting of data, as well as creation and updating of views.

Projection eliminates columns [16].
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Selection

The select operation selects rows from a table that are based on a predicate. Selection

refers to which rows are to be returned. In contrast to PROJECTION, SELECT eliminates

rows. Set operations allow the results of multiple queries to be combined into a single

result set. The set operators include UNION, INTERSECT, and EXCEPT [16, 17].

JOIN

A JOIN is a binary operator in relational algebra that produces a set of all combinations

of tuples from two sets of data based on a defined relationship. There are five types of

joins: inner, left, right, full and cross. There are three primary join algorithms: nested loop

join, sort-merge join, and hash join [18]. Figure 1 illustrates SQL JOINs as Venn diagrams.

A B

LEFT JOIN

A B

FULL OUTER JOIN

A B

LEFT OUTER JOIN

A B

INNER JOIN

BA

RIGHT JOIN

A B

RIGHT OUTER JOIN

Figure 1: A visual representation of SQL JOINS as Venn diagrams

An inner join is the set of records from set A and set B where the join condition is true.

A left join is a set that contains all the records from set A, along with the records from set B

which the join condition meets, if any at all. Right joins are sets that contain all the records

from set B, along with the records from set A which the join condition meets, if any at all.
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A full join is the set of all records from sets A and B regardless of whether the join

condition is met or not. A cross join yields a Cartesian product formed from the rows from

each table specified in the join criteria. Cartesian products combine each row from the

first set with each row from the second set [18]. Nested loop joins use the results from the

outer query. More will be discussed in Section 2.10.

2.7 Normalization

Normalization is the process of organizing data in a database, by creating tables and

establishing relationships. This eliminates redundancy and inconsistent dependencies

within the data. Redundant data wastes disk space and creates maintenance problems.

Data that exists in many locations must be changed in the same way in all locations it.

There are three main forms of normalization: first, second, and third [19].

Data must be defined which requires looking at the data and data types to be stored.

Next the data must be organized into columns, putting related columns into their own

database tables. Next, repeating groups of data must be eliminated [20]. Finally, for a

schema to be in First Normal Form (1NF), a primary key must be created for every table

defined.

For a schema to be in Second Normal Form (2NF), all rules of 1NF must be met. There

must not exist any partial dependencies on any of the columns defined as primary keys

[20]. 2NF allows data to be narrowed into an easier to access and single purpose source.

All non-key columns are dependent on the table’s primary key [20].

Tables are in Third Normal Form (3NF) as long as they are also in 2NF, and the columns

contained within are non-transitively dependent on the primary key [20]. Transitive simply

means that a relationship is equivalent in the middle of a relationship as well as across the

whole relationship. So, to be considered non-transitive, all the columns are dependent on

the primary a key and no other columns on the table, which comes inherently from 2NF.
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2.8 Compression

Abadi et al., have shown the importance of column data compression on performance.

They showed that by using column-oriented storage algorithms, in their they reduced the

query execution time by 98.18% [21]. The reason that their result showed this reduced

query time is compression algorithms perform better on data with low information entropy

[21]. In data compression, entropy is the randomness in the data being passed into a

compression algorithm. The higher the entropy, the lower the compression ratio. Data

becomes harder to compress as the entropy level increases [22]. Disk space is cheap

and has continued to become cheaper with each passing year. Compression improves

performance as well as reducing used disk space. If data are compressed well, then it

will require less time reading data from the disk to memory [21]. Whenever the query

optimizer and executor can operate on compressed data directly, then decompression is

avoided entirely, which further improves performance, such as when the query executor

must perform the same value on multiple columns at once [21]. Abadi et al. have shown

that compression usually has a higher impact on performance when the percentage of

columns accessed have some order [21].

2.9 Cardinality and Selectivity

Cardinality is the uniqueness of data values contained throughout a table’s columns.

A higher cardinality means a higher degree of uniqueness in the column’s values. A low

cardinality means that there are a lot of duplicate values in the data set. Selectivity is

calculated using cardinality and can be used to determine how effective an index will be.

Query optimizers use the selectivity to determine the best query plan, if it is useful to

use a specific index or not. Functional coverage typically is a term used in software test-

ing. However, for the purposes of this thesis functional coverage refers to verifying the
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completeness of the typical business work-flows defined within TPC-H and Star Schema

Benchmark.

2.10 Subqueries

Subqueries are queries that are nested inside of SQL statements. Subqueries can

be nested within the SELECT, WHERE, or HAVING clauses to return data to the outer

statement, which can then be used in the outer statement’s WHERE clause to restrict

the result-set. Subqueries in themselves are not necessarily bad and are often useful.

Subqueries become problems and a source of performance suffering when they use data

from the outer statement before it can be evaluated. These types of queries are called

dependent / correlated subqueries [23]. Correlated subqueries are subqueries that use

values from the outer query for its parameters. The subquery is in a nested loop and

executed once for each row selected by the outer query. This is an inefficient and expen-

sive method. All correlated subqueries can be optimized by being re-written using JOINs

[23, 24, 25, 26, 27, 28].

2.11 Scale Factor

The TPC-H Scale Factor (SF), is a ratio of total storage to database size. SF is used to

scale the database workload to mock an application’s growth. TPC-H SF will be discussed

further in Section 4.5.
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Chapter 3: Review of the Literature

3.1 Relational Database Model

The relational database model [29] and the concept of data normalization was devel-

oped by Edgar F. Codd. Two methods of data processing emerged from his work; OLTP

and Online Analytical Processing (OLAP). OLTP focuses on inserting data, but not neces-

sarily querying that data, whereas OLAP focuses on easily querying and retrieving data.

Codd’s work went on to form the basis of relational databases and paved the way for all

the database vendors we use now.

3.2 The Wisconsin Benchmark

The Wisconsin Benchmark was created based on two main ideas. Benchmark queries

should test the performance of the major components. It should be easy to adopt and add

new queries as the system evolves [7]. The Wisconsin benchmark gained popularity as

it was the first benchmark which contained evaluations of impartial measurements of real

products. This sparked competition and wars among the other vendors as customers

began recognizing the importance of this benchmark and demanding performance results

based upon it. The Wisconsin Benchmark pointed out performance weaknesses of each

system. By pointing out these weaknesses, vendors were forced to significantly improve

their systems to remain competitive [7].

The Wisconsin Benchmark was designed to allow a range of update and retrieval

queries to be executed. The designers used synthetically generated relations in lieu of

empirical data [7]. Empirical databases often difficult to scale to scale [7]. Empirical

databases contain values that are not flexible enough to permit systematic benchmark-

ing [7]. When joins are utilized it becomes even more difficult to build models that produce



results or relations of a certain size. Empirical data must be analyzed with large amounts

of data before it can be determined if data values are randomly distributed. Synthetic

databases utilize pseudo-random number generators and data-distribution algorithms to

obtain uniformly distributed attribute values while maintaining the relation sizes and scale

factor. The Wisconsin Benchmark was designed to have an easy to understand schema

and intuitive relations. The results of the benchmark queries are easy to interpret and

extending the benchmark query set is simple. The relational attributes were designed to

ease the task of controlling selectivity factors such as in SELECT and JOINs.

The Wisconsin Benchmark measured performance of all basic relational operations.

It has two operational modes, one that took advantage of a primary, clustered index and

a second mode that only allowed access to a secondary, non-clustered index. When no

indices were created, both modes operated the same. It contained 32 queries. The size

of the relations must be at least a factor of five times larger than the main memory buffer

space available. Elapsed time was used as the performance measurement. The decision

to use elapsed time versus other metrics was because of variation and unpredictability

among different operating systems and a different database system running on the same

operating system (such as CPU time, disk I/O operations performed). Original versions of

the Wisconsin Benchmark did not incorporate operating cost, because development and

testing originally occurred on the same hardware systems.

One criticism of the Wisconsin benchmark is that it runs in a single-user mode. The de-

velopers of the Wisconsin benchmark began to develop a multi-user version. However, by

the time the multi-user version of the benchmark was complete, other benchmarks began

to be adopted instead. Technical disagreements led to competing multi-user benchmarks

being created. Both failed to gain popularity or adaptation. The developers of the Wiscon-

sin Benchmark speculated that the reason for this failure was that neither reduced each

system to a single number which resulted in it being difficult to compare two systems. The

Wisconsin Benchmark created a competition war among vendors. The two off-shoots did
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not initiate the same competition war, as vendors only considered the multi-user perfor-

mance of a single system, meaning they could to ignore the rules because they did not

have a reason to keep the war going. [7]

3.3 AS3AP

ANSI SQL Standard SQL and Portable Benchmark (AS3AP) [30] was designed to pro-

vide a comprehensive set of tests to measure database processing power. AS3AP was

designed to be portable meaning the tests could be executed across a wide range of

operating systems and architectures. AS3AP provided the equivalent database ratio met-

ric which allowed for straightforward and non-ambiguous interpretations of the results.

