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Bogue Banks in North Carolina is expected to be impacted by sea-level rise, but the 

impact on the subsurface groundwater system is not well understood. A three-dimensional Visual 

MODFLOW steady-state model and ArcGIS 10.3 were used to quantify the extent of marine and 

groundwater inundation by the year 2100. Visual MODFLOW was used to simulate the water 

table on Bogue Banks, first at current sea-level then at different sea-level rise scenarios. The 

results from Visual MODFLOW were then imported into ArcGIS to calculate the area inundated 

by marine and groundwater inundation. Sea-level rise between 0.2 and 1.4 m above present 

conditions may occur at Bogue Banks and seven scenarios were envisioned as appropriate 

intervals to forecast. A total of 29 monitoring wells were installed in the surficial aquifer of 

Bogue Banks and equipped with water level loggers to collect groundwater data. Aquifer 

properties were constrained by studying sediment cores collected during well construction. 

Marine and groundwater inundation combine to impair 33% to 79% of the island by the year 

2100, with 43% to 51% of the island being inundated in the most likely scenarios of 0.4 to 0.6 m 

of sea-level rise above current conditions. Marine inundation estimates range from 5% to 31% 

with 11% to 17% inundation in the most likely scenarios. Groundwater inundation estimates 

ranged from a minimum of 28% to 48% of the area not impaired by marine inundation, with the 

most likely range indicating 33% to 40% inundation. The results indicate that as sea-level rise 



 

 

increases in severity, groundwater inundation covers a much larger area of the island than marine 

impairment. The results of the study therefore suggest that as sea-level rises, residents of Bogue 

Banks may need to account for marine and groundwater inundation as the environment changes 

and sea-level rises. A greater understanding of the combined impacts of groundwater and marine 

inundation on barrier islands may be useful for coastal residents in mitigating or adapting to 

changes due to sea-level rise not just in North Carolina, but globally.  
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INTRODUCTION 

Sea-level rise resulting from climate change is expected to impact groundwater resources 

of coastal regions. Sea-level is expected to rise globally between 0.2 and 1.5 m (Jevrejeva et al.; 

2011, Rotzoll and Fletcher, 2013; Horton et al., 2014) by the year 2100. In that same time, sea-

level is expected to rise between 0.3 and 1.3 m in North Carolina (Kopp et al., 2014, Overton et 

al., 2015). Sea-level rise of about 3 mm/year has been observed in Beaufort, North Carolina 

(https://tidesandcurrents.noaa.gov, Overton et al., 2015).  This rising sea level causes increased 

marine inundation (where land is impaired by encroaching saltwater), but an equally important 

repercussion of sea-level rise is an increase in groundwater (freshwater) inundation, where the 

water table rises above the land surface resulting in permanent flooding (Masterson et al., 2013-

a; Rotzoll and Fletcher, 2013; Manda et al., 2014).  

Increased groundwater inundation has several potentially negative impacts on barrier 

island settings including land degradation, infrastructure destruction, and changes in vegetation 

assemblages (Masterson et al., 2013-a, Manda et al., 2014). On-site wastewater treatment 

systems (OWTS) on barrier islands may be compromised due to the rising water table (Manda et 

al., 2014), while sea-level rise has the potential to cause significant urban flooding (Rotzoll and 

Fletcher, 2012) which is already observed as nuisance flooding in the southeastern United States 

(Sweet et al., 2014). Barrier island ecosystems may be altered by the thinning of the vadose 

zone- the unsaturated portion of the aquifer system- before inundation even occurs, disrupting 

vegetation assemblages and altering the island landscape (Masterson et al., 2013-a). These 

problems may not be confined to one geographic location, as there are more than 2100 barrier 

islands across the globe that constitute about 10% (20,783 km) of coastline (Stutz and Pilkey, 

2011) and house about 10% of the world’s population (Nicholls and Cazenave, 2010). Some of 
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these areas may see the effects of groundwater inundation equal to or greater than marine 

inundation (Rotzoll and Fletcher, 2012, Manda et al., 2014).  

Shallow coastal aquifers are expected to experience an increase in water levels as a direct 

result of sea-level rise (Masterson and Garabedian, 2007, Oude Essink et al., 2010 Masterson et 

al., 2013-a, Manda et al., 2014). Prior work on rising water tables has examined the impacts of 

sea-level rise on drinking water supplies (Ferguson and Gleeson, 2012, Guha and Panday, 2012, 

Langevin and Zygnerski, 2013) and OWTS (Flood and Calhoun, 2011, Manda et al., 2014). 

However, while research has been performed to study the consequences of thinning vadose zones 

on barrier islands (Masterson et al., 2013-a, Masterson et al., 2013-b), much less attention has 

been paid to groundwater inundation resulting from sea-level rise.  

This study focuses on Bogue Banks, a developed barrier island on the coast of North 

Carolina (Figure 1). Bogue Banks is characterized by high elevation dunes and low-lying swales 

ranging from sea-level to approximately 17 m elevation, which are representative of many 

barrier island systems. It is an almost east-west trending barrier island on the east coast of North 

Carolina. The island shows morphologic variability, with the western sections being regressive 

while the eastern section of the island is transgressive (Timmons et al., 2010). The number of 

permanent residents is only about 6,600 (http://www.census.gov), but seasonal populations swell 

during tourist season. Emerald Isle, on the western section of Bogue Banks, swells from 

approximately 3,700 residents to about 40,000 residents during peak tourist times 

(http://www.emeraldisle-nc.org/pdfs/2004LUPw2008Amendments.pdf). Town managers on 

Bogue Banks are already concerned about flooding after storm events, which is costly and time 

consuming for the town to remediate (Kramer, personal communication, February 2015).  
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Figure 1: Map of Bogue Banks showing the towns of Emerald Isle, Pine Knoll Shores, and 

Atlantic Beach. Inset: Location of Bogue Banks off the coast of North Carolina. 

 

Purpose and Scope 

The goal of this study was to characterize the water table on Bogue Banks and evaluate 

how the shallow groundwater system may be affected by sea-level rise resulting from climate 

change. This study was also designed to determine the properties of the surficial aquifer and 

quantify the impact sea-level may have on Bogue Banks. The research sought to accomplish 

three primary objectives: 

1. Derive hydrogeologic properties of the surficial aquifer 

2. Simulate the water table on Bogue Banks 

3. Assess the effect of sea-level rise on the water table on Bogue Banks 

The data collected during the course of this research were used to test the hypothesis that 

rising sea levels will cause the water table to rise above the land surface causing groundwater 

inundation in >40% of the surface area on Bogue Banks.   

Previous Research 
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Masterson et al. (2013-a) studied the impact of sea-level rise on Assateague Island, an 

undeveloped barrier island on the coast of Maryland and Virginia. This study investigated how 

increases in sea-level up to 60 cm would impact the groundwater system and what impact this 

would have on vegetation assemblages. Using Visual MODFLOW and the SEAWAT engine, 

this research showed that as sea-level rises, the thickness of the vadose zone decreases and the 

water table may rise above the land surface away from the shore, causing inland groundwater 

flooding.  

Research performed by Sisco (2013) examined the relationship between the water table 

and storm events on Bogue Banks. Sisco (2013) focused on determining the hydrologic 

properties of the surficial aquifer and characteristics of the water table in the town of Emerald 

Isle, North Carolina. The goal of that study was to determine how the groundwater system 

affects storm-water runoff. This study found that during storm events, the water table may crest 

above the land surface and contribute to storm-water runoff. However, that study only 

characterized the water table for the westernmost part of the island.  

Manda et al. (2014) determined the risk of impairment to OWTS on Bogue Banks due to 

rising sea-level and found that the rising water table and thinning vadose zone can lead to 

chronic impairment of OWTS. Sea-level rise was simulated for three scenarios: 0.2, 0.5, and 1.0 

m. At the most extreme sea-level rise scenario, 20% of the study area was inundated and 54% 

was unsuitable for OWTS, defined as where the water table is within 0.3 m of the drainfield 

beneath the ground. This was set as the cutoff because a depth to the water table of 0.3 m or less 

may allow contaminants to enter the groundwater system (Humphrey and O’Driscoll, 2011-a, 

Humphrey and O’Driscoll, 2011-b). Current North Carolina regulations suggest that 0.45 m of 

separation exist between the drainfield and the seasonal high water table (15A NCAC 18A. 
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1900).  These studies, taken together, examine potential issues faced by barrier island 

groundwater systems.  

