
MODELING AND ANALYSIS OF SQL QUERIES IN PHP SYSTEMS

by

David Anderson

April, 2018

Director of Thesis: Mark Hills, PhD

Major Department: Computer Science

PHP is a common language used for creating dynamic websites. These websites often

include the use of databases to store data, with embedded SQL queries constructed

within the PHP code and executed through the use of database access libraries. One

of these libraries is the original MySQL library that, despite not being supported in

current versions of PHP, is still widely used in existing PHP code. As a first step

towards developing program comprehension and transformation tools for PHP sys-

tems that use this library, this research presents a query modeling tool that models

embedded SQL queries in PHP systems and an empirical study conducted through

analysis of these models. A main focus of this study was to establish common pat-

terns developers use to construct SQL queries and to extract information about their

occurrences in actual PHP systems. Using these patterns, the parts of queries that

are generally static, and the parts that are often computed at runtime were extracted.

For dynamically computed query parts, we also extracted data about which PHP lan-

guage features are used to construct them. Finally, information about which clauses

most often differ based on control flow was extracted as well as counts for how often

each SQL query type and SQL clause is used in practice. We believe this information

is useful for future work on building program understanding and transformation tools

to renovate PHP code using database libraries.

MODELING AND ANALYSIS OF SQL QUERIES IN PHP SYSTEMS

A Thesis

Presented to The Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment of the Requirements for the Degree

Master of Science in Software Engineering

by

David Anderson

April, 2018

Copyright David Anderson, 2018

MODELING AND ANALYSIS OF SQL QUERIES IN PHP SYSTEMS

by

David Anderson

APPROVED BY:

DIRECTOR OF THESIS:

Mark Hills, PhD

COMMITTEE MEMBER:

Junhua Ding, PhD

COMMITTEE MEMBER:

Nasseh Tabrizi, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: Venkat Gudivada, PhD

DEAN OF THE

GRADUATE SCHOOL: Paul J. Gemperline, PhD

Table of Contents

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

Research Contribution: 2

2 TOOLS AND TECHNOLOGIES . 4

3 SQL MODELING . 6

3.1 Overview . 6

3.2 Model Building . 8

3.3 Yield Extraction . 12

3.4 Parsing . 14

4 ANALYSIS OF SQL MODELS . 17

4.1 The Corpus . 18

4.2 Query Construction Patterns . 20

4.2.1 QCP0: Literal Query Strings 20

4.2.2 QCP1: Dynamic Parameters 22

4.2.3 QCP2: Dynamic . 23

4.2.4 QCP3a: Multiple Yields, Same Parsed Query 26

4.2.5 QCP3b: Multiple Yields, Same Query Type 28

4.2.6 QCP3c: Multiple Yields, Different Query Types 29

4.2.7 QCP4: Function Queries . 31

4.2.8 Query Construction Pattern Results 33

4.3 Query Fragment Categories . 35

4.4 Model Yield Comparison . 37

4.5 SQL Clause Usage . 45

5 RELATED WORK . 48

6 FUTURE WORK AND CONCLUSION 52

6.1 Future Work . 52

6.2 Conclusion . 54

BIBLIOGRAPHY . 55

LIST OF TABLES

4.1 The Corpus. 19

4.2 QCP Counts by System. 34

4.3 Fragment Category Counts by System. 36

4.4 Clause Comparison Counts for Pattern QCP3b. 42

4.5 Query Type Counts by System. 43

4.6 Clause Counts for each Query Type. 44

LIST OF FIGURES

3.1 Overview: Extracting Query Models and Parsing Modeled Queries. . 6

3.2 Model Building Example: PHP Code. 8

3.3 Query Fragment Constructors in PHP AiR. 8

3.4 FragmentRel Definition in PHP AiR. 11

3.5 Model Building Example: Dot Graph. 13

3.6 Model Building Example: Yields. 13

3.7 Model Building Example: Query Strings. 14

3.8 Model Building Example: SQL ASTs. 14

3.9 Dot Graph for a Query with Dynamic Query Text. 15

3.10 Dynamic Query Text: Yield, Query String, and AST. 16

4.1 QCP0: Example 1. 21

4.2 QCP0: Yield, Query String, and AST. 21

4.3 QCP0: Example 2. 22

4.4 QCP1: Example 1. 23

4.5 QCP1: Yield, Query String, and AST. 24

4.6 QCP2: Example 1. 25

4.7 QCP2: Yield, Query String, and AST. 25

4.8 QCP3a: Example 1. 27

4.9 QCP3a: Yields, Query String, and AST. 27

4.10 QCP3b: Yields, Query Strings, and ASTs. 30

4.11 QCP3c: Yields, Query Strings, and ASTs. 32

4.12 QCP4: Example 1. 33

4.13 QCP4: Yield, Query String, and AST. 33

4.14 YieldInfo Rascal Definition. 38

4.15 ClauseComp Construction: State Machine Diagram. 39

4.16 YieldInfo example: SQL Strings. 40

4.17 YieldInfo example: YieldInfo. 40

6.1 Proposed Transformation Approach. 53

Chapter 1

Introduction

PHP is a server-side scripting language used for building dynamic web applications.

PHP is widely used, ranking fifth in popularity on GitHub in terms of pull requests.1

In dynamic web applications, the data displayed to the user often depends on infor-

mation stored in relational databases. Furthermore, user inputs are often sent to a

database where records are created or modified. To support database interaction,

PHP provides a number of database access libraries such as MySQL,2 MySQLi3 and

PDO.4 When using database libraries, queries are built using a mixture of static SQL

text and dynamic inputs. These queries are then sent to be executed by the database

using an API call (such as mysql_query in the MySQL library). In this research,

we examine PHP systems using the original MySQL library. This library was depre-

cated in PHP 5.5.0 and completely removed in PHP 7. Despite this, many systems,

including some still in active use/development, use this library. The end goal of this

research is to create program comprehension and transformation tools for renovating

PHP systems to use safer, more modern database access libraries. A major roadblock

to creating such tools is the dynamic nature of the PHP language that makes it diffi-

cult to reason about statically [1], [2]. Therefore, this research focuses on answering

1https://octoverse.github.com/
2http://php.net/manual/en/book.mysql.php
3http://php.net/manual/en/book.mysqli.php
4http://php.net/manual/en/book.pdo.php

the following research questions to provide a foundation for future work on program

comprehension and transformation tools.

• RQ1: What patterns do developers commonly use to construct database queries?

• RQ2: Which parts of queries are generally static? Where do dynamic parts
usually occur in queries?

• RQ3: Which PHP language features do the data from dynamic query parts
come from?

• RQ4: In cases where different control flow paths lead to different queries, which
clauses are the same across yields, and which are different?

• RQ5: Which SQL clauses are most often used in practice? Which are hardly
used?

The rest of this thesis is organized as follows. In Chapter 2, we give a brief overview

of the tools and technologies used in this project, as well as links to the repositories for

our query modeling and analysis tool. In Chapter 3, our query modeling and analysis

tool is described in detail. In Chapter 4, we present the process of applying our query

modeling tool on a corpus of open source systems, the empirical data obtained from

these systems, and what these results mean in terms of the 5 previously discussed

research questions. In Chapter 5, we consider other research projects related to

analysis of embedded SQL queries. Finally, in Chapter 6, we provide areas for future

work and conclusion.

Research Contribution: The empirical study discussed in this work presents

quantitative data on how developers construct database queries in PHP systems,

which PHP language features they use, and which types of queries and query clauses

are used most often in practice. This analysis is designed to enable future work on

building program understanding and transformation tools to renovate existing PHP

2

code using database libraries. To ensure repeatability of this analysis, all results, per-

centages, and LaTeX tables shown in this work can be generated using the functions

found in our repository, which is publicly available and can be downloaded using the

links provided in Chapter 2.

3

Chapter 2

Tools and Technologies

The analysis tool developed for this research is written in Rascal [3], a meta-programming

language designed to cover the entire meta-programming domain, with main fo-

cuses including program analysis and transformation. The PHP AiR (PHP Anal-

ysis in Rascal) framework [4], [5] is used as the foundation on which our analy-

sis tool is built. The goal of this framework is to enable empirical software en-

gineering and program analysis of PHP systems. This framework makes use of

Rascal’s high-level data types such as sets, maps, relations, and ADTs, and lan-

guage features such as pattern matching and source code locations, which we use

heavily in our own scripts. This framework also provides support for parsing PHP

code from versions 5.2 through 7.2, which is enabled through a fork of an open

source PHP parser. The repositories for PHP AiR and the PHP parser are freely

available and can be found at https://github.com/cwi-swat/php-analysis and

https://github.com/cwi-swat/PHP-Parser respectively. Our SQL modeling tool

builds on the PHP AiR framework to enable analysis of SQL queries in PHP systems.

The main repository for our SQL analysis tool can be found at https://github.

com/ecu-pase-lab/mysql-query-construction-analysis. Our modified SQL parser

can be found at https://github.com/ecu-pase-lab/sql-parser. Detailed de-

scriptions of these tools and how they were used to extract empirical data can be

found in Chapters 3 and 4, respectively.

5

Chapter 3

SQL Modeling

3.1 Overview

Figure 3.1 provides an overview of the process used to build a model of a specific

mysql_query call, extract all possible yields of the model, and parse the yields into

MySQL Abstract Syntax Trees (ASTs), which captures the structure of the queries.