AS3AP developed a maximum SF, where the system can execute a series of multi-user

tests a given time frame. The database size, and scale factor can be used as a per-

formance metric. AS3AP may be used for comparing cost and performance [30]. They

calculated the equivalent ratios for two systems being tested as the ratio of their equivalent

database sizes [30]. Current relational database systems have varying degrees of func-

tionality, capabilities, performance, and cost. Defining meaningful metrics of database

processing power can be a difficult task [30]. Most database benchmarks have a major

fault as they provide no useful guidelines for fixing or improving the system. These issues

were addressed in AS3AP by emphasizing scalability, portability, and ease of use and

interpretation [30].

AS3AP tests are divided into single user tests, and multi-user tests. Single user tests

include utilities for testing load and structuring the database, use queries designed to test

access methods and basic query optimization.

Multi-user tests model different types of database workloads such as OLTP workloads,

information retrievals, and mixed workloads such as relational scans and report queries.

Elapsed time within a 12-hour window is the only measurement captured by the AS3AP
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benchmark. Other metrics such as CPU and I/O utilization have to be collected for an in-

depth analysis for DBMS performance. These additional measurements are not specified

as part of the AS3AP metrics definitions [30].

AS3AP queries are precompiled, except for the multi-user cross section queries. There

are many simplifications with the benchmark. These simplifications allow the benchmark

to be installed and run with ease. Modules are grouped according based on the function-

ality needing to be tested. Depending on the needs of the user and what needs to be

tested, the benchmark can be run in its entirety, or only the modules needing testing. The

database is not corrupted because of the process of interleaving special queries that save

deleted tuples, reinsert the deleted tuples, and restore updated tuples to their original val-

ues, so long as the user runs the complete suite in the specified order [31]. DBGEN was

used to generate the test database [31].

3.4 Measuring Transaction Processing Power

Tandem Computers [32] defined three benchmarks called Sort, Scan, and DebitCredit.

DebitCredit went on to be implemented in TPC-A. They developed amethod for measuring

transaction processing power. Performance can be difficult to measure, and not all mea-

sures are appropriate for every application domain. CPU power measures typically do not

account for parallel processing systems that can utilize multiple processors, or multiple

cores. In these scenarios only cost and throughput are meaningful metrics. Historically

I/O metrics have been ignored. Tandem Computers showed, however, that I/O has a di-

rect correlation to performance and should be calculated and considered a meaningful

metric.
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3.5 Separating the database from the application hosting

environment

A comprehensive set of tests [33] to study the advantages of using back-end database

machine architectures against using conventional computer database systems were de-

veloped. Database machines are specialized software and hardware configurations ded-

icated to managing database systems. Database systems are typically processor-bound

and not IO-bound, which results in a performance decrease on a host system. The test

results concluded that hosted back-end database machine architecture yield superior per-

formance in most cases. By hosting the back-end separate from the application level, it

is possible to offload a majority of the database processing activity which releases sys-

tem resources. The trade-off in this performance gain is increased cost due to additional

hardware [33].

3.6 Data Warehousing

The term data warehouse [34] was Bill Inmon in 1990. Data warehouses aid analysts in

making informed decisions within an organization. A data warehouse focuses on change

over time. Data stored in data warehouses are nonvolatile. Nonvolatile is the concept that

once data is entered into the warehouse, it should not change. Data warehouses enable

the user to analyze what has occurred, and define data by subject matter rather than the

organization’s ongoing operations.

Data warehousing focuses on modeling and analysis of data for decision-making. Data

warehouses aggregate data from disparate sources into a consistent format. As men-

tioned in Section 2.1, data warehouses are often tightly coupled with OLAP transactions,

to allow for mining of knowledge at deeper levels. This is why data warehouses are impor-
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tant for data analysis and online analytical processing. Data warehouses keep data sep-

arate from the organization’s operational database. Frequent updating is not performed

in a data warehouse.

Data warehouses aid decision makers in organizing their internal and external data to

make strategic decisions. Data warehouses consolidate historical data analysis. Oper-

ational databases allow read and write operations on data, whereas OLAP queries only

need data read access.

Operational databases maintain current data, while data warehouses maintain histori-

cal data. Data warehouses, helps business executives organize, analyze data for decision

making [34]. Analytical processing can be split up into: slice-and-dice, drill down, drill-up,

and pivoting. Data mining assists knowledge insight by uncovering hidden patterns and

associations, constructing models, and performing classification.

Since the main goal of data warehouse systems is to make information access as easy

as possible, the data must be obvious and intuitive to work with. This information must

be consistent and credible, and should be scrubbed and its quality assurance verified

before being inserted into the system. The system must serve as the ultimate authority on

the data used for decision making [10]. At the core of a data warehouse are fact tables.

Fact tables store various performance measurements from the organization’s business

processes. Each row in a fact table represents a measurement event. The grain of a fact

table specifies the level of detail. All rows in a fact table must have the same grain, which

ensures errors in the data such as double-counting are avoided. Of the three categories of

grain (transaction, periodic snapshot, accumulating snapshot) transaction level granularity

is the most common. The lowest level of data captured in a business process is referred

to as the atomic grain [10].

Ralph Kimball is the original architect of data warehousing and is the father of the mod-

ern data warehouse [10]. Per Ralph Kimball, the TPC-H schema should be denormalized

into a single SALES table. Denormalization attempts to optimize database read perfor-
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mance by adding redundant data or by grouping data. Denormalization is frequently used

as a technique for addressing performance and scalability and allows us to avoid exces-

sive joins. Kimball believed that a star schema helps to reduce the number of complex

and unnecessary joins [10].

The star schema is the simplest data mart schema and consists of one or more fact

tables. Fact tables reference dimension tables. Star schemata are effective for handling

both simple data marts and large data warehouses. Kimball’s methodology for defining

and designing data warehouse schema is the most frequently used method [10]. This

method is popular because analytical users can begin to see results and query against

their data quicker, as the model does not require a master plan to begin designing. How-

ever, this method does have risks associated with duplicate data and re-work in the future

due to the lack of design process in the beginning stages. Star schemata were developed

by Red Brick Systems (now IBM) to speed up queries on data loaded from operational

databases at some given intervals [35].

Ralph Kimball favors a data warehouse design approach utilizing a bottom-up process

in which dimensional data marts are identified and created for reporting and analytical

purposes. Kimball’s methodology for defining and designing data warehouse schema is

the most frequently used method [10].

Kimball founded Red Brick Systems. Red Brick Systems is a Relational Database

Management System (RDBMS) heavily optimized for data warehousing. IBM has acquired

Red Brick Systems. Per IBM “IBMRedBrickWarehouse is a client/server decision-support

RDBMS for information systems (IS) and business managers who want to improve the

quality and performance of their decision-support applications. The superior performance

of IBM Red Brick Warehouse is based on: Indexing and joining technologies designed to

accelerate the retrieval of database information [10].” The relevance of this quote will be

demonstrated in Chapter 4 and Chapter 6.

OLAP systems deal with analytical business tasks. They cope with large volumes of
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data and are expected to have short response times. OLAP databases tend to be op-

timized for querying and reporting which is contrary to OLTP. OLAP data are derived,

aggregated, and structured from historical data into sophisticated structures allowing data

analysis. OLAP can be used for data-mining and finding relationships and correlations.

OLAP focuses on analyzing data coming in about the business while OLTP runs the busi-

ness. Table 3 lists the key differences between Online Analytical Processing and Online

Transactional processing.

Table 3: Comparison of OLAP and OLTP
OLAP OLTP

Analyzes the business Run the business

Information out Data in

Star schema Entity relationship model

Historical data Current data

Summarized consolidated data Primitive and highly detailed data

Summarized multidimensional view Detailed and flat relational view

DSS are tools to support the decision making process. DSS are typically used by users

in management, operations, and planning roles. They serve as a framework for analyzing

business data, and presenting data in a human-readable format, allowing the user to make

business decisions more easily. DSS are only as good as the underlying DBMS providing

data. DSS provide functionality for data storage and retrieval and assist in model building

and model-based decisions [4]. This thesis, when referring to DSS, mean the OLAP-DSS

hybrid.

3.7 Development of a TPC-H Tool-kit

In [36], the authors realized that there were no publicly available tool-kits for TPC-

H. People needed a system that was easily deploy-able, could support many different
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commercial (R)DBMSs, was open source, and did not require an advanced degree to

figure out how to use it. [36] developed a toolkit that provided scripts, tuning parameters,

DBMS drivers, query template generation, and verification scripts. The toolkit showed

promising results, however as mentioned in [37], the fast-changing technology landscape

makes it difficult for tools like this to get adopted and gain popularity. By the time that they

start to get noticed and gain interest they are already outdated.

Over the years there have been many attempts to develop a set of benchmarks that

could yield meaningful metrics [4, 38, 39, 40, 41].

3.8 Development of an Isolation Layer

Building upon Kimball’s work, [40] developed and implemented a method for abstract-

ing the OLAP data from the physical structure. One problem which was identified with the

traditional architecture method lies in the way in which data are viewed and manipulated at

the individual level. However, this level is strictly dependent on the implementation at the

data warehouse level. Views are refreshed when changes to the organization occur [40].

The interoperability between different data warehouses must be solved case by case. This

new layer provided an intermediate layer to isolate queries from the physical details.

