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Abstract 

Thioflavin T is a fluorescent probe used to monitor formation of cross β-sheet rich 

amyloid fibrils. Involvement of the amyloid fibrils is implicated in more than 50 human diseases, 

such as Alzheimer’s, Parkinson’s and Prion’s. The proteins responsible for each of these diseases 

many as well as model proteins have been used to unravel the process involved in native protein 

to amyloid transformation, especially, for drug design but with little success thus far. Bovine 

serum albumin (BSA), predominantly α-helical in constitution, is one such protein that has been 

observed to transform to β-sheet rich amyloid. For our thesis project, we set on with these basic 

lines of evidence for ThT and BSA and devised a study outline. The study was divided into sub 

sections for better redressal compared to what was reported in literature viz., 1) Characterizing 

the steps involved in the transformation of BSA from native to amyloid state, 2) Develop 

methodology to gain information of as many steps as possible, 3) Identify the structural changes 

triggering BSA on pathway to fibrillation, 4) Computational comparison of the sites with 

chaperone binding sites and finally 5) if from point 4 we could observe chaperones interfering 

the aggregation process of BSA. During this thesis work, we observed an unexpected interaction 

of the reporter ThT molecule with the native BSA. We expanded this further and used a suite of 



 
 

standard proteins and found that ThT has the unlikely affinity to bind to some of the proteins, 

which are predominantly helical in nature.  

The present study thus details the aspects of interaction of ThT with BSA. Briefly, our 

Fluorescence data indicated a strong binding of ThT with BSA, ovalbumin and Alcohol 

Dehydrogenase. The binding was confirmed with ELISA type binding assays. Further, Circular 

dichroism showed ThT binding caused a minor structural disruption in the alpha helical content 

of the BSA which was supported by melting curves where BSA in the presence of ThT was 4 

degrees less stable than in the absence of ThT. A control run of myoglobin exhibited no changes 

in the Tm studies with ThT. In addition, FTIR data exhibited marked changes in the BSA 

profiles in the presence and absence of ThT. Based on these data we ran the molecular docking 

simulation on ThT and BSA crystal structure and shortlisted two most predictable binding sites 

of ThT on BSA.  
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 Introduction 

For this thesis, we have focused on exploring the interaction of ThT with standard proteins and 

especially BSA. ThT is mainly used for characterization of amyloid aggregation. We will start 

with the description of amyloid, followed by BSA and then ThT to cover the bases of this thesis 

project.  

Amyloid: Proteins can aggregate in mainly two different forms i) unordered masses like 

precipitates and inclusion bodies and ii) ordered structures resulting in a characteristic final form. 

Amyloids are the ordered aggregates of proteins that are formed because of intermolecular β-

sheet formation between different molecules attached side to side that appears like a fiber in the 

EM pictures (Cohen and Calkins, 1959). In each fiber, the individual proteins molecules are 

stacked so that their long axis lies perpendicular to the long axis of the fiber. This arrangement is 

also termed as cross β-sheet structure. Further the individual molecules may form a parallel or 

antiparallel β-sheet (Eanes and Glenner, 1968). The amyloid formation is interesting 

phenomenon and is observed by most proteins under right conditions including mostly helical 

proteins like myoglobin (Fändrich et al., 2001). This generality has therefore added to the 

intrigue of understanding amyloid. The transformation of protein irrespective of its initial native 

structure to a unique amyloid has fascinated protein biophysicists and folding experts for years. 

But the involvement of amyloid in human diseases especially Alzheimer’s, Parkinson’s, Prion’s, 

Huntington’s and other more than 50 types of human diseases hijacked the mere basic scientific 

fascination into an imperative applicative problem that needs immediate address and attention. 

The discovery of amyloid fibers being a part of the plaque in the postmortem Alzheimer’s brain 

initiated the socio-medical interest in amyloid. The amino acid sequence of the constituents of 

this plaque laid further the founding stones of amyloid-protein diseases and connected these to 
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the larger biochemistry, cell biology, physiology ending at gene identification and location 

(Glenner and Wong, 1984). The gene linkage finally endowed the familial nature to these 

diseases (Kang et al., 1987). Unfortunately, these lines have not moved a long distance and in 

such scenario the protein biochemistry/biophysics involvement in these diseases attracts most of 

the focus. It was also observed a particular protein was involved in a particular disease for 

example, Aβ peptides and tau cause AD, synucleins are involved in Parkinson’s, huntingtin in 

Huntington’s and prion in mad cow disease. The species barrier and cross amyloid barrier has 

added to the mystery further but we cannot venture into those details at this point. Many 

scientists thus focused on the process of amyloid formation and since the final amyloid formation 

as observed in vivo could be reproduced in vitro the studies appeared even more relevant 

(Ahmad et al., 2003). Therefore, the contribution of a host of conditions involving temperature, 

pressure, nature of environment (oxidative, crowding), metal toxicity in the onset of amyloid 

formation were hypothized (Bush, 2012; Yamin et al., 2003).  These conditions are just a few to 

mention among the diverse variables that were tired. The sum total of these studies percolated 

into one theory known as “amyloid cascade hypothesis” (Hardy. and Selkoe., 2002) which 

proposes following stepwise molecular mechanism  

Normal protein → misfolded protein → oligomer → proto-fibril → fibril → plaque.  

Out of the intermediate steps shown above, oligomers are considered to be most toxic.   

Our lab has been working with many of the proteins involved in above mentioned 

diseases but we chose to work on standard proteins and especially BSA considering their easy 

availability and not so well understood amyloid forming pathway.  
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Table-1 

Property Peptide Position Length (AAs) MW Da 

Full length precursor 1 – 607  607 69,324 

Signal peptide 1 –  18 18 2,107 

Propeptide 19 –  22 4 478 

Mature protein 25 – 607 583 66,463 

 

Table-1 and 2: Summarize main properties of  BSA 
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Table-2 

Property Values Ref. 

Number of amino acid residues 583  

Molecular weight 66,463 Da (= 66.5 kDa)  

Isoelectric point in water at 25 °C 4.7 (Ge et al., 1998) 

Extinction coefficient 279 nm 43,824 M−1cm−1 (Peters, 1975) 

Dimensions:  140 × 40 × 40 Å (prolate 

ellipsoid where a = b < c 

(Wright and 

Thompson, 1975) 

pH of 1% Solution 5.2-7 (Putnam, 1975) 

Optical Rotation  [α]259-61°; [α]264: -63° (Putnam, 1975; 

Sober, 1968) 

Stokes Radius (rs) 3.48 nm (Axelsson, 1978) 

Sedimentation constant S20,W × 1013 4.5 (monomer), 6.7 (dimer)  

Diffusion constant, D20,W × 107 cm2/s 5.9 (Putnam, 1975) 

Partial specific volume, V20 0.733 (Putnam, 1975) 

Intrinsic viscosity, η 0.0413 (Putnam, 1975) 

Frictional ratio f/f0 1.30 (Putnam, 1975) 

Refractive index increment (578 nm) × 

10−3 

1.90 (Putnam, 1975) 

Optical absorbance, A279 nm1 g/L  0.667 (Putnam, 1975) 

Mean residue rotation, [m']233 8443 (Putnam, 1975) 

Mean residue ellipticity: [θ]209 nm;  21.1 (Putnam, 1975) 

[θ]222 nm 20.1  

Estimated α-helix, % 73 (Majorek et al., 

2012; Putnam, 

1975) 

Estimated β-form, % 18 (Putnam, 1975) 
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BSA: BSA is bovine form of serum albumin and has been studied in detail for decades. We have 

summarized many of its characters in the tables below:  

BSA is synthesized as a single polypeptide chain of 607 residues out of which the first 18 

residues form the signal peptide and residues 19-24 act as pro-peptide that are subsequently 

cleaved during post-translation modifications leading to formation of a mature bovine serum 

albumin protein of 582 residues (residues 25-607). Except for Methionine (4 residues) and 

tryptophan (2 residues) BSA has all other amino acids in bulk amounts. BSA possesses 35 

cysteine residues forming 17 disulfide bonds. One cysteine (residue 58 (or 34 when calculating 

from 25th residue)) does not participate in disulfide and is believed to exist with free -SH side 

chain (Rombouts et al., 2015). In terms of secondary structure the protein is composed of 31 

helices and is predominantly α-helical (71% helix) (Majorek et al., 2012). These helices are often 

connected with the unstructured regions as mentioned below. 

The crystal structure of 66.43 kDa BSA has been solved many a times in free and 

complexed form. We have used the structure associated with PDB ID 3V03 mostly in this thesis 

whenever we wanted to refer to the three-dimensional structure of BSA (Majorek et al., 2012). 

The crystal structure of BSA is often compared to the shape of heart and has been divided into 

three domains as shown in Fig-i (Curry et al., 1998) Domain-1 extending from residue 24-209; 

domain-II from 210-402; and domain-III from 403-600. Each domain is further divided into two 

subdomains A and B. The domains as mentioned above are connected with unstructured chains 

for example (IA–IB by 106–119; IIA–IIB by 292–315; IIIA–IIIB by 492–511) (Curry et al., 

1998). The ligand binding sites of BSA have again been studied in detail and commonly drugs or 

molecules have been found to bind the sites called Sudlow sites I (in subdomain IIA) and II (in 

subdomain IIIA)  (Sudlow et al., 1975)  (as shown in red circles in Fig-i) 
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Fig-i Crystal structure of BSA 
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Location and Synthesis:  The major human blood protein, serum albumin (ALB), is encoded on 

chromosome 4q13.3 by a single-copy autosomal gene (ALB; NCBI Reference Sequence: 

NG_009291.1). The gene is composed of 15 exons, the last of which is untranslated (Minghetti 

et al., 1986). In humans, albumin is synthesized (12-25 g/day) in the liver and enters portal 

circulation immediately (Lundsgaard-Hansen, 1968; Peters, 1975). The protein is secreted into 

the blood stream, where it accounts for 60%–65% (range 35–45 g/L or ~0.6 mM) of total serum 

proteins (Peters, 1996a). 

The rate of synthesis varies with nutritional and disease states. The liver can increase albumin 

synthesis to only 2–2.7 times normal because most of the liver’s synthetic machinery is already 

devoted to albumin at rest (Peters, 1996b). The synthetic pathway is common to eukaryotes and 

is also used for synthesis of other proteins (Moldave, 1985). Albumin synthesis is influenced by 

many factors, for example, oncotic pressure around hepatocyte, (Oratz et al., 1970; Yamauchi et 

al., 1992). The decrease in gene transcription or mRNA levels of BSA have been observed to be 

induced by trauma (Moshage et al., 1987), by inflammation IL-6 and TNF-a (Brenner et al., 

1990; Castell et al., 1990), or organic compounds (CCl4) (Peters, 1996b; Peters, 1996c). 

