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Plant architecture and inflorescence architecture, in particular, are major determinates of 

yield. Plant architecture is dependent upon the activity of meristems. Meristems are vital to plant 

development because they not only maintain groups of undifferentiated cells, but they also produce 

cells that differentiate to give rise to new organs. This process is called organogenesis. The pattern 

and timing of organogenesis is a major contributor to plant architecture. The plant hormone auxin 

plays a major role in determining organogenesis. Auxin regulates position and number of 

primordia that form on the flanks of a meristem. Certain transcriptions factors have been found to 

effect leaf morphology such as TCP transcriptions factors. To better understand the genetic 

pathways that regulate inflorescence architecture I characterized single, double, and triple mutants 

from Zea mays.  

  



 
 

 
 

 

 

 

  



 
 

 
 

Control of maize development by microRNA and auxin regulated pathways 

 

 

 

 

A Masters Thesis 

 

Presented To the Faculty of the Department of  Biology 

 

East Carolina University 

 

 

 

 

 

In Partial Fulfillment of the Requirements for the Degree 

 

Masters of Science in Biology 

 

 

 

 

 

by 

 

Jessica Wilson 

 

November, 2018 

 

 

 

 

 

  



 
 

 
 

 

 

 

 

 

 

©Copyright 2018 

Jessica Wilson 

  



 
 

 
 

Control of maize development by microRNA and auxin regulated pathways 

By: 

Jessica Rose Wilson 

 

 

APPROVED BY:   

 

 

DIRECTOR OF THESIS: _______________________________________________ 

Beth Thompson, Ph.D. 

 

COMMITTEE MEMBER: ______________________________________________ 

Elizabeth Ables, Ph.D. 

 

COMMITTEE MEMBER:  _______________________________________________ 

Myon Hee Lee, Ph.D. 

 

CHAIR OF THE 

DEPARTMENT OF BIOLOGY: _________________________________________ 

Cindy Putnam-Evans, Ph.D. 

 

DEAN OF THE 

GRADUATE SCHOOL: _______________________________________________ 

         Paul J. Gemperline, PhD 

  



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 

I would like to thank Dr. Beth Thompson for giving me the opportunity to conduct research in 

her lab. Additionally, without help and resources from Dr. Elizabeth Ables, Dr. Tom Fink, and 

Julie Marik my research would not have been possible. A special thanks goes to my friend and 

mentor Katherine Novitzky for teaching me everything she knows about TCPs amongst many 

other things.  I would also like to specifically thank Anastasia Amoiroglou and Hailong Yang for 

their support scientifically and emotionally during these past two years as well as my other 

friends who have been nothing but supportive. Last but not least, I want to thank my family for 

their continued support and encouragement to complete this.  

  



 
 

 
 

Table of Contents 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

CHAPTER 1: Introduction ..............................................................................................................1 

Significance of developmental research on flowering grass species, specifically, Maize ...1 

Maize Inflorescence Development  .....................................................................................1 

Mutant Analysis gives insight into normal gene functions during inflorescence 

development .........................................................................................................................3 

 

mir319 and mir167 regulate development in other plants ...................................................6 

CHAPTER 2: Characterization of miR319 TCPs in Development ...............................................13 

Introduction ........................................................................................................................13 

Methods..............................................................................................................................14 

Results and Discussion ......................................................................................................16 

CHAPTER 3: The Effects of Auxin on the fzt Phenotype .............................................................30 

Introduction  .......................................................................................................................30 

Methods..............................................................................................................................33 

Results and Discussion ......................................................................................................35 

CHAPTER 4: Summary and Future Directions .............................................................................45 

Objective 1: Summary and Future Directions ...................................................................45 

Objective 2: Summary and Future Directions ...................................................................46 

REFERENCES ..............................................................................................................................47 

 



 

LIST OF TABLES 

1. Genotyping primers ...........................................................................................................22 

2. RT-PCR primers  ...............................................................................................................24 

3. TCP mutants observed .......................................................................................................26 

4. vt2;fzt and spi;fzt measurements ........................................................................................38 

5. Batches of plants grown for NPA experiment with watering conditions ..........................39 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  

LIST OF FIGURES 

1. Maize Inflorescence Development ......................................................................................8 

2. Maize Meristem Flow Chart ................................................................................................9 

3. fzt developmental defects ...................................................................................................10 

4. miRNA biogenesis pathway ..............................................................................................11 

5. miRNA downregulation in fzt tassel primordia .................................................................12 

6. TCPs regulate the balance between proliferation and differentiation ................................20 

7. Gene models for the miR319-regulated tcp genes in maize ..............................................21 

8. Strategy to genotype families segregating mutator insertions ...........................................23 

9. miR319-targeted TCPs are closely related and likely redundant .......................................25 

10. tcp mutants do not exhibit obvious developmental phenotypes ........................................27 

11. tcp33;tcp24;tcp38 triple mutant .........................................................................................28 

12. RT-PCR results  .................................................................................................................39 

13. Auxin Pathway with spi1 and vt2 ......................................................................................40 

14. vt2;fzt and spi1;fzt phenotypes ...........................................................................................41 

15. Root phenotype after NPA treatment .................................................................................42 

16. Wildtype ears watered with NPA ......................................................................................43 

17. fzt ears watered with NPA..................................................................................................44 

 

 

 

  



 
 

 

CHAPTER 1: Introduction 

 

Significance of developmental research on flowering grass species, specifically, Maize 

Grass species are essential domesticated crops worldwide. Corn, rice, barley, and wheat, 

part of the Poaceae family of flowering grasses, produce seeds consumed as food for humans and 

livestock. As the human population expands so does the need for improved crops (Yang C. et al 

2016). Studying the development of seed-bearing grasses may lead to the improvement of crop 

plants to meet worldwide food demand. Plant and inflorescence architecture are major 

determinates of yield. Understanding the genes and pathways involved in the inflorescence 

architecture of flowering grass species can help improve growth, and potentially yield.  

 Zea mays (maize) is an excellent model to understand molecular mechanisms that 

regulate development involved in the grasses (Colosanti J, 2009). The information we uncover in 

maize may be translated into other systems to improve agricultural production.  

Maize inflorescence development 

Grasses from the Poaceae family develop inflorescences that produce flowers. Maize is a 

monoecious plant, meaning it produces unisexual (male and female) flowers on separate 

inflorescences (Bartlett et al., 2015; Li and Liu, 2017; Mao Y et al, 2017). The tassel produces 

male flowers and is located in the apex of the plant. The tassel consists of a main spike that is 

surrounded by long branches several branches at the base. Each branch contains spikelets and 

flowers (Figure 1). The ear produces female flowers and is located in the axils of the leaves 

(Figure 1). The ear contains many rows of kernels and two lateral branches (Bortini E, 2007).  
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 Flowers (called florets in grasses) in both the tassel and ear are contained in spikelets 

(Bartlett et al., 2015; Bortini E, 2007). Both the tassel and ear produce paired spikelets.  In the 

tassel, each spikelet contains an upper and lower floret with three stamens, a lemma, palea, and 

lodicules (Figure 1) (Smoczynska and Szweykowska-Kulinska, 2016; Bartlett et al., 2015; 

Bonnett O.T. 1954). In the ear, the lower floret aborts, resulting in a spikelet with a single floret.  