3.9 A New Approach for Profiling Data Warehouse

Benchmarks

A new proposal [41] for a data warehouse design process that attempted to solve some

of the problems that are present in the Inmon and Kimball models was presented in 2002.

The new approach relied on the assumption that some facts are asked more frequently

than others. The authors advocated that some dimensional attributes are rarely used

while others are frequently referenced, and that some facts and dimension attributes are
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used together, while some will almost never be used together. They also stated that some

mathematical operations would be frequent while others will not. They concluded that typ-

ically, data performance considerations are introduced in later stages of data warehouse

design process [41]. As a result of this late consideration, nearly all enhancements are ap-

plied after the physical schema has been obtained. They proposed that data warehouse

design needs to consider business and performance considerations from the beginning.

They also proposed that perhaps combining smaller dimension or fact tables, or splitting

bigger tables into smaller tables, can serve for performance gains. These conclusions

have been adopted and incorporated into the Star Schema Benchmark.

3.10 Benchmarking Open Source Database Management

Systems

Research [38] was conducted in comparing proprietary database management sys-

tems’ performance against open source database management systems [38]. This re-

searched compared six different database management systems; Sybase, PostgreSQL,

Oracle, MySQL, Firebird, and DB2. The author developed a benchmark from scratch as

well as the tools to automate running it using Perl. At the time the research was conducted

there were significant issues with the Perl DBI module when running transactions against

Oracle servers. The DBI module was unable to use persistent connections which meant

that the overhead of re-connecting to the database server was added to every SQL query

request. These limitations could have significantly skewed the benchmark results in re-

gards to the data collected for the Oracle database. This methodology has had little to no

support from the community, possibly because the queries and test suite found within are

not comprehensive. The lack of research for Microsoft SQL Server, which is a popular

DBMS, has potentially contributed to the research being ignore.
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3.11 Scaling Down TPC-H

DBmbench [12] was created to scale down the TPC-H benchmark using a systematic

scaling framework tailored to serve for micro-architecture research [12]. DBmbench works

by scaling down the existing benchmark suite and optimizing the relational query opera-

tions. These results showed that it was possible to scale down TPC-H and still have it

be a meaningful benchmark, but the applications of these improvements are only directly

beneficial in micro-architecture environments and applications which violate Gray’s law of

scalability.

Building [42] on the work of [43], Vandierendonck presented a method for reducing

the number of queries needed in TPC-H. By creating a new process for the selection of

cluster representatives they were able to reduce TPC-H from twenty-two to six queries,

which yielded a 60% reduction in execution time. The authors then validated their method

by comparing case studies to their findings to show that the subsets were appropriated.

Basing quantitative decisions on the TPC-H subset lead to the same design decisions

being made as when based on the full TPC-H suite. While these efforts may have been

a step in the right direction, this TPC-H subset benchmark still suffers from the issues

outlined in the introduction chapter.

In [44] a theory is presented behind transaction management, storage structures, con-

currency control and availability, and how these affected performance and scalability of

the database management systems. [44] developed a benchmark based on frequently oc-

curring activities in the telecommunications industry. This resulted in a highly specialized

benchmark not useful for applications outside of that industry. However, [44] was helpful

in showing the work a single individual could accomplish, as most benchmarks today are

developed by large organizations such as the TPC. All [44] tests were performed on a

single platform and operating system, as an attempt at reducing the number of external

variables. [44]’s benchmark suite simulated an electronic commerce application, with the
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goal of providing a more realistic load to the databases tested. The benchmark suite used

general terms, which could easily be applied to a wide range of industries. These choices

were made to improve upon previous efforts at database benchmarks without making the

system overly complex. Despite [44]’s advancements in performance comparisons among

open source database systems, [44] did not discuss the witnessed variance of the results,

nor did he compare the results of one database system’s score to another in a statistically

significant way. Both [38, 44] made a mistake trying to develop a completely new bench-

mark, and instead should have focused on making improvements to the existing TPC-H

benchmark.

3.12 Set Query Benchmark

The Set Query Benchmark [45] was built upon the work of the Wisconsin benchmark

[7]. Set queries are queries that consider data from multiple table rows, whereas TPC and

DebitCredit only deal with row-at-a-time updates, which fail to meet the criteria for being

a DSS. Set Query was designed with the goal to become portable, provide functional

coverage, and selectivity coverage, and have scalability [45]. Set Query Benchmark is

designed to evaluate the performance of OLAP-type applications.

Set Query generates uniform random values for column data. It also only allowed a

single user stream at a time, which was a major disadvantaged compared to TPC-H which

allows multiple concurrent streams. Set Query helped pave the way for the Star Schema

Benchmark, as a true OLAP/data-warehousing benchmark. The Set Query Benchmark

showed that computer resource usage can be high, with varying performance variations

among different products, which highlights how critical performance issues can be. The

Set Query Benchmark was created to assist information systems managers’ gaining in-

sight on performance on their data and strategic data applications. The Set Query bench-

mark differs from the Wisconsin Benchmark and AS3AP in that it primarily focuses on

28



these intensive set queries. Document search, direct marketing, and decision support are

three operations explored within the Set Query Benchmark, as they are the most common

activities found in commercial applications [45].

The Set Query benchmark also allows customization of the price and performance rat-

ing variables, and the weighing of individual queries relative to their expected prevalence,

a key feature that is missing in TPC. After heavy analysis, several query types were chosen

that covered the various workload scenarios. The authors of the Set Query benchmark

also contacted leading decision support manufactures and asked them to evaluate the

query work-flows, and the results were that the Set Query benchmark captured nearly all

decision support work-flows perfectly. TPC is not modeled after real-world scenarios nor

were software manufacturers consulted while TPC was being developed.
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Chapter 4: TPC-H

Presently, there is one widely accepted standards organization whose purpose is to

develop database benchmarking standards. The TPC is a non-profit corporation founded

to define transaction processing benchmarks and database benchmarks [46]. The TPC-H

standard schema has design choices and restrictions imposed that do not adhere to Ralph

Kimball’s view of a data warehouse, nor Codd’s definition of a third normal form schema

[10].

TPC-H is a database decision support system benchmark. It models the activity of

a product supplying business. TPC-H is broken down into two sets of tests, loading the

database with data, and then measuring the system performance during some workload.

During the performance testing, one run occurs to measure the power being used, and

another to measure the throughput. The power test measures the raw query execution

power of the system by a single user in a single session. The throughput test is a metric

of the system’s ability to process the most queries in the least amount of time.

4.1 Metrics

TPC-H provides three types of timing measurements: database load time, measure-

ment interval, and timing intervals. The measurement interval is defined as the total time

needed to execute the throughput test. “Timing intervals are the execution times for each

query or refresh function.” QphH@size is the query per hour performance metric, and is

supposed to weigh evenly “the contribution of the single user power metric and the multi-

user throughput metric [46].” Per-price QphH@Size is a price/performance comparison

between the two systems.



4.2 Schema

The TPC-H schema consists of eight separate and individual tables; PART, PART-

SUPP, LINEITEM, ORDERS, SUPPLIERS, NATION, CUSTOMER, and REGION as de-

picted in Figure 2 . TPC-H’s schema is designed to represent a simple data warehouse

that holds facts about customer, sales, and part suppliers. The TPC-H schema is not the

way in which the real-world is modeled. The ORDERS and LINEITEM tables are nor-

malized in TPC-H [10]. Per [10], in a Kimball data warehouse, LINEITEM AND ORDERS

would be denormalized into a single SALES table. NATION would be denormalized into

tables holding data about regions, customers, and suppliers.
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Figure 2: TPC-H schema

Ad-hoc queries are used to simulate some decision support activity occurring in con-

junction with operational transactions. Since the queries must be fair to all vendors, they
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must be truly ad-hoc and they must be defined in advance. This foreknowledge presents

the vendors with some interesting tuning opportunities. To prevent cheating, TPC-H de-

fines strict rules about the partitioning and indexing strategies allowed. Allowing tricks

like materialized views (caching of earlier queries), would make it simple to fine tune the

database workload. However, in data warehouses, the ability to partition data is a neces-

sity, and disabling query caching can negate the effects of materialized views anyhow.

Partitioning optimizes hardware performance by bypassing table scans and instead jump-

ing directly to the data being queried.

4.3 Indexing

As shown in Table 4 the rules for allowed indexing and partitioning methods are defined

in TPC-H. Clauses 1.4.2.2, 1.4.2.3 and 1.5.4 [46] define the index and partition rules than

vendors may implement.

Table 4: TPC-H indexing rules
Rule Clause

Primary keys may be indexed 1.4.2

Foreign keys may be indexed 1.4.2.3

Partitions are allowed on any table, on only one column of data type
DATE.

