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Arboviruses have been one of the leading causes of morbidity and mortality 

worldwide for centuries (Morens et al., 2004).  Dengue virus (DENV), Zika (ZIKV), 

Chikungunya (CHIKV) and West Nile virus (WNV) are some of the medically important 

arboviruses transmitted by mosquitoes. Dengue is one of the most common arthropod 

diseases with over 400 million people infected yearly. Dengue is now endemic in the 

WHO regions of Africa, the Americas, the Eastern Mediterranean, South-East Asia and 

the Western Pacific. Current data estimates 3.9 billion people in 128 countries are now 

at risk of DENV infection. Dengue, known as break-bone fever, may be caused by one 

of four serotypes: DENV:1-4. Dengue is primarily transmitted by Aedes aegypti with 

Aedes albopictus as a secondary vector. Infection with DENV may cause a high fever, 

swollen glands, muscle and joint pain and nausea. Subsequent infection of DENV with a 

second serotype may lead to the more serious dengue hemorrhagic fever, which may 
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result in plasma leakage, severe bleeding, fluid accumulation, and/or organ failure. 

Espirito Santo virus, ESV, is an insect-infecting virus recently discovered in a patient 

sample in Espirito Santo, Brazil. The virus replicates in mosquito cells but is not known 

to replicate in vertebrate cells (tested in Vero cells, thus far). Here, we sought to study 

the effects of ESV on DENV-2. We hypothesized that ESV interferes with replication of 

DENV-2 in vitro and in vivo.  

Our findings show that ESV can replicate in absence of DENV-2 and no 

cytopathic effects were visually observed here in mammalian (Vero) cells 6-days post 

infection. Immunofluorescence assay results show that during co-infection of C6/36 

cells with ESV and DENV-2, ESV did not prevent DENV-2 from entering cells or 

expressing proteins (we did not see a difference in staining). However, plaque assays 

showed a decrease in infectious DENV-2 particles in co-infected cells evidenced by 

fewer plaques observed in DENV wells also containing ESV. In vivo experiments were 

performed with three different populations of Aedes aegypti mosquitoes for an 

incubation period of seven days. While infection rates were not statistically different in a 

wild-type mosquito population (Costa Rica), ESV superinfected mosquitoes had 

significantly lower DENV-2 body titers (p<0.01) and leg titers (p<0.01) than mosquitoes 

exposed to only DENV (measured via qRTPCR). In the high dissemination colony of 

mosquitoes, there was no significant difference in body and leg DENV-2 titers between 

non-ESV infected and ESV infected mosquitoes. In the low dissemination colony, 

DENV-2 infected mosquitoes had significantly higher body and leg titers than 

mosquitoes infected with DENV and ESV (p<0.01). These results support our initial 

hypothesis that mosquitoes previously infected with ESV show lower levels of DENV-2 
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and we expect that these findings will spur additional research to elucidate the 

mechanisms involved.
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CHAPTER I – INTRODUCTION AND PURPOSE OF THE 

STUDY 

 Mosquito-borne diseases are responsible for several million deaths and 

hundreds of millions of cases of human illness yearly (World Health Organization [WHO] 

1996). Mosquitoes can be vectors of many different pathogens that may cause a variety 

of human and veterinary illnesses. Zika virus (ZIKV), West Nile virus (WNV), malaria, 

chikungunya virus (CHIKV), La Crosse virus (LACV) and dengue virus (DENV) are just 

a few of the pathogens spread by competent mosquito vectors. Mosquito-borne 

illnesses can be caused by different types of pathogens. Anthroponotic diseases, such 

as malaria, are caused by Plasmodium parasites that are transmitted via mosquito 

saliva during blood feeding. Similarly, chikungunya, dengue, and Zika are primarily 

caused by viruses transmitted from human to human by mosquitoes. Mosquito-borne 

diseases may have a tremendous impact on a person’s health, ranging from being an 

asymptomatic carrier of a virus to death. Consequently, this can lead to catastrophic 

effects on global health and economics (Ghosh et al., 2015).   

 Many arboviruses are found co-circulating in the same geographic regions. Prior 

to 2013, chikungunya outbreaks were experienced in Africa, Asia, Europe and the 

Pacific Ocean regions (Furuya-Kanamori et al., 2016). Since late 2013, CHIKV has 

been identified in the Americas and Caribbean countries and territories with local 

transmission (Centers for Disease Control and Prevention [CDC] 2016). Dengue virus 

circulates in Africa, Asia, the Americas, and the Pacific and is primarily found in the 

tropics and the sub-tropics (WHO 2017). These are some of the same areas in which 

CHIKV is found. In addition to cases being reported via local transmission in the same 
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areas, the two pathogens are also transmitted by the same species of mosquitoes. Both 

DENV and CHIKV are transmitted mainly by Aedes aegypti L. and secondarily by Ae. 

albopictus Skuse. This overlap in regions and vectors could possibly lead to co-infection 

in a human subject.  In endemic regions, concurrent infections of DENV and CHIKV 

have been detected in travelers (Le Coupanec et al., 2017). There have been other 

documented cases of concurrent infections of mosquito borne illnesses. Zika virus is an 

emerging pathogen in many places where DENV is endemic and is vectored by the 

same species involved in DENV transmission. In January 2016, a 26-year-old student 

became ill after returning from Port-au-Prince, Haiti (Iovine et al., 2017). The student’s 

urine and saliva were tested and found to be positive for both DENV serotype 2 (DENV-

2) and ZIKV vRNAs by RT-PCR (Iovine et al., 2017).   

In Espirito Santo, Brazil, a biological sample obtained from a patient infected with 

DENV-2 showed infection from another virus (Huang et al., 2013). The sample was 

analyzed, and a new virus was discovered (i.e., Espirito Santo virus [ESV]). The virus 

was amplified (in vitro) in mosquito cells and initially found to be dependent upon co-

infection with a virulent strain of DENV-2 virus (Vancini et al., 2012). Laboratory testing 

showed the virus replicates in C6/36 (Ae. albopictus) insect cells to high titers when co-

infected with DENV-2 (44/2) but not Vero (African green monkey kidney; mammalian) 

cells (Vancini et al., 2012). 

The existence of a new virus is an area meriting additional research. It is 

important to acquire information on how co-infection of viruses may affect one or both 

viruses. It is possible that one virus may be co-dependent on the other (Goertz et al., 
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2017). This dependency could alter the virulence, transmission and/or replication of the 

virus in a host. This can potentially have tremendous public health impacts. 

Understanding the extent to which coinfection of ESV and DENV alters replication in 

one or both viruses could provide information to others interested in vaccine 

development or other applications. Elucidating the potential effects could also lead 

researchers and medical personnel to determine the extent to which virulence of a virus 

depends on the relationship with another virus or other types of infections.  

Consequently, we will evaluate the relationship between ESV and DENV 

coinfection in C6/36 cells and in Ae. aegypti mosquitoes.  

Study Objectives 

1. Evaluate the ability of ESV to block replication of DENV in vitro when C6/36 

Aedes albopictus cells are co-infected with DENV-2 and ESV 

2. Evaluate the extent to which ESV suppresses DENV in Ae. aegypti 

mosquitoes previously infected with ESV. 
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CHAPTER II – LITERATURE REVIEW 

 More than one-third of the world’s population lives in an area at risk for DENV 

infection (WHO 2017b). This is one of the most common human viral diseases 

transmitted by arthropod vectors (Hemingford et al., 2007). Dengue virus is the leading 

cause of human morbidity and mortality in the tropics, with as many as 400 million 

people infected yearly (CDC 2016). The abundance of dengue cases has grown over 

the years, experiencing a 30-fold increase over the past 50 years (Achee et al., 2015). 

This rise in cases of dengue and severe dengue (i.e., dengue hemorrhagic fever [DHF], 

dengue shock syndrome [DSS]) may lead to an increase in the global burden of this 

disease. Prior to 1970, only nine countries had experienced severe dengue epidemics. 

Dengue is now endemic in the WHO regions of Africa, the Americas, the Eastern 

Mediterranean, South-East Asia and the Western Pacific. Current data estimates 3.9 

billion people in 128 countries are now at risk of DENV infection (WHO 2017b). 

 Dengue fever is also known as “break-bone” fever. Dengue virus causes a high 

fever (40°C/104°F) and is accompanied by at least two of the following symptoms: 

severe headache, pain behind the eyes, muscle and joint pain, nausea, vomiting, 

swollen glands or rash (CDC 2012). When a victim is infected with more than one 

serotype of DENV, the infection may be more severe and could lead to DHF. Dengue 

hemorrhagic fever may result in plasma leakage, severe bleeding, fluid accumulation, 

and/or respiratory distress and organ malfunction (WHO 2017b). Dengue hemorrhagic 

fever is a potentially fatal complication of dengue. Dengue virus is transmitted between 

humans by female Ae. aegypti and Ae. albopictus (Achee et al., 2015). After a bite from 

an infected mosquito, symptoms in humans usually begin in 4 – 7 days and last 3 – 10 
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days (Tissera et al., 2017). A mosquito must blood feed on an infected person within an 

approximate five-day period while the person is in the viremic phase of infection (Gubler 

1997). It is during this phase where viral load is potentially the highest in the person’s 

blood; however, the infected individual may not be showing symptoms or may be 

experiencing mild flu-like symptoms (Whitehead et al., 2007). The virus requires an 8-

12-day extrinsic incubation period (EIP) in mosquitoes before it may be transmitted to 

another host. Once infected, the mosquito remains a potential vector for the rest of its 

life (CDC 2014).  

 The most important arbovirus in global public health is dengue. Dengue virus is a 

Flavivirus, which is a member of the Flaviviridae family (Anayansi et al., 2017). It is the 

most genetically diverse member of the Flaviviridae family. Dengue fever is caused by 

one of four anti-genetically distinct serotypes of dengue virus: DENV 1 – 4 (Cops et al., 

2014). While infection with one serotype of DENV may provide lifelong immunity from 

the infecting serotype, it may only provide partial and temporary cross immunity from 

the other serotypes. Studies have shown subsequent infections of different serotypes 

increase the risk of developing life-threatening DHF and DSS (Muturi et al., 2017).  

 Dengue is a positive sense, single-stranded, enveloped RNA virus (CDC 2013). 

There are two structural proteins, the envelope (E) and membrane proteins (M) Alcaraz-

Estrada et al., 2010). The virus has the ability to replicate in many different types of 

mammalian cells, such as monocytes and macrophages, dendritic cells, B and T 

lymphocytes, endothelial cells, bone marrow-, hepatoma, neuroblastoma- and kidney-

derived cells (Alhoot et al., 2011). Dengue virus is suggested to enter target cells after 
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protein E binds to uncharacterized cell surface receptors (Clyde et al., 2011). The virion 

is internalized by receptor-mediated endocytosis, leading to subsequent fusion of the 

virus with the endosomal membrane, releasing the viral genome in the cell cytoplasm 

(Acosta et al., 2008). Because DENV viral RNA can act as mRNA, the genome is 

associated with rough ER where it is translated (Alcaraz-Estrada et al., 2010).  

 Since DENV was discovered in 1943, there has been an increase in the reported 

infections in the tropical and sub-tropical areas of the world (Suwanmanee et al., 2017). 

International travel, transport, and globalization have helped DENV expand into new 

geographic areas. These factors have also helped DENV re-emerge in places that had 

been free of the virus for years (Cops et al., 2014). For example, Peru had reported 

cases of DENV in the 1950’s but no reported cases in the subsequent three decades. 

Peru was one of the countries, along with Brazil, Bolivia, Paraguay and Ecuador, that 

had been free of DENV for decades, yet experienced explosive epidemics of DENV-1 

during the 1980’s. During this epidemic, DENV-4 was also isolated in Peru (Pinheiro et 

al., 1997).  