(Smoczynska and Szweykowska-Kulinska, 2016; Bartlett et al., 2015; Bonnett O.T. 1954).  

Inflorescence development is dependent upon meristem activity 

The formation of the tassel and ear are dependent upon the activity of meristems 

(Vollbrecht, E 2005; Bortiri, E 2007; Sun, W. et al, 2017). Meristems are groups of 

undifferentiated cells in the plant that initiate the formation of new plant organs (Fletcher, 2018; 

Zhang, Z 2017). Meristems can be determinate or indeterminate (Zhang, Z 2017; Vollbrecht, E 

2005; Bortiri, E 2007). Determinate meristems are consumed after making a specific number of 

organs or meristems, whereas indeterminate meristems make an indefinite number of organs or 

meristems (Zhang, Z 2017; Bortiri, E et al 2007). The regulation between determinate and 

indeterminate meristems is necessary for normal patterning of maize organs. Indeterminacy in 

meristems leads to abnormal development including characteristics such as increased proliferation 

and increased branching (Bommert, P et al 2017; S. J Park, Y 2014, Thompson, B 2014).  

The shoot apical meristem (SAM) produces all above ground organs such as the leaves, 

stem, and axillary meristems. The SAM is an indeterminant meristem because it produces an 

unlimited number of leaves during its vegetative stage (Fletcher, J. 2018; Zhang, Z 2017; Bortini 

E. et al 2007). Later during development, the shoot apical meristem and axillary meristems 

transition from a vegetative state into a reproductive state and the SAM transitions to the 

inflorescence meristem (IM).  The IM is also indeterminate but produces determinate meristems. 
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The tassel is the product of the apical IM and the ear is the product of an axillary meristem (S.J 

Park, Y 2014; Thompson BE. 2014). The IM contains stem cells that initiate additional meristems 

that ultimately give rise to the reproductive structures needed for reproductive development. In 

both the tassel and the ear, the IM initiates spikelet pair meristems (SPM) (Figure 2). In the tassel 

the IM also gives rise to branch meristems (BM) which forms the branches at the base of the tassel; 

in the ear the IM does not produce BMs.  SPMs give rise to two spikelet meristems (SM) leading 

to the formation of two floral meristems (FM) (Figure 2) (Thompson BE et al. 2014). These two 

floral meristems give rise to the upper floret and lower floret. Each floret contains a lemma, palea, 

and lodicule that consists of the reproductive organs, stamens and carpels (Figure 2) (McSteen, et 

al. 2000).  

Mutant analysis gives insight into normal gene functions during inflorescence 

development 

MicroRNAs (miRNAs) and their target mRNAs are key regulators of inflorescence 

development (Zhao, Yunde, 2010). Many key genes that function in inflorescence development 

are a part of miRNA dependent pathways. The isolation of mutants to study the function of the 

genes and miRNA targets involved in these developmental pathways is a common technique used 

to study inflorescence development in plants. Seeing how a gene specific mutant affects 

development allows us to tell what the function of a that gene is in normal development. miRNAs 

regulate many developmental processes and target mRNAs that control developmental processes 

such as the auxin signaling pathway, as well as plant specific transcription factors such as TCPs.  

The auxin biosynthesis, transport, and signaling pathways have been extensively studied 

and many of the key players identified. The auxin signaling pathway is important in inflorescence 

development because it plays a prominent role in the initiation of primordia. The plant hormone
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auxin modulates lateral plant growth and development within those developmental processes 

(Zhao, Yunde 2010). In the absence of auxin, ARFs are complexed with AUX-IAAs proteins and 

inhibit transcription of target genes. In the presence of auxin, auxin binds to TIR1 and in the SCF-

TIR1 complex to form a coreceptor. Aux/IAA repressors then enter the pathway, bind to the SCF-

TIR1 complex, and are polyubiquitinated which leads to the degradation of Aux/IAA. This leaves 

the ARF activators unbound and leads to the subsequent activation of auxin-response genes leading 

to transcription. The most commonly researched auxin signaling pathway is the TIR1 pathway 

which controls transcriptional responses to auxin. During the auxin signaling pathway, AUXIN 

RESPONSE FACTORS (ARFs) bind to auxin-response elements that are in the promoters of 

auxin-response genes. Aux/IAA transcripts are rapidly and strongly induced by auxin treatment in 

peas, soybeans, and other plants. In order to have auxin-response gene activation there needs to be 

a sufficient amount of auxin. 

Auxin regulates cell division, cell expansion, cell differentiation, lateral root formation, 

flowering, and trophic responses (Mashiguchi, Kiyoshi et al. 2011). Mutants in genes that control 

auxin signaling, as well as other plant hormone growth regulators have been characterized  

Maize mutants exist in genes required for both auxin biosynthesis as well as transport and 

signaling, which we can use to understand the roles of auxin in maize inflorescence development. 

For example, sparse inflorescence 1 (spi1) is an auxin biosynthesis mutant that has defects during 

vegetative and reproductive development such as fewer branches and spikelets on tassels, smaller 

ears, and low yield suggesting a defect in branch meristem (BM), SPM, SM, FM, and floral organ 

initiation. Vanishing tassel 2 (vt2) is a co-ortholog of TRYPTOPHAN AMINOTRANSFERASE 

OF ARABIDOPSIS (TAA1) which functions in the auxin biosynthesis pathway to convert 

tryptophan to indole-3-pyruvic acid and has a similar phenotype to spi1 with severe barren
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inflorescences without branches or spikelets (Phillips, K.A. 2011). Other examples, such as the 

characterization of the barren inflorescence1 (ba1) mutant led to the discovery of genes required 

for lateral meristem initiation in inflorescence development (Barazesh S. 2008, Gallavotti A, 

2010). These auxin mutants show that auxin biosynthesis is required for lateral meristem initiation 

in maize inflorescences.  

fuzzy tassel mutation affects miRNA biogenesis 

The maize fuzzy tassel (fzt) mutant has a lack of meristem determinacy and severe 

inflorescence and vegetative defects. (Thompson BE et al, 2014) (Figure 5). Positional cloning 

showed the fzt phenotype is caused by a mutation in the dicer-like1 (dcl1) gene. dcl1 encodes an 

enzyme required for microRNA (miRNA) biogenesis (Figure 6). miRNAs are small, non-coding 

RNAs that function in RNA silencing and posttranscriptional regulation of gene expression. Many 

miRNAs have already been characterized and have known roles that contribute to maize 

inflorescence development (Djami-Tchatchou, Arnaud T et al., 2017). A common mutant used to 

study the effects of miRNA targets on maize inflorescence development is tasselseed4 (Ts4) which 

targets indeterminate spikelet1 (ids1) and Tasselseed6 (Ts6) (G. Chuck, 2007). Maize tasselseed4 

encodes a miRNA that targets a gene required for spikelet meristem determinacy (G. Chuck, 2007). 

