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 Signal communication is pervasive in nature and is used to convey information to both 

conspecifics and heterospecifics. Aposematic species use warning signals (e.g. bright coloration) 

to alert predators to the presence of a secondary defense (e.g., spines, toxins, etc). The presence 

of a conspicuous signal in combination with a secondary defense is thought to increase the 

efficiency of learned avoidance by predators and may prevent attacks altogether. Aposematism is 

widespread both geographically and taxonomically, and aposematic species are seen across the 

tree of life (including nudibranchs, invertebrates, and vertebrates). There are three main 

requirements for aposematism to function effectively. First, aposematic species must be able to 

produce a pattern that contrasts the environmental background (typically via chromatophores and 

pigments). Second, predators must be able to receive and learn to avoid preying upon aposematic 

individuals based on the signal. And finally, aposematism must confer a fitness benefit to the 

population of an aposematic species. 

 In this dissertation I examine both the information that aposematic species convey and 

how the aposematic signal itself is produced. First, I examine whether the aposematic signal 

conveys detailed information to visual predators regarding an individual’s specific level of 

toxicity—a key, but contentious, hypothesis of aposematic theory. Second, I test whether the 

aposematic signal is multimodal in vertebrates by determining whether they present non-visual 



predators with an olfactory cue/signal that contains sufficient information to indicate the 

possession of toxins and thus decrease the likelihood of attack. Additionally, I use gene 

expression data across multiple color morphs of an aposematic frog species to look at candidate 

color genes and how they influence coloration. Finally, I examine gene expression during 

developmental time periods that correlate with color deposition to examine how candidate color 

genes influence color production over developmental time and across multiple color morphs.  
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I.  INTRODUCTION 

 Aposematism is an antipredator strategy in which an organism combines a conspicuous 

appearance and a secondary defense (e.g., venom, toxicity, spines, etc.), advertising to predators 

that they are dangerous (Poulton 1890). Studying aposematic species has been a fruitful avenue 

of inquiry for over a century, in fact long before Poulton first coined the term. One of the 

appealing characteristics of studying aposematism is that the visible phenotype is obviously tied 

to the likelihood of survival and persistence, since predators generally exert positive frequency 

dependent selection on aposematic forms (Müller 1879; Ruxton et al. 2004; Sherratt 2008). 

Aposematism is a widespread antipredator strategy, both geographically and taxonomically 

(Ruxton et al.  2004; Briolat et al. in press). Although aposematic organisms are frequently 

studied, there are many critical gaps in our understanding of aposemes and their primary 

antipredator strategy. Prominent amongst these is what information, specifically, they are 

conveying to predators and how the signal is produced. In this dissertation, I will focus on these 

two aspects of aposematism as an antipredator defense.  

 

What does a signal tell predators? 

 Aposematic species are primarily defined by their conspicuous phenotype, a phenotype 

which often involves bright colors that stand out from the background environment or pattern 

elements that increase internal contrast (e.g., light stripes juxtaposed with dark stripes; Ruxton et 

al. 2004). Given the nature of the aposematic signal, it is generally assumed that visual predators 

are the primary selective agents acting on aposematic species. Indeed, there is a plethora of 

studies examining how visual predators, particularly birds, play a role in the evolution and 

maintenance of aposematic phenotypes (Smith 1975; Saporito et al. 2007; Chouteau and Angers 
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2011). The most common method of inferring selective pressure via predation is the use of clay 

models, where researchers distribute clay models in the field with approximately the shape and 

color of actual species and examine the rate at which these models are attacked (e.g., Noonan 

and Comeault 2009; Chouteau and Angers 2011; Hegna et al. 2012; Bateman et al. 2017). These 

studies focus primarily on predation from avian predators, and as a general rule, aposematic 

phenotypes are attacked less frequently than ‘cryptic’ phenotypes (Hensel and Brodie 1976; 

Hegna et al. 2011; Paluh et al. 2014). Furthermore, predators are more likely to attack models 

that are painted to resemble a ‘novel’ aposematic phenotype which predators have no experience 

with, thus indicating that visual predators are imposing positive frequency dependent selection 

on the aposematic signal itself (Noonan and Comeault 2009; Chouteau and Angers 2011).  

 Although these studies demonstrate that aposematic species signal to predators that they 

are defended, they do not indicate how informative these signals are. Are these signals indicative 

of how defended an individual prey item is, or are predators able to use this information to make 

informed decisions regarding when to attempt predation? This is a key distinction. Are 

aposematic species qualitatively honest and the signal simply an indication of the presence of an 

effective defense? Or does the signal provide a quantitatively honest indication of an individual’s 

level of defense? Importantly, whether we should predict quantitative honest signaling remains 

unclear (reviewed in Summers et al.,  2015). Some theoretical analyses suggest a tradeoff 

between defense and conspicuousness, wherein prey that are more toxic should invest less in the 

aposematic signal because they achieve higher fitness through investing in defense (e.g., Leimar 

et al. 1986; Speed and Ruxton 2005). On the other hand, under alternative assumptions 

quantitative honesty is expected, particularly if there is competition for resources used in 

producing both the signal and defense within an organism (the resource allocation framework, 
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Blount et al. 2009) or if there is a tradeoff with future fecundity (Holen and Svennungsen 2012). 

Few empirical tests have been conducted in vertebrates (particularly within populations), but 

there has been substantial work on invertebrates. In chapter two of this dissertation, I test the 

hypothesis of quantitative honesty in a vertebrate population. Specifically, I test whether the 

level of the aposematic signal (as perceived by avian predators) is correlated with an individual’s 

level of defense.  

 However, while birds have received the most attention as predators of aposematic species 

they are not the only potential predators that aposematic species will encounter. While birds 

(particularly jacamars) are thought to be the primary predators of the Neotropical Heliconius 

butterflies (Mallet and Barton 1989; Langham 2004), the primary predators of other aposematic 

species are unclear. Evidence indicates that the primary predator of the Asian newt Cynops 

pyrroghaster varies throughout the species’ range; mammals are the main predators on the 

mainland whereas birds are the primary predators in island populations (Mochida 2011). The 

primary predators of the Neotropical poison frogs remain unclear. Although clay model studies 

(Noonan and Comeault 2009; Chouteau and Angers 2011; Hegna et al. 2011; Paluh et al. 2014) 

indicate that birds are a primary selective force, and often a source of purifying selection towards 

a single local aposematic phenotype, there is only direct observational evidence for attacks by 

one specific avian predator (Master 1999; Alvarado et al. 2013), whereas multiple other predator 

guilds have been observed preying on dendrobatids (e.g., Myers et al. 1978; Summers 1999; 

Lenger et al. 2014). One clay model study placed camera traps on a small subset of their clay 

models and found that most predation events were not by birds but rather by a suite of other 

predators (Willink et al. 2014). Further, they found that predation events by different predator 

guilds often impose a different selective regime on these clay models than birds. 
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 This suite of evidence indicates that, perhaps, we need to consider the influence that other 

predator guilds have on aposematic species. Although birds are well-equipped to see 

conspicuous colors and glean information from that, it is unclear how many other predators 

respond to aposematic species. Of particular interest are the additional antipredator strategies that 

aposematic species may have evolved to deal with non-visual predators. For example, recent 

evidence in aposematic insects indicates that there is an olfactory component to aposematism 

that contributes to learned predator avoidance (Rowe and Halpin 2013). A fundamental question 

is whether this olfactory component of aposematism is a widely-evolved trait of aposematic 

species, or whether it is more ‘restricted’ to invertebrates. In chapter three of this dissertation I 

use non-visual predators to examine whether aposematic species provide sufficient information 

to potential non-visual predators to make informed decisions regarding predation. I also attempt 

to elucidate whether this is a mere byproduct of aposematism itself, or whether this is a 

specifically evolved signal. 

 

Signal production 

 According to classical theory aposematic species should face purifying selection towards 

a single phenotype. This, however, is not true within species or even populations. In fact, 

variability of the warning signal very much seems to be the norm (reviewed in Briolat et al. in 

press). How is all of this variability produced? 

 Given that the underlying cellular mechanisms that produce aposematic signals are 

important, I focused on two highly variable groups of poison frogs to investigate the mechanisms 

by which they produce color at the cellular level. First, I examined differences in gene 

expression near the completion of metamorphosis in four color morphs of the poison frog 
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Dendrobates auratus. This species exhibits a remarkable variety of colors and patterns across its 

range, and thus are a functional model for examining the genomic influence of coloration within 

a species. 

Second, I examined gene expression across color morphs and throughout development in 

a different species, Ranitomeya imitator. This species is particularly interesting for this type of 

analysis as it is a Mullerian mimicry system in which all species are toxic and defended by 

predators (Stuckert et al. 2014a,b). In this system, one species (Ranitomeya imitator) has evolved 

to mimic the appearance of three different congeners in four geographically distinct areas (R. 

fantastica, R. summersi, and two geographically separated morphs of R. variabilis; (Symula et al. 

2001, 2003).  

 The genetics of color and pattern in aposematic species is particularly interesting given 

just how variable color patterns are, and how little geographic distance often separates 

completely different color patterns (Ruxton et al. 2004, Briolat et al. in press). Determining the 

underlying genetic architecture of these changes has been a primary thrust of recent decades as 

well. Researchers have been able to identify some key elements in Heliconius butterfly mimicry 

systems (e.g., WntA (Martin et al. 2012) and optix (Reed et al. 2011; Supple et al. 2013)), though 

there are many others likely involved as well (reviewed in Kronforst and Papa 2015). 

Interestingly, it seems that only a handful of loci control the different phenotypes produced in 

certain mimetic complexes and that supergenes may be critically important in the diversity of 

mimetic phenotypes we see in nature in Mullerian mimicry in Heliconius and Batesian mimicry 

in Papilio butterflies (Kunte et al. 2014; Kronforst and Papa 2015; Nishikawa et al. 2015). 

However, this is one system and its general applicability remains unclear. Preliminary evidence 

suggests that this may be a common pattern, as color and pattern in the analogous mimicry 
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system also appear to be controlled by a few genes, at least in one admixture zone (Vestergaard 

et al. 2015).  

 I aim to identify genes important in color and pattern production in four separate morphs 

of the above-mentioned mimetic poison frog Ranitomeya imitator. Furthermore, I aim to 

determine when color and pattern-specific genes are expressed during development. I examine 

gene expression using RNA sequencing from four different mimetic color populations of R. 

imitator, each from four different time points during early development. First, I consider overall 

gene expression patterns during development and across populations. Then I examine expression 

and timing of candidate color genes compiled from other taxa. These results will provide 

valuable insight into the genes that are controlling color and pattern elements both across 

populations and through development. 

 

Conclusion 

 In this dissertation, I will examine critical elements of the production of the aposematic 

signal, as well as the information that the aposematic signal contains for potential predators. 

These investigations will provide key insights into the basic functioning of aposematism. 
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II. AN EMPIRICAL TEST INDICATES ONLY QUALITATIVELY HONEST APOSEMATIC 

SIGNALING WITHIN A POPULATION OF VERTEBRATES 

Adam M M Stuckert*1, Ralph A Saporito2, and Kyle Summers1 

1Department of Biology, East Carolina University, Greenville, NC 27858, USA 

2Department of Biology, John Carroll University, University Heights, Ohio 44118, USA 

 

Abstract: 

Signaling is an important part of intraspecific and interspecific interactions. Theoretical work 

examining honest signaling in aposematic species (e.g., those with conspicuous colors and 

secondary defenses) has focused primarily on discerning the patterns between conspicuousness 

and defense within populations. Most empirical work, however, has investigated these patterns 

across populations or species. Here, we test for honest signaling across individuals within a 

population of the aposematic poison frog, Ranitomeya imitator. We find no evidence that 

increasing levels of the aposematic signal are correlated with increasing levels of defense in this 

species, indicating that our study population does not signal in a quantitatively honest manner 

but rather that the signal is qualitatively honest. Additionally, we found no evidence that frogs 

with higher levels of defense behave more boldly as a result of the presumed increased 

ecological release from predation, an expected outcome in a qualitatively honest system. We 

discuss our findings in light of the ecology and evolution of R. imitator, and suggest mechanisms 

that may explain the absence of a relationship between toxicity and the aposematic signal.  
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Introductions: 

Communication via signals is common in the animal kingdom, and signals are used to 

convey information to both conspecifics and heterospecifics. In some cases, interests align 

between the signaler and receiver, which can result in mutually beneficial communication 

(Weldon and Burghardt, 2015). While signals are generally considered reliable, individuals may 

profit by ‘cheating’ in order to gain a fitness reward (e.g., access to mates, food, etc.). Hence, a 

central question in animal behavior is whether the signals individuals produce are honest 

indicators of the information being conveyed to receivers (e.g., Zahavi 1975, 1977; Dawkins and 

Guilford, 1991). 

 Honest signaling has often been investigated in the context of sexual selection (e.g., 

Velando et al., 2006; Vanpé et al., 2007; Emlen et al., 2012; Giery and Layman, 2015), but less 

frequently in the context of natural selection. Certain species signal directly to predators via traits 

that increase their probability of being detected. These aposematic species combine conspicuous 

signals with the presence of a secondary defense (e.g., venoms, poisons, spines, etc.), which are 

generally thought to be honest (barring cheaters, such as Batesian mimics) in the sense that they 

advertise the presence of a defense (qualitative honesty: reviewed in Summers et al., 2015). 

Perhaps more intriguing is whether a species is characterized by quantitative honesty: more 

specifically, is there a correlation between signal level and strength of defense (for example, 

increasing brightness or color saturation with increasing toxicity) that has evolved to accurately 

communicate level of defense to predators? This question has been the increasing focus of both 

theoretical and empirical works over the last couple of decades (reviewed in Summers et al., 

2015). 
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Importantly, whether we should predict quantitatively honest signaling remains unclear. 

Some theoretical analyses have suggested a tradeoff between defense and conspicuousness, 

wherein prey that are more toxic should invest less in the aposematic signal because they achieve 

higher fitness through investing in defense (e.g., Leimar et al., 1986; Speed and Ruxton, 2005). 

On the other hand, under alternative assumptions quantitative honesty is expected, particularly if 

there is competition for resources used in producing both the signal and defense within an 

organism (the resource allocation framework, Blount et al. (2009)) or if there is a tradeoff with 

future fecundity (Holen and Svennungsen, 2012). Few empirical tests have been conducted 

(particularly within populations), except in invertebrates. These empirical tests have found a 

positive correlation between: brightness and poison gland size in Spanish papers wasps (Polistes 

dominula; Vidal-Cordero et al., 2012), elytra color and chemical defense in the Asian ladybird 

(Harmonia axyridis; Bezzerides et al., 2007), and color saturation and toxicity within ladybird 

species (Arenas et al., 2015). Those studies that have attempted to elucidate the mechanism 

underlying the production of quantitatively honest signaling provide support for the resource 

allocation hypothesis (Bezzerides et al., 2007; Blount et al., 2012). Although these studies 

provide evidence that quantitative honesty exists within populations of insects, this relationship 

may depend on what aspect of the signal is considered (e.g., Winters et al., 2014).  Additionally, 

whether quantitative honesty is generally applicable to other taxa is unclear. Studies 

investigating the relationship between signal level and toxicity across populations have found 

mixed results (e.g., Daly and Myers 1967; Wang 2011; Maan and Cummings 2012; Arenas et al. 

2015), while there seems to be a more consistent positive relationship between signal and 

toxicity across species (e.g., Summers and Clough 2001; Cortesi and Cheney 2010; Arenas et al. 

2015). The only test of quantitative honesty within a vertebrate population found no evidence of 
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quantitative honesty in aposematic newts (Mochida et al., 2013). Thus, the issue of within-

population relationships is particularly pertinent because many insects (e.g., lepidopterans) 

acquire their toxicity as larvae before metamorphosing into adults (Duffey 1980), whereas in 

many vertebrate aposemes, defense is acquired either during development and/or throughout 

later life (e.g., dendrobatid poison frogs: Daly et al., 1994; other poison frogs: Jeckel et al., 2015; 

newts: Hanifin and Brodie, 2002; snakes: McCue, 2006; mammals: Newman et al., 2005; 

Hunter, 2009). As a result, it is critical to test basic hypotheses in a variety of taxa that have 

different life histories to better determine if quantitative honesty is a general trend or if it only 

occurs because of specific life histories. 