Hydrogeologic Setting and Conceptual Model 

Lautier (2001) characterizes the hydrogeologic framework of the North Carolina Coastal 

Plain aquifer system as having eight significant aquifers separated by confining units. From 

oldest to youngest, these aquifers are: the Lower Cape Fear, the Upper Cape Fear, the Black 

Creek, the Peedee, the Beaufort, the Castle Hayne, the Yorktown, and the Surficial aquifers 

(Figure 2). Winner and Coble (1996) describe two aquifers in addition to the eight described by 

Lautier: the Pungo River aquifer, which is overlain by the Yorktown, and the Lower Cretaceous 

aquifer, which lies beneath the Lower Cape Fear aquifer. Most aquifers are predominantly sand, 

sometimes with interbedded clay, silt, or shell material with the notable exception of the Castle 

Hayne aquifer, which consists of limestone. These aquifers range in age from Early Cretaceous 

to Holocene (Lautier, 2001). The formations dip eastward at an average rate of 7 m per km and 

thicken in the same direction (Lautier, 2001). The resulting sediment wedge varies from 30 m 

thick in the western coastal plain to more than 2400 m thick under Cape Hatteras and sits on top 

of Paleozoic basement rock as shown in Figure 2 (Lautier, 2001; Winner and Coble, 1996).  



 

 6   

 

 

Figure 2: Hydrogeologic cross section of the North Carolina aquifer system (from Bales et al., 

2004). 

 

The surficial aquifer on Bogue Banks, or water table aquifer, is an unconfined, Quaternary 

aquifer composed mainly of sandy material with some beds of mud and clay typical of surficial 

aquifers present throughout the North Carolina Coastal Plain (Lautier, 2001). The predominant 

source of recharge to the surficial aquifers is precipitation. The average precipitation for a 10 

year period from 1990 to 1999 in the North Carolina Coastal Plain was ~130 centimeters per 

year, but 52 to 92 % of annual precipitation is lost to runoff and evapotranspiration depending on 

soil infiltration capacity, land surface slope, and local evapotranspiration rates (Lautier, 2001). 

These estimates are for the entire coastal plain and may differ from local rates on a barrier island. 

The surficial aquifer has infiltration capacities of up to 50 cm per hour. Other possible sources of 

recharge are hydrologically connected units which allow lateral transmission of water from the 

mainland to offshore barrier islands (Lautier, 2001; Masterson et al., 2013-b).  

A conceptual model of the groundwater system that may be impacted by sea-level rise on 

Bogue Banks is shown in Figure 3. In this conceptual model, only the surficial aquifer is 
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considered. The dominant source of recharge for Bogue Banks is precipitation with additional 

artificial recharge coming from OWTS (Sisco, 2013). Not all the water from precipitation 

percolates to the water table as direct recharge. Some water is lost to the atmosphere through 

evapotranspiration, or the water may be lost as surface run-off (Sisco, 2013). Groundwater flows 

from areas of higher hydraulic head near the center of the island towards areas of lower hydraulic 

head near the coastlines (Sisco, 2013, Lautier, 2001). Groundwater levels are mainly driven by 

current sea-level and groundwater recharge. In most locations on the island, the water table is 

below the land surface. However, since the water table is close to or above the land surface in 

some of the low lying swales (e.g. where ponds and marshes exist), these areas are prone to 

present day temporary (e.g. after major precipitation events) or permanent groundwater 

inundation. As sea-level increases, magnitude and/or frequency of groundwater inundation is 

expected to increase because the elevation of the water table is expected to rise (Rotzoll and 

Fletcher, 2012). Although this issue has been studied in undeveloped barrier island settings 

(Masterson et al., 2013-a), this study seeks to understand the impact of groundwater inundation 

on a developed barrier island.  

 

Figure 3- Conceptual model of the impact of sea-level rise on a barrier island water table.



 

    

 

METHODOLOGY 

Well Installation 

A total of 29 groundwater monitoring wells were installed in the surficial aquifer of 

Bogue Banks in the towns of Emerald Isle, Pine Knoll Shores, and Atlantic Beach (Figure 4) 

between 13 March, 2015 and 21 November, 2015. Locations were chosen based on accessibility 

and aerial coverage of the island. Wells were distributed in a variety of barrier island settings, 

including dunes, swales, ocean side, and sound side.  

 

Figure 4: Map of the locations of the wells throughout (A) Emerald Isle, (B) Pine Knoll Shores, 

and (C) Atlantic Beach.
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A direct push Geoprobe 540 UD drill rig was used to install all 29 monitoring wells 

(Figure 5). After using the Geoprobe to drill the desired depth, a 15 cm diameter hand auger was 

used to enlarge the first 0.6 m of the well to ensure compliance with state well construction 

standards. North Carolina monitoring well construction standards dictate the use of sand in the 

annular space between the well and the surrounding environment up to 0.45 m below the land 

surface, a bentonite clay seal up to 0.3 m below the land surface, and cement up to the land 

surface. The uppermost 1.5 m interval consists of a solid polyvinyl chloride (PVC) riser while 

the remaining sections of the well uses screened PVC pipe to allow free flow of water through 

the well (Figure 6).  

 

Figure 5: The author (middle) installing a well using the Geoprobe. 
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Figure 6: Diagram of an observation well. 

 

Each completed well has a diameter of 1 inch (2.54 cm). The total depth was initially 

estimated based on the land surface elevation while later well depths were estimated based on 

existing data and previous experience. Wells ultimately varied in depth between 2.1 m and 8.0 m 

(Table 1). Each well was drilled below the water table to allow continued monitoring during 

water table fluctuations including the drier summer months when the water table drops.  
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Table 1: Monitoring well characteristics. Elevations are in reference to mean sea level 

Well ID Latitude Longitude 

Elevation 

of Top of 

Casing 

(m) 

Elevation 

of Ground 

Surface 

(m) 

Well 

Depth 

(m) 

String 

and 

Logger 

length 

(m) 

Logger 

Elevation 

(m) 

Length of 

Casing 

Above 

Ground 

(m) 

OBB 01 34.6596 -77.0685 4.423 3.563 5.486 6.2 -1.777 0.860 

OBB 02 34.6478 -77.0928 1.852 1.242 2.438 2.91 -1.058 0.610 

OBB 03 34.6677 -77.0268 1.824 0.937 5.131 5.417 -3.593 0.887 

OBB 04 34.6714 -77.0324 2.810 1.893 3.658 4.451 -1.641 0.917 

OBB 05 34.6717 -77.0052 2.307 1.390 2.134 2.935 -0.628 0.917 

OBB 06 34.6757 -76.9718 3.638 2.729 3.606 3.542 0.096 0.908 

OBB 07 34.6601 -77.0567 4.919 4.083 5.182 5.831 -0.912 0.835 

OBB 08 34.6511 -77.0931 3.729 2.764 3.606 4.49 -0.761 0.965 

OBB 09 34.6459 -77.0943 3.897 2.995 3.658 4.362 -0.465 0.902 

OBB 10 34.6632 -77.0417 4.839 4.016 5.258 5.722 -0.883 0.823 

OBB 11 34.6742 -76.9692 3.014 1.960 3.505 4.38 -1.366 1.055 

OBB 12 34.6953 -76.8237 5.351 4.647 7.239 7.46 -2.109 0.704 

OBB 13 34.7023 -76.7887 2.939 2.025 3.658 4.276 -1.337 0.915 

OBB 14 34.6927 -76.8450 5.265 4.503 5.182 5.753 -0.488 0.762 

OBB 15 34.6962 -76.8152 4.290 3.492 5.182 5.486 -1.196 0.799 

OBB 16 34.7008 -76.8159 4.115 3.315 5.182 5.854 -1.739 0.801 

OBB 17 34.7005 -76.7520 2.878 1.938 3.658 4.276 -1.398 0.939 

OBB 18 34.6985 -76.7241 2.953 1.996 3.658 4.433 -1.480 0.957 

OBB 19 34.6983 -76.7866 3.306 2.352 3.658 4.404 -1.098 0.954 

OBB 20 34.6917 -76.8633 2.145 1.231 3.658 4.432 -2.287 0.914 

OBB 21 34.6916 -76.8642 3.718 2.804 3.658 4.428 -0.710 0.914 

OBB 22 34.6905 -76.8664 4.611 3.754 5.273 5.486 -0.875 0.856 

OBB 23 34.6995 -76.8046 3.905 2.991 3.658            -          - 0.915 

OBB 24 34.6911 -76.8648 3.571 2.669 3.658 4.264 -0.693 0.902 

OBB 25 34.6919 -76.8607 2.515 1.643 3.658 4.296 -1.781 0.872 

OBB 26 34.6894 -76.8628 7.660 6.749 8.001 8.326 -0.666 0.911 

OBB 27 34.6961 -76.7118 4.311 3.397 3.658 4.254 0.057 0.915 

OBB 28 34.7036 -76.7813 2.611 1.733 3.658 4.276 -1.665 0.878 

OBB 29 34.6982 -76.6792 2.994 2.117 3.658 5.264 -2.270 0.878 

 

Groundwater Monitoring 
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Water levels in 28 of the 29 monitoring wells were continuously monitored using Solinst 

Model 3001 and 3001 Junior Leveloggers (Figure 7). These water level loggers are pressure 

transducers which record absolute pressure (water pressure and barometric pressure), accurate to 

+/- 0.05% of full scale. However, water level readings must be corrected to account for 

barometric (atmospheric) pressure. At one well, a Solinst Model 3001 Barologger was deployed 

to record barometric pressure which was used to compensate the water level readings. One 

Barologger can be used to compensate readings for wells within about a 20 mile (30 km) radius 

because atmospheric pressure is not expected to change greatly in that area 

(https://www.solinst.com/products/data/ 3001.pdf). All loggers were set to collect readings at ten 

minute intervals, creating a time series of water levels ranging from 5 to 14 months (Appendix 

A). Manual water level measurements were taken at each well during data collection for the 

duration of the study using a water level meter. These readings were used to make sure the 

loggers were providing acceptable readings.  