Ts4 mutants have inflorescence defects such as irregular branching within the inflorescence (G. 

Chuck, 2007). Some of the roles of these miRNAs include sex determination, stamen development, 

and meristem maintenance and initiation leading to establishment of the reproductive phase and 

organ patterning (Banks, J. 2008). Two miRNAs that are reduced in fzt are miR167 and miR319 

(Thompson BE et al, 2014) (Figure 7).  
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miR319 and miR167 regulate development in other plants 

When we look at miR167, miR167a-d-5p specifically, it is dramatically reduced in fzt 

mutants. miR167a-d-5p specifically, is a miRNA that targets mRNAs that encode for auxin 

response factors (ARFs). Sequencing was done to analyze small RNA populations from 14-day 

old seedlings and tassel primordia of fzt mutants and normal siblings. This data showed many 

differentially expressed targets were increased in fzt mutants. Although many miRNAs were 

reduced, they were not all reduced at the same levels, some were more dramatically reduced such 

as miR167a-d-5p which was reduced 20-30 fold in fzt mutants. From analyzing the RNA 

sequencing data, it was found that miR167 targets two and these are statistically increased in fzt 

mutant tassels (Thompson, B. 2014). Since miR167 targets ARFs and they are statistically 

increased in fzt mutants one possibility is that the increased branching and primordia seen in fzt is 

an effect of the increased auxin signaling. 

Seven miR319-regulated TCPs are expressed in tassel primordia; however, these mRNAs 

are not significantly upregulated in fzt tassel primordia. To determine the function of miR319-

regulated TCPs during development, we obtained transposon insertions in six of seven miR319-

targeted TCP genes from the uniform mu project (Chapter 2) (Andorf CM et al, 2015). 

In multiple plant species, TCP genes have key roles in vegetative and reproductive 

development. In general, plants with reduced TCP levels have increased proliferation resulting in 

notched leaf margins as well as wavy leaves (Palatnik et al., 2003).  In general, overexpression of 

miR319 or knock-downs of multiple tcps results in abnormal curvature and excess leaf growth. 

(Efroni et al., 2008; Nag et al., 2009; Palatnik et al., 2003). For example, the Arabidopsis, jaw-D 

mutant overexpresses miR319, resulting in reduced tcp levels, and has jagged and wavy leaves. 

Antirrhinum (snapdragon) cin mutant contains a loss-of-function mutation in a miR319-regulated
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TCP transcription factor and have a similar phenotype as well as larger leaves with an undulating 

edge due to excessive growth in marginal regions (Crawford BC, 2004).   

In contrast, plants with increased tcp levels have smaller leaf margins, narrower and 

shorter petals, as well as impaired stamen and anther development (Crawford et al., 2004; Nag et 

al., 2009). For example, in Solanum lycopersicum (tomato), the classical, partially dominant, 

Lanceolate (La) mutant harbors a mutation in the miR319-binding site, resulting in 

overexpression of tcp. In La mutants, the normally large compound leaves are converted into 

small simple leaves (Ori et al., 2007). The regulation network of miRNAs using miR319 

regulated TCPs is very complex but necessary for proper vegetative and reproductive 

development.  

I investigated the function of miR319-targed TCPs to test my hypothesis that TCP 

transcription factors are necessary to maintain the balance of differentiation and proliferation in 

maize development.  
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Figure 1: The tassel is located at the apex of the maize plant. The ear is located in the axil of 

the leaf. The tassel and ear produce paired spikelets. In the tassel, each spikelet produces an 

upper and lower floret. In the ear, the lower floret aborts, resulting in a spikelet with a single.  
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Figure 2: The inflorescence meristem (IM) contains stem cells that initiate additional 

meristems. In both the tassel and the ear, the IM initiates spikelet pair meristems 

(SPM). In the tassel the IM also gives rise to branch meristems (BM) which form all 

the branches on the tassel; the ears IM does not produce any BMs.  SPMs give rise to 

two spikelet meristems (SM) leading to the formation of two floral meristems (FM). 

IM 

SPM 

SM 

FM 

BM 
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Figure 3: fzt has severe vegetative and reproductive defects.  (Left) Scanning electron 

micrograph of fzt tassel primordia showing indeterminate meristems and increased branching 

(Right) fzt plant at maturity (8 weeks). fzt plants are shorter than normal and have shorter, 

narrower leaves. 
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Figure 4: dcl1 is required for miRNA biogenesis. fzt has a mutation in an enzyme 

named dicer-like1 (dcl1) which is required for miRNA biogenesis. The miRNA 

biogenesis pathway above highlights where dcl1 acts in this process. 
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Figure 5: miRNAs are significantly reduced in fzt. Both miR319, which targets 

mRNAs that encode TCP transcription factors, and miR167, which targets mRNAs that 

encode for auxin response factors, are reduced in fzt mutants.  Data from Thompson et 

al, 2014. 



 

 

 

CHAPTER 2: Characterization of miR319 TCPs in Development 

 

 

Introduction: 

TCPs are plant-specific transcription factors and have known roles in leaf and floral 

development in maize and other plant species (Parapunova V, 2014). TCP targets maintain a 

balance between proliferation and differentiation of miR319 to enable proper leaf development 

(Koyama, T. 2017; Schommer et al, 2012) (Fig 6). TCP transcription factors are named after the 

proteins where they were first identified: Teosinte Branched 1 (tb1) from maize, Cyclodia (cyc) 

from Antirrhinum, and Proliferating Cell Factors 1 and 2 (pcf1/2) from rice (Martin-Trillo, 

2010) The TCP domain is a 59-amino acid basic helix-loop-helix motif that binds directly binds 

DNA and regulates transcription of genes that control the cell cycle regulators and interacts with 

cell cycle proteins (Martin-Trillo and Cubas, 2010). There are two classes of TCPs distinguished 

by a 4 amino acid change within the TCP domain, Class I and Class II (Cubas et al. 1999, 

Martin-Trillo and Cubas, 2010).  

A subset of class II TCPs are regulated by miR319 in maize and other plants. Maize 

contains seven TCP genes with a putative miR319 binding site (Martin-Trillo and Cubas, 2010; 

Novitzky, K. 2016) (Figure 7).  

In this study, I sought to characterize the phenotype of maize TCP transcription factors. A 

previous graduate student obtained lines with transposon insertions in six of the seven predicted 

miR319-targeted TCPs. (Novitzky, K., 2016). To this end, I examine single and double mutants 

to determine if any of these mutants affected maize development. In addition, I analyzed RNA 

from each of the mutant alleles to determine if any of these mutants are likely RNA null alleles. 
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Methods 

Plant Growth and Maintenance 

 Seeds were germinated by soaking for 2 hours in milli-Q water on the shaker and then 

placed in the incubator on wet paper towels covered with Captan fungicide. They were incubated 

at 28  Celsius for ~4 days until their shoots emerged at which point, they were transplanted in 

flats in soil from the greenhouse. Plants were grown in a growth chamber (Percival Intellus 

Control System) at 26  Celsius, 80% humidity, and 12-hour light and watered once daily.  