Aposematism comes with a putative release from predation pressure, which may allow 

aposematic species to use novel habitats or gain unique foraging opportunities (Santos and 

Cannatella, 2011; Cummings and Crothers, 2013). Since defended individuals are not relying on 

stationary crypsis to avoid the attention of predators, aposematic individuals are free to move 

throughout the landscape and actively forage and attract mates. Under quantitative honesty, we 

would expect aposematic individuals to be bolder, and further we hypothesize that the most toxic 

(i.e., most chemically defended) individuals will be the boldest within a population. Given the 

relationship between toxicity and the aposematic signal, predators would then be expected to 

avoid the brightest individuals because they are also likely to be the most toxic. This potential 

predation release for brighter and/or more toxic individuals would likely have a positive impact 

on their foraging success, mate acquisition, or overall fitness. However, in systems with purely 

qualitative honesty we may not expect the same degree of ecological release from predation 

pressure for more toxic and/or brighter individuals if predators are merely concerned with the 

presence of toxins, and not the level of toxicity per se. Therefore, under the alternative 
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hypothesis of qualitative honesty we would not expect a positive relationship between toxicity 

and behavioral boldness. Thus, by testing for increased boldness we can investigate specific 

potential benefits conferred via aposematism within a population. 

 In this paper, we test the hypothesis of quantitative honesty and examine the relationship 

between conspicuousness and toxicity within an aposematic vertebrate, Ranitomeya imitator, a 

Peruvian poison frog (Dendrobatidae) that possesses alkaloid defenses (Stuckert et al. 2014a,b). 

We measure the conspicuousness of the visual signal using two different methods. First, we use 

receiver-independent measures of total spectral brightness and second, we use receiver-

dependent visual models of both chromatic and achromatic contrast. Both of these measurements 

are important, as receiver-independent honesty may indicate a resource allocation tradeoff, while 

predator visual models may indicate that predators enforce quantitative honesty. We then 

compare both measures of conspicuousness to total alkaloid content (a measure of toxicity) from 

10 individual males that held contiguous territories within a single population. Lastly, we test the 

hypothesis that brighter or more toxic individuals may benefit more from predation release and 

look at individual boldness by examining male calling behavior within our focal population of R. 

imitator to determine if highly toxic individuals are released from predation pressure. 

 

Methods 

Field work: 

Territories of 10 male Ranitomeya imitator were identified near Tarapoto, San Martin, 

Peru over a period of a two weeks (see Figure II.1). Although both males and females in this 

population have a yellow-green spotted aposematic phenotype, males are more engaged in 

territorial behavior, and thus are likely the most visible to predators and researchers (Brown et 
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al., 2008a), a trait common amongst dendrobatids (Pröhl, 2005). Many male behaviors, such as 

territory maintenance via calling, also reveal a male’s location to potential predators. 

 

Fig. II.1. Map indicating the location of our study site. This study was conducted near Tarapoto, 

in the Department of San Martin, in Peru. Tarapoto is indicated with a triangle.  

 

We repeatedly and opportunistically recorded male calling activity in the morning (0630-

1100) when males were calling over a period of two months. The total number of calls over a 

two-minute period was recorded after the initiation of a calling bout (mean number of calling 

bout observations per frog: 16.3 ± 9.7 SD), after which we located the perch the male was calling 

from (mean number of perch observations per frog: 6.3 ± 3.5 SD). After frogs moved, we placed 

an imitator-sized frog clay model where the frog was located and took measurements of visibility 

(as a percentage of the male visible) from a distance of 1m in the four cardinal directions and 

from directly above. We used a compass to indicate the cardinal directions, and measured 1m 
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distances using a tape measure. Visibility of the clay model was determined from the height of 

the frog’s perch. These were then averaged to give us a measurement of perch visibility, which 

we used as a proxy for visibility to predators. This is similar to work done by Willink et al. 

(2013), and functionally tests the hypothesis that better defended males use more open territories 

and sites to advertise. An early pilot study indicated that observing male activity directly was not 

feasible. Due to the structure of the forest, observing males from >5m is impossible due to 

physical barriers blocking views of the male. Further, observations from distances <5m yielded 

noticeable behavioral differences (such as a hunkering down), presumably caused by the 

proximity of the observer.  

 

Spectral measurements: 

Spectral reflectance was measured using an Ocean Optics (Largo, Florida, United States 

of America) USB4000 spectrometer with an LS-1 tungsten–halogen light source and Ocean 

Optics SpectraSuite software. A 45° angled tip was used on the probe, standardizing distance and 

angle to frog skin. Ocean Optics WS-1-SL white standards were used between every frog 

measured to account for lamp drift. Spectral data were recorded from each frog on a total of 8 

spots on the dorsum and were processed from 450-700nm in R version 3.2 (R Core Team, 2015) 

in the package “pavo” (Maia et al., 2013). Data were initially imported from 400-700nm, but 

data below 450nm proved to be too noisy for use. A subsample of the individual spectra were 

smoothed using a loess smoothing function at various levels and visualized; we then used the 

lowest smoothing span that produced a smooth curve (span = 0.2) for all spectra. Spectra were 

then aggregated into a single mean spectrum for each frog, after which we recorded mean 

brightness of each individual’s spectrum. We chose a priori to use mean brightness (receiver-
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independent) as opposed to intensity (maximum reflectance value) because both are sensitive to 

noise and slight changes in lamp alignment (Montgomerie, 2006; Maia et al., 2013); however, 

we subsequently compared median brightness, which did not produce qualitatively different 

results. Additionally, results using total brightness and intensity yielded qualitatively similar 

results during visual data exploration. We ignored measures of coloration for this particular 

receiver-independent analysis, as interpretation of color largely depends on psychophysical 

parameters, and we therefore consider coloration per se only in the context of predator vision. 

The primary predators of poison frogs remain unclear. Although there is growing 

evidence of predation by many taxa (see Discussion), evidence from anecdotal studies (Master, 

1999; Alvarado et al., 2013) and clay model studies (e.g., Noonan and Comeault, 2009; 

Chouteau and Angers, 2011; Hegna et al.. 2011; Paluh et al., 2014) indicate that birds are a 

primary selective force, and often a source of purifying selection towards a single local 

aposematic phenotype. As a result, we analyzed receiver-dependent measures of brightness from 

the average violet-sensitive avian visual perception from multiple species of birds with known 

visual acuities (Hart, 2001) and using the visual model function provided in the pavo package 

(Vorobyev et al., 1998) against the average reflectance of three Dieffenbachia leaves taken in the 

field. We chose to use Dieffenbachia reflectance because R. imitator frequently breeds in 

Dieffenbachia (Brown et al., 2008b) and all males were seen on these plants during this study. 

The visual model function is based on stimulation of different cone types, and assumes that color 

discrimination is in large part limited by receptor noise (Vorobyev et al., 1998). This calculation 

allows us to examine both chromatic (dS, color-based) and achromatic (dL, luminance or 

brightness) contrast to the background in units of just noticeable differences (JNDs), a unit of 

differentiation in which JND = 1 indicates a difference that is at the threshold of discrimination 
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for a viewer (derived from Vorobyev et al., 1998). We used the average avian visual system and 

ideal, white illumination in our visual model (data provided within pavo).  

 

Alkaloid identification: 

Alkaloids from individual frogs were extracted using the methodology presented in 

Stuckert et al. (2014b). Frogs were euthanized and skins were placed into 4 mL, Teflon-lined 

glass vials containing 100% methanol to extract alkaloids. An internal 10 µg nicotine standard ((-

)-nicotine ≥99%, Sigma-Aldrich, Milwaukee, Wisconsin) was added to samples, which were 

then fractionated to isolate alkaloids. Gas chromatography–mass spectrometry (GC-MS) analysis 

was performed in electron impact (EI MS) and chemical ionization (CI MS) mode on a Varian 

Saturn (Ringoes, New Jersey, United States of America) 2100T ion trap MS instrument coupled 

to a Varian 3900 GC with a 30 m x 0.25 mm i.d. Varian Factor Four VF-5ms fused silica 

column. Alkaloids were identified using MS peaks and GC retention times in combination with 

previously published anuran alkaloids (Daly et al., 2005). Quantities of alkaloids were 

determined by comparing individual alkaloid peaks to that of the internal nicotine standard; 

alkaloids under 0.5 μg were not included due to the unreliability of identification and 

quantification of these trace alkaloids.  

 

Statistical analyses: 

Following alkaloid identification and quantification, data were visually inspected for 

deviations from normality. As there were none, we ran linear regressions comparing the receiver-

independent brightness of each individual to the total quantity of alkaloids each frog possessed 

(adjusted for frog mass). Similarly, we ran a linear regression with the results from the average 
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avian visual system and alkaloid content. We ran linear mixed effects models using the package 

“lmer4” to compare calling behavior to brightness and alkaloid content with individual frogs as a 

random effect because we repeatedly recorded calling behavior from males (Bates et al., 2014). 

Degrees of freedom for this test were calculated based on Satterthwaite approximation for 

denominator degrees of freedom in the R package “lmerTest” (Kuznetsova et al. 2017). We ran 

two, independent models fitted with restricted maximum likelihood, one with number of calls 

over a two-minute period and another using perch visibility. The linear mixed effects model for 

receiver-independent brightness had a singularity in the estimate of the random effect, so we 

collapsed the model to a single measure of mean perch visibility and ran a simple linear model. 

We also ran both of these models with receiver dependent measures of chromatic and achromatic 

contrast relative to a Dieffenbachia leaf background. 

 

Results 

 All males in our study possessed alkaloids, indicating that aposematism in R. imitator is 

at least qualitatively honest. The most common alkaloid groups by quantity were indolizidines, 

histrionicotoxins, and decahydroquinolines, followed by small quantities of allopumiliotoxins 

(Fig. II.2). These are primarily ant-derived alkaloids, although allopumiliotoxins are derived 

from mites (Saporito et al. 2012, 2015). These alkaloid data are similar to those we collected 

(Stuckert et al. 2014a) in a previous study examining alkaloids across mimicry complexes of 

Ranitomeya sp, indicating that our dataset is comparable in both the quantities of alkaloids and 

variance to other populations and studies. 

We found that frogs were viewed as substantially different from Dieffenbachia leaves, 

and that birds should be able to distinguish frogs from the background. Additionally, there is 
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variation between frogs in coloration, indicating that birds should be able to distinguish 

individual frogs from each other (mean: 39.7 JNDs, median: 42.9 JNDs). We did not calculate 

formal statistics because this method compares each individual frog to every other frog in the 

dataset in terms of color discrimination, and thus any analyses would be inherently 

pseudoreplicated. When we compared individual receiver-independent brightness to the quantity 

of alkaloids adjusted for mass, we found no relationship (F1,8 = 0.042, p = 0.843, adjusted R2 = -

0.119). Similarly, when we compared brightness from the avian perspective to the adjusted 

quantity of alkaloids we found no relationship in achromatic contrast (dL) to a Dieffenbachia leaf 

(F1,8 = 1.413, p = 0.269, adjusted R2 = 0.044). Further, we compared chromatic contrast (dS) to a 

Dieffenbachia leaf from the avian perspective to the adjusted quantity of alkaloids and found no 

difference in this either (F1,8 = 0.6721, p = 0.436, adjusted R2 = -0.039). 
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Fig. II.2. Box and whisker plot of quantities of alkaloids based on group classification. The box 

represents the first and third quartile, the horizontal line is the median, and open circles represent 

outliers. 

 

Fig. II.3. Results from a comparison of individual boldness to brightness, indicating brighter 

males choose less conspicuous perches. Linear model comparing receiver-independent 

brightness to median perch visibility from 1m distance in all directions (% of total) in 

individuals. Points are the mean for each individual, the gray bar represents the 95% confidence 

interval. 

 

We also compared alkaloid quantity and brightness to the number of territorial calls 

males produced, and found no significant influence of male defense (estimate: 0.002 ± 0.006 SE, 

t5.85 = 0.384, p = 0.712) or brightness (estimate: -1.05 ± 1.52 SE, t6.99 = -0.693, p = 0.515) on 
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boldness via calls. Running the same comparison using chromatic and achromatic contrast from 

the avian visual perspective produced similar results. We found that brighter males called from 

perches that are less visible from 1m away (Fig. II.3; estimate: -6.25 ± 2.39 SE, t7 = -2.626, p = 

0.034), but there was no effect of alkaloid quantity (estimate: -0.012 ± 0.0.0092 SE, t7 = -1.354, 

p = 0.218). However, when we analyzed this data from the perspective of avian viewers, we 

found no effect of alkaloid quantity (estimate: -0.015 ± 0.015 SE, t6 = -1.03, p = 0.343), 

chromatic contrast (dS, estimate: 0.043 ± 0.18 SE, t6 = 0.234, p = 0.823), or achromatic contrast 

(dL, estimate: 0.208± 0.65 SE, t6 = 0.32, p = 0.758). 

 

Discussion 

 In this study, we investigated whether the aposematic signal is quantitatively honest 

within a population of the poison frog Ranitomeya imitator, a key prediction of aposematic 

theory. Furthermore, a key benefit posited for aposematism is ecological release from predation 

pressure; more toxic or brighter individuals should have more freedom to conduct daily activities 

due to a decreased likelihood of predation. Hence, we tested for increased behavioral boldness in 

more toxic or brighter individuals by examining territorial calling activity. All individuals 

sampled in this study possessed defensive alkaloids, but we found no relationship between the 

level of the defense and the level of the aposematic signal. Further, we did not find any evidence 

that individuals with higher levels of chemical defense behaved more boldly, as more toxic 

males did not call more or from more obvious perches. We did, however, find that that brighter 

males called from perches that were less open than more dull males. The findings of our study 

indicate that males in this population of R. imitator have a qualitatively honest aposematic signal, 

but do not signal in a quantitatively honest manner. Although our sample size is small, we view 
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this is an ecologically relevant sample size, as it is unlikely that predators sample many poison 

frogs before they have learned avoidance (e.g., in lab experiments model predators learn to avoid 

poison frogs rapidly, Darst and Cummings, 2006; Stuckert et al., 2014a). Thus, it is apparent that 

predators are not using frog brightness as an indication of toxicity in order to adjust their attack 

probability. This is similar to newts (Cynops pyrrhogaster), which do not signal honestly within 

populations (Mochida et al., 2013). Thus, while evidence suggests that there is generally 

quantitative honesty across vertebrate species (e.g., Summers and Clough 2001), quantitative 

honesty likely does not occur within populations, and likely varies extensively across 

populations (Daly and Myers. 1967; Wang 2011; Maan and Cummings, 2012).  

 This seems to be a departure from similar invertebrate systems, which generally indicate 

quantitative honesty across and within populations (Bezzerides et al., 2007; Blount et al., 2012; 

Vidal-Cordero et al., 2012; Arenas et al., 2015). Therefore, insect systems appear to have 

proximate mechanisms that maintain quantitative honesty, whereas our data indicate that in this 

population of poison frogs we find no evidence for quantitative honesty. However, whether this 

is generally true in vertebrates is unclear, and should be viewed with some skepticism in light of 

our small sample size. In insects, some evidence indicates that there is a tradeoff between 

production of the aposematic signal and toxins (the resource allocation framework, Blount et al., 

2009, 2012). Additionally, predators are not only able to discern differences in the aposematic 

signal, but they pay attention to the level of the signal produced by insects and use that 

information to determine whether to attack (Arenas et al., 2015). This unifying selective force is 

surprising because evidence indicates that a predator’s decision on whether or not to attack is 

highly nuanced and that predators continually reassess based on their own toxin loads, hunger, 

availability of other prey, etc. (Skelhorn et al., 2016). In fact, Flores et al. (2015), found that the 
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attack rate on clay models that resemble the aposematic poison frog Dendrobates auratus are not 

dependent on model brightness (note, however, that this study used clay models of juvenile size). 