Diabetics exhibit decreased serum production (Lloyd et al., 1987), which can be cured by insulin 

treatment (De Feo et al., 1991). Fasting or reducing protein from diet reduces albumin 

production (De Feo et al., 1992; Sakuma et al., 1987). The levels of albumin can be increased by 

administration of insulin with steroids (Hutson et al., 1987). The total body albumin pool 

measures about 3.5–5.0 g kg–1 body weight (250–300 g for a healthy 70 kg adult). The plasma 

compartment holds about 42% of this pool, the rest being in extravascular compartments (Hoye 

et al., 1972; Mouridsen, 1967). 
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Functions and interactions of BSA: The main role of albumin in to maintenance of normal 

colloid oncotic pressure (COP).  Critically ill patients exhibited a mean COP of 19.1 mmHg 

(Weil et al., 1979) while the normal COP is about 25 mmHg through BSA is reported (Gosling, 

1995; Traylor and Pearl, 1996; Weil et al., 1979). Albumin is present in the highest concentration 

among plasma albumins. BSA also helps maintain oncotic pressure maintenance through its 

negative charge as it helps in retention of positively charged particles. Together these properties 

help it in having direct effect on fluid distribution in tissues. These facts also indicate importance 

of albumin administration in critically ill patients (Morisette et al., 1975).  

BSA has been found to a variety of molecules and metabolites. Table-3 below shows 

binding of some molecules to BSA. Sudlow et al. have classified drugs into two groups 

according to two broad binding sites, site I and site II (Sudlow et al., 1975). Site I appears to lie 

along the long loop of subdomain IIA, extending into the shorter loop (Peters, 1996d). Many 

different drugs seem to bind here, including salicylates, warfarin, phenylbutazone, indometacin, 

digitoxin, furosemide, phenytoin, chlorpropamide and some penicillins(Peters, 1996d). Dyes 

such as sulfobromophthalein, iophenoxate (a radio‐opaque dye), methyl red, Evans blue and 

bromocresol green also bind here, as do endogenous compounds such as bilirubin. Site II is a 

hydrophobic pocket of residues located in subdomain IIIA (Carter and Ho, 1994). It is 

responsible for binding compounds such as L‐tryptophan, thyroxine (which may also bind at 

site I), medium‐chain fatty acids and chloride. Drugs that bind here include diazepam and other 

2,3‐benzodiazepines, non‐steroidal anti‐inflammatory agents that have ionized carboxyl groups 

(such as ibuprofen and naproxen) and co-fibrillate.  
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Table-3  

 BSA Interacting partner Ref  

1 1-hexylcarbamoyl-5-fluorouracil (Carmofur) and BSA  (Hu et al., 2005) 

2 Gemcitabine hydrochloride (GEM) and BSA or HSA  (Kandagal et al., 2006) 

3 
Anticancer drugs (i) 5-fluorouracil (5-FU), (ii) azacitidine (AZ) 

and (iii) cytarabine (CY) (pyramidine analogues) with BSA  

(Abraham and Mathew, 

2014) 

4 Cyanidin-3-glucoside (Cy-3-G) and BSA  (Shi et al., 2014) 

5 Colchicine and BSA  (Hua et al., 2005) 

6 Cefixime (CFX) with BSA  (Zhang et al., 2015) 

7 Diclofenac sodium and BSA  (Dutta et al., 2006) 

8 Efonidipine with BSA  (Wang et al., 2008) 

9 Erlotinib hydrochloride and BSA  (Rasoulzadeh et al., 2010) 

1

0 
Sulfadiazine (SD) binds and unfolds BSA  

(Al-Lohedan and Sajih, 

2013) 

1

1 

Nortriptyline hydrochloride (NOT) and promazine 

hydrochloride (PMZ) with serum albumins (Khan et al., 2012) 

1

2 
Mangiferin (MA) and BSA (Lin et al., 2009) 

1

3 
Metformin hydrochloride and BSA  (Tanwir et al., 2012) 

1

4 
Mitoxantrone (MTX) with HSA  (Khan et al., 2008) 

1

5 
Olmesartan medoxomil and its metabolite olmesartan with BSA  

(Sharma and Pancholi, 

2014) 

 

Table-3 Summarizes some BSA or HAS binding molecules. 
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There are serious ramifications of BSA ligand binding. An allergy to Penicillin has been 

linked to irreversible coupling of penicilloyl groups to ε lysine groups close to surface of Sudlow 

site I (Lafaye and Lapresle, 1988). BSA binds NO and interferes with vasodilatory response, acts 

as anti-coagulant like heparin, maintains microvascular integrity, acts as antioxidant and helps 

maintain the acid base equilibrium in blood (Carter and Ho, 1994). 

BSA is only the second molecule after hemoglobin to exist in more than 100 variants and 

the sequence of 60% of these mutations is known. Only one of these mutations that binds 

thyroxine has been found to cause dysalbuminaemic hyperthyroidism (Perlmutter et al., 1986). 

Analbuminaemia is a condition where no detectable albumin is found in patients and at least 30 

such cases have been reported and has been observed to be due to mRNA splicing errors or 

premature stop codon (Peters, 1996e). The prognostic value of serum albumin concentration is so 

involved in human health that it has been included in The APACHE III system, and it is more 

predictive of mortality in critical illness (Knaus et al., 1991). 

Data shows patients with a low concentration of albumin after liver transplantation 

develop toxicity of tacrolimus (FK506) and may benefit from albumin administration. Data from 

the Netherlands Cancer Institute have shown that patients with peritoneal cancer undergoing 

prolonged surgery might also benefit from albumin therapy.  

 

BSA Aggregation: Aggregation of BSA and HSA has been reported in variety of conditions. 

Since BSA and HSA have significant homology, HSA results are often extended to BSA and 

represented interchangeably. The transformation of HSA from the native form to different 

conformations has been extensively documented for example;  
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1. The N (native) to F (fast moving low pH) transition between pH 5.0 and 3.5 involves the 

unfolding and separation of domain III without significantly affecting the rest of the protein 

molecule (Dockal et al., 2000). The fibrils formed from this state are characterized by a dramatic 

increase in viscosity, lower solubility, and a significant loss of helical content. 

2. The F-E (equilibrium) transition occurs between pH 3.5 and 1.2, and is accompanied by a 

further protein expansion with a loss of the intra-domain helices of domain I. In addition, the E 

form involves an increase in protein intrinsic viscosity and a rise in the hydrodynamic axial ratio 

from ~4 to 9 (Geisow and Beaven, 1977). 

3. The N-B (base, high pH) transition occurs between pH 7.0 and 9.0, with a slight reduction in 

helical content affecting the two inter-domain helices and a small increase in sheet structure 

(Khan, 1986). 

4. In the presence of denaturant agents, such as urea, HSA shows a two-step, three-state 

transition with an intermediate (I) characterized by unfolding of the domain III and partial but 

significant loss of native conformation of domain I (Ahmad et al., 2004a). 

 

The transition to the fibrilar state is not as organized. Different conditions produce fibrils 

of different size and shape and properties for BSA/HSA. For example, high temperature and time 

produce different species. As the time of incubation increases at the desired temperature the size 

of the amyloid aggregate changes from oligomers to mature fibrils. The early fibrilar states are 

more diffuse but with time these fibrils get more organized and develop sharp contours. 

Additives affect the aggregation process of BSA as they do for other aggregating proteins. For 

example, metal ions may induce the amyloid-forming propensity of Aβ, synuclein, insulin and 

other proteins (Ahmad et al., 2001; Ahmad et al., 2009; Ahmad et al., 2012) which may be of 

significance in Alzheimer’s, Parkinson’s and diabetes. Arada et al., observed amyloid fibril 
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formation from human and bovine serum albumin in the presence of calcium with quasi-

simultaneous Fourier-transform infrared (FT-IR) spectroscopy and static light scattering (SLS) 

(de la Arada et al., 2012). They observed significant Amyloid formation within 1 hr of 

incubation at 80C in the presence of Ca2+. Bhattacharya et al., transformed the low pH species at 

higher BSA concentration into amyloid (Bhattacharya et al., 2011). Militello et al., observed that 

BSA underwent conformational changes during thermally induced aggregation processes loosing 

most of its tertiary structure and 40% of its helical structure (Militello et al., 2003). The absence 

of 100% beta sheet in fibril form or intermediate aggregate states was observed to give BSA 

protection in cytotoxicity experiments (Holm et al., 2007). Juarez et al., observed that diffuse 

BSA fibrils were formed through intermediate conformational species of BSA/HSA but the 

fibrils changed morphology with time, pH and buffer conditions (Juárez et al., 2009). The crystal 

structures of BSA and ESA have been reported (Majorek et al., 2012) and should help to 

elucidate the mechanistic details of transformation of BSA into its amyloid fibrils. 

 

Challenges in the study of amyloid:  A variety of proteins under certain conditions can aggregate 

and form long, ribbon-like β-sheet rich amyloid fibers, which can be monitored using the 

amyloid-specific dye ThT (Ahmad et al., 2001; Ahmad et al., 2003; Ahmad et al., 2004b; Ahmad 

et al., 2005; Ahmad, 2010; Ahmad et al., 2012). The kinetics of this conversion to oligomer, 

protofibril, and mature fibril can be influenced through an increase in temperature as well as the 

addition of metal ions and reducing agents. It has been demonstrated with Aβ42 that in 

physiological ranges, Ca2+ greatly reduced the lag time for Aβ42 fibril formation (Acebrón et al., 

2008). It appears that this effect is due to the Ca2+ ions accelerating the nucleation stage of Aβ42, 

facilitating the pathway to Alzheimer’s fibril formation (Ahmad et al., 2009). Unlike Aβ42, 
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differential analysis was needed in order to elucidate the exact effect that Ca2+ ions on Aβ40 

(Muchowski et al., 2000). Through careful and exhaustive analysis, it was possible to deduce 

strong evidence of 2 mM Ca2+ ions affecting Aβ40 through a ~1.4 times increase in rate of 

fibrillation (Ahmad et al., 2016). Without such treatment of data, such minute differences in 

Aβ40 kinetics might have been missed due to the drastic difference in kinetic rate between the 

peptides. This reinforces the inherent value in understanding to the highest possible degree where 

changes of the protein of interest can be elucidated through the numerous analytical methods. 

Furthermore, the addition of metal ions to a wide range of protein standards of varying 

characteristics and the application of the techniques in such studies can be used to obtain a more 

thorough understanding of possible protein interactions. While it’s well documented that ThT 

serves as a remarkable molecular probe for amyloid (Ahmad et al., 2016),  new data treatment 

and analysis may reveal novel interactions of ThT with native protein as well as oligomer, 

protofibril and fibril species can further develop the understanding of fibrillation kinetics and 

protein-ligand interactions. This understanding can then be reapplied to tease out novel 

approaches in data analysis to further understanding diseases such as AD.  

Reducing agents such as dithiothreitol (DTT), tris (2-carboxyethyl) phosphine (TCEP), 

and β-mercaptoethanol (βME) have also been used in order to alter the native structure of 

protein, reducing disulfide bonds and exposing nucleation sites within the protein. These 

disulfide bonds are critical for the correct folding and function of the protein, and are naturally 

found in more than 50% of amyloidogenic proteins. We demonstrate here the greatly accelerated 

rate of oligomerization in DTT reduced bovine serum albumin (BSA) which results in mature 

fibrils through prolonged incubation, as well as try to elucidate the mechanism in which this 

increased oligomerization and fibrillation occurs as the nucleation sites of BSA become exposed 
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and accessible for oligomerization. Interactions of DTT with the series of standard proteins is 

also explored and monitored through ThT fluorescence.  

 

Thioflavin T: Origin and Applications 

ThT has been used as tinctorial dye for amyloid detection. ThT is better, simple and efficient 

technique compared to other technique, namely, Congo-red assay, EM analysis or X-ray 

diffraction techniques mainly used to detect or characterize amyloid fibrils.  