 

Figure 7- A Solinst levelogger used in the monitoring wells. 
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A Leica Builder 309 Total Station was used to survey the elevation of the top of the well 

casings using known elevations from National Geodetic Survey markers referenced to the North 

American Vertical Datum of 1988 (NAVD 88). A Real-Time Kinematic (RTK) Global 

Positioning System (GPS) was later used to confirm the elevations of previously surveyed wells 

and to survey wells which were too far from geodetic markers to be surveyed with the Total 

Station. Additionally, the RTK GPS was used to collect precise geographic coordinates of each 

well (Table 1).  

Aquifer Properties 

Hydraulic conductivity represents a volume of water transmitted through a one square 

unit length cross section of porous material at right angles to groundwater flow under a unit 

hydraulic gradient of 1:1 in a given amount of time (Heath, 1983). Acquiring an estimate of this 

property is essential to any study of an aquifer. Hydraulic conductivity was estimated using two 

methods: a falling head permeameter test and sieve analysis. Samples from ten well locations 

throughout Bogue Banks were selected for determining hydraulic conductivity at four foot 

intervals and the bottom of each well. The falling head permeameter test involves saturating a 

porous medium with water and measuring the time it takes for water in a tube to fall to a certain 

height (Fetter, 2001). The hydraulic conductivity can then be calculated by:  

𝐾 =  
𝑑𝑡  

2 𝐿

𝑑𝑐
2𝑡

ln(
ℎ0

ℎ
)         Eq. (1) 

where K is hydraulic conductivity (cm/s), L is sample length (cm), h0 is the initial head in the 

falling tube (cm), h is the final head in the falling tube, t is the time needed to go from h0 to h (s), 
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dt is the inside diameter of the falling head tube (cm), dc is the inside diameter of the sample 

chamber (cm). 

In addition to the falling head permeameter test, sieve analyses were performed using a 

method set out by Driscoll (1986). Driscoll previously established the relationship between grain 

size and hydraulic conductivity. A dry sample is weighed then sent through a RoTap machine for 

two minutes. Cumulative weight percentages are recorded and a uniformity coefficient is 

calculated using the equation: 

UC= (D40/D90)          Eq. (2) 

Where UC is the uniformity coefficient, D40 is the grain size representing the 40% 

retained size, and D90 is the grain size representing the 90% retained size. This is then graphed 

against D50 (which is the grain size representing the 50% retained size) grain size on previously 

published curves to determine permeability (it is assumed that the soil is of medium-density).  

Although specific yield is not directly measured, a range of porosity values was 

determined using an Accupyc 1330 Pycnometer (Figure 8). This provides a theoretical range for 

specific yield if all water flows freely through pore spaces without being retained. The 

pycnometer is designed to measure density by giving the volume of a sample with a known 

mass. In order to estimate porosity, the sample chamber with a known volume must be 

completely filled with sample material. The resulting sample volume measurement will then be 

related to the total volume of the chamber and porosity can be calculated using the following 

equation: 

n= (Vt-Vs)/ Vt          Eq. (3) 
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where n is porosity, Vt is total volume of the sample chamber, and Vs is the sample volume. Care 

was taken not to compact the sample into the chamber due to the risk of compressing void space 

and artificially decreasing porosity. The sample chamber volume of the pycnometer was found to 

be 8.72 cm3. Samples were taken from the bottom of each 4 foot sediment core for the same ten 

wells tested using the pycnometer. Each sample was measured five times (V1-V5) and deviations 

were given for each measurement (Appendix B).  

 

Figure 8: Accupyc 1330 Pycnometer used to measure porosity. 

 

Numerical Groundwater Modeling 

The software program Visual MODFLOW was used to simulate groundwater flow in the 

surficial aquifer of Bogue Banks under steady-state conditions. Groundwater flow was simulated 

in a three-dimensional finite-difference model using the groundwater flow equation (Anderson et 
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al., 2015). The model dimensions were 40,000 m x 10,000 m x 43.5 m discretized into 250 rows, 

499 columns, and three layers (Figure 9). This results in a uniform cell size of 80 m x 40 m x 

14.5 m (L x W x H). Since the water table was not expected to rise above the highest elevation of 

the island, the upper extent of the model was set to an elevation of 25 m to prevent interference 

with flow patterns at the top of the model. The lower extent of the model was set to -18.5 m 

based on the average depth to the first confining layer as determined using geophysical logs from 

the North Carolina Department of Environmental Quality (DEQ) Division of Water Resources. 

All cells which were not within the spatial extent of the island were set to inactive for 

computational efficiency.  

 

Figure 9- Model discretization in map view (top) and cross section (bottom).   

 

A geospatial layer was used to represent the shoreline of Bogue Banks under present 

conditions. The mean high water elevation of 0.55 m was determined from a National 

Oceanographic and Atmospheric Administration (NOAA) tide gauge in nearby Beaufort, North 
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Carolina (https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8656483) and 

used as the baseline scenario. These measurements were taken for a standardized 19 year period 

from 1983 to 2001 used to measure values for tidal datums called the National Tidal Datum 

Epoch. In ArcGIS 10.3, the raster reclassify function was used to determine the trace of the 

shoreline at the mean high water level on the digital elevation model (DEM) of Bogue Banks. A 

shapefile of this outline was then created to represent base line (present day) conditions. This 

process was then repeated to create shapefiles that represented shorelines at sea-level increments 

of 0.2 to 1.4 m in 0.2 m intervals above the baseline. These outlines were then used as constant 

head boundaries in the groundwater modeling software. Separate outlines are required to 

properly simulate sea-level rise due to the fact that as sea-level rises, water will encroach 

landward in addition to moving up. Thus, the outline of Bogue Banks will be different at each 

scenario. This range of possible scenarios encompasses the likely best and worst case scenarios 

of sea-level rise by the year 2100 AD (Jevrejeva et al.; 2011, Rotzoll and Fletcher, 2013; Horton 

et al., 2014). Sea-level is assumed to change at a constant rate, though this may not be the case.  

In a natural system, barrier islands move landward approximately 900 m for every one m 

of sea-level rise (Pilkey et al., 1980). However, Bogue Banks has been near its current position 

since about 1,100 years before present (BP) and has not exhibited marine transgression or 

regression and is assumed to remain stationary during the simulation time frame (Lazar et al., 

2016). This lack of movement and a recent increase in relative sea-level rise rates (Kemp et al., 

2009) may lead to more impairment of Bogue Banks by the year 2100 than in the previous 

several hundred years. Additionally, Bogue Banks would be assumed to remain stationary, both 

horizontally and vertically, due to anthropogenic influences. Subsidence at a rate of about 1 mm 

per year has been observed in Beaufort (Overton et al., 2015), but we are using conservative 
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estimates and thus will not include subsidence. Aquifer properties derived from other aspects of 

this study were used as input parameters, including hydraulic conductivity, porosity, and specific 

yield estimates.   

A geospatial layer obtained from Mew et al. (2002) was used to represent recharge to the 

surficial aquifer on Bogue Banks. Although initially containing hundreds of separate recharge 

zones, the layer was aggregated into categories by barrier island setting and location with 

recharge estimates ranging between 170 and 1209 mm/year (Table 2). Negative recharge (i.e. 

groundwater withdrawals) do not occur on a regular basis and are not included in the model. 

Evapotranspiration was applied to the model at a uniform rate of 223 mm/year (Sisco, 2013).  