First, the PHP scripts are input into our PHP parser which outputs a Rascal term of

type System. A System includes the AST for each PHP script, as well as information

such as the name and version number of the system being analyzed. Next, the

PHP System

PHP System
ASTs (Rascal)

PHP Parser
(PHP)

Model Builder
(Rascal)

Query Location

Query Model
(Rascal)

Query Yields
Generator
(Rascal)

Query Yields
(Rascal)

Modified MySQL
Query Parser (PHP)

Parsed MySQL
Queries (Rascal)

Figure 3.1: Overview: Extracting Query Models and Parsing Modeled Queries.

mysql_query call location, giving the position of the call in a specific script, and

the System are input into our Query Model Builder. This outputs a value of type

SQLModel. A SQLModel value represents all possible SQL queries that could be passed

into the call at the provided location. This model differentiates between static and

dynamic parts of the query. For each name in the query, the model provides links to

the corresponding definitions for the name, with information on each edge showing

under what conditions each part of a query is present. Once the models are built,

they are input into our Query Yields Generator, which generates a set of all possible

queries that the model for a particular call can yield. The yields are then converted to

strings with “query hole” tokens representing the dynamic parts of the query. These

query strings with hole placeholders are then input to our modified MySQL query

parser which parses the query strings and returns SQL ASTs (as Rascal terms) for

each parsed string. The final result is a set of parsed queries representing all possible

queries that could be input to a particular call to mysql_query. In the rest of this

chapter, each of these steps are discussed in more detail. In Section 3.2, the model

building process is described. In Section 3.3, the process of extracting yields from

query models is described. Finally, in Section 3.4, the process for parsing query strings

with dynamic holes is explained. This chapter follows an example from lines 64-89 of

html/main.inc.php in system MyPHPSchool (see Section 4.1 for a description of the

corpus). Figure 3.2 shows the PHP code (with comments removed for clarity) that

serves as the basis for this example. In each of the following sections, the output of

that stage of the analysis on this example is shown.

7

1 function check_auth () {

2 global $cookie_user , $cookie_enc , $db , $base_url ,

$sbase_url , $cookie_type;

3

4 if($cookie_user && $cookie_enc && cookie_type){

5

6 $cookie_user = clean_var($cookie_user);

7 $cookie_type = clean_var($cookie_type);

8

9 if($cookie_type == "staff"){

10 $type = "staff";

11 } elseif($cookie_type == "student") {

12 $type = "student";

13 } else {

14 die("INVALID USER TYPE SPECIFIED!");

15 }

16

17 $sql = "SELECT * FROM user_$type WHERE

username = ’$cookie_user ’";

18 $result = mysql_query($sql , $db);

19 ...

Figure 3.2: Model Building Example: PHP Code.

literalFragment(str literalFragment)

compositeFragment(list[QueryFragment] fragments)

concatFragment(QueryFragment l, QueryFragment r)

nameFragment(Name name)

dynamicFragment(Expr fragmentExpr)

globalFragment(Name name)

inputParamFragment(Name name)

unknownFragment ()

Figure 3.3: Query Fragment Constructors in PHP AiR.

3.2 Model Building

Calls to mysql_query accept a PHP expression as a parameter. This expression

should evaluate to a SQL query string. This can either be a static string, or, more

commonly, a mixture of static SQL text and dynamic inputs from variables and

8

other expressions. Furthermore, the assignments to these dynamic query fragments

may differ based on control flow, resulting in multiple distinct SQL queries that

can be input to a particular query call. In our tool, we model SQL queries as a

relation over QueryFragment Rascal terms that represent each possible expression

that can contribute to the query at a particular call to mysql_query. Figure 3.3

shows the Rascal definition for QueryFragment. A QueryFragment can be either

a static string (literalFragment), string interpolation with embedded PHP ex-

pressions (compositeFragment), a string concatenation of multiple query fragments

(concatFragment), the use of a name (nameFragment), the use of a function/method

parameter (inputParamFragment), the use of a global name (globalFragment), an-

other PHP expression that we have not modeled explicitly (dynamicFragment), or a

fragment with no definitions (unknownFragment). As a first step to translating a SQL

expression into a query fragment, we first perform a number of simplifications to the

expression. This includes simulation of library functions, replacing constants with

their values, and performing concatenation of string literals. For example, after sim-

plification, the PHP string concatenation: $x = "select *". "from houses". "where

floor = ’carpet’"; would result in the the fragment: literalFragment("select *

from houses where floor = ’carpet") rather than: concatFragment(literalFragment

("select *"), concatFragment(literalFragment("from houses"), literalFragment

("where floor = ’carpet’"))).

Algorithm 1 shows the process for building a SQLModel representing all possible

SQL queries that could be passed to a particular query call. The inputs to the system

are the system AST (sys) for the system containing the specified query call and the

location of the desired query call to be modeled (callLoc). The procedure also makes

used of a system’s QCPSystemInfo, which contains cached analysis results such as

control flow graphs and use/def information, which records assignments to (definitions

9

Algorithm 1: Extracting a Model of a SQL Query.

Input : sys , a PHP system, mapping from file locations to abstract syntax
trees

Input : callLoc, a location indicating the query call to be analyzed
Output: res , a query model

1 inputCFG ← buildCFG4Loc (callLoc)
2 inputNode ← the CFG node from inputCFG representing the call at callLoc
3 d ← definitions (inputCFG)
4 u ← uses (inputCFG , d)
5 slicedCFG ← basicSlice (inputCFG , inputNode, usedNames (u, inputNode),

d , u)
6 startingFragment ← expr2qf (inputNode)
7 fragmentRel ← {}
8 while fragmentRel continues to change do
9 nodesToExpand ← (inputNode.l × startingFragment) ∪ fragmentRel〈3, 4〉

10 foreach (nodeLabel × nodeFragment) ∈ nodesToExpand do
11 add expandFragment (nodeLabel , nodeFragment , d , u) to fragmentRel
12 end

13 end
14 fragmentRel ← addEdgeInfo (fragmentRel , slicedCFG)
15 res ← the model, including fragmentRel , startingFragment , and callLoc

of) a name and uses of specific definitions. This is a performance improvement that

is not shown in Algorithm 1. The procedure begins by building an intraprocedural

control-flow graph for the script, function, or method containing the query call at

callLoc and assigns it as inputCFG (line 1). Next, the CFG node representing the

call at callLoc is assigned to inputNode (line 2). Next, the definitions contained in the

inputCFG are computed (line 3) along with the uses of those definitions (line 4). Using

the inputCFG, inputNode, and the definitions/uses, a backwards, intraprocedural

slice, starting at the query call, is computed that throws away any CFG nodes that

do not affect the value of the query being passed into the call at callLoc (line 5).

The rest of Algorithm 1 involves the computation of the model’s FragmentRel.

The Rascal definition of FragmentRel can be found in Figure 3.4. This relation

10

alias FragmentRel = rel[Lab sourceLabel , QueryFragment

sourceFragment , Name name , Lab targetLabel , QueryFragment

targetFragment , EdgeInfo edgeInfo];

Figure 3.4: FragmentRel Definition in PHP AiR.

maps a name in a given CFG node (Name name), the unique label of that CFG

node (Lab sourceLab) and the QueryFragment representing that name (QueryFrag-

ment sourceFragment) to the label of another CFG node (Lab targetLabel) and the

QueryFragment corresponding to that CFG node (QueryFragment targetFragment).

Optional information about under what conditions the name given by name can take

on the value given by targetFragment is provided in the EdgeInfo field as a set of

predicates. The FragmentRel can be viewed as a directed graph with each graph

node being a (Lab, QueryFragment) pair and each edge connecting a name used in

the QueryFragment to one of its definitions, with optional EdgeInfo describing the

conditions under which the definition in targetFragment is assigned to the name in

sourceFragment.

In the first step of computing the FragmentRel the inputNode is converted to

a QueryFragment which is assigned to the startingFragment field of the SQLModel

(line 6). This corresponds to the expression used as the parameter to the query call.

From here, for each name in the startingFragment, expandFragment uses the def-use

information to return mappings to other fragments that define these names. Names

used in these new fragments are then mapped to new fragments that define them. This

fixpoint process continues until new mappings are no longer added to FragmentRel.

For names where no definitions could be found, a mapping to an unknownFragment

is added. Names that map to formal parameters or global declarations expand to

inputParamFragments and globalFragments, respectively.

The final step to computing the SQLModel is to add information to each edge

11

in the FragmentRel that describes which conditions must hold for each edge to be

reached. This is achieved in addEdgeInfo, where the slicedCFG is used to decorate

each edge in the FragmentRel with predicates (Line 14). Finally, the FragmentRel

(with EdgeInfo), the query call location, and the starting fragment are returned

(line 15). This final result represents all possible queries that can be passed into

the query call. Figure 3.5 shows a dot graph representation of the model built for

the code example in Figure 3.2. For the set of edge conditions, each comma can be

viewed as an OR. We do not attempt to filter out tautologies in the predicate sets

(i.e. $cookie_type == ‘staff’, !($cookie_type == ’staff’). In this example,

the $sql name is the startingFragment of the model. This name is mapped to a

compositeFragment that provides the definition to this name, under the conditions

labeled on the edge. In this compositeFragment, two new names are introduced:

$type and $cookie_user. $type is then mapped to two possible literal fragments:

“student” and “staff”. This corresponds to the two possible assignments in the if-

statement shown in the lines 9-12 from the code example in Figure 3.2.

3.3 Yield Extraction

The procedure described in Algorithm 1 returns a SQLModel representing all possible

queries that can be passed into a particular query call. From here, the first step

to generating actual queries from the model is to compute the yields of the model.

In Rascal, a SQLYield is defined as a list of SQLPiece instances. Each SQLPiece

is either a staticPiece, for literal query fragments in the model, a namePiece, for

name fragments, or a dynamicPiece, for dynamic fragments that are not names. Each

yield corresponds to a path through the FragmentRel of the model starting at the

startingFragment. Paths that lead to cycles due to names that are defined in terms

12

Figure 3.5: Model Building Example: Dot Graph.

[staticPiece("SELECT * FROM user_student WHERE username = \’"

),namePiece("cookie_user"),staticPiece("\’")]

[staticPiece("SELECT * FROM user_staff WHERE username = \’"),

namePiece("cookie_user"),staticPiece("\’")]

Figure 3.6: Model Building Example: Yields.

of themselves are cut off. This leaves these names unexpanded, which could lead to a

potential source of incompleteness where, in these cyclic cases, some possible queries

could be missed. Finally, infeasible yields are removed using the condition information

on each edge. Figure 3.6 shows the two yields computed for the model from Figure 3.5.