Congo red binding to amyloid appears to have been established by Behold and Divry 

individually (Bennhold, 1922; Divry and Florkin, 1927) through their observation of yellow-

green birefringence produced by amyloid under crossed polarized light in the presence of Congo 

red. Please refer to Fig-iv for the chemical structure of Congo red. The Congo red technique 

provided a trove of information about amyloid initially and was considered very useful but later 

proved to have many draw backs. The assay conditions were detailed soon and it turned out 

tissue or sample needed to be of certain thickness for birefringence to take place and the need of 

cross polarizers containing microscope was another limitation that could not be available 

universally (Elghetany and Saleem, 1988; Westermark et al., 1999). Further, Congo red worked 

better under conditions with 50–80% ethanol, high salt and alkaline pH conditions to yield 

binding to amyloid (Puchtler et al., 1962) which did not turn out to be the conditions of choice in 

many cases.. In addition, Congo red was demonstrated to interact with non-amyloid native 

proteins (Khurana et al., 2001) besides inhibiting enzymes (Edwards and Woody, 1979) and 

being influenced by metal ions (Ashburn et al., 1996). Later details also revealed that Congo red 

can inhibit amyloid formation at high concentration (Feng et al., 2008; Rudyk et al., 2000) but 

can enhance amyloid formation at low concentrations (Kim et al., 2003). In short concerns about 
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using Congo red are one too many hence scientist avoid using Congo red when they can. 

Regardless, the structure of Congo red bound to amyloid has been solved by NMR (Maltsev et 

al., 2012).  

The other technique used for detecting amyloid is X-ray diffraction. Amyloid fibrils 

produce a characteristic X-ray diffraction pattern with unique arcs in the equatorial and 

meridional axis (Eanes and Glenner, 1968).  

The meridional arc at 4.75Å corresponds to the calculated values of two polypeptide 

backbones in antiparallel β-sheet lying laterally adjacent to each other (Pauling and Corey, 

1953). [Such β-sheets have been referred to as cross beta sheet structures and] for parallel β-

sheet this distance is 4.65 Å (Astbury et al., 1935). The 9.8 Å equatorial position corresponds to 

the spacing of side chain groups in the neighboring polypeptide chains of β-sheets (Kendrew, 

1954). However the technique besides requiring the X-ray diffraction set needs the sample 

preparation and orientation of fibrils in a suitable form. An un-oriented sample will produce a 

spectra much like shown in the Fig-ii without any useful information. 

As reported by Cohen, his group was the first to discover by EM that amyloid from 

humans had a fibrillar structure (Cohen and Calkins, 1959). Cohen argued that before his 

discovery the amyloid were thought to be amorphous although cellulose fibrils were identified in 

1948 (Shirahama and Cohen, 1967). The diameter of these fibrils was reported to be 100 Å (10 

nm).  

EM is a comparatively simple technique except the instrumentation may not be available 

at all facilities. EM has one limitation that is it give snap shots of selective events in the 

fibrillation process and while it provides the much needed qualitative support it usually is not  
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(FEBS J. 2005 Dec;272(23):5950-61. Structures for amyloid fibrils. Makin OS1, Serpell LC.) 

 

 

Proc Soc Exp Biol Med. 1969 Sep;131(4):1373-5. Characterization of the amyloid fibril as a 

cross-beta protein. 

 

Bonar L, Cohen AS, Skinner MM. J Histochem Cytochem 1968 Nov;16(11):673-7 

 

Fig-ii The reported X-ray studies and diffraction pattern thereof of the amyloid in such studies. The 

references are provided below each picture 
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quantitative. EM has been used to provide the mass per unit length of fibrils using the 

virus controls or modern instrument or computational methods (Chen et al., 2009; Iadanza et al., 

2016). 

ThT is much user friendly technique than the above mentioned techniques and can 

provide both qualitative and quantitative data with ease. ThT thus has been widely used in 

amyloid studies. ThT is a benzathiazole dye used to detect amyloid fibrils. In 1959, Vassar and 

Culling for the first time demonstrated the use of ThT fluorescent microscopy for amyloid fibril 

diagnosis in histology (Vassar and Culling, 1959) and the dye has been used extensively in 

amyloid field since. ThT displays some interesting fluorescent properties. In aqueous solutions 

ThT displays an excitation and emission maxima of 350 nm and 450 nm respectively. But when 

bound to the amyloid fibrils both excitation and emission maxima undergo a red shift to 450 nm 

and 482 nm, respectively. The second interesting thing about ThT fluorescence is its lifetime. 

There is a single bound connecting the benzothiazole moiety with the benzoamine moiety about 

which there is an unhinged rotation of the two moieties. This rotation interferes with the 

dissipation of excitation and emission energies resulting in short fluorescence life time 

(Sulatskaya et al., 2010). When this rotation is restricted for example during the binding of ThT 

to amyloid or addition of extra groups to benzothiazole group as in the case of thioflavin S the 

fluorescence life time improves quantum yield (Sulatskaya et al., 2010).  
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Fig-iii A sucrose-separated preparation of amyloid fibrils shadowed with platinium-

palladium (see text). Although a small amount of contamination is found among the packed 

fibrils, the specimen is quite pure and consists almost solely of amyloid fibrils. )< 70,000 

(Shirahama and Cohen, 1967).  
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Thioflavin T 

 

Thioflavin S 

 

Congo red 

 

FDDNP 

2-(1-{6-[(2-[fluorine-18]fluoroethyl)(methyl)amino]-2-naphthyl}-ethylidene)malononitrile  

radiotracer used to image neurofibrillary tangles and amyloid aggregates, in living humans 

through combined use of positron emission tomography (PET)  

 

Fig-iv Various molecules used for amyloid detection 

 

 



20 
 

 

 

 

 

 

 

 

 

Fig-v The propose mechanism of ThT binding. 
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The mechanism of ThT binding to the fibrils has been explained as follows. The protein 

molecules arrange themselves perpendicular to the long axis forming a cross β-sheet structure. 

This leaves the side chain to extend laterally forming a ladder running parallel to the long axis. 

Since it lies outside the β-sheet core it is exposed to solvents. It has been proposed using 

crystallographic and fluorescence polarization data that ThT binds to these solvent exposed side 

chains and is arranged parallel to the long axis or in other words is held by multiple protein 

molecules stacked in the amyloid. (Sawaya et al., 2007). This parallel ThT binding model was 

further shown by the molecular dynamic simulations (Wu et al., 2008). 

Peptide self-assembly mimics (PSAMs) were further used to elucidate the mechanism of 

ThT binding (Biancalana et al., 2008). Based on the results and the molecular dynamic 

simulations of PSAMs it was established that ThT binds in the lateral pockets caused by the 

aggregating peptides and lies perpendicular to the long axis of fibrils (Wu et al., 2009). ThT 

molecules were found stretched in a longitudinal translation across the five Leu and Tyr residues 

and lacked any preferred orientation. This space (Cα–Cα distance of a four residue ladder ∼14 

Å) appears to be longer than the longitudinal length of ThT (∼15 Å) (Biancalana et al., 2008; 

Wu et al., 2009). These data explain the affinity of ThT towards the amyloid fibrils and why this 

dye has been so successful in its use as tinctorial dye for amyloid detection. 

Proteins may bind to ThT in a variety of ways. ThT has been observed to bind non 

fibrilar proteins, such as acetylcholinesterase, a largely helical protein (Harel et al., 2008). The 

binding has again been possible due to interactions with aromatic residues like Tyr and Trp 

resulting in the formation of a hydrophobic pocket. In addition ThT binding to the amyloid fibrils 

can be interfered by rifampicin, glycerol, PEG and bis-ANS, resveratrol and curcumin reviewed 

in (Biancalana and Koide, 2010).   
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With this information we set to study the interaction of ThT with different proteins.  

 

Main aims of the thesis project: 

Aim-1: First and foremost to reproduce the amyloid behavior of BSA and other similar proteins 

in our experimental conditions so that we can study ThT effects. 

Aim -2: To explore and characterize the binding aspects of ThT with different proteins especially 

BSA. 

Aim-3: To explore the effect of ThT binding on the protein secondary structure and stability. 

Aim-3: To locate the ThT binding site by X-ray crystallography or computer simulations. 

Aim-4: To explore the extent of generalization of ThT binding among the ThT-binding proteins.  

 

 

 

 

 

 

 

 

 



23 
 

Material and Methods:  

Preparation of Protein Stock 

Lyophilized proteins were purchased from Sigma Aldrich. Solutions were prepared by weighing 

protein powder on the scale and dissolving in double distilled water. Concentration of protein 

solution was determined using nanodrop or spectrometer using extinction coefficients reported in 

the literature. The extinction coefficients and have been mentioned here for reference 

[Ovalbumin 30590 M-1cm-1, Alcohol Dehydrogenase 47530 M-1cm-1, Lysozyme 38940 M-1cm-1, 

Myoglobin 13,940 M-1cm-1, Insulin 16960 M-1cm-1, Proteinase-K 36580 M-1cm-1, Trypsin 37000 

M-1cm-1, RNase A 9416 M-1cm-1, BSA 43,824 M-1cm-1]. In each case an average value from 

triplicate readings was taken to ensure protein concentration was measured accurately. This 

method was uniformly applied to all proteins used in this study with their respective extinction 

coefficients to guarantee consistency.  

Protein concentrations were also measured using Pierce protein assay and Bradford assay. 

BSA was used as standard protein in these assays and its concentration was measured on the 

spectrophotometer [using extinction coefficient 43,824 M-1cm-1]. The data in the linear range, 

was used to calculate the concentrations of the other proteins samples. It was determined that 

nanodrop and spectrometer methods were as accurate in determining protein concentration and 

as reliable.  

Stock protein solutions were aliquoted out and stored at -20 °C, and used within one 

week to ensure maximum sample quality. These stored aliquoted protein samples were thawed 

for the intended experiment just once and leftover protein solution was discarded to prevent 
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repeating freeze/thaw cycles. In general, experiments were carried out in 20 mM pH 7.4 

phosphate buffer unless stated otherwise.  

 

Size Exclusion Chromatography (SEC) 

BSA at 2 mg/mL (30 µM) was incubated at 60 or 80 ̊C for varying times in an Eppendorf tube. 

After incubation the protein samples were centrifuged at 20,000 rpm for 10 minutes on a table 

top Eppendorf microfuge before loading 100 µL supernatant on a LKB TSK G3000 SW 

8x300mm size exclusion column using a Pharmacia P-500 FPLC pump at a flow rate of 1 

mL/min. The column was pre-equilibrated with buffer [20 mM pH 6.8 phosphate with 0.05% 

sodium azide] by at least three column volumes. Results were recorded at 280 nm by LDC 

Analytical Spectromonitor 3200 and charted at a speed of 1 cm/min. Data traces thus obtained 

were digitized using WebPlotDigitizer v3.1 (http://arohatgi.info/WebPlotDigitizer/) and replotted 

in sigma plot or MS excel. 