Dengue was first described in the continental United States (US) in Philadelphia 

in 1780 when a dengue-like outbreak occurred (Bouri et al., 2012). The southern US 

began having incidences of dengue occurring around 1827, 47 years after the dengue-

like outbreak in Philadelphia (Beaumier et al., 2014). The following areas have a history 

of DENV outbreaks: Pensacola, Florida; Charleston, South Carolina; Savannah, 

Georgia; and New Orleans, Louisiana (Bouri et al., 2012). Dengue outbreaks continued 

to occur regularly in the US until the 1940’s (Thomas et al., 2016). In 2009, after 75 
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years without a reported case of dengue, Florida identified a dengue case in a New 

York patient who had traveled to Key West (Añez at al., 2013). Dengue also reemerged 

in Texas in 2013. While conducting surveillance during a 2013 epidemic in northern 

Mexico, 53 laboratory DENV-positive human cases were found in southern Texas and 

49% of patients had not traveled (Thomas et al., 2016).  

There have also been a number of cases imported into the United States. Florida 

has recorded 392 cases from travelers from countries in Central and South America, the 

Caribbean, Africa, the Middle East, South and Southeast Asia since 2009 (Florida State 

Department of Health 2010). These cases show the importance of airports such as 

Miami International Airport as a gateway to the US of pathogens such as DENV and 

others (Añez et al., 2013). In 2001-2002, Hawaii recorded its first autochthonous cases 

of dengue since 1944 (Bouri et al., 2012).  

Other countries, such as Costa Rica and Panama that have experienced DENV 

free periods have also seen a re-emergence of the virus. In 1993, both countries 

reported cases of indigenous transmission of DENV-1 (Pinheiro et al., 1994). In 1981, 

Cuba reported an epidemic of DENV-2 with 344,203 cases, including 10,312 cases of 

dengue haemorrhagic fever (DHF), first main DHF reported in the region (Dick et al., 

2012). The same countries were not just seeing re-emergence with one serotype, but 

they were isolating multiple serotypes of DENV (Pinheiro et al., 1994). Dengue serotype 

– IV was introduced into the eastern Caribbean Islands and then expanded to the rest of 

the Caribbean, Mexico, Central and South America, causing epidemics in places that 

had experienced DENV-1 outbreaks (Dick et al., 2012). Dengue virus-3 was attributed 
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to a countrywide epidemic of DHF/dengue in Nicaragua in 1994 (Pinheiro et al, 1994). 

During this time, DENV-1 was also present (Pinheiro et al., 1994).  

Vector Competence 

Mosquitoes obtain arboviruses in nature via an infectious blood meal (Khoo et 

al., 2013). If virus particles surpass the midgut barrier, viral dissemination may occur 

through hemolymph to secondary organs, then finally reaching the mosquitoes salivary 

glands where transmission may occur (Hegde et al., 2015). Prior to virus invasion of 

midgut epithelial cells for replication, the virus may encounter the midgut infection 

barrier (MIB), which may restrict its ability to invade epithelial cells (Bennett et al., 

2002).  The midgut escape barrier (MEB) is another barrier in the midgut that can 

restrict the virus’ ability to disseminate following replication in epithelial cells (Bennett et 

al., 2005). 

 The measure of a vector-borne disease’s transmission potential among humans 

is called vectorial capacity (Ye et al., 2016). The vectorial capacity is determined by 

parameters such as contact rate between vector and human, vector biting rate, daily 

survival of vector, vector competence and the EIP (Kramer et al., 2003). Mosquitoes 

may maintain vector competence due to a series of both physiological and biochemical 

adaptations which allow viral replication to occur in the midgut epithelial cells and 

transfer to salivary glands  (Valderrama et al., 2017).  

Midgut microbiota can affect vector competence as gut bacteria can impact 

pathogen development (David et al., 2016). The midgut is the site of interactions that 

include the arthropod vector (host), vertebrate blood factors, the pathogen (virus or 
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parasite) and other symbiotic microbes (Ramirez et al., 2012). Mosquito gut microbiota 

influence DENV infection of the mosquito eliciting innate immune responses against the 

virus which activates the host antibacterial responses (Ramirez et al., 2012). Activation 

of the mosquitoes’ immune system by dengue virus infection may potentiate the 

mosquitoes’ immune homeostasis and suppress the microbiota of its midgut (Ramirez 

et al., 2012).  

Environmental temperature has an effect on vector competence. Experiments 

between DENV and its primary vector, Ae. aegypti, have been studied under constant 

temperatures in the laboratory (Carrington et al., 2013). Temperature can influence how 

efficiently the vector becomes infected with a parasite and how readily the parasite is 

transmitted by the vector (Ye et al., 2016). Temperature changes can affect the EIP, or 

the time lag between when a mosquito consumes an infectious blood meal to when it is 

capable of transmitting the virus in its saliva (Black et al., 2002). Carrington et al. (2013) 

conducted experiments on Ae. aegypti, at 26°C. During this experiment, female Ae. 

aegypti were fed blood meals using defibrinated sheep blood infected with DENV-1 with 

virus titers of 4.16x105 pfu/mL with results showing an expected EIP for DENV as 11-12 

days (Carrington et al., 2013). Another study showed DENV transmission when 

conducting multiple experiments at a range of constant temperatures from 13°C to 35°C 

(Watts et al., 1987). Extrinsic incubation periods for Aedes aegypti in this experiment 

ranged from 12 days at 30°C to 7 days at 35°C (Watts et al., 1987). Other studies have 

shown that higher temperatures reduced the EIP, increased mosquito mortality and 

resulted in higher proportions of infected Aedes aegypti mosquitoes (Rohani et al., 

2009).  
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The diurnal temperature range (DTR) significantly influenced the outcome of 

infection and survival of mosquitoes, but not the EIP of DENV in Ae. aegypti 

(Lambrechts et al., 2011). Large diurnal temperature ranges have been found to lead to 

reduced immature survival and lead to extended development time in Aedes aegypti 

mosquitoes (Carrington et al., 2013). Using an experiment based off average 

temperatures in Mae Sot, Thailand, Carington et al. (2013) conducted an experiment 

with small DTR fluctuations (mean temperature 26.71°C and a 7.6°C fluctuation) and 

large DTR (mean 26.34°C with 18.6°C fluctuations) with relative humidity maintained at 

70-80% for both groups (Carrington et al., 2013). Female mosquitoes incubated in 

conditions under the large DTR had the lowest survival rate versus females under 

constant temperatures (Carrington et al., 2013).  

Genotype interactions may also play a role in vector competence. Virus 

genotypes may adapt to the local mosquito population genotype, although evidence of 

this is not consistent (Lambrechts et al., 2009). Studies have shown CHIKV 

transmission is affected by a three-way interaction between viral strain, environmental 

temperature and Ae. albopictus population (Zouache et al., 2014). However, it is 

unknown whether or not these interactions exist for DENV and Aedes aegypti (Soria et 

al., 2017). It is also possible the extent of these interactions may change for different 

populations and species of mosquitoes.  

 Another parameter that may have an effect on vector competence is 

insecticides. Different insecticides may exert different selective pressures on mosquito 

vectors due to residual spraying (WHO 2011). This has led to insecticide resistance 
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mutations occurring in some mosquito species including resistant alleles resulting from 

to frequent widespread applications of organochlorines (e.g. DDT), organophosphates 

(OP), carbamates (CX) and pyrethroids (PYR) (Alout et al., 2013). Two of the main 

mechanisms responsible for resistance are: 1) increased metabolism of detoxification, 

involving enhanced degradation or sequestration of insecticide molecules, and 2) 

modification of the insecticide at the target site, in which the site becomes less sensitive 

to insecticide (Labbe et al., 2011). These resistance mechanisms are conserved 

mutations across many insect vectors (Labbe et al., 2011). While fitness costs 

associated with resistant alleles may be hard to predict, they may alter the physiology of 

mosquito vectors, hence altering pathogen transmission (Rivero et al., 2010). Another 

study showed that insecticide resistant Anopheles gambiae Giles are more susceptible 

to infection with entomopathogenic fungi Metharhizium anisopilae and Beauvercin basin 

than insecticide susceptible mosquitoes (Howard et al., 2010). In a study comparing 

vector competence between susceptible and resistant strains of An. gambiae s.s., 

results showed insecticide resistant strains were more susceptible to infection than 

insecticide susceptible strains (Alout et al., 2013).   

The age of a mosquito may also play a role in immune response to pathogens. 

Another study showed larvae and newly-emerged adults of An. gambiae kill bacteria in 

their hemocoel more efficiently than older adults (League et al., 2017). These findings 

indicate that the immune response in larvae may be stronger than in adults, with 

immunity weakening after metamorphosis (i.e., five-day old adults mounted weaker 

immune responses than one-day old adults) (League et al., 2017). However, adult 

mosquitoes may boost their immune responses by ingesting blood. This may lead to 
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blood-meal induced hemocyte activation, which may lead to upregulation of vital 

immune factors (Bryant et al., 2014). In Ae. aegypti, blood feeding improves their ability 

to combat low dose E. coli infection but may reduce tolerance to mosquitoes 

experiencing a high dose E. coli infection as determined in a study by Castillo et al. 

(Castillo et al., 2011).   

Simultaneous exposure of mosquitoes to different pathogens is a new avenue of 

study on how coinfections may affect the vector competence of mosquitoes (Ruckert et 

al., 2017). Molecular mechanisms such as RNA interference (RNAi) could be activated 

or suppressed by co-infecting viruses and thereby indirectly affect replication of another 

virus (Jupatanakul et al., 2017). RNA interference is a cellular mechanism that regulates 

gene expression in eukaryotes (van Cleef et al., 2014). Sub-genomic flavivirus RNA and 

RNAi suppressor function of NS4B is a mechanism for RNAi suppression in flaviviruses 

(Moon et al., 2015). Flavivirus NS1 is important in Aedes aegypti midgut infection as it 

suppresses immune related gene expression (Lui et al., 2016). This may lead to NS1 

not only enhancing flavivirus infection but also enhancing midgut infection of 

heterologous viruses such as CHIKV, a virus that replicates and disseminates faster 

than the two flaviviruses, DENV and ZIKV (Ruckert et al., 2017). This may cause CHIKV 

to outcompete DENV and ZIKV in vivo in some cases (Dubula et al., 2009). The 

exposure of two closely related flaviviruses, DENV and ZIKV, could impact virus 

infection, dissemination and transmission in mosquitoes through superinfection 

exclusion (Karpf et al., 1997).  
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Co-circulation of viruses 

 Co-circulation of viruses or serotypes of viruses, such as DENV, have been 

noticed over the years and increase the risk of humans experiencing co-infections 

(Magalhaes et al., 2014). Co-infections in humans with multiple serotypes of DENV 

were rare prior to the 1950’s (Muturi et al., 2017). In 1982, the first known naturally 

occurring case of co-infection in humans was reported (Cops et al., 2014). In the same 

study, the patient in Puerto Rico was found infected with DENV-2 and DENV-3.  There 

have been other reported cases including six patients infected with both DENV-1 and 

DENV-3 in New Caledonia and an autochthonous case with DENV-1 and DENV-2 in 

São Paulo, Brazil (Cops et al., 2014). Increases in co-circulation of viruses and in 

subsequent co-infections may lead to an increase in virulence of one or both DENV 

serotypes (Vinodkumar et al., 2013). In the case of DENV, co-infection of multiple 

serotypes may lead to the development of the more severe DHF or DSS.  

 Aedes aegypti and Ae. albopictus are vectors of DENV and other arboviruses 

(Hiba 2011). Many arboviruses are present in the same geographic areas and this may 

further increase the risk of co-infection among viruses in humans. Zika virus, a re-

emerging arbovirus, is also transmitted by Ae. aegypti and Ae. albopictus. Zika virus 

(ZIKV; genus Flavivirus, family Flaviviridae) was first isolated in Uganda in 1947. Until 

the 1980’s, ZIKV infections in humans were found mainly in Africa and Asia (WHO 

2016). Past ZIKV outbreaks were sporadic and self-limiting until an outbreak in the Yap 

Islands in 2007 and Zika fever in 2013 (Al-Qahtahni et al., 2016). The virus spread 

across continents and, in May 2015, Brazil became the epicenter of the first reported 

cases in the Americas (Al-Qahtahni et al., 2016). Since then, ZIKV has spread to 
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several countries in the Americas including Mexico, US, Panama and Puerto Rico 

(WHO 2016). Zika virus spread to many areas where DENV was already endemic. Zika 

virus circulating in the same areas as DENV, combined with ZIKV being spread by the 

same vectors may lead to the possibility of co-infection (Ruckert et al., 2017).  