The first yield corresponds to the program path where $cookie_type == "student",

and $type is mapped to the literal fragment “student”. The second yield corresponds

to the program path where $cookie_type == "staff" (meaning $cookie_type ==

"student" is false), and $type is mapped to the literal fragment “staff”. Since the

name $cookie_user is mapped to a dynamic fragment, it is unexpanded, and remains

13

SELECT * FROM user_student WHERE username = ’?0’

SELECT * FROM user_staff WHERE username = ’?0’

Figure 3.7: Model Building Example: Query Strings.

selectQuery ([star()],[name(table("user_staff"))],where(

condition(simpleComparison("username","=","?0"))),

noGroupBy (),noHaving (),noOrderBy (),noLimit () ,[])

selectQuery ([star()],[name(table("user_student"))],where(

condition(simpleComparison("username","=","?0"))),

noGroupBy (),noHaving (),noOrderBy (),noLimit () ,[])

Figure 3.8: Model Building Example: SQL ASTs.

in each yield as an undefined name piece. This set of yields corresponds to all feasible

paths through the SQLModel that result in actual queries that could reach the query

call.

3.4 Parsing

In Section 3.3, the process for extracting yields from a SQLModel was shown. The

next step is to convert these yields into SQL strings. To convert SQLYields to strings,

we defined the following conversion. If a SQLPiece is a staticPiece, the literal query

fragment is added to the string. For namePieces and dynamicPieces, a ? followed

by an integer (e.g. ?0, ?1, ?2, ...) is added to the string. This is referred to as a

“query hole symbol” and represents a part of the query where dynamic information

will be produced at runtime. This can be seen in Figure 3.7, where the yields from

Figure 3.6 have been converted to SQL strings. In this example, there are two SQL

strings corresponding to the two yields generated from the model. In both yields, the

namePiece: $cookie_user is replaced with the query hole symbol ?0. The difference

in table name in the FROM clause is also reflected in the two generated strings, but is

not replaced with a query hole, since in both yields, $cookie_type can be resolved

14

Figure 3.9: Dot Graph for a Query with Dynamic Query Text.

to a static string.

The final step is to parse the generated query strings into SQL ASTs. For this, we

used a custom fork of the MySQL parser used by phpMyAdmin. This parser focuses

on the MySQL dialect of SQL and has been used by phpMyAdmin since version 4.5.

This parser required modifications in order to work with queries that contain query

hole symbols, since it was originally designed to only parse completely static queries.

We also added a PHP script to the parser that takes the parsed SQL data structure

used by the parser as input, and outputs a Rascal value for the resulting SQL AST.

On the Rascal side, we have a module that invokes the parser, reads in the string

output by the parser, and converts this string to a Rascal term of type SQLQuery.

The SQLQuery type defines an abstract syntax of the MySQL dialect of SQL where

a constructor for each query type is defined, and each constructor contains fields for

each clause that could be provided in the related type of query. Figure 3.8 shows

the result from parsing the two yields from Figure 3.7. These SQL ASTs provide a

structured way to compare different model yields and extract empirical information

about SQL queries.

15

1. [staticPiece("SELECT * FROM "),namePiece("base_from_where"),

staticPiece(" AND id = "),dynamicPiece ()]

2. SELECT * FROM ?0 AND id = ?1

3. partialStatement(connectiveWithoutWhere("SELECT"))

Figure 3.10: Dynamic Query Text: Yield, Query String, and AST.

One problem with parsing partial SQL queries comes in cases where actual query

text is contained in a query hole. An example of this from system AddressBook can be

found in Figure 3.9. In this case, both the FROM clause of the SELECT query and part

of the WHERE clause are contained in the global name $base_from_where. For now,

we handle these cases on a case-by-case basis and include some checks prior to parsing

to identify one of these predefined cases (such as the one seen here, where a logical

connective such as AND is encountered but no WHERE token can be found. The yield,

query string, and SQL AST for this example can be found in Figure 3.10. The AST

for this example indicates that this query could not be parsed fully, since a connective

was encountered but not a WHERE. At this point, the only information extracted from

these cases is the query type, if it can be determined. Since the original parser was

not designed to work with cases like this, handling them is a difficult problem. More

powerful options for handling these cases and extracting more information from them

are discussed as part of our future work in Chapter 6.

16

Chapter 4

Analysis of SQL Models

Chapter 3 described the tool that we built for modeling and analysis of SQL queries

in PHP systems. This tool was built to facilitate program analysis of embedded SQL

queries in PHP systems with the ultimate goal of answering the following research

questions:

• RQ1: What patterns do developers commonly use to construct database queries?

• RQ2: Which parts of queries are generally static? Where do dynamic parts
usually occur in queries?

• RQ3: Which PHP language features do the data from dynamic query parts
come from?

• RQ4: In cases where different control flow paths lead to different queries, which
clauses are the same across yields, and which are different?

• RQ5: Which SQL clauses are most often used in practice? Which are hardly
used?

In this chapter, we describe the results of our empirical study and relate the results

to these 5 research questions. In Section 4.1, our corpus of 22 systems is described.

Section 4.2 shows the Query Construction Patterns (QCPs) that we observed were

used most frequently in our corpus and the counts of each pattern (RQ1 and RQ2).

Section 4.3 address RQ3 by examining the PHP language features that are used in

the dynamic parts of SQL queries. In Section 4.4, RQ4 and RQ2 are addressed by

taking a further look at how queries differ based on control flow. RQ5 is addressed

in Section 4.5, where we take a look at which SQL clauses developers use frequently

and which are used more rarely.

4.1 The Corpus

22 systems were selected as the corpus for this research. Four of the systems: School-

mate, geccBBLite, FAQ Forge, and WebChess, were selected due to their inclusion

in previous experiments [6], [7]. All other systems were selected from GitHub and

SourceForge with the criteria that 1) each system should use the original MySQL API

and 2) the systems chosen should vary in size, age, and problem domain (e.g. School,

Medical, Bulletin Board, etc.). The corpus includes AddressBook, an application

for managing contacts; CPG and LinPHA, photo gallery tools; FAQ Forge, a tool

for managing lists of Frequently Asked Questions; the bulletin board applications

Fire-Soft-Board, geccBBLite, and UseBB; inoERP, an enterprise resource manage-

ment system; MantisBT, a tool for bug tracking; the school management applications

MyPHPSchool, SchoolERP, and Schoolmate; OcoMon, a computer help-desk system;

OMS, an organization management system; OpenClinic, a medical records system;

OrangeHRM, a human resources management application; PHPAgenda, an agenda

management tool; PHPFusion, a content management system; SugarCE, a customer

relationship management application; Timeclock, a tool for managing employee work

hours; web2project, a project management system; and WebChess, an online chess

game. Table 4.1 contains information about the corpus including the system names,

versions, file counts, and SLOC. In total, the corpus contains 9615 files and 1,600,472

total lines of PHP source code, measured using the CLOC tool. For the original 4

systems picked from previous research, the versions used in those experiments were

18

System Version File Count SLOC

AddressBook 8.2.5.2 239 30,296

CPG 1.5.46 359 128,985

FAQ Forge 1.3.2 17 1,040

Fire-Soft-Board 2.0.5 271 47,464

geccBBlite 0.1 11 304

inoERP 0.5.1 2,025 309,592

LinPHA 1.3.4 223 64,167

MantisBT 2.10.0 1,251 155,641

MyPHPSchool 0.3.1 70 8,230

OcoMon 2.0RC6 398 77,879

OMS 1.0.1 16 2,234

OpenClinic 0.8.2 170 16,613

OrangeHRM 4.0 2,560 271,733

PHPAgenda 2.2.12 60 9,680

PHPFusion 7.02.07 470 40,442

SchoolERP 1.0 657 296,053

Schoolmate 1.5.4 63 6,554

SugarCE 6.5.26 2,872 624,987

Timeclock 1.04 63 17,446

UseBB 1.0.16 84 12,650

web2project 3.3 584 99,944

WebChess 0.9.0 24 3,525

The File Count includes files with either a .php or an .inc extension, while SLOC includes source

lines from these files. In total, there are 22 systems consisting of 9,615 files with 1,600,472 total

lines of source.

Table 4.1: The Corpus.

used. For all other systems, the newest version (at the time of download) was used.

Due to performance issues in the analysis that are being solved as part of our

current work, two of the systems in the corpus were not included in the results of this

empirical study. These two systems are OcoMon and SchoolERP.

19

4.2 Query Construction Patterns

Understanding common patterns developers use to create database queries is an im-

portant step towards developing program understanding and program transformation

tools for PHP systems that use databases. In this section, we describe the Query

Construction Patterns (QCPs) that we identified through analysis of the corpus de-

scribed in Section 4.1. This set of patterns represents our work towards answering

RQ1. RQ2 is also addressed in this section as some query construction patterns are

defined based on the location of dynamic query parts in the SQL ASTs. The rest of

this section is organized by pattern. For each QCP, in addition to a description of the

pattern and how it is recognized, examples are given at both the script level (PHP

code) and the model, yield, and SQL AST level.

4.2.1 QCP0: Literal Query Strings

The QCP0 pattern is the most basic of the patterns. In this pattern, the parameter

passed into mysql_query is a static SQL string without any dynamic inputs. The

following code snippet from line 149 of Registration.php in Schoolmate provides an

example of QCP0:

1 $query = mysql_query("SELECT studentid ,fname ,lname FROM

students ORDER BY fname ASC")

Since the query parameter is a static string with no dynamic inputs, the SQL model

for this call consists of a single literalFragment. This is shown in Figure 4.1.

When run through the Yield Generator, the single literalFragment in this model

corresponds to a single static yield. Figure 4.2 shows 1) this yield, 2) the correspond-

ing query string, and 3) the SQL AST output by the parser. Notice that since the

yield for this model contains only a single staticPiece, the query string and SQL

20

Figure 4.1: QCP0: Example 1.