 There are several alternative explanations that may potentially explain why we see 

qualitative, but not quantitative, honesty in Ranitomeya imitator. First, unlike in invertebrates, 

which generally sequester all their toxins at the larval stage, there is likely an ontogenetic 

disconnect between color production and toxicity in many vertebrate species (dendrobatids: Daly 

et al., 1994, other poison frogs: Jeckel et al., 2015, newts: Hanifin et al., 2002, aposematic 

snakes: McCue, 2006). Together, these examples likely indicate a substantial difference from 

examined insect cases in which the resource allocation framework is more plausible. Thus, 

although the resource allocation hypothesis has some support in invertebrate systems, this 

proximate mechanism does not appear to be ecologically relevant in many vertebrate systems. 

Second, predator avoidance may be independent of the quantity of alkaloids as long as they are 

present in amounts sufficient to make them unpalatable and thus typically avoided by potential 

predators (e.g., Speed et al., 2012). Therefore, a threshold level of defense may very well be 

predator dependent (e.g., birds, arthropods, snakes), above which quantitative honesty is 

uninformative and therefore not selected by predators. Further, we might predict different 

selective pressures from non-avian predators. Anecdotal evidence of predation on dendrobatids 

corroborates this, as only one bird species has been observed preying on poison frogs (Master, 

1999; Alvarado et al., 2013) while multiple other predator guilds have been observed preying on 

dendrobatids (e.g., Myers et al., 1978; Summers 1999; Lenger et al., 2014). In fact, there is 

evidence that certain arthropod predators (bullet ants and banana spiders) impose different 

selective pressures on the dendrobatid frog O. pumilio in Costa Rica based on different 

thresholds of defense (Murray et al., 2016). 
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Predation release: 

In addition to testing quantitative honesty within a population, we also tested the 

prediction that increased toxicity and brightness is correlated with an increase in behavioral 

boldness, using the number of calls males gave in a two-minute period as well as the visibility of 

the perch that males called from as a proxy for boldness. We found no evidence that there was an 

increase in boldness with increasing chemical defense. We did find evidence that brighter males 

are more likely to call from less visible perches. However, and importantly, we did not see the 

same relationship when examining chromatic and achromatic contrast from the avian visual 

perspective against a host plant leaf, and thus the ecological significance is unclear. This may be 

an example of bet-hedging (Slatkin, 1974), in which duller males of potentially lower quality 

attempt to stand out by using conspicuous perches, simultaneously entailing an increased risk of 

predation. Brighter males on the other hand may be of higher quality, and thus gain little by 

choosing a more conspicuous perch relative to the increased risk of predation. This is largely 

speculative, however, and some work in a related species O. pumilio has shown either the 

opposite relationship, that more conspicuous morphs are bolder (O. pumilio: Pröhl and 

Ostrowski, 2011; O. granulifera: Willink et al., 2013), or no relationship at all (Dugas et al., 

2015).  

 

Concluding remarks: 

In this study, we tested the hypothesis that quantitative honest signaling exists within a 

population of Ranitomeya imitator, a key prediction of a substantial body of theoretical work on 

signaling. We found that adult males within a population of R. imitator all possess alkaloids and 



28 
 

thus their aposematic signal is qualitatively honest. However, we found no evidence for 

quantitative honesty, a corresponding increase in the level of the signal with the level of the 

defense. Additionally, we tested the hypothesis that an increase in toxicity yields an increase in 

boldness due to ecological niche release. We found no evidence that more toxic males behaved 

more boldly using our metrics. We did however find that brighter males call from less visible 

perches, suggesting that males may be pursuing a bet-hedging strategy with respect to calling 

behavior. We suggest that alternative mechanisms are acting on the variation in the intensity of 

the aposematic signal. We view the ontogenetic disconnect between toxin sequestration and the 

setting of coloration to be a plausible hypothesis in many vertebrate taxa, and a crucial difference 

with respect to invertebrate systems (and with respect to the assumptions of many theoretical 

models). 
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III. IDENTIFYING SIGNAL MODALITIES OF APOSEMATISM IN A POISON FROG 

Adam M. M. Stuckert and Kyle Summers 

 

Abstract: 

 Heterogenous predation regimes can produce varied selective forces on potential prey. 

This, in theory, should produce a variety of evolutionary adaptations to predation. Aposematic 

species combine a conspicuous signal with a secondary defense, the majority of which are 

studied in the context of a visual signal. Even in species with an obvious visual signal this focus 

does not tell the whole evolutionary story. Although multimodality appears to be common in 

invertebrate species, we know extremely little about the presence or absence of multimodality in 

vertebrates. Here we examine the possibility of multimodality of aposematism in the green and 

black poison frog, Dendrobates auratus. Using a non-visual predator (the cat-eyed snake, 

Leptodeira annulata) we test whether there is sufficient non-visual information for predators to 

avoid this aposematic species without using their vision. Further, we test whether this is a 

byproduct of the presence of toxins, or a specifically evolved signal. We found that predators are 

able to avoid this species by olfactory cues alone, and that this is likely a learned avoidance. 

 

Introduction: 

 Aposematism is an antipredator strategy that combines conspicuous colors and patterns 

with a secondary defense (e.g., venom, toxicity, spines, fighting ability, etc.). In essence, these 

species have a phenotype that “shouts” to predators that they are dangerous (Poulton 1890). 

Aposematism is widespread, both geographically and taxonomically. Notably, studies have 

repeatedly demonstrated the role of natural selection in the evolution of color and patterns in 
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aposematic species (e.g., Smith 1975; Saporito et al. 2007). It is generally hypothesized that this 

occurs because visual predators, primarily birds, are able to easily learn to avoid the colors and 

patterns presented by aposematic species or avoid them entirely, thus decreasing the likelihood 

of attacking these species and their overall survival (Ruxton et al. 2004). Therefore, the field has 

focused heavily on the selective force enacted by visual predators and on the visual signal itself.  

However, many predators utilize non-visual cues to locate prey, and therefore our 

understanding of aposematic signals may be biased and incomplete. Recent evidence indicates 

that we need to consider that aposematic signals may be transmitted via multiple modalities. For 

example, unpalatable species may use auditory signals (e.g., moths: Hristov and Conner 2005; 

Dunning et al. 2016 or odors (e.g., skunks: Cott 1940). In these cases, aposematism is 

multimodal because there are evolved signals that warn predators in numerous sensory modes. 

Further, it is conceivable that aposematism could occur entirely without a visual signal (e.g., 

auditory and venom in a camouflaged species), or without a visual signal that humans can detect. 

Our understanding of non-visual signals in aposematic species is probably the most extensive for 

insects, where they appear to be quite common (see a compiled list in Rowe and Halpin 2013). 

Importantly, many insects possess an aposematic signal that is not just visual in nature, but is 

also multimodal (Rowe and Halpin 2013). For example, the chemical pyrazine has a distinctive 

odor which can help in learned predator avoidance but is not a toxin or a deterrent itself 

(Rothschild et al. 1984; Lindström et al. 2001). In this example, the signal seems to be an 

adaptation to predators. However, in other cases an odor or a sound may merely be the byproduct 

of defense (for example if it is the smell of the defense itself), and therefore a ‘cue’ as opposed to 

a signal (Rowe and Halpin 2013).  
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It is unclear if aposematic signals are generally multimodal in other taxa. However, 

evidence indicates that non-visual predators are likely important predators in many taxa. Poison 

frogs (family Dendrobatidae) are defended by toxic alkaloids in the skin which are sequestered 

from the diet (Daly et al. 1994). Despite being the best characterized group of non-insect 

aposematic species, empirical data on poison frog predators are extremely limited. Clay model 

studies indicate that birds are likely an important source of selection, and likely exert purifying 

selection (e.g., Noonan and Comeault 2009; Chouteau and Angers 2011; Dreher 2014; Paluh et 

al. 2014; Rojas et al. 2015). Note however, that these results may provide a biased perspective, 

as many clay model studies are designed specifically for visual predators like birds and largely 

ignore non-avian attack marks. Despite a number of studies that examine avian predation 

pressure on dendrobatid frogs using clay models, there is only a single bird species actually 

known to sample or prey upon poison frogs (Master 1999; Alvarado et al. 2013). Furthermore, an 

analysis of avian gut contents from Panama found a wide variety of prey in the diet, but not a 

single aposematic dendrobatid (Poulin et al. 2001).  

While avian predation on dendrobatids has been seen only rarely, observations of 

predation by other species are far more common (e.g., Myers et al. 1978; Summers 1999; Gray 

and Christy 2000; Lenger et al. 2014). The empirical data dominated by non-avian predators of 

poison frogs indicates that we should be concerned with predation that does not currently fit the 

primary understanding of visual predators driving aposematic selection. The research that has 

been conducted outside this central, limited paradigm hints that predators in different guilds may 

make different choices regarding predation (Willink et al. 2014; Murray et al. 2016). 

Additionally, while conspicuousness of the visual signal is correlated with toxicity to certain 

potential predators of aposematic species (but not all, see Stuckert et al. 2018), snakes do not 
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possess the necessary visual acuity to pick up the information contained in this visual signal 

(Maan and Cummings 2012). Hence, we need to begin considering aposematic prey from 

alternative perspectives. To truly understand aposematic signaling we need to examine how 

potential predators from multiple guilds actually act when exposed to aposematic species.  

Here we test the response of non-visual predators to assess whether predators can detect 

and avoid poison frogs via olfaction. We used a snake (Leptodeira annulata) as a predator and a 

sympatric species of poison frog (Dendrobates auratus) in our experimental trials. We compared 

snake preference for poison frog odors to that of a non-toxic sympatric species the tungara frog 

(Engystomops pustulosus). However, with these results alone we would be unable to say whether 

this was merely a cue (e.g., fatty acids in the skin or the alkaloids themselves) or a specifically 

evolved signal used to deter predators. As a result, we conducted two additional sets of trials. 

One compared frog odors extracted with methanol from wild Dendrobates auratus to extracts 

from the palatable E. pustulosus. The other compared snake responses to extracts from captive-

bred D. auratus which lack alkaloids to that of the palatable E. pustulosus in order to test 

whether the putative odor is a cue, or conversely an evolved signal. Finally, we did a dyadic trial 

with live frogs, but using completely naïve juvenile snakes which we knew had never been 

exposed to either species of frogs to examine the response of naïve predators to that of 

experienced predators. 

 

Methods: 

 Snakes (Leptodeira annulata) were collected from the forests surrounding Gamboa, 

Panama. Each snake was housed individually in a 62.5 L plastic container with a leaf litter 

substrate, a branch, and a bromeliad for the duration of the study. Snake habitats were hand 
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misted daily, and snakes had continuous access to a small water dish. After initial capture, snakes 

were kept in captivity for a minimum of 2 nights to acclimate them to their tanks. We then 

offered snakes a tungara frog (E. pustulosus; collected from outside of Gamboa), a known prey 

species, to verify that snakes were sufficiently comfortable and would act as natural predators. 

Although these cat-eyed snakes and poison frogs are sympatric, we cannot know their history of 

predator-prey interactions and therefore cannot determine whether these individual snakes have 

experience with poison frogs. Therefore, the night after introduction of the tungara frog we 

introduced the snakes to a poison frog for approximately 90 minutes. All snakes were moving 

within their cages (not hiding) when we conducted the initial introduction. As a result, we can 

say with certainty that the specific snakes used in our study have experience with both tungara 

frogs and the poison frog species used in our study. All snakes used in this study (N = 10) 

consumed the tungara frog; no snakes consumed the poison frog although it was evident that 

snakes were still foraging during these introductions. 

 We then dyadic trials involving live D. auratus and P. pustulosus. In these trials, we put 

these frogs into small plastic containers (7x7x4.5 cm). Frogs were placed on either side of the 

snake cages, and placement was randomly determined. To remove visual cues, we spray painted 

the exterior of the containers and replaced the top with fiberglass screening. This setup 

eliminated visual cues, but allowed the diffusion of olfactory cues from within the containers. 

Trials were conducted at night, and were video recorded from above using Sony Handycams 

(DCR-SR 45, DCR-SR85). The night shot plus infared mode was engaged on these camcorders 

and the setups were additionally lit with an external infared light source. These experiments were 

conducted on three consecutive nights with each individual snake. We subsequently conducted 

the extract experiments (described below) three nights each, randomizing the order of 
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presentation of the captive extracts and the wild frog extracts. Additionally, we randomized the 

placement of the containers with methanol extracts. 

 In addition to trials with the live frogs, we conducted two other types of trials to examine 

whether or not snakes were using the presence of the alkaloids themselves in order to avoid 

poison frogs and this is merely a cue, or whether there is some other component to the smell of 

the aposematic frogs that might be an evolved signal. We compared skin extracts from wild-

caught D. auratus to that of wild E. pustulosus, we refer to these as wild extracts. The other trial 

compared skin extracts from captive D. auratus to that of wild E. pustulosus, we refer to these as 

captive extracts. The animals used to produce captive extracts were sacrificed for a different 

experiment (approved under ECU IACUC AUP D288), and GC-MS analyses indicated that they 

had no alkaloids. Therefore, the primary difference between the wild and captive extract trials 

should be the presence of defensive alkaloid toxins. For these trials, we used 100% methanol to 

extract chemicals found on the skin. We pipetted 1/8th of the extract (0.5 mL) into the same type 

of container from above, and placed them on opposite sides of snake cages for experiments.   

 In addition to our experiments using wild snakes found foraging in the forest, we 

conducted a similar experiment using two naïve juvenile Leptodeira annulata. These snakes (N = 

2) were found as eggs and hatched in captivity. As a result, we know that they have never 

experienced either tungara frogs or poison frogs. We exposed these young snakes to only the live 

frog experiment, but in a much smaller container because of their size. We did not pre-expose 

them to either the tungara frogs or the poison frogs; we therefore view their responses as those of 

an unexperienced potential predator. This comparison will allow us to examine the importance of 

learned avoidance in this system, albeit with a small inference due to our small sample size. 
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 We collected two measures that we identified prior to conducting statistical analyses. 

These were: 1) the first container the snake investigated and 2) the proportion of time the snake 

spent with each member of the dyad relative to total interaction time in our ~50 min video trials. 

In all cases we counted it as an interaction when the snake was within 8 cm of the container and 

directed towards it.  

 

Statistical analyses: 

We analyzed the first container that snakes investigated, as well as the proportion of 

interaction time per trial that was directed towards the poison frog or poison frog extract relative 

to the total interaction time (for both the first 50 minutes and the first 2.5 hours). Initial analyses 

indicated that they met the assumptions of a binomial distribution. Therefore, all analyses were 

done in a mixed effects model using the package “lme4” (Bates et al. 2014) in R v 3.2 (R Core 

Team 2017) with a binomial error distribution. Trial type (with live frogs, comparing extract 

from wild frogs, comparing extract from captive frogs, or juvenile snakes with live frogs) was 

included as a fixed effect, and snake identity was a random effect. Since “lme4” does not 

produce p values, we estimated p values using the R package “lmerTest” which uses a 

Satterthwaite approximation of degrees of freedom to produce p values. Estimates and 

confidence intervals were extracted from the results of the linear models and visualized.  

 

Results: 

 When we analyzed the first frog that the snakes investigated, we found that adult snakes 

generally investigated the tungara frog first (z = -1.790, p = 0. 0735, Fig. III.1). There was no 

clear trend in which extract the adult frogs first investigated in either the wild extract comparison 
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(z = 1.034, p = 0.301) or the captive extract (z = -0.408, p = 0.6834). Naïve, juvenile snakes 

showed absolutely no discrimination and extreme variance (but with a very low sample size, z = 

0.00, p = 1.00). 

 

Figure III.1. Initial snake response in each trial. The central dot indicates the mean response, and 

the error boars represent 95% confidence intervals. The horizontal line indicates the 50% line. A 

proportion of 1 would indicate all snakes initially investigated the poison frog or poison frog 

extract, whereas a proportion of 0 indicates all snakes initially investigated the tungara frog or 

extract. 

 In the full length of videos recorded adult snakes clearly avoided the live poison frogs 

and preferentially investigated the tungara frogs (z = -2.982, p = 0.00286, Fig. III.2), whereas 

juveniles tended to spend more time investigating the poison frogs, although this was not 

statistically significant (z = 1.682, p = 0.0927). Adult snakes also avoided the captive extract of 
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the poison frog (z = -3.771, p = 0.000162). The adults spent more time with the wild poison frog 

extract than the tungara frog extract, but this was not different from the null expectation (z = 

1.682, p = 0.207).  