Plants grown for phenotypic analysis were grown in the greenhouse for eight weeks to 

maturity or in the field during Summer of 2017 at Central Crops Research Station (Clayton, NC). 

During this time, once the plants had grown to maturity around eight weeks, I measured plant 

height, total leaf number, leaf length, and leaf width to look for subtle phenotypic differences 

between tcp single mutants and normal siblings. I then performed a two-tailed t-test for each 

variable to see if any of the differences were statistically significant. 

Genotyping 

A PCR-based assay following Taq Touchdown cycling conditions was used to screen for 

homozygous TCP mutants by using a gene-specific primer and TUSC (mu-specific primer) 

(Table 1).  To detect the wild type gene, without the mu transposon insertion, forward and 

reverse gene-specific primers that flank the insertion site were used. A product from a PCR 

reaction with the forward and reverse primers indicates the presence of at least one wild type 

allele. A product from a PCR reaction with TUSC (mu-specific primer) indicates that individual
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is either heterozygous or homozygous (Fig 8). No PCR product with the forward and reverse 

gene specific primers indicates the individual is homozygous for the mu insertion. 

The first approach to characterizing tcp single mutant phenotype was to isolate single 

mutants for each of the six TCPs (tcp33, tcp24, tcp38, tcp44, tcp43, tcp5) from known 

segregating families. Heterozygotes or normal siblings were also isolated to be used as controls 

during the Fall of 2016.  

RNA Extraction 

Shoot apices from plants of the appropriate genotype were dissected and immediately 

flash frozen in liquid nitrogen and stored at -80C. RNA was extracted using the miRNeasy kit 

by Qiagen following manufacturer’s instructions. The optional DNase treatment step was 

completed as well. RNA was extracted from three individuals of each genotype. 

RNA Analysis 

 RNA quality was verified by running 3µl a 1% agarose gel visualizing two discrete bands 

corresponding to ribosomal RNA. Reverse transcription was done using the Invitrogen 

Superscript III 1st Strand RT-PCR kit according to manufacturer’s instructions using 1µg of 

RNA.  A reaction lacking reverse transcriptase was included to control for genomic DNA 

contamination. After the cDNA was synthesized, cDNA corresponding to 1µg TCP RNA was 

used as a template for PCR using primers listed in Table 2. Primer specificity you can determine 

by aligning the cDNA sequences of the closest related TCPs (tcp44 and tcp5, tcp33 and tcp24) to 

one another using the DNASTAR’s SeqMan and EditSeq from the Genomics Suite Version 12.0 

to make sure the primer sequences had multiple mismatches between TCPs. I made cDNA from 

the tcp33;tcp24;tcp38 individuals, the tcp44;tcp43;tcp5 individuals, W22 normal siblings as 

controls. 
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Results and Discussion 

I first characterized the six miR319-regulated TCPs in maize by phenotype. Discovering 

which mutants are likely loss-of-function alleles would all me to focus my efforts when isolating 

mutants. I hypothesized that the single and double mutants would not have any phenotypic 

differences from the normal plants because TCPs are closely related and redundant but, the triple 

mutants would have subtle phenotypic characteristics directly related to the mutated tcp gene 

(Figure 9). I concluded that tcp44 was a loss-of-function allele although I did not see any 

phenotypic abnormalities with the tcp44 mutants. tcp33 and tcp24 did not show to be loss-of-

function from the RTPCR so they were sent for sequencing. tcp5, tcp38, and tcp43 were not loss-

of-function but could have reduced levels of RNA but would need to be quantified with qPCR 

since RT-PCR is only qualitative. 

Phenotypic Characterization of tcp mutants 

 Looking at the phenotype of the individuals that are homozygous for the tcp genes that 

are loss-of-function is important because they may have abnormal characteristics compared to 

normal siblings.  I screened through 16 families segregating these tcp genes to isolate single, 

double, and triple mutants (Table 3); tcp mutants should segregating 1:4 for each allele. To 

determine if tcp genes in maize have functions like tcp genes in other species, I examined the 

phenotype of tcp33, tcp24, tcp38, tcp44, tcp43, tcp5, tcp43;tcp44, tcp43;5, tcp33;24, 

tcp33;tcp38, tcp38;tcp24, tcp33;tcp24;tcp38, and tcp44;tcp43;tcp5 field grown plants (Table 3). 

During the summer 2017 field season, I planted 162 seeds from families segregating 

tcp33, tcp24 and tcp38, and tcp44, tcp43 and tcp5. I measured several traits from single, double, 

and triple mutants to detect any subtle defects in vegetative development.  Specifically, I 

measured leaf width and length because TCPs are known to affect leaf development, as well as
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plant height and leaf number. From my research on TCP transcription factors I was unable to 

statistically conclude that leaf development in maize was affected by TCPs (Figure 10A). 

Looking at tcp33 leaf length and width it looks like there may be a difference between the 

normal siblings and tcp mutants but according to the data (Figure 10A) I could not make any 

conclusions regarding this.  I isolated one triple mutant (tcp33;tcp24;tcp38) in the greenhouse 

that had abnormal phyllotaxy, curling back of oracles, and severe ruffling of the leaves (Figure 

11). These phenotypic characteristics were consistent with what has been seen in other tcp 

mutants in other plant including tomato and Arabidopsis but I was not able to confirm this 

phenotype with field grown plants. I isolated three triple mutants during my field season since 

the families we had available were only segregating one triple mutant to every 64 plants. I saw 

no difference between the double or triple mutants and the normal siblings according to the data 

collected (Figure 10A&B). I contributed to this research by isolating the first tcp33;tcp24;tcp38 

triple mutant in the greenhouse as well as one in the field that we were able to self- pollinate to 

generate seed stocks for future field seasons. Those seeds can be planted to look at triple mutants 

since 100% of those plants are tcp33;tcp24;tcp38 individuals. Without the ability to look at more 

than three triple mutants, I cannot confidently conclude that TCPs effect maize development. It is 

possible that the severe phenotype seen in the greenhouse could have low penetrance and only 

show in some plants and not all.  Looking at ~twelve more triple mutants would determine 

whether it was a real triple mutant phenotype. Now that we have a family that is homozygous for 

tcp33, tcp24, and tcp38 as well as two families that are homozygous for tcp5 and segregating 

tcp43 and tcp44 it will be possible to look at a greater number of triple mutants at one time. 