1. {[staticPiece("SELECT studentid ,fname ,lname FROM students

ORDER BY fname ASC")]}

2. {"SELECT studentid ,fname ,lname FROM students ORDER BY fname

ASC"}

3. {selectQuery ([name(column("studentid")),name(column("fname"))

,name(column("lname"))],[name(table("students"))],noWhere

(),noGroupBy (),noHaving (),orderBy({<name(column("fname")),

"ASC" >}),noLimit () ,[])}

Figure 4.2: QCP0: Yield, Query String, and AST.

AST contain no query holes. While the example in Figure 4.1 shows a static query

defined directly in the call to mysql_query, QCP0 also encompasses cases where a

static SQL string is assigned to a variable, then that variable is used in a mysql_query

call. The following example from lines 53 and 54 of lib/topics.inc in FaqForge shows

an example of this case:

1 $q = "SELECT * FROM Faq WHERE parent_id = 0 ORDER BY

list_order";

2 $result0 = mysql_query ($q, $dbLink);

In this case, the model for this query consists of two fragments: a nameFragment

for the variable $q and a literalFragment for the SQL string assigned to $q. This

is shown in Figure 4.3. When the yields are generated, however, they are of the

same form as in Figure 4.2 with a single yield, query string, and SQL AST. Rec-

ognizing either case of QCP0 is done by 1) checking whether the yield set of the

21

Figure 4.3: QCP0: Example 2.

model is a singleton set and 2) checking that the yield of the model contains a single

staticPiece.

4.2.2 QCP1: Dynamic Parameters

In pattern QCP1, the query is a mixture of static SQL text and dynamic inputs, where

each dynamic part is a parameter to SQL constructs such as SET or WHERE. This is in

contrast to cases where the dynamic parts are not limited to just parameters, but can

represent longer fragments of query text, potentially including some schema elements

(these are not allowed in QCP1; they are covered by QCP2). The following code

example from lines 26 and 27 of /html/newsadmin.php in MyPHPSchool shows an

example of a QCP1 query in PHP code:

1 $sql = "UPDATE news SET subject = ’$new_subject ’, lead = ’

$new_lead ’, content = ’$new_content ’, type = ’$new_type ’

WHERE id = ’$id’";

2 $result = mysql_query($sql , $db);

In this example, the dynamic inputs $new_subject, $new_lead, $new_content, $new_type,

and $id are used as parameters to the SET operations in the UPDATE query. No dy-

namic parts of the query contain schema elements or other query text. Another

22

Figure 4.4: QCP1: Example 1.

characteristic of QCP1 models is that, as with QCP0, only a single yield is generated.

In other words, the model does not take on different paths based on control flow, and

none of the edges of the model have conditions. Figure 4.4 shows a dot graph repre-

sentation of the QCP1 query from the previous code example and Figure 4.5 shows

the yield, query string, and SQL AST corresponding to this model. Unlike QCP0,

which had no name or dynamic pieces in its yield, the yield for this model contains

name pieces which show up as hole tokens (?0, ?1,...,?6) in the query string and the

parsed SQL AST. Recognizing QCP1 involves first checking whether the yields set of

the model is a singleton set. If it is, then the location of each query hole in the SQL

AST is checked. If all query holes are located in the query as parameters, then the

query being examined is a QCP1 query.

4.2.3 QCP2: Dynamic

Like Pattern QCP1, QCP2 is made of a mixture of static SQL and dynamic inputs

from PHP constructs. Also like QCP1, the query has a single yield and does not

23

1. {[staticPiece("UPDATE news SET subject = \’"),namePiece("

new_subject"),staticPiece("\’, lead = \’"),namePiece("

new_lead"),staticPiece("\’, content = \’"),namePiece("

new_content"),staticPiece("\’, type = \’"),namePiece("main

"),staticPiece(" "),namePiece("athletics"),staticPiece(" "

),namePiece("clubs"),staticPiece("\’ WHERE id = \’"),

namePiece("id"),staticPiece("\’")]}

2. {"UPDATE news SET subject = \’?0\’, lead = \’?1\’, content =

\’?2\’, type = \’?3 ?4 ?5\’ WHERE id = \’?6\’"}

3. {updateQuery ([name(table("news"))],[setOp("subject","?0"),

setOp("lead","?1"),setOp("content","?2"),setOp("type","

\’?3 ?4 ?5\’")],where(condition(simpleComparison("id","=",

"?6"))),noOrderBy (),noLimit ())}

Figure 4.5: QCP1: Yield, Query String, and AST.

differ based on control flow. Unlike QCP1, in pattern QCP2, at least one dynamic

part of the query takes on the role of a schema element or part of query text. An

example of this can be found in the following code example from lines 413 and 414 of

admin.php in OMs:

1 $sql = "select * from memberships where org_id = $org_id

ORDER BY $order";

2 $result = mysql_query($sql ,$conn) or die(mysql_error ());

The query in this example has two dynamic parts: $org_id, which is a parameter

to the WHERE clause, and $order, which specifies the column name for the ORDER BY

clause. Since this second dynamic part is not a parameter, this query is classified as

QCP2. Figure 4.6 shows the dot graph representation of this query. Figure 4.7 shows

the corresponding yield, query string, and SQL AST. Recognizing QCP2 is similar

to recognizing QCP1. First, it is checked whether the yield set is singleton, and if it

is, the locations of all holes in the SQL AST are checked. If at least one hole is not

24

Figure 4.6: QCP2: Example 1.

1. {[staticPiece("select * from memberships where org_id = "),

namePiece("org_id"),staticPiece(" ORDER BY "),namePiece("

order")]}

2. {"select * from memberships where org_id = ?0 ORDER BY ?1"}

3. {selectQuery ([star()],[name(table("memberships"))],where(

condition(simpleComparison("org_id","=","?0"))),noGroupBy

(),noHaving (),orderBy({<name(column("?1")),"ASC" >}),

noLimit () ,[])}

Figure 4.7: QCP2: Yield, Query String, and AST.

used as a parameter, this query is classified as a QCP2 query.

Recall the case discussed in Section 3.4, where entire pieces of SQL text are con-

tained in a variable. These cases also fall under QCP2, since a dynamic part of

the query is used to contain a part of a query other than a parameter. Recogniz-

ing these cases simply involves checking if the AST output by the parser is of type

partialStatement.

25

4.2.4 QCP3a: Multiple Yields, Same Parsed Query

QCP3a is the first pattern where the number of yields is greater than 1. However, in

QCP3a, every yield in the set of yields leads to the same query string and the same

SQL AST. This means that the yields of the model differ in the source of dynamic in-

formation but not the actual structure of the query. The following code example from

lines 205-364 (with irrelevant lines replaced with ellipses) of /admin/officeedit.php in

Timeclock shows an example QCP3a query call:

1 $post_officeid = $_POST[’post_officeid ’];

2 ...

3 while ($row=mysql_fetch_array($result)) {

4 $post_officeid = "".$row[’officeid ’]."";

5 }

6 ...

7 $query = "select * from ".$db_prefix."groups where officeid =

(’".$post_officeid." ’) order by groupname";

8 $result = mysql_query($query);

Notice that the value of the $post_officeid variable has two possible sources

based on control flow. First, if the while loop is executed, the value comes from

the $row array. For the case where the loop is not executed, the value comes from

the $_POST superglobal. This is shown in Figure 4.8 where $post_officeid has two

edges in the model. Note that condition labels for the edges in this model have been

removed, for readability. This is also shown in Figure 4.9 where there are two yields of

the model, one with namePiece("row") and one with namePiece("_POST"). When

these yields are converted to query strings, however, they both result in the same

query string, which when parsed, results in a single SQL AST. Figure 4.9 also shows

this. It should be noted that, while there is another dynamic input, $dbprefix in

26

Figure 4.8: QCP3a: Example 1.

1. {[staticPiece("select * from "),namePiece("db_prefix"),

staticPiece("groups where officeid = (\’"),namePiece("row"

),staticPiece("\’) order by groupname")],

[staticPiece("select * from "),namePiece("db_prefix"),

staticPiece("groups where officeid = (\’"),namePiece("

_POST"),staticPiece("\’) order by groupname")]}

2. {"select * from ?0 groups where officeid = (\’?1\’) order by

groupname"}

3. {selectQuery ([star()],[name(table("?0 groups"))],where(

condition(simpleComparison("officeid","=","?1"))),

noGroupBy (),noHaving (),orderBy({<name(column("groupname"))

,"ASC" >}),noLimit () ,[])}

Figure 4.9: QCP3a: Yields, Query String, and AST.

27

this query, its value does not change based on control flow. This also shows another

QCP3 property: we do not differentiate between holes being parameters, schema

elements, and query text for this pattern. This is because, since QCP3 queries have

multiple yields, it is possible that for one yield, the query has schema element holes,

and for the other, it does not. This is not a problem for QCP3a, since all yields lead

to the same SQL AST, but for other QCP3 sub-patterns, this issue could arise (see

Section 4.2.5 and Section 4.2.6). Recognizing QCP3a involves first checking that the

size of the yields set of the model is greater than one. If it is, the size of the SQL

AST set is checked. If it is singleton, then this is a QCP3a query, since all yields in

the yields set lead to a single SQL AST.

4.2.5 QCP3b: Multiple Yields, Same Query Type

Like QCP3a, the number of yields for QCP3b models is greater than one. Unlike

QCP3a, in QCP3b the structure of the query differs across the yields. This is in

contrast to QCP3a, where only the sources of dynamic data differ but the structure

of the query remains static. Due to the difference in query structure, QCP3b queries

have multiple distinct SQL ASTs. Another constraint on QCP3b is that all SQL

ASTs must have the same query type (i.e. there cannot be a case where one AST is

an INSERT query, and another is an UPDATE query). The following code example from

lines 383-391 of /leftmain.php in TimeClock shows example PHP code for a QCP3b

query call:

1 if (strtolower($ip_logging) == "yes") {

2 $query = "insert into ".$db_prefix."info (fullname , ‘

inout ‘, timestamp , notes , ipaddress) values (’".