In January 2014, New Caledonia experienced their first autochthonous cases of 

ZIKV and multiple DENV serotypes were co-circulating in the area (Rouser et al., 2015). 

Later in 2014, two patients tested positive for co-infections of ZIKV/DENV-3 and 

ZIKA/DENV-1 (Rouser et al., 2015). In the same study, one patient had recently 

returned from travel to French Polynesia and the other had not traveled and the patients 

were infected with different DENV serotypes (Rouser et al., 2015). Genetic sequencing 

of ZIKV determined the strain of ZIKV from both patients belonged to the Asian lineage 

and had a 99% identity with sequences isolated from French Polynesia (Rouzevrol et 

al., 2015). 

 Chikungunya virus is an arbovirus (family Togaviridae) and is transmitted almost 

exclusively by Ae. aegypti (Chahar et al., 2009) and Ae. albopictus. There are three 

distinct evolutionary clades of CHIKV: West African, Central/East African and Asian 

(Power et al., 2000). Symptoms of chikungunya include muscle pain, headache, 

nausea, fatigue and rash (Deepa et al., 2016). Chikungunya virus has been identified in 

over 60 countries in Asia, Africa, Europe and the Americas (WHO 2017a). Chikungunya 

is a disease that can spread with ease and cause a high percentage of clinical cases 

with a very high attack rate, however chikungunya is overshadowed in many outbreak 

situations (Barde et al., 2014). Many of the areas where CHIKV is endemic are also 
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areas that are home to DENV. In Calcutta, India, where CHIKV and DENV overlap, 

cases have been reported with CHIKV and DENV co-infections (Chahar et al., 2009). 

The same study showed that two viruses from different families may coexist in the same 

host.  

 Not much is known about the effects of co-infections for many viruses. Reports 

indicate that 80% of ZIKV infections are asymptomatic (Iovine et al., 2016). Clinical 

manifestations of ZIKV and DENV may be similar, although ZIKV patients may have 

milder symptoms (Iovine et al., 2016). This similarity may make it difficult to tell the 

difference between infections of the two viruses where molecular testing is not carried 

out to identify the pathogen. The similarity may also hinder the testing for multiple 

viruses in patients, as only one virus’ symptoms may be recognized (Chong et al., 

2017). A patient in Haiti that tested positive for both ZIKV and DENV infection had 

severe symptoms from ZIKV (Iovine et al., 2016). Although this could be due, in part, to 

variations in immune responses between patients, it is recognized that DENV antibodies 

may enhance ZIKV infection in vitro (Iovine et al., 2016).  The severity of co-infections 

has not been studied to a large extent in human patients, thus, impacts of severity have 

not been concluded. Impacts of co-infections on patients is a topic that is in need of 

further study. 

 A study was performed to look at the potential effects of co-infection of CHIKV 

and DENV in patients (Silva et al., 2017). Prior to the experiment, DENV/CHIKV co-

infections reported in people from India were examined. The majority of patients 

experiencing co-infections showed similar symptoms (i.e., as in CHIKV or DENV mono-



16 
 

infections), although there were a few patients that experienced more severe symptoms 

(Silva et al., 2017). In another investigation, patients infected with both DENV and 

CHIKV present with a clinically serious disease with a higher mortality rate when 

compared to mono-infections of these viruses (Deepa et al., 2016). Human peripheral 

blood mononuclear cells (PBMCs), from human donors, were infected with one or both 

viruses at various multiplicities of infection (Silva et al., 2017). This mode of infection 

(MOI) was done to try and mimic a “real-world” scenario. Mosquitoes experience 

different virus titers and can be co-infected with viruses, so the possibility of multiplicity 

of infections is a viable scenario. Results from the aforementioned study showed higher 

levels of DENV in supernatants from co-infected PBMCs than mono-infected cells. In 

contrast, the study also showed a decrease of CHIKV titers in co-infected cells when 

compared to mono-infected cells (Silva et al., 2017). The antagonistic effect produced 

by co-infection of CHIKV/DENV was not dependent on the replication of DENV cells in 

the co-infected PBMCs (Silva et al., 2017). The inhibition of CHIKV by DENV (but not 

the inhibition of DENV by CHIKV) was stronger and more consistent between donors 

and different MOI conditions (Silva et al., 2017). This study suggests that DENV 

suppresses CHIKV. This would have to be studied in vivo, to account for different 

mechanisms that may also affect the growth of either CHIKV or DENV in patients.   

 Human co-infection with viruses may occur due to multiple blood feedings by 

different mosquitoes on a host (Muturi et al., 2017). Furthermore, the same species of 

mosquito may be a vector of multiple arboviruses; hence, it is possible that co-infection 

may occur from the bite of one vector that is harboring both viruses (Muturi et al., 2017). 

An infection with DENV in a mosquito leads to the mosquito being a life-long carrier of 
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the virus. There are limited studies on the effects of co-infections on the mosquito. 

Virus-virus interactions may be 1) neutral: having no effect, 2) synergistic: at least one 

virus facilitates replication or transmission of the other virus, or 3) antagonistic: one 

virus benefits at the expense of the other (Muturi et al., 2017). Studying the types of 

virus-virus interactions in mosquitoes and in cell culture may help us gain knowledge 

and insight to begin to study these interactions in humans. Superinfection exclusion, an 

antagonistic reaction, where the initial virus takes hold in cells and blocks a second 

virus from replicating, may occur. A study investigating superinfection between DENV-2 

and DENV-4 in Ae. aegypti found Ae. aegypti infected with DENV-4 were significantly 

less susceptible to DENV-2 (Muturi et al., 2017). Superinfection among DENV 1-4 has 

been tested in mosquito (C6/36 – Ae. albopictus) cell cultures (Muturi et al., 2017). The 

same study showed that DENV-4 outcompeted DENV-2. While more studies need to be 

done on superinfections, studies of this type may suggest superinfection could make it 

harder for co-infection in mosquitoes for some viruses. Viruses may be able to 

outcompete other viruses by having shorter EIPs (e.g., faster replication rate) in the 

vector. This may allow one virus to overtake cell machinery before the second virus, 

thus potentially limiting the effects of a superinfecting virus. 

 Co-circulation of viruses, among other factors, makes virus-virus interactions an 

important area of study. Our understanding of coinfections is limited and, as more 

viruses interact, it is crucial to understand how they interact in the vertebrate host and 

the vector (Ruckert et al., 2017). Different viruses may affect the pathogenicity and 

virulence of other viruses (Baba et al., 2013). Studying established viruses may give us 

insight to the workings of new viruses as they are discovered.  
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 In addition to being vectors to arthropod-borne viruses that can cause disease, 

mosquitoes are also hosts to viruses that do not cause human disease (van Cleef et al., 

2014). Espirito-Santo virus is a recently discovered virus that replicates in mosquito 

cells and is in the Birnaviridae family (Huang et al. 2013). The virus is in the 

monospecific genus Entomobirnavirus (Marklewitz et al. 2012). The virus was 

elucidated in mosquito cells inoculated with a virulent strain of DENV-2 obtained from a 

patient in Espirito Santo, Brazil (Vancini et al., 2012). Amino acid residue from ESV 

compared with those of other birnaviruses confirmed the uniqueness of ESV and its 

assignment to the genus Entomobirnavirus (Huang et al., 2013). However, the 

mechanism for cell infection by ESV is currently unknown. It is also unknown if the 

mosquito that infected the patient was previously infected with ESV prior to infection 

with DENV-2 (Vancini et al., 2012). ESV replication in previous studies (Vancini et al. 

2012) showed the virus was co-dependent on virulent strains of DENV-2, i.e. ESV was 

not shown to grow on its own in mosquito cell culture. In the experiment, replication of 

ESV corresponded with the virulence of DENV-2 (Vancini et al., 2017). Studies are 

needed to show what type of viral interaction this newly discovered virus had on the 

DENV harvested from the patient. It is also unknown if different DENV serotypes are 

affected differently by ESV.  

Other Entomobirnaviruses have since been elucidated in mosquitoes. In Bad 

Segeberg, Germany, hibernating Culex pipiens complex mosquitoes were collected 

from a cage, analyzed and inoculated into C6/36 and Vero E6/7 (African green monkey 

kidney) cells (Marklewitz et al., 2012). The Vero cells showed no cytopathic effects 

(CPE). Due to CPE being observed in C6/36 cells, the cells were passaged and 
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analyzed by electron microscopy and the genome was determined by adapter based 

random amplification and rapid amplification (Zirkel et al., 2011; Marlewitz et al., 2012).  

The sequence revealed that a birnavirus, tentatively named Culex Y virus (CYV), had a 

mutation in the ORF5 (as does ESV) and showed 99% similarity to ESV (Vancini et al., 

2012; Marklewitz et al., 2012). Culex Y viruses were tested to see if their growth 

depended on co-infection with DENV. The virus was co-infected with DENV-2 strain 

16681 with a m.o.i of 0.001 for both viruses. No differences in CYV was observed in 

single and co-infected C6/36 cells (Marklwitz et al., 2012). 

Virus-virus interactions may differ, depending on the similarity in family 

characteristics of the viruses (Ruiz-Silva et al., 2017). It is possible that different virus 

families may suppress or facilitate virus replication during co-infections. Further studies 

are needed to understand the effects of ESV on DENV and its effects on viral replication 

in mosquito cells. A previous study with ESV showed that this virus does not replicate in 

Vero cells (Vancini et al., 2012). The inability of ESV to replicate in Vero cells could 

have tremendous impact when studying virus-virus interactions in human and other 

mammalian cells. The activation and suppression of antiviral pathways in mosquitoes 

that are vectors for human arboviruses, may affect the ability of a vector mosquito to 

transmit co-infecting arboviruses (van Cleef et al., 2014). Superinfection and co-

infection studies are currently being performed to establish preventative intervention 

strategies for blocking the transmission agents of human diseases and help gain 

understanding of factors that could affect vector competence (Gonzaga et al., 2015).  
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Wolbachia pipientis, is an endosymbiotic bacterium that affects 40-70% of all 

arthropod species. However, it is not naturally hosted by Ae. aegypti, a principal vector 

of dengue (Joubert et al., 2016). Aedes aegypti mosquitoes have been intentionally 

infected with wMel strain of Wolbachia to test its ability to reduce the susceptibility of 

Ae. aegypti to DENV (Ye et al., 2016). Tests showed that Wolbachia-infected Ae. 

aegypti had reduced pathogen replication in both natural and transinfected insects 

(Joubert et al. 2016). Trials such as these show the possibility of using virus 

superinfection to combat viruses such as DENV. However, the potential for viruses to 

mutate to overcome superinfections are possible, and thus the need for greater 

understanding of these phenomena are needed (Joubert et al., 2016). 
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Chapter III – ESV Inhibits Replication of Dengue in C6/36 Aedes 

albopictus Mosquito Cells 
*Note: This chapter is formatted as a complete manuscript and will be submitted to a peer 

reviewed journal in the future. Hence, there may be some repetition in Chapter 2 (Literature 

Review) and Introduction for Chapter 3  

Abstract 
 

Dengue virus (DENV; Family Flaviviridae: Genus Flavivirus) is a single stranded 

RNA-positive arbovirus transmitted by mosquitoes. Globally, millions of people are 

sickened each year by dengue fever that is caused by infection with DENV. 

