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Abstract: Triclosan (TCS) is a phenolic antimicrobial incorporated in personal 

care products and medical devices. Interest in the antiproliferative properties of TCS has 

recently grown owing to its antilipogenic effects. Through the studies presented here, we 

provide an appraisal of TCS as a chemotherapeutic agent by investigating its influence on 

the growth and survival of lymphoma cells. We also examine the contribution of TCS to 

the development of anemia; a major side effect of chemotherapy with a prevalence as 

high as 90% in cancer patients. Finally, we identify nonionic detergents, often used as 

excipients in drug formulations, as potent inhibitors of TCS in vivo. 
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ABSTRACT: 

 

Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in 

commercial and healthcare products. Items made with TCS include soaps, deodorants, 

shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of 

information obtained from in vitro and in vivo studies have demonstrated the therapeutic 

effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive 

investigations on the molecular aspects of TCS action have identified numerous adversaries 

associated with the disinfectant including oxidative injury and influence of physiological 

lifespan and longevity. This review presents a summary of the biochemical alterations 

pertaining to TCS exposure, with special emphasis on the diverse molecular pathways 

responsive to TCS that have been elucidated during the present decade. 

 

KEYWORDS: Triclosan; Gene regulation; Membrane & Cytoskeletal Damage; Cellular 

Longevity; Oxidative stress; Genotoxicity; Immunity; Cellular signaling 
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Introduction 

 

Triclosan (TCS), or 5-chloro-2-(2,4-dichlorophenoxy)phenol, is a synthetic broad- 

spectrum antimicrobial developed in the 1960s. As a polychlorinated bisphenolic 

compound, TCS has a perceptible aromatic odor, and is weakly soluble in water. It 

dissolves well in organic solvents including ethanol, dimethylsulfoxide (DMSO), and 

methanol (Montville and Schaffner, 2011), and the type of solvent and detergent 

availability seem to influence TCS activity (Kjaerheim et al., 1994a; Kjaerheim et al., 

1996; Skaare et al., 1997a). For example, TCS dissolved in oils (e.g., olive oil) and alkali 

(e.g., sodium carbonate) exhibits markedly reduced efficacy when compared to other 

solvents such as glycerol and polyethylene glycol (PEG) (Kjaerheim et al., 1994a; 

Kjaerheim et al., 1994b). In fact, using propylene glycol (PG) as a solvent renders TCS 

more effective than using PEG, which is probably due to micellar solubilization of TCS in 

the larger PEG molecules (Kjaerheim et al., 1994a). Recently, we have shown that the 

presence of non-ionic detergents (e.g., Tween 20) inhibits TCS activity in vivo, most likely 

due to micelle formation (Alfhili et al., 2018). In contrast, sodium dodecyl sulfate (SDS) 

has been reported to potentiate the antibacterial effect of TCS in vitro (Waaler et al., 1993). 

 

TCS has gained enormous popularity in commerce and in healthcare owing to its 

antibacterial, antiviral, and antifungal properties (Regos and Hitz, 1974; Regos et al., 1979; 

Bellamy et al., 1993). This efficacy has led to the widespread use of TCS as a preservative 

in a variety of consumer products, including cosmetics, soaps, mouthwashes, 

antiperspirants, kitchen utensils, clothing textiles, bedclothes, electronics, plastics, and toys 

(Triclosan White Paper prepared by The Alliance for the Prudent Use of Antibiotics 

(APUA)). In clinical practice, TCS is used as a disinfectant and an antiseptic in surgical 
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sutures, scrubs, implants, and medical devices (Rodricks et al., 2010; Petersen, 2016). 

Annual global production of TCS was estimated at 1500 tons (Chen et al., 2011), and a 

total of 132 million liters of TCS-containing products were consumed in a single year in 

the United States (Safety and Effectiveness of Consumer Antiseptics; Topical 

Antimicrobial Drug Products for Over-the-Counter Human Use; Proposed Amendment of 

the Tentative Final Monograph.” 2013 

https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAn 

alyses/UCM379555.pdf). 

 

The high demand for TCS has consequently led to substantial buildup in drinking and 

wastewater sources, and, more alarmingly, accumulation in body fluids (Schulze et al., 

1975; Adolfsson-Erici et al., 2002; Hovander et al., 2002; Geens et al., 2012; Wu et al., 

2012; Olaniyan et al., 2016; Weatherly and Gosse, 2017); establishing the antimicrobial as 

an environmental pollutant. Pharmacokinetic studies in man show that TCS reaches the 

systemic circulation by rapid absorption through the skin and mucous membranes of the 

oral cavity and gastrointestinal tract, and variations in the bioavailabilty of TCS 

unsurprisingly affect the rate of urinary excretion (Sandborgh-Englund et al., 2006; 

Queckenberg et al., 2010). TCS content in commercial products may reach as high as 17 

mM, and comprise up to 1% of ingredients (Levy, 2001; Rodricks et al., 2010; Weatherly 

and Gosse, 2017). Moreover, absorption of up to 25% of applied TCS has been recorded 

(Weatherly et al., 2018), and metabolic studies in rats and mice revealed sulfation, 

glucuronidation, and hydroxylation products in tissues and excreta (Moss et al., 2000; Fang 

et al., 2016). 

https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAnalyses/UCM379555.pdf
https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAnalyses/UCM379555.pdf
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Since the advent of TCS, early studies on the antiseptic have shown evidence of 

symptomatic relief from acne (Franz and Weidner-Strahl, 1978; Lee et al., 2003b) and 

contact dermatitis (Kalliomaki and Kuokkanen, 1979; Weitgasser et al., 1983) with fewer, 

or at least comparable, side effects to other therapeutic alternatives (Aliaga et al., 1983). 

Later, TCS was found to be effective against crural ulcer (Huber, 1991) and chemically 

induced dermatitis and desquamation (Barkvoll and Rolla, 1994; Skaare et al., 1996), 

which could be attributed to its anti-inflammatory (Kjaerheim et al., 1995a), 

hypoallergenic (Barkvoll and Rolla, 1995), and analgesic (Kjaerheim et al., 1995b) 

properties. Moreover, a battery of studies collectively indicate that TCS is not a skin or oral 

mucosal irritant, has a very low sensitization potential (0.1-0.3% of 14,000 subjects), and 

is unlikely to be phototoxic to human skin 

(http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf). This is in 

contrast to the reversible skin and eye irritation caused by up to 10% TCS reported in 

animals (http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf). 