 

Figure III.2. Proportion of overall time investigating each of the dyadic pair. The central dot 

indicates the mean response, and the error boars represent 95% confidence intervals. The 

horizontal line indicates the 50% line. In each trial, 0 is spending all time with the tungara frog or 

extract, and 1 is the full length of time with the poison frog or poison frog extract. 

 

Discussion: 

 Aposematic species are primarily examined from the perspective of visual signaling. We 

examined whether predators can use their olfactory senses to make informed decisions regarding 

preying upon a vertebrate, aposematic species. Further, we attempted to determine whether this 

is a cue, or an evolved multimodal signal designed to communicate with potential predators. Our 



46 
 

results indicate that experienced snakes avoided the aposematic frog D. auratus and exhibited a 

preference for inspecting and interacting with the non-toxic tungara frog in these dyadic trials. 

Thus, olfactory cues contain sufficient information to make decisions regarding predation on 

aposematic species of poison frogs. However, we found that the juvenile snakes with no prior 

exposure to these frogs exhibited no preference for either frog species, and their behaviors had a 

high variance. We found that snakes snakes exhibited no preference in the first interaction in 

either wild or captive extracts, but that they did avoid the captive extract of the poison frog. 

 Given that the olfactory component appears to contain enough information for predators 

to avoid it, this indicates multimodality of aposematism. The apparent multimodality of 

aposematism in this system is important, as it represents an underappreciated possible 

mechanism of communication on which predators can exert selective pressures. Predation 

regimes are almost certainly heterogenous, a fact which has been known and yet under-

appreciated for a long time (Nokelainen et al. 2014; Murray et al. 2016, Briolat et al. in press). 

This study indicates a plausible mechanism by which predators that utilize non-visual senses to 

forage can avoid aposematic species. This is important, especially because there is evidence that 

certain predators may completely ignore the visual signal of an aposematic species, or even use it 

to find prey that most predators avoid (e.g., Alvarado et al. 2013; Willink et al. 2014).  

While predators can avoid this aposematic species based on olfaction alone, the specific 

cue they are using in this instance is not clear, but the data suggest that is a non-alkaloid 

compound as the snakes were attracted to the wild-frog extract. This seems plausible, especially 

because captive-reared, alkaloid-free poison frogs have a distinctive, metallic odor similar to 

United States pennies as well (Schulte et al. 2017; AMMS pers. obs.). If this is the case, it would 

indicate that examinations of the other components of the olfactory component are worthwhile. If 
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this is the case, then it is possible that the actual alkaloids somewhat confound this cue, and thus 

the wild extract treatment is being interpreted as a novel, intriguing smell. In this case, snakes 

might have spent more time with the wild poison frog extract in order to ascertain what this sent 

was. It is plausible, but extremely unlikely, that this is an artifact of our experimental design, as 

the methanol used in extracting volatile compounds may have interfered with the snakes’ ability 

to properly distinguish between scents. Perhaps the interaction of the solvent and alkaloids 

created a scent that snakes were unaccustomed to and therefore increased their interaction time in 

the trials with the wild frog extract. However, this is unlikely as 1) such a small quantity of 

methanol evaporated very quickly and 2) the two types of extract trials exhibited different 

predator responses. 

 Snakes in our experiment that had a previous experience with the two frog species and 

those that were naïve, juvenile predators exhibited a remarkably divergent behavioral response. 

Snakes with prior experience generally avoided the live poison frogs, whereas the naïve snakes 

had no preference at all. This result suggests that snakes learn to avoid poison frogs and do not 

show innate avoidance. While certain species have an innate avoidance of aposematic species 

(Smith 1975, 1977), this may be predicated on the presence of a deadly secondary defense. Since 

naïve snakes exhibited a different response than experienced predators it is likely that learned 

avoidance is critical in this system. Learned avoidance of chemical cues is important in the 

evolution and maintenance of aposematic species. This would indicate the possibility of evolved 

non-visual signals. Although our sample size with juveniles is very low, our data suggest that 

non-visual cues could be important for predator learned avoidance even in visual predators, as 

this may increase the speed of learned avoidance or the retention of learned avoidance (Rowe 

and Halpin 2013; Tseng et al. 2014). 
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 Overall, we found that snakes are able to distinguish live defended aposematic prey from 

undefended prey via olfaction indicating aposematism in this species is likely multimodal. 

Further, this seems to be a learned response in this species and that these snakes do not have an 

innate avoidance of poison frog smells. While the specific cue these predators are using in this 

instance is not clear, our data suggest that is a non-alkaloid compound the predators used. Given 

the abundance of non-visual predators in the wild, investigating non-visual components of 

aposematism in aposematic species is likely to bear fruit. 
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Abstract: 

 Color and pattern phenotypes have clear implications to survival and reproduction in 

many species. However, the mechanisms that produce this coloration are still poorly 

characterized, especially at the genomic level. Here we have taken a transcriptomics-based 

approach to elucidating the underlying genetic mechanisms affecting color and pattern in a 

highly polytypic poison frog. We produced a transcriptome from four different color morphs 

during the final stage of metamorphosis when coloration is still being developed. We then 

investigated differential gene expression of candidate color genes from studies in other taxa. 

Overall, we found differential expression of a suite of genes that control melanogenesis, 

melanocyte differentiation, and melanocyte proliferation as well as a series of differentially 

expressed genes involved in purine synthesis and iridophore development. Our results provide 

clear evidence that a variety of melanophore and iridophore genes play a role in color and pattern 

variation in this species of poison frog. This should provide the basis for further investigations 

into the underlying molecular, cellular and physiological mechanisms determining color pattern 

in these brightly colored amphibians. 
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Introduction: 

 Color and pattern phenotypes have long been of interest to both naturalists and 

evolutionary biologists (Bates 1862; Müller 1879). Part of this interest derives from the 

association of this phenome with selective pressures like mate choice (Kokko et al. 2002) and 

predation (Ruxton et al. 2004). Given the association between color phenotypes and predation, it 

is no surprise that color and pattern function primarily as antipredator mechanisms in many taxa. 

These antipredator mechanisms range from camouflage in species that blend into the background 

habitat to aposematic species, which use bold, contrasting colors and patterns to stand out from 

the background habitat and warn predators of a secondary defense (Poulton 1890; Ruxton et al. 

2004). Species with morphological phenotypes directly tied to survival and reproduction provide 

excellent opportunities to study the genetic underpinnings of color and pattern in the context of 

natural selection. 

 Aposematic species rely on color and pattern to warn predators, but in many cases these 

traits are extremely variable, often changing over short geographic distances or even exhibiting 

polymorphism within populations (Brown et al. 2011; Merrill et al. 2015). Theory has long 

predicted that predators should exert strong purifying selection on aposematic species, favoring 

monomorphism to enhance the efficiency of predator learning (Müller 1879; Mallet and Joron 

1999), so the evolution and maintenance of variation in color and pattern is of general interest. 

While predator variation and drift alone may be sufficient to create phenotypic variation, a 

variety of alternative selective pressures such as mate choice or abiotic factors can act on the 

aposematic signal to produce and maintain this variety (reviewed in Briolat et al., in press).  

Differences in color and pattern in some highly variable aposematic species seem to be 

determined by a small number of loci (Martin et al. 2012; Supple et al. 2013; Kunte et al. 2014; 

Vestergaard et al. 2015). However, the majority of research on the underlying genetic 
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architecture associated with varied color and patterns has been done in the Neotropical butterflies 

of the genus Heliconius. This work has been highly informative in that variability in aposematic 

species seems to be dependent on few loci, but it remains unclear whether these trends largely 

from Heliconius butterflies are generally applicable to other systems. Furthermore, research on 

the production of color and pattern early in life in polytypic species (those that vary in discrete 

phenotypes over geographical space) has been extremely limited.  

 Many of the Neotropical poison frogs (family Dendrobatidae) exhibit substantial 

polytypism throughout their range (Summers et al. 2003; Brown et al. 2011). Despite being one 

of the better characterized groups of aposematic species, our knowledge of the mechanisms of 

color production in this family is quite limited. In addition, there is limited information on the 

genetics of color pattern in amphibians generally. Modern genomic approaches (especially high-

throughput sequencing) have recently provided extensive insights into the genes underlying color 

pattern variation in fish (Diepeveen and Salzburger 2011; Ahi and Sefc 2017), reptiles (Saenko 

et al. 2013), birds (Ekblom et al. 2012) and mammals (Gene et al. 2001; Bennett and Lamoreux 

2003; Bauer et al. 2009). However, there have been few genomic studies of the genetic basis of 

color patterns in amphibians, a group for which we have few genetic tools. Therefore, 

amphibians are an important gap in our knowledge of the genomics of color and pattern 

evolution. 

Ectothermic vertebrates (fish, reptiles and amphibians) generate a diversity of different 

colors in their skin through several different mechanisms, involving interactions between 

pigment-containing chromatophores (xanthophores and melanophores) and the arrangement of 

structural elements such as guanine crystals in iridophores (Mills & Patterson 2009). Black and 

brown coloration is produced primarily via the melanophores and is dependent on the melanin 
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pigments eumelanin and pheomelanin (Videira et al. 2013). Blue and green coloration in 

amphibians is generally produced by reflectance from structural elements in iridophores, which 

are a form of chromatophore (Bagnara et al. 2007). Iridophores contain guanine crystals arranged 

into platelets that reflect particular wavelengths of light, depending on platelet size, shape, 

orientation and distribution (Ziegler 2003; Bagnara et al. 2007; Saenko et al. 2013).  Generally 

speaking, thicker and more dispersed platelets reflect longer wavelengths of light (Saenko et al. 

2013). Combinations of iridophores and xanthophores or erythropores containing carotenoids or 

pteridines (respectively) can produce a wide diversity of colors (Saenko et al. 2013). In 

Phelsuma geckos, the platelets reflecting blue or green wavelengths are arranged in parallel to 

the skin but are arranged at random in skin displaying red or white coloration. Hence, the random 

arrangement of iridophores reflects all wavelengths (white). Red coloration is produced by the 

addition of red pigment containing erythropores in the dermal layer.  The actual color of the skin 

in Phelsuma geckos depends on the precise co-localization of the iridophores (and their guanine 

platelets) with chromatophores containing red and yellow pigments (Saenko et al. 2013). The 

bright coloration of D. auratus is usually confined to the green-blue part of the visual spectrum 

(with the exception of some brownish-white varieties), and iridophores are likely to play a role in 

the color variation displayed across different populations of this species. 

In order to better understand the genetic mechanisms affecting the development of color 

and pattern, we examined four different captive bred color morphs of the green-and-black poison 

frog (Dendrobates auratus). We used an RNA sequencing (RNA seq) approach to examine gene 

expression and characterize the skin transcriptome of this species. In addition to assembling a 

skin transcriptome of a species from a group with few genomic resources, we compared 

differential gene expression between color morphs. We focused in particular on differential gene 
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expression in a set of a priori candidate genes that are known to affect color and pattern in a 

variety of different taxa. Finally, we examined gene ontology and gene enrichment of our 

dataset. These analyses will provide useful genomic and candidate gene resources to the 

community, as well as a starting point for other genomic studies in both amphibians and other 

aposematic species. 

 

Methods: 

Color morphs: 

Captive bred Dendrobates auratus were obtained from Understory Enterprises, LLC. The San 

Felix morph has a brown dorsum, with green spotting. The super blue morph also has a brown 

dorsum with light blue markings (often circular in shape), sporadically distributed across the 

dorsum. The microspot morph has a greenish-blue dorsum with small brownish-black splotches 

across the dorsum. Finally, the blue-black morph has a dark black dorsum with blue markings 

scattered across the dorsum that are typically long and almost linear (Figure IV.1). We note that 

the breeding stock of these different morphs, while originally derived from different populations, 

generally of unknown origin in Central America, have been bred in captivity for many 

generations. As a result, it is possible that color pattern differences between these morphs in 

captivity are even more pronounced than those generally found in the original populations where 

these animals were collected from due to isolation and inbreeding. Nevertheless, the differences 

between these morphs are well within the range of variation in this highly variable, polytypic 

species which ranges from Eastern Panama to Nicaragua.  
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Figure IV.1. Normative morphological phenotypes of the four captive morphs used in this study. 

Color morphs clockwise from top left: microspot, super blue, blue and black, San Felix. 

Microspot and super blue photographs courtesy of ID, blue-black and San Felix photos were 

graciously provided by Mark Pepper at Understory Enterprises, LLC. 

 

Sample collection: 

 Frogs were maintained in pairs in 10 gallon tanks with coconut shell hides. Petri dishes 

were placed under the coconut hides to provide a location for females to oviposit. Eggs were 

pulled just prior to hatching and tadpoles were individually raised in ~100 mL of water. Tadpoles 

were fed fish flakes three times a week, and their water was changed twice a week. Froglets were 

sacrificed during the final stages of aquatic life (Gosner stages 41-43; Gosner 1960)). At this 

point, froglets had both hind limbs and at least one forelimb exposed. These froglets had color 

and pattern elements at this time, but pattern differentiation and color production is still actively 

occurring during metamorphosis and afterwards. Whole specimens were placed in RNAlater 

(Qiagen) for 24 hours, prior to storage in liquid nitrogen. We then did a dorsal bisection of each 
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frog’s skin, both halves contained all elements of skin patterning. We then prepared one half of 

the skin from each of the four morphs of captive-bred D. auratus (N = 3 per morph).  

 RNA was extracted from each bisected dorsal skin sample using a hybrid Trizol 

(Ambion) and RNeasy spin column (Qiagen) method. Before preparing the sequencing libraries, 

we used a Bioanalyzer (Agilent) to assess RNA quality. We used the lack of a smearing pattern 

(typical of degraded samples) to confirm quality instead of the RNA integrity number (RIN), as 

we suspect that natural variation in the pattern of ribosomal RNA prevented the RIN from being 

informative. Messenger RNA (mRNA) was isolated from total RNA with Dynabeads 

Oligo(dT)25 (Ambion) for use in the preparation of barcoded, strand-specific directional 

sequencing libraries with a 500bp insert size (NEBNext Ultra Directional RNA Library Prep Kit 

for Illumina, New England Biosystems). These libraries were placed into a single pool for 300 

bp, paired end sequencing on the Illumina MiSeq.  

 

Transcriptome assembly:  

 Given the low sequence coverage for each technical replicate, and further that the 

preliminary transcriptome assemblies were of poor quality, we concatenated both technical 

replicates per sample into a single replicate. These merged replicates yielded larger, but still 

relatively small, samples (forward and reverse reads ranged from 2-5.8 million reads per sample 

in the samples used to build transcriptomes). We randomly chose one sample per morph type and 

assembled the transcriptome from this combined dataset using the Oyster River Protocol version 

1.1.1 (MacManes 2017). We aggressively removed adaptors and did a gentle quality trimming 

using trimmomatic version 0.36 (Bolger et al. 2014), then implemented error correction using 

RCorrector version 1.01 (Song and Florea 2015), as aggressive quality trimming decreases 
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assembly completeness (MacManes 2014). The Oyster River Protocol (MacManes 2017) 

assembles a transcriptome with a series of different transcriptome assemblers and also multiple 

kmer lengths, ultimately merging them into a single transcriptome. Transcriptomes were 

assembled using Trinity version 2.4.0 (Haas et al. 2014), two independent runs of SPAdes 

assembler version 3.11 with kmer lengths of 55 and 75 (Bankevich et al. 2012), and lastly 

Shannon version 0.0.2 (Kannan et al. 2016). The four transcriptomes were then merged together 

using OrthoFuser (MacManes 2017). Transcriptome quality was assessed using BUSCO version 

3.0.1 against the eukaryote database (Simão et al. 2015) and TransRate 1.0.3 (Smith-Unna et al. 

2016). We then compared the assembled, merged transcriptome to the full dataset by using 

BUSCO and TransRate. BUSCO evaluates the genic content of the assembly by comparing the 

transcriptome to a database of highly conserved genes. Transrate contig scores evaluate the 

structural integrity of the assembly, and provide a metric of how accurate, complete, and non-

redundant the transcriptome is. TransRate scores were improved by using the TransRate 

optimized assembly which includes only transcripts that are highly supported, which had little 

influence on the BUSCO score. Therefore, we used this optimized transcriptome for downstream 

analyses. 