1.5.4

The usage of JOIN indices is prohibited 5.2.7

Materialized/indexed views are disallowed 1.5.7

The use of computed columns is not allowed 1.5.7

Vertical partitioning is disallowed 1.5.5

Indices onmore than one column are prohibited (Exception: LINEITEM
(L_ORDERKEY, L_LINENUMBER)

1.4.2.2

TPC-H does not define the underlying index type, meaning that vendors are free to

choose the index types that they wish to implement such as a B-tree, a Hash, General-
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ized Search Tree (GiST), etc. The only exception that is imposed is that the index type

may not be explicitly defined within the Data Definition Language (DDL). DDL is used to

define data structures in SQL systems. For instance, in the MySQL RDBMS, the server

will automatically create indices on columns that are declared as foreign keys. If consis-

tency is followed, this practice is not prohibited. As can be seen in Table 4, many perfor-

mance enhancing tricks are explicitly disallowed (join indexes, materialized/indexed views,

etc.). The only exception is the composite primary key in LINEITEM (L_ORDERKEY,

L_LINENUMBER), and any index on a non-key or foreign key column. Tables can be

indexed heavily without significant increases in storage overhead; however, this is some-

thing that is explicitly disallowed by TPC-H.

4.4 Data Distribution

Section 4.2.3 of TPC-H describes the data distribution. The two tables, LINEITEM and

ORDERS are roughly 80% of the entire data-set [46]. Per Kimball, these tables would

typically make up a single fact table [10]. Data warehouses should represent real-world

scenarios. The data distributions in TPC-H are uniform and there are five regions and

five nations per region. Customers and suppliers per nation are constant [47]. TPC-H is

a random uncorrelated data set. This means that any compression that is gained is not

reflective of real-world scenarios.

4.5 Scaling

The scale factor determines the ratio at which the data loaded into a database. “Scale

factor is used to increase the size of the database throughout the benchmarking process

[46].” When the scale factor is increased, the number of rows added to each table is

increased. TPC-H allows for the following scale factors: 1, 10, 30, 100, 300, 1000, 3000,
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10000, 30000, and 100000. Table 5 illustrates how the TPC-H benchmark table size at a

scale factor of 1, which is equivalent of 1 gigabyte (GB) of disk space. Some tables such

as NATION and REGION have a fixed length cardinality and do not grow with the scale

factor.

Table 5: TPC-H estimated database size at scale factor 1

Table Name Cardinality (rows) Length (bytes) Table Size (MB)

SUPPLIER 10,000 159 2

PART 200,000 155 30

PARTSUPP 800,000 144 110

CUSTOMER 150,000 179 26

ORDERS 1,500,000 104 149

LINEITEM 6,001,215 112 641

NATION 25 128 <1

REGION 5 124 <1

4.6 Criticism

The TPC organization is responsible for defining benchmarking standards and collect-

ing vendor supplied results [46]. TPC-H is a standard to serve as an ad hoc decision

support benchmark [48]. TPC-H has been heavily criticized for not strictly adhering to the

principles of Ralph Kimball’s model of data marts “not allowing freedom in indexing and

partitioning [18, 49, 48].” Kimball argues that a traditional 3NF approach to decision sup-

port systems is not suitable due to poor query performance and usability issues. Kimball

supported the idea that a decision support system should use star schema [10].

TPC-H is not representative of a decision support system and as a result, [50] proposed
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a set of modifications to TPC-H which they call the Star Schema Benchmark. Star Schema

Benchmark re-implements the logical data of TPC-H in a traditional star schema. The Star

Schema Benchmark was designed to test star schema optimization and to address the

problems outlined in TPC-H. The Star Schema Benchmark is significantly based on the

TPC-H benchmark with modifications to improve upon it. The Star Schema Benchmark

implements a star-schema. The The Star Schema Benchmark allows column and table

compression. The Star Schema Benchmark is a simple DSS benchmark consisting of four

query flights and a simple roll-up style hierarchy [50]. The Star Schema Benchmark will

be discussed in further detail in Chapter 5.

TPC-H has complex and unnecessary joins and a pseudo 3NF schema despite the

fact data warehouses should use a star schema [51]. Per Stonebraker, TPC-H was clev-

erly constructed to avoid using a star schema, so that materialized views are rendered

unproductive [51]. The PARTSUPP table is used as an OLTP table, not used in OLAP

or querying. PARTSUPP lists suppliers and parts to give answers on SUPPLYCOST and

AVAILQTY. However, there are seven years of orders, and as orders are filled, business

users and the application need to know how many parts are currently available, so this be-

comes meaningless. AVAILQTY and SUPPLYCOST are never refreshed in TPC-H which

means they have the wrong temporal grain.

The Star Schema Benchmark measures performance of DBMS against a traditional

data warehouse schema. The Star Schema Benchmark implements the same logical

data in a traditional star schema. TPC-H models the data in pseudo 3NF schema [4]. The

Star Schema Benchmark queries are simplified versions of the queries defined in TPC-H,

organized into four query flights [52].

TPC-H has been criticized as being “complicated to set-up and use and that running the

benchmarks takes a substantial amount of time [42].” In DBmBench the authors said that

the TPC-H benchmark fell short of being effective. They stated that the TPC-H benchmark

is too complex, and the configuration is too large and precludes its usage [12]. They
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also criticized the TPC-H benchmark for being designed to test functionality and evaluate

performance on real hardware. However these tests required orders of magnitude larger

execution times for use in both simulation and virtual environments [12].

The vendors and members that make up TPC are free to publish their results; or in

the case of negative results not publish the results. Michael Majdalany an administrator

at TPC, defended this saying “This is a voluntary organization, so we can’t force people

to publish benchmarks...The majority of vendors in the market do participate and publish

benchmarks...[but] some established vendors don’t feel the need to publish benchmarks

because their attitude is that their customers known them already [53].”

Customers want references from companies that fit their description and that have

similar business challenges. Doug Henschen of InformationWeek criticized the TPC and

its vendor reports as being irrelevant, as the vendors used the reports to claim to be X

times faster than their competitor [39]. There have also been accusations that vendors

are publishing their own skewed results to make themselves look better. Curt Monash

performed an investigation of TPC vendor reports and found that most TPC benchmarks

are being run on absurdly unrealistic hardware configurations [54]. Monash found that the

TPC-H benchmark can be greatly influenced by the hardware it’s used on. This influence

is far more than by the DBMS it’s testing [54]. Monash later went on to criticize ParAccel’s

published findings, stating:

“Monash cited a result from ParAccel, where ParAccel performed a thirty

terabyte benchmark on 43 nodes, each with 64 gigabytes of RAM and 24 ter-

abytes of disk. That’s 961,124.9 gigabytes of disk, officially, for a 32:1 disk/data

ratio. By way of contrast, real-life analytic DBMS with good compression often

have disk/data ratios of well under 1:1… Meanwhile, the RAM: data ratio is

around 1:11. It’s clear that ParAccel’s early TPC-H benchmarks ran entirely in

RAM [54].”

Despite the problems in TPC, IT decision makers tend to turn to TPC because their
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results are widely available and up to date. Until recently, the importance of set query

functionality had not been known and not implemented properly in benchmarks.
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Chapter 5: Star Schema Benchmark

5.1 Schema

Several schema modifications were made to the TPC-H to translate TPC-H into a more

efficient star schema form. TPC-H tables LINEITEM and ORDERS were combined into

LINEORDER, a single fact sales table. This model consistently adheres to the Kimball

model [10, 50]. “The LINEORDER table is a 17-column table with information about indi-

vidual orders, with a composite primary key across the ORDERKEY and the LINENUM-

BER attributes [55].” Other attributes on the LINEORDER table include the foreign key

references to the CUSTOMER, PART, SUPPLIER, and DATE tables, as well as attributes

for each order including priority, quantity, price, and discounts applied. “This simplifies the

schema considerably, both for writing queries and computing queries as the two largest

tables of TPC-H are not pre-joined [52].”

Figure 3 illustrates the Star Schema Benchmark design. The arrows from the outer

dimensional tables point towards the inner fact table.



Figure 3: Star Schema Benchmark schema

The PARTSUPP table is removed since “it would belong to a different datamart than the

ORDERS and LINEITEM data [50].” The reason that PARTSUPP is dropped is because

it contains varying temporal data.

Temporal data are data that varies over time. Typically, databases have limited capac-

ity to carry temporal information as they store current data snapshots [56]. However, in

real-world applications, there are definite needs for both current and historical data. One

example of this need is applications existing in the financial sector. Temporal databases

efficiently store a time series of data, usually by having some fixed timescale and then

storing only changes in the measured data. The grain is defined to mean exactly what

one fact table record represents [10]. Temporal is the frequency in which the data are
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tracked.

The LINEITEMS comment attributes, orders, and shipping instructions are dropped.

The reason for this is “because a warehouse does not store such information in a fact

table...They cannot be aggregated and take significant storage [50].”

A table named DATE was created to serve as a dimensional table. However, DATE

is a reserved word in most DBMS [57]. If a better table name had been chosen, it would

be easier to avoid SQL errors, or having to wrap the table name in back-tick identifiers.

Dimensional tables were created for CUSTOMER, PART, SUPPLIER, and DATE. Tables

to encompass SHIPDATE, RECEIPTDATE, and RETURNFLAG, should be added. How-

ever, O’Neil notated that to accomplish this would be “too complicated a schema for our

simple star schema benchmark [50].” Since the Star Schema Benchmark prohibits self-

joins or sub-queries referencing LINEORDER, Star Schema Benchmark mainly focuses

on queries that reference LINEORDER only once. [50]. Star Schema Benchmark tries

to support the spirit of the queries that appear in TPC-H [50]. Star Schema Benchmark

contains LINEORDER, a single fact table. It also breaks up the TPC-H schema into four

dimension tables (CUSTOMER, DATE, PART, SUPPLIER). “It is common practice to com-

bine LINEITEM and ORDER in TPC-H to get LINEORDER in Star Schema Benchmark.