To investigate the molecular nature of the allele miR319-regulated TCPs in maize 

development, I synthesized cDNA from plants homozygous for mu transposon insertions in six
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of the seven predicted miR319-targetd tcp genes. Of the seven miR319 regulated TCPs in maize, 

we have alleles in/near six of them. tcptf24, tcptf33, and tcptf44 have insertions in exons 

corresponding to the open reading frame and tcptf5, tcptf43, and tcptf33 have an insertion in the 

predicted 5’ UTR and tcptf38 has an insertion in the upstream promoter region (Figure 7). I 

hypothesized that tcp44, tcp33, and tcp24 are strong loss-of-function alleles and likely RNA null 

alleles because of the location of the mu insertions in the open reading frame. The insertion sites 

of tcp5 and tcp43 are in the 5’ UTR. Finally, tcp38 has a transposon insertion in the upstream 

promoter region, which could potentially decrease transcription. The transposon insertions in the 

5’ UTR and upstream promoter region could be null alleles, could have reduced levels of RNA, 

or they may not have any effect.  

The high similarity between the tcp genes made it difficult to design gene-specific 

primers that would specifically amplify the cDNA corresponding to a single tcp.  I was able to 

design gene-specific primers for tcp33, tcp38, tcp44, tcp43, and tcp5, but not tcp24.  Therefore, I 

synthesized cDNA using mutants homozygous for three tcp mutant alleles, (tcp33; tcp24; tcp38) 

and (tcp44;tcp43;tcp5). Using cDNA from the tcp44;tcp43;tcp5 triple mutant and tcp33; tcp24; 

tcp38 triple mutant PCR reactions were set up to verify cDNA synthesis; wildtype controls were 

also used.  From performing RT-PCR I was not able to amplify cDNA corresponding to tcp44 

but I was able to amplify other tcps, indicating that the tcp44 allele is an RNA null (Figure 12B). 

I could not conclude that tcp33 and tcp24 are loss-of-function alleles because from my RT-PCR I 

was able to amplify cDNA corresponding to tcp33 and tcp24. I concluded that tcp43, tcp5, and 

tcp38 were not loss-of-function alleles based on the RT-PCR because I was able to amplify 

cDNA corresponding to those alleles as well. Since RT-PCR is not quantitative, these alleles 

could still have reduced levels.  When I did my RT-PCR for tcptf33 and tcptf24, bands we
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present in the tcp33;tcp24;tcp38 triple mutant individuals which shows that RNA was present 

showing that they are not null alleles (Figure 12B). This is hard to believe though because of the 

location of their mu insertion, so I submitted these samples for sequencing. A few possibilities 

are that tcp33 could be making mRNA but it’s spliced out or there could be multiple tcp33 

transcripts that the RT-PCR is picking up. The band in the tcp24 RT-PCR could be a product 

from tcp33 because they are closely related but this was not confirmed due to sequencing issues. 

The other TCP genes: tcptf5, tcptf43, and tcptf38 all produced a PCR product with the RT-PCR 

for their correlated triple mutant individual (Figure 12B). This means they are not null alleles, 

although they could still form a non-functional protein. Since they are not null alleles and RT-

PCR only shows presence or absence of RNA for that gene qRT-PCR is necessary to complete in 

the future to determine if these TCPs have decreased levels of RNA expression. 
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miR319 TCPs 

Differentiation 

Proliferation 

Figure 6: TCPs regulate the balance between proliferation and differentiation in leaf 

development. Analysis of TCP function in other species led to a model in which TCP 

promotes cell differentiation and represses proliferation.    
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Figure 7: Gene models for the miR319-regulated tcp genes in maize. Mu transposon 

insertions are indicated by upside down triangles with the uniform mu identification 

number above them. Red arrows indicate primers used for RT-PCR. ORF=Open 

Reading Frame.  
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Sequence Primers TCP Mu ID 
Gene specific 
Length (bp) 

TUSC/GSP 
length (bp) 

Positive 
Control 

TCGCTCGACTCGGACTCCATC tcp33mu2F4 

tcptf33 1038380 758 bp ~190 bp 
W22               
3370 
#1,#9 

CACCATCACGAGCATTTCAG tcp33R3 

CTCTCCCAGACCCCATGTT 08229F2 

GAGGGGCATCAAAGAATCAA tcp24muF1 tcptf24       
(also 

picks up 
tcp33) 

1054518 ~1.1 kb ~300 bp 
W22               

3448 #1 
CAGTTCTACGACGTGCAGGA tcp24CR1R 

ACACCGCCATCCAGTTCTAC tcp24muR3 

TTCCAAAAAGAACCAATCGG 02232F1 
tcptf38 1022293 362 bp ~100 bp 

W22                
3368 #9                       TGAGCTCCGAATCTTCGTCT 02232R1 

CATTCCTCCTCACGGCTATC tcp44muF1 
tcptf44 1053544 ~1 kb ~700 bp 

W22                       
3378 #9 TACAGCCTCGGTTTCTCCAT tcp44muR1 

CGAGTGTCCAGTCCAGTGTG tcp5CR2F 

tcptf5 1007284 ~600 bp ~150 bp 
W22                          

3378 #9                        
AAGGTGTACACGACCAAGGG tcp5CR2R 

GCGTGAGGAGAGAGACGGTGATACA 00503F1 

AGTAGCCAGTGGGGGTCTCT tcp43muF1 
tcptf43 1052427 258 bp 594 bp 

W22                                
3379 #10                             CACTAGGACGGGCGTAATTC tcp43muR1 

Table 1: Genotyping primer sequences and positive controls used. Primers sequences in 

bold were used in combination with the TUSC primer to detect individuals with the 

transposon insertion. 
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Figure 8: Strategy to genotype families segregating mutator insertions. Two PCR 

reactions are completed to determine whether the individual is homozygous or 

heterozygous for the mu insertion or homozygous for the wildtype allele. One reaction 

is using two gene-specific primers that flank the mu insertion and the other reaction 

uses a gene-specific primer and a mu specific primer.  
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Sequence Primers Gene Mu ID 
Gene specific Length 

(bp) 

TCGCTCGACTCGGACTCCATC mu2F4 
tcptf33 1038380 

493 bp TAAGTCCAGTAACCAGCCCT CR3R 

TACCAAAGCTACACGCCTGA CR2F 
tcptf24 1054518 

565 bp GTCTGTTTCCTCGGCTTCTC CR2R 

CTCGACTGCTCCTTCGTCTT CR1F 
tcptf38 1022293 

520 bp GTTCTTTCTTGGAAGCGGTG CR1R 

CATTCCTCCTCACGGCTATC muF1 
tcptf44 1053544 

995 bp TACAGCCTCGGTTTCTCCAT muR1 

CGAGTGTCCAGTCCAGTGTG CR2F 
tcptf5 1007284 

584 bp AAGGTGTACACGACCAAGGG CR2R 

GAAACTGGAAAGGCGTCAAA CR2F 
tcptf43 1052427 

174 bp CTCGTCGTCCTTACTCTGGC CR2R 

Table 2: Primer sequences used for RT-PCR. 
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Figure 9: MiR319-targeted TCPs are closely related and likely redundant. Phylogenetic tree 

showing miR319-regulated TCPs and their close relationship to other known miR319-regulated 

TCPs. Maize miR319-regulated TCPs with known mu insertions are starred and are very closely 

related. Phylogeny constructed by former graduate student Katherine Novitzky. 
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TCP Mutants Observed 