 

Downstream analyses: 

 We annotated our transcriptome using the peptide databases corresponding to frog 

genomes for Xenopus tropicalis (NCBI Resource Coordinators 2016), Nanorana parkeri (Sun et 

al. 2015), and Rana catesbeiana (Hammond et al. 2017) as well as the UniRef90 database 

(Bateman et al. 2017) using Diamond version 0.9.10 (Buchfink et al. 2015). We then pseudo-

aligned reads from each sample using Kallisto version 0.43.0 (Bray et al. 2016) and examined 
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differential expression of transcripts in R version 3.4.2 (R Core Team 2017) using Sleuth version 

0.29.0 (Pimentel et al. 2017). Differential expression was analyzed by performing a likelihood 

ratio test comparing a model with color morph as a factor to a simplified, null model of the 

overall data. In addition to examining overall differential expression between morphs, we 

examined differential expression in an a priori group of candidate color genes.  We used 

PANTHER (Mi et al. 2017) to quantify the distribution of differentially expressed genes 

annotated to Xenopus tropicalis into biological processes, molecular functions, and cellular 

components.  

 

Results: 

Transcriptome assembly:  

 After conducting the Oyster River Protocol for one random individual per color morph 

and merging them together, we were left with a large transcriptome containing 597,697 

transcripts. We examined the BUSCO and transrate scores for each morph’s transcriptome, as 

well as for the transcriptome created by orthomerging these four assemblies (Table IV.1). 

BUSCO and transrate scores were computed using the full, cleaned dataset from all samples. 

Given the poor transrate score of our final, merged assembly we selected and used the good 

contigs from transrate (i.e., those that are accurate, complete, and non-redundant), which had a 

minimal effect on our overall BUSCO score. In total, our assembly from the good contigs 

represents 160,613 individual transcripts (the “full assembly” in Table IV.1). Overall, our 

annotation to the combined Xenopus, Nanorana, Rana, and UniRef90 peptide databases yielded 

76,432 annotated transcripts (47.5% of our transcriptome).  
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 Transrate 

score 

Transrate optimal 

score 

BUSCO 

score 

Blue-black  0.05446 0.40487 96.3% 

Microspot  0.04833 0.35907 94.0% 

San Felix  0.0556 0.35718 88.1% 

Super blue  0.0521 0.38094 96.0% 

Full assembly 0.01701 0.13712 95.8% 

Table IV.1. Assembly metrics for each of our assembled transcriptomes. Metrics for the full 

assembly were calculated using the full, cleaned dataset. BUSCO scores represent the percent 

complete (i.e., 100% is an entirely complete transcriptome). 

 

Figure IV.2. Principal component analysis indicating general within-morph similarity in 

transcript abundance within our dataset. PCA computation was normalized as transcripts per 
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million. Each dot indicates one individual and the percentage of variation explained by the axes 

are presented. 

Differential expression and pathways: 

 Our results indicate that there are likely distinct differences in expression between color 

morphs. Principal component 1 (37.3% of variation explained) and principal component 2 

(21.0% of variation explained) both seem to be related to color morph (Figure IV.2). When we 

tested for differential expression we found a total of 2,845 transcripts (1.77% of our 

transcriptome) that were better explained by the inclusion of color morph of D. auratus than just 

the null, intercept model. Those transcripts are thus better explained by the inclusion of color 

morph as an explanatory variable and as a result should be considered differentially expressed 

between color morphs. From our list of candidate color genes, we found 58 transcripts better 

explained by our model including color morph (q value < 0.05) associated with 41 candidate 

color genes in total (see Table IV.2 and Figures IV.6, IV.7, and IV.8). In our analyses of gene 

function using all differentially expressed genes in PANTHER, we found that most of these 

genes were associated with either metabolic or cellular processes (Figure IV.3). Similarly, most 

of these genes contributed to either cell part or organelle cellular components (Figure IV.4). The 

molecular function was heavily skewed towards catalytic activity and binding, both of which are 

likely a result of the huge developmental reorganization involved in metamorphosis (Figure 

IV.5). 

Gene symbol q value Pathway Citation 

adam17 (2) 

0.0163; 

0.0469 

 Melanocyte development Bennett and Lamoreux 2003 

arfgap1 (2) 

0.00362; 

0.0267 

Putative guanine synthesis in 

iridophores Higdon et al. 2013 
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arfgap3 (4) 

0.00739; 

0.0000123; 

0.00132; 

0.0282 

Putative guanine synthesis in 

iridophores Higdon et al. 2013 

airc 

0.0126 

Guanine synthesis 

Tolstorukov and Efremov 1984; 

Sychrova et al. 1999 

atic 0.0447 Guanine synthesis in iridophores Higdon et al. 2013 

atox1 0.00124 Melanogenesis Hung et al. 1998; Klomp et al. 1997 

atp12a 
0.0296 

Melanogenesis Nelson et al. 2009 

bbs2 
0.0300 

Melanosome transport Tayeh et al. 2008 

bbs5 
0.0447 

Melanosome transport Tayeh et al. 2008 

bmpr1b 
0.0118 

Inhibits melanogenesis Yaar et al. 2006 

brca1 

0.0455 Alters pigmentation, produces 

piebald appearances in mice Ludwig et al. 2001; Tonks et al. 2012 

ctr9 

0.0280 

Melanocyte assembly 

Akanuma et al. 2007; Nguyen et al. 

2010 

dera  Guanine synthesis in iridophores Higdon et al. 2013 

dio2 (3) 

0.0338; 

0.0256; 

0.000866 
Thyroid hormone pathways, tenuous McMenamin et al. 2014 

dtnbp1 (2) 

0.00120; 

0.0456 Melanosome biogenesis (= 

melanogenesis?) Wei 2006 

ednrb (2) 

0.0035; 

0.0005 

Guanine synthesis in iridophores, 

melanoblast migration Higdon et al. 2013; Kelsh et al. 2009 

egfr (2) 

0.0197; 

0.000566 

Melanocyte pigmentation and 

differentiation Jost et al. 2000; Hirobe 2011 

fbxw4 (2) 

0.00268; 

0.0183 
Melanophore organization 

Kawakami et al. 2000; Ahi and Sefc 

2017 

gart 

0.0000494 Purine synthesis, affecting 

iridophores, xanthophores, and 

melanophores Ng et al. 2009 

gas1 (2) 

0.0264; 

0.0191 Guanine synthesis in iridophores Higdon et al. 2013 

gne (2) 

0.00571; 

0.0361 Sialic acid pathway Nie et al. 2016 

hps3 0.0202 Melanosome biogenesis Suzuki et al. 2001 

itgb1 (2) 

0.0191; 

0.0469 Guanine synthesis in iridophores Higdon et al. 2013 
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lef1 

0.0190 Melanocyte differentiation and 

development, melanogenesis Song et al. 2017 

leo1 0.0000381 Melanocyte assembly Johnson et al. 1995 

mitf 0.0466 Melanocyte regulation Levy et al. 2006; Hou and Pavan 2008 

mlph 0.00568 Melanosome transport Cirera et al. 2013 

mthfd1 0.0430 Purine synthesis Field et al. 2011 

mreg 0.0156 Melanosome transport Wu et al. 2012 

notch1 (3) 

0.00681; 

0.0139; 

0.0487 Melanocyte production Shouwey and Beerman 2008 

prtfdc1 0.00000672 Guanine synthesis Higdon et al. 2013 

qdpr 0.0372 Guanine and Pteridine synthesis Xu et al. 2014; Ponzone et al. 2004 

qnr-71 (2) 

0.0316; 

0.0262 Melanosomal protein Turque et al. 1996; Planque et al. 1999 

rab3d 

0.0321 Putative guanine synthesis in 

iridophores Higdon et al. 2013 

rab7a 

0.0319 Putative guanine synthesis in 

iridophores Higdon et al. 2013 

rabggta 0.000864 Guanine synthesis Swank et al. 1993 

scarb2 

0.0329 Putative guanine synthesis in 

iridophores Higdon et al. 2013 

shroom2 0.0142 Pigment accumulation Fairbank et al. 2006; Lee et al. 2009 

sox9 0.0228 Melanin production Passeron et al. 2007 

tbx15 0.00838 Pigmentation boundaries Candille et al. 2004 

tyrp1 0.0200 Melanogenesis Rieder et al. 2001 

xdh (2) 

0.0346; 

0.0384 Pteridine synthesis Thorsteinsdottir and Frost 1986 

 

Table IV.2. Differentially expressed candidate color genes in our Xenopus annotation. 

Parentheses in the gene symbol column indicate the number of transcripts that mapped to a 

particular gene. The pathway column indicates how this gene has been linked to coloration in 

previously published work. 
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Figure IV.3. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes 

in each biological process GO category out of the total number of genes. 

 

Figure IV.4. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes 

in each cellular component GO category out of the total number of genes. 
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Figure IV.5. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes 

in each molecular function GO category out of the total number of genes. 

 

Figure IV.6. Melanin pigmentation pathway in vertebrates. Here we highlight differentially 

expressed genes in our dataset with a red sun. 
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Figure IV.7. Log-fold expression levels of putatively melanophore-related genes in Dendrobates 

auratus. Each individual is represented on the x-axis, and each row in the y-axis represents 

expression levels for a transcript that annotated to an melanophore-related gene. Genes 

represented more than once mapped to multiple transcripts. Expression for this heatmap was 

calculated using the transcripts per million from Kallisto, to which we added 1 and log 
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transformed the data (i.e., expression = log(transcripts per million + 1)). The addition of 1 is 

done to avoid undefined behavior when taking the logarithm. 

 

Figure IV.8. Log-fold expression levels of putatively iridophore-related genes in Dendrobates 

auratus. Each individual is represented on the x-axis, and each row in the y-axis represents 

expression levels for a transcript that annotated to an iridophore-related gene. Genes represented 

more than once mapped to multiple transcripts. Expression for this heatmap was calculated using 

the transcripts per million from Kallisto, to which we added 1 and log transformed the data (i.e., 

expression = log(transcripts per million + 1)). The addition of 1 is done to avoid undefined 

behavior when taking the logarithm. 
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Discussion: 

The genetic mechanisms of color production are poorly known, particularly in 

amphibians. Here, we address this deficiency by providing some of the first genomic data 

relevant to color-production in amphibians, with a focus on gene expression in the skin during 

development. This allows us to pick out important genes likely to regulate color and pattern 

elements across different morphs of a highly variable species. By combining analyses of 

differential expression with a targeted search based on an extensive list of candidate genes for 

developmental control of coloration (approximately 500 genes), we identified multiple genes that 

have been demonstrated to play important roles in the production of color and color variation in 

vertebrate systems. These genes were differentially expressed between morphs in our dataset. 

The results of our genomic analyses provide further information that will contribute to our 

general understanding of the biochemical, physiological and morphological bases of coloration 

in amphibians generally, and poison frogs in particular.  

We found differential expression of multiple genes in two major suites of color genes, 

those that influence melanic coloration (black, brown, and grey) and iridophore genes (blue and 

green coloration). . Additionally, we found a few key pteridine pigment genes that are known to 

influence primarily yellow amphibian coloration that were differentially expressed between 

morphs. Given that our color morphs had a black versus brown color coupled with either blue or 

green pattern elements on top of the background, these results seem biologically relevant and 

indicative of genes that actually control color and pattern in Dendrobates auratus. As a result, 

we divide our discussion into three main parts, first we discuss the genes that influence dark 

background coloration before moving on to those that influence purine synthesis and iridophores. 
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We then discuss a few genes that are part of other pathways (e.g. pteridine synthesis), before 

proposing genes that have yet to be implicated in the production of color but are plausible 

candidate genes. 

 

Melanin-related gene expression: 

Our study frogs have skin with either a black or brown background, both of which are 

forms of melanic coloration, which provides the basis for contrasting patterns in many 

vertebrates as well as non-vertebrate taxa (Sköld et al. 2016). Melanin is synthesized from 

tyrosine in vertebrates, via the action of a set of key enzymes (e.g., tyrosinase, tyrosinase-like 

protein 1 and 2). This takes place in melanosomes, which are a type of organelle found in a form 

of chromatophore called a melanophore (or a melanocyte). Melanophores are derived from the 

neural crest, as are other types of chromatophores (Park et al. 2009). We identified a suite of 

differentially expressed genes that are involved in the production of melanophores and melanin 

in this study (Figure IV.6 and IV.7), many of which have been tied to the production of relatively 

lighter phenotypes in previous studies. 

For example, many of the differentially expressed color genes in our dataset are active 

contributors to the tyrosinase pathway (tyrp1, mitf, sox9, lef1, mlph, leo1, adam17, egfr, ednrb). 

This pathway, enzymatically regulated by tyrosinase and other enzymes and cofactors, is key to 

the production of melanin and similar compounds. The tyrp1 enzyme catalyzes several key steps 

in the melanogenesis pathway in melanosomes (and melanocytes). This protein has been shown 

to affect coloration in a wide variety of vertebrates (Murisier and Beermann 2006; Braasch et al. 

2009) and is important for maintaining the integrity of the melanocytes (Gola et al. 2012). In 

some mammals tyrp1 has been shown to change the relative abundances of the pigments 
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pheomelanin and eumelanin, thereby producing an overall lighter phenotype (Videira et al. 

2013), a pattern which our data mimic as tryp1 is not expressed in the blue-black morph, and 

only expressed at low levels in some San Felix individuals. Pheomelanin has only been identified 

in the skin of one species of frog (Wolnicka-Glubisz et al. 2012), and it is unclear whether 

pheomelanin is generally present in ectotherms. Further, mutations in tyrp1 change melanic 

phenotypes through different mechanisms in fish (and possibly other ectotherms) than in 

mammals (Braasch et al. 2009; Cal et al. 2017), and the mechanisms by which tyrp1 one affects 

pigmentation in amphibians are still being elucidated.  

The mitf (microphthalmia-associated transcription factor) locus codes for a transcription 

factor that plays a dominant role in melanogenesis, and has been called the “master regulator” of 

melanogenesis (Kawakami and Fisher 2017). In our study, mitf expression was lowest in the 

microspot population that appears visually to have the least melanic coloration, and mitf was 

most highly expressed in the blue-black morph. This transcription factor regulates several key 

enzymes in the melanogenesis pathway, including tyr, tyrp1, dct and pmel (D’Mello et al. 2016). 

The mitf locus is, itself, targeted by a suite of transcriptional factors including two which were 

differentially expressed in our dataset: sox9 and lef1. The sox9 gene is upregulated during 

melanocyte differentiation, is capable of promoting melanocyte differentiation by itself, and has 

been demonstrated to be an important melanocytic transcription factor (Cheung and Briscoe 

2003). Further, sox9 is up-regulated in human skin after UVB exposure and has been 

demonstrated to increase pigmentation. The asip gene, one of the most prominent color genes, 

actually downregulates sox9 expression and decreases pigmentation (Passeron et al. 2007). Sox9 

was not expressed in the microspot morph and was only expressed (at a low level) in one San 

Felix individual. 
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The lymphoid enhancer-binding factor locus (lef1) is a transcription factor that mediates 

Wnt signaling in the context of melanocyte differentiation and development, with important 

effects on melanogenesis (Song et al. 2017). Upregulation of this gene has been found to reduce 

synthesis of the darkest melanic pigment eumelanin, resulting in lighter coloration in mink and 

other vertebrates (Song et al. 2017). In this study, lef1 showed very low expression in the blue 

and black morph, compared to the other three morphs. Comparing the photos of the four morphs 

(Fig. 1), it can readily be seen that blue and black morph has substantially darker (black) 

background coloration, compared to the other three, which all have a lighter, brownish 

background coloration indicating that lef1 is a likely contributor to the background dorsal 

coloration between color morphs in Dendrobates auratus.  