 

SDS-PAGE 

Protein samples were added to laemmli sample buffer (1:1) and separated mostly on a 9% 

acrylamide gel at room temperature for one hour at 150 mV with a 4% stacking gel unless stated 

otherwise. Gels were stained with Coomassie brilliant blue dye R-250 0.1% prepared in 40% 

MeOH and 60% double distilled water. Gels were destained with a solution of 10% acetic acid, 

40% MeOH and 50% double distilled water. The buffer used was standard pH 8.3 Tris-Glycine-

SDS electrophoresis buffer. 

http://arohatgi.info/WebPlotDigitizer/
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Thioflavin T (ThT) Fluorescence Changes 

Protein solutions were made with a concentrations between 10 and 50 µM using above described 

method and then incubated at 80 °C. Aliquots were taken out at desired time intervals and added 

to 200 µL of 20 µM ThT unless stated otherwise. Fluorescence was measured on a TECAN 

infiniteM200 Pro plate reader with the following parameters; Ex=444 nm, Em=495 nm. Scan of 

emission range was taken from 480 to 530 nm. ThT stock solution was prepared in double 

distilled water and concentration was determined using an extinction coefficient of 36,600 M-

1cm-1 at 412 nm ((Groenning, 2010) ).   

 

Transmission Electron Microscopy (TEM) 

Negative staining EM studies were carried out on Philips (FEI) CM12 Transmission Electron 

Microscope. BSA 2 mg/mL (30 µM) in the presence or absence of 15.5 mM DTT was incubated 

at 80 °C for 30 days and 5 µL samples of selected time points were applied to Formvar-filmed 

400 mesh copper grids (Ted Pella Inc., CA) for two minutes. Sample was wicked off with 

Kimwipes and the grids were washed 5 times with double distilled water. Each time 5 µL double 

distilled water was applied to the grid and wicked off gently but immediately with kimwipes. 

The grids were finally washed 2 times with 2% uranyl acetate solution (solutions wicked off 

following each wash). The residual uranyl acetate on the grids following last wash was left to 

dry. TEM images were taken using software provided with the machine and reprocessed in 

Adobe Photoshop Version: 13.0.1 whenever needed.  
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Intrinsic Fluorescence Measurements 

Fluorescent amino acids (tryptophan and tyrosine) were used as intrinsic markers wherever 

possible. Protein samples were selectively measured for intrinsic tyrosine fluorescence on 

TECAN infiniteM200 Pro plate reader by using exciting wavelength at 280 nm, and recording 

emission between 280 to 340 nm. 

 

Far and Near Ultraviolet (UV) circular dichroism (CD) Measurements 

CD spectra were recorded on an Aviv 202 circular dichroism spectrometer at Department of 

Biochemistry, Duke University. The spectra were recorded in a 1 mm path length cell at 25 °C. 

Far UV spectra were recorded between 200 nm to 275 nm with 0.5 sec wait time, 0.2 sec 

averaging time, 1.0 nm bandwidth and with 0.50 nm step size. Blank for CD measurements was 

20 mM phosphate buffer pH 7.4 in double distilled DI water. For far-UV CD samples were made 

by taking each protein at 0.5 µM final protein concentration in 20 mM phosphate buffer, pH 7.4 

and varying concentrations ThT ranging from 0 to 50 µM unless stated otherwise. To account for 

the buffer and ThT contribution in this region, the far UV-CD spectra of ThT only in the buffer 

was also recorded at each ThT concertation. The spectra thus obtained were subtracted from the 

far UV-CD spectra of protein + ThT samples 

Near UV-CD measurements were carried out in similar manner with varying ThT in 

phosphate buffer but with following differences. The protein concentration used in near UV-CD 

was 50 µM and the data was recorded over the wavelength range of 250 nm to 475 nm.  
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Far UV-CD Protein thermal melts 

For getting information about melting points (Tm) change in CD was recorded at a single 

wavelength in the temperature range of 25 to 90 °C on an Aviv 202 circular dichroism 

spectrometer. The spectra were recorded in a 1 mm path length cell with a starting temperature 

of 25 °C and the temperature was varied with increments of 1 °C/min until the final temperature 

of 90 °C was reached. The data was recorded using a bandwidth of 1 nm, equilibration time of 

0.80 minutes and an averaging time of 0.50 seconds unless stated otherwise. Wavelength used to 

monitor change in ellipticity was 222 nm. Temperature was cooled down to 25 °C manually in 

stepwise manner by altering cell temperature 5 °C at a time per ten minutes to minimize cuvette 

changes to birefringence that could upset reproducibility in samples. Protein concentrations used 

in these thermal melts was 0.5 µM and three melting curves were recorded for protein only; 

protein + 10 µM ThT and protein + 30 µM ThT.  

Molecular Docking by Auto-Dock 

BSA crystal structure parameters were downloaded from Protein Data Bank (PDB) (ID: 3v03) 

(www.rcsb.org). Monomer BSA was extracted from PDB file via Vi text editing software 

(Schröder et al., 1993). Similarly, ThT structure was generated through the isolation of the ligand 

structure from another PDB structure (PDB ID: 3EC5) using Vi text editing (Singleton et al., 

2003). Autodock 4.2 was used to set up BSA and ligand ThT with all hydrogens being added 

simultaneously (Polymeropoulos et al., 1997). Gasteiger charges were assigned to the protein 

and flexible ligand to evaluate ligand binding energies over conformational search spaces using 

the Larmarkian genetic algorithm (Spillantini et al., 1997). Binding sites for ThT were obtained 

http://www.rcsb.org/
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through a series of steps involving isolating specific fragments of BSA to serve as search area 

(through use of Vi text software and PDB file) as well as searching the complete monomer and 

dimer crystal structure. Out of the generated binding modes, minimum energy conformation 

states of the ligand bound protein were used to predict potential binding sites. The identification 

of these binding sites relied on conformational overlap of ThT through repeated trials with BSA 

fragments, monomer and dimer so that confidence in suggested binding sites could be obtained. 

Confidence in method was reached through reproduction of previously studied ligand binding 

conformations by other groups in our lab and within the computational parameters described 

above.  

Protein Crystallography  

BSA was crystallized using hanging drop method. Protocol for producing crystals was followed 

as has been reported in the case of PDB ID 3v03 (Schröder et al., 1993). 500 µL of reservoir 

buffer with 20% PEG 3350 w/v and 0.2 M calcium acetate in 0.1 M Tris HCl buffer, pH 6.5 was 

placed in the reservoir wells. The buffer was sterilized by passed through 0.2 µM filter. Three 

BSA samples were made and each mixed 1:1 with the reservoir buffer in a final volume of 10 

µL.  The stock BSA solution was prepared such that they final concentrations in the drop reflect 

20 mg/mL (300 µM) BSA + 0 µM ThT; 20 mg/mL (300 µM) BSA + 10 µM ThT; or 20 mg/mL 

(300 µM) BSA + 30 µM ThT. Three drops of each sample mixed with reservoir buffer were 

placed on a R3-231 22 mm x 0.22 mm siliconized cover slip (Hampton Research, USA) and 

placed on the wells of VDX 24 well plate (Hampton Research, USA) the rims of which were 

coated with Dow Corning vacuum grease (Hampton Research, USA) for efficient sealing. The 

plate was incubated in a constant 16°C incubator and crystal growth monitored by Olympus 

SZX7 Stereo Light Microscope with X-Cite Series 120 Q twice a week for three weeks.   
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Results:  

1. Initial protein analysis and Reproducing BSA aggregation behavior   

 As mentioned in preceding sections we first checked the purity of the protein we were 

going to work with. We loaded 20 uL of 30 μM BSA in 20 mM phosphate buffer pH 7.4 on 9% 

SDS PAGE and ran it under denaturing conditions. As shown in Fig-1, the native protein band 

was observed around 66 kDa with respect to standard markers. The protein appeared to move as 

a single band and without any aggregates. But under similar conditions, BSA with 15.5 mM DTT 

moved slower than its native form but again as a single population and without any significant 

amount of aggregates. The molecular weight of this band corresponded to ~80kDa. The 

important thing to note here was that in the presence of DTT the protein did not dimerize or 

multimerize but instead appeared to have lost its compactness and structure which is not a 

surprise given the abundance of disulfide bonds in this protein. We have described more of it in 

Fig-3 below. We want to mention here one deviation we opted from standard SDS protocol. We 

did not heat the samples to 100 °C before loading on the gel. This was mainly done to be able to 

ascertain the effect of temperature on BSA in subsequent experiments.  

Next we monitored effect of temperature on BSA. BSA was incubated for 2 hours at 

room temperature (RT) or at 80 °C and in the presence and absence of 15.5 mM DTT in 20 mM 

phosphate buffer pH 7.4 as shown in Fig-2. The results of BSA in the presence or absence of 

DTT described above were reproduced in lane 3 and 4 (Fig-2). After 2 hours of incubations at 80 

°C BSA in the presence of DTT (lane 1) exhibited a decrease in the band intensity. Under equal 

and similar experimental conditions this could be because of less protein entering the gel as a 

consequence of higher order aggregate formed during the incubation time at 80 °C. Supporting 

of this conclusion, we observed BSA incubated without DTT also exhibited decreased intensity 
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of its main band at 66 kDa but in addition and unlike DTT included sample a number of higher 

order aggregates were observed. It is noteworthy that in the absence of DTT there is coexistence 

of different but gel penetrable aggregates perhaps in equilibrium but in the presence of DTT the 

equilibrium if shifted mostly to larger gel impenetrable aggregates. 

In the case of aggregation and amyloid type in particular, the oligomerization has been 

observed to be preceded by the at least partial unfolding of the protein. We wanted to confirm the 

higher order oligomers observed in the absence of DTT (Fig-2) were formed through this process 

and that DTT treated samples were infact partially unfolded to start with. We used limited 

proteolysis to access the conformational changes if any that occurs in molecule with DTT or high 

temperature treatment and with the treatment involving both temperature and DTT. The results 

have been summarized in Fig-3. BSA was first incubated for 2 hours at either 80 °C or RT in the 

presence or absence of 15.5 mM DTT. The samples were taken out and incubated further at RT 

for additional 30 minutes in the presence or absence of proteinase K. Proteinase K was added in 

1:100 w/w proteinase:protein ratio. Samples were loaded on 11% SDS PAGE to identify any 

smaller fragments produced by proteolysis. At RT, addition of proteinase K did not appear to 

cause proteolysis of BSA either in the presence (lane 3) or absence (lane 4) of DTT. At 80 °C, 

complete proteolysis of the BSA incubated for 2 hours was observed (lane 5). A smear 

corresponding to low molecular weight was observed in this case which indicates that BSA 

molecules under these conditions are unfolded and the proteolytic sites become exposed and 

easily cleavable. However, in the absence of DTT at 80 °C, a smear corresponding to high 

molecular weight and low molecular weight species was observed. Production of low molecular 

weight fragments could be explained as above but higher order fragments and species could be 

explained in two ways. In one scenario some of the BSA species may assemble in a manner that 
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makes some proteolytic sites inaccessible resulting in limited proteolysis and larger fragments. In 

the second scenario the fragments produced in absence of DTT after incubation at 80 °C might 

be in conformationally distinct structures due to intact disulfides which might favor aggregation 

and result in the formation of higher order species.  
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Fig 1. BSA run on 9% SDS PAGE in the presence (lane 1) and absence (lane 2) of 15.5 mM 

DTT. Figure shows the purity of BSA protein preparations, BSA moves as single band and 

addition of DTT does not lead to dimerization of BSA. Samples were made in 20mM 

phosphate buffer pH 7.4 and incubated for 2 hours at mentioned temperatures. BSA 

concentration was 30 μM. 
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Fig 2. BSA run on 9% SDS PAGE under different conditions - Lane 1, in the presence of 

DTT at 80 °C; lane 2, in the absence of DTT at 80 °C; lane 3, in the presence of DTT at 

room temperature (RT); lane 4, in the absence of DTT at RT; and in lane 5, molecular 

weight markers were run. Each sample was incubated for 2 hours under its particular 

condition before loading on the gel.  Figure shows at 80 °C (lane 1 and 2) most of the 

protein does not enter the gel leading to faded bands. Samples were made in 20mM 

phosphate buffer pH 7.4 and incubated for 2 hours at mentioned temperatures. BSA 

concentration was 30 μM. 
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Fig 3. BSA run on 11% SDS PAGE under different conditions - Lane 1, standard 

markers; in the presence of DTT at 80 °C; lane 2, BSA incubated the presence of in the 

absence of 15.5 mM DTT at room temperature (RT); lane 3, BSA incubated at 80 °C in 

the presence of DTT, and then treated with proteinase K for 30 min; lane 4, BSA 

incubated at RT and then treated with proteinase K; lane 5, BSA incubated at 80 °C with 

15.5 mM DTT and then treated with proteinase K; lane 6, BSA (30 μM) incubated at 80 

C and then treated with proteinase K. Each sample was incubated for 2 hours under its 

particular condition before loading on the gel.  BSA concentration was 30 μM, buffer 

used was 20mM phosphate buffer pH 7.4; DTT was 15.5 mM; proteinase K final amount 

was 1:100 w/w with respect to protein concentration. 
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Size exclusion chromatography (SEC): reproducing the aggregation pathway of BSA. 