Table 2- Recharge zones on Bogue Banks 

Zone Setting 

Recharge 

(mm/yr) 

1 Inland Water 0.00 

2 Atlantic Beach Urban 172.69 

3 Pine Knoll Shores Urban 171.64 

4 Emerald Isle Urban 170.00 

5 Atlantic Beach Marshes 0.00 

6 Pine Knoll Shores Marshes 0.00 

7 Emerald Isle Marshes 0.00 

8 Atlantic Beach Barrier Dunes 1209.18 

9 

Pine Knoll Shores Barrier 

Dunes 1199.83 

10 Emerald Isle Barrier Dunes 1189.71 

11 Atlantic Beach Back Barrier 287.53 

12 Pine Knoll Shores Back Barrier 285.65 

13 Emerald Isle Back Barrier 283.21 

14 Back Barrier Water 0.00 

15 Oceanside Dunes 1199.62 

 

The model was run under steady-state conditions. Calibration is the process of changing 

one or more input parameters to minimize differences between observed and simulated data thus 



 

 19   

 

making the model match observed conditions. Calibration was achieved with the constant head 

boundary set at current sea-level (0 m). During the initial manual calibration phase, an 

anisotropic medium was assumed with equal Kx and Ky and Kz as one tenth of these values. 

Once the best possible manual calibration was achieved using a trial and error approach, 

parameter estimation (PEST) was used to refine hydraulic conductivity values leading to an 

anisotropic medium with different best possible value, leading to anisotropic Kx and Ky values. 

The initial calibration target was a normalized root mean square (NRMS) error of 10% or less, 

which is seen as an acceptable benchmark for model calibration (Lutz et al., 2009).  

Geospatial Procedures 

Geospatial modeling describes the process of using the results from Visual MODFLOW 

to calculate and visualize the impact of sea-level rise on Bogue Banks (Appendix C). Water level 

elevations were exported from Visual MODFLOW to ArcGIS and interpolated to form a water 

table surface (cell size=6.096 m2). The resulting water table surfaces were then subtracted from 

the DEM to determine whether the water table was above or below the land surface. Positive 

values indicated that the water table was beneath the land surface while negative values indicated 

that the water table was above the land surface. The results were then combined with layers 

representing marine inundation derived from the DEM of Bogue Banks to determine which parts 

of the island were unimpaired, impaired by marine water, or impaired by groundwater. The 

proportion of land that was unimpaired, impaired by marine inundation or by groundwater 

inundation was then calculated under each sea-level rise scenario. 



 

    

 

RESULTS AND DISCUSSION 

Results from Groundwater Modeling 

Calibration 

The initial steady-state calibration target of a NRMS error of 10% was not achieved.  The 

best NRMS error was about 20% (Figure 10).  

 

Figure 10- Observed vs simulated head for model with the best calibration (NRMS error=20%). 

 

Residuals representing the difference between simulated and observed heads were plotted 

at each monitoring well throughout Bogue Banks (Figure 11). The residuals range from a low of 

0.02 m to a maximum of 1.22 m. Ideally, the residuals should be as close to zero as possible as 

this indicates a better match between observed and simulated heads. High residuals are not 
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limited to one area of Bogue Banks, indicating that no single area of the island is unreasonably 

modeled. The largest residuals are located at OBB 03 (1.22 m), OBB 18 (0.75 m), and OBB 22 

(0.50 m) which are located in Emerald Isle, Atlantic Beach, and Pine Knoll Shores respectively. 

Higher residuals tend to be more concentrated on the eastern part of Bogue Banks while wells on 

the western portion of the island tend to have lower residuals. High residuals could occur as a 

result of heterogeneities in the aquifer or changes in storage, which is not considered in a steady-

state model.  

 

Figure 11- (A) Simulated water level contours for the calibrated model. (B) Residuals at well 

locations throughout Bogue Banks. 

 

Sensitivity Analysis 

Sensitivity analysis is performed to determine how changing input parameters will 

change the outcome of the model. This is necessary due to the fact that there are a range of 

possible values for many input parameters instead of one set value. After achieving calibration 

for current sea-level, recharge, hydraulic conductivity, and evapotranspiration were changed by 
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plus and minus 25 and 50% individually. The mean and standard deviation of hydraulic head in 

each sensitivity run were then compared to the calibrated model statistics (Table 3). A mean head 

lower than that of the calibrated model implies that the average water table elevation is lower, 

indicating that more water is being taken out of the system and vice-versa. The greatest increase 

in mean water table elevation is caused by a 50% reduction in hydraulic conductivity while the 

greatest decrease is caused by a 50% decrease in recharge. The overall changes in mean water 

table elevation indicate that the model is equally sensitive to changes in hydraulic conductivity 

and recharge while not being as sensitive to changes in evapotranspiration.  
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Table 3- Sensitivity Analysis 

Well ID Calibrated 

K+ 

25% 

K+ 

50% 

K-

25% 

K-

50% 

R 

+25% 

R 

+50% 

R-

25% 

R- 

50% 

ET 

+25% 

ET 

+50% 

ET-

25% 

ET-

50% 

OBB 01 1.865 1.325 1.115 2.131 3.071 2.094 2.538 1.157 0.662 1.546 1.458 1.721 1.807 

OBB 02 0.721 0.426 0.357 0.698 1.028 0.706 0.880 0.349 0.166 0.479 0.428 0.580 0.630 

OBB 03 0.481 1.381 1.162 2.223 3.205 2.176 2.632 1.212 0.705 1.619 1.535 1.786 1.869 

OBB 04 0.002 0.231 0.193 0.380 0.561 0.371 0.453 0.203 0.118 0.273 0.259 0.301 0.315 

OBB 05 0.432 0.279 0.234 0.460 0.681 0.455 0.561 0.239 0.129 0.325 0.302 0.371 0.393 

OBB 06 0.602 0.434 0.364 0.709 1.038 0.690 0.839 0.383 0.225 0.514 0.490 0.562 0.586 

OBB 07 1.858 1.424 1.198 2.290 3.301 2.262 2.751 1.231 0.686 1.649 1.543 1.861 1.966 

OBB 08 0.631 0.439 0.367 0.717 1.052 0.717 0.887 0.367 0.188 0.500 0.456 0.588 0.631 

OBB 09 0.416 0.392 0.329 0.641 0.941 0.638 0.785 0.333 0.176 0.452 0.416 0.522 0.557 

OBB 10 1.722 1.630 1.374 2.610 3.745 2.564 3.100 1.426 0.821 1.900 1.795 2.111 2.215 

OBB 11 0.838 0.340 0.284 0.556 0.817 0.541 0.659 0.300 0.176 0.403 0.384 0.440 0.459 

OBB 12 1.022 0.750 0.629 1.218 1.773 1.193 1.451 0.656 0.376 0.880 0.832 0.975 1.023 

OBB 13 0.803 0.783 0.657 1.269 1.844 1.240 1.504 0.688 0.400 0.922 0.875 1.014 1.060 

OBB 14 0.833 0.438 0.367 0.715 1.047 0.695 0.843 0.388 0.230 0.520 0.497 0.566 0.588 

OBB 15 -0.061 0.207 0.173 0.340 0.500 0.330 0.402 0.183 0.108 0.246 0.235 0.268 0.279 

OBB 16 0.624 0.302 0.253 0.495 0.730 0.481 0.586 0.267 0.158 0.359 0.343 0.391 0.407 

OBB 17 0.615 0.304 0.254 0.500 0.739 0.504 0.629 0.249 0.119 0.343 0.307 0.413 0.448 

OBB 18 1.197 0.356 0.298 0.582 0.855 0.573 0.703 0.307 0.170 0.415 0.388 0.468 0.495 

OBB 19 1.429 0.780 0.655 1.267 1.844 1.246 1.520 0.676 0.379 0.910 0.855 1.021 1.076 

OBB 20 0.545 0.418 0.351 0.684 1.004 0.665 0.808 0.371 0.220 0.497 0.475 0.541 0.563 

OBB 21 0.601 0.430 0.360 0.703 1.031 0.683 0.829 0.381 0.225 0.511 0.488 0.556 0.578 

OBB 22 1.033 0.403 0.338 0.659 0.967 0.640 0.778 0.357 0.212 0.479 0.458 0.521 0.542 

OBB 24 0.678 0.448 0.375 0.732 1.073 0.711 0.864 0.397 0.235 0.532 0.509 0.579 0.602 

OBB 25 0.658 0.369 0.309 0.603 0.885 0.586 0.712 0.327 0.194 0.438 0.419 0.477 0.496 

OBB 26 0.747 0.195 0.163 0.321 0.476 0.311 0.380 0.172 0.102 0.232 0.222 0.253 0.263 

OBB 27 0.692 0.234 0.196 0.385 0.569 0.379 0.466 0.203 0.112 0.274 0.257 0.309 0.326 

OBB 28 0.499 0.075 0.063 0.123 0.182 0.120 0.147 0.066 0.038 0.089 0.084 0.098 0.102 

OBB 29 0.550 0.019 0.016 0.031 0.046 0.040 0.055 0.008 -0.008 0.014 0.004 0.034 0.044 

Mean 0.787 0.529 0.444 0.859 1.250 0.843 1.027 0.461 0.261 0.619 0.583 0.690 0.726 

Standard 

Deviation 0.470 0.420 0.354 0.672 0.963 0.660 0.798 0.367 0.212 0.490 0.462 0.544 0.571 
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Uncertainty 

Due to the inherent uncertainty in future conditions, all models should include estimates 

of uncertainty (Tartakovsky, 2012). One method of characterizing uncertainty is a process called 

scenario modeling in which several forecasts are made representing a range of possible outcomes 

(Anderson et al., 2015). In this study, this is accomplished by performing seven sea-level rise 

forecasts from the best case scenario of 0.2 m to the worst case scenario of 1.4 m above the 

baseline.  