Just as mitf is a target of the transcription factors lef1 and sox9, mitf targets endothelin 

receptors, a type of G Protein Coupled Receptor (Braasch and Schartl 2014). Endothelin 

receptors mediate several crucial developmental processes, particularly the development of 

neural crest cell populations (Braasch and Schartl 2014). Three paralogous families of these 

receptors have been identified in vertebrates: endothelin receptor B1 (ednrb1), endothelin 

receptor B2 (ednrb2), and endothelin receptor A (ednra). Ednrb is involved in producing the 

different male color morphs of the Ruff (a sandpiper), and it is only expressed in black males 

(Ekblom et al. 2012). In our study, ednrb is not expressed in the blue-black morph, and only one 

of the ednrb transcripts is expressed in the San Felix morph. Mutations in ednrb1 and ednrb2 

have been found to affect pigment cell development (especially melanocytes and iridophores) in 

a variety of vertebrate species (Braasch and Schartl 2014). These receptors show divergent 

patterns of evolution in the ligand-binding region in African lake cichlids, and appear to have 

evolved divergently in association with adaptive radiations in this group (Diepeveen and 
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Salzburger 2011). The ednrb2 (endothelin receptor B2) locus encodes a transmembrane receptor 

that plays a key role in melanoblast (a precursor cell of the melanocyte) migration (Kelsh et al. 

2009). This receptor interacts with the edn3 ligand. Mutations affecting this ligand/receptor 

system in Xenopus affect pigment cell development (Kawasaki-Nishihara et al. 2011).  

Melanophore-based coloration is also influenced by mutations in the hps3 (Hermansky-

Pudlak Syndrome 3) locus; mutations at this locus are associated with a subtype of the 

Hermansky-Pudlak Syndrome (which generally results in decreased pigmentation). The HPS3 

protein mediates trafficking of key melanogenesis enzymes into melanocytes, and variants of this 

protein with reduced activity result in inefficient trafficking, reduction in the delivery of key 

enzymes (e.g. tyrosinase) to melanosomes, and hypopigmentation (Boissy et al. 2005). Hps3 is 

not expressed in the San Felix population, which only exhibits brown and not black color. 

Similarly, mutations in a closely related gene (hps5) in Xenopus causes the “no privacy” 

phenotype, in which both melanophores and iridophores are missing, resulting in a transparent 

body phenotype (Nakayama et al. 2017). The dtnbp1 (dystrobrevin binding protein 1) locus is 

involved in melanosome biogenesis, and defects in this gene can also cause a subtype of the 

Hermansky-Pudlak syndrome, again associated with hypopigmentation (Wei 2006). We have 

two differentially expressed dtnbp1 transcripts that have near-opposite expression. It is possible 

that these two transcripts are components of different alternatively spliced transcript isoforms 

from the same gene which are contributing to different functions between color morphs, but 

without better genomic resources we would be unable to determine if these are isoforms, 

sequencing error, or result from the specific algorithms of our assemblers.   
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The F-box and WD repeat domain containing 4 locus (fbxw4), known as the hagoromo 

locus after a mutant zebrafish line, is an F-Box protein that affects stripe formation in zebrafish, 

through effects on melanophores (Kawakami et al. 2000). Variation in the expression of this 

gene has been implicated in variation in the orientation and density of stripes with respect to the 

body axis across different species of cichlids (Ahi and Sefc 2017) and is also associated with 

divergence in color pattern across East African cichlids (Terai et al. 2002, 2003). We have two 

differentially expressed transcripts that map to fbwx4, neither of which are very highly expressed 

although there are subtly different expression patterns between these transcripts. The leo1 (LEO1 

Homolog) and ctr9 (CTR9 Homolog) loci are both components of the yeast polymerase-

associated factor 1 (Paf1) complex, which affects the development of the heart, ears and neural 

crest cells in zebrafish, with dramatic downstream effects on pigment cells and pigmentation, 

and on the Notch signaling pathway (Akanuma et al. 2007; Nguyen et al. 2010). Perhaps 

unsurprisingly then, we found that notch1, a well-known member of the Notch Signaling 

Pathway, was differentially expressed between color morphs. Mutations in this gene are known 

to affect skin, hair and eye pigmentation in humans through effects on melanocyte stem cells 

(Schouwey and Beermann 2008). The gne (glucosamine (UDP-N-acetyl)-2-epimerase/N-

acetylmannosamine kinase) locus (also differentially expressed) likely contributes to red versus 

white coloration in the skin of chickens (Nie et al. 2016).    

A number of other melanogenesis-related genes were found to be differentially expressed 

between morphs, such as brca1. Mice with a homozygous mutation of the tumor suppressing 

brca1 gene show altered coat coloration, often producing a piebald appearance (Ludwig et al. 

2001). The precise mechanism behind this is not clear, and it may involve either mitf or p53 

(Beuret et al. 2011; Tonks et al. 2012). Bmpr1b is a bone morphogenic protein which is known to 
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inhibit melanogenesis; when bmpr1b is downregulated via UV exposure it enhances melanin 

production and leads to darker pigmentation (Yaar et al. 2006). Some of the other genes (e.g. 

mlph, or melanophilin) show the same pattern of expression across morphs as lef1, suggesting 

that multiple genes may contribute to the difference between lighter and darker background 

coloration in this species. The product of the melanophilin gene forms a complex that combines 

with two other proteins and binds melanosomes to the cell cytoskeleton, facilitating melanosome 

transport within the cell. Variants of this gene are associated with “diluted”, or lighter-colored, 

melanism in a number of vertebrates (Cirera et al. 2013). Similarly, the mreg (melanoregulin) 

gene product functions in melanosome transport and hence is intimately involved in 

pigmentation (Wu et al. 2012). Mutations at this locus cause “dilute” pigmentation phenotypes in 

mice. The egfr (epidermal growth factor receptor) locus is a type-1 tyrosine kinase receptor 

involved in skin and retinal pigmentation, and has been under positive selection in some human 

populations (Quillen et al. 2012; Hider et al. 2013). This gene influences the proliferation and 

differentiation of melanocytes through indirect mechanisms (Hirobe 2011). 

In summary, we have found a number of differentially expressed genes that influence 

melanic coloration which seem to be important between color morphs with a true, black 

background pattern versus those with a more dilute, brown colored background pattern. This 

result parallels similar findings in Oophaga histrionica, a species of poison frog in which 

mutations in the mc1r gene affecting melanogenesis have produced a lighter, more brownish 

background in some populations (Posso-Terranova and Andrés 2017). Although mc1r is not 

differentially expressed in our dataset (or even identified in our assembled transcriptome), our 

results show gene expression patterns of many genes which are ultimately influenced by mc1r 

activity. We find that poison frogs can achieve the same color pattern differences expressed by a 
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mutation in mc1r by up or down regulating other genes that contribute to melanogenesis, 

melanocyte proliferation, and melanocyte differentiation. It is possible that allelic variants of 

mc1r between our color populations could produce the gene expression patterns we have seen 

here.   

 

Purine synthesis and iridophore genes: 

Higdon et al. (2013) identified a variety of genes that are components of the guanine 

synthesis pathway and show enriched expression in zebrafish iridophores. A number of these 

genes (hprt1, ak5, dera, ednrb2, gas1, ikpkg, atic, airc, prtfdc1) were differentially expressed 

between the different morphs of D. auratus investigated here (Figure 8). The gart gene codes for 

phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, 

phosphoribosylaminoimidazole synthetase, a tri-function enzyme that catalyzes three key steps 

in the de novo purine synthesis pathway (Ng et al. 2009). This locus has been associated with 

critical mutations affecting all three types of chromatophores in zebrafish, through effects on the 

synthesis of guanine (iridophores), sepiapterin (xanthophores) and melanin (melanocytes)(Ng et 

al. 2009). Zebrafish mutants at this locus can show dramatically reduced numbers of iridophores, 

resulting in a lighter, or less saturated color phenotype. Similarly, the airc gene plays a critical 

role in guanine synthesis, and yeast with mutations in this gene leading to aberrant forms of the 

transcribed protein are unable to synthesize adenine and accumulate a visible red pigment 

(Tolstorukov and Efremov 1984; Sychrova et al. 1999). Both airc and gart had similar 

expression patterns and were very lowly expressed in the mostly green microspot population. 

The mthfd (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and 

formyltetrahydrofolate synthetase 1) gene also affects the de novo purine synthesis pathway 
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(Christensen et al. 2013). The gene prtfdc1 is highly expressed in iridophores, and encodes an 

enzyme which catalyzes the final step of guanine synthesis (Higdon et al. 2013); prtfdc1 was not 

expressed in the dark blue-black morph, but was highly expressed in the San Felix and super 

blue morphs, both of which have visible ‘sparkles’ on the skin which likely come from 

iridophores. These genes are likely candidates to affect coloration in Dendrobates auratus given 

that both the green and blue pattern elements are probably iridophore-dependent colors. 

How the guanine platelets are formed in iridophores remains an open question. Higdon et 

al. (2013) proposed that ADP Ribosylation Factors (ARFs) and Rab GTPases are likely to play 

crucial roles in this context. ARFs are a family of ras-related GTPases that control transport 

through membranes and organelle structure. We identified one ARF protein (arf6) and two ARF 

activating proteins (arfgap1 and arfgap2) that were differentially expressed across the D. auratus 

morphs. We also identified four different Rab GTPases as differentially expressed (rab1a, rab3c, 

rab3d, rab7a). Mutations at the rabggta (Rab geranylgeranyl transferase, a subunit) locus cause 

abnormal pigment phenotypes in mice (e.g. “gunmetal”), are known to affect the guanine 

synthesis pathway (Gene et al. 2001), and are similarly differentially expressed between color 

morphs in our dataset.  

 

Pteridine synthesis: 

A number of the genes identified as differentially expressed are involved in copper 

metabolism (sdhaf2, atox1, atp7b). Copper serves as a key cofactor for tyrosinase in the 

melanogenesis pathway and defects in copper transport profoundly affect pigmentation (Setty et 

al. 2008). Another gene, the xanthine hydrogenase (xdh) locus, was also found to be 
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differentially expressed between morphs, and this gene, which is involved in the oxidative 

metabolism of purines, affects both the guanine and pteridine synthesis pathways. Additionally, 

it has been shown to be critically important in the production of color morphs in the axolotl. 

When xdh was experimentally inhibited axolotls had reduced quantities of a number of pterins, 

and also had a dramatic difference in color phenotype with xdh-inhibited individuals showing a 

‘melanoid’ (black) appearance (Thorsteinsdottir and Frost 1986). Furthermore, xdh deficient 

frogs show a blue coloration in typically green species (Frost 1978; Frost and Bagnara 1979). We 

note here that one xdh transcript showed little (one individual) or no (2 individuals) expression in 

the bluest morph (blue-black). Similarly, when pigments contained in the xanthophores that 

absorb blue light are removed, this can lead to blue skin (Bagnara et al. 2007). Another gene 

involved in pteridine synthesis is qdpr (quinoid dihydropteridine reductase), which is only 

expressed in the populations with a lighter blue or green coloration. Mutations in this gene result 

in altered patterns of pteridine (e.g. sepiapterin) accumulation (Ponzone et al. 2004). 

 

Novel candidate genes for coloration: 

In addition to those genes that have previously been linked to coloration which we have 

identified in our study, we would like to propose some other genes based on their expression 

patterns in our data. Although most research on blue coloration focuses on Tyndall scattering 

from iridophores, this has generally not been explicitly tested and there is some evidence that 

blue colors may arise through different mechanisms (reviewed in (Bagnara et al. 2007). In 

particular, there is evidence that blue in amphibians can come from the collagen matrix in the 

skin, as grafts in which chromatophores failed to thrive show a blue coloration (Bagnara et al. 
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2007). Furthermore, keratinocytes surround melanocytes, and they play a key role in 

melanosome transfer (Ando et al. 2012). In light of this evidence, we propose a number of 

keratinocyte and collagen genes which are differentially expressed in our dataset as further 

candidate genes for coloration. Amongst these are krt12 (two differentially expressed transcripts) 

and krt18, col1a1 (six transcripts), col5a1 (five transcripts), and col14a1 (two transcripts). These 

genes, and those like them, may be playing a critical role in coloration in these frogs. 

 

Differentially expressed genes unrelated to color: 

 Metamorphosis is a taxing time for species which undergo this developmental change. 

Since we collected samples at the end of metamorphosis during tail resorption, we would expect 

many of the genes being expressed at this time are associated with these developmental 

processes. Indeed, many of the most highly expressed and most highly differentially expressed 

genes are related to metamorphic processes. Many of these genes are highly expressed during 

metamorphosis in a number of examined amphibian species (e.g., aebp1, ddx5, krt17, mmp2; 

data in Sanchez et al. 2018). For example, two of the top 20 rank order genes annotate to matrix 

metallopeptidase 2 (mmp2), which likely plays a role in the process of tail resorption (Sanchez et 

al. 2018). Other genes (krt17, col5a2, lamc2) play various roles in the organization of 

intermediate filaments and the skin, so these may either play a role in skin changes during 

metamorphosis, the production of colors, or both (Bateman et al. 2017). The protein 

dipeptidylpeptidase 3 (dpp3), has been shown to be important in the regeneration of limbs in 

Xenopus laevis, a process which mimics metamorphic processes (King et al. 2009). Annexin A6 

(anxa6) was also differentially expressed between color morphs, anxa6 has also been 
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upregulated in other amphibian species reaching metamorphosis (Sanchez et al. 2018). We also 

found two transcripts in the top 20 differentially expressed genes which mapped to the mtDNA, 

cytochrome c oxidase subunit I and III, and these may also be as a direct result of the challenges 

of metamorphosis.  

 

Conclusion: 

 The mechanisms that produce coloration in both amphibians and aposematic species are 

poorly characterized. Here we have taken a transcriptomics-based approach to elucidating the 

genetic mechanisms underlying color and pattern development in a poison frog. We produced the 

first skin transcriptome of Dendrobates auratus and examined expression patterns of candidate 

color genes in different color morphs. Unlike other studies investigating color variation in 

aposematic species, we found that many loci that appear to play a role in coloration in this 

system. We found a suite of differentially expressed color genes that are involved in melanic 

coloration, as well as a group of genes involved in guanine synthesis and iridophore development 

that were differentially expressed between morphs. These results make sense in the context of 

the overall color and pattern of these frogs, and provide a number of promising starting points for 

future investigations of the molecular, cellular and physiological mechanisms underlying 

coloration in amphibians. 
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Abstract: 

Evolutionary biologists have long investigated the ecological and mechanistic factors that 

produce the diversity of animal coloration we see in the natural world. In aposematic species, 

color and pattern is directly tied to survival and understanding the origin of the phenotype has 

been a focus of both theoretical an empirical inquiry. Counterintuitively, phenotypes in 

aposematic species are highly diverse, both within and between populations. In order to better 

understand this diversity, we examined gene expression in skin tissue during development in four 

different color morphs of the aposematic mimic poison frog, Ranitomeya imitator. In addition to 

overall differences in expression, we looked at a suite of a priori color-related genes and 

identified both the pattern of expression in these genes over time as well as differences between 

these morphs. We identified a set of candidate color genes that are differentially expressed over 

time or across populations. Most of these contribute to the better known melanophore-based 

pigmentation, but we also identify genes that are involved in iridophore and xanthophore-based 

pigmentation.  
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Introduction: 

The diversity of animal coloration in the natural world has long been a focus of 

investigation in evolutionary biology. Color phenotypes are profoundly impacted by both natural 

and sexual selection, and color phenotypes are often under selection from multiple different 

biotic and abiotic sources (Rudh and Qvarnström 2013). For example, in some species color 

pattern has evolved in the context of both predator avoidance and thermoregulation (Hegna et al. 

2013). The underlying mechanisms behind color and pattern phenotypes are of general interest, 

particularly in systems in which color phenotypes are varied and yet likely to be under intense 

selection. 

One such example is adaptive radiation, in which a species or group of species has 

undergone rapid phenotypic diversification under selection. There are well-documented 

examples of this, for example, in sticklebacks (Schluter 1995), cichlid fishes (Seehausen 2006), 

and Hawaiian spiders (Gillespie 2004). Adaptive radiations can be driven by various factors, 

including strong, frequency dependent selection imposed by predation (Nosil and Crespi 2006). 