As mentioned in the introduction the amyloid cascade hypothesis (Hardy. and Selkoe., 2002) 

suggests that proteins transform into amyloid in steps trigged by protein conformational changes 

that follows association of molecules into oligomers that combine together to form protofibrils. 

More than one protofibril combines to form a mature fibril. This process has not been detailed 

for BSA but because of BSA-amyloid being produced under the lab conditions (Bhattacharya et 

al., 2011) initial oligomerization is highly predicted.   

 To investigate this process we incubated 30 M BSA for varying time periods at 80 °C 

and analyzed the products on SEC G2000 column. The void volume of column was found to be 

~4 mL based on the elution of blue dextran and the inclusive volume was found to be 20 mL 

based on elution of tryptophan-amide. Next a series of samples of BSA incubated for various 

time intervals was loaded on the column. All the samples were centrifuged at 13000 rpm before 

loading on the column to prevent clogging.   

Control BSA (0 hours) showed a profile with a large peak eluting at about 8.7 mL (Fig-

4). This profile also exhibited a small amount of BSA dimer eluting at about 7.4 mL.  Sample 

incubated for 0.16 hours (10 min) indicated that most of the BSA was converting into various 

oligomeric species with dimer as the major species. The profile also exhibited a larger 

(protofibril) peak eluting at 4.8 mL. A 20 minute incubation (0.33 hours) at 80 °C resulted in 

shift of equilibrium towards higher oligomers. The protofibril peak appeared still distinct at this 

point and its concentration appeared to have increased. Further increase in incubation time 

resulted in gradual conversion of oligomers to higher molecular weight forms. The protofibril 

peak at 1 hour of incubation appeared as a shoulder indicating the molecules were organizing 

into more uniform species, which could be expected to be kinetically and thermodynamically 
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stable. BSA finally seemed to exclusively exist in protofibril form after 7 hours of incubation at 

80 °C. The protofibril specie was observed to be very stable as it sustained even after 96 hours of 

incubation at 80 °C without any significant loss in amount. 

The SEC series of experiments on BSA was repeated in the presence of 15.5 mM DTT as 

shown in Fig-5. We have re-plotted the profiles of 0 hr and 96 hr obtained in the absence of DTT 

from Fig-1 for easy comparison of the results. In the presence of DTT and within 10 minutes of 

incubation at 80 °C BSA was predominantly and uniformly converted into the proto fibrilar 

species. A single peak eluting just above void volume within 10 minutes of incubation at 80 °C 

was observed in this case that matched with the peak obtained after 7-96 hours of incubation in 

the absence od DTT. This indicated that the aggregation process is facilitated by the reduction of 

disulfide bonds in such a way that the formation of intermediate oligomers was kinetically very 

fast or completely skipped under these conditions. This could be explained on the lines that 

addition of DTT and reduction of disulfides alters the conformation of BSA leading to the 

exposure of amyloid nucleating sequences. Once exposed their interaction could be facilitated 

and thus be kinetically more labile and undetectable within the transition time of SEC partition 

coefficient. The experiment was repeated with different reducing agents like BME and TCEP 

with similar results (data not shown) and thus favoring the reason derived above. Fig-5 also 

exhibits the SEC profiles obtained at 36 hours and 48 hours superimposed on each other 

indicating the reproducibility of the results. As observed in the case of BSA incubated in the 

absence of DTT, BSA incubated in the presence of DTT showed constant existence of the 

protofibrilar species even after 96 hours of incubation at 80 °C.  
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Fig 4. Size exclusion chromatography (SEC) of BSA under different conditions – Figure 

summarizes SEC profiles obtained by loading BSA incubated for various times at 80 °C on 

G2000 column incubated for desired times. The time of incubation for each profile is shown 

against each profile. The data indicates stepwise oligomerization of BSA under these conditions. 

Each sample of 30 μM BSA was prepared in 20mM phosphate buffer pH 7.4 for different times 

and loaded on column after centrifugation.  
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Fig 5. Size exclusion chromatography (SEC) of BSA with DTT and under different conditions – 

Figure summarizes SEC profiles obtained after loading BSA incubated with 15.5 mM DTT for 

various times at 80 °C on G2000 column. The time of incubation for each profile is shown 

against each profile. Top two profiles with labels 0 hr and 96 hr are from Fig 4 replotted here for 

comparison. Two more profiles obtained at 36 hr and 48 hr in the presence of DTT have been 

superimposed to emphasize the reproducibility of data. The data indicates loss of intermediate 

steps in oligomerization of BSA in the presence of DTT during this monitoring under these 

conditions. Each sample of 30 μM BSA was prepared in 20mM phosphate buffer pH 7.4, 

incubated for different times at 80 °C and loaded on column after centrifugation. 
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Electron Micrography (EM) studies of BSA: 

 As mentioned in the introduction EM is one of the primary techniques along with Congo-

red and X-ray diffraction used to confirm the presence of amyloid (Ahmad et al., 2003; Ahmad 

et al., 2004b). This has been applied to BSA and again to confirm we were studying the same 

amyloid process we carried out EM analysis of BSA under the condition we were using. These 

EM results have been summarized Fig-6. 

 BSA (30 μM) was incubated in the presence and absence of 15.5 mM DTT at 80 °C and 

aliquots were drawn at different time intervals. Five uL of the aliquot was loaded on coated 

copper grids and negatively stained as mentioned in material and methods. The EM picture of 

BSA incubated for 2 hours in the absence of DTT  (Fig-5 Panel A) exhibited rounded structures 

5-15 nm in diameter. These structures have been previously compared to oligomeric species for 

other amyloid forming proteins (Ahmad et al., 2009; Kayed et al., 2003).  Unlike this, BSA 

incubated in the presence of DTT did not exhibit any oligomers but instead the long and mature 

fibrils (with ~ 20 nm width) were predominant in the EM pictures (Fig-5 Panel B). These data 

align with the results of our SEC studies. The samples here were not centrifuged as in the case of 

SEC and that is not interfering with the mechanism is evident from these results. Furthermore, 

we carried out EM studies on extensively incubated BSA (22 days) in both the conditions. The 

EM of BSA in absence of DTT exhibited what is termed as “spaghetti type” amyloid fibrils in 

that they are abundant, loose, puffed and do not possess stretched segments or sharp edges (Fig-5 

Panel C). In comparison, BSA incubated with DTT exhibited sharp and stretched fibrils after 22 

days of incubation at 80 °C.  

 These data therefore served as a proof for us that BSA under our condition was 

aggregating to form amyloid following the mechanism widely accepted by the scientific  
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Fig-6 Electron Micrography (EM) analysis of BSA: Figure shows EM pictures of BSA incubated 

at different time intervals at 80 °C. Panel A, EM picture of BSA incubated at 80 °C for 2 hours; 

Panel B, BSA incubated for 2 hours at 80 °C in the presence of 15.5 mM DTT; Panel C, BSA 

incubated at 80 °C for 22 days; and Panel D, BSA incubated for 22 days at 80 °C in the presence 

of DTT. The protein concentration was 30 μM in each in 20 mM phosphate buffer pH 7.4 
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community (Ahmad et al., 2005; Hardy. and Selkoe., 2002; Kayed et al., 2009). The differences 

observed with DTT treatment were interesting we followed them further but are not relevant to 

the topic we are describing in this thesis. Again, as mentioned in the introduction/section 

amyloid detection is easier to follow by ThT fluorescence based on its sensitivity and efficiency. 

It is during this process that we observed ThT binding of BSA and extended it to the studies of 

other proteins.  

ThT fluorescence changes with different proteins: 

 ThT fluorescence changes on binding in that it is excited at 444 nm and it emits around 

490 nm. Fibril obtained from BSA at 30 μM incubated at 80 °C was treated with different 

concentrations of ThT to get a better insight of signal to noise ratio in the case of ThT 

fluorescence with respect to fibril. But the control native run along side gave interesting results 

complied in Fig-7A. The fluorophore was excited at 444 nm and at low concentrations no ThT 

binding was observed but instead a background signal emitting weakly around 524 nm was 

observed. As the concentration increased ThT exhibited binding to the native BSA, which was 

not expected. As shown in Fig-7A native BSA produced an excellent binding curve with 

emission maxima at 495 nm. We decided to study the behavior of increasing concentration of 

ThT with BSA or different proteins. The experiment was carried out with BSA and Ovalbumin 

first (Fig-7B) each at 15 μM concentration. For Ovalbumin a sharp increase in ThT fluorescence 

at 492 nm until about 15 μM ThT was observed. From 15 to 50 μM the ThT fluorescence 

plateaued. For BSA a gradual increase in ThT was observed up to 30 μM ThT after which it 

leveled. An experiment with protein concentration at 30 μM showed similar results only 

saturating at twice the TnT concentrations (data not shown). From these data it appears that 

ovalbumin binds to ThT in a 1:1 ration and with  
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Fig-7 ThT fluorescence changes with native proteins: Panel A; BSA at 15 uM was treated with 

either 2 uM ThT or 50 uM ThT and fluorescence was measured after exciting at 444 nm. 2 uM 

ThT containing sample exhibits fluorescence characteristic of unbound ThT with emission 

maximum around 515 nm. 50 uM ThT containing sample exhibits fluorescence characteristic of 

bound ThT with emission maximum around 490 nm. Panel B, shows changes in ThT 

fluorescence at constant BSA or ovalbumin concentration (15 uM) and increasing ThT 

concentration. Both studies were carried out in phosphate buffer pH 7.4 at room temperature.  
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Fig-8 ThT fluorescence changes with native proteins: As in the case of Fig-7B, Panel A and 

Panel B here show changes in ThT fluorescence at constant protein concentrations (15 uM) but 

increasing ThT concentration. Both studies were carried out in phosphate buffer pH 7.4 at room 

temperature. Samples were excited at 444 nm and emission recorded at 495 nm. Panel A shows 

mostly ThT binding proteins and panel B shows mostly non-ThT binding proteins.  
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BSA in 2:1 ratio. To further the study, we analyzed the interaction of a variety of proteins with 

ThT. Fig-8A shows  

Papain ADH and Lysozyme exhibited a significant binding to ThT with papain binding 

ThT in the ratio of 1:1. ADH and Lysozyme do not appear to plateau within the concentration 

range studied here. Interestingly, the other set of proteins insulin, proteinase K, RNase, 

Myoglobin and Trypsin do not exhibit significant changes in ThT emission at 495 nm even at 50 

μM ThT concentration. Although trypsin and carbonic anhydrase stands out from the set of non-

binders but their binding is weak and therefore, they are grouped with the non-binders. To 

summarize ThT does not uniformly and universally bind with all proteins some of them are avid 

binders some do not bind at all. The binding of ThT thus may be related to the amino acid 

composition and structure of the protein. It should be noted that ThT molecule by itself exhibited 

no change in fluorescence at all these concentrations and has been plotted as control in Fig-9.  