Also, in initial studies by Lyman and Furia, it was suggested that TCS is carcinogenic when 

orally administered to rats (Lyman and Furia, 1968; Lyman and Furia, 1969). Subsequent 

investigations in rats and mice disclosed that TCS perturbs microsomal detoxification 

(Arrhenius et al., 1977), causes nephrotoxicity and hepatotoxicity (Chow et al., 1977), 

reduces prenatal and postnatal survival (Russell and Montgomery, 1980), and leads to 

central nervous system suppression (Miller et al., 1982) and hypothermia (Miller et al., 

1983). In humans, the earliest description of an adverse TCS reaction probably comes from 

a case report of two patients who developed contact dermatitis following application of 

deodorants containing 0.12% and 0.2% TCS (Roed-Petersen et al., 1975). Since then, 

http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf
http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf
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several case reports of the same ailment have thus far been in congruence (Veronesi et al., 

1986; Steinkjer and Braathen, 1988; Wong and Beck, 2001; Storer et al., 2004). It is 

important to mention that, as is the case with healthy subjects, in patients diagnosed with, 

or suspected to have, contact dermatitis, TCS was similarly found to have a very low 

sensitization potential (0.6-0.8% of 11,887 patients) 

(http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf). 

 

In light of the dichotomous debate surrounding TCS, the US Food and Drug 

Administration (FDA), following extensive examination of available data, has effectively 

banned antiseptic products containing TCS since September 2016 (Weatherly and Gosse, 

2017). In Europe, TCS was approved for use in cosmetics by the European Community 

Cosmetic  Directive    in     1986 

(http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf). However, 

the European Commission disapproved the use of TCS for hygienic purposes in 2017, but 

maintained its legality as a preservative in select cosmetics and mouthwashes in 

concentrations up  to 0.3% and  0.2%, respectively 

(http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf; 

http://eur-lex.europa.eu/legal- 

content/EN/TXT/PDF/?uri=OJ:L:2014:107:FULL&from=EN).  Furthermore,  the 

Scientific Committee on Consumer Safety (SCCS) expressed its concern over the 

continued use of TCS in cosmetics, but not in antiseptics, mainly due to the cumulative 

pattern     of      exposure 

(http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf). 

Importantly, the European Chemicals Agency (ECHA) classifies TCS, under the 

http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf
http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf)
http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_166.pdf)
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf%3B
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf%3B
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL%3A2014%3A107%3AFULL&amp;from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ%3AL%3A2014%3A107%3AFULL&amp;from=EN
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf)
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf)
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classification, labeling, and packaging (CLP) regulation, as an eye irritant 2 (causes serious 

eye irritation), skin irritant 2 (causes skin irritation), aquatic acute 1 (very toxic to aquatic 

life), and aquatic chronic 1 (very toxic to aquatic life with long-lasting effects) 

(https://echa.europa.eu/documents/10162/21680461/bpc_opinion_triclosan_pt1_en.pdf/ef 

c985e4-8802-4ebb-8245-29708747a358). Because of the previously mentioned ecotoxic 

properties, TCS is currently a candidate for substitution under the Biocides European 

Union regulation (Reg 528/2012/EC) (https://echa.europa.eu/potential-candidates-for- 

substitution-previous-consultations/-/substance- 

rev/12/term?_viewsubstances_WAR_echarevsubstanceportlet_SEARCH_CRITERIA_E 

C_NUMBER=222-182-2&_viewsubstances_WAR_echarevsubstanceportlet_DISS=true). 

 

Our aim in this review is to provide an update on current knowledge regarding TCS 

therapeutic and toxic potential. Emphasis is placed on the biochemical and molecular 

alterations, either brought about by, or in response to, TCS exposure. Data from both in 

vitro and in vivo studies, obtained from humans and other organisms, are incorporated into 

the analysis, with special attention being given to reports published during the present 

decade. 

 

Membrane & Cytoskeletal Damage 

 

Perhaps the earliest report describing the antimicrobial activity of TCS was by Vischer 

et al., (Vischer and Regos, 1974) which was shown through topical application In a follow- 

up study, TCS was found to be more effective with the broadest spectrum against bacteria 

and fungi when compared to other antimicrobials such as gentamicin and clotrimazole 

(Regos et al., 1979). Subsequent efforts, which continue to this day, have focused on 

https://echa.europa.eu/documents/10162/21680461/bpc_opinion_triclosan_pt1_en.pdf/efc985e4-8802-4ebb-8245-29708747a358
https://echa.europa.eu/documents/10162/21680461/bpc_opinion_triclosan_pt1_en.pdf/efc985e4-8802-4ebb-8245-29708747a358
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dissecting the diverse action mechanisms and cellular targets of TCS. Initially, it was 

thought that TCS interacts with the prokaryotic cell membrane nonspecifically (Regos and 

Hitz, 1974). This was corroborated by the resistance of Gram-negative bacteria to TCS, 

which was ascribed to their outer membrane (Heath et al., 2000; Gilbert and McBain, 

2002). Investigating the genetic response of Mycobacterium tuberculosis to TCS, Betts et 

al. (Betts et al., 2003) identified perturbations in a wide assortment of genes involved in 

cell wall, transport, detoxification, and DNA replication and transcription. Also, Klebsiella 

pneumoniae with inactive efflux pump KpnGH exhibit pronounced susceptibility to 

multiple antibiotics including TCS (Srinivasan et al., 2014). Several genes in the membrane 

stress response pathway were also studied in Escherichia coli and Rhodospirillum rubrum 

S1H (Pycke et al., 2010; Gou et al., 2014; Lu et al., 2018). During the electro-Fenton 

transformation of TCS, significant changes in expression patterns of genes involved in cell 

wall and membrane structure, cell envelope, flagella, and multidrug efflux were observed 

(Table 1). These findings complement an earlier report describing enhanced resistance to 

TCS due to overexpressed acrAB multidrug efflux pump (McMurry et al., 1998a). It was 

recently suggested that TCS binds to the transcriptional repressor AcrR, causing 

conformational changes, and prevent its binding to the efflux pump AcrA promoter in 

Agrobacterium tumefaciens (Nuonming et al., 2018). 