Forecasts of Groundwater and Marine Inundation 

Increasing sea-level causes progressively greater groundwater impairment from 28.02% 

to 48.22% of the total area of Bogue Banks (Table 4).  

Table 4- Groundwater impairment of Bogue Banks due to changes in sea-level 

Change 

in sea-

level Impaired Area (Km2) Unimpaired Area (Km2) Impaired % Unimpaired % 

0.2 m 6.92 16.52 28.02 71.98 

0.4 m 8.04 14.05 32.55 67.45 

0.6 m 9.95 12.14 40.28 59.72 

0.8 m 10.35 10.03 41.90 58.10 

1.0 m 10.45 8.25 42.31 57.69 

1.2 m  11.83 6.87 47.89 52.11 

1.4 m 11.91 5.20 48.22 51.78 

 

Although the focus of this research is on groundwater inundation, the problems of sea-

level rise are compounded when the influence of marine inundation is included. Marine 

inundation accounts for 5.11% impairment at 0.2 m of sea-level rise to 30.73% inundation at 1.4 

m of sea-level rise (Table 5).  
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Table 5- Marine impairment of Bogue Banks due to changes in sea-level 

Change 

in sea-

level Impaired Area (Km2) Unimpaired Area (Km2) Impaired % Unimpaired % 

0.2 m 1.26 23.44 5.11 94.89 

0.4 m 2.61 22.09 10.58 89.42 

0.6 m 2.61 22.09 10.58 89.42 

0.8 m 4.32 20.38 17.49 82.51 

1.0 m 6.00 18.70 24.29 75.71 

1.2 m  6.00 18.70 24.29 75.71 

1.4 m 7.59 17.11 30.73 69.27 

 

When marine and groundwater inundation are combined, the baseline impairment is 

33.13% increasing progressively to 78.95% total impairment at 1.4 m sea-level rise (Table 6). 

Inundation maps of Bogue Banks under each sea-level rise scenario can be seen in Figure 12.  

Table 6- Combined marine and groundwater impairment due to changes in sea-level 

Change 

in sea-

level Impaired Area (Km2) Unimpaired Area (Km2) Impaired % Unimpaired % 

0.2 m 8.18 16.52 33.13 66.87 

0.4 m 10.65 14.05 43.13 56.87 

0.6 m 12.56 12.14 50.86 49.14 

0.8 m 14.67 10.03 59.39 40.61 

1.0 m 16.45 8.25 66.60 33.40 

1.2 m 17.83 6.87 72.18 27.82 

1.4 m 19.50 5.20 78.95 21.05 

 

When calculating groundwater impairment, the total area of Bogue Banks is used as the 

benchmark from which to calculate percent impairment. For example, in the first scenario (0.2 m 

change in sea-level), Bogue Banks has a total area of 24.7 km2. Of that, 1.26 km2 is impaired by 



 

26 

 

marine inundation. Groundwater inundation impairs 6.92 km2 out of 24.7 km2, accounting for 

28.02% of the island.  

The results indicate that groundwater inundation will impair more land than marine 

inundation in each scenario. Groundwater inundation accounts for between 4.45 to 7.34 km2 

more inundated area than marine water (Appendix D). This study, one of few to examine the 

influence of sea-level rise on groundwater inundation, indicates that groundwater inundation may 

be more problematic than marine inundation as sea level reaches moderate or high levels. Even 

under the most optimistic sea-level rise projection (0.2 m above baseline), almost 30% of Bogue 

Banks is impaired by groundwater and 33% is impaired by both marine and groundwater 

inundation. Therefore, local governments and residents should consider the effects of 

groundwater inundation in addition to marine inundation as a consequence of sea-level rise.  

Governments and residents of Bogue Banks are concerned about the potential impact of 

inundation on preexisting infrastructure. If current population trends continue, Bogue Banks may 

see as many as 8,600 permanent residents by the year 2100, potentially leading to more 

developed area and more infrastructure impairment (http://www.census.gov). It is therefore 

prudent to quantify what percentage of currently developed areas are inundated in each scenario. 

Bogue Banks has three development categories based on percent of impervious cover: low 

intensity has 20-29%, medium intensity has 50-79%, and high intensity has 80 to 100%. 

Groundwater inundation would impair between 22.5% and 61.7% in lightly developed areas 

(Table 7), 17% and 62.2% in moderately developed areas (Table 8), and 29.5% and 63.5% of 

heavily developed areas of Bogue Banks under sea-level rise scenarios of 0.2- 1.4m above 

present conditions (Table 9). The results indicate that the proportion of developed land impaired 
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by groundwater is generally smaller than the proportion of undeveloped land that is impaired by 

groundwater (Table 10).  

 

Table 7- Proportion of lightly developed areas that are impaired by groundwater inundation on 

Bogue Banks due to changes in sea-level 

Change in Sea-Level Unimpaired % Groundwater % 

0.2 m 77.55 22.45 

0.4 m 69.34 30.66 

0.6 m 61.47 38.53 

0.8 m 55.44 44.56 

1.0 m 50.49 49.51 

1.2 m 43.76 56.24 

1.4 m 38.26 61.74 

 

 

 

Table 8- Proportion of moderately developed areas that are impaired by groundwater 

inundation on Bogue Banks due to changes in sea-level 

Change in Sea-Level Unimpaired % Groundwater % 

0.2 m 82.97 17.03 

0.4 m 71.87 28.13 

0.6 m 63.32 36.68 

0.8 m 56.71 43.29 

1.0 m 52.20 47.80 

1.2 m 44.23 55.77 

1.4 m 37.79 62.21 
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Table 9- Proportion of heavily developed areas that are impaired by groundwater inundation on Bogue Banks due to changes in sea-

level 

Change in Sea-Level Unimpaired % Groundwater % 

0.2 m 70.54 29.46 

0.4 m 56.79 43.21 

0.6 m 48.56 51.44 

0.8 m 46.38 53.62 

1.0 m 44.78 55.22 

1.2 m 38.36 61.64 

1.4 m 36.45 63.55 

 

 

Table 10- Proportion of land that is impaired by groundwater inundation on Bogue Banks due to changes in sea-level based on 

developed and undeveloped land 

  Developed Land Undeveloped Land 

Change in 

Sea-Level Unimpaired % 

Groundwater 

Inundation% Unimpaired % 

Groundwater 

Inundation % 

0.2 m 78.71 21.29 69.78 30.22 

0.4 m 69.56 30.44 61.06 38.94 

0.6 m 61.50 38.50 51.90 48.10 

0.8 m 55.49 44.51 45.35 54.65 

1.0 m 50.76 49.24 39.78 60.22 

1.2 m 43.73 56.27 32.27 67.73 

1.4 m 38.10 61.90 27.69 72.31 
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0.4 m 

 

0.6 m 

 

Figure 12- Examples of inundation maps from 0.4 and 0.6 m of sea-level rise. Other maps can be seen in Appendix E. 
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Total impairment of Bogue Banks could be underestimated due to the estimation of 

aquifer properties throughout Bogue Banks. The aquifer was assumed to be homogeneous and 

anisotropic with values: Kx= 14.25 m/d, Ky= 9.00 m/d, and Kz= 0.11 m/d. Previous studies on 

Bogue Banks found hydraulic conductivities of between 0.1 and 6.4 meters per day (m/d), 

although these values were estimated using a different method (Sisco, 2013). These 

conductivities were found in less permeable material in swales in Emerald Isle. Lower 

conductivities would mean that water moves more slowly through the aquifer, which would lead 

to a higher water table and more inundated area. It is important to note that as hydraulic 

conductivity can vary over 12 orders of magnitude, so a difference of less than 10 m/d is not 

considered significant (Heath, 1983).  

In addition to recharge from precipitation, recharge could be provided by effluent from 

OWTS systems and package treatment plants. Average monthly flows from seven package 

treatment plants are between 1,015 and 32,597 gallons per day (Mahoney, 2016). As observed in 

the sensitivity analysis, the surficial aquifer is sensitive to increases in recharge. The primary 

source of usable water on Bogue Banks is the Castle Hayne aquifer and water withdrawn from 

the Castle Hayne may ultimately become effluent through OWTS systems. The impact of OWTS 

systems on Bogue Banks could be simulated similar to stormwater infiltration basins (e.g. 

Carleton, 2010) to determine if there is a significant impact on the water table due to 

groundwater mounding under these systems.   