Approximately 3.2 million cases were reported globally in 2015. While there is currently 

one live recombinant tetravalent DENV vaccine on the market (CYD-TDV: Dengvaxia®), 

there are significant safety concerns regarding its use. The Strategic Advisory Group of 

Experts on Immunization currently recommends that only seropositive persons ≥ 9 

years old should be vaccinated. It is common for some arboviruses to co-circulate in the 

same geographic regions. Espirito-Santo virus (ESV) is an Entomobirnavirus discovered 

in a biological sample also containing DENV serotype 2 obtained from a patient in 

Espirito Santo, Brazil. Here, we evaluated the interactions of ESV and DENV-2 

coinfection in C6/36 (Aedes albopictus Skuse) cells. We show that ESV can replicate in 

C6/36 cells in the absence of DENV-2 and causes no cytopathic effects in mammalian 

(Vero) cells 6-days post infection. Immunofluorescence results of co-infected cells, 

showed that ESV did not affect the expression or localization of DENV proteins under 

the conditions of our test. However, plaque assay results from co-infection of cells with 

ESV and DENV-2 resulted in a significant reduction in plaques compared to cells 

infected with DENV-2 alone. These results suggest that ESV may inhibit DENV-2 

replication in C6/36 cells.  
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Introduction 
 

Mosquito-borne diseases are responsible for millions of human cases and deaths 

each year1. Greater than one-third of the global human population inhabits areas at risk 

for dengue virus (DENV; Family Flaviviridae: Genus Flavivirus) infection2,3. Dengue 

virus is the leading cause of human morbidity and mortality in the tropics, with as many 

as 400 million people infected annually2. Dengue is one of the most infectious human 

viral diseases transmitted by arthropod vectors, and the incidence of dengue has risen 

30-fold over the last 30 years4. This increase in case incidence of dengue fever and 

severe dengue (i.e., dengue hemorrhagic fever [DHF] or dengue shock syndrome 

[DSS]) has contributed to an increase in the global burden of this disease. Facilitation of 

the spread of arboviruses such as DENV may be attributed to three global megatrends, 

i.e., urbanization, climate change, and increased intercontinental travel5. 

Dengue virus is a genetically diverse member of the Flaviviridae family (genus 

Flavivirus).6 This spherically shaped virus is composed of the viral genome and capsid 

proteins surrounded by an envelope and a shell of proteins.7,8 It is approximately 50 nm 

in diameter with a nucleocapsid of 30 nm. Two of the structural proteins (membrane 

protein (M) and envelope protein (E)) are inserted into the envelope. 9,10 Infection with 

DENV may cause fever and a variety of symptoms after an intrinsic incubation period of 

3-14 d.4 Dengue fever is caused by one of four antigenically distinct serotypes of DENV: 

DENV 1 – 4.11 While infection with one serotype of DENV may provide lifelong immunity 

from the infecting serotype, it may only provide partial and temporary cross protective 
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immunity from the other serotypes. Studies have shown subsequent infections of 

different serotypes increase the risk of developing life-threatening DHF and DSS.12  

The rise in the disease burden caused by DENV over the past several decades 

has sparked a renewed interest in developing a DENV vaccine; however, producing a 

successful vaccine has been challenging. For a DENV vaccine to be successful, it must 

induce a protective and durable immune response to all four serotypes. The vaccine 

must also avoid eliciting or enhancing a pathogenic immune response.13,14 A  live 

recombinant tetravalent vaccine (Dengvaxia®) has been developed for DENV in recent 

years, however the Philippine Health Ministry suspended the vaccine program in 

November 2017 after multiple DENV deaths in vaccinated children.15 As of Fall 2018, 

the Strategic Advisory Group of Experts on Immunization recommends that only DENV 

seropositive persons ≥ 9 years old should be vaccinated with Dengvaxia®. 

The past several years have led to the identification of a range of RNA viruses 

associated with hematophagous insects.16 These discoveries, attributed to advances in 

sequencing technology and phylogenetics, have helped characterize RNA viruses found 

within mosquitoes. Espirito-Santo virus (ESV, Family Birnaviridae) is a recently 

discovered virus that replicates in C6/36 (Ae. albopictus) cells and is in the 

monospecific genus Entomobirnavirus.17,18 The virus was first characterized in C6/36 

cells from a biological patient sample containing DENV-2.19 Amino acid residues from 

ESV compared with those of other birnaviruses confirmed the uniqueness of ESV and 

its assignment to Entomobirnavirus.18 However, the mechanism for cell infection by ESV 

is currently undiscovered. It is possible that other mosquito genera and species may be 

infected with Entomobirnaviruses. Culex Y virus, another Entomobirnavirus, was 
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isolated from hibernating Culex pipiens (Linnaeus) in Germany.17 In Australia, Palm 

Creek virus was isolated from Coquillettidia xanthogaster (Dyar) 20. The extent to which 

these viruses may impact mosquito biology is currently being investigated.   

Virus-virus interactions may differ, depending, in part, on virus family 

characteristics.21 It is possible that viruses may suppress or facilitate replication of other 

viruses during co-infections. Viral interference is a well-known phenomenon where one 

virus blocks replication of another by several different mechanisms. This has been 

documented in orthomyxoviruses (e.g., influenza), retroviruses, flaviviruses, and 

picornaviruses, among others.22,23 In the current study, ESV replication and the effects 

of viral co-infection between DENV-2 and ESV are being investigated.  

Results 

ESV Protein Expression 
 

The first report of ESV indicated that ESV replication was dependent on 

coinfection with DENV-2 and that it corresponded with the level of DENV virulence.19 To 

test viral infection, we infected C6/36 cells with ESV, multiple strains of DENV-2 isolates 

(strain 44/2 and 16803), or both ESV + DENV-2 (44/2 or 16803). ESV proteins were 

detected in cells infected with ESV alone and in cells infected with ESV+DENV-2 (44/2 

or 16803) using anti-ESV antibodies made in rabbits. Western blot results showed the 

presence of ESV proteins in C6/36 mosquito cells even in the absence of DENV-2, 

indicating that ESV can at least express some viral proteins in the absence of DENV 

(figure 1a). Analysis also showed ESV bands of similar sizes in cells co-infected with 

ESV and DENV-2 (both 44/2 and 16803). Our results also demonstrated the specificity 

of the ESV antibody as the antibody did not bind to proteins from DENV-2 infected or 
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uninfected cells. To our knowledge, this is the first time anyone has detected viral 

proteins of ESV by Western blot (Figure 1a). Immunofluorescence assays showed ESV 

proteins localized in bright cytoplasmic areas, presumably viral factories in cells (Figure 

1b). Western Blot analysis showed cells co-infected with ESV/DENV-2 (44/2) appeared 

to have a thicker DENV protein band than cells infected with ESV alone, however this 

apparent increase may be due to more proteins loaded into wells (Figure 1c). Figure 1d 

shows confocal imaging of ESV proteins in C6/36 cells infected with ESV. 

ESV Replication Detected with qRTPCR.   

We wanted to determine whether ESV could replicate independently in insect 

cells, so we infected C6/36 cells with ESV or ESV with DENV.   We infected at a 

multiplicity of infection (m.o.i) of 1.0 for both viruses and incubated for 6 days in C6/36 

cells. Since ESV does not form plaques, we measured the increase in viral genomes by 

qRT-PCR as a measure of replication.  ESV was able to replicate independently (0.35 ± 

0.3 log10 Focus Forming Units [FFUeq] ESV/mL), and ESV genomes were increased 

(0.48 ± 0.075 log10 FFUeq ESV/mL) when co-cultivated with DENV-2 (44/2), but the 

difference was not significant (p=0.679). Initial stock titer for ESV was 0.26 log10 FFUeq 

ESV/mL. 

 

Immunofluorescence Staining 
 

We further sought to evaluate DENV-2 when co-infected with ESV by assessing 

DENV-2 protein expression using an immunofluorescence assay (IFA). Using C6/36 

cells in 24-well plates, we individually infected wells with either no virus (mock), DENV-2 
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alone (multiplicity of infection [m.o.i.] 1.0), or ESV alone (m.o.i. 1.0), or co-infected wells 

with both DENV-2 and ESV. After 48 h, the cells were fixed with 3% paraformaldehyde 

and permeabilized with 0.05 % saponin. After washing, cells were incubated with mouse 

monoclonal anti-DENV serotype 1+2+3+4 antibody and followed by incubation with anti-

mouse IgG fluorescein isothiocyanate (FITC)-conjugated secondary antibody and 

examined for fluorescence. We did not detect any difference in DENV protein quantity 

or localization between cells infected with DENV-2 alone or co-infected with ESV 

(Figure 2a). When we analyzed ESV proteins (using rabbit anti-ESV antibody) in cells 

singly infected or co-infected with DENV-2, we observed no change in ESV proteins in 

cells (Figure 2b). These results suggest that viral co-infection of ESV and DENV-2 in 

C6/36 cells does not inhibit either virus from entering cells and making proteins. 

 

Viral replication plaque assay.  

We wanted to test whether ESV affected replication of DENV. We first infected 

C6/36 cells with ESV alone, DENV-2 44/2 alone, or ESV+DENV-2 together, m.o.i. of 

1.0, using serial 10-fold dilutions in triplicate wells. Supernatants and cells scraped from 

flasks were harvested after six days. This mixture was then titered on Vero cells to 

enumerate plaques to measure DENV viral replication. As expected, ESV infected wells 

showed similar results as uninfected wells (no plaques observed) (Figure 3a). These 

results suggest ESV does not produce plaques in Vero cells. Next, we analyzed cells 

and supernatants from DENV-2 only infected wells and observed significant cytopathic 

effects (CPE) as shown by plaques. Analysis of serial dilutions of DENV-2 alone and 

ESV/DENV-2 co-infected cells showed a decrease in the number of DENV-2 plaques in 
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the wells co-infected with ESV. Dengue-2 virus (10-1 dilution) showed numerous 

plaques (too many to count ca. >200), while co-infection of ESV (stock)/DENV-2 (10-1 

dilution) resulted in an average of 33 DENV-2 plaques/well (n=3 replicate wells). This is 

a significant decrease (p<0.01) in the number of DENV-2 plaques from wells infected 

with only DENV-2 compared to wells co-infected with ESV. Comparison of additional 

DENV-2 dilutions and ESV/DENV-2 co-infections showed similar results. For example, 

DENV-2 (10-2 dilution) resulted in ca. 103 plaques, while wells co-infected with 

ESV/DENV (10-2 dilution) resulted in 2 DENV-2 plaques/well, a significant reduction 

(p<0.01) (Figure 3b, Figure 3C).  

Plaque assay data indicated that ESV may decrease the production of infectious 

DENV-2 particles. To determine whether the block occurred before or after DENV 

genome replication, we used qRT-PCR to detect DENV-2 genomes and tested DENV-2 

infection with and without co-infection with ESV in C6/36 cells.  We observed a 

reduction in DENV-2 genomes in the presence of ESV. At six days post co-infection 

with ESV, DENV-2 titers were 1.9 log10 pfu DENV eq/mL, an approximate 40-fold 

reduction in DENV-2 compared to DENV-2 titers in cells not co-infected with ESV (7.1 

log10 pfu DENV eq/mL). These data indicate that ESV may block DENV replication prior 

to genome replication. 

 Discussion 
 

Viral interference is a well-documented phenomenon described in many viral 

species.22,23,24 The interference can occur at various stages in the virus life cycle, which 

progresses through sequential steps. The virus binds its cell surface receptor, 

internalizes, begins viral gene expression (mRNA), followed by viral protein synthesis, 
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and then, in the case of RNA viruses such as ESV and DENV, full length RNA genomes 

are produced. This is followed by stages of viral particle formation. Finally, the particles 

themselves may be either defective or replication competent. Viral infections that are 

not productive (i.e., not successful at producing infectious progeny virions) may be 

blocked at any of these stages.25 Analysis of our in vitro assessments show co-infection 

of mosquito cells with the insect-infecting virus, ESV, may down-regulate the replication 

of DENV-2. We did not see a difference in staining during the IFA for C6/36 cells co-

infected with ESV/DENV-2, inferring that ESV does not interfere with protein production 

of DENV-2 upon entry into cells under the conditions of this study. Further studies are 

needed to evaluate this. However, plaque assays show that co-infection of ESV with 

DENV-2 leads to a reduction in infectious DENV particles as evidenced by a reduction 

of plaques in ESV/DENV co-infected wells. Hence, ESV may block DENV-2 replication 

prior to genome replication, however this block is not complete. Further studies are 

needed to evaluate whether or not ESV inhibits entry of DENV-2 into the cell when 

different doses are used. Not much is currently known about Entomobirnavirus 

replication. It is thought that Entomobirnaviruses follow the replication cycle of 

Birnaviridae, which expresses peptides that destabilize the membrane during entry 27. It 

is possible that this destabilization has a negative impact on receptors needed for 

DENV-2 entry. It may be that competition for cellular factors by ESV during replication 

inhibits DENV-2 replication. Mosquito infection experiments of Culex species with Culex 

Flavivirus have shown a decrease in susceptibility to a secondary infection with West 

Nile virus compared to uninfected mosquitoes.28 Another study conducted with the 

insect-infecting virus, Palm Creek virus, showed a reduction in replication of Murray 
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Encephalitis Virus in C6/36 cells20. The results of the current study and those of 

previous studies show a necessity in determining the effects of insect-infecting viruses 

and the vector competence of mosquitoes. Further studies should determine at what 

stage ESV blocks DENV replication, the degree to which replication may be blocked, 

and other factors involved. It is possible that ESV inhibits DENV in the short term and 

DENV may be able to overcome this inhibition and have an increase in replication at 

later time points. Future studies should determine the mechanism by which ESV affects 

DENV and methods for inhibiting DENV infection.  