$fullname."’, ’".$inout."’, ’".$tz_stamp."’, ’".$notes

."’, ’".$connecting_ip." ’)";

28

3 } else {

4 $query = "insert into ".$db_prefix."info (fullname , ‘

inout ‘, timestamp , notes) values (’".$fullname."’, ’".

$inout."’, ’".$tz_stamp."’, ’".$notes."’)";

5 }

6

7 $result = mysql_query($query);

The PHP code that sets the values of each of the variables in the VALUES clauses is

omitted, for space. In this example, the INSERT query differs based on the value of

the strtolower($ip_logging) == "yes" condition. In each of the two branches,

the INTO and VALUES clauses contain different numbers of column names and values,

respectively. This is a difference in query structure, which makes this case fall under

QCP3b. The dot graph for this example was omitted due to the large size of the

image file associated with it. Figure 4.10 shows the two yields, two SQL strings,

and two SQL ASTs corresponding to this example. The first SQL AST is for the

case where strtolower($ip_logging) == "yes" is true, and an extra column and

value is added for the logged IP address. The second SQL AST corresponds to the

case where that condition evaluated to false, and the extra column and value are not

included in the query. QCP3b is recognized by first checking that the size of the

yields set of the model is greater than one, and the size of the SQL AST set is greater

than one. If both are true, then it is asserted that all the ASTs are of the same type.

4.2.6 QCP3c: Multiple Yields, Different Query Types

In the QCP3c pattern, the model has multiple yields of differing query types. The

following PHP code from lines 187-196 (with comments removed) of phpweather.php in

29

1. [staticPiece("insert into "),namePiece("db_prefix"),

staticPiece("info (fullname , ‘inout ‘, timestamp , notes)

values (\’"),namePiece("fullname"),staticPiece("\’, \’"),

namePiece("_POST"),staticPiece("\’, \’"),namePiece("

tz_stamp"),staticPiece("\’, \n \’"),

namePiece("notes"),staticPiece("\’)")]

[staticPiece("insert into "),namePiece("db_prefix"),

staticPiece("info (fullname , ‘inout ‘, timestamp , notes ,

ipaddress) values (\’"),namePiece("fullname"),staticPiece(

"\’, \’"),namePiece("_POST"),staticPiece("\’, \n

\’"),namePiece("tz_stamp"),

staticPiece("\’, \’"),namePiece("notes"),staticPiece("\’,

\’"),namePiece("connecting_ip"),staticPiece("\’)")]

2. insert into ?0info (fullname , ‘inout ‘, timestamp , notes)

values (’?1’, ’?2’, ’?3’,’?4’)

insert into ?0info (fullname , ‘inout ‘, timestamp , notes ,

ipaddress) values (’?1’, ’?2’,’?3’, ’?4’, ’?5’)

3. insertQuery(into(name(table("?0info")) ,["fullname","inout","

timestamp","notes","ipaddress"]) ,[["?1","?2","?3","?4","?5

"]],[], noQuery () ,[])

insertQuery(into(name(table("?0info")) ,["fullname","inout","

timestamp","notes"]) ,[["?1","?2","?3","?4"]],[], noQuery ()

,[])

Figure 4.10: QCP3b: Yields, Query Strings, and ASTs.

Timeclock shows an example of QCP3c. Notice that the entire query differs based on

the $new variable, and the different paths hold different query types: an INSERT and

an UPDATE query. Note that the code that sets the values of the variables embedded

in the queries is not shown.

1 if ($new) {

2 $query = "INSERT INTO ".$db_prefix."metars SET

station = ’$station ’, " ."metar = ’$metar ’,

timestamp = ’$date’";

30

3 } else {

4 $query = "UPDATE ".$db_prefix."metars SET metar = ’

$metar ’, " ."timestamp = ’$date’ WHERE station = ’

$station ’";

5 }

6 mysql_query($query);

Figure 4.11 shows example yields, SQL strings, and SQL ASTs for this example.

In this model, there are multiple UPDATE yields and multiple INSERT yields. The

collection of yields of this model was shortened for space.

4.2.7 QCP4: Function Queries

QCP4 is the most dynamic of the query construction patterns. In this pattern, the

entire query is dynamic. Most commonly, this happens when a query comes from a

parameter of a PHP function or method. The following code example from lines 25

and 26 of /inoerp/tparty/extenstions/social login/hybridauth/examples/signin signu

p/application.config.php in system inoERP shows an example of QCP4.

1 function mysql_query_excute($sql){

2 $result = mysql_query($sql);

3 ...

Figure 4.12 shows the dot graph for the model of this example. In this example, the

name $sql can be traced back to the function parameter name, leaving the entire

query as dynamic, which makes it a QCP4 query. Figure 4.13 gives the yield, query

string, and SQL AST for this example. The yield consists of a single name piece,

which, when converted to a query string, results in “?0”, since the whole query is a

hole. Since this does not represent a full query that can be recognized by the parser, it

31

1. [staticPiece("UPDATE "),namePiece("db_prefix"),staticPiece("

metars SET metar = \’\’, timestamp = \’"),namePiece("date"

),staticPiece("\’ WHERE station = \’"),namePiece("station"

),staticPiece("\’")]

[staticPiece("UPDATE "),namePiece("db_prefix"),staticPiece("

metars SET metar = \’"),dynamicPiece (),staticPiece("Z "),

namePiece("metar"),staticPiece(" "),dynamicPiece (),

staticPiece("\’, timestamp = \’"),namePiece("date"),

staticPiece("\’ WHERE station = \’"),namePiece("station"),

staticPiece("\’")]

[staticPiece("INSERT INTO "),namePiece("db_prefix"),

staticPiece("metars SET station = \’"),namePiece("station"

),staticPiece("\’, metar = \’\’, timestamp = \’"),

namePiece("date"),staticPiece("\’")]

[staticPiece("INSERT INTO "),namePiece("db_prefix"),

staticPiece("metars SET station = \’"),namePiece("station"

),staticPiece("\’, metar = \’"),namePiece("metar"),

staticPiece(" "),dynamicPiece (),staticPiece("\’, timestamp

= \’"),namePiece("date"),staticPiece("\’")]

2. UPDATE ?0 metars SET metar = ’’, timestamp = ’?1’ WHERE

station = ’?2’

UPDATE ?0 metars SET metar = ’?1Z ?2 ?3’, timestamp = ’?4’

WHERE station = ’?5’

INSERT INTO ?0 metars SET station = ’?1’, metar = ’’,

timestamp = ’?2’

INSERT INTO ?0 metars SET station = ’?1’, metar = ’?2 ?3’,

timestamp = ’?4’

3. updateQuery ([name(table("?0 metars"))],[setOp("metar","\’\’"),

setOp("timestamp","?1")],where(condition(simpleComparison(

"station","=","?2"))),noOrderBy (),noLimit ())

updateQuery ([name(table("?0 metars"))],[setOp("metar","\’?1Z

?2 ?3\’"),setOp("timestamp","?4")],where(condition(

simpleComparison("station","=","?5"))),noOrderBy (),noLimit

())

insertQuery(into(name(table("?0 metars")) ,[]) ,[],[setOp("

station","?1"),setOp("metar","\’\’"),setOp("timestamp","?2

")],noQuery () ,[])

insertQuery(into(name(table("?0 metars")) ,[]) ,[],[setOp("

station","?1"),setOp("metar","\’?2 ?3\’"),setOp("timestamp

","?4")],noQuery () ,[])

Figure 4.11: QCP3c: Yields, Query Strings, and ASTs.

32

Figure 4.12: QCP4: Example 1.

1. [namePiece("sql")]

2. ?0

3. partialStatement(unknownStatementType ())

Figure 4.13: QCP4: Yield, Query String, and AST.

returns a partialStatement, where unknownStatementType indicates that it could

not determine what type of SQL statement the query represents. For QCP4 queries,

we do not examine the SQL ASTs as they do not contain any relevant information.

4.2.8 Query Construction Pattern Results

Table 4.2 shows the counts of each Query Construction pattern in the corpus. In

addition to the Query Construction Patterns we discussed in the previous sections,

this table includes figures for other query types (O) which are queries that are not

SELECT, INSERT, UPDATE, or DELETE statements. The reason these are discarded is

that our tool does not support them—many (e.g. ALTER TABLE) are used to modify

the database schema, while we are focusing on statements used to query and modify

33

System Version 0 1 2 3a 3b 3c 4 O P U

AddressBook 8.2.5.2 0 21 60 2 10 2 1 6 0 0

cpg 1.5.46 0 0 10 0 0 0 6 5 0 0

FAQ Forge 1.3.2 4 21 0 1 7 0 0 0 0 0

Fire-Soft-Board 2.0.5 0 0 0 0 0 0 2 1 0 0

geccBBlite 0.1 1 6 0 0 2 0 0 1 0 0

inoERP 0.5.1 0 0 0 0 0 0 2 0 0 0

LinPHA 1.3.4 0 0 3 0 0 0 2 8 0 0

mantisbt 2.10.0 0 0 0 0 0 0 1 0 0 0

MyPHPSchool 0.3.1 13 63 1 0 8 0 0 0 0 0

OMS 1.0.1 4 80 2 0 0 0 0 1 0 0

OpenClinic 0.8.2 0 3 0 0 0 1 0 4 2 0

orangehrm 4.0 22 4 3 0 0 0 1 11 0 0

PHPAgenda 2.2.12 0 0 16 0 0 0 3 2 0 0

PHPFusion 7.02.07 0 0 7 0 0 0 2 0 0 0

Schoolmate 1.5.4 76 192 0 15 11 0 0 0 0 0

SugarCE 6.5.26 0 0 0 1 0 0 2 1 0 0

Timeclock 1.04 2 3 279 11 18 1 0 52 0 0

UseBB 1.0.16 0 0 0 0 0 0 1 0 0 0

web2project 3.3 0 0 0 0 0 0 1 0 0 0

WebChess 0.9.0 0 69 0 6 18 0 0 0 0 0

totals - 122 462 381 36 74 4 24 92 2 0

Counts for each QCP in each System. QCP names are abbreviated. Numbered patterns are
replaced by their number. O stands for other query type. P stands for parse error. U stands for

models that match no patterns.