From 1950 to 2012, an increase in nuisance flooding was seen at the NOAA gauge in 

nearby Beaufort, North Carolina (Sweet et al., 2014). As sea-level rise increases in severity, the 

impact of groundwater inundation outpaces the impact of marine inundation. Groundwater 

impairs between 4.32 and 7.34 km2 more area of the island than marine inundation. Thus, in each 
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sea-level rise scenario, groundwater inundation could be a bigger concern than marine 

inundation on Bogue Banks unless the flooding is managed or mitigated. In the context of this 

study, impairment is defined as where the water table crests above the land surface. However, 

infrastructure degradation may occur long before this occurs. OWTS are impaired when the 

water table is within 0.3 m of the drainfield, which may be 0.45 or 0.9 m below ground (Manda 

et al., 2014). Therefore, impairment may be higher than noted above because a greater 

percentage of Bogue Banks may not be suitable for further development unless other means are 

developed, e.g., centralized sewer systems. This demonstrates the need for proactive planning 

regarding the impacts of sea-level rise on low-lying coastal regions worldwide. Continued public 

education and outreach is one avenue that may be taken to addressing the potential impacts of 

sea-level rise. In the future, residents may need to consider whether to stay on the island or not. 

If many residents stay, it may not be too early to start considering preserving undeveloped land 

to accommodate infiltration, stormwater runoff, and permanent inundation. Adapting 

infrastructure to address rising sea-levels and increased flooding should be considered as a long 

term solution.  In the event of permanent land degradation, migration off of Bogue Banks may be 

an attractive solution. In this scenario, the financial burden on individuals, families, and 

businesses could be eased by government intervention through the provision of incentives, 

buybacks, or catastrophe relief funds.  

Further research studies on the groundwater flow systems on Bogue Banks should 

include efforts to move from a steady-state to a transient state model. Transient models would 

incorporate more hydrogeologic parameters, such as storage and seasonal variability. Research 

on mitigation methods based on this and a transient model would entail a more solution based 

approach to inundation on Bogue Banks. Sisco (2013) using a steady state model examined the 
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impact of pumping 500 and 1000 m3 per day from the surficial aquifer and found that there was a 

high probability of drawing salt water from nearby surface water bodies. Future studies should 

address this problem by using transient models to examine how groundwater withdrawals may 

be a suitable mitigation strategy to lessen the effects of groundwater inundation under varying 

environmental conditions on the island. 

Impact of Tidal Fluctuations 

Previous studies have examined how tides influence the height of a water table in coastal 

settings (Carol et al., 2009). This necessitates a quantification of the impact tides have on the 

Bogue Banks water table.  

Data from 23 wells were examined for tidal influences and oscillations were observed in 

ten wells ranging from 0.008 m to 0.03 m (Figure 13). While the results indicate that oscillations 

tend to decrease farther from the nearest shoreline, several wells not showing tidal influence 

were closer to the shore than wells that did show tidal influence. There is no apparent 

relationship between magnitude of tidal fluctuation and residuals from the calibrated model. 

Also, the outlier at OBB 08 with an oscillation of 0.03 m has one of the lowest residuals while 

the lowest oscillation seen at OBB 25 has a residual of 0.2 m. Due to the low magnitude of the 

oscillations relative to sea-level rise, tidal influence was not included in the forecasting models.  
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Figure 13- Relationship between distance to shoreline and water table amplitude. 

 

Assumptions and Limitations 

There are several limitations inherent in this model. Many of these are due to parameter 

assumptions which do not accurately represent the surficial aquifer. Several parameters are 

assumed to be constant throughout the entire model or a large area therein. These include 

evapotranspiration, which changes based on the type of vegetation, wind speed, water and energy 

availability, and may change as a result of climate change due to the increase in water at or near 

the land surface. Hydraulic conductivity is assumed to be a uniform, representative value 

throughout the entire study area despite a known range of values. Since the thickness of the 

surficial aquifer is assumed to be uniform, this implies that transmissivity is also uniform.  
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Resolution of the visual MODFLOW grid could be problematic in this model. While 

there is no limit to the number of rows and columns in MODFLOW, Visual MODFLOW limits 

the number to 500 each. This creates a minimum grid size of 80 meters. Therefore, some water 

level data may be generalized due to the grid size.  

Sea-level is assumed to rise under a constant rate. However, sea-level rise rates have 

changed in the recent past (Lavelle-Levinson et al., 2017) and as climate changes, sea-level may 

change at varying rates between now and the year 2100. Any potential change in the rate of sea-

level rise is not accounted for in a steady-state model. Another potential consequence of climate 

change may be a change in precipitation rates. Sayemuzzaman and Jha (2014) found that 

precipitation rates in the North Carolina coastal plain vary seasonally. In this study, changes in 

precipitation were only accounted for in the sensitivity analysis phase. In a transient state model, 

the water table fluctuation method may be used to obtain local recharge estimates from water 

level data. This would also allow future researchers to account for seasonal variability in 

recharge rates. A transient model will also allow future researchers to account for seasonal 

changes in the water table, temperature, precipitation, and evapotranspiration.   

Another limitation inherent in steady-state models is that there is no change in storage. 

Storage is the amount of water taken into or out of pore spaces per unit surface area per unit head 

change (Heath, 1983). In an unconfined aquifer, like the surficial aquifer on Bogue Banks, water 

is released from gravity drainage, meaning that the water source is specific yield. However, 

neither storage nor specific yield have any effect on the steady-state model. This does not 

accurately represent the surficial aquifer and could be a significant source of error. Finally, 

transient models allow researchers to collect data from intermediate points in simulations. For 
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example, data forecasting inundation in the year 2050 may be collected and used, whereas the 

current steady-state model only allows for final projections to the year 2100.  

In a natural system, barrier islands move landward approximately 1000 feet for every 

one foot of sea-level rise (Pilkey et al., 1980). However, Bogue Bank is assumed to remain at its 

current location due to anthropogenic influences. This implies that there is no lateral or vertical 

movement for the next 83 years. 



 

 

 

 

SUMMARY AND CONCLUSIONS 

This study is one of few that seeks to understand the impact of sea-level rise on a 

groundwater system on a barrier island. The goals of this study were to derive the hydrogeologic 

properties of the surficial aquifer, simulate the water table, and assess the effect of sea-level rise 

on the water table on Bogue Banks. A three-dimensional finite-difference model was constructed 

in Visual MODFLOW to simulate the location of the water table under seven sea-level rise 

scenarios between 0.2 and 1.4 m above current mean high water.  

Hydraulic conductivity of the surficial aquifer on Bogue Banks was found to range 

between 3.3 m/d and 54.4 m/d with an average of 24.0 m/d. Values of porosity were found to 

range between 0.29% and 0.40% with an average of 0.34% (Appendix B). These values agree 

with previous research on materials like the ones comprising the surficial aquifer and were used 

as input parameter ranges for the numerical groundwater model (Heath, 1983).  

The model generated in this study has issues which may affect the forecasting of the 

effects of sea-level rise. The surficial aquifer is assumed to be homogeneous and anisotropic 

throughout the study area, though a range of possible conductivities has been established. Sea-

level is assumed to rise under a constant rate to levels forecast to be present in the year 2100, 

though sea-level rise changes at variable rates (Kemp et al., 2009).  

The results of this study show that sea-level rise causes the water table to rise, cresting 

above the land surface in even the least severe circumstances. These results support the 

hypothesis- that rising sea levels will cause the water table to rise above the land surface and that 

increasing sea-level will cause groundwater inundation greater than 40%. The results support the 

hypothesis for changes in sea-level of 0.6 m and greater. Forecasts show that increasing sea-level 



 

37 

 

 

will cause groundwater inundation between 28.0% and 48.2% of the total area of Bogue Banks. 

When combined with the impacts of marine impairment, this number increases to between 

33.1% and 78.9% of Bogue Banks. According to the results, groundwater inundation is more 

severe than marine inundation for each sea-level rise scenario. Local and state governments 

should consider proactive flood management or mitigation strategies which may include public 

outreach, migration, undeveloped land preservation, adapting to changing conditions, or financial 

incentives.  
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Appendix A- Water Level Time Series 
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Appendix B: Aquifer Properties 

Hydraulic Conductivity 

Hydraulic conductivity as measured by the permeameter ranged from 3.30 m/d to a 

maximum of 30.25 m/d with an average of 14.75 m/d (Table 11). Sieve analysis gives a low 

conductivity of 10.37 m/d and a maximum of 54.43 m/d with an average of 27.70 m/d.  

Combined these two methods give an average of 24.0 m/d. These values are consistent with 

values seen in silty to clean sand typical of the surficial aquifer (Heath, 1983, Lautier, 2001). 

These value are not consistent with those seen in previous research on Bogue Banks. Sisco 

(2013) found much lower hydraulic conductivities (7x10-4).  However, Sisco was studying low-

lying swales where lower conductivity materials are expected.   