As ESV and other Entomobirnaviruses (e.g., Culex Y virus, Palm Creek virus) 

are discovered, it is possible that additional mosquito genera, and potentially other 

arboviruses, could be impacted. This could lead to the development of new approaches 

using insect-infecting viruses to block DENV replication in mosquitoes. Transfection of 

the wMel strain of Wolbachia into Ae. aegypti mosquitoes, blocked laboratory 

transmission capacity for DENV and chikungunya virus (CHIKV).30,31 The direct 

mechanism by which Wolbachia may inhibit DENV replication is unknown. Modification 

of cellular membranes by DENV to form sites of viral replication complexes, leads to the 

virus making significant alterations to the lipid repertoire of cells.30,31 It is possible 

Wolbachia’s need for fatty acids causes fatty acid depletion in cells, causing a cellular 

perturbation that disrupts viral manipulation of these pathways.30,31 In addition to 

Entomobirnaviruses, there are several flaviviruses that only infect insects (not 

mammals). One such virus, Eilat virus, was isolated during an arbovirus study in the 

Negev desert from a pool of Anopheles coustani (Meigen) mosquitoes.32,33 Erasmus et 

al., 2015, used the Eliat virus and created a chimeric Eilat/CHIKV virus to be used as an 
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antigen in diagnostic testing.33 Continued studies on this insect-infecting virus and its 

uses may lead to it being used as a platform to deliver a chikungunya vaccine.34 These 

types of studies could help determine new roles of insect specific viruses in reducing 

disease burden. A 2015 assessment of vector control for dengue prevention suggests 

that, along with rapidly deployable strategies, greater emphasis should be placed on 

proactive strategies that aim to prevent, diminish, or eliminate transmission.29 Using 

insect-infecting viruses is a novel approach may help with arbovirus control in potential 

vectors, provide a mechanism to aid in diagnosis of arboviruses in patients, (a potential 

use for CHIKV that has been studied with the Eilat virus)  and reducing the global public 

health burden of dengue33.  

Materials and Methods 
 

Virus propagation  
 

An ESV isolate (Brown Lab, North Carolina State University) and a Southeast 

Asian DENV-2 (isolate 44/2) were used for mosquito infection. Viruses were propagated 

in the laboratory using established methods (Richards et al., 2007). Samples not used 

immediately were stored at -80˚C. 

Immunofluorescence assay  

 

C6/36 (Ae. albopictus) cells were seeded on glass coverslips, 12 mm in 

diameter, in a 24 well plate, with each plate containing ca. 1 x 106 cells. The seeded 

plate was incubated for 48 h at 28°C and 5% CO2. The cells were infected with DENV 

(isolate 44/2), and ESV at a m.o.i. of 1.0. Cell inoculations were performed using ice to 

slow down reaction to allow both viruses to enter the cell simultaneously. The plates 
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were incubated at 28°C and 5% CO2. After 2 h, M199 medium (containing 2% fetal 

bovine serum [FBS] and penicillin/streptomycin) was added to each well and plates 

were incubated at 28°C and 5% CO2 for 2 d. The cells were washed with phosphate 

buffered saline (PBS) and then fixed using 3% paraformaldehyde. The cells were then 

washed with PBS. Cells were subsequently permeabilized with 0.05% saponin. The 

cells were blocked for 30 min in a 2% FBS/PBS solution. ESV antibodies (anti-ESV 

(1:1000) rabbit serum were diluted in a 2% FBS/PBS (1:500 ratio). DENV antibodies 

were diluted in a PBS/FBS (1:1000 ratio). The cells were incubated in their respective 

primary antibody dilutions at room temperature for 1.5 h. Cells were then washed three 

times in 1 mL of PBS. Respective secondary antibody (anti-rabbit [Sigma Aldrich lot # 

105K6269] and anti-mouse-antibody [Southern Biotech lot#K2915-WD97]) were 

prepared at a 1:1000 dilution in a PBS/FBS solution. Cells were stained with the 

secondary antibody, covered to prevent light exposure, and allowed to incubate at room 

temperature for 1 h. Cells were washed three times each in 1 mL of PBS. Cells were 

then mounted on glass slides, covered with coverslip and fixed with Prolong Gold and 

allowed to dry overnight. A Zeiss fluorescent microscope imaging system was used to 

visualize cells. 

Western blot 
 

C6/36 cells were seeded in a 24-well plate, 12 mm in diameter, with each plate 

containing 1 x 106 cells. The seeded plate was incubated for 48 h at 28°C and 5% CO2. 

Cell inoculations were performed using ice to slow down reaction to allow both viruses 

could enter the cell simultaneously. Cells were infected with DENV (44/2) and ESV at 

an m.o.i. of 0.3. The plates were incubated at 28°C and 5% CO2. After 2 h, 2% FBS 
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containing M199E with penicillin/streptomycin was added to each well and plates were 

culture at 28°C and 5% CO2 for 2 d. After 2 d, media were removed into 2 mL 

Eppendorf tubes, centrifuged at 4000 rpm for 4 min to collect cells. The remaining cells 

in the 24 well plate were then lysed with 80 uL of cold disruption buffer (8% SDS, 8% β-

mercaptoethanol, 1.2g/ml Tris Base, 40% Glycerol, 0.1% Bromophenol Blue) and the 

lysed cell solution was placed into 2 mL Eppendorf tubes with pellets retrieved from the 

above. The lysates were heated at 95˚ C for 5 min, and DNA sheared with 22 gauge 

needle before loaded to a gel. 40 μl/lane of either ESV, DENV-2, or ESV/DENV-2 lysate 

was loaded in 4-20% mini-protein Tgx, stain free precast gel (BIO-RAD, cat# 456-8094) 

and analyzed by SDS-PAGE. The proteins were transferred onto nitrocellulose 

membranes overnight at 4°C. The membranes were blocked with a blocking buffer (5% 

non-fat milk, 0.1% Tween 20 in PBS solution) at room temperature for 1 h and 

incubated with the following antibodies: anti-ESV (1:200) rabbit serum and anti-DENV 

serotype 1+2+3+4 antibody [D1-11(3)] (1:4000) (Abcam, Cambrige, MA, USA cat # 

ab9202). After washing with TBS-T solution once for 5 min at room temperature, the 

membranes were incubated at room temperature for 1 hr with secondary antibodies: 

anti rabbit IgG (Fc) (1:5000) (Promega, Madison, WI AP# S3738) and anti-mouse IgG 

(H+L) (1:5000) (Promega, AP# S3728), respectively. Membranes were washed twice 

with TBS-T solution at room temperature for 5 min of each washing and then Western 

Blue Stabilized Substance for Alkaline Phosphatase (Promega, Madison, WI USA) was 

added to the cover membrane. ESV bands were allowed to develop at room 

temperature for 1-2 h covered with aluminum foil to avoid light. Dengue bands were 

covered with aluminum foil and allowed to develop overnight at 4°C.  
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Plaque assay 
 

A two-step process was carried out for the plaque assay. Individual T-75 cm2 

flasks, containing monolayers of C3/36 cells were inoculated with ESV (m.o.i 2.0), 

DENV-2 (44/2) (m.o.i 1.0), or co-infected with both viruses. Media containing M199E 

with 10% FBS and penicillin/streptomycin was transferred to each flask. The flasks were 

placed in an incubator at 28˚C and 5% CO2 for 6 d. After 6 d, ESV, DENV, ESV/DENV 

infected C6/36 supernatant and cells scraped from flasks were harvested and tested. 

Ten-fold serial dilutions using of each infected sample were made using complete 

M199E (10% FBS, penicillin/streptomycin) inoculated in 6-well plates. Media was 

aspirated out of each Vero cell well and 0.2 mL of each infected sample (serial dilutions) 

were added to each well in triplicate. Plates were gently rocked back and forth to ensure 

Vero cell monolayers were covered with media. Plates were placed into the incubator at 

35˚C for 1 hour, rocking every 15 min. The first overlay was prepared by combining 1.8 

g of SeaPlaque® low melting agarose with ddH2O, heat-inactivated FBS, non-essential 

amino acid solution, penicillin/streptomycin solution, L-glutamine, and fungizone. After 1 

h, cells were removed from the incubator and the 1st overlay (3 mL/well of agarose 

solution) was carried out. Once dried, plates were incubated at 35˚C for 4 d when the 

2nd overlay took place. The 2nd overlay (3 mL/well) contained SeaPlaque® low melting 

agarose, sodium chloride, ddH2O, and neutral red solution. Plates were incubated for 24 

h, removed from incubator, placed face down on lightbox, and plaques were counted. 

qRT-PCR 
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Nucleic acids were extracted using a QIAmp viral RNA kit (Qiagen, Valencia, 

CA). Viral RNA (for both DENV and ESV) was quantified in each sample using 

quantitative real-time Taqman reverse transcriptase polymerase chain reaction (qRT-

PCR) with the LightCycler® 480 instrument (Roche, Mannheim, Germany) and 

Superscript III One-Step qRT-PCR kit (Invitrogen, Carlsbad, CA). The instrument 

detection was programmed (for ESV and DENV-2) as follows: 48°C for 30 min, 95°C for 

2 min, and 45 cycles at 95°C for 15 s, 60°C for 30 s, and finally, 40°C for 30 s. Primers 

and probes for DENV detection consisted of the following sequences: DENV-2 Rev 305-

284: 5’- CCC CAT CTY TTC AGT ATC CCT G -3’, DENV-2 FWD 237-251: 5’- CAT 

GGC CCT KGT GGC G -3’, DENV-2 Probe254-274: 5’- /56-FAM/TCC TTC GTT / 

ZEN/TCC TAA CAA TCC/3IABkFQ/ -3’ (IDTDNA, Coralville, IA). Primers and probes 

used for ESV detection consisted of the following sequences: ESV SEG A FWD: 5’-

CCG CGC GGA GAC AAT CAC CT-3’; ESV SEG A REV: 5’-TTG GTC GAA CGC CCA 

CAC CG-3’; ESV SEG A PROBE ZENFAM: 5’-/F6-FAM/TGC TGG GTT /ZEN/CCA TTA 

CAG GTG GGA TGA /31ABkFQ/ -3’ (IDTDNA, Coralville, IA). Standard curves for 

DENV were based on plaque assays used to determine titer. Standard curves for ESV 

were based on focus forming assays used to determine titer. 
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Chapter IV - Vector Competence of Aedes aegypti for Dengue 

Virus in Mosquitoes Superinfected with Espirito Santo Virus 
 

*Note: This chapter is formatted as a complete manuscript and will be submitted to a 
peer reviewed journal in the future. Hence, there may be some repetition in Chapter 2 

(Literature Review) and Introduction for Chapter 4 
 

Abstract 
 

 Dengue virus (DENV), a mosquito-borne virus, consists of four antigenically 

distinct serotypes that may cause disease such as dengue fever and the more serious 

dengue hemorrhagic fever. Mosquitoes are known to transmit a variety of arthropod-

borne pathogens. In addition to arboviruses, mosquitoes may also carry non-medically 

important viruses. Over the last few years, the number of recently discovered insect-

infecting viruses has risen. Recent studies have shown these viruses may have an 

effect on the vector competence mosquitoes. Espirito Santo virus (ESV), is an insect-

infecting virus that was recently discovered in Brazil, a region in which DENV is 

endemic. Aedes aegypti is the main DENV vector in Brazil. We assessed the vector 

competence of three different populations of Aedes aegypti mosquitoes (Costa Rica 

Wild-Type, a high dissemination colony and a low dissemination colony [dissemination 

classification in reference to dengue virus]) exposed to ESV and subsequently 

challenged with DENV. Our findings show infection rates in our wild-type population 

100% and 88%, dissemination rates of 74% and 87% and transmission rates of 21% 

and 0% for non-ESV infected mosquitoes and ESV mosquitoes respectively. In our high 

dissemination colony, we observed infection rates of 100%, dissemination rates of 91% 

and 29% and transmission rates of 10% and 0% for non-ESV infected groups and ESV 

exposed groups, respectively.  In our low dissemination colony, we observed infection 

 



40 
 

rates of 100% and 91%, dissemination rates of 79% and 90% for non-ESV infected 

mosquitoes and ESV mosquitoes. No transmission was observed in this group. Our 

results indicated ESV superinfection effects varied among different mosquito 

populations. The effects produced various differences in infection, dissemination and 

transmission rate and body titers.  