LINEORDER represents one row for each one in LINEITEM [50].”

As seen in Figure 3, the PARTSUPP table was removed to adhere to Kimball’s prin-

ciples [50]. LINEITEM and ORDERS are composed of fine temporal grain which causes

an issue, as PARTSUPP is composed with a periodic snapshot grain [50]. Kimball de-

fines Periodic snapshot grains as “fact tables that summarize many measurement events

occurring over some period, such as a day, a week, or a month [10].” Because of the

difference in temporal grain between PARTSUPP and LINEORDER, problems arise with

PS_SUPPLYCOST as the data would not remain constant for past years [50].

Rows in PARTSUPP are not augmented when rows are added or augmented to the

LINEORDER table as PARTSUPP is frozen in time. If PARTSUPP and LINEORDER are
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treated as separate fact tables. This would allow isolating queries and forgoing the joins

altogether together [50]. Per O’Neil, “This is done in all but one of the queries where PART-

SUPP is in the WHERE clause (Q1, Q11, Q16, Q20) but not in Q9, where PARTSUPP,

ORDERS, and LINEITEM all appear Q9 is intended to find, for each nation and year, the

profits for certain parts ordered that year [50].” One criticism is that it is more than likely

that the PS_AVAILQTY would not have remained constant during all these past years.

“One reason for having the PARTSUPP is to break up what might be a star schema and

so that query plans do not appear to be too simple [50].”

“The presence of a Snapshot PARTSUPP table in this design seems suspicious any-

way, as if placed there to require a non-trivial normalized join schema [50].” O’Neil noted

that in the TPC-H benchmark the column “PS_AVAILQTY is never updated, not even dur-

ing the refresh that inserts new rows into the ORDERS table [58].” In the Star Schema

Benchmark data warehouse, it is more acceptable to drop the PARTSUPP table, replac-

ing it with a new column SUPPLYCOST for each LINEORDER Fact row [58]. Since data

warehouses contain only derived data, “there is no reason to normalize to guarantee one

fact in one place [58].”

It is expected that subsequent orders for the same PART and SUPPLIER may repeat

this SUPPLYCOST. If the last PART of some type were to be modified or deleted, a result

in the loss of the original price charged may occur. Star Schema Benchmark adds the

LO_PROFIT column to LINEORDER. This additional column allows for simpler queries,

and a decrease in query execution time [50].

The LINEITEM and ORDERS table were merged into a single sales fact table called

LINEORDER, reducing the need for many complex joins. “All columns in ORDERS and

LINEITEMS that make us wait to insert a Fact row after an order is placed onORDERDATE

is dropped [58].” One example given is that business decision makers do not want to wait

“until we know when the order is shipped, when it is received, and whether it is returned

before we can query the existence of an order [58].”
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Per Rabl, NATION and REGION were denormalized into the Customer and Supplier

tables with a city column added to both tables [52]. This simplifies the schema consid-

erably. This eases writing and computing queries, seeing as the largest two tables of

TPC-H are pre-joined [58]. “Queries do not have to perform the join and users writing

queries against the schema do not have to express the join in their queries [59].” The

NATION table and REGION table may be considered appropriate in an OLTP system to

enforce integrity. However, in a data warehouse system, the data are cleaned prior to

being loaded. Dimension tables are not so limited in space usage as are the fact tables

[60]. NATION and REGION are added to the ADDRESS columns [50].

5.1.1 Differences from TPC-H

LINEITEM and ORDER are combined to make a LINEORDER table, which eliminates

the need for many complex joins [58]. “The grain is the business definition of what a

single fact table record represents [10].” The PARTSUPP table of TPC-H has a grain mis-

match, and was removed from Star Schema Benchmark. P_RETAILPRICE was dropped

because the retail price is likely to change, often changing “too frequently to be held in a

dimension [10].” P_NAME was changed from being a 55-byte character column, to a 22-

byte character column. In TPC-H, P_NAME is populated by concatenating five different

colors together. “It is assumed that this 55-byte length was intended to make the PART

table larger and more difficult to query [50].” Star Schema Benchmark consists of fewer

queries than TPC-H and has more relaxed requirements on which configurations of tuning

are allowed and those which are forbidden. It is easier to implement.

In addition to dropping the column P_RETAILPRICE, the columns C_ACCTBAL and

P_COMMENT and O_COMMENT were also dropped. P_COMMENT and O_COMMENT

are unparsed comment text and as such have no business in a data warehouse query

[50]. TPC-H P_BRAND has 25 distinct values which is small for a set of brands for a data

warehouse [50]. P_BRAND is replaced with P_BRAND1 which holds 1000 values, subdi-
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viding each P_CATEGORY into forty values. Star Schema Benchmark introduces a DATE

dimension table, which is standard for a sales data warehouse [10]. The DATE dimension

table providers numerous value attributes for querying such as DAYOFWEEK, MONTH,

and SELLINGSEASON. These schema modifications result in a proper star schema data

mart where the LINEORDER table serves as the middle and has dimension tables CUS-

TOMER, PART, SUPPLIER, and DATE.

5.2 Queries

There are multiple reasons for abandoning the TPC-H queries. Many TPC-H queries

do not translate directly into Star Schema Benchmark. Only a few TPC-H queries can be

implemented in Star Schema Benchmark with only minimal modification. The queries are

constructed to cover the range of tasks performed by an important set of Star Schema

queries [58]. This assists users in deriving a performance rating from the weighted data

subset in which they expect to use in production [58]. “It is difficult to provide true func-

tional coverage with a small number of queries, but Star Schema Benchmark at least tries

to provide queries that have up to four dimensional restrictions [58].” Star Schema Bench-

mark attempts to vary the selectivity, especially when many fact table rows are retrieved.

Star Schema Benchmark attempts to add both functional and selectivity coverage [58].

5.2.1 Query Flights

The Star Schema Benchmark contains four flights of queries whereas TPC-H contains

twenty-two queries. Each flight query is made up of three to four queries. Each query has

varying selectivity. Per Rabl, Star Schema Benchmark “introduces selectivity hierarchies

in all dimension tables [52].” Query flights are modified TPC-H query sets, modified for

variation of selectivity. A flight is made up of a set of queries that would possibly be needed,

such as a drill down [4]. These query flights and their descriptions are depicted in Table 6.
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Table 6: Star Schema Benchmark query flights

Query Flight Description

Q1 Calculates revenue increase by year as a result of removing

certain discount codes in a range of products.

Q2 Compares revenue for certain products, suppliers in a defined

region, aggregated by product and order year.

Q3 Produces a report of revenue based on transactions from the

LINEORDER table, grouped by the customer’s nation and sup-

plier, limited by region and over some defined time period.

Q4 The most complex flight. It joins all the tables together to sim-

ulate drilling down into region and manufacturer. Retrieves

aggregate fit grouped by year and customer nation.

5.2.2 Caching

Query caching, and overlap of data being accessed between Q1 and Q2 in the Star

Schema Benchmark reduces the number of disk accesses necessary [58]. Attempts to

minimize the effects of overlap are in place, however in some situations it may become

necessary to introduce steps to reduce caching effects of one query on another [50].

5.2.3 Compression

The Star Schema Benchmark provides freedom in the compression of column values,

so long as the data-set retrieved contains equal values specified in the Schema Definition

Language (SDL) [50]. The importance of data compression and how it relates to database

storage is explained in Section 2.8.
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5.3 Data Distribution

The Star Schema Benchmark’s data are uniformly distributed like that of TPC-H. Selec-

tivity hierarchies are present in all dimension tables like the manufacturer/brand hierarchy

present in the TPC-H benchmark [52]. SSB-DBGEN is a tool like TPC-H DBGEN. SSB-

DBGEN helps create uniformly distributed data and assists in seeding the database, which

decreases the time between transactions and each test suite [61]. However, adaption to

different data distributions is not easy with SSB-DBGEN since the meta-data and actual

data generation implementations are not segmented [52].

5.4 Scaling & Metrics

Like the TPC-H benchmark, the Star Schema Benchmark generates data at different

scales factors. Unlike TPC-H, Star Schema Benchmark data are generated proportionally

to its scale factor. The PARTS table scales logarithmically not linearly [50]. In addition

to the metrics included in the TPC-H benchmark, the Star Schema Benchmark also mea-

sures performance in the areas listed below.

1. The memory space.

2. Processor model.

3. Number of processors.

4. Breakdown of schema by:

(a) Processor

(b) Disk setup.

(c) Other parameters of the system that interfere with performance
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Chapter 6: Evaluation of the Star

Schema Benchmark and the TPC-H

Benchmark

We chose two methodologies for evaluating the Star Schema Benchmark as a re-

placement decision support system benchmark for TPC-H. The first method involved map-

ping SSB queries to their TPC-H counterparts. The average execution times on different

database vendors at varying scale factors were recorded per query, unmodified and again

with indices, added as this technique would be allowed in a traditional data warehouse.