Table 11- Falling head permeameter readings 

Core 

Number 

dt 

(cm) 

dc 

(cm) 

L 

(cm) 

h0 

(cm) 

h1 

(cm) t1 (s) 

h2 

(cm) t2 (s) 

K 

(m/d) 

3S 1.27 4.128 85.6 70 60 283.6 37 1014.6 4.10 

3I 1.27 4.128 75.4 80.5 70.5 33.9 48 130.7 24.25 

3D 1.27 4.128 87 72 62 38.3 40 127.7 30.25 

4S 1.27 4.128 62.3 97 87 31.9 63 116.7 17.90 

4I 1.27 4.128 60.6 99 88 175.3 65 634.1 3.30 

4D 1.27 4.128 85.4 73.5 63.5 109.1 40 438.6 9.55 

7S 1.27 4.128 76.8 79 69 52.4 47 176.4 17.35 

8S 1.27 4.128 82.5 72 62 67.3 38 268.5 15.55 

12-1 1.27 4.128 65 93 83 22.6 61 87.8 26.23 

12-2 1.27 4.128 82 76.5 66 60.65 44 230 16.17 

12-3 1.27 4.128 85.6 73 63 145 39.5 584.7 7.25 

12-4 1.27 4.128 77 79 69 47.2 46 174.1 18.85 

12-6 1.27 4.128 43 114 104 30.1 81 168.8 10.83 

19S 1.27 4.128 82 74 64 107.1 40 420.2 9.45 

19I 1.27 4.128 73.2 80 70 69.2 47 256.5 12.00 

19D 1.27 4.128 55.7 96 86 38.3 63 149.9 12.95 
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Table 12- Driscoll Sieve Analysis. 

Sample 

ID 

Sample 

weight (g) 

Weight 

retained at 

<0.63 mm (g) 

Weight 

retained at 

0.63 mm (g) 

Weight 

retained at 

0.125 mm (g) 

Weight 

retained at 

0.18 mm (g) 

Weight 

retained at 

0.25 mm (g) 

Weight 

retained at 

1 mm (g) 

Weight 

retained at 

2 mm (g) 

3-1 18.771 0.003 0.211 4.851 7.185 6.505 0.016 0.000 

3-2 30.951 0.014 0.723 9.761 9.214 10.991 0.191 0.057 

3-3 25.235 0.011 0.169 6.554 8.388 8.803 0.758 0.552 

3-4 28.059 0.004 1.713 8.661 13.178 4.498 0.005 0.000 

3-5 25.503 0.005 0.937 7.817 12.191 4.547 0.006 0.000 

4S 25.786 0.005 1.277 12.626 10.773 1.074 0.016 0.015 

4I 30.434 0.014 0.966 14.297 10.102 4.878 0.157 0.020 

4D 17.486 0.026 0.312 8.304 6.424 2.410 0.010 0.000 

7-1 30.459 0.001 0.267 7.062 15.928 7.199 0.002 0.000 

7-2 46.639 0.005 0.328 13.051 22.272 10.983 0.000 0.000 

7-3 52.751 0.013 1.261 22.278 19.877 9.321 0.001 0.000 

7-4 49.437 0.060 0.625 14.617 17.543 16.522 0.061 0.009 

7-5 33.896 0.000 0.534 8.027 10.444 14.781 0.110 0.000 

8S 20.875 0.005 0.592 10.021 9.916 0.341 0.000 0.000 

8I 29.207 0.002 0.278 10.749 13.421 4.730 0.027 0.000 

8D 17.09 0.000 0.345 7.921 8.660 0.164 0.000 0.000 

11S 36.708 0.001 0.178 1.821 14.849 19.670 0.083 0.106 

11I 26.801 0.002 0.124 0.773 3.584 15.532 3.034 3.752 

11D 28.508 0.003 0.200 1.586 8.654 17.912 0.106 0.047 

12-1 26.932 0.000 0.068 2.920 15.040 8.896 0.008 0.000 

12-2 34.201 0.001 0.321 6.181 18.204 9.494 0.000 0.000 

12-3 27.253 0.000 0.134 5.102 15.738 6.279 0.000 0.000 

12-4 38.893 0.002 0.431 4.536 15.598 18.293 0.033 0.000 

12-5 36.85 0.112 0.581 6.074 13.213 16.861 0.009 0.000 

12-6 26.593 0.006 0.194 2.697 7.406 15.724 0.406 0.160 
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Table 12 continued.  

 

Sample 

ID 

Sample 

weight 

(g) 

Weight 

retained at 

<0.63 mm (g) 

Weight 

retained at 

0.63 mm (g) 

Weight 

retained at 

0.125 mm (g) 

Weight 

retained at 

0.18 mm (g) 

Weight 

retained at 

0.25 mm (g) 

Weight 

retained at 

1 mm (g) 

Weight 

retained at 

2 mm (g) 

17S 53.24 0.013 0.424 7.855 24.638 20.296 0.014 0.000 

17I 57.524 0.065 0.946 17.688 22.544 16.240 0.030 0.011 

17D 25.003 0.008 0.320 4.749 11.099 8.789 0.018 0.020 

19S 25.43 0.007 0.251 3.167 12.335 9.670 0.000 0.000 

19I 26.333 0.002 0.078 0.352 3.287 22.558 0.056 0.000 

19D 126.708 0.047 0.274 5.003 19.379 91.526 8.340 2.139 

26-1 26.995 0.003 0.115 3.785 12.708 10.381 0.003 0.000 

26-2 39.871 0.001 0.067 1.126 11.663 27.005 0.009 0.000 

26-3 26.659 0.004 0.218 4.132 11.164 11.139 0.002 0.000 

26-4 38.554 0.007 0.171 1.438 12.914 24.018 0.006 0.000 

26-5 34.69 0.011 0.152 1.671 11.417 21.434 0.005 0.000 

26-6 31.135 0.005 0.207 2.514 10.210 18.196 0.003 0.000 

26-7 175.399 0.458 2.267 36.373 60.858 74.647 0.530 0.266 

28S 26.446 0.004 0.809 17.666 7.659 0.307 0.001 0.000 

28I 2.459 0.001 0.013 0.055 0.120 0.199 0.194 1.877 

28D 117.918 0.189 18.689 58.772 39.436 0.670 0.040 0.122 
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Cumulative weight percent retained 

The following graphs correspond to Table 12. These were then used in conjunction with 

Equation 2 to find a value for hydraulic conductivity of the surficial aquifer based on the Driscoll 

method.   
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Porosity 

Pycnometer readings show porosity ranging from 0.29 to 0.40 with an average of 0.34 

(Table 13). These values are consistent with accepted values for sediments ranging from sand to 

clay sized (Heath, 1983) and are consistent with the predominant sediment observed in the 

surficial aquifer. Two samples, from 11I and 28I, were removed due to anomalous readings 

caused by an abundance of materials which do not accurately represent the aquifer.   
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Table 13- Pycnometer Readings 

Well 

V1 

(cm3) D1 

V2 

(cm3) D2 

V3 

(cm3) D3 

V4 

(cm3) D4 

V5 

(cm3) D5 

Vavg 

(cm3) Davg Porosity 

3-1 5.7645 -0.0015 5.7648 -0.0012 5.7657 -0.0003 5.7668 0.0008 5.7683 0.0023 5.7660 0.0000 0.34 

3-2 5.5920 -0.0005 5.5920 -0.0004 5.5930 0.0006 5.5925 0.0001 5.5926 0.0002 5.5924 0.0000 0.36 

3-3 5.9631 0.0001 5.9630 -0.0001 5.9630 -0.0001 5.9631 0.0000 5.9631 0.0001 5.9631 0.0000 0.32 

3-4 5.6903 -0.0001 5.6893 -0.0011 5.6907 0.0002 5.6911 0.0007 5.6909 0.0004 5.6905 0.0000 0.35 

3-5 5.7546 -0.0022 5.7555 -0.0013 5.7566 -0.0002 5.7577 0.0009 5.7596 0.0028 5.7568 0.0000 0.34 

4S 5.2082 0.0001 5.2079 -0.0003 5.2085 0.0003 5.2077 -0.0005 5.2086 0.0004 5.2082 0.0000 0.40 

4I 5.6807 -0.0007 5.6813 -0.0001 5.6835 0.0021 5.6804 -0.0010 5.6811 -0.0003 5.6814 0.0000 0.35 

4D 5.4979 0.0001 5.4980 0.0002 5.4975 -0.0003 5.4981 0.0002 5.4977 -0.0001 5.4978 0.0000 0.37 

7-1 5.6527 0.0004 5.6521 -0.0003 5.6525 0.0001 5.6524 0.0001 5.6519 -0.0004 5.6523 0.0000 0.35 