The dendrobatid poison frog Ranitomeya imitator underwent a rapid adaptive radiation to mimic 

multiple established congeneric poison frogs and gain protection from predators—a case of 

Mullerian mimicry (Symula et al. 2001, 2003, Stuckert et al. 2014a,b). For these frogs and other 

species that exhibit Mullerian mimicry, it is clear that the comimetic species involved experience 

strong selection to maintain local color phenotypes, for example, in Heliconius butterflies 

(Mallet and Barton 1989), velvet ants (Wilson et al. 2015), and millipedes (Marek and Bond 

2009). Although it is historically predicted that mimicry (and aposematism in general) should be 

locally monomorphic, geographic variation in color and pattern appear to be the norm in both 

aposematic and mimetic species (Joron and Mallet 1998). 
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This kind of variation has long been a focus of scientific interest, both at the proximate 

and ultimate level. Several experiments have revealed that local predators exert purifying 

selection (Hensel and Brodie 1976; Hegna et al. 2011; Paluh et al. 2014). However, over 

geographic distances genetic drift and heterogeneity in local predator communities are likely to 

be sufficient to produce the geographical mosaics in color and pattern seen in many aposematic 

and mimetic species (Ruxton et al. 2004; Sherratt 2006; Nokelainen et al. 2012). Determining the 

underlying genetic architecture of these changes has been a primary thrust in recent decades. 

Researchers have been able to pin down some key genetic loci in Heliconius butterfly mimicry 

systems e.g., WntA (Martin et al. 2012) and optix (Reed et al. 2011; Supple et al. 2013), though 

there are many others likely involved as well (Kronforst and Papa 2015). Interestingly, it seems 

that only a handful of loci control the different phenotypes produced in certain mimetic 

complexes, and that supergenes may be critically important in the diversity of mimetic 

phenotypes we see in nature in Mullerian mimicry in Heliconius and Batesian mimicry in Papilio 

butterflies (Kunte et al. 2014; Kronforst and Papa 2015; Nishikawa et al. 2015). However, the 

general applicability of this trend remains unclear. Preliminary evidence indicates that this may 

be a common pattern, as color and pattern in the analogous poison frog mimicry system also 

appear to be controlled by a small number of genes, at least in one admixture zone between 

mimetic morphs (Vestergaard et al. 2015). 

Here we attempt to characterize the genetic architecture of coloration in this mimetic 

system by examining gene expression and its timing across a developmental time series of the 

skin of the Peruvian poison frog Ranitomeya imitator. This is a polytypic species which exhibits 

substantial geographic phenotypic variation and convergence on the appearance of sympatric, 

previously established congeners (Symula et al. 2001, 2003). Thus, this species provides a good 
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opportunity to examine gene expression as it relates to color and pattern in an adaptive radiation. 

Color in this species develops early in life as a tadpole, which is consistent with observations that 

chromatophores develop early in embryonic life from the neural crest (DuShane 1935). We 

examine gene expression using RNA sequencing from four different mimetic color populations 

of R. imitator (Figure V.1), each from four different time points during early development. These 

different populations represent a variety of both colors and patterns, providing a good 

opportunity to examine the underlying genetic basis of these traits. First, we consider overall 

gene expression patterns during development and across color morphs. Then we examine 

expression, timing, and morph-based differences of candidate color genes compiled from other 

taxa. Our results provide insight into the genetic architecture of color and pattern in amphibians, 

and our data provide a key repository for examining gene expression during development—in 

and of itself a highly valuable resource.  

 

Methods: 

Tadpole collection: 

The initial breeding stock of Ranitomeya imitator were purchased from Understory 

Enterprises, LLC (Chatham, Canada). Frogs used in this project are captive bred from the 

following populations: Baja Huallaga (yellow-striped), Sauce (orange-banded), Tarapoto (green-

spotted), and Varadero (red-headed; see Figure 1). Frogs were placed in breeding pairs in 5-

gallon terraria that had small, approximately 13 cm PVC pipes filled halfway with water. We 

removed tadpoles from the tanks to hand rear after the male transported them into the pools of 

water. Although in the wild Ranitomeya imitator feeds unfertilized eggs to tadpoles, they are 

facultative egg feeders and tadpoles can survive and thrive on other food items (Brown et al. 
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2008). Tadpoles were raised on a diet of Omega One Marine Flakes fish food mixed with Freeze 

Dried Argent Cyclop-Eeze, which they received three times a week, with full water changes 

twice a week until sacrificed for analyses at 2, 4, and 7, and 8 weeks of age. Tadpoles reached 

the onset of metamorphosis around week 7, and had metamorphosed and were resorbing the tail 

at 8 weeks old. These four sampling periods correspond to roughly Gosner stages 25, 27, 42, and 

44 (Gosner 1960).  

 
 

Figure V.1. Representatives of the four color morphs of Ranitomeya imitator used in this study. 

Clockwise from top left: orange-banded morph from Sauce, yellow-striped morph from Baja 

Huallaga, orange-headed morph from Varadero, and the green-spotted morph from Tarapoto. 
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Tadpoles were anesthetized with Orajel (20% benzocaine), then sacrificed via pithing. 

The entirety of the skin was removed, put into RNA later, and stored at -20° C until RNA 

extraction. RNA was extracted from the whole skin using a standardized Trizol protocol, cleaned 

with DNAse and RNAsin, and purified using a Qiagen RNEasy mini kit. Libraries were prepared 

using standard poly-A tail purification, prepared using Illumina primers, and individually 

barcoded using a New England Biolabs Ultra Directional kit. Individually barcoded samples 

were pooled and sequenced on an Illumina HiSeq 2500 at the New York Genome Center. Reads 

were paired end and 50 base pairs in length and sequenced to a mean depth of 24.45M reads ± 

8.6M sd (range: 10.1-64.M).  

 

Transcriptome assembly: 

 Choosing a single individual or treatment to assemble a transcriptome could plausibly 

influence the quality of our transcriptome and bias our results. Evidence indicates that there is a 

substantial diminishment of returns in terms of transcriptome assembly quality over 20-30 

million reads (MacManes 2017). Therefore, we concatenated all reads into a single forward and a 

single reverse read and then randomly subsampled 40 million reads from both the forward and 

reverse reads using seqtk (https://github.com/lh3/seqtk). We assembled our transcriptome from 

this subsampled data using the Oyster River Protocol version 1.1.1 (MacManes 2017). Initial 

error correction was done using RCorrector 1.01 (Song and Florea 2015), followed by an 

aggressive adaptor removal and gentle quality trimming using trimmomatic version 0.36 at a 

Phred score of ≤ 3 (Bolger et al. 2014) as aggressive quality trimming decreases assembly 

completeness (MacManes 2014). The Oyster River Protocol (MacManes 2017) assembles a 

transcriptome by using a series of different transcriptome assemblers and also multiple kmer 
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lengths, merging them into a single transcriptome. Assemblies were conducted using Trinity 

version 2.4.0 (Grabherr et al. 2011), Shannon version 0.0.2 (Kannan et al. 2016), and SPAdes 

assembler version 3.11 with a kmer length of 35 (Bankevich et al. 2012). This is slightly 

different than the published Oyster River Protocol as it specifies kmer lengths of 55 and 75, but 

our sequences are 50 base pairs long and thus the larger kmer lengths would be inappropriate. 

These individually built transcriptomes were then merged together using OrthoFuser (MacManes 

2017). Finally, transcriptome quality was assessed using BUSCO version 3.0.1 (Simão et al. 

2015) and TransRate 1.0.3 (Smith-Unna et al. 2016).  

 

Downstream analyses: 

 We annotated our transcriptome using the peptide databases corresponding to frog 

genomes for Xenopus tropicalis (NCBI Resource Coordinators 2016), Nanorana parkeri (Sun et 

al. 2015), and Rana catesbeiana (Hammond et al. 2017) as well as the UniRef90 database 

(Bateman et al. 2017) using Diamond version 0.9.10 (Buchfink et al. 2015). We then pseudo-

quantified alignments for each sample and technical replicate using Kallisto version 0.43.0 (Bray 

et al. 2016) and examined differential expression of transcripts in R version 3.4.2 (Team 2017) 

using Sleuth version 0.29.0 (Pimentel et al. 2017). Since we sequenced samples on three separate 

lanes of the HiSeq2500, we accounted for this using the lane each sample was sequenced on as a 

fixed effect in our subsequent models. We analyzed changes in gene expression over the course 

of development with a likelihood ratio test comparing tadpole age and sequencing lane as fixed 

effects to a simplified, null model of the overall data with only lane as a fixed effect. In addition 

to examining overall differential expression between morphs, we examined differential 

expression in an a priori group of candidate color genes. To examine genes differentially 
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expressed between color morphs, we built a model with color morph and lane as a fixed effect, 

and conducted a likelihood ratio test comparing this to a simplified model with just the lane to 

control for batch effects.  Further, we built a model comparison similar to both of the above, but 

including an interaction effect between population and tadpole age. Unfortunately, because the 

interaction represents 16 different groups, we lacked statistical power to make inferences from 

this model and these results are not included. In addition, we used PANTHER (Mi et al. 2017) to 

quantify the distribution of differentially expressed genes annotated to Xenopus tropicalis into 

biological processes, molecular functions, and cellular components. We also used PANTHER 

(Mi et al. 2017) to test for overrepresentation of genes and pathways. Tests were conducted using 

Fisher’s exact test, and corrected for multiple comparisons by using False Discovery Rate. 

 

Results: 

Transcriptome assembly: 

After conducting the Oyster River Protocol (MacManes 2017), we had a transcriptome 

containing 87,691 total transcripts. Our BUSCO score was 92.7%, indicating that our dataset 

contains the majority of conserved genes that we would expect to see in a eukaryote. We 

additionally calculated the transrate score, which is an assessment of whether contigs are 

accurate, complete, and non-redundant. Although our transrate score was good (0.32867), 

transrate also provides an optimal score of “good” contigs which are well supported by the data. 

Given that our optimal score was much higher (0.50121), we examined the completeness of 

those genes, and found an overall minimal effect on our BUSCO scores (89.8%). Therefore, we 

chose to do all downstream analyses with the “good” contigs from transrate, yielding a total of 

48,920 transcripts. Using our frog genome peptide databases (Xenopus tropicalis (NCBI 
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Resource Coordinators 2016), Nanorana parkeri (Sun et al. 2015), and Rana catesbeiana 

(Hammond et al. 2017)) and the UniRef90 database (Bateman et al. 2017), we successfully 

annotated 25,612 transcripts (52.3% of our total transcriptome). 

 

Differential expression: 

We found a total of 11,646 transcripts differentially expressed during different time points in 

development. Of these, we found 148 transcripts mapping to 109 color genes that were in our a 

priori color gene list. Further, we found 8,744 transcripts differentially expressed between 

populations of Ranitomeya imitator. Of these, we found 97 transcripts mapping to 81 color genes 

that were in our a priori color gene list. Despite the number of candidate color genes which were 

differentially expressed either throughout time or between populations, only eight were in 

common between the two (dtnbp1, elovl3, ift27, phactr4, qdpr, trim33, tyrp1, slc31a1).  

 

Gene Ontology analyses: 

 Overall, we found relatively similar gene ontology (GO) results to Xenopus tropicalis, 

especially for our analysis of genes differentially expressed over time. Therefore, results 

presented here are limited to GO terms for genes differentially expressed between populations. In 

the analysis of statistical overrepresentation of GO terms associated with cellular components 

(Figure V.2), nothing obviously color-related is statistically significant. When we examined 

molecular function (Figure V.3), we found guanyl-nucleotide exchange factor activity 

(GO:0005085, qvalue = 0.0317), GTPase activity (GO:0003924, qvalue = 0.0000302), small 

GTPase regulator activity (GO:0005083, qvalue = 0.0122), oxidoreductase activity 

(GO:0016491, qvalue = 0.000000422), G-protein coupled receptor activity (GO:0004930, qvalue 
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= 1.74E-28), and glutamate receptor activity (GO:0008066, qvalue = 0.0195). Furthermore, we 

found a number of molecular function terms which may be related to toxin sequestration between 

populations; these include ion channel activity (GO:0005216, qvalue = 0.00538), ligand-gated 

ion channel activity (GO:0015276, qvalue = 0.00939), and voltage-gated potassium channel 

activity (GO:0005249, qvalue = 0.0106). There are also a number of putatively color-related GO 

terms in the biological processes analyses (Figure V.4). Among these are the pteridine-

containing compound metabolic process (GO:0042558, qvalue = 0.00906), nucleobase-

containing compound transport (GO:0015931, qvalue = 0.00699), nucleobase-containing 

compound metabolic process (GO:0006139, qvalue = 1.40E-20), cellular component 

organization or biogenesis (GO:0071840, qvalue = 2.74E-16), cytoskeleton organization 

(GO:0007010, qvalue = 0.00486), and the G-protein coupled receptor signaling pathway 

(GO:0007186 qvalue = 0.0000223). 
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Figure V.2. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes in 

each cellular component GO category out of the total number of genes. 
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Figure V.3. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes in 

each molecular function GO category out of the total number of genes. 

 

 

Figure V.4. Gene ontology terms from PANTHER. Pie chart slices depict the number of genes in 

each biological process GO category out of the total number of genes. 
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Figure V.5. Log-fold expression levels of putatively melanophore-related genes in Ranitomeya 

imitator. Each individual is represented on the x-axis (represented as population then weeks old, 

ie, Huallaga_2 is a two week old tadpole from the Huallaga population), and the y-axis 

represents expression levels for each transcript that annotated to a melanophore-related gene. 

Genes represented more than once mapped to multiple transcripts. Expression for this heatmap 

was calculated using the normalized estimated counts from Kallisto, to which we added 1 and 

log transformed the data (i.e., expression = log(estimated counts + 1)). The addition of 1 is done 

to avoid undefined behavior when taking the logarithm. 
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Figure V.6. Log-fold expression levels of putatively iridophore-related genes in Ranitomeya 

imitator. Each individual is represented on the x-axis (represented as population then weeks old, 

ie, Huallaga_2 is a two week old tadpole from the Huallaga population), and the y-axis 

represents expression levels for each transcript that annotated to a iridophore-related gene. Genes 

represented more than once mapped to multiple transcripts. Expression for this heatmap was 

calculated using the normalized estimated counts from Kallisto, to which we added 1 and log 

transformed the data (i.e., expression = log(estimated counts + 1)). The addition of 1 is done to 

avoid undefined behavior when taking the logarithm. 
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Figure V.7. Log-fold expression levels of putatively pteridine-related genes in Ranitomeya 

imitator. Each individual is represented on the x-axis (represented as population then weeks old, 

ie, Huallaga_2 is a two week old tadpole from the Huallaga population), and the y-axis 

represents expression levels for each transcript that annotated to a pteridine-related gene. Genes 

represented more than once mapped to multiple transcripts. Expression for this heatmap was 

calculated using the normalized estimated counts from Kallisto, to which we added 1 and log 

transformed the data (i.e., expression = log(estimated counts + 1)). The addition of 1 is done to 

avoid undefined behavior when taking the logarithm. 
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Discussion: 

 The genetic, biochemical, cellular, physiological and morphological mechanisms that 

control coloration in adaptive radiations are of interest because of the obvious implications for 

survival and selection. Further, these mechanisms in amphibians are poorly characterized, 

particularly compared to better known groups like mammals and fish. Here we provide data and 

analyses that facilitate inferences concerning the genes contributing to different color phenotypes 

between populations in a highly variable, polytypic poison frog. Further, we provide evidence for 

the timing of expression for many candidate color genes, indicating when these genes are 

contributing to color and pattern development.  

Vertebrate ectotherms (fish, amphibians, and reptiles) exhibit a vast variety of colors and 

patterns. This variability is largely driven by the interaction of the three structural chromatophore 

types (melanophores, iridophores, and xanthophores) and the pigments and structural elements 

found within them (e.g. melanins, pteridines and guanine platelets; Mills & Patterson 2009). Our 

discussion is structured so that we move from the genes contributing to the most basal layer 

(melanophores and melanin) through to those genes likely influencing the outermost layer of 

chromatophores (xanthophores). Although we cannot discuss all of the differentially expressed 

candidate color genes, we highlight those that seem most important based on previous research 

in other taxa. 