The average execution time does not provide us with an apples-to-apples comparison as

the schemata and queries are greatly different. However, the average execution times

can be used in conjunction with the query mapping to determine work-flow and work-load

coverage. They can be used to compare average suite execution times between two sys-

tems to see if there is a trade off on work-flow coverage and average suite execution time.

Mapping allows us to determine work-flow and work-load coverage for relevance, which

is used in our second method covered within Section 6.2.

We wanted to answer the question Which benchmark adhered closest to Gray’s Laws?

Our second method involved comparing Gray’s Laws of Good Benchmarking character-

istics, as defined in Table 1, against TPC-H and Star Schema Benchmark. Each charac-

teristic was given a weight. Each benchmark was then evaluated and scored.



6.1 Mapping

6.1.1 Environment

We utilized Amazon Web Services (AWS) Elastic Computer Cloud (EC2) servers.

Linux CentOS 7 64-bit Amazon Machine Image (AMI) was used for the host operating

system. Linux was chosen as it does not require licensing to use, is open-source, widely

supported, and allowed us to run our chosen DBMSs as they are platform independent.

We chose these DBMS vendors as they are open source and platform independent,

and offer community editions that do not require licensing. Each database vendor was

installed using the CentOS package management system using the default configuration

operations.

To install MySQL 5.7 and PostgreSQL 9.6 server on CentOS 7, the user is required

to add the development repository for community release editions, since RHEL/CentOS

tend to run a few versions behind. Figures 4 to 6 depict the installation process used to

install each of these DBMSs. To provide fairness, we did not tune any of the vendor’s

configuration files, leaving them as stock configurations.

Installation instructions for installing MySQL community server edition can be seen in

Figure 4.

$ sudo rpm -Uvh http://dev.mysql.com/get/mysql-community-release

-el7-5.noarch.rpm

$ sudo yum -y install mysql-community-server

Figure 4: MySQL Server 5.7 installation instructions on CentOS 7

PostgreSQL sever installation instructions can be seen in Figure 5.
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$ rpm -Uvh https://download.postgresql.org/pub/repos/yum/9.6/

redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm

$ sudo yum -y install postgresql-server

Figure 5: PostgreSQL server installation instructions on CentOS 7

SQLite installation instructions can be seen in Figure 6.

$ sudo yum -y install sqlite

Figure 6: SQLite server installation instructions on CentOS 7

The specification of our EC2 hosting environments can be seen in Table 7. AWS offers

several tiers of EC2, we chose to utilize tier 2 micro, small, and medium sized.

Table 7: Experiment execution environment

EC2 Type CPU GB RAM Operating System

t2.micro 1 1 Linux

t2.small 1 2 Linux

t2.medium 2 4 Linux

6.1.2 Query Mapping

Ten of the twenty-two TPC-H queries were mapped to the closest matching SSB query

flight and query. Some TPC-H queries have direct mappings to SSB queries. Queries

which did not have a direct mapping. Those unmatched queries were paired based on the

query’s business logic and the complexity of the query. For each DBMS, two databases

were created; one database to store the TPC-H schema, and the other to store the SSB

schema. Next, DBGEN and SSB-DBGEN were utilized to seed the databases with data
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using a SF of 1. The ten query pairs and their randomized parameters generated by the

QGEN utilities were executed one hundred times and the results recorded. This process

was repeated using a scale factor of 10.

As a control, the schemata of each benchmark were not altered, except for the primary

key. The mapping of TPC-H to SSB queries can be seen in Table 8. Although TPC-H Q3

does not map to a specific query flight, it was chosen as it has similar business logic as

well as similar query structures, and query complexity to SSB Q2.

Table 8: TPC-H to Star Schema Benchmark query mapping
Query TPC-H SSB

1 Q6 Q1.1
2 Q6 Q1.2
3 Q6 Q1.3
4 Q3 Q2.1
5 Q3 Q2.2
6 Q3 Q2.3
7 Q5 Q3.1
8 Q5 Q3.2
9 Q5 Q3.3
10 Q5 Q3.4

1. TPC-H Q6 & SSB [Q1.1, Q1.2, Q1.3] Forecasts revenue change at various levels of

temporal grain.

2. TPC-HQ3 & SSB [Q2.1, Q2.2, Q2.3] Deals with shipping priority, at different levels of

granularity on order date and shipping date. Compares revenues for product classes

in a region, by class and year of order.

3. TPC-H Q5 & SSB [Q3.1, Q3.2, Q3.3, Q3.4] Total revenue for transaction during time

period by customer nation, supplier nation, and year and local supplier volume.

The output from the EXPLAIN, as well as the WHERE clauses from each of the ten

queries in both TPC-H and SSB were analyzed. From this analysis, we determined which
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columns would benefit from indexing, and created indices on these columns. After apply-

ing the indices to the columns determined above, the experiments were re-run and the

data collected.

We added indices on 20 columns to 5 tables on the Star SchemaBenchmark schemata,

which can be seen in Table 9. Every column referenced in the WHERE clause of the Star

Schema Benchmark query flights was included resulting in 100% index coverage. We

added 18 indices to columns across 8 tables to the TPC-H schemata as represented in

Table 10. Like the Star Schema Benchmark indexing choices, every column specified in

the WHERE clause was covered. However, 15 of the 18 (83.33%) indices were only used

for one query compared to the Star Schema Benchmark where 33.33% of the indices were

used once.
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Table 9: SSB query flight indices

Table Column Queries

CUSTOMER C_CITY 3.3, 3.4

CUSTOMER C_CUSTKEY 3.2, 3.3,3.4

CUSTOMER C_NATION 3.2

DATE D_DATEKEY 1.2, 1.3, 2.1, 2.2, 2.3, 3.3, 3.4

DATE D_WEEKNUMINYEAR 1.3

DATE D_YEAR 1.1, 1.3, 3.1, 3.2, 3.3

DATE D_YEARMONTH 3.4

DATE D_YEARMONTHNUM 1.2, 3.4

LINEORDER LO_CUSTKEY 3.1, 3.2, 3.3, 3.4

LINEORDER LO_DISCOUNT 1.1, 1.2, 1.3

LINEORDER LO_ORDERDATE All

LINEORDER LO_PARTKEY 2.3

LINEORDER LO_QUANTITY 1.1, 1.2,

LINEORDER LO_SUPPKEY 2.2, 3.1, 3.2, 3.3, 3.4

PART P_BRAND1 2.2, 2.3

PART P_CATEGORY 2.1

PART P_PARTKEY 2.1, 2.2, 2.3

SUPPLIER S_CITY 3.3, 3.4

SUPPLIER S_REGION 2.1, 2.2, 2.3, 3.1

SUPPLIER S_SUPPKEY 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4
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Table 10: TPC-H indexing

Table Column Queries

CUSTOMER C_MKTSEGMENT Q3

LINEITEM C_CUSTKEY Q3, Q5

LINEITEM L_DISCOUNT Q6

LINEITEM L_ORDERKEY Q3,Q5

LINEITEM L_QUANTITY Q6

LINEITEM L_SHIPDATE Q3, Q5, Q6

NATION N_NATIONKEY Q2

NATION N_REGIONKEY Q2

ORDERS O_ORDERDATE Q3

PART P_PARTKEY Q2

PART P_SIZE Q2

PART P_TYPE Q2

PART PS_SUPPKEY Q2

PARTSUPP PS_SUPPYCOST Q2

PARTSUPP PS_PARTKEY Q2

REGION R_REGIONKEY Q2

SUPPLIER S_SUPPKEY Q2

SUPPLIER S_NATIONKEY Q2

53



6.2 Comparison of the Star Schema Benchmark and

TPC-H

Next we evaluated both TPC-H and SSB against Gray’s Four Laws of Good Bench-

marks. The results of this comparison can be seen in Table 14. We weighted each of law

and gave scores accordingly. The scores of each category as well as the overall ranking

can be seen in Table 11.

We ranked Relevance the highest because a DSS that does not model real-world sce-

narios are useless. Scalability was ranked second highest as a DSS benchmark must be

able to accurately predict how the system will perform now and as it grows, allowing for the

correct decisions to be made now, instead of costly decisions later. Portability was ranked

lower since if a DSS benchmark is based around ANSI SQL then it should not be difficult

to move from one DBMS vendor to another. Simplicity was ranked the lowest, per Gray’s

definition simplicity refers to the output of the results. Given that SSB is a derivative of

TPC-H and has similar metrics, we felt this rank definition did not apply. Instead we mod-

ified this definition to be a measure of simplicity in terms of design, business coverage,

and number of queries during execution.

Table 11: Decision support system characteristics ranking
Point Weight %

Relevance 40

Portability 20

Scalability 30

Simplicity 10
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Chapter 7: Results

7.1 Query Mapping

Our tests for TPC-H showed that with a scale factor of 1 and the default out of the

box schema configuration that MySQL had an average execution time of 21.7 seconds,

PostgreSQL 20.0 seconds, and SQLite 18.76 seconds. After applying the indexing to the

scale factor 1 TPC-H schema, the averages dropped to 16.275 seconds, 16.4 seconds,

and 17.971 seconds respectively. It is interesting to note that the average execution time

did not translate at the same scale from the first test to the second. This means that some

DBMS can use indexes more efficiently than others.