7-2 5.7838 -0.0002 5.7838 -0.0006 5.7845 0.0001 5.7847 0.0003 5.7847 0.0004 5.7843 0.0000 0.34 

7-3 5.7057 -0.0002 5.7066 0.0007 5.7052 -0.0007 5.7053 -0.0006 5.7066 0.0007 5.7059 0.0000 0.35 

7-4 6.0014 0.0003 6.0011 0.0000 6.0010 -0.0002 6.0011 0.0000 6.0010 -0.0001 6.0011 0.0000 0.31 

7-5 5.8664 -0.0001 5.8660 -0.0005 5.8666 0.0002 5.8671 0.0007 5.8662 -0.0003 5.8665 0.0000 0.33 

8S 5.5789 -0.0024 5.5809 -0.0004 5.5814 0.0001 5.5822 0.0009 5.5831 0.0018 5.5813 0.0000 0.36 

8I 5.4859 -0.0007 5.4864 -0.0002 5.4862 -0.0004 5.4868 0.0002 5.4878 0.0002 5.4866 -0.0002 0.37 

8D 5.2585 -0.0008 5.2587 -0.0006 5.2592 0.0000 5.2590 -0.0003 5.2609 -0.0016 5.2593 -0.0007 0.40 

11S 5.9610 -0.0001 5.9612 0.0001 5.9606 -0.0005 5.9613 0.0003 5.9612 0.0002 5.9611 0.0000 0.32 

11I 6.6240 0.0006 6.6228 -0.0006 6.6234 -0.0001 6.6234 -0.0001 6.6327 0.0002 6.6253 0.0000 0.24 

11D 6.1475 -0.0003 6.1476 -0.0002 6.1478 0.0000 6.1478 -0.0001 6.1486 0.0007 6.1479 0.0000 0.29 

12-1 5.7030 0.0000 5.7029 -0.0002 5.7026 -0.0004 5.7034 0.0003 5.7033 -0.0003 5.7030 -0.0001 0.35 

12-2 5.8603 -0.0005 5.8610 0.0002 5.8606 -0.0002 5.8607 0.0001 5.8614 0.0006 5.8608 0.0000 0.33 

12-3 5.7968 -0.0001 5.7956 -0.0013 5.7975 0.0006 5.7972 0.0003 5.7975 0.0006 5.7969 0.0000 0.34 

12-4 6.0783 0.0003 6.0784 0.0004 6.0786 0.0006 6.0788 0.0008 6.0760 -0.0020 6.0780 0.0000 0.30 

12-5 6.0252 -0.0001 6.0253 0.0000 6.0253 0.0000 6.0252 -0.0001 6.0255 0.0002 6.0253 0.0000 0.31 

12-6 5.9565 0.0000 5.9568 0.0003 5.5965 0.0000 5.9567 0.0002 5.9561 -0.0005 5.8845 0.0000 0.33 

17S 5.8441 -0.0001 5.8436 -0.0006 5.8439 -0.0002 5.8446 0.0005 5.8446 0.0004 5.8442 0.0000 0.33 

17I 5.9069 -0.0002 5.9063 -0.0008 5.9073 0.0001 5.9077 0.0006 5.9074 0.0003 5.9071 0.0000 0.32 
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Table 13 continued. 

Well 

V1 

(cm3) D1 

V2 

(cm3) D2 

V3 

(cm3) D3 

V4 

(cm3) D4 

V5 

(cm3) D5 

Vavg 

(cm3) Davg Porosity 

17D 5.7262 0.0003 5.7258 -0.0001 5.7262 0.0003 5.7255 -0.0004 5.7257 -0.0002 5.7259 0.0000 0.34 

19S 5.8918 -0.0014 5.8920 -0.0012 5.8927 -0.0004 5.8942 0.0010 5.8951 0.0019 5.8932 0.0000 0.32 

19I 5.9880 -0.0004 5.9887 0.0002 5.9886 0.0001 5.9884 -0.0001 5.9887 0.0003 5.9885 0.0000 0.31 

19D 5.9896 0.0004 5.9891 -0.0001 5.9888 -0.0004 5.9885 -0.0008 5.9902 0.0010 5.9892 0.0000 0.31 

28S 5.5684 0.0000 5.5683 -0.0001 5.5678 -0.0006 5.5689 0.0005 5.5687 0.0003 5.5684 0.0000 0.36 

28I 1.3678 -0.0010 1.3685 -0.0002 1.3787 0.0000 1.3696 0.0009 1.3691 0.0003 1.3707 0.0000 0.84 

28D 5.5433 -0.0005 5.5435 -0.0004 5.5439 0.0000 5.5443 0.0004 5.5442 0.0004 5.5438 0.0000 0.36 

26-1 5.7946 0.0000 5.7948 0.0002 5.7940 -0.0007 5.7949 0.0003 5.7948 0.0002 5.7946 0.0000 0.34 

26-2 5.9102 -0.0003 5.9098 -0.0007 5.9103 -0.0003 5.9112 0.0007 5.9112 0.0006 5.9105 0.0000 0.32 

26-3 5.8359 -0.0009 5.8372 0.0005 5.8370 0.0002 5.8368 0.0000 5.8370 0.0002 5.8368 0.0000 0.33 

26-4 5.9669 -0.0004 5.9671 -0.0002 5.9672 -0.0001 5.9672 -0.0001 5.9680 0.0007 5.9673 0.0000 0.32 

26-5 5.8740 -0.0006 5.8756 0.0010 5.8744 -0.0002 5.8747 0.0001 5.8744 -0.0002 5.8746 0.0000 0.33 

26-6 5.8422 -0.0009 5.8429 -0.0002 5.8424 -0.0006 5.8439 0.0009 5.8438 0.0008 5.8430 0.0000 0.33 

26-7 5.8293 -0.0008 5.8293 -0.0008 5.8295 -0.0006 5.8318 0.0017 5.8305 0.0004 5.8301 0.0000 0.33 

  * Indicates Anomalous Value
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Appendix C: GIS Procedures for Determining Marine and Groundwater Inundation 

Exporting the Water Table from Visual MODFLOW 

1. In Visual MODFLOW, go to output- head. Export Layer- Active Only, save as a .txt.  

2. In Excel, open the .txt file, add headings ‘X,Y,Elev’ and save as .csv. 

Importing MODFLOW Water Level Data into ArcGIS 

1. In ArcGIS, import the .csv file, display XY Data with Z as ELEV, click OK. Map should 

have a series of dots. 

2. Right click the layer in Table of Contents- Data- export data to shapefile 

3. In Arc Toolbox, go to 3D Analyst Tools- Raster Interpolation- Natural Neighbor and 

follow the wizard. 

Determining the Area Impaired by Marine Inundation in ArcGIS 

1. Import the DEM for the area of interest.  

2. Go to the reclassify tool and reclassify the DEM based on the sea-level rise scenario. Set 

below sea-level to gridcode ‘zero’ and above sea-level to gridcode ‘999’ 

3. Convert the raster to a polygon. 

4. Select features in polygon layer that are above sea-level. Right click the polygon, select 

by attribute, Gridcode= 999. 

5. Create new layer from selected features. Right click the polygon, selection, create layer 

from selected features. 

6. Fill donut holes within the polygon. Use the ‘eliminate polygon part’ tool and set the 

maximum area for which all polygons will be extracted. For this study, the area was set to 

70,000 m2 so the tool does not eliminate the area of Bogue Banks near the canal.  

7. Compute total area of the polygon layer with shoreline for specific sea-level rise scenario.  

8. Compute marine inundation. Calculate the difference in total area between the polygon 

representing one scenario and the total area of the polygon representing the next scenario.  

Determining the Area Impaired by Groundwater Inundation in ArcGIS 

1. Determine areas where the water table is above or below land surface. In Arc Toolbox, 

go to 3D Analyst Tools- Raster Math- Minus. For input raster 1, put the DEM. For input 

raster 2, put the interpolated raster from number 3 above. 

2. Create a groundwater inundation raster by reclassifying the output raster to binary 

classification. Make all areas under the desired sea-level rise scenario ‘1’ and all areas 

above ‘0’. 

3. Import the polygon layer with shoreline for specific sea-level rise scenario. 

4. Clip the groundwater inundation raster with the aforementioned polygon layer with 

shoreline for specific sea-level rise scenario.  

5. Convert the resulting layer from a raster to a polygon. 
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6. Compute area of the features in the polygon layer. Right click the layer, open attribute 

table, and create a new field titled ‘Area’. Right click the area column and calculate 

geometry.  

7. Compute the sum of areas represented by the different features. Right click the gridcode 

column and select Summarize. In 1, put gridcode. In 2, select area- sum. Save as .TXT. In 

the resulting text file, gridcode 1 gives the sum of the area impaired by groundwater 

inundation.   

  



 

 

Appendix D- Impairment % by Sea-Level Rise Scenario 



 

 

 

Appendix E- Inundation Maps 
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