Single mutants Double mutants Triple mutants 

tcp44            n=3 tcp44;tcp43        n=5 tcp44;tcp43;tcp5          n=1 

tcp43            n=8 tcp44;tcp5          n=0 tcp33;tcp24;tcp38        n=2 

tcp5              n=7 tcp43;tcp5          n=3  

tcp33            n=11 Tcp33;tcp24       n=5  

tcp24            n=7 tcp33;tcp38        n=5  

tcp38            n=7 tcp24;tcp38        n=1  

Table 3: Single, double, and triple mutants were grown for each of the six miR319 

regulated TCPs in maize to observe phenotypic characteristics. 
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Figure 10: tcp mutants do not exhibit obvious developmental phenotypes. Measurements 

were taken from all individuals that were planted during the 2016 field season. Single mutant 

(A), double mutant (B), and triple mutant (C) measurements for each tcp (tcp33, tcp38, tcp24, 

tcp43, tcp44 and tcp5) were taken and a two-tailed t-test was done to look for any statistically 

significant difference between the single mutants and normal controls. Error bars represent 

standard error. 
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Abnormal 
phyllotaxy  

Severe 
ruffling of 
leaves 

Curling back 
of auricles  

 

Figure 11: tcp33;tcp24;tcp38 triple mutant that was isolated in the greenhouse has 

multiple developmental defects. The phenotype had defects that correlated with the other 

defects seen in tcp mutants in tomato and Arabidopsis such as abnormal phyllotaxy, curling 

back of auricles, and severe ruffling of leaves.  
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A 

Figure 12: RT PCR results from that tcp24, tcp33, and tcp44 were null alleles of TCPs. 

tcp44 is a loss-of-function allele. The RTPCR product of the tcp33;tcp24;tcp38 triple 

mutant  



 
 

 
 

CHAPTER 3: The Effects of Auxin on the fzt Phenotype 

Introduction: 

Plant Structure and Development 

Plant development is characterized by continuous initiation of tissues and organs (Bohn-

Courseau 2010).  The initiation of tissues and organs is controlled by meristems. Meristems hold 

the undifferentiated stem cell populations that are involved in organogenesis. The SAM, 

specifically, holds the self-replenishing undifferentiated stem cells that control the initiation of 

all above ground organs and tissues of the plant (Thompson A.M, 2008; Leiboff S. et al, 2016). 

Studies and experiments about meristem signaling in the SAM and how it gave rise to lateral 

primordia began seventy years ago. From these experiments, they concluded that existing leaf 

primordia determines future sites of organ formation in adjacent regions on the SAM. This 

discovery lead to further research about mechanisms that control phyllotaxy, i.e. the way leaves 

or primordia are arranged on a plant (Golz, J. F., 2006) 

Auxin is a plant growth hormone that plays many different roles during development 

including gametogenesis, embryogenesis, seedling growth, vascular patterning, and flower 

development (Zhao, Yunde 2010). Auxin regulates cell division, cell expansion, cell 

differentiation, lateral root formation, flowering, and trophic responses (Mashiguchi, Kiyoshi et 

al. 2011). Plant hormones are important because they influence physiological processes in plants. 

These “chemical messengers” can affect the plant’s ability to respond to its environment by 

acting like plant growth regulators since they are responsible for stimulating or inhibiting plant 

growth.
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Auxin biosynthesis and transport 

The main naturally occurring auxin is indole-3-acetic acid (IAA). IAA is synthesized 

when tryptophan (Trp) is first converted to indole-3-pyruvate (IPA) by the TAA family of amino 

transferases (Zhao, Y., 2010). IAA is then produced from IPA by the YUCCA Flavin 

monooxygenase, which is a key auxin biosynthesis enzyme. This pathway is the main auxin 

biosynthesis pathway that operates in many developmental processes in plants (Figure 13) (Zhao, 

Y. 2010).  

Auxin maxima and minima are what triggers organ formation and is important for 

determining the cells structure and function (Truskina, J. 2018). There is also evidence that an 

important role for auxin minima in stem cell fate maintenance and organ patterning (Wang Y, 

Jiao Y. 2018). Auxin maxima are formed in part though active polar auxin transport. Polar auxin 

transport leads to auxin accumulation which initiates subsequent primordia to develop (Wang Y, 

Jiao Y. 2018). Polar auxin transport is an active process that transport auxin into different 

regions of cells and tissues. Organ primordia are formed by patterns of auxin accumulation and 

depletion in different sites of the shoot apical meristem (Davies, 2005). At the beginning of 

organ initiation, primordia are called sinks. Sinks are areas where auxin is reduced. As the organ 

primordia matures it switches from an auxin sink to a source (Golz, J. F., 2006).  Changes in 

auxin levels occur rapidly and are transported via transport proteins called PIN proteins. One of 

the most well-known auxin transporters is the PINFORMED1 (PIN1) protein of Arabidopsis 

thaliana. PIN1 is an auxin efflux transporter, meaning it actively transports auxin out of the cells 

and then determines the direction of the auxin based upon its’ polar localization. The changes in 

polarity are thought to be the reason for the creation of the maxima of auxin that accumulates 

after the initiation of new primordia (Gallavotti, A et al 2008).  
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One way we have identified genes involved in auxin synthesis, transport, and signaling is 

through mutant analysis. By studying these mutants, we can characterize the developmental 

defects caused by auxin deficiency. Many auxin mutants were found and used to help elucidate 

the role of auxin in lateral primordia initiation. Auxin-deficient mutants have a phenotype that 

lacks lateral primordia; because of their lack of auxin they are unable to initiate lateral primordia. 

Commonly studied auxin mutants are pinformed1 (pin1) mutants from Arabidopsis. The study of 

these mutants has told us what happens when auxin it not transported properly in and out of the 

cells. Available cloned mutants available in maize include: spi1, vt2, Bif1, Bif4, bif2, and ba1. 

Out of those, I looked at sparse inflorescence 1 (spi1) and vanishing tassel 2 (vt2). spi1 is an 

auxin biosynthesis mutant that has defects during vegetative and reproductive development such 

as fewer branches and spikelets on tassels, smaller ears, and low yield suggesting a defect in 

branch meristem (BM) and SPM initiation. vt2 is a co-ortholog of TRYPTOPHAN 

AMINOTRANSFERASE OF ARABIDOPSIS (TAA1) which functions in the auxin 

biosynthesis pathway to convert tryptophan to indole-3-pyruvic acid. vt2 has a similar phenotype 

to spi1 with severe barren inflorescences without branches or spikelets (Phillips, K.A. 2011). 