To analyze the contribution of structure of protein on ThT-protein interaction we carried 

out the fluorescence experiments of all these proteins in the presence of 15.5 mM DTT and 

increasing ThT concentration. As shown in Fig-9. The results were again interesting; the emitted 

fluorescence was quite higher in the case of ovalbumin and BSA in the presence of DTT 

compared to in its absence (Fig-9A). Secondly, contrary to what was found in the absence of 

DTT, the fluorescence intensity saturated at about 15 μM of BSA showing 1:1 binding ratio 

under these conditions. Similarly, ovalbumin exhibited higher binding that saturated more likely 

at a 1:3 ratio. Control ThT only and ThT+DTT profiles were superimposable, demonstrating that 

the observed results were not due to a DTT effect on ThT. It is more likely the structural changes 

caused by disulfide disruption influences ThT interaction with proteins.  Papain and lysozyme 

behavior also changed in the presence of DTT in that their fluorescence decreased significantly 

B 
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within the group of non-interacting proteins (Fig-9B). The non-interacting proteins insulin, 

proteinase K, RNase, Myoglobin and Trypsin exhibited similar fluorescence changes in the 

absence or presence DTT (Fig-9B).  

Taken together these studies show the ThT interaction with proteins is influenced by 

structural changes of proteins significantly.  

 

ELISA for confirming the interaction of ThT with proteins: 

To get additional support for ThT binding with the proteins, we carried out ELISA type 

experiments. ThT at different concentrations was placed in the wells of Nunc ELISA plates and 

incubated at RT overnight. Next the wells were washed with buffer and different proteins but at 

uniform concentration of 15 μM were placed in corresponding wells and the plate was incubated 

for 2 hours at RT. After incubation the plate was again washed few times and finally each well 

was filled with buffer. The plate was read for ThT fluorescence emission at 495 nm on a plate 

reader. The data has been summarized in Fig 10. The results observed in Fig-7 were reproduced. 

Ovalbumin again exhibited a saturation at 1:1 (protein:ThT) ratio and BSA a saturation at 2:1 

ratio. Myoglobin and RNase repeated the non-ThT binding behavior under these conditions. This 

particular experiment was also repeated inversely in that the proteins at increasing concentrations 

were bound overnight to the nunc plate and then treated with uniform ThT concentration 

followed by incubation for 2 hours. The data showed same trend (data not shown). These studies 

therefore confirmed our initial inference that ThT was indeed binding to some proteins 

selectively while others preferred to stay away form it.  
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Fig-9   ThT fluorescence changes with native proteins in the presence of DTT. As in the case of 

Fig-7 and 8, Panel A and Panel B here show changes in ThT fluorescence at constant protein 

concentrations (15 uM) but increasing ThT concentration and in the presence of DTT. Both 

studies were carried out in phosphate buffer pH 7.4 at room temperature and 15.5 mM DTT. 

Samples were excited at 444 nm and emission recorded at 495 nm. Panel A shows mostly ThT 

binding proteins and panel B shows mostly non-ThT binding proteins 
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Fig -10 ELISA: figure shows binding of proteins with immobilized ThT on wells of nunc plates. 

ThT was incubated at increasing concentration in corresponding wells over night, washed three 

times next morning and incubated with protein at 15 uM concentration uniformly throughout the 

wells for 2 hours at room temperature. The wells were then washed with buffer and filled with 

200 uL buffer and read for ThT fluorescence at 495nm. Excitation was 444 nm. ThT binding 

proteins again exhibited high ThT fluorescence and non-binders were found emitting around the 

base lines.  
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Circular dichroism: 

The preceding sections established that ThT was binding to a group of proteins and DTT studies 

indicated that this binding might be influenced by the structural changes in the protein molecule. 

Therefore, we designed circular dichroism experiments to monitor changes in the secondary 

structure of these proteins with and without the addition of ThT. Shown in Fig-11 is the far-uv 

CD spectra of BSA at different ThT concentrations. The CD spectrum of native untreated BSA 

(0.5 μM) exhibits two minima around 222 nmand 209 nm. This signature profile is characteristic 

of proteins with predominantly α-helical secondary structure. BSA treated with 15 μM ThT 

exhibited a loss in the signal at 222 and 209 nm indicating the loss in helical content. An increase 

in ThT to 50 μM lead to further decrease in the signal around these characteristic wavelengths. 

These experiments indicated that addition of ThT induces a structural change in BSA molecule 

under these conditions. The far-uv CD of myoglobin did not show any significant changes in the 

spectra with and without the presence of ThT. As shown in the Fig-11B the CD profiles of native 

and 50 μM ThT containing myoglobin samples are superimposable over each other. These results 

again support the selective binding of ThT to protein molecules and that ThT binding can result 

in the modification of the structure of protein molecules. It has been shown in many instances 

that he loss of structure in the proteins can reflect directly on the stability of the protein. To test 

this aspect we planned to carry out the thermal melts on the CD machine. BSA at 0.5 μM in 20 

mM phosphate buffer ph 7.4 with or without varying concentrations of ThT was poured in a 

quartz cuvette and the cuvette was placed in cell holder of a CD machine. The temperature of 

cell was increased by peltier system at the rate of 1 °C per minute. CD signal (ellipticity was 

monitored) at 222 nm. The raw data was converted into fraction folded by using the protocol 

published by Greenfield (Greenfield, 2006a; Greenfield, 2006b). This protocol also  



56 
 

 

 

 

 

 

Fig-11 Far-UV CD profiles of Proteins: Top panel, Far-UV CD spectra of BSA at pH 7.4 in the 

presence of various ThT concentrations, dashed – Native BSA; solid BSA + 15 uM ThT and 

dotted – BSA+30 uM ThT. Bottom panel, Far-UV CD spectra of myoglobin at pH 7.4 in the 

presence of various ThT concentrations, Blue – Native Myoglobin only; red BSA + 15 uM ThT 

and purple – Myoglobin+30 uM. The protein concentration was 0.5 μM in each in 20 mM 

phosphate buffer pH 7.4 
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Fig-12 CD changes of native proteins as a function of temperature (thermal melts): Panel A, 

thermal melt of BSA 1-BSA alone, 2-BSA+10 M ThT, 3-BSA+30 M ThT; Panel B, thermal 

melt of Myoglobin 1-Myoglobin alone, 2-Myoglobin +30 M ThT. 0.5 uM protein was 

incubated in the presence or absence of ThT as shown in CD and temperature of the cell 

increased at the rate of 1 °C per minute at CD measured at 222 nm.  
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provided us with the information about the melting temperature (Tm) of the protein (temperature 

where half the population of proteins is unfolded. As shown in the Fig-12A the Tm of BSA alone 

was found to be 74.2 °C. In the presence of 10 μM ThT Tm of BSA was observed to decrease to 

72.3 °C and in the presence of 30 μM ThT, the Tm further decreased to 71.3 °C. These results 

match with the loss of secondary structure (helical content) observed in far UV CD studies upon 

addition of ThT. Interestingly, myoglobin the protein among the non-ThT interacting group did 

nto show any changes in the Tm. Melting temperature of myoglobin both in the presence and 

absence was observes to be 77.9 °C as shown in Fig-12B.  

Thus, so far, we have confirmed ThT interacts selectively with some proteins, induces a 

structural change in them and that in in turn decreases the protein stability. Non-ThT interacting 

proteins neither observed any ThT binding nor did the presence of ThT on any detectable scale 

affect the stability of tehse proteins.  

Effect of ThT on the aggregation propensity of BSA: 

According to a seminal work by Dobson’s group (Fändrich et al., 2001)any protein can form 

amyloid fibrils under its suitable conditions especially at high temperatures. Also, according to 

amyloid cascade theory (Hardy. and Selkoe., 2002; Walsh and Selkoe, 2007)proteins amyloid 

formation is step wise with protein unfolding ro structural modification as the first trigger factor. 

Keeping both of these in mind and comparing it with ThT data we summarized above, we 

wanted to explore if addition of ThT could influence the aggregation propensity of BSA. We 

used ThT assay to determine the aggregation propensity of BSA in the presence or absence of 

high concentrations of ThT as shown in Fig-13. BSA was incubated under the amyloid forming 

conditions (37 °C, pH 7.4, 600 rpm) in the presence or absence of varying concentrations of ThT 

(co-incubation), aliquots drawn at regular intervals and fluorescence measured. The raw  
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Fig-13 ThT fluorescence changes upon BSA aggregation:  Panel A, Shows ThT fluorescence as 

a function of time during BSA amyloid formation in increasing concentrations of ThT as shown 

against each profile. BSA was incubated for 2 hours at 37 °C stirred at 600 rpm in 20 mM 

phosphate buffer pH 7.4. Panel B, shows the normalized data ((F0-F)/[ThT]) where F0 is 

fluorescence in the absence of ThT at 0 time of incubation, F is fluorescence at any time of 

incubation either in the presence or absence of ThT. 
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fluorescence data (Fig-13A) shows no increase in ThT fluorescence over 4hours of incubation. 

This does not mean there are no fibrils formed under these conditions but that with no fibril 

detection probe (ThT in this case) they cannot be detected. The fluorescence intensity as 

expected exhibited as increased with the time of incubation in the presence of ThT (5- 50 μM). 

The ThT intensity differences between profiles is masked by increasing ThT concentration and 

any change in the rate of amyloidosis cannot be observed. Therefore, the data was corrected for 

the contribution of ThT concentration by diving the net fluorescence by amount of ThT present 

in each case. The resulting profiles (Fig-13B) appear to be closely following each other towards 

the aggregation process. There is a subtle change in the propensity thought, for example, ThT in 

the presence of 50 μM ThT exhibits a 4% decrease in lag time compared with the 5 μM ThT. 

The changes are linear but the effect is not significant. We repeated these experiments by 

incubating BSA under the similar conditions but without any ThT. Aliquots were collected at 

desired time and then 50 μM ThT was added to one part before recording the fluorescence. The 

resulting profile was not significantly different. To other part 5 μM ThT was added and it again 

produced the similar profile as was observed in the case where ThT was co-incubated.  

 These experiments in summary showed that ThT binding does not have a significant 

observable effect on amyloid genesis of BSA under these conditions. 