 

The interaction of TCS with the cell membrane was also studied in human red blood 

cells (RBCs; erythrocytes). TCS exposure led to K+ leakage and overt hemolysis, 

indicating membrane damage, while antagonizing hypotonic lysis, which may be due to 

membrane expansion (Miller and Deinzer, 1980). TCS also inhibited membrane-bound 

Na+,K+,Mg2+-ATPase enzymatic activity (Lorusso et al., 1981). These observations 
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suggest that TCS causes membrane destabilization, perturbs monovalent ion transport, and 

modulates the overall osmoregulation of erythrocytes. Evidence for membrane damage is 

further confirmed in numerous studies by means of compromised stability and permeability 

(Villalain et al., 2001). To directly observe how TCS interacts with the cell membrane, 

Guillén and coworkers utilized nuclear magnetic resonance (NMR) spectroscopy to 

demonstrate that TCS intercalates within hydrophobic pockets in the lipid bilayer, 

perpendicularly to phospholipid molecules (Guillen et al., 2004). Furthermore, using 

neutral red to evaluate membrane integrity, diminished uptake of the dye in hemocytes of 

the clam Ruditapes philippinarum and mussel Mytilus galloprovincialis, was related to 

TCS-induced suppression of pinocytosis and disturbed phagocytosis (Canesi et al., 2007; 

Matozzo et al., 2012). 

 

Along those lines, our recent findings indicate that TCS blunts the expression of pmp3 

membrane transporter in Caenorhabitidis elegans nematodes, and that pmp3(ok1087) 

mutants exhibit increased sensitivity to the disinfectant (Yoon et al., 2017). Finally, a 

proteomic analysis of zebrafish (Danio rerio) larvae and gills of fresh water mussel 

Dreissena polymorpha, revealed alterations in cytoskeletal protein levels following TCS 

exposure (summarized in Table 1) (Riva et al., 2012; Falisse et al., 2017). 

 

There is a consensus in the literature regarding the membranotropic nature of TCS in 

different membrane models across various species. The cell membrane is a primary target 

for TCS, and among the first cellular obstacles that must be overcome by the antiseptic to 

exert its effects. Although evidence implicating membrane-associated efflux pumps as part 

of the cellular response to TCS is strong, there is paucity in reports describing TCS 

modulation of structural or functional membrane components in human-based systems. 
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Similarly lacking is an understanding of the role of membrane receptors not only in 

pumping out TCS molecules, but also in transducing both inter- and intracellular signals 

as a consequence to TCS presence. 

 

 

 
 

Table 1: Summary of membrane and cytoskeletal targets of TCS 

 

 
Model 

 

Target 
 

 
Response  

Gene/Prot 

ein 

 
Molecular Identity 

 

K. pneumoniae 
 

KpnGH 
 

Efflux pump 
 

 

 

 

 

 

 

 

 

 

 

 

E. coli 

 

AcrAB 
 

 

 

 

 

 

 

 

 

 

Efflux pumps 

 

 

acrE 
 

 

mdtE 
 

 

acrF 
 

 

mdtB 
 

 

mdtC 
 

 

yddA 
 

 

emrA 
 

 

emrE 
 

 

sanA 
 

Cell wall/membrane structure 
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dacB 
  

 

amiC 
 

 
Cell envelope 

 

 

clsA 
 

 

ompX 
 

Membrane porin 
 

 

motA 
 

 
Flagellar 

 

 

flgM 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
R. rubrum S1H 

 

sugE 
 

Small multidrug resistance protein 
 

 

mexF 
 

RND efflux system, inner membrane 

transporter 

 

 

mexB 
 

 

mexE 
 

 

 
RND efflux system, membrane fusion proteins 

 

 

mexA 
 

 

mexM 
 

 
oprM 

 

RND efflux system, outer membrane 

transporter 

 

 

glmM 
 

Cell envelope; phosphoglucosamine mutase 
 

 
exoD 

 

Cell envelope; exopolysaccharide synthesis 

protein D 

 

 
wbpM 

 

Cell envelope; polysaccharide biosynthesis 

protein M 
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A. tumefaciens 

C58 

 
AcrA 

 
RND efflux system, periplasmic adaptor protein 

 

 

Human 

erythrocytes 

Na+,K+,Mg 
2+-ATPase 

 
Membrane ion transporter 

 

 

C. elegans 
 

pmp-3 
 

Membrane ABC transporter 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
D. rerio 

 

Actin, 

cytoplasmi 

c 2 

 

 

 

 

 

 
Cytoskeleton 

 

 

Actin 1, 

skeletal 

muscle 

 

 

light 

polypeptide 

3 

 

 

Desmin 
 

 

 

 

 

 

 

 

 
 

Cytoskeleton; muscular filament structure 

 

 

Fast 

skeletal 

muscle 

myosin 

 

 

Keratin, 

type I 

cytoskeleta 

l 18 

 

 

Tropomyos 

in -1 

chain 

 

 

Type II 

cytokeratin 
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Lamin B1 
 

Cytoskeleton; nuclear lamina 
 

 

 

 

 

 

D. polymorpha 

 

Tubulin - 

2/ 
 

-4 chain 

 

 

 
 

Cytoskeleton 

 

 

Tubulin - 

4 chain 

 

 

Myosin 

light chain 

 
Cytoskeleton; muscular filament structure 

 

 

Upregulated by TCS Downregulated by TCS Sensitive to TCS 

 

Abbreviation: RND, resistance-nodulation-division; ABC, ATP-binding cassette 

 

 

 

Cellular Longevity: 

 

The interest in TCS and ultimate cell fate has originally stemmed from its use in oral 

hygiene products, which is reflected in two seminal studies on human gingival cells 

(Babich and Babich, 1997; Zuckerbraun et al., 1998). TCS was shown to be cytotoxic to 

gingival fibroblasts and epithelial cells, identifying it as a novel stimulator of apoptosis in 

the latter. 