Both of those auxin mutants have been used to show that auxin is required for proper plant 

development. Mutants that disrupt auxin synthesis or transport have reduced numbers of 

primordia or completely lack primordia. Other known auxin maize mutants include bif2, Bif1 and 

Bif4 (Galli, M. et al 2015; McSteen, P. et al 2007). bif2 is a co-ortholog of PINOID from 

Arabidopsis, which regulates auxin transport. It is also required for the initiation of axillary and 

lateral primordia (McSteen, P. et al 2007). Bif1 and Bif4 encode Aux/IAA proteins that are 

essential to the auxin signaling pathway because they regulate early steps of inflorescence 

development (Galli, M. et al, 2015).  
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In this study, I sought to analyze the interaction between fzt and auxin. Since miR167 

targets ARFs and they are statistically increased in fzt mutants one possibility is that the 

increased branching and primordia seen in fzt is an effect of the increased auxin signaling. The 

first approach I took to analyze the interaction between fzt and auxin mutants was to use the spi1 

and vt2 auxin mutants to make spi1;fzt and vt2;fzt mutants. This approach would enable me to 

look at where fzt functions in the auxin pathway. The second approach I took was to inhibit auxin 

transport using N-1-Naphthylphthalamic Acid (NPA) to observe the effects that it had on the fzt 

phenotype. 

Methods 

Isolation of spi;fzt and vt2;fzt double mutants 

Since miR167 targets ARFs and they are statistically increased in fzt mutants one 

possibility is that the increased branching and primordia seen in fzt is an effect of the increased 

auxin signaling. The first approach to look at this was to isolate double mutants with fzt and 

auxin mutants, spi1 and vt2, respectively. Seeds segregating for fzt;spi1 double mutants and 

fzt;vt2 double mutants were planted. In collaboration with another graduate student, fzt 

homozygotes were identified by their phenotype. All plants were planted 36 to a flat in soil and 

grown in the growth chamber (Percival Intellus Control System) at 26  Celsius, 80% humidity, 

and 12-hour light and watered once daily while being genotyped. To see if the fzt homozygotes 

were also homozygous for spi1 or vt2 I genotyped them with gene specific primers. fzt plants 

were able to be identified by their phenotype. To isolate double mutants, the fzt plants were 

genotyped for either spi1 or vt2. Isolated double mutants were grown to maturity (8 weeks) and 

then phenotypically characterized. They were moved to the greenhouse to grow to maturity. In 

the greenhouse they were transplanted into large pots (5.68 L Classic 600 (C600) pots, 50% 
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Fafard 3B soil and 50% Turface) for growth in the greenhouse (16 hours light). Greenhouse-

grown plants (two plants/pot) were watered using drippers (2.0 GPH Woodpecker pressure 

compensating junior drippers (model number 01WPCJL8) from Netafim) eight times a day for 

three minutes and were supplemented with Peter’s Excel 15-5-15 Cal-Mag Special at 400PM 

nitrogen. Pictures and measurements including leaf number, height, internode lengths, and tassel 

height were taken for each double mutant identified (Table 4).  

NPA Treatment 

There were four different conditions: fzt with NPA, fzt without NPA, normal siblings with 

NPA, and normal siblings without NPA. Three separate batches of plants were used to gather all 

the information needed to answer my hypothesis (Table 5). fzt homozygotes were planted aside 

normal siblings and were watered daily with an 80uM concentration of NPA in 150mL of water at 

2 ½ weeks old at which point, tassel primordia had not started to initiate spikelet pair meristems 

(SPM) or spikelet meristems (SM) according to previous literature (Wu, X., and P. McSteen 2007). 

Plants were watered before the SPM and SM started to initiate in order to see how NPA would 

affect the increase in branching seen in fzt.  The concentration used was determined because it was 

the minimum concentration tested by Wu X. and McSteen P.  that was previously shown to cause 

a strong inhibition of lateral primordia (Wu, X., and P. McSteen 2007).  Plants were watered daily 

for 14 consecutive days. After the 14 days of NPA treatment, tassels were dissected and visualized 

on the dissecting scope or using a scanning electron microscope under low vacuum conditions on 

an FEI Quanta 200 Mark 1 scanning electron microscope at an accelerating voltage of 10 to 15 k. 
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Plant Growth Conditions 

Seeds were taken from a family segregating for fzt in A619 inbred background and 

soaked for 2 hours in water and then bleach sterilized with 2% bleach for 15 minutes followed by 

five fresh water washes. They were then placed on wet paper towels, coated with Captan 

fungicide, and incubated at 28C until a shoot emerged. Seedlings were transferred to soil in 

individual pots and grown in a Percival Intellus growth system at 26  C, 12-hour light dark 

cycle and watered daily.  fzt seedlings were identified based on phenotype and transplanted to 

large pots (5.68 L Classic 600 (C600) pots, 50% Fafard 3B soil and 50% Turface) for growth in 

the greenhouse (16 hours light) along with an equal number of normal sibling seedlings. 

Greenhouse-grown plants (two plants/pot) were watered using drippers (2.0 GPH Woodpecker 

pressure compensating junior drippers (model number 01WPCJL8) from Netafim) eight times a 

day for three minutes and were supplemented with Peter’s Excel 15-5-15 Cal-Mag Special at 

400PM nitrogen. 

Results and Discussion 

My objective was to test the hypothesis that auxin biosynthesis, and transport is necessary 

for normal development of inflorescences in maize. From this hypothesis, I wanted to see 

whether the increase in branching and primordia seen in fzt mutants require auxin biosynthesis or 

transport. I first used a genetic approach. Several mutants that perturb auxin biosynthesis (vt2, 

spi1) and signaling (bif2, Bif1, Bif4) exist in maize (Galli, M. 2015; McSteen, P. et al 2007; 

Gallavotti, A 2008; Phillips, K. A. 2011) No mutants that affect auxin transport have been 

reported. I first tried to isolate spi1;fzt and vt2;fzt double mutants. As mentioned earlier, spi1 and 

vt2 are already characterized maize auxin mutants. Analyzing the interaction between these 

auxin mutants and fzt will determine how the fzt mutants interacts with the auxin biosynthesis. I 
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planted 100 seeds segregating for vt2 and 100 seeds segregating for spi1 in the growth chamber. 

fzt seedlings were identified based on phenotype and transplanted to larger pots to grow to 

maturity. According to Mendelian genetics 1/16th out of the 100 planted for each gene should be 

vt2;fzt or spi1;fzt double mutants.  From the plants I screened through I identified one spi1;fzt 

double mutant and one vt2;fzt double mutant. Another graduate student in the lab isolated the 

vt2;fzt double mutant before I took over this project. The phenotype of the vt2;fzt double mutant 

lacked lateral primordia and had characteristics of the vt2 single mutant (Figure 14A). From this 

result, it looked as if vt2 is likely epistatic to fzt but in order to confidently conclude this I would 

need to look at more than one plant. The phenotype of the spi1;fzt also had characteristics that 

corresponded to the characteristics seen in fzt homozygotes. The tassel of the spi1;fzt double 

mutant had branches but the spi1 homozygous phenotype is not barren like vt2 and does have 

some branches (Figure 14B). I could not conclude without doubt that the phenotype was more 

similar to fzt than spi1 without having more double mutants to observe. Since I did not see the 

same affect with the spi1;vt2 double mutant this result suggests that the auxin biosynthesis 

pathway may not be as simple as expected. Measurements including plant height, leaf length and 

width, internode length, and tassel length were taken from the spi;fzt and vt2;fzt double mutants 

but no specific differences between the  measurements of the two double mutants stood out 

(Table 4). 