Table 4.2: QCP Counts by System.

the data in the existing database schema. Figures for parse errors (P) and queries

that fall under no pattern (U) are also included in Table 4.2. From this data, QCP1

is the most frequent with 38.6% of models falling under this pattern. QCP2 is the

next most frequent with 31.8%. QCP0 is next with 10.2%. Other query types (O),

QCP3b, QCP3a, QCP4, and QCP3c follow next with 7.7%, 6.2%, 3.0%, 2.0%, and

34

0.33%, respectively. Finally, 0.16% of models have query strings that result in parse

errors (due to 2 cases of USE statements that are not handled by the parser), and 0%

of models fall under no pattern.

While these results indicate that dynamic parameters (QCP1) occur a similar

number of times as dynamic queries (QCP2), it should be noted that an overwhelm-

ing majority of QCP2 queries came from a single system, Timeclock. The reason

for this can be seen in the Timeclock example in Section 4.2.4 (and other Time-

clock examples in subsequent sections). Nearly every call in this system appends

$db_prefix, a globally-defined configuration variable, to every table name, causing

them to be classified as QCP2. We believe this to be an outlier, as QCP2 queries do

not have nearly as high occurrences in the rest of the corpus, and no other system

in the corpus uses this practice of appending a prefix to every table name. Standard

practice in PHP is to instead define such a prefix as a constant. If that had been done

here, this constant would be replaced as part of the string simplifications mentioned

in Chapter 3, making that part of the query static. If Timeclock is removed from the

corpus, the top 3 patterns shift to 55.2% of queries falling under QCP1, 14.4% falling

under QCP0, and 12.2% falling under QCP2. We believe these results are promising

for future program understanding and transformation efforts, since with Timeclock

removed, nearly 70% of queries are either literal, or dynamic in parameter values.

4.3 Query Fragment Categories

Recall that RQ3 asks the question “Which PHP language features do the data from

dynamic query parts come from?”. To answer this, we defined an analysis in Rascal

that categorizes model fragments into the following categories: literals, local variables,

properties of local variables, computed local names, global variables, global proper-

35

System L LV LP LC GV GP GC PN PP PC C

AddressBook 506 374 1 0 74 0 0 31 0 0 258

cpg 27 29 1 0 2 0 0 3 0 0 26

FAQ Forge 84 88 0 0 0 0 0 29 0 0 51

Fire-Soft-Board 2 4 0 0 0 0 0 2 0 0 1

geccBBlite 24 31 0 0 3 0 0 4 0 0 21

inoERP 0 2 0 0 0 0 0 2 0 0 0

LinPHA 10 21 0 0 3 0 0 1 0 0 6

mantisbt 0 1 0 0 0 0 0 1 0 0 0

MyPHPSchool 278 268 0 0 56 0 0 0 0 0 152

OMS 173 246 0 0 22 0 0 0 0 0 186

OpenClinic 35 15 0 0 0 0 0 3 0 0 17

orangehrm 22 14 2 0 0 0 0 5 0 0 18

PHPAgenda 56 45 0 0 0 0 0 23 0 0 42

PHPFusion 22 11 0 0 6 0 0 4 0 0 11

Schoolmate 484 316 0 0 120 0 0 39 0 0 362

SugarCE 3 4 0 0 0 0 0 2 0 0 2

Timeclock 1492 1297 0 0 152 0 0 1 0 0 615

UseBB 0 1 0 0 0 0 0 1 0 0 0

web2project 0 1 0 0 0 0 0 1 0 0 0

WebChess 240 201 0 0 87 0 0 1 0 0 72

total 3458 2969 4 0 525 0 0 153 0 0 1840

Counts of each Fragment Category in the corpus. The table headings for each fragment category
have the following abbreviations: L for literals, LV for local variables, LP for properties of local

variables, LC for computed local names, GV for global variables, GP for properties of global
variables, GC for computed global names, PN for parameters, PP for properties of parameters, PC

for computed property names and C for computed fragments that are not names

Table 4.3: Fragment Category Counts by System.

ties, computed global properties, parameter names, parameter properties, computed

parameter properties, and computed dynamic fragments that are not names. Com-

puted names refer to cases where the name that is associated with a model fragment

is given as an expression. An example of this is the use of a variable variable (such as

36

$$x) to refer to the value of a name. Table 4.3 gives an overview of the counts of each

fragment category in the corpus. In total, 38.6% of model fragments are literal query

text values (L), 33.2% of model fragments come from local variables (LV), 20.6% come

from computed values that are not names (C), 5.9% come from global names (GV),

1.7% come from function/method parameters (PN), and 0.04% come from properties

of local variables. None of the model fragments in the corpus fall under computed

global names (GC), computed local names (LC), properties of global variables (GP),

computed property names (PC) or properties of parameters (PP).

4.4 Model Yield Comparison

As discussed in Section 4.2, in QCP3 queries, there are multiple model yields that dif-

fer based on control flow. In this section, we further examine these cases to provide an

answer to RQ4. For this, we created an ADT in Rascal called YieldInfo which orga-

nizes the SQL ASTs of a model into a single structure. Figure 4.14 shows the Rascal

definition of type YieldInfo. A YieldInfo instance is either sameType, for QCP3a

and QCP3b queries, or differentTypes for QCP3c queries. For differentTypes,

a sameType instance is created for each type. For sameType, a ClauseInfo instance

is stored that contains information about the clauses of that type of query. The

Rascal definition of ClauseInfo can also be found in Figure 4.14, however, only

the constructor for select queries is shown. The ClauseInfo for select/insert/up-

date/delete queries contains a ClauseComp instance for each clause of its respective

query type. The Rascal definition for ClauseComp can also be found in Figure 4.14.

The ClauseComp type represents how a particular clause differs between yields of a

SQL model. The none constructor represents the case where a clause does not exist

in any yield of the model. The same constructor corresponds to the case where a

37

data YieldInfo = sameType(ClauseInfo clauseInfo)

| differentTypes(set[ClauseInfo] clauseInfos);

data ClauseInfo = selectClauses(ClauseComp select , ClauseComp

from , ClauseComp where , ClauseComp groupBy , ClauseComp

having , ClauseComp orderBy , ClauseComp limit , ClauseComp

joins)

data ClauseComp = different(set[&T] clauses)

| some(set[&T] clauses)

| same(&T clause)

| none();

Figure 4.14: YieldInfo Rascal Definition.

clause is static among all yields of the query. For cases where some yields contain a

particular clause and others do not, the some constructor is used. For cases where ev-

ery yield contains a particular clause, but the clause differs across yields, the different

constructor is used.

To build the YieldInfo for a SQL model, the root node of each SQL AST of

the model is first compared. If they are all the same, the sameType constructor is

used. Otherwise, the differentTypes constructor is used. For the case of the latter,

a sameType instance is built for each type. For a sameType model of a select/in-

sert/update/delete query, a ClauseComp is built for each clause of the query. The

process for building a ClauseComp is best best described using a state machine dia-

gram, which can be found in Figure 4.15. The clause comparison algorithm iterates

through the SQL ASTs for each yield of the model and examines the desired clause.

A state transition occurs each time a new AST is examined. Once all the SQL AST’s

for the model have been examined, the final state is the result of the clause compari-

son. The starting state for the clause comparison is the none state. If the algorithm

is currently processing the clause from the first AST, it transitions to the same state.

Otherwise, it checks if the current AST contains the desired clause. If it does, the

38

none same

some different

empty(newClause)

isF irstAST

¬isF irstAST
empty(newClause)

newClause = prevClause

newClause 6= prevClause

empty(newClause)

¬empty(newClause)T

Figure 4.15: ClauseComp Construction: State Machine Diagram.

ClauseComp transitions to the some state, since this means the previous AST did

not contain the desired clause, but the current one does. Otherwise, the ClauseComp

remains in the none state. From the same state, if the current AST does not contain

the desired clause, the ClauseComp transitions to the some state, since the previous

AST contained the desired clause but the current one does not. If the current AST

does contain the desired clause, it is checked against the value of the clause in the pre-

vious AST. If they are the same, the ClauseComp remains in the same state. If they

are different, the ClauseComp transitions to the different state. From the different

39

SELECT COUNT (*) FROM schoolattendance WHERE studentid = ?0

AND type = ’tardy’ AND ?1 <= sattenddate AND sattenddate

<= ?2

SELECT COUNT (*) FROM schoolattendance WHERE studentid = ’’

AND type = ’tardy’ AND ?0 <= sattenddate AND sattenddate

<= ?1

Figure 4.16: YieldInfo example: SQL Strings.

YieldInfo: sameType(selectClauses(

same([call("count")]),

same([name(table("schoolattendance"))]),

different ({

where(and(

condition(simpleComparison("sattenddate","\<=","

?2")),

and(

condition(simpleComparison("?1","\<=","

sattenddate")),

and(

condition(simpleComparison("studentid","=","

?0")),

condition(simpleComparison("type","=","tardy"

)))))),

where(and(

condition(simpleComparison("sattenddate","\<=","

?1")),

and(

condition(simpleComparison("?0","\<=","

sattenddate")),

and(

condition(simpleComparison("studentid","=",""

)),

condition(simpleComparison("type","=","tardy"

))))))

}),

none(),

none(),

none(),

none(),

none()))

Figure 4.17: YieldInfo example: YieldInfo.

40

state, if the current AST contains the desired clause, the ClauseComp remains in the

different state. Otherwise, it transitions to the some state. The some state is a “trap”

state that always transitions to itself, regardless of the ASTs that are processed after.