 

Investigations have thus far followed a more comprehensive approach, relating cell 

death induced by TCS to other cellular adversaries, utilizing both human and non-human 

model systems. When TCS was treated to human choriocarcinoma placental cells (JEG-3), 

multiple dose- and time-dependent responses were observed (Honkisz et al., 2012). While 

there was a proportional increase in estradiol and progesterone secretion, β-human 
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chorionic gonadotropin (β-hCG) release was nevertheless inhibited with increasing TCS 

concentrations (Honkisz et al., 2012). In addition to blunted proliferation, significant cell 

death was recognized as apoptotic in nature evidenced by activated caspase-3 and Hoechst 

33342-stained fragmented DNA (Honkisz et al., 2012). Similarly, using anoikis-resistant 

H460 human lung cancer cells, Winitthana et al. (Winitthana et al., 2014) demonstrated 

that 24-hour exposure to 10 uM TCS causes cell death and apoptosis. Nontoxic levels (<7.5 

µM), however, enhanced cell growth (increased colony number and reduced size) without 

altering proliferation. TCS also promoted epithelial-to-mesenchymal transition (EMT), 

along with the migratory and invasive abilities of the cells (Winitthana et al., 2014). 

 

A research group performed a series of in vivo and in vitro studies on the effect of TCS 

on growth and proliferation of human BG-1 ovarian cancer cells. Results from these studies 

indicate that TCS increases cellular proliferation and both gene expression and protein 

levels of cyclin D1, and decreases p21 and Bax gene expression and protein levels (Kim et 

al., 2014). These effects were significantly antagonized by the estrogen receptor (ER) 

antagonist ICI 182,780, implicating ER in TCS-induced cell cycle progression and in its 

anti-apoptotic role. Investigators from the same group also reported a similar response to 

TCS by MCF-7 breast cancer cells and LNCaP prostate cancer cells. In MCF-7 cells, 1 uM 

TCS enhanced growth and proliferation during a six-day period, which was associated with 

increased cyclin D1 and reduced p21 expression levels. When mice were treated with TCS 

for 8 weeks, brdU-positive breast tumor cells were significantly increased compared to the 

control group treated with corn oil (Lee et al., 2014). Similar to BG-1 cells, TCS-promoted 

proliferation of MCF-7 cells was mediated through ERα signaling, demonstrated as 

antagonism by kaempferol and 3,3′-diindolylmethane (DIM); two phytoestrogens (Kim et 
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al., 2016). In addition to cyclin D1 and p21, TCS caused an increase in cyclin E and a 

decrease in Bax, and induced metastasis through elevated cathepsin D protein expression. 

These observations were paralleled in vivo using xenografted mouse models. Researchers 

from this report expanded their findings to VM7Luc4E2 cells, a variant of the MCF-7 

model, to show that TCS (0.1-10 µM) is pro-proliferative and anti-apoptotic by inhibiting 

oxidative stress, with both effects being antagonized by kaempferol (Lee et al., 2018). In 

LNCaP cells exposed to concentrations of TCS ranging from 0.01 to 10 uM for up to 5 

days showed enhanced proliferation and migration, and reduced p21 protein expression 

(Kim et al., 2015). In primary human syncytiotrophoblasts, TCS at 0.001 to 10 uM induced 

apoptosis as seen by condensed nuclei and fragmented DNA (Zhang et al., 2015). TCS also 

reduced 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) via a caspase-dependent 

mechanism. Other targets included both Bax and Bcl-2 proteins. 

 

Similar to human cells, both pro- and anti-apoptotic properties were observed in rodent 

cells treated with TCS. Beside its cytotoxicity, TCS caused caspase-dependent apoptosis 

in rat neural stem cells along with elevated Bax and reduced Bcl-2 (Park et al., 2016). In a 

series of studies, Szychowski et al. (Szychowski et al., 2015; Szychowski et al., 2016; 

Szychowski et al., 2018) used mouse neurons to show that TCS is apoptotic through the 

Fas receptor (FasR), aryl hydrocarbon receptor (AhR), and caspase activation involving N- 

Methyl-D-aspartate receptors (NMDARs). In agreement with the cytotoxicity data, TCS- 

treated mouse lung epithelial cells were deformed with reduced viability (Kwon et al., 

2013). Conversely, TCS stimulated the proliferation of mouse epidermis-derived JB6 Cl 

41-5a cells, by increasing cyclins D1 and A and inhibiting p27(Kip1) protein levels (Wu 

et al., 2015). Examining these effects in vivo, B6C3F1 mice exhibited epidermal 
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hyperplasia and focal necrosis following topical administration of TCS. Moreover, the 

pluripotency markers of mouse embryonic stem cells were analyzed following TCS 

exposure (Chen et al., 2015). Alkaline phosphatase (Alp), Sox2, Oct4, and Nanog were all 

reduced, while miRNA-134 was elevated. 

 

Unlike human and rodent cells, in vivo and in vitro studies on aquatic organisms 

uniformly agree that TCS is solely pro-apoptotic in these animals. Pyknotic apoptosis in 

the central nervous system of zebrafish D. rerio was observed following treatment with 

either TCS alone or TCS combined with derivatives 2,4,6-trichlorophenol (2,4,6-TCP) and 

2,4-dichlorophenol (2,4-DCP) (Kim et al., 2018; Liu et al., 2018). The TCS-derivative 

mixture caused pronounced deformities, behavioral abnormalities, and perturbed the 

expression of a panel of neurodevelopmental and apoptotic genes (Table 2). Also, TCS, 

following both in vivo and in vitro exposure, induced a dose- and time-dependent increase 

in apoptotic hemocytes of D. polymorpha (Binelli et al., 2009b; Binelli et al., 2009a). 

Likewise, when the saltwater clam Ruditapes philippinarum was treated with TCS, 

hemocytes exhibited significant cell death, blunted proliferation, reduced size and volume, 

and prominent apoptotic DNA fragmentation (Matozzo et al., 2012). TCS-induced 

apoptosis, or apoptosis-like cell death, was also detected in unicellular organisms, such as 

the green alga Chlamydomonas reinhardtii and the pathogenic fungus Cryptococcus 

neoformans (Movahed et al., 2016; Gonzalez-Pleiter et al., 2017). 