Since I could only isolate one double mutant per genotype I could not come to a confident 

conclusion about how auxin and fzt were interacting. I used an alternative approach to ask how the 

inhibition of auxin transport affects the fzt phenotype. NPA is a common polar auxin transport 

inhibitor (Wu, X., and P. McSteen 2007). I adapted this approached as well to look at the effects 

of auxin transport inhibition in fzt mutants compared to normal siblings. Auxin transport is very 
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important because it enables initiation of lateral primordia. In the experiments that Wu X. and 

McSteen P. performed, they were able to conclude that auxin transport is required for the initiation 

of inflorescences during reproductive development (Wu X., McSteen P. 2007). Their research, 

done on wildtype maize, demonstrated that auxin is required for the formation of lateral primordia 

on inflorescences. I used conditions previously shown to severely inhibit lateral primordia in maize 

inflorescences.  

After two weeks of NPA treatment, I visualized the inflorescences using scanning 

electron microscopy. In both wildtype and fzt mutant plants the roots had grown upwards out of 

the soil and were visible (Figure 15). The agravitropism seen in the roots was a good indication 

that the plant was taking up the NPA because this characteristic has been seen in other auxin 

experiments using NPA as the auxin transport inhibitor (Wu X. and P. McSteen. 2007). As 

expected, A619 plants treated with NPA had decreased lateral primordia (Figure 16) whereas 

untreated A619 plants had normal inflorescence morphology and patterning. fzt mutants showed 

decreased primordia and branching in the fzt homozygotes watered with NPA (Figure 17).   

From these experiments I was able to conclude that the inhibition of auxin transport does 

reduce branching in fzt mutants. Also, the auxin pathway may not be a simple linear pathway 

since vt2 and spi1 have different genetic interactions with fzt. 
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Leaf length Leaf width Height Internode lengths 

(1=first internode above root) 

Tassel 

height 

fzt;fzt 30.5 cm 5.5 cm 65 cm 

1 (2.50 cm) 

2 (2.50 cm) 

3 (2.50 cm) 

4 (2.0 cm) 

5 (3.0 cm) 

6 (3.0 cm) 

7 (3.2cm) 

8 (2.0 cm) 

9 (9.5 cm) 

_______ 

spi1;fzt _________ ________ 49.53 cm 

1 (1.27 cm) 

2 (3.81 cm) 

3 (8.25 cm) 

4 (8.25 cm) 

5 (8.25 cm) 

6 (8.89 cm) 

7 (12.06 cm) 

5.39 cm 

vt2;fzt 42.5 cm 4.75 cm 62 cm 

1 (4.0 cm) 

2 (5.0 cm) 

3 (11.50 cm) 

4 (6.50 cm) 

5 (8.25 cm) 

6 (8.89 cm) 

7 (12.06 cm) 

_______ 

Table 4: Measurements of vt2;fzt mutant and spi1;fzt mutant. 
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# of WT 
with water 

# of fzt 
with water 

# of WT 
with NPA 

# of fzt 
with NPA 

Batch 1 2 2 2 6 

Batch 2 4 4 2 3 

Batch 3 2 3 3 3 

Table 5: Number of batches indicative of how many individuals I treated and what treatment 

they received.  
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TAA1 Vanishing tassel2 (vt2) 
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inflorescence1 (spi1) 
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Figure 13: spi1 encodes an enzyme in the tryptophan pathway for TRP dependent auxin biosynthesis. 

vt2 is a coortholog of TAA1 that converts TRP to IPA. vt2 is a coortholog of TAA1 which coverts Trp 

to IPA. spi1 encodes an enzyme in the tryptophan pathway for TRP dependent auxin biosynthesis.  
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Figure 14: Phenotypes of (A) vt2;fzt and (B) spi1;fzt auxin mutants that I isolated.  

B A 
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Figure 15: The immediate effect of watering the NPA auxin transport inhibitor. A (WT watered 

without NPA), B-C (fzt;fzt watered without NPA), D-I (fzt watered with NPA) 
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Figure 16: A-B (WT treated with only DMSO), C-D (WT treated with NPA) 
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Figure 17: A-B (fzt;fzt treated only with DMSO), C-D (fzt;fzt treated with NPA) 

 



 
 

  

 

CHAPTER 4: Summary and Future Directions 

 

Objective 1: Summary and Future Directions 

One part of my Masters research consisted of an RNA analysis and phenotypic 

characterization of miR319-regulated TCPs in maize inflorescence development. The goal of this 

research was to gather information on how TCPs effect leaf development of maize and function 

in normal development. I first determined which miR319-regulated TCPs were null alleles and 

from that I was able to conclude that tcp44 is a loss-of-function allele. I also isolated tcp triple 

mutants including tcp44;tcp43;tcp5 as well as tcp33;tcp24;tcp38 which had not been done 

before in the Thompson lab. This enabled me to look for subtle phenotypic characteristics due to 

the reduction of tcp expression. From all of the tcp mutants I isolated, the only abnormal 

phenotype seen was from one tcp33;tcp24;tcp38 triple mutant grown in the greenhouse.  The 

phenotypic characteristics were consistent with other already characterized tcp mutants although 

this phenotype did not reappear in the two other triple mutants isolated in the field.  

Now that I have discovered that tcp44 is a loss-of-function allele it can be studied further 

by looking at more triple mutants to see if there are subtle phenotypic characteristics due to the 

reduction in tcp44 expression. As far as tcp33 and tcp24, sequencing data needs to be obtained to 

determine if the RT-PCR product for tcp24 is actually tcp33 product. The sequencing data also 

needs to be analyzed to determine why the tcp33 RT-PCR product is larger than expected. The 

location of the mu transposon insertion for both of those make them most likely loss-of-function 

alleles but that cannot be verified until the sequencing data has been analyzed for those. Lastly 

for the complete characterization qRT-PCR will need to be performed to obtain quantitative data 

on the RNA expression of tcp33, tcp24, tcp38, tcp43, and tcp5. Although they did not show that 
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they were loss-of-function alleles from the RT-PCR is it possible that they still have reduced 

levels of RNA. 

Objective 2: Summary and Future Directions 

The second part of my research focused on miR167, a mRNA target that encodes for 

auxin response factors. I was able to determine the effects of inhibited auxin transport on the fzt 

phenotype. By inhibiting auxin transport in fzt mutants I observed a reduction in branching and 

lateral primordia. From isolating vt2;fzt and spi1;fzt double mutants I was able to conclude that 

vt2 is epistatic to fzt but, the spi1;fzt double mutant did not have a phenotype that reassembled a 

spi1 mutant.  I was also able to demonstrate that the auxin signaling pathway is not as simple as 

we thought. Future directions would be to continue to examine the interactions of fzt with the 

auxin pathway. 
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