Figure 7 show the average execution time of TPC-H SF 1 without modifications. SQLite

was the fastest DBMS in 9 out of 10 queries, only being beaten in Q6 by MySQL.



Figure 7: TPC-H average query execution time at scale factor 1 without modifications

After applying indices to the schemata there was a decrease across the board in av-

erage query execution time (see Figure 8). SQLite continued to be the fastest performing

DBMS, having the fastest average execution time in 9 out of 10 queries. MySQL remained

faster than PostgreSQL in 9 out of 10 queries. The distance between average execution

times amongst MySQL and PostgreSQL increased significantly after adding indices.
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Figure 8: TPC-H average query execution at scale factor 1 after applying indices

At SF 10 for TPC-H without schema modifications SQLite was the top performing

DBMS in 5 queries, MySQL 4 queries, and PostgreSQL 1 query (see Figure 9). This

result shows that from SF 1 to SF 10, SQLite remained the top performing DBMS in terms

of average query execution time. However, these results also show that the number of

queries that SQLite was top performing in dropped from 9/10 to 5/10. This drop in the

number of winning queries is in line with what would be expected per the SQLite docu-

mentation [62].
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Figure 9: TPC-H average query execution time at scale factor 10

As can be seen in Figure 10, after applying indices to the TPC-H SF 10 tables, SQLite

transitioned from being the top performing DBMS to the worst performing. If the bench-

mark results of TPC-H at scale factors 1 and 10 without index modifications were used to

choose a DBMS based on speed, SQLite would be the clear top performing DBMS. This

further illustrates the importance of allowing indexing and partitioning in decision support

system benchmarks.
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Figure 10: TPC-H indices average query execution time at scale factor 10

The TPC-H results showed that SQLite was the top performing DBMS, based on av-

erage query execution time. Choosing SQLite for an enterprise DSS/Data Warehouse

(DW) would be a mistake. Per SQLite’s own documentation it is often better to choose a

RDBMS system for client/server applications, high-volume websites, large data-sets, or

high concurrency. SQLite suggests that if the application’s data are separated from the

application by a network, then SQLite is not a good solution [62]. As mentioned in [33],

there are many advantages to housing an application’s database on separate hardware

than the application is running on, which also serves as a strike against SQLite.

Our SSB tests showed that with a scale factor of 1 and the default out of the box schema
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configuration that MySQL had an average execution time of 19.8 seconds, PostgreSQL

16.2 seconds, and SQLite 16.2 seconds.

Figure 11 shows the average execution time of our Star Schema Benchmark test at

scale factor 1. In contrast to our TPC-H SF 1 test, MySQL emerged as the fastest DBMS,

beating PostgreSQL and SQLite.

Figure 11: Star Schema Benchmark average query execution time at scale factor 1 without

modification

After applying the indexing to the scale factor 1 SSB schema, the averages dropped

to 14.64 seconds, 14.76 seconds, and 16.17 seconds respectively. As can be seen in

Figure 12, the average query execution time dropped, but not at the same rate as in our
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TPC-H tests, further demonstrating the impact of indexing on query performance.

Figure 12: Star Schema Benchmark average query execution time at scale factor 1 after

applying indices

Our results for the SSB showed that SQLite was the lowest performing DBMS at

all scale factors, with and without indices being applied. At SF 1 without modifications,

MySQL was the fastest DBMS for 6 out of the 10 queries run. After the indices were ap-

plied, the average execution time decreased across the board for each DBMS. With index

modifications in place, MySQL remained the fastest performing DBMS while performing

faster in 7 out of 10 queries. This result further demonstrates the influence of indexing on

performance.
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Figure 13 shows that at SF 10 without modification, MySQL was the top performing

DBMS in 6/10 queries, followed by 4/10 for PostgreSQL. As expected SQLite was not the

fastest DBMS in any of the 10 queries.

Figure 13: SSB average query execution time at scale factor 10

After applying our index choices to the SF 10 Star Schema Benchmark tables, the

average execution time decreased. MySQLwas the top performing DBMS in 9/10 queries,

gaining an additional 3 queries from the non-modified tests. PostgreSQL was the fastest

in 1/10 queries. The results are show in Figure 14.
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Figure 14: Star Schema Benchmark indices average query execution time at scale factor

10

The Star Schema Benchmark average query execution times show that both with and

without modifications to the indices, MySQL remained the top performing DBMS, while

SQLite consistently was ranked as the worst performing DBMS.

The queries defined in the TPC-H benchmarking standard are not written in a way

so that database management systems can optimize query planning and therefore are

inherently skewed. Here we examine the query path for TPC-H Q3 running on MySQL

out of the box configuration, and nomodifications outside of the traditional TPC-H schema.

The unmodified query generated for TPC-H Q3 as seen in Figure 15 is a poorly written
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query.

1 SELECT

2 TOP 10 L_ORDERKEY,

3 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,

4 O_ORDERDATE, O_SHIPPRIORITY

5 FROM

6 CUSTOMER, ORDERS, LINEITEM

7 WHERE

8 C_MKTSEGMENT = 'BUILDING'

9 AND

10 C_CUSTKEY = O_CUSTKEY

11 AND

12 L_ORDERKEY = O_ORDERKEY

13 AND

14 O_ORDERDATE < '1995-03-15'

15 AND

16 L_SHIPDATE > '1995-03-15'

17 GROUP BY

18 L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

19 ORDER BY

20 REVENUE DESC, O_ORDERDATE

Figure 15: TPC-H Q3 unmodified WHERE clause

As mentioned in Section 2.3, for proper optimization and performance it is important

to have a mastery of the business data before beginning to construct queries. The max-

imum difference between O_ORDERDATE and L_SHIPDATE is 121 days. Utilizing this

knowledge of the data, we appended:

AND L_SHIPDATE <= dateadd(dd,122, cast('1995-03-15' as date)
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to TPC-HQ3 after line 16, which resulted in a significantly different query optimization plan.

Figure 16 shows our modified TPC-H Q3 after adding the WHERE clause comparison

predicate at line 18.

1 SELECT
2 TOP 10 L_ORDERKEY,
3 SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS REVENUE,
4 O_ORDERDATE, O_SHIPPRIORITY
5 FROM
6 CUSTOMER, ORDERS, LINEITEM
7 WHERE
8 C_MKTSEGMENT = 'BUILDING'
9 AND

10 C_CUSTKEY = O_CUSTKEY
11 AND
12 L_ORDERKEY = O_ORDERKEY
13 AND
14 O_ORDERDATE < '1995-03-15'
15 AND
16 L_SHIPDATE > '1995-03-15'
17 AND
18 L_SHIPDATE <= dateadd(dd,122, cast('1995-03-15' as date)
19 GROUP BY
20 L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
21 ORDER BY
22 REVENUE DESC, O_ORDERDATE

Figure 16: TPC-H Q3 - modified WHERE clause depicting restriction on L_SHIPDATE

Figure 17 shows the TPC-H Q3 query plan before making the index modifications. This

plan begins with a full table scan across the CUSTOMER table, resulting in approximately

148,000 rows being scanned, followed by two nested join loops to find thematching orders,

and order line items. In total 6 rows are returned from. The query optimizer then groups

the results by L_ORDERKEY, O_ORDERKEY, O_SHIPPRIORITY and sorts the records

on the highest revenue descending and order date descending.
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Figure 17: TPC-H Q3 unoptimized query plan

Figure 18 shows the TPC-H Q3 query plan after making the index modifications. Simi-

lar to the unoptimized plan, a full table scan occurs, however only 61,000 rows are required

to be scanned to return the same six rows. As the size of the database increased the per-

formance from the unoptimized query would begin to decrease. For higher values of the

scale factor the system may become unstable or inoperative.
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Figure 18: TPC-H Q3 optimized query plan with restriction on L_SHIPDATE

As can be seen in the TPC-H Q3 query plans shown in Figures 17 and 18, the TPC-

H benchmark penalizes vendors for not optimizing to schemata that would not be found

in the real-world. Both the original and modified TPC-H Q3 queries retrieve the same 6

orders, however, as can be seen in Figure 18, only 61,000 rows need to be scanned to

return the same rows. No indices were added for this test. No query optimizer tuning

or tricking occurred. The only difference between the two query paths is a result of the

AND clause we added on L_SHIPDATE. This further supports the claim that TPC-H is

intentionally designed overly complicated, echoing Stonebraker’s criticisms.

7.2 Query Mapping Comparison

Our SQL benchmarking analysis outlined in Section 6.1 are not true one-to-one com-

parisons. We have mapped the queries as closely as possible. However, since the

schemata are different, it is impossible to generate a true apples-to-apples comparison.
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What can be measured between the two benchmarks is: how well the query path

optimizer is able to perform, how the benchmark performs as the scale factor increases,

coverage of business work-flow scenarios, and query simplicity.