 

Collectively, studies on TCS influence on cell fate indicate estrogenic, proliferative, 

and apoptotic activities. Disturbances in genes and proteins governing the regulation of cell 

cycle and apoptosis are particularly sensitive to TCS modulation. The disparity in ultimate 

cell fate seem to point at an inter-species variation, and a dose-specific response, among 
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other experimental details such as cell type and duration of exposure. Elucidating the 

existence and the identity of a specific molecular ‘switch’ that may tip the scales in favor 

of either cell death or survival could be an important inquiry for future investigations. 

 

 
 

Table 2: Summary of cell survival molecules modulated by TCS 

 

 
Model 

 

Target 
 

 
Response  

Gene/Protei 

n 

 
Molecular Identity 

 

 

 

 
JEG-3 cells 

 

Estradiol 
 

 
Major female sex hormones 

 

 

Progesterone 
 

 

β-hCG 
 

Maintenance of pregnancy 
 

 

Caspase-3 
 

Apoptosis regulator; pro-apoptotic 
 

 

 

 
BG-1 cells 

 

Cyclin D1 
 

 
Cell cycle regulators 

 

 

p21 
 

 

Bax 
 

Apoptosis regulator; pro-apoptotic 
 

 

 

 

 
MCF-7 cells 

 

Cyclin D1 
 

 

 
Cell cycle regulators 

 

 

Cyclin E 
 

 

p21 
 

 

Bax 
 

Apoptosis regulator; pro-apoptotic 
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Cathepsin B 
 

 

 

 

 

Metastasis markers 

 

 

Cathepsin D 
 

 

MMP-9 
 

 

MMP-2 
 

 

CXCR4 
 

 

Snail 
 

 
Mesenchymal markers 

 

 

Slug 
 

 

LNCaP 
 

p21 
 

Cell cycle regulator 
 

 

 

 
Primary 

human 

syncytiotroph 

oblasts 

 

11β-HSD2 
 

Fetal development; anti-cortisol 
 

 

Caspase-3 
 

 
Apoptosis regulators; pro-apoptotic 

 

 

Bax 
 

 

Bcl-2 
 

Apoptosis regulator; anti-apoptotic 
 

 

 

Rat neural 

stem cells 

 

Caspase-3 
 

 
Apoptosis regulators; pro-apoptotic 

 

 

Bax 
 

 

Bcl-2 
 

Apoptosis regulator; anti-apoptotic 
 

 
Mouse 

neocortical 

neurons 

 

GluN1 
 

Ionotropic glutamate receptors; 

neurotransmission 

 

 

GluN1 
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GluN2A 
  

 

GluN2A 
 

 

GluN2B 
 

 

GluN2B 
 

 

FasR 
 

 

 

 
Apoptosis regulators; pro-apoptotic 

 

 

Caspase-8 
 

 

Caspase-9 
 

 

Caspase-3 
 

 

AhR 
 

Ligand-activated receptor; detoxification 
 

 

 

JB6 Cl 41-5a 

cells 

 

Cyclin D1 
 

 

 
Cell cycle regulators 

 

 

Cyclin A 
 

 

p27 
 

 

 

 

 

 

B6C3F1 mice 

 

Alp 
 

 

 

 

 
Pluripotency markers; stem cell self- 

renewal and differentiation regulators 

 

 

Oct4 
 

 

Nanog 
 

 

ALP 
 

 

Oct 4 
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Nanog 
  

 

Sox 2 
 

 
miRNA-134 

 

Transcriptional regulator of pluripotency 

markers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. rerio 

 

Oct4 
 

 

 
Pluripotency markers 

 

 

Nanog 
 

 

Sox2 
 

 

p53 
 

Cell cycle regulator; tumor suppressor 
 

 

Casp3 
 

 
Apoptosis regulators; pro-apoptotic 

 

 

Casp8 
 

 

Shha 
 

 

 

 
Early neurogenesis 

 

 

Ngn1 
 

 

Nrd 
 

 

Elavl3 
 

 

α1-tubulin 
 

 

 

 
Neural maturation 

 

 

Gap43 
 

 

Gfap 
 

 

Mbp 
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Oxidative Stress: 

 

Overwhelming evidence has recently accumulated in support of the pro-oxidative 

action of TCS. It is prudent to provide an overview of human-based studies first before 

summarizing notable findings obtained from other model organisms. 

 

In Porto Rican pregnant women, a correlation between exposure to TCS during 

pregnancy and oxidative damage, as measured by urinary 8-hydroxyguanosine (8-OHdG), 

and inflammation was suggested (Watkins et al., 2015). Similar observations were also 

mirrored in Chinese and Brazilian children (Lv et al., 2016; Rocha et al., 2018). 

Conversely, in a global effort comprising nine countries from Asia, Europe, and North 

America, no relation between urinary TCS and 8-OHdG was established (Iyer et al., 2018). 

 

In vitro studies on human cells have also shed some light on the oxidative potential of 

TCS. In peripheral blood mononuclear cells (PBMC), 2,4-dichlorophenol (2,4-DCP) –a 

product of TCS transformation– promoted reactive oxygen species (ROS) generation, with 

subsequent lipid peroxidation and protein carbonylation (Bukowska et al., 2016). 

Similarly, TCS caused elevated ROS in Nthy-ori 3-1 human follicular thyroid cells (Zhang 

et al., 2018) and lipid peroxidation in retinoblastoma (Y79 RB) cells (Vandhana et al., 

2013). Our recent investigations on mesenchymal stem cells also showed TCS interference 

 

Abbreviation: Shha, Sonic hedgehog a; Ngn1, Neurogenin1; Nrd, NeuroD; Elavl3, ELAV like; 

neuron-specific RNA binding protein 3; Gap43, Growth associated protein 43; Gfap, Glial 

fibrillary acidic protein; Mbp, Myelin basic protein 

 

Upregulated by TCS Downregulated by TCS Sensitive to TCS 
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with the activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the ‘master 

regulator’ of detoxification, and its downstream targets, heme oxygenase 1 (HO-1) and 

NAD(P)H dehydrogenase [quinone 1] (NQO-1) (Yoon et al., 2017). Consistently, TCS 

incorporated in mouthrinse did not exhibit antioxidant activity on fibroblasts (Battino et 

al., 2002). In contrast, TCS reduced ROS levels in VM7Luc4E2 cells, which contributed 

to its anti-apoptotic activity in these malignant breast cells (Lee et al., 2018). 