 

Melanophores and melanin: 

 The four morphs of Ranitomeya imitator used in this study have pattern elements on top 

of a generally black dorsum and legs. In vertebrates, black coloration is caused by light 

absorption by melanin in melanophores or (in mammals and birds) in the epidermis (Sköld et al. 
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2016). Melanophores (and the other chromatophores) originate from populations of cells in the 

neural crest early in development (Park et al. 2009). Given the timing of melanin synthesis and 

our sampling scheme, it is unsurprising that many of our differentially expressed candidate genes 

are in this pathway. Melanin is synthesized from tyrosine, and this synthesis is influenced by a 

variety of different signaling pathways (e.g., Wnt, cAMP, and MAPK), many of which influence 

mitf (microphthalmia-associated transcription factor, known as the “master regulator gene” of 

melanogenesis), a gene which encodes the melanogenesis associated transcription factor (Videira 

et al. 2013; D’Mello et al. 2016). It is therefore unsurprising that mitf is constitutively expressed 

across populations and time in our study. The gene creb1 (cAMP responsive element binding 

protein 1) is a binding protein in the cAMP pathway, which ultimately influences the 

transcriptional factor mitf, and the expression of this gene increases dramatically over time in R. 

imitator tadpoles as they show increasing pigmentation. The upregulation of creb1 causes mitf to 

increase melanin synthesis (D’Mello et al. 2016). Intriguingly, frogs from the Varadero 

population typically have the lowest amount of black overall (see Figure 1), and they also exhibit 

the lowest level of mitf expression. This, coupled with evidence that mitf plays a role in the 

production of black versus brown coloration in the poison frog Dendrobates auratus (Stuckert et 

al., Chapter 4), indicates that this gene likely plays a critical role in melanin synthesis and the 

relative darkness of pigmentation in amphibians generally. This is not surprising, as mitf is 

highly conserved throughout vertebrates (Lister et al. 1999).  

The melanogenesis transcription factor increases melanin synthesis through an interaction 

with the enzymes tyrosinase (tyr), tyrosinase-like protein 1 (tyrp1) and dopachrome tautomerase 

(dct), which are key elements in melanin biosynthesis (Park et al. 2009). Although tyr is 

expressed even in our youngest tadpoles, there is a dramatic increase in tyr expression over the 
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course of development. During this time, tadpoles go from a very light, almost transparent gray 

color to a much darker background color with red, orange, yellow or green colored regions 

overlaying this black color. The phenotype and correlated expression of tyr indicate that 

tyrosinase is likely a key component of melanin biosynthesis in poison frogs. Furthermore, 

expression of dopachrome tautomerase follows this same expression pattern, as it rapidly 

increases during development. While both dct and tyr expression increased over time in our 

study, tyrp1 expression substantially decreased over time. Although we cannot say why this is 

with certainty, it may be because tyrp1 seems to play a role in switching melanin synthesis from 

the production of eumelanin to pheomelanin. This has been shown to play a role in producing an 

overall lighter phenotype (Murisier and Beermann 2006; Videira et al. 2013). Similarly, tyrp1 is 

differentially expressed between color morphs of another poison frog (Stuckert et al., Chapter 4), 

providing some evidence that the decrease in expression of tyrp1 may be related to the 

production of eumelanin over pheomelanin. However, this is speculative, as to date pheomelanin 

has only been identified in one species of frog, Pachymedusa dacnicolor (Wolnicka-Glubisz et 

al. 2012). One alternative explanation for the expression of tyrp1 over time is its expression 

pattern in the Varadero population relative to the others. The two-week old Varadero tadpoles 

had very high expression of tyrp1, which may be driving the temporal pattern. Given that tyrp1 

has been associated with pheomelanin and red-brown colors, its expression in the red-headed 

Varadero population indicates that pheomelanin may be contributing to red coloration in this 

population. Curiously, the gene slc24a5 (sodium/potassium/calcium exchanger 5) is 

differentially expressed between populations, and expression was nearly absent in the Varadero 

tadpoles. A non-synonymous mutation of this gene is known to produce lighter pigmentation in 

human populations (Basu Mallick et al. 2013), and the “golden” zebrafish is caused by a 
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mutation in the slc24a5 gene which produces an abnormally pink-tinged fish (Lamason et al. 

2005). The low-level of slc24a5 expression may play a similar role in producing variant melanin 

expression in the red portions of skin in the Varadero population.  

Similar to tyrp1, expression of lef1 (lymphoid enhancer binding factor 1) is associated 

with the production of pheomelanin, a pigment associated with lighter color phenotypes (Song et 

al., 2017, Stuckert et al., Chapter 4). We see early expression of lef1 which rapidly drops off 

until there is functionally no expression by the end of development when melanic coloration 

becomes most obvious in tadpoles. The gene sox9 (sex determining region Y – box 9) also 

influences the transcription factor mitf. However, unlike lef1 which leads to lighter pigmentation, 

sox9 is upregulated during melanocyte differentiation and can be activated by UVB exposure 

(Cheung and Briscoe 2003). Our dataset contains two differentially expressed transcripts that 

annotated to sox9, one of which showed almost no expression in the Varadero population, and 

consistently high expression in our two populations with the highest proportion of black skin 

(Sauce and Huallaga), indicating that this gene may play a large role in R. imitator color pattern 

determination. Further, sox9 is expressed in higher levels in darker color morphs of other frog 

species (Stuckert et al., Chapter 4). Just as sox9 is expressed most intensely in the populations 

with the most black skin, we see the same pattern in kit (KIT proto-oncogene receptor tyrosine 

kinase), a membrane receptor that is involved in one of the earliest steps of the melanogenesis 

pathway (D’Mello et al. 2016). Ultimately this path influences the same transcription factor as 

sox9 (mitf), so these may be complementary genetic mechanisms that produce similar effects.  
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Iridophores and purines: 

 Iridophores are thought to play a primary role in blue coloration in amphibians, and to 

play a critical role in the production of green colors in combination with overlying xanthophores 

and the pigments they contain (Bagnara et al. 2007). Iridophores contain guanine crystal platelets 

arranged in specific patterns; although fairly poorly characterized, the size, number, orientation 

and distribution of these platelets determine the specific wavelengths of light reflected back to 

viewers (Bagnara et al. 2007; Saenko et al. 2013). In fact, while iridophores are best known for 

blue/green coloration, they are also responsible (in combination with xanthophores) for red and 

white patches in Phelsuma geckos (Saenko et al. 2013). While melanophore and melanin 

synthesis genes are comparatively well understood, the genes that control iridophore (and 

xanthophore) development, and the size, shape, orientation and distribution of structural 

elements such as the guanine platelets, are more poorly characterized.  

 The de novo synthesis of purines is likely an important characteristic of iridophores, 

given that purines are deposited in the iridophores. Higdon et al. (2013) reported a number of 

genes in this pathway which are differentially expressed in iridophores relative to other 

chromatophores and body tissues. Amongst these are gart (phosphoribosylglycinamide 

formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole 

synthetase) and paics (phosphoribosylaminoimidazole carboxylase and 

phosphoribosylaminoimidazolesuccinocarboxamide synthase), which combined account for five 

enzymatic steps in the purine synthesis pathway. Zebrafish with abnormal mutations in these 

genes express almost no iridophore (or xanthophore) based pigmentation, indicating they play 

important roles in production of the associated colors (Ng et al. 2009). Furthermore, these two 

genes are differentially expressed between green and blue color morphs of the poison frog 
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Dendrobates auratus (Stuckert et al., Chapter 4). Expression in both gart and paics declines 

during development, and paics expression approaches zero by the point of metamorphosis. An 

additional gene in this pathway, pfas (phosphoribosylformylglycinamidine synthase) was 

annotated to two transcripts in our dataset that were differentially expressed between 

populations, indicating it likely plays a role in between population color differences. This gene 

plays a key role in the purine synthesis pathway, catalyzing a step in the synthesis of inosine 

monophosphate (Baresova et al. 2016). Furthermore, mthfd1 (methylenetetrahydrofolate 

dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1) is strongly 

differentially expressed between populations. This gene also contributes to de novo purine 

synthesis, and mutations can lead to insufficient purines for normal fetal development 

(Christensen et al. 2013). Mutations in mthfd1 can influence melanophores and xanthophores, as 

it plays a role in early neural crest differentiation as well (Christensen et al. 2013).  

 In addition to these genes, ADP ribosylation (ARFs) and Rab GTPases have been 

hypothesized to play critical roles in the production of guanine platelets within iridophores 

(Higdon et al. 2013). We had three transcripts that annotated to arfgap2 (ATP ribosylation factor 

GTPase activating protein 2), which were differentially expressed over time, and 11 which 

mapped to a rab gene. Further, arfgap1 was expressed in very low levels in the Varadero 

population, much lower than the other populations. With the exception of blue reticulation of the 

hind legs and in some individuals minimal blue creeping up on to the dorsum, we would not 

expect any of the coloration in this morph to be iridophore-dependent. Somewhat counter to our 

predictions, the atic (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP 

cyclohydrolase) gene shows the lowest expression levels in the yellow-green Tarapoto morph. 

Since green is generally produced by a combination of iridophores and pigments in the 
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xanthophores (Duellman and Trueb 1986; Bagnara et al. 2007), we would have thought that 

genes in the purine synthesis pathway like atic would play more of a role.  

 While most research indicates that blue colors are produced by light scattering produced 

by iridophores, there is also evidence that the collagen matrix itself may produce blue coloration 

(reviewed in Bagnara et al.,  2007). Although the role of collagen in amphibian coloration is 

currently poorly understood, there is one example of collagen-produced blue coloration in 

amphibians. Experimental skin grafts in the frog Pachymedusa dacnicolor were unable to 

transfer the xanthophores and iridophores to the graft’s new host. However, the collagen matrix 

remained, and the grafted skin patch possessed a distinct blue coloration (Bagnara et al.,  2007). 

As such, collagen matrix and keratinocyte genes may be more important than we recognize, 

particularly in the production of blue coloration. In a similar vein, Stuckert et al. (Chapter 4) 

discussed a number of putative collagen and keratinocyte genes that may influence blue 

coloration in amphibians. We note that the keratin gene krt17 increases over time during 

development, and that one of the two krt17 transcripts shows the lowest expression levels in the 

Varadero population. In contrast, the other krt17 annotated transcript is most highly expressed in 

the Varadero population. Currently, we have no satisfactory explanation for this. The keratin 

gene krt35 is also differentially expressed between populations and shows the lowest expression 

in the Varadero population. 

 

Xanthophores and pteridine synthesis: 

 Xanthophores are the outermost layer of chromatophores in the skin, and are thought to 

contribute to orange, red, yellow, and even green coloration in amphibians (Duellman and Trueb 

1986). The xanthine hydrogenase gene (xdh) gene was differentially expressed between 
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populations in our study, although it was relatively highly expressed in general it showed lower 

expression in Varadero tadpoles. This gene is involved in the production of the pigment 

pteridine, which is deposited into the xanthophores and absorbs yellow light. Previous work has 

demonstrated that deficiencies in the xdh gene or the removal of the pteridine product from the 

skin can change skin coloration from green to blue (Frost 1978; Frost and Bagnara 1979; 

Bagnara et al. 2007). Furthermore, transcriptomic work examining the genes which contribute to 

different colors in amphibians has proposed that xdh is a key determinant in skin color, 

particularly yellows and greens (Sanchez et al., 2018; Stuckert et al, in prep). We note that xdh is 

expressed in the highest levels in the two populations with the greatest overall proportion of skin 

which should possess xanthophores (Varadero and Tarapoto), thus providing further (indirect) 

evidence that xdh plays an important role in amphibian skin coloration. Other pteridine-related 

genes are likely to play a role as well. For example, quinoid dihydropteridine reductase (qdpr) is 

involved in this pathway as well, and we found that this gene was also differentially expressed 

across populations in another species of poison frog (Stuckert et al., Chapter 4), and showed the 

highest expression levels in the red, orange, and yellow morphs. Qdpr also shows increasing 

expression throughout development in our study. Sepiapterin reductase (spr) is expressed 

primarily in the xanthophores (Negishi et al. 2003) and has been shown to only be expressed in 

late stages of the fire salamander tadpoles when yellowish color begins to appear (Sanchez et al. 

2018). However, although this gene was differentially expressed between populations in our 

study, it was largely constitutively expressed across time and populations. This may be in part 

because of its important role in the synthesis of neurotransmitters (Kaurman and Fisher 1974). 

Atpif was not expressed in Varadero tadpoles, but was in the other color morphs.  
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Conclusions: 

 The genomics of adaptive radiations are of interest because of the obvious selection 

imposed on phenotypes in these radiations. Further, both the specific mechanisms of color 

production and their genomic architecture have been poorly characterized in many groups of 

animals, particularly amphibians. We have produced a high-quality transcriptome for the 

polytypic poison frog Ranitomeya imitator which underwent a rapid mimetic radiation, and we 

used this transcriptome to characterize color gene expression patterns across color morphs and 

throughout development. We found a number of candidate color genes to be differentially 

expressed over the course of development and between populations with divergent color pattern 

phenotypes, particularly those associated with melanogenesis. We also identified a number of 

iridophore and xanthophore-related genes likely to affect the differences between color morphs 

in this study. These data will provide both genomic resources for future studies of the 

development and the production of color and can inspire future investigations into the specific 

impacts that these genes have across other taxa. 
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VI. CONCLUSION 

 Signal communication is pervasive in nature and is used to convey information to both 

conspecifics and heterospecifics. Aposematic species use warning signals (e.g. bright coloration) 

to alert predators to the presence of a secondary defense (e.g., spines, toxins, etc). The presence 

of a conspicuous signal in combination with a secondary defense is thought to increase the 

efficiency of learned avoidance by predators and may prevent attacks altogether. Aposematism is 

widespread both geographically and taxonomically, and aposematic species are seen across the 

tree of life (including nudibranchs, invertebrates, and vertebrates). There are three main 

requirements for aposematism to function effectively. First, aposematic species must be able to 

produce a pattern that contrasts the environmental background (typically via chromatophores and 

pigments). Second, predators must be able to receive and learn to avoid preying upon aposematic 

individuals based on the signal. And finally, aposematism must confer a fitness benefit to the 

population of an aposematic species. In this dissertation, I asked a series of questions regarding 

aposematism. These questions were: 

1. Does the aposematic signal contain sufficient visual information to convey the level of 

toxicity? 

2. Can nonvisual predators use olfactory signals or cues to make informed decisions about 

preying upon aposematic species. 

3. How is the aposematic signal produced, specifically how does gene expression contribute 

to the production of different color morphs of aposematic species? 

4. What genes contribute to the production of different color morphs in another aposematic 

species, and what are their temporal pattern of expression? 
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Overall, I found that within a population of the poison frog Ranitomeya imitator, the visual 

signal contains enough information to convey that the frog is toxic, but not enough to indicate 

the frog’s overall level of chemical defense to predators (i.e., qualitative honesty of the 

aposematic signal, but not quantitative honesty). Further, I found that there is enough olfactory 

information conveyed to predators to make an informed decision regarding predation. However, 

I was unable to determine whether this is an evolved signal, or a byproduct of the chemical 

defense itself.  

I then investigated how gene expression between color morphs contributes to the production 

of coloration in a polytypic species (Dendrobates auratus). I identified a number of genes related 

to melanophores/melanogenesis and iridophores/guanine synthesis which are differentially 

expressed. Given that the color morphs in this study have different background colorations 

(black, brown, or gray), and green or blue pattern elements standing out from that background, 

these genes seem like very plausible candidates for producing these colors. Further, I then 

examined the expression of color genes between color morphs of a different polytypic species 

(Ranitomeya imitator), while also looking at their expression patterns throughout development. 

As expected, I identified differentially expressed genes over time or between populations that 

contribute to the production of melanophores, iridophores, and xanthophores. These genes 

should be viewed as candidates for production of color in this species.  
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Figure VI.1. Pictoral representation of differentially expressed color genes between Dendrobates 

auratus (left, blue circle), Ranitomeya imitator (right, pink circle), and the specific genes that 

overlap between the two (written out in the center). 

Finally, there are a number of differentially expressed genes between color morphs in 

Dendrobates auratus and Ranitomeya imitator that overlap. These 19 genes (Figure VI.1) are 

excellent candidates for further study, and we believe that these are likely to contribute to the 

production of color in poison frogs specifically, and amphibians generally.   
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