Introduction 
 

 Since the 1950’s, dengue has emerged as a world-wide problem, with over 400 

million people infected yearly (Centers for Disease Control [CDC] 2016). It is endemic in 

112 countries across the world (Gurgama et al., 2010). The number of dengue cases 

has increased five-fold between 2003 and 2013 in the Americas (World Health 

Organization [WHO] 2014). Dengue infection is caused by four different dengue virus 

(DENV) serotypes: DENV 1-4 (dos Santos et al., 2017, CDC 2016). Infection from any 

serotype may cause dengue fever, a flu-like illness, to the more severe dengue 

hemorrhagic fever, which may be fatal if its attendant plasma leakage is not given early 

attention (Hemungkorn et al., 2007, Vaughn et al., 2000). It is possible to become 

infected with multiple DENV serotypes with subsequent infections leading to antibody-

mediated disease enhancement (Sanchez-Vargas et al., 2004). Lifelong homotypic 

immunity may be gained by infection from primary infection with a particular serotype, 

with heterotypic immunity to other serotypes lasting a few months (Hemungkorn et al., 

2007).  

The primary vector of DENV in almost all countries is the Aedes aegypti 

(Linnaeus) mosquito. In 1931, Aedes albopictus (Skuse) became known as a secondary 

vector after the virus was isolated from an Ae. albopictus caught in the wild (Higa 2011, 
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de Santos, CDC).  Dengue infections experience extrinsic and intrinsic incubation 

periods. The intrinsic incubation period consists of the time between when an infected 

mosquito bites a human to the onset of symptoms from the infection, while the extrinsic 

incubation period (EIP) consists of when the time the mosquito takes a viremic blood 

meal and becomes infectious. Hence, both periods are important in the dynamics of 

dengue virus transmission (Chan et al., 2012). The extrinsic incubation period is an 

important component of vector competence of a mosquito (Anderson et al., 2007). The 

extrinsic incubation period (EIP) of DENV in Ae. aegypti, ranges from 8-12 days at a 

temperature of 25-28°C (Tjaden et al., 2013, Fontaine et al., 2018). Vector competence 

is the ability of a vector to become infected with and subsequently transmit a pathogen 

(Beerntsen et al., 2000). There are many factors that may affect the vector competence 

of a mosquito, which may also affect the EIP. Environmental temperature is one 

component that may influence the vector competence of Ae. aegypti. Studies show 

mosquitoes reared at low temperatures are predisposed to viral infection (Gloria-Soria 

et al., 2017, Turrell 1993). Genetic variation within Ae. aegypti may affect its 

susceptibility to DENV. It is not fully understood how genes mediate pathogen-vector 

interactions. However, some genes have been implicated in Ae. aegypti vector control 

(Caicedo et al., Osta et al., 2018). Studies performed by Chauhuan et al., 2012 

suggested that a core suite of genes may play a significant role in vector competence of 

Ae. aegypti to DENV. Results from these studies showed in susceptible strains an 

upregulation of genes in involved in protein processing in the endoplasmic reticulum, 

mRNA surveillance and the proteasome. However, in refractory strains activity was 

shown in several metabolic processes including glycolysis, glycan biosynthesis and Wnt 
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pathway (Chauhan et al., 2012). The genetic variation in DENV isolates may also play a 

role in vector competence (Fontaine et al., 2018). Gloria-Soria et al., 2017 showed 

infection rate differences in Ae. aegypti mosquitoes were affected by the strain of 

DENV-2. It is possible that genotype x genotype interactions between mosquito species 

and virus strain may influence vector competence. 

Tissue barriers in the mosquito play an important role in arbovirus infection and 

thus may have an effect on vector competence. Once an arbovirus has been ingested 

via blood meal, it encounters and must overcome the midgut infection and escape 

barriers, disseminate into secondary tissues such as nerve tissue, hemocytes and fat 

bodies, and surpass the salivary gland infection barrier and salivary gland escape 

barrier (Bosio et al., 2000, Salazar et al., 2007, Franz et al., 2015).  

 Co-circulation of viruses may pose an impact to vector competence in the form of 

virus-virus interactions. Superinfection (e.g., the acquisition of two viruses in two 

separate blood meals) may impact the virus-virus interaction. These virus-virus 

interactions may lead to different outcomes: 1) neutral, viruses have no effect on each 

other; 2) synergistic, at least one virus facilitates transmission or replication of the other 

virus; or 3) antagonistic, one virus benefits at the detriment of another virus (Muturi et 

al., 2017). The most common outcome between virus-virus interactions is superinfection 

interference, where an established primary viral infection prevents infected cells from 

becoming infected by a secondary virus (Nowak et al., 1994). In a superinfection 

experiment performed by Muturi et al. 2017, results showed a significant reduction in 

DENV-2 infection and dissemination rates in Ae. aegypti mosquitoes previously 

exposed to DENV-4 compared to DENV-2 infected mosquitoes not exposed to DENV-4. 
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However, the reverse treatment showed DENV-2 exposed mosquitoes secondarily 

infected with DENV-4 showed no significant effect on DENV-4 infection compared with 

previously unexposed mosquitoes infected with DENV-4. A DENV-2 and chikungunya 

co-infection study conducted by Le Coupanec et al. 2017, showed DENV-2 replication 

was higher in salivary glands of co-infected than single infected Ae. aegypti mosquitoes 

at 5, 10, 11, 12 days post virus exposure.  

Dual infection, whether superinfection or co-infection, of viruses in mosquitoes 

may not be limited to the infection of multiple arboviruses. Mosquitoes may also be 

infected with insect-infecting viruses. Insect-specific viruses are defined as being 

specific to mosquitoes and unable to infect mammalian cells (Scultz et al., 2018.) This 

inability infect mammalian cells may be due to the lack of appropriate receptors for cell 

entry or possibly replication and assembly factors needed are either lacking or too 

structurally divergent from their invertebrate orthologs to interact with viral proteins 

(Halbach et al., 2017). Isolated from a cell line derived from Ae. aegypti embryos, cell-

fusing agent virus was one of the first insect-specific viruses identified in 1974 (Stollar 

and Thomas 1975, Calzolari et al., 2015). Several insect-infecting flaviruses have been 

isolated from natural mosquito populations over the years. Kimiti River virus, an insect 

infecting flavivirus, was isolated from Aedes macintoshi (Huang) mosquitoes in 1999 in 

Kenya (Lutomiah et al., 2007). Aedes flavivirus was isolated and detected in 

asymptomatic adult male and female Ae. albopictus and Aedes flavopictus (Yamada) 

mosquitoes in Japan, suggesting vertical transmission of insect-infecting viruses 

(Hoshino et al., 2009). The presence of insect-infecting viruses in areas where 

arboviruses exist lead to the possibility of co-infection of mosquitoes with arboviruses. 
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Bolling et al., 2012, isolated Culex flavivirus (CxFV) from Culex mosquitoes collected in 

northern Colorado from 2006 to 2007. Using these mosquitoes, they sought to 

determine whether persistent infection with CxFV altered vector competence in Culex 

pipiens (Linnaeus) for West Nile virus (WNV). Bolling et a., 2012 compared vector 

competence for WNV using laboratory Cx. pipiens originating from Colorado and an 

uninfected Cx. pipiens colony from Iowa. Results showed a significant difference in 

WNV dissemination rates at 7 d post infection (dpi) with the uninfected colony from Iowa 

having higher dissemination rates; however, these differences were no longer apparent 

at 14 dpi (Bolling et al. 2012). Due to the colonies’ differences in geographic location, it 

is possible genetic variations affected vector competence (Bolling et al., 2012). Another 

study showed that C6/36 cells previously infected with Palm Creek virus suppressed 

subsequent replication of WNV (Hobson-Peters et al., 2016). Another study showed 

significant reduction of WNV, St. Louis encephalitis virus and Japanese encephalitis 

virus when these viruses were inoculated into C3/36 mosquito cells containing previous 

infection with Nhumirim virus, an insect-infecting flavivirus isolated from Culex chidesteri 

(Dyar) mosquitoes in Brazil, in 2010 (Kenney et al., 2014, Pauvolid-Correa et al., 2015). 

A new insect-infecting virus was discovered in C6/36 mosquito cells co-infected 

with DENV-2. The virus, Espirito Santo virus (ESV) was characterized as an 

Entomobirnavirus, originated from a dengue fever patient from Espirito Santo, Brazil 

(Vacini et al., 2012). Initial studies by Vancini et al., 2012, determined ESV grew to high 

virus titers only during co-infection with DENV-2 44/2 in C3/36 cells. However, their 

studies also showed no ESV could be identified by electron microscopy when the 

insect-cell-infecting virus was used to inoculate Vero cells. Researchers detected the 
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Mosquito X virus (MXV), which was isolated from Anopheles sinensis (Wiedemann) in 

South China. Mosquito X virus is an entomobirnavirus, similar to ESV. Sequencing of 

An. sinensis showed no DENV in the sample, indicating the ability of the 

entomobirnavirus to replicate in absence of DENV (Huang et al., 2013).  

There is evidence that insect-infecting viruses have an influence on vector 

competence (Vasilakis et al., 2015). The mechanism by which insect-infecting viruses 

may influence arboviruses is unknown. Here, we assessed the extent to which ESV 

affects vector competence of DENV-2 44/2 in Ae. aegypti mosquitoes. We hypothesized 

that superinfection of Ae. aegypti mosquitoes with ESV would decrease vector 

competence for DENV-2 44/2 compared to mosquitoes not exposed to ESV.  

Materials and Methods 
 

Virus propagation  
 

 A South American ESV isolate and a Southeast Asian DENV-2 (isolate 44/2) 

were used for mosquito infection. Viruses were propagated in the laboratory using 

established methods (Richards et al., 2007). ESV was inoculated into C6/36 cells and 

DENV was inoculated into Vero cells at an m.o.i of 1.0, incubated with M199E 

supplemented with 2% FBS, penicillin and streptomycin and allowed to propagate for 6 

days. Samples not used immediately were stored at -80˚C. 

Mosquitoes and ESV inoculation 
 

 Three different Ae. aegypti colonies were used in this study: 1) known for high 

dissemination of DENV, developed by crossing a Puerto Rico strain to Ibo strain Ae. 

aegypti formosus, generation F19 (BEI Resources; NR 45838), 2) known for low 
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dissemination of DENV, developed by outcrossing D2S3 strain to Houston strain of Ae. 

aegypti, generation F18 (BEI Resources; NR 45837), 3) wild-type, generation F48 colony 

from Costa Rica (BEI Resources; MRA-726). Propagation of mosquitoes consisted of 

placing 2.54 x 6.35 cm ovistrips containing approximately 50 eggs in clear plastic bowls 

approximately 6.35 cm deep and 11.43 cm diameter filled with either tap water (non-

ESV infected control) or with a tap water/ESV mixture. Non-ESV infected mosquito 

ovistrips were placed into 300 mL of tap water. To expose mosquitoes to ESV, we used 

freshly propagated supernatant from flasks, inoculated with ESV and harvested 6 d post 

inoculation resulting in a titer volume of 1.44 log10 Focus Forming Unit (FFU) eq ESV/ 

mL. We combined 2 mL of ESV supernatant with 300 mL of tap water. Ovistrips were 

placed into the ESV-water solution (titer 1.10 log10 FFUeq ESV/ mL) for ESV exposure. 