 

Mitochondrial damage was also evident in multiple mammalian cells including human 

PBMC and keratinocytes, exposed to 3.5-350 uM TCS (Ajao et al., 2015). At 

concentrations up to 100 uM, TCS caused depolarization of mitochondrial membrane, 

reduced oxidative phosphorylation, and suppressed ATP synthesis. Weatherly et al. 

(Weatherly et al., 2016). utilized human HMC-1.2 mast cells and primary keratinocytes 

to show that TCS is a proton ionophore uncoupler, and interferes with ATP production 

 

Animal studies conducted on mice and rats have revealed a profound response in the 

cellular antioxidant machinery upon TCS treatment. In rat thymocytes, superoxide anions 

were found to be elevated following TCS treatment (Tamura et al., 2012) which, as Yueh 

et al. (Yueh et al., 2014) showed, was met with increased expression of key antioxidant 

enzymes including HO-1, NQO-1, and glutathione S-transferase (GST) in mice liver. 

Evidence for testicular DNA damage, elevated malondialdehyde (MDA) and superoxide 

dismutase (SOD), in addition to diminished catalase (CAT), was related to TCS treatment 

in weanling rats (Riad et al., 2018). Similarly, in lung homogenates of female albino rats, 

TCS was found to induce lipid peroxidation, and severely deplete the levels of other crucial 

antioxidants; SOD, CAT, and glutathione (GSH) (Mohammed et al., 2017). Increased 

expression of glutathione peroxidase 1 (Gpx1) and aldehyde oxidase 1 (Aox1) was also 
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observed as a consequence to TCS exposure in C57BL/6 mice (Wang et al., 2017). Most 

recently, Zhang et al. (Zhang et al., 2018) showed downregulation of antioxidant enzymes, 

Gpx3, Cat, and Sod2, along with elevated MDA, in the hypothalamus of Sprague-Dawley 

rats. Moreover, it was found that TCS treatment leads to increased ROS and reduced GSH 

activity in rat neural stem cells (Park et al., 2016). TCS also increased ROS levels in mouse 

neocortical neurons, along with perturbed regulation of cytochrome P450 family 1, 

subfamily a, member 1 (CYP1a1) and CYP1b1 (Szychowski et al., 2016; Szychowski et 

al., 2018). Effects of TCS on cytochromes and hepatic detoxification were also 

demonstrated in Sprague-Dawley rats, showing increased levels of UDP- 

glucuronosyltransferase 1-1 (Ugt1a), Ugt2b1, CYP1a1, CYP1a2, CYP2b1, CYP3a1, and 

sulfotransferase family 1E member 1 (Sult1e1) (Zhang et al., 2018). 

 

Several terrestrial organisms have been employed in the study of TCS toxicology. 

Caenorhabtidis elegans is among the best-studied animal models due to its ease of 

maintenance and high genetic homology to humans. We have recently shown that TCS 

leads to overproduction of ROS, inhibition of nuclear translocation of protein skinhead-1 

(SKN-1) antioxidant transcription factor, and downregulation of gamma-glutamyl cysteine 

synthetase (Gcs1) (Yoon et al., 2017). In a subsequent report, Skn1 expression was found 

to be upregulated by TCS along with Sod1, Sod4, heat shock proteins (Hsp)-3, -4, -16.2, 

and -70, and cytochromes Cyp29A2 and Cyp34A9 

(https://app.dimensions.ai/details/publication/pub.1103154992#readcube-epdf). TCS also 

enhanced nuclear translocation of stress-related factor DAF-16, suggesting the occurrence 

of oxidative stress (Lenz et al., 2017). In the Earthworm Eisenia fetida, oxidative damage 

by TCS was manifested as a transient elevation in CAT and GST enzymes, increased 
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MDA, as well as DNA damage (Lin et al., 2010). In a follow-up study by the same group, 

SOD was also increased and decreased by TCS depending on the concentration used (Lin 

et al., 2012); a response mirrored by CAT in the snail Achatina fulica (Wang et al., 2014). 

In that study, TCS caused diminished levels of SOD and peroxidase (POD), along with 

elevated MDA, among other morphological anomalies. 

 

The ubiquity of TCS in aquatic environments has made animal models from that 

habitat the subject of extensive investigations on TCS toxicity. Perhaps the most relevant 

aquatic organism is the zebrafish D. rerio, owing to a strong structural and molecular 

resemblance to humans. Elucidating the interaction between TCS and the antioxidant 

system in ZFL liver cells, Zhou et al. (Zhou et al., 2017) showed evidence of induced 

CYP1A activity along with a general trend of suppression in phase I and II detoxification 

enzymes. Elevated MDA, along with perturbed homeostasis of GSH, peroxiredoxin-2 

(PRD-2) and HSPs were observed in zebrafish larvae grown in presence of TCS (Falisse 

et al., 2017; Liu et al., 2018). 

 

TCS has been shown to induce MDA and cause oscillations in CAT, Ethoxyresorufin- 

O-deethylase (EROD), erythromycin N-demethylase (ERND), and aminopyrine N- 

demethylase (APND) in Daphnia magna (Peng et al., 2013). Moreover, elevated amino 

acids, including glutamine, glutamate, and proline, has been attributed to a general 

oxidative stress state in the daphnids (Kovacevic et al., 2016). Also, stress-related proteins, 

including glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hsp-70, were 

modulated by TCS in D. polymorpha, in addition to lipid peroxidation (Riva et al., 2012). 

TCS exposure demonstrated reduced oxyradicals and lipofuscin, and elevated oxidized 

glutathione (GSSG) in the digestive gland of swollen river mussels Unio tumidus 
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(Falfushynska et al., 2014). In Tigriopus japonicas copepods treated with TCS, increased 

ROS, SOD, GST, GPx, and GSH content was noted (Park et al., 2017). TCS also caused 

perturbations in expressional profiles of Cyps, Sod, Gst, and Cat proteins (Table 3) (Park 

et al., 2017). 