Thirteen of TPC-H’s 22 queries contain at least one correlated subquery, several con-

tain multiple. This is a bad practice that is completely avoidable using JOINs. The Star

Schema Benchmark contain correlated subqueries. As avoiding correlated subquery is a

defined and well known process, points were reduced from TPC-H in both the Relevance

and Simplicity categories. This fact adds weight to Stonebraker’s claims.

Relevance: Gray says that it must accurately predict peak performance while oper-

ating within that problem domain. TPC-H is no longer considered relevant as it does not

reflect industry best practices nor does the model that is presented within model reflect

real-world scenarios that would be found in a typical data warehouse. During the mapping

process we realized that TPC-H does not have a scenario that covers orders that have

not shipped yet. This occurs because of the way in which the TPC-H schema is designed.

TPC-H requires that an order be complete, having been shipped, received, and if it has

been returned, a returned flag set. Business users may need to query orders before they

shipped. TPC-H contains many columns such that contain comments, shipping instruc-

tions, and other fields that are irrelevant and cannot be used for decision making such as

comment and shipping instruction columns. There are no aggregations or role-up func-

tions that can be used on comment or text columns. SSB adds columns for LINEORDER

supply cost for a given part, LINEORDER order supply cost summing for orders, and total

order price. The Star Schema Benchmark is modeled after an actual real-world application

which serves as a functioning template in many enterprise applications.

Portability: Both TPC-H and SSB are built around ANSI-SQL which means that they

are theoretically portable to any SQL vendor if the vendor supports ANSI-SQL. In some

cases, tweaks may be required for compatibility, but for all intents and purposes both

should be considered portable.
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Scalability: TPC-H 4.1.3.1, TPC-H does not scale past SF 100,000 which is a recog-

nized limit and downfall. The Star Schema Benchmark has no such defined scale factor

limitation, and due to the changes in the way data are distributed, it is assumed that it easily

surpasses TPC-H. As the scale factor increases, the data becomes less meaningful.

There is a negative correlation between the benchmark’s relevance and the size of the

scale factor. As seen in Table 12, as the scale factor increases, the size of the CUSTOMER

table grows. At the max scale factor for TPC-H, the CUSTOMER table grows to 15 billion

customers.

Table 12: TPC-H CUSTOMER table scale factor

Scale Factor Rows

1 150K

10 1.5M

100 15M

1,000 150M

100,000 15B

Like the CUSTOMER table, a negative correlation also exists between relevance and

the size of the scale factor. Table 13 shows that as the PART table grows in proportion

to the scale factor. Once the scale factor reaches the predefined TPC-H maximum, there

are 20 billion parts in the database.
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Table 13: TPC-H PART table scale factor

Scale Factor Rows

1 200K

10 2M

100 20M

1,000 200M

100,000 20B

It makes sense that the tables LINEITEM and ORDERS would need to scale large, but

to have all the tables (with the exception of NATION and REGION which remain constant)

grow at the same does not make sense.

Simplicity: TPC-H is self-described as a simple decision support system benchmark

[46], however as shown in Chapter 4, both the schema and query flights are far from

simple. In contrast, the Star Schema Benchmark drastically reduces complexity of the

database schema, eliminates unnecessary joins, and reduces the number of queries needed

to successfully benchmark the system.

The results from our comparison against Gray’s laws are listed in Table 14. These

results show that the Star Schema Benchmark adheres more closely to Gray’s laws of

good benchmarks the TPC-H benchmark does.

Table 14: Comparison of the characteristics of decision support system benchmarks

Relevant Portable Scalable Simple Score

TPC-H 58% 78% 61.5% 65% 63.75% 7

SSB 88% 78% 88% 91.5% 86.35% 3
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7.3 Research Resource Limitations

We faced several limitations throughout the research conducted in this thesis. Due to

financial restrictions, such as hardware rental, operating system licensing, licensing costs

of software systems such as Oracle DB and Microsoft SQL Server, we decided to utilize

Amazon Web Services Micro free-tier environments, as well as running on (free and open

source) Linux operating systems.

Table 15 shows an estimated break down of including Microsoft EC2 instances with

Oracle DB and Microsoft SQL Server based on an estimated 80 hours of AWS EC2 us-

age. We averaged 334.14 hours per instance configuration running tests, re-running, and

verifying data.
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Table 15: Estimated cost of open source DBMS vs enterprise DBMS on EC2 Tier 2

Type CPU RAM OS Hours Price DBMS DB

Cost

Total

Cost

micro 1 1 Linux 80 $0.01 MySQL $0.00 $1.04

micro 1 1 Linux 80 $0.01 PostgreSQL $0.00 $1.04

micro 1 1 Linux 80 $0.01 SQLite $0.00 $1.04

micro 1 1 Windows 80 $0.07 SQL Server $0.02 $5.46

micro 1 1 Windows 80 $0.07 Oracle $0.04 $5.48

small 1 2 Linux 80 $0.03 MySQL $0.00 $2.08

small 1 2 Linux 80 $0.03 PostgreSQL $0.00 $2.08

small 1 2 Linux 80 $0.03 SQLite $0.00 $2.08

small 1 2 Windows 80 $0.14 SQL Server $0.04 $10.92

small 1 2 Windows 80 $0.14 Oracle $0.07 $10.95

medium 2 4 Linux 80 $0.05 MySQL $0.00 $4.16

medium 2 4 Linux 80 $0.05 PostgreSQL $0.00 $4.16

medium 2 4 Linux 80 $0.05 SQLite $0.00 $4.16

medium 2 4 Windows 80 $0.27 SQL Server $0.07 $21.83

medium 2 4 Windows 80 $0.27 Oracle $0.14 $21.90

Totals 1,200 $1.23 $0.37 $98.37

Using the actual average of 334.14 hours and the pricing quoted in Table 15, we used

the AWS bill calculator, and arrived at an estimate of $13,748.21 which can be seen in
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Figure 19.

Figure 19: Estimated usage cost for Oracle and Microsoft SQL Server (Windows) on EC2

Tier 2

The actual usage and cost is listed in Table 16. The time difference between estimated

and actual time spent comes from the distribution algorithm and how TPC-H scales. As

the SF increased, the size of the database grew linearly, which required additional memory

and CPU processing power (and did not grow linearly as we had expected).
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Table 16: Actual total usage and cost per hour for Linux OS on EC2 Tier T2

Type CPU RAM Hours Price DBMS DB

Cost

Total

Cost

micro 1 1 224.00 $0.01 MySQL $0.00 $2.91

small 1 2 363.78 $0.03 MySQL $0.00 $9.46

medium 2 4 538.95 $0.05 MySQL $0.00 $28.03

micro 1 1 255.36 $0.01 PostgreSQL $0.00 $3.32

small 1 2 414.70 $0.03 PostgreSQL $0.00 $10.78

medium 2 4 219.52 $0.05 PostgreSQL $0.00 $11.42

micro 1 1 227.36 $0.01 SQLite $0.00 $2.96

small 1 2 472.76 $0.03 SQLite $0.00 $12.29

medium 2 4 380.80 $0.05 SQLite $0.00 $19.80

Totals 3,097.23 $0.27 $0.00 $100.96

Given that open source operating systems like Linux, and open source databases like

MySQL, SQLite, and PostgreSQL are widely used in production application environments,

we felt that the additional cost of testing TPC-H and SSB against would not be justified.
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Chapter 8: Conclusion

The purpose of the research conducted within this thesis was to show whether Star

Schema Benchmark can serve as a replacement for the TPC-H DSS benchmark. To

serve as a replacement the SSB needs to perform at or beyond the same level of TPC-H.

Our research has shown that TPC-H has many problems. As mentioned in Section 4.6,

TPC-H has been criticized heavily by authorities on database benchmarking and data

warehousing. We have shown that TPC-H penalizes vendors who are unable to optimize

for poorly designed schema or the use of correlated subqueries. TPC-H heavily limits

indexing capabilities and partitioning options.

It is our conclusion that the experiments conducted throughout this research have suc-

cessfully shown that:

• TPC-H

– is problematic

– out of date and no longer relevant

– intentionally overly complex

– does not model a traditional DSS warehouse

– does not cover all business decision work-flows

– penalizes vendors for not optimizing to schemata that would not be found in the

real-world

– does not adhere to industry standard SQL best practices

• Star Schema Benchmark

– is a better DSS benchmark than TPC-H

– offers a much simpler schema and query execution set



– models a real-world scenario

– covers all business decision work-flows

– adheres to the Kimball definition of a data warehouse

Star Schema Benchmark helps to level the playing field so that IT decision makers

and software architects can make informed choices when deciding which DBMS solution

to implement. Using the Star Schema Benchmark as a drop-in replacement to TPC-H

allows for more accurate benchmarks, and potentially saves companies millions of dollars

as seen in the preface.

As mentioned in Section 7.3, there were several limitations to our experiments due to

cost. Our results and conclusion are based on open-source operating systems and open

source database vendors. We would like to expand our current research to include paid

operating systems such as Windows and Mac OSX, as well as enterprise paid license

DBMSs such as Oracle and SQL Server. This future work could validate the research

conducted in this thesis and apply it to all systems.
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