The bowls were placed into incubators with a 14:10 light:dark cycle at 28°C and 85% 

humidity (Richards et al., 2017). Larvae were allowed to incubate in their respective 

ESV/water solution or tap water only and fed a mixture of yeast and liver powder (2:1 

ratio) ad libitum until mosquitoes reached the pupal stage. Pupae were removed from 

bowls and placed into small clear plastic cups with tap water and cups were transferred 

to 30.5 x 30.5 x 30.5 cm metal cages (Bioquip, Rancho Domingo, CA) where adults 

starting emerging 1-2 d later. The resulting adult mosquitoes were fed a 20% sucrose 

solution ad libitum. Three to four-day old female mosquitoes were aspirated from metal 

cages with approximately 100 mosquitoes being transferred to 1 L cardboard cages 

separated by treatment. After being placed into cardboard cages, mosquitoes exposed 

to ESV as larvae were fed 20% sucrose solution mixed with ESV (2.27 log10 FFUeq 

ESV/ mL) via cotton pledgets for 24 h to increase the chances of ESV infection. Non-



47 
 

ESV infected Control (no ESV exposure as larvae) adult mosquitoes were also fed via 

cotton pledgets filled with 20% sucrose solution ad libitum. After 24 h, all pledgets were 

replaced with a fresh 20% sucrose solution containing no ESV. All adult mosquitoes 

were deprived of sucrose solution and fed only water 24 h prior to vector competence 

experiments to improve blood feeding rate (Richards et al., 2017).  

Vector Competence 
 

 Freshly propagated DENV-2, 6 d post inoculation in Vero cells, was mixed with 

defibrinated bovine blood (Hemostat, Dixon, CA) in a 1:1 ratio. Adult female mosquitoes 

7-8 days old were fed warmed (35°C) DENV-2 blood meal via cotton pledgets 

containing 6.2 log10 PFUeq/mL for 1 h. After blood feeding, mosquitoes were 

anesthetized with cold and fully engorged females were transferred to new 1 L 

cardboard cages according to treatment group. All mosquitoes were incubated at 28°C 

with 85% humidity in a 14:10 light:dark cycle and fed a 20% sucrose solution ad libitum 

for the duration of the experiment [7 days post infection (dpi)]. At 7 dpi, live mosquitoes 

from each group were aspirated, anesthetize with cold, and legs and wings were 

removed. Mosquitoes were allowed to salivate into hematocrit tubes for ca. 35-45 min to 

test for transmission (Anderson et al., 2010). Leg, body and saliva samples for each 

mosquito were placed in separate 2 mL Eppendorf tubes containing 500 µL of 

RNALater and four 4 mm glass beads. All samples were stored at -80°C until further 

processing. 

qRTPCR Analysis 
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 Mosquito samples were homogenized and centrifuged using established 

methods (Richards et al., 2007). Nucleic acids were extracted using a QIAmp viral RNA 

kit (Qiagen, Valencia, CA). Viral RNA was quantified in each sample using quantitative 

real-time Taqman reverse transcriptase polymerase chain reaction (qRT-PCR) with the 

LightCycler® 480 instrument (Roche, Mannheim, Germany) and Superscript III One-

Step qRT-PCR kit (Invitrogen, Carlsbad, CA). The instrument detection was 

programmed as follows: 48°C for 30 min, 95°C for 2 min, and 45 cycles at 95°C for 15 s, 

60°C for 30 s, and finally, 40°C for 30 s. Primers and probes for DENV detection 

consisted of the following sequences: DENV-2 Rev 305-284: 5’- CCC CAT CTY TTC 

AGT ATC CCT G -3’, DENV-2 FWD 237-251: 5’- CAT GGC CCT KGT GGC G -3’, 

DENV-2 Probe254-274: 5’- /56-FAM/TCC TTC GTT / ZEN/TCC TAA CAA 

TCC/3IABkFQ/ -3’ (IDTDNA, Coralville, IA). Primers and probes used for ESV detection 

consisted of the following sequences: ESV SEG A FWD: 5’-CCG CGC GGA GAC AAT 

CAC CT-3’; ESV SEG A REV: 5’-TTG GTC GAA CGC CCA CAC CG-3’; ESV SEG A 

PROBE ZENFAM: 5’-/F6-FAM/TGC TGG GTT /ZEN/CCA TTA CAG GTG GGA TGA 

/31ABkFQ/ -3’ (IDTDNA, Coralville, IA). Standard curves for DENV were based on 

plaque assays used to determine titer. Standard curves for ESV were based on focus 

forming assays used to determine titer. Infection rate of mosquitoes is based the 

percentage of all blood fed mosquitoes having infected bodies. The dissemination rate 

is the percentage of mosquitoes that had infected bodies also having infected legs. 

Potential transmission rate was calculated as the number of mosquitoes that had 

infected bodies also having infected saliva (Anderson et al., 2010). 

Statistical analysis 
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 Chi-square statistical analysis were performed to detect differences in infection, 

dissemination, and potential transmission rates (p˂0.05 as significance level) between 

groups (SPSS Institute, Chicago, Il.). Analysis of variance (ANOVA) was used to 

evaluate differences in body, leg, and saliva titers between groups. Body, leg, and 

saliva titers were log transformed to normalize data prior to performing data analysis. If 

significant differences were observed, a Duncan test was used to determine differences 

in means. 

Results 
 

Vector competence was measured in three different populations of Ae. aegypti 

mosquitoes in this study: 1) known for high dissemination of DENV, developed by 

crossing a Puerto Rico strain to Ibo strain Ae. aegypti formosus, generation F19 (BEI 

Resources; NR 45838), 2) known for low dissemination of DENV, developed by 

outcrossing D2S3 strain to Houston strain of Ae. aegypti aegypti, generation F18 (BEI 

Resources; NR 45837), 3) wild-type, generation F48 colony from Costa Rica (BEI 

Resources; MRA-726). Each population of mosquitoes was separated into two groups: 

a non-ESV exposed control group and an ESV-exposed group.  

DENV-2 infection rates and body titers of Aedes aegypti 
 

 In the wild-type population (MRA-726), more (100%) non-ESV exposed control 

mosquitoes became infected with DENV-2 than treatment mosquitoes (88%) of ESV 

exposed mosquitoes became infected with DENV-2 (Table 1, Figure 4); however, 

infection rates were not significantly different between groups for this population 

(p=0.297, F= 5.104, df = 1,34). Body titers were significantly (p<0.01, F= 3.21, df= 1,32) 
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higher in non-ESV exposed control (1.7 ± 0.4 PFUeq DENV-2/ mL) compared to ESV-

exposed mosquitoes (0.8 ± 0.2 log10 PFUeq DENV-2/ mL). In the high dissemination 

mosquito colony (NR-45838), infection rates between the ESV-exposed and non-ESV 

exposed control mosquitoes were 100% for both sub-groups (Table 1, Figure 4) and 

body titers were not statistically significant between non-ESV infected control (1.1 ± 0.3 

log10 PFUeq DENV-2/ mL) and treatment (1.4 ± 0.4 log10 PFUeq DENV-2/ mL) groups 

(p= 0.902, F= 0.622, df= 1,23). In the low dissemination rate mosquito population (NR-

45837), infection rates for the non-ESV exposed control and ESV-exposed groups were 

100% and 91%, respectively (Table 1, Figure 4) and were not significantly different (p= 

0.268, F= 6.360, df= 1,23); however, body titers were significantly (p<0.01, F= 1.054, 

df= 1,22) higher in non-ESV exposed (control) (1.2 ± 0.3 log10 PFUeq DENV-2/ mL) 

compared to ESV-exposed mosquitoes (0.6 ± 0.2 log10 PFUeq DENV-2/ mL).  

DENV-2 dissemination rates and leg titers of Aedes aegypti 

 

 In the wild-type population (MR-726), dissemination rates for non-ESV exposed 

control and ESV-exposed mosquitoes were 74% and 87%, respectively, and were not 

significantly different (p= 0.168, F= 10.782, df = 1,31) (Table 2, Figure 5). However, for 

this population, leg titers were significantly higher (p=0.010, F= 3.294, df= 1,25) in non-

ESV exposed control (3.0 ± 0.3 log10 PFUeq DENV-2/ mL) compared to ESV-exposed 

(0.8 ± 0.2 log10 PFUeq DENV-2/ mL) mosquitoes. Mosquitoes in the high dissemination 

colony (NR-45838) showed significantly higher (p= 0.022, F= 0.729, df= 1,24) 

dissemination rates for non-ESV exposed control (91%) than for ESV-exposed (29%) 

groups (p=0.170, F= 0.729, df= 1,24) (Table 2, Figure 5). However, leg titers for non-

ESV exposed control (3.0 ± 0.5 log10 PFUeq DENV-2/ mL) and ESV-exposed (2.8 ± 0.2 
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log10 PFUeq DENV-2/ mL) mosquitoes were not significantly different (p= 0.878, F= 

2.953, df= 1,12). In the low dissemination colony (NR-45837), no significant differences 

were observed in dissemination rates between non-ESV exposed control (79%) and 

ESV-exposed (90%) mosquitoes (p= 0.8548, F= 0.152, df= 1,23) (Table 2, Figure 5). 

For the same colony, leg titers were significantly higher (p=0.008, F= 0.604, df= 1,18) in 

non-ESV exposed control (3.9 ± 0.2 log10 PFUeq DENV-2/ mL) compared to ESV-

exposed (2.9 ± 0.3 log10 PFUeq DENV-2/ mL). 

DENV-2 transmission rates and saliva titers of Aedes aegypti 
 

 Wild type mosquitoes (MRA-726), had transmission (21%) only in non-ESV 

exposed control mosquitoes and saliva titers were 1.1 ± 0.4 log10 PFUeq DENV-2/ mL 

(Table 3, Figure 6). Similarly, in the high dissemination colony (NR-45838), transmission 

(10%) was observed in only non-ESV exposed control mosquitoes with saliva titers of 

0.4 ± 0.0 log10 PFUeq DENV-2/ mL. In the low dissemination colony (NR-45837), no 

transmission was observed in either non-ESV exposed control or treatment groups.  

Detection of ESV in mosquitoes 
 

 Previous experiments conducted by our lab were unable to consistently detect 

ESV in single adult mosquitoes (when mosquito larvae were exposed to ESV). Here, we 

detected ESV in the wild-type mosquito population (MRA-726), with 65% infection and 

91% dissemination (Table 5). ESV titers were calculated for bodies (0.1 ± 0.2 log10 

FFUeq ESV/mL) and legs (0.2 ± 0.1 log10 FFUeq ESV/mL); however, no ESV was 

detected in saliva samples. In the high dissemination colony (NR-45838), we detected 

ESV in mosquitoes with a 7 % infection rate and body titers of 0.6 log10 FFUeq ESV/mL 
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(Table 5). Neither ESV dissemination nor transmission was detected in this colony. For 

the low dissemination colony (NR-45837), we did not detect ESV infection, 

dissemination, or transmission in ESV-exposed mosquitoes.  

Discussion 
 

We investigated vector competence of three different Ae. aegypti populations 

exposed to an insect-infecting virus (ESV) prior to being fed a DENV-2-infected blood 

meal. In this study, we show that ESV may play a role in the vector competence of 

DENV-2 in multiple populations of mosquitoes. Although our sample size was relatively 

small, we did not observe differences in infection, dissemination and transmission rates 

between non-ESV exposed control and ESV-exposed groups within each population. 

Prior exposure to ESV did not inhibit mosquitoes from becoming infected with DENV-2. 

However, reduced body, leg and saliva DENV-2 titers were observed in ESV-exposed 

(superinfected) mosquitoes compared to non-ESV exposed control mosquitoes, 

indicating that ESV may partially block DENV-2 replication in mosquitoes. Further 

studies are needed to evaluate these effects at different doses of DENV. This in vivo 

experiment follows the results of our previous in vitro experiments showing that ESV did 

not inhibit DENV-2 entry into mosquito cells under the conditions of our test. However, 

plaque assays showed a reduction in infectious DENV-2 particles when C6/36 cells 

were co-infected with DENV-2 and ESV prior to plaque assay on Vero cells. The 

observation in cell culture is supported by our mosquito experiments, with ESV-exposed 

mosquitoes having significantly lower DENV-2 titers compared to non-ESV infected 

control mosquitoes. Furthermore, the method for ESV infection of mosquitoes may 

impact measures of vector competence. In our study, we first reared mosquitoes in ESV 



53 
 

larval water and then exposed mosquitoes to ESV via sugar feeding. This may have 

increased the ESV in some mosquitoes that fully engorged on sugar containing ESV 

versus mosquitoes that did not receive a full sugar-ESV meal.  