Crystallography studies of ThT binding to BSA: 

BSA was crystallized according to the protocols published previously (Majorek et al., 2012) by 

hanging drop method. BSA at final concentration of 10 mg/mL in the tank buffer containing 

PEG 5000 was placed in as a drop on the cover slip and sealed in the well of a=the crystallization 

plate. The plate was incubated at 20 °C. After three weeks (21 days) crystals were visible and 

started to grow big. The crystals looked needle-like and appeared flat and unidirectional. (Fig-
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14a, b) The needles were 73 μm wide at some places. After consultations with crystallographers 

it was suggested that these crystals might not diffract well. So, we modified the protocol and set 

hanging drops of BSA 10 mg/mL final concentration in PEG 3350, pH 6.25 Tris-HCl. and 

incubated them at 16 °C. Again, after three weeks the crystals were visible. The crystals 

appeared big this time with a width of about 140 μm (Fig-14c, d). The crystals were sent for 

diffraction to Chicago accelerator and diffracted at 4Å. This diffraction was supposed to be not 

sensitive enough to provide the details of binding of a small molecule like ThT. 

 From these studies, we were left with just one option of finding the probable binding site 

of ThT on BSA and that was molecular docking. We used auto dock software to float the ThT 

molecule on BSA environment and locate the lowest energy binding site on BSA. 
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Fig 14 Crystallography of BSA molecule: BSA was crystallized using hanging drop method. 

Reservoir buffer with 20% PEG 3350 w/v and 0.2 M calcium acetate in 0.1 M Tris HCl buffer, 

pH 6.5 was placed in the reservoir wells. BSA samples were made by mixing 1:1 with the 

reservoir buffer in a final volume of 10 µL.  The stocks were made such that final concentrations 

in the drop was 20 mg/mL (300 µM) BSA + 0 µM ThT (a); or 20 mg/mL (300 µM) BSA + 30 

µM ThT (b). Three drops of each sample were placed on siliconized coverslip. Coverslips were 

capped on the wells and sealed with vacuum grease. The plate was incubated in a constant 20 °C 

incubator and crystal growth monitored for three weeks. Crystals shown in (c) and (d) 

correspond to 20 mg/mL BSA + 0 µM ThT and 30 mg/mL BSA + 30 µM ThT respectively. Both 

(c) and (d) used PEG 3350 in Tris-HCl buffer at pH 6.25 and was incubated at 20 C. Crystals 

grew in 3 weeks. 
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Using computational simulations software AutoDock to locate ThT binding site 

Blind docking simulations were carried out with Auto Dock 4.2. We used AUTODOCK 

4.2 in different ways to validate our results obtained from this method. First, we ran a known 

BSA moecuel with a known lgand whose location ahd been solved both by AUTODOCK 4.2 

and crystal structure. After gaining confidence in parameter setting in this exercise we ran 

AUTODOCK 4.2 on full length BSA molecule and located the binding site corresponding to the 

lowest ΔG. Next we used the dimer and located the binding site with lowest energy. The BSA 

molecule was further fragmented computationally and AUTODOCK 4.2 was run on each of the 

fragment. The redundant sites with the lowest energy were considered most potential binding site 

(see table 4). 

Repeated conformation ‘hits’ between simulations were noted and used to reinforce 

confidence in binding sites, with lowest binding site energy from these ‘hits’ were totaled in 

order to calculate a total Δ G for that binding site. The corresponding docking summary for the 

complexes are listed on Table 4 and suggests that a preferential binding site exists between 

amino acids (AA) 1 to 300 of BSA (Fig. 23) with a total Δ G of -131.38 kcal/mol, with a 

secondary site between AA 500-600 with a total Δ G of -77.31 kcal/mol. These calculations were 

carried out with ThT as a flexible ligand, while the protein conformation was constrained. All 

hydrogens were added to the structures simultaneously, while Gasteiger charges were assigned to 

the protein and a Larmarkian genetic algorithm was used to calculate binding sites. 

The zoomed in ThT binding site on BSA (with ThT structure) has been shown in Fig-15 

and the location of binding site with respect to the whole BSA molecule has been shown in Fig-

16. 
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Based on the simulation studies it was clear that ThT binds in the aromatic rich region. In 

order to derive a pattern that could discriminate between the properties of ThT binding in the 

case of ThT-binding and ThT-non binding proteins, we populated various parameter of these 

different proteins using available data and our own calculations. For example we found % helical 

and beta sheet content from published PDB structures. We calculated the number of aromatic 

and hydrophobic residues using online tools. Once collected, we plotted each of these parameters 

from each protein with the changes in ThT observed for the corresponding protein. The data is 

presented in Fig-17 and 18. If we look closely the data does nto exhibit a trend in any of the 

cases shown. For example, BSA with more hydrophobic content exhibits lower ThT signal and 

and insulin with highest % hydrophobic content exhibits lowest ThT signal. Agian for % 

aromaticity although ovalbumin and BSA follow the trend but lysozyme, Prot. K or insulin with 

higher content exhibit lower ThT binding. 
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Table 4 Summarizes Autodock parameters 

  
A

u
to

D
oc

k
E

n
er

gy
 S

co
re

s

F
ra

gm
en

ts
1-

30
0 

fr
ag

m
en

t 
(-

D
G

)
30

0-
40

0 
fr

ag
m

en
t 

(-
D

G
)

40
0-

50
0 

fr
ag

m
en

t 
(-

D
G

)
50

0-
60

0 
fr

ag
m

en
t 

(-
D

G
)

R
M

S
D

 +
R

ed
un

da
nt

 S
co

ri
ng

 
19

1
3

10

R
M

S
D

 -
N

on
-R

ed
un

da
nt

 S
co

re
11

1
3

3

E
ne

rg
y 

(k
ca

l/m
ol

)
-7

.6
2

-5
.4

2
-6

.1
3

-7
.2

4

To
ta

l 
Δ

G
 (k

ca
l/m

ol
)

-1
31

.3
8

-5
.4

2
-1

8.
89

-7
7.

31

G
ri

d 
co

or
di

na
te

s 
fo

r 
ru

nn
in

g 
A

ut
oD

oc
k

C
oo

rd
in

at
es

1-
30

0
30

0-
40

0
40

0-
50

0
50

0-
60

0

C
en

te
r

x
36

.9
53

27
.6

16
43

.0
29

65
.2

44

y
28

.1
91

22
.9

97
14

.4
99

12
.6

76

z
27

.4
36

57
.1

3
51

.7
56

57
.6

76

sp
ac

in
g

0.
49

72
22

22
2

0.
49

72
22

22
2

0.
49

72
22

22
2

0.
37

5

x 
G

ri
d 

P
oi

nt
s

12
6

12
6

78
94

y 
G

ri
d 

P
oi

nt
s

10
6

80
94

94

Z
 G

ri
d 

P
oi

nt
s

11
8

72
64

82

C
oo

rd
in

at
es

50
-1

50
25

0-
35

0
35

0-
45

0
45

0-
55

0

C
en

te
r

x
45

.8
68

17
.2

26
28

.5
5

48
.4

98

y
28

.1
91

32
.6

52
17

.5
12

.1
68

z
23

.2
69

39
.8

44
56

.6
24

54
.3

4

sp
ac

in
g

0.
49

72
22

22
2

0.
49

72
22

22
2

0.
49

72
22

22
2

0.
49

72
22

22
2

x 
G

ri
d 

P
oi

nt
s

92
86

12
2

10
4

y 
G

ri
d 

P
oi

nt
s

10
6

88
82

84

Z
 G

ri
d 

P
oi

nt
s

84
82

66
72

 



70 
 

. 

 

 

Fig-15 ThT binding site (zoomed in) in BSA based on AutoDock data. Result of AutoDock 

simulation showing binding pocket of ThT in fragment 1-300 of BSA. Residues closest to ThT 

labeled with amino acid structure shown superimposed on secondary structure of BSA.   
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Fig-15  
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Fig-16 ThT binding site with respect to full length BSA molecule based on AutoDock data. 

 

 



73 
 

 

 

 

 

 

Fig-17 Plot of ThT fluorescence vs % beta sheet and alpha helix content of different proteins. 

The parameters were either obtained from PDB files or calculated using online tools. 
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Fig-17  
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Fig-18 Plot of ThT fluorescence vs % aromaticity and hydrophobicity content of different 

proteins. The parameters were either obtained from PDB files or calculated using online tools. 
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Fig-18  
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Discussion:  

 The usefulness of ThT and the extent of information it has provided thus far in the field of 

amyloid research are mind-boggling (Harel et al., 2008; Krebs et al., 2005; LeVine, 1995; Naiki 

et al., 1989; Sulatskaya et al., 2010; Wu et al., 2008; Wu et al., 2009). ThT is a dynamic 

molecule that works in different pH, is not affected by metal ions and these properties make it far 

more superior than congo-red the traditional detection dye for amyloid (Khurana et al., 2001). So 

much was the influence of congo-red in the amyloid field that these diseases were initially 

termed “congo-files” and the patients sometimes were injected with congo-red to find amyloid 

(Puchtler et al., 1962; Shikama et al., 2010). The sample is highly sensitive to the thickness of 

the amyloid film and needs good expertise in sample preparation. The use of cross-polarized 

light in the congo-red assay is another requirement that decreases the degree of easiness in its use 

and makes the technique less popular (Kim et al., 2003).  

Although EM is an easier technique, the grid preparation being commercially and 

economically available, the technique still is challenged in the sense that it provides the snap 

shorts in terms of mechanism. The technique never the less is highly sensitive on modern high 

magnification machines and can provide the atomic details in the fibrils a feat only possible with 

this technique (Jime´nez et al., 2002). X-ray diffraction again is limited in providing information 

about the cross beta sheet structure of the fibril. This is mainly due to the repetitive arrangement 

and nature of constituent molecules in the fibril but also to the fact that diffraction might not 

occur within a resolution on Å scale (Eanes and Glenner, 1968). The scattering of X-ray can also 

not provide more information about the atomic details since wide-angle scattering is very weak 

on normal X-ray machines and the sample stability is compromised in high beam synchrotron 
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facilities. Sample preparation is another technique that needs good expertize before a scientist 

can proceed in this direction. 

During recent times and especially in the last decade investigators have tried various 

other fluorescent molecules namely ANS (Ahmad et al., 2005), Bis-ANS, Thioflavin-S, and as 

far distinct as rheology methods but ThT has been, colloquially mentioning, “irreplaceable” in 

terms of its ease of application, sensitivity and universality in its use with different proteins and 

peptides(Ahmad, 2010; Biancalana et al., 2008).  