Figure 4.17 shows an example YieldInfo for a SELECT query with 2 ASTs. The SQL

strings for this example can be found in Figure 4.16. Notice that with this structure,

it is easy to see that the table being selected from and columns being selected are the

same across both ASTs, since these are wrapped by same nodes. The WHERE clause is

different between the two ASTs for this example, since it is represented by a different

node with the two possible WHERE clauses. No other clauses occur in these ASTs since

they are represented by none nodes.

Table 4.4 shows empirical data extracted from the YieldInfo for all QCP3b query

models in the corpus. This comparison information only applies to QCP3b because in

QCP3a, every node is a same or none node, since all yields lead to a single SQL AST.

In QCP3c, there are multiple YieldInfo instances for each query type, and since this

pattern does not come up frequently in practice, we did not implement a way to

compare clauses across query types. The YieldInfo for all other query construction

patterns is used to extract query type counts and clause counts in Section 4.5.

In QCP3b SELECT queries, the difference between ASTs happens most commonly

in the WHERE clause where 19/35 cases have a different node on the WHERE clause.

One single case has a some node in the WHERE clause. This is followed by 12/35 cases

having a difference in the ORDER BY clause. 2/35 QCP3b SELECT queries differ in the

FROM clause, 1/35 differs in the columns being selected, and 1 differs in the LIMIT

clause. All other clauses either do not differ in any of the cases, or do not occur.

For QCP3b INSERT queries, 18/22 cases differ in the VALUES clause, followed by 4/22

differing in the SELECT subquery statement, and 2/22 differing in the INTO clause.

All other clauses do not occur in QCP3b INSERT query models. In UPDATE QCP3b

41

Query Type Clauses Same Different Some None

select

select

from

where

groupBy

having

orderBy

limit

joins

34

33

15

0

0

8

0

1

1

2

19

0

0

12

1

0

0

0

1

0

0

0

0

0

0

0

0

35

35

15

34

34

insert

into

values

setOps

select

onDuplicateSetOps

20

0

0

0

0

2

18

0

4

0

0

0

0

0

0

0

4

22

18

22

update

tables

setOps

where

orderBy

limit

10

2

2

0

1

2

10

10

0

0

0

0

0

0

0

0

0

0

12

11

delete

from

using

where

orderBy

limit

4

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

4

0

4

4

Table 4.4: Clause Comparison Counts for Pattern QCP3b.

queries, 10/12 differ in the SET operations and 10/12 differ in the WHERE clause. 2/12

cases differ in the tables being updated. All other clauses either do not differ in any

cases or do not occur. For DELETE QCP3b query models, 4/4 differ in the WHERE

clause. All other clauses either do not differ in any cases or do not occur.

While this information gives an early indication of the clauses where queries com-

42

System SELECT INSERT UPDATE DELETE PARTIAL OTHER

AddressBook 48 10 15 7 19 7

cpg 4 2 4 0 6 5

FAQ Forge 22 3 5 3 0 0

Fire-Soft-
Board

0 0 0 0 2 1

geccBBlite 7 2 0 0 0 1

inoERP 0 0 0 0 2 0

LinPHA 3 0 0 0 2 8

mantisbt 0 0 0 0 1 0

MyPHPSchool 49 17 5 14 0 0

OMS 67 7 9 3 0 1

OpenClinic 0 0 3 0 1 7

orangehrm 3 16 2 8 1 11

PHPAgenda 8 1 3 4 3 2

PHPFusion 3 2 0 2 2 0

Schoolmate 215 16 30 33 0 0

SugarCE 0 0 0 0 2 2

Timeclock 268 18 22 7 0 52

UseBB 0 0 0 0 1 0

web2project 0 0 0 0 1 0

WebChess 55 11 15 12 0 0

totals 752 105 113 93 43 97

Table 4.5: Query Type Counts by System.

monly differ based on control flow, additional data is needed, since the number of

QCP3b queries in the corpus is relatively low (only 73 cases). This is discussed more

as part of our future work in Section 6.1.

43

Query Type Clauses Counts

select

select

from

where

groupBy

having

orderBy

limit

joins

total queries

752

752

611

1

0

221

11

12

752

insert

into

values

setOps

select

onDuplicateSetOps

total queries

105

95

5

5

0

105

update

tables

setOps

where

orderBy

limit

total queries

113

112

108

0

15

113

delete

from

using

where

orderBy

limit

total queries

93

0

88

0

13

93

Table 4.6: Clause Counts for each Query Type.

44

4.5 SQL Clause Usage

To answer RQ5, which asks “Which SQL clauses are most often used in practice?

Which are hardly used?”, we defined functions that extract empirical information

about the counts of each query clause and the counts of each query type. This

information is extracted from the YieldInfo discussed in Section 4.4. Unlike in

Section 4.4, where only QCP3b models were examined, the YieldInfo for all models

is examined. This is first done by extracting the same, some, different, and none

counts for each clause in each query type, and putting them in a map of type map

[str, map[str, tuple[int, int, int, int]]. This map maps each query type to

a map of clauses as keys and a tuple of same, some, different, and none counts as

values. The counts for a particular query type are determined by picking a random

clause in the value mapped to the key for that query type, and adding up the same,

some, different, and none counts for that clause. To get the counts of each clause,

this map is converted to a map of type map[str, map[str, int]] where each query

type is mapped to a map of clauses and their counts. This conversion is achieved by

adding up the same, some, and different counts for each clause in the original map

(i.e., only counting cases where a clause occurs in at least one yield of the model).

To answer RQ5, we first explored a related question: “Which query types are

used most frequently in practice?” Table 4.5 shows the counts of each query type,

grouped by system. From this data, it can be seen that SELECT statements make

up 62.5% of queries in the corpus. This is followed by UPDATE statements at 9.4%,

INSERT statements at 8.7%, other statement types at 8.1%, DELETE statements at

7.7%, and partial statements at 3.6%. Since this data also extracts type counts from

QCP3C queries, the data for other statement types is slightly different than the data

shown in Section 4.2.8. Just like in our pattern classifications, Timeclock seems to be

45

an outlier, with most “other” statement types coming from this system. These come

from a high amount of ALTER statements, which are part of a database upgrade script

that is not part of the regular code that will execute, and REPLACE statements, which

are MySQL-specific extensions to INSERT statements. These statements do not occur

as frequently in any of the other systems. With this system removed, the percent of

“other” statements falls to 5.4%.

Table 4.6 shows the counts of each clause in each query type. For SELECT state-

ments, the FROM clause and tables to be selected occur in 100% of queries. 81.2% of

SELECT queries contain WHERE clauses, which is expected as most of the time, records

need to be filtered based on some conditions. This is followed by ORDER BY with

29.4%. Next, 1.6% of SELECT statements contain joins, and 1.5% contain a LIMIT

clause. Finally, 0.13% of SELECT statements use the GROUP BY clause and HAVING

does not occur in the corpus.

For INSERT statements, 100% of queries include the INTO clause. This is fol-

lowed closely by the VALUES clause which occurs in 90.5% of INSERT statements.

Next, SET operations occur in 4.8% of INSERT queries. This indicates that the

INSERT INTO table...VALUES... statement variant is used much more frequently

than the INSERT INTO table SET... variant. 4.8% of INSERT statements include a

SELECT subquery that selects columns from another table to provide the data to be

inserted into. Finally, ON DUPLICATE SET operations do not occur in the corpus.

100% of UPDATE statements include tables to be updated. 99% contain SET oper-

ations. 95.6% contain a WHERE clause, which is expected since, in most cases, specific

records need to be updated rather than an entire table. 13.2% of UPDATE statements

include a LIMIT clause, and ORDER BY does not occur in UPDATE statements in the

corpus.

For DELETE statements, 100% contain tables to be deleted from. 94.6% contain

46

WHERE clauses, which is expected since, in most cases, deleting all records from a

table is not desired. Next, 13.9% of DELETE queries contain a LIMIT clause. Finally,

ORDER BY and USING are not included in any DELETE statements in the corpus.

47

Chapter 5

Related Work

This research builds off of and includes some of our previously published work. This

includes our work in [8], where we developed an initial set of query construction pat-

terns and identified those patterns using a less precise analysis on a smaller corpus

of systems. We also extracted some initial empirical results that indicated that dy-

namic portions of queries are most often used as parameters, and that cases where

the query text is dynamic completely come up much less frequently. The work in

[8] was inspired by the earlier work of Ioana Rucareanu [6] on identifying MySQL

query patterns. Our recent work has focused on expanding these patterns, creating a

more flexible and precise analysis, and examining the use of these patterns in a larger

collection of PHP systems. In [9], we described our SQL modeling and analysis tool,

included an overview of the process of extracting SQL models from PHP code, and

described the process of parsing partial SQL queries with dynamic holes.

The research by Nagy et al. [10] presents an analysis that is similar to our own.

In this work, an analysis is described that provides a set of program locations where a

specified query can be executed. This work also contains support for dynamic query

fragments that are replaced with “joker” nodes that indicate that this fragment of the

query cannot be parsed. Similarly to our own approach, the authors use a modified

MySQL parser to handle queries with dynamic inputs. The motivation behind this

work is different from our own. Our analysis focuses on supporting empirical research,

program transformation tools, and program understanding tools. The analysis in

Nagy et al. is designed to allow developers to determine where the program concepts

that correspond to a particular query can be found in the code.

The work by Meurice et al. [11] is also closely related to our analysis. In this

paper, the authors describe a static analysis for recovering SQL query strings from

Java systems that use the JDBC, Hibernate (a popular ORM), and JPA (a Java

standard for object persistence) libraries. The authors’ approach involves first finding

database access points by searching for JDBC/Hibernate/JPA method calls. Next,

each call is sent to an analysis tailored for the specific library. For JDBC a local String

expression recovery is performed and, if needed, a call graph analysis is performed

to handle inter-procedural cases. The process for Hibernate and JPL goes beyond

simple string recovery, since these libraries include support for operating on mapped

entity classes rather than executing SQL queries directly. Once the analysis for each

particular library recovers complete SQL strings, the authors use a SQL parser along

with the database schema to determine which schema elements are executed at a

particular location. Our approach does not relate calls to schema elements, but this

is something we could add in the future. Their approach also does not account

for unresolved dynamic query fragments, which leads to some cases where executed

queries that use these features are missed by the analysis.