 

TCS treatment in the yellow catfish Pelteobagrus fulvidraco revealed induced CAT, 

EROD, ERND, and APND (Ku et al., 2014). Expressional profiling of Cyp1a, Cyp3a, and 

Gst showed both up- and downregulation depending on TCS concentration and length of 

exposure; a pattern that was also seen with MDA formation. When another catfish, 

Heteropneustes fossilis, was treated with a cosmetic effluent rich in TCS, increased SOD 

and CAT activities, and reduced GSH, GST, and GPx were noted (Banerjee et al., 2016). 

 

Oxidative damage by TCS was also evident in the goldfish Carassius auratus, as 

MDA, CAT, and GSH were elevated in addition to a reduced total antioxidant capacity 

(Wang et al., 2018b). Variable responses by antioxidant enzymes and in MDA levels were 

recorded in the goldfish’s liver after TCS treatment under a pH range of 6 to 9 (Li et al., 

2018). The oxidative potential of TCS was also evident in the rotifer Brachionus koreanus, 

detected as ROS overproduction and enhanced GST activity, in addition to transcriptional 

modulation of cytochromes, antioxidant genes Gst, Gpx, Sod, and Cat, and chaperons 

(Table 3) (Han et al., 2016). Moreover, TCS inhibited Sod and phospholipid hydroperoxide 

glutathione peroxidase (Phgpx) expression in the liver of Bufo gargarizans tadpoles (Chai 

et al., 2017), and induced GST in Pelophylax perezi frog larvae (Martins et al., 2017). 

 

Sendra et al. (Sendra et al., 2017) studied the combined effect of titanium dioxide 

(TiO2) and a heterogenous mixture of organic compounds including TCS using the clam 
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Ruditapes philippinarum. Modulations in EROD, SOD, CAT, GPx, GST, and GR enzyme 

activities were noted in the clam’s digestive gland, in parallel with increased lipid 

peroxidation.   TCS   exposure    caused    alterations    in    Cat,    Sod, Gpx1, Gpx2, 

Gsta, Hsp90bb, Hsp90ba, and Hsc70a genes in rainbow trout Oncorhynchus mykiss 

(Capkin et al., 2017). Although in one report TCS failed to elicit oxidative stress in the 

green algae Chlamydomonas reinhardtii (Almeida et al., 2017), another report detected 

ROS formation following TCS exposure (Gonzalez-Pleiter et al., 2017), which was also 

most recently confirmed by significantly increased MDA, downregulated Gpx, and 

upregulated Sod expression (Pan et al., 2018). 

 

The antimicrobial nature of TCS makes bacteria an appropriate target for mechanistic 

studies. Using Rhodospirillum rubrum S1H, Pycke et al. (Pycke et al., 2010) detected 

upregulation in a host of TCS-induced oxidative response genes, most notably Gpx. In E. 

coli K12, MG1655, the electro-Fenton transformation of TCS caused activation of genes 

related to ROS sensing, along with reduced glutaredoxin (Grx), Sod, Cat, and alkyl 

hydroperoxide reductase (Ahpr) (Gou et al., 2014). Very recently, ROS formation by TCS 

was associated with diminished expression of antioxidants in E. coli (Table 3); an event 

that preceded mutagenesis and enhanced drug resistance in that species (Lu et al., 2018). 

TCS was also recently used to validate novel self-luminescent bioreporter strains of Nostoc 

sp. PCC 7120 using Sod promoters (Hurtado-Gallego et al., 2018). 

 

Collectively, monumental evidence demonstrates the pro-oxidant properties of TCS 

evident as both overproduction of ROS as well as interference with the cellular antioxidant 

defensome. TCS is toxic in part by inducing oxidative damage in a wide range of organisms 

and by targeting a defined cluster of proteins in a fashion that is conserved among diverse 
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species. Nonetheless, the vast majority of data are collected from non-human models, and, 

as is the case with other toxicological reports of TCS, studies conducted on man or human- 

derived tissues are severely lacking. 

 

 

 
 

Table 3: Oxidative stress patterns elicited by TCS 

 

 
Model 

 

Target 
 

 
Response 

 

Biomarker 
 

Molecular Identity 

 

Humans (pregnant 

women; children) 

 
Urinary 8-OHdG 

 

Oxidized deoxyguanosine; 

DNA damage 

 

 

Nthy-ori 3-1 cells 
 

ROS 
 

 
Metabolic oxygen byproducts 

 

 

 

 

PBMC* 

 

ROS 
 

 

Lipid peroxidation 
 

Oxidized lipids 
 

 

Protein 

carbonylation 

 
Oxidized proteins 

 

 

Y79 RB cells 
 

Lipid peroxidation 
 

Oxidized lipids 
 

 
 

Human bone 

marrow-derived 

mesenchymal stem 

cells 

 

Nrf2 
 

Antioxidant regulator 
 

 

Ho-1 
 

 
Antioxidant enzymes 

 

 

Nqo-1 
 

 

VM7Luc4E2 cells 
 

ROS 
 

Metabolic oxygen byproducts 
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Mouse liver 

O2
–
 

 

 

 

 
Antioxidant enzymes 

 

 

HO-1 
 

 

NQO-1 
 

 

GST 
 

 

 

 
Weanling rats 

 

MDA 
 

Oxidized lipid marker 
 

 

SOD 
 

 
Antioxidant enzymes 

 

 

CAT 
 

 

 

 

 
Female albino rat 

lung homogenates 

 

Lipid peroxidation 
 

Oxidized lipids 
 

 

SOD 
 

 

 
Antioxidants 

 

 

CAT 
 

 

GSH 
 

 

 
 

C57BL/6 mice liver 

 
Gpx1 

 

Antioxidant enzyme; 

glutathione homeostasis 

 

 
Aox1 

 

Superoxide and hydrogen 

peroxide formation 

 

 

 

 
Sprague-Dawley rat 

hypothalamus 

 

MDA 
 

Oxidized lipid marker 
 

 
Gpx3 

 

Antioxidant enzyme; 

glutathione homeostasis 

 

 

Cat 
 

Antioxidant enzymes 
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Sod2 
  

 

 
Rat neural stem cells 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

GSH 
 

Antioxidant 
 

 

 

 

 

 
Mouse neocortical 

neurons 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

Cyp1a1 
 

 

 

 

 

 

 

 

 