In the present work, we initially focused on detecting the BSA fibrils with ThT for an 

entirely different project but were quite surprised to see the native protein binding ThT during 

the technique standardization process in the lab. This initial finding led us to explore in this 

direction and analyze the range of ThT concentrations with BSA initially. The results showed us 

that binding was specific and each BSA appeared to bind two molecules of ThT. The process 

was reproducible at different concentrations of BSA. At this stage, it was rational to test its 

ortholog ovalbumin and the getting similar results confirmed it was not an isolated process. We 

therefore tried a set of proteins that we could easily find available. It soon turned out that among 

this set, ThT, preferentially bound to certain proteins and others it did not. The efficiency of 

binding also seemed to differ from protein to protein. Since BSA has free SH- group (Majorek et 

al., 2012) the first guess was that it is either binding to SH- group or it is affecting the 

fluorescence properties of ThT itself. ThT in the presence and absence of DTT did not show any 

changes in the fluorescence of emission and increase in fluorescence in the case of DTT treated 

BSA indicated neither of the assumptions was correct. In addition, some of the ThT-binders 

(lysozyme) in the absence of DTT changed to non-binders in the presence of DTT. These factors 

explained that it was more than the solvent or SH- interference going on. And since there are 
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many instances now available where ThT has been shown to bind non-fibrilar states, it seemed 

more reasonable that ThT was binding to the protein itself. The increase or decrease in 

fluorescence in the presence of DTT indicated that ThT under these conditions was either able to 

make efficient binding or was prevented form such binding, respectively, due to the changes in 

the structure of the molecule under the influence of DTT. Yet we felt the need of establishing 

ThT binding by another method and in this case we designed an EISA based immobilization of 

one component followed by monitoring the attachment of another component to see the extent of 

binding. The ELISA results were at par with fluorescence results and ELISA was again able to 

discriminate the ThT binders form no-binders. These results thus established beyond any degree 

of ambiguity that ThT was selectively binding to some proteins in non-fibrilar state or native 

state 

Now that binding was happening, we could use some other biophysical methods to 

explore the consequences of such binding and any of the structural changes happening. We 

therefore used CD to monitor if any structural changes were taking place (Greenfield, 2006a; 

Uversky and Permyakov, 2007). Far-UV CD scans of BSA in the presence of ThT exhibited 

small but gradual changes as a function of ThT concentration. While for a non-binder like 

myoglobin, these changes were not observed setting apart the binders and non-binders in yet 

another parameter. The binding of ligands is often associated with the change in the stability of 

proteins. We therefore wanted to see the effect of ThT on the thermal stability of these binding 

proteins and use the non-binders as controls. The CD melts we performed showed in case of the 

ThT-binding protein the Tm decreased by ~3 °C in the presence of 30 uM ThT. On the other 

hand, observation of no change in the Tm for myoglobin in the presence and absence of ThT 
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increased our confidence in the data and the process. This also gave us confidence to further 

explore the exact binding site of ThT at least in the case of BSA.  

We chose to do that by crystallography and were fortunate enough to get the crystals 

growing in the first few tries. But the crystals turned out to be needle like, flat and unidirectional 

and were not expected to diffract well. 

Further screening for temperature and pH 

lead us to get better thicker crystals but 

those crystals diffracted only up to 4 Å 

which was not sensitive enough data set to 

provide us any information at the level of 

ThT. In its absence, we resorted to use the 

computational molecular dynamic 

software AutoDock 4.2 to locate the 

binding site (Crippen et al., 2010). We 

tried to get robustness and confidence in out AutoDock analysis by using a set of permutations 

and combinations and chose to select only the redundant candidates with lowest binding energy 

as possible binding site for ThT. These data suggested that most probable binding site of ThT is 

between 1-300 residues and in a highly aromatic rich region. The most surprising observation in 

this simulation was that the binding sites of ThT were closer to the amyloid prone nucleating 

sites of BSA determined by the zipperDB prediction software as shown on right side here. 

With this conclusion, we further proceeded to see if the presence or absence of 

aromaticity is the discriminating parameter between Tht-Binders and non-binders. The analysis 

on this direction was not that straight forward while the ThT binding of BSA and ovalbumin 
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aligned with such this binding pattern others did not. Analysis of other parameters with respect to 

ThT-protein binding like, hydrophobicity, helicity and others also did not provide us with a clear 

pattern or ability of prediction.   

Based on the data presented here, this study had added to our knowledge about the 

aspects and diversity of ThT binding selectively to some proteins. 
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Conclusion: 

ThT fluorescence assay has provided a wealth of information about amyloid dynamics and 

kinetics. In this work, we report that besides amyloid, ThT can bind to native proteins too. We 

established this through the ThT fluorescence changes with each protein and confirmed the data 

with ELISA type immobilized assay and fluorescence quenching. Based on these assays the 

protein population fell in two categories viz., 1) ThT-binders and 2) ThT-non-binders. Among 

the ThT binding proteins ThT caused change in the secondary structure and decreased their 

stability but did not influence their propensity to amyloidosis significantly. This property of ThT 

could be availed as a potential drug like activity against amyloid. Modification of ThT SAR will 

get more ThT like anti-amyloid molecules.  

Although crystallization did not work, the simulation data located the binding site in the 

1-300 residue of BSA. Surprisingly, the other binding sites laid close to the proposed nucleation 

fragments of BSA fibrillation. Further, analysis showed there was no structural or compositional 

predictor that aligned with the observed ThT binding or non-binding property of proteins. In 

conclusion, thus it could be stated that ThT binding to the proteins or amino acids is dependent 

on availability or creation of a unique aromatic rich site that can accommodate ThT effectively. 

And this work thus establishes that ThT can selectively bind to some proteins. 
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Appendix 

Standard Operating Method - SDS-PAGE 
I. Apparatus – Gel casting unit, Buffer tank with electrodes and power supply. [Biorad, Invitrogen] 

1 

II. Reagents (see recipes in section VIII below) 

1) pH 8.8, 1.5M Tris-HCl buffer (for separating gel)   6) 10% SDS 

2) pH 6.8, 0.5M Tris-HCl buffer (for stacking gel)   7) pH 8.8 electrode 

running buffer 

3) 30% Acrylamide Stock solution 

4) TEMED solution (Tetramethylenediamine - sigma 6.63 M) 

5) Solid anhydrous APS (Ammonium Persulfate - or 10% solution prepared fresh)  

III. Separating gel:  
1. Assemble the glass plate sandwich1. Prepare 5mL separating/resolving gel 

solution according to table below avoiding any bubble formation.  
2. Pour the gel solution in glass sandwich leave about 1/4 of the space free for the 

stacking gel. Carefully cover the gel meniscus with DI water3 and wait until the 
resolving gel polymerizes.  

3. [A clear line will appear at the gel meniscus and water on top when 
polymerization is complete. TEMED+APS polymerizes solution so subsequent 
steps should be swift, adding too much TEMED/APS may cause quick 
polymerization in the beaker itself]. 

 

% gel pH 8.8 buffer (mL) Acryl. Stock (mL) SDS 10% (mL) DI H2O (mL) TEMED (μL) APS2 

20 1 3.3 .1 0.7 10 Few grains 

18 1 3 .1 1 10 Few grains 

16 1 2.7 .1 1.3 10 Few grains 

15 1 2.5 .1 1.5 10 Few grains 

14 1 2.3 .1 1.7 10 Few grains 

12 1 2 .1 2 10 Few grains 

11 1 1.83 .1 2.17 10 Few grains 

10 1 1.67 .1 2.33 10 Few grains 

9 1 1.5 .1 2.5 10 Few grains 

8 1 1.33 .1 2.67 10 Few grains 

 

IV. Staking gel: Prepare 2mL stacking gel according to Table II below (similar as section III). Wait for 

separating gel to polymerize, aspirate the water layer over it and add stacking gel on top and 
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immediately insert spacer to create sample loading wells [delay addition of TEMED/APS in 

stacking gel until you assure separating gel is polymerized].  

% gel pH 6.8 Buffer 

(mL) 

Acryl Stock (mL) SDS 10% (mL) DI H2O (mL) TEMED (μL) APS 

4 0.5 0.27 .1 1.23 7 Few grains 

5 0.5 0.33 .1 1.17 7 Few grains 

6 0.5 0.40 .1 1.10 7 Few grains 

7 0.5 0.47 .1 1.03 7 Few grains 

V. Running gel:  
1. Remove combs carefully, wash wells with water. Place the gel into the 

electrophoresis tank, fill the tank Running Buffer. Make sure there are no leaks 
and the wells are submerged in buffer.  

2. Load markers and samples (mixed with loading buffer) boiled at 100 °C 
(optional) and run the gel at 200 mV (unless stated differently). Stop when the 
dye front reaches to bottom of the gel.  

 

VI. Staining the Gel 

Pry open the glass plates and free the sticky sides with a spatula. Invert it over a plastic 

container and let it fall under gravity. You may need to pull/push one end gently to set the fall. 

Pour Imperial (G250) or R250 commassie stain and microwave gel for 15 sec or leave the gel 

submerged in stain on shaker for 0.5 to 1 hr. Wash gel with water and then destain and leave it 

on shaker for desired time (few hrs to overnight). Take picture and document the results. [Stain 

preparation - ……………. Destain 50:40:10 Water:Methanol:Acetic acid] 

 

VII. Reagent Recipes: 

pH 8.8 Buffer (1.5 M Tris-HCl) pH 6.8 Buffer (0.5 M Tris-HCl) 30% Acrylamide Stock 

 Dissolve 181.71 g Tris base 

in 700 mL DI H2O. Bring to pH 

8.8 with concentrated HCl, 

bring volume to 1 L with 

additional H2O  

(= 18.15g/100mL). 

 Dissolve 6 g Tris base in 60 mL 

DI H2O. Adjust pH to 6.8 with 

concentrated HCl, then adjust 

volume to 100 mL with DI water.  

 Mix 29 g Acrylamide, 1 g 

Bisacrylamide, and bring volume to 

100mL w/ DI H2O (= 30%T; 3.3%C). 

Using 29.2 g Acryl. + 0.8 g Bisacryl. 

= 30%T, 2.6%C. 

 

10% SDS (Sodium Dodecyl 

Sulfate) 

 

Loading Dye (10 mL 6X Laemmli 

Buffer) 

 

Electrode Running Buffer 

Add 10 g SDS  80 mL DI 

H2O. Allow to dissolve, then 

bring to 100mL w/ 

additional H2O.  

Dissolve 6 mg Bromophenol Blue in 

2.1 mL DI H2O, then add the 

following: 

1) 1.2 g SDS 

Add the following to 1.8 L DI H2O: 

- 28.8 g glycine (14.4g/500mL) 
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2) 1.2 mL pH 6.8 Tris buffer 
3) 4.7 mL glycerol 

 Warm and dissolve everything. 

- 6.04 g Tris base (3.02g/500mL) 

- 2 g SDS (5g/500mL) 

 Once dissolved, add H2O till 

volume = 2 L, pH will be 8.8 no 

need to check. 

 

1 See the SOM for PAGE Apparatus and Assembly  
2 Best way to control APS addition is by adding from a solution (10%) freshly prepared or frozen (-20C) 

[10-25µL] 
3 The separating/resolving gel can be covered with 50% isopropanol, 0.1% SDS solution or water 

 

Expected %age gel for running expected molecular wt range: 

66kDa (~9%) 10kDa (≥15%) 

[A gradient gel with concentration uniformly varying from 4% at the top to 20% at bottom is 

universal for running any protein independent of its size]  

 

Notes: 

- SDS-PAGE [Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoreses] is a technique 

used in biochemistry to separate molecules based on their size. By adjusting the total 

amount of acrylamide (%T) and cross-linking bisacrylamide (%C), you can make a gel 

with different pore sizes. This will govern the distance which a given protein will be able 

to travel under an electrical current.  

- Addition of the DI water layer on top of the separating gel prevents its top from drying. 

This will ensure current will travel between the stacking and separating layers’ junction 

once it has polymerized. Isopropanol was traditionally used for this purpose. 

- Running gels of lower percentage (than listed) runs the risk of the gel falling apart at the 

touch, or stretching like plastic, ruining the results.  

- Besides %T pore size can be adjusted with the cross-linker (%C). 

 

 

 