Other work has been done involving the use of static and dynamic analysis to

extract information about database queries in software systems. “Query smells” in

Java programs were examined by Nagy and Cleve [12]. In this paper, they present

a static code smell detector that analyzes the Java code along with the database

schema and data in the database to detect potential faults or inefficient usage of

the database. The authors were able to implement detectors for SQL antipatterns

49

that had been described in the book SQL Antipatterns [13] as common mistakes

made during database programming. Cleve and Hainaut used aspect-based tracing to

extract information about program behavior and database structure [14]. In this work,

the authors generate traces to capture query executions and the results returned by

query executions and use this information to facilitate software and database reverse

engineering.

Noughi et al. [15] used tracing to extract information on query executions in order

to determine which queries are executed during a given program execution scenario.

The authors further analyze this information to both determine the dependencies

between successive queries and which schema elements are accessed during a specific

program execution scenario. The authors also describe the implementation of this ap-

proach into DAViS [16], a plugin of the database design and evolution tool DB-MAIN,

and a proof-of-concept application of the tool to a e-learning application. Alafi et al.

also used tracing through a tool called WAFA [17], which uses the TXL programming

language [18]. In this approach, PHP web applications are instrumented to extract in-

formation about SQL statements, page access, server environment variables, cookies,

and session management functions.

Ngo and Tan [19] present a static analysis for extracting database interactions from

PHP web applications. Their approach involved first creating a reduced Control Flow

Graph (called an Interaction Flow Graph, or IFG) of the PHP system by removing

all nodes that do not affect the execution of database interactions in the system.

All paths through the IFG that contain database query execution nodes are then

symbolically executed to extract all possible database interactions in the program.

The work of Gould et al. [20] involved a string analysis that produces a finite state

automaton that provides a conservative estimate for all the possible queries that could

be input to a location in Java code that invokes database queries, called a hotspot.

50

This automaton is then transformed using a context-free reachability algorithm to

remove type errors using the database schema.

Additional approaches have explored detecting errors in queries, assessing the

quality of code that invokes and constructs queries, and finding security vulnerabilities

in systems with embedded database queries. van den Brink et al. examined the

quality of embedded SQL in host code [21]. In the authors’ approach, strings that

begin with SQL statement keywords such as SELECT, INSERT, DROP, etc. are collected.

Next, each string is used in a backward flow analysis to identify the variables in which

the query string is assigned. Then, a forward flow is used to reconstruct all pieces

of the query. These extracted queries, and their relationships to the host program,

are then used to assess the quality of the use of embedded SQL statements. In

[22], Wassermann et al. explore dynamically constructed database queries in Java

applications. In this work, the authors created a static analysis to check for type

errors in SQL strings that could lead to SQL runtime exceptions.

51

Chapter 6

Future Work and Conclusion

6.1 Future Work

As discussed in Section 3.4, cases where parts of query text occur in query holes are

currently represented by partialStatement instances. This approach was intended

to be a placeholder, and exploring options for extracting more information from these

cases is part of our future work. One approach we have thought of is using parser

error recovery techniques to handle these cases, while modifying the abstract syntax

definition in Rascal to have a better representation of these statements with query

text holes.

Another area for future work is to expand our corpus to additional systems. This

will allow us to further validate the patterns and empirical data that we have reported

here, and possibly identify new patterns and trends in the construction of database

queries in PHP systems. As discussed in Section 4.4, expanding the corpus will also

allow us to get a larger number of query models that differ based on control flow

(QCP3b), which will let us get more accurate data about the clauses in which these

cases differ. We also recently adapted our analysis to work better with two additional

systems in the corpus that were left out due to performance problems (OcoMon and

SchoolERP), as discussed in Section 4.1, but did not have enough time to rerun the

analysis for these.

PHP Code
(MySQL)

SQL Models
(MySQL)

SQL Models
(PDO)

PHP Code
(PDO)

Figure 6.1: Proposed Transformation Approach.

Expanding the YieldInfo to be more descriptive is also a possible area for future

work. In our approach, we extracted information about query clauses, and assigned

them same, some, different, and none nodes. A similar approach could also be ap-

plied to conditions within WHERE clauses to extract information about what kinds of

conditions developers include in their database queries. Other information such as

which SQL functions are used could also be explored.

Another possible area for future work is expanding the modeling tool to work

with other database libraries (MySQLi, PDO, etc). This could lead to more accurate

results on how embedded queries are constructed in PHP systems, since the analysis

would no longer be restricted to systems that use the original MySQL library. Pat-

terns between libraries could also be compared to see if the specific library being used

has any affect on how developers construct embedded database queries.

Finally, the empirical data from this work was conducted to provide a foundation

for future work on building program understanding and transformation tools to ren-

ovate PHP code to use more modern database libraries. Being able to model other

53

libraries (as discussed in the previous paragraph) is an important first step to this.

Figure 6.1 gives an overview of our proposed future approach for transforming sys-

tems that use the original MySQL library to use the PDO library. In this approach,

we propose first expanding our modeling tool to model embedded queries executed

using the PDO library. Next, semantics-preserving transformations between MySQL

SQL models and PDO SQL models will be defined. Finally, a model-to-text trans-

formation will be used to transform PDO SQL Models to PHP code using the PDO

library.

6.2 Conclusion

In this research, we presented our tool for modeling embedded queries in PHP systems.

After extracting models from open source systems, we were able to identify Query

Construction Patterns that developers commonly use to create database queries. Data

for PHP language features used in dynamic query parts, counts of the use of each

SQL statement and clause in practice, and initial figures on how SQL statements

differ based on control flow were also extracted. We believe this information lays a

solid foundation for future empirical studies, as well as for the construction of tools

for understanding and renovating PHP systems with embedded database queries.

54

BIBLIOGRAPHY

[1] M. Hills, P. Klint, and J. J. Vinju, “An Empirical Study of PHP Feature Usage:
A Static Analysis Perspective,” in Proceedings of ISSTA 2013. ACM, 2013, pp.
325–335.

[2] M. Hills, “Evolution of Dynamic Feature Usage in PHP,” in Proceedings of
SANER 2015. IEEE, 2015, pp. 525–529.

[3] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in Proceedings of SCAM
2009. IEEE, 2009, pp. 168–177.

[4] M. Hills and P. Klint, “PHP AiR: Analyzing PHP Systems with Rascal,” in
Proceedings of CSMR-WCRE 2014. IEEE, 2014, pp. 454–457.

[5] M. Hills, P. Klint, and J. J. Vinu, “Enabling PHP Software Engineering Research
in Rascal,” Science of Computer Programming, vol. 134, pp. 37–46, 2017.

[6] I. Rucareanu, “PHP: Securing Against SQL Injection,” Master’s thesis, Univer-
sity of Amsterdam, 2013.

[7] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic Creation of
SQL Injection and Cross-Site Scripting Attacks,” in Proceedings of ICSE 2009.
IEEE, 2009, pp. 199–209.

[8] D. Anderson and M. Hills, “Query Construction Patterns in PHP,” in Proceedings
of SANER 2017. IEEE, 2017, pp. 452–456.

[9] ——, “Supporting Analysis of SQL Queries in PHP Air,” in Proceedings of SCAM
2017. IEEE, 2017, pp. 153–158.

[10] C. Nagy, L. Meurice, and A. Cleve, “Where Was This SQL Query Executed?
A Static Concept Location Approach,” in Proceedings of SANER 2015. IEEE,
2015, pp. 580–584.

[11] L. Meurice, C. Nagy, and A. Cleve, “Static Analysis of Dynamic Database Usage
in Java Systems,” in Proceedings of CAiSE 2016, ser. LNCS, vol. 9694. Springer,
2016, pp. 491–506.

[12] C. Nagy and A. Cleve, “A Static Code Smell Detector for SQL Queries Embedded
in Java Code,” in Proceedings of SCAM 2017, 2017, pp. 147–152.

[13] B. Karwin, “SQL antipatterns; avoiding the pitfalls of database programming,”
Scitech Book News, 2010.

[14] A. Cleve and J. Hainaut, “Dynamic Analysis of SQL Statements for Data-
Intensive Applications Reverse Engineering,” in Proceedings of WCRE 2008.
IEEE, 2008, pp. 192–196.

[15] N. Noughi, M. Mori, L. Meurice, and A. Cleve, “Understanding the Database
Manipulation Behavior of Programs,” in Proceedings of ICPC 2014. ACM, 2014,
pp. 64–67.

[16] L. Meurice, “Visualizing SQL execution traces for program comprehension,”
Master’s thesis, University of Namur, 2013.

[17] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “WAFA: Fine-grained Dynamic
Analysis of Web Applications,” in Proceedings of WSE 2009. IEEE, 2009, pp.
141–150.

[18] J. R. Cordy, “The TXL Source Transformation Language,” Science of Computer
Programming, vol. 61, no. 3, pp. 190–210, 2006.

[19] M. N. Ngo and H. B. K. Tan, “Applying static analysis for automated extraction
of database interactions in web applications,” Information & Software Technol-
ogy, vol. 50, no. 3, pp. 160–175, 2008.

[20] C. Gould, Z. Su, and P. T. Devanbu, “Static Checking of Dynamically Generated
Queries in Database Applications,” in Proceedings of ICSE 2004. IEEE, 2004,
pp. 645–654.

[21] H. van den Brink, R. van der Leek, and J. Visser, “Quality Assessment for
Embedded SQL,” in Proceedings of SCAM 2007. IEEE, 2007, pp. 163–170.

[22] G. Wassermann, C. Gould, Z. Su, and P. T. Devanbu, “Static Checking of Dy-
namically Generated Queries in Database Applications,” ACM TOSEM, vol. 16,
no. 4, 2007.

56