With the discovery of insect-infecting viruses, additional attention should be paid 

to determine the extent to which these viruses may impact vector competence. In a 

previous study (Bolling et al., 2012), mosquitoes persistently infected with Culex 

Flavivirus (CxFV) had significantly lower dissemination of West Nile virus among of 

CxFv infected mosquitoes than single-infected mosquitoes at 7 dpi. However, at 14 dpi, 

infection, transmission and dissemination rates of WNV did not differ between CxFv-

exposed and control groups (Bolling at al., 2012). Hence, it is possible that some insect-

infecting viruses may inhibit replication of other viruses during the early stages of 

infection. In a case control study using Culex pipiens mosquito pools collected from the 

southwestern Chicago suburbs, results indicated a four-fold increased probability of 

infection of WNV-positive pools with CxFV relative to spatiotemporally matched WNV-

negative pools. This study indicated a positive ecological association between CxFV 

and WNV (Newman et al.2011). Genetic variations in mosquito populations and/or the 

viral isolate may impact the host effects of insect-infecting viruses. Co-infection 

experiments with simultaneous infection of Honduras Cx. quinquefasciatus (Say) with 

WNV from Guatemala and CxFv Izabal resulted in increased transmission of WNV rates 

of co-infected mosquitoes. A similar study performed on a different population of 

mosquitoes (Sebring Cx. quinquefasciatus) infected with WNV (Guatemala) showed no 

significant difference in transmission rates of single (CxFv) and co-infected (CxFv and 

WNV) mosquitoes (Kent et al., 2010). Consequently, insect-infecting viruses may 
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enhance transmissibility of certain flaviviruses (Blitvich et al., 2015). This should be 

tested under a variety of environmental conditions. 

Superinfection exclusion, in which a cell infected with one virus cannot be 

secondarily infected with another virus, is of particular interest in studying effects of 

certain insect-infecting viruses and medically important arboviruses (Kenney et al., 

2014). Superinfection studies have indicated that the effect of exclusion of the 

secondary virus generally does not take effect until at least one hour following infection 

of the initial virus (Eaton, 1979; Johnston et al., 1974). In addition, some insect-infecting 

viruses (such as ESV) may not replicate in some vertebrate cells. If this is consistent 

across all types of vertebrate cells, this could lead to novel approaches using insect-

infecting viruses to combat medically important arboviruses. New approaches are being 

generated such as using Eilat virus (EILV), an insect-infecting alphavirus, as a platform 

for chikungunya virus (CHIKV) vaccine. A study showed that a chimera of EILV/CHIKV 

protected two mouse models from all measures of CHIKV up to 292 days post vaccine 

(Erasmus et al., 2018). With the growing number of insect-specific viruses being 

discovered it is imperative to explore ways they may be used to reduce the impact of 

medically important arboviruses. With the re-emergence and expansion of viruses such 

as DENV and ZIKV it is imperative we discover new ways to combat these public health 

threats. 
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Chapter V – Conclusion 
 

 Arbovirus surveillance has led to the discovery of insect-infecting viruses in 

mosquitoes. Initially studies of these insect-infecting viruses were limited as the viruses 

were deemed to be of little importance. In recent years, renewed interest in these viruses 

have been born out of their potential effects and possible interference with viral replication 

of medically important arboviruses. Espirito Santo virus (ESV), an insect-infecting virus, 

was recently discovered in a patient sample from Brazil. The virus was discovered in a 

biological sample containing DENV, leading to the current study on the potential effects 

of ESV on DENV-2. We have shown in our in vitro experiments (illustrated by plaque 

assay) that ESV may inhibit DENV from entering cells. Our findings also show that ESV 

is able to replicate in the absence of DENV-2 in the mosquito under the conditions of this 

test. This finding suggests that ESV may be able to replicate in the mosquito in the 

absence of co-infection of DENV-2. Further studies are planned to investigate the 

possibility of transovarial transmission of ESV in mosquitoes. Simultaneous co-infection 

of C6/36 cells with ESV and DENV-2 (44/2), show neither virus inhibits the other from 

entering the cell. Observations of IFAs show the presence of DENV-2 proteins in cells co-

infected with ESV and no differences in staining; however, plaque assays assessing co-

infections of ESV and DENV-2 in C6/36 cells showed a reduced amount of DENV-2 

plaques. These results indicate, that ESV may affect the replication process of DENV-2. 

Further studies are needed to elucidate these observed differences. Although C6/36 cells 

lack a functional antiviral RNAi response, we expected these results to be duplicated to 

an extent in in vivo studies (Brakney et al., 2010). 

 



61 
 

 In vivo studies using three different populations of Ae. aegypti allowed us to study 

viral superinfection. Using a wild-type population of mosquitoes from Costa Rica, high 

dissemination population from Puerto Rico and a low dissemination population from the 

United States, we infected larval mosquitoes with ESV, and subsequently blood fed adult 

mosquitoes with an infectious blood meal containing DENV-2. We did not observe lower 

rates of DENV-2 infection, dissemination and transmission; however, we did observe 

lower DENV-2 titers in ESV-exposed compared to control (non-ESV exposed) 

mosquitoes. While, our sample size was relatively small, these results highlight the need 

for additional testing on the effects of insect-infecting viruses against medically important 

arboviruses, such as DENV. As insecticide resistance increases globally, geographic 

ranges of mosquitoes continue to increase, and international travel continues to increase, 

novel approaches are needed to combat arboviral diseases impacting public health.  
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Appendix  
 

Figure 1.Detection of ESV Proteins 

a. Western blot showing ESV proteins (anti-ESV antibody) expressed in ESV and 
ESV/DENV-2 infected C6/36 cells  

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

 

 

b. Immunofluorescence assay showing DENV-2 (44/2) proteins in DENV-2 infected 
C6/36 cells 
 

 

 

Immunofluorescence assay showing ESV proteins in ESV infected C6/36 cells 
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c.  Western blot showing ESV band present (anti-ESV antibody) when ESV alone 

and ESV co-infected with DENV-2 (44/2) in C6/36 cells. Apparent increase may 

be due to more proteins loaded onto wells. 

 

d. Confocal imaging of ESV proteins in C6/36 cells 

 

Figure 2. No difference in DENV-2 (44/2) proteins 
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a. Immunofluorescence showing no difference in DENV-2 (44/2) proteins (anti-DENV 

antibody) for DENV-2 alone compared to DENV-2 co-infected with ESV in C6/36 

cells.   
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b. ESV protein expression in ESV + DENV-2 (44/2) co-infected C6/36 cells 
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Figure 3. ESV suppresses DENV-2 replication in plaque assay 

 

a. Comparison of ESV infected wells and non-ESV infected control wells 

showing no plaques, verifying that ESV does not cause plaques in Vero cells. 

 

 

 

 



77 
 

b. Serial dilutions of DENV-2 (44/2) alone and DENV-/ESV (stock) wells 
showing fewer plaques in wells containing ESV in Vero cells reduction. 
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c. Bar graph showing plaque assay data of counts of DENV-2(44/2) plaques in wells 

with DENV-2 alone, ESV alone, and wells co-infected with ESV and DENV-2  
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Figure 4. Rates of DENV-2 (44/2) infection, dissemination and transmission potential, 7 
days post blood meal in Aedes aegypti. 
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Figure 5. Rates of ESV infection, dissemination and transmission potential 7 days post 
blood meal in Aedes aegypti. Aedes aegypti reared in larval water inoculated with ESV 
and adults fed 20% sucrose solution containing ESV after emergence.  
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Table 1. The mean DENV-2 (44/2) qRTPCR detected plaque forming equivalents (log10 
PFUeq DENV/ mL) ± standard error and rates of infection (% with DENV-2-positive 
bodies) for Aedes aegypti (larval rearing water inoculated with ESV for ESV-exposed 
mosquitoes) fed DENV-2-infected blood meals and incubated at 28°C for 7 d. 
Significantly higher values within mosquito populations for titer indicated with asterisk. 

DENV-2 Infection Rates and Body Titers 

MRA-726 (wild-type colony) 

  No. tested No. Body Infection (%) Body Titer 

control 19 19 (100%) 1.7 ± 0.4* 

ESV 17 15 (88%) 0.8 ± 0.2 

NR-45838 (high dissemination colony) 

  No. tested No. Body Infection (%) Body Titer 

Control 11 11 (100%) 1.1 ± 0.3 

ESV 14 14 (100%) 1.4 ± 0.4 

NR-45837 (low dissemination colony) 

  No. tested No.  Body Infection (%) Body Titer 

Control 14 14(100%) 1.2 ± 0.3* 

ESV 11 10 (91%) 0.6 ± 0.2 
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Table 2. The mean DENV-2 (44/2) qRTPCR detected plaque forming equivalents (log10 
PFUeq DENV/ mL) ± standard error and rates of dissemination (% with DENV-2-
positive legs) for Aedes aegypti (larval rearing water inoculated with ESV for ESV-
exposed mosquitoes) fed DENV-2-infected blood meals and incubated at 28°C for 7 d. 
Significantly higher values within mosquito populations for dissemination and/or leg titer 
indicated with asterisk. 

 

DENV-2 Dissemination Rates and Leg Titers 

MRA-726 (wild-type colony) 

  No. Tested No.  Dissemination (%) Leg Titer 

Control 19 14 (74%) 3.0 ± 0.3* 

ESV 15 13 (87%) 0.8 ± 0.2 

NR-45838 (high dissemination colony) 

  No. tested No. Dissemination (%) Leg Titer 

Control 11 10 (91%)* 3.0 ± 0.5 

ESV 14 4 (29%) 2.8 ± 0.2 

NR-45837 (low dissemination colony) 

  No. tested No. Dissemination (%) Leg Titer 

Control 14 11 (79%) 3.9 ± 0.2* 

ESV 10 9 (90%) 2.9 ± 0.3 
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Table 3. The mean DENV-2 (44/2) qRTPCR detected plaque forming equivalents (log10 
PFUeq DENV/ mL) ± standard error and rates of potential transmission (% with DENV-
positive saliva) for Aedes aegypti (larval rearing water inoculated with ESV for ESV-
exposed mosquitoes) fed DENV-2-infected blood meals and incubated at 28°C for 7 d. 

DENV-2 Transmission Potential Rates and Saliva Titers 

MRA-726 (wild-type colony) 

  No. Tested No.  Transmission (%) Saliva Titer 

Control 14 3 (21%) 1.1 ± 0.4 

ESV 13 0 (0%) 0 

NR-45838 (high dissemination colony) 

  No. tested No.  Transmission (%) Saliva Titer 

Control 10 1 (10%) 0.4  

ESV 4 0 (0%) 0 

NR-45837 (low dissemination colony) 

  No. tested No.  Transmission (%) 
 

Saliva Titer 

Control 11 0 (0%) 0 

ESV 9 0 (0%) 0 
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Table 4. The mean detected qRTPCR focus forming equivalents (log10 FFUeq ESV/ mL) 
± standard error and rates of infection, dissemination and transmission (% with ESV-
positive bodies, legs and saliva) for Aedes aegypti. Mosquitoes were reared in ESV 
inoculated larval water and new emerged adults were allowed to feed on a 20% sucrose 
solution containing ESV for 24 h. Mosquitoes were fed DENV-2 (44/2) infected blood 
meals and incubated at 28°C for 7 d. 

Rates of ESV Infection, Dissemination, and Transmission Potential, and 
Body, Leg, and Saliva Titers 

  No. Tested MRA-726 ESV Titer 

Infection (bodies) 
17 11 (65%) 0.1 ± 0.2 

Dissemination (legs) 
11 10 (91%)  0.2 ± 0.1 

Transmission (saliva) 
10 0 0 

  No. Tested NR-45838 ESV Titer 

Infection (bodies) 14 1 (7%) 0.6 

Dissemination (legs) 
1 0 

0 

Transmission (saliva) 
0 0 

0 

  No. Tested  NR-45837     ESV Titer 

Infection (bodies) 11 0 0 

Dissemination (legs) 
0 0 

0 

Transmission (saliva) 
0 0 

0 

 

 

 

 

 



 