 
Cytochrome family enzymes; 

detoxification 

 

 

CYP1a1 
 

 

Cyp1b1 
 

 

Cyp1b1 
 

 

 

 

 

 

 

 

 

 

 
Sprague-Dawley rat 

liver 

 

Cyp1a1 
 

 

Cyp1a2 
 

 

Cyp2b1 
 

 

CYP2b1 
 

 

Cyp3a1 
 

 

Ugt2b1 
 

Glucuronidation enzymes; 

detoxification 

 

 

Ugt2b1 
 

 

Sult1e1 
 

Sulfation enzyme; 

detoxification 

 

 

Sult1e1 
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C. elegans 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

Skn1 
 

 
Stress response regulator 

 

 

SKN-1 
 

 

Gcs1 
 

 

 
Antioxidant enzymes 

 

 

Sod1 
 

 

Sod4 
 

 

Hsp-3 
 

 

 
 

Stress response; protein 

stabilization 

 

 

Hsp-4 
 

 

Hsp-16.2 
 

 

Hsp-70 
 

 

Cyp29A2 
 

Cytochrome family enzymes; 

detoxification 

 

 

Cyp34A9 
 

 

DAF-16 
 

Stress response 
 

 

 

 

 
E. fetida 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

 

 
Antioxidant enzymes 

 

 

GST 
 

 

SOD 
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A. fulica 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

 

 
Antioxidant enzymes 

 

 

SOD 
 

 

POD 
 

 
ZFL liver cells 

 
CYP1A 

 

Cytochrome family enzyme; 

detoxification 

 

 

 

 

 

 

D. rerio larvae 

 

GPx 
 

Antioxidant enzymes; 

glutathione homeostasis 

 

 

GR 
 

 

PRD-2 
 

Antioxidant enzyme 
 

 

hsp-5 
 

Stress response; protein 

stabilization 

 

 

hsp-90 β 
 

 

 

 

 

 

 

 

 
D. magna 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

Antioxidant enzymes 
 

 

EROD 
 

 

 
Detoxification enzymes 

 

 

ERND 
 

 

APND 
 

 

Glutamine 
 

Amino acids; markers of 

protein oxidation/breakdown 

 

 

Glutamate 
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Proline 
  

 
D. polymorpha gills 

 
hsp-70 

 

Stress response; protein 

stabilization 

 

 

 

 

 

 
 

U. tumidus digestive 

gland 

 
GAPDH 

 

Oxidoreductase; glucose 

metabolism 

 

 
GSSG 

 

Oxidized glutathione; 

antioxidant 

 

 
Oxyradicals 

 

Oxygen-containing radicals; 

pro-oxidants 

 

 
Lipofuscin 

 

Lysosomal pigment granules; 

toxicity marker 

 

 

 

 

 

 

 

 

 

 

T. japonicum 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

Sod 
 

 

 
Antioxidant enzymes 

 

 

SOD 
 

 

Cat 
 

 

Gst variants 
 

 

 
 

Antioxidants; glutathione 

homeostasis 

 

 

GST 
 

 

GPx 
 

 

GSH 
 

 

Cyp3026a3 
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Cyp3037a1 

 

Cytochrome family enzymes; 

detoxification 

 

 

 

 

 

 

 

 

 

 

P. fulvidraco 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

Antioxidant enzyme 
 

 
Gst 

 

Antioxidant enzyme; 

glutathione homeostasis 

 

 

EROD 
 

 

 
Detoxification enzymes 

 

 

ERND 
 

 

APND 
 

 

Cyp1a 
 

Cytochrome family enzymes; 

detoxification 

 

 

Cyp3a 
 

 

 

 

 

 

H. fossilis 

 

CAT 
 

 
Antioxidant enzymes 

 

 

SOD 
 

 

GSH 
 

 

Antioxidants; glutathione 

homeostasis 

 

 

GST 
 

 

GPx 
 

 

 

 
C. auratus 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

 
Antioxidant enzymes 

 

 

SOD 
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GSH 

 

Antioxidant; glutathione 

homeostasis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brachionus 

koreanus 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

Gst variants 
 

 

Antioxidant enzyme; 

glutathione homeostasis 

 

 

Gpx 
 

 

GST 
 

 

Sod 
 

 
Antioxidant enzymes 

 

 

Cat 
 

 

Cyp3042a1 
 

Cytochrome family enzymes; 

detoxification 

 

 

Cyp43a1 
 

 

Hsp10 
 

 

 

 

 

 

 

 
 

Stress response; protein 

stabilization 

 

 

Hsp21 
 

 

Hsp27 
 

 

Hsp30 
 

 

Hsp40 
 

 

Hsp40h 
 

 

Hsp60 
 

 

Hsp70 
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Hsc70 
  

 

Hsp90α1 
 

 

Hsp90α2 
 

 

Hsp90β 
 

 

 
B. gargarizans liver 

 

Sod 
 

Antioxidant enzyme 
 

 

Phgpx 
 

Antioxidant enzyme; 

glutathione homeostasis 

 

 

P. perezi larvae 
 

GST 
 

 

 

 

 

 

 

 

R. philippinarum 

digestive gland 

 

MDA 
 

Oxidized lipid marker 
 

 

CAT 
 

 
Antioxidant enzymes 

 

 

SOD 
 

 

GPx variants 
 

 

Antioxidant enzymes; 

glutathione homeostasis 

 

 

GST 
 

 

GR 
 

 

EROD 
 

Detoxification enzyme 
 

 

 

O. mykiss liver and 

kidney 

 

Cat 
 

 
Antioxidant enzymes 

 

 

Sod 
 

 

Gpx vriants 
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Gsta 

 

Antioxidant enzymes; 

glutathione homeostasis 

 

 

Hsp90bb 
 

 

Stress response; protein 

stabilization 

 

 

Hsp90ba 
 

 

Hsc70a 
 

 

 

 

 
C. reinhardtii 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

MDA 
 

Oxidized lipid marker 
 

 

Sod 
 

Antioxidant enzyme 
 

 

Gpx 
 

Antioxidant enzyme; 

glutathione homeostasis 

 

 

 

 

 

 

 

 

 

 
 

R. rubrum S1H 

 

Gpx 
 

 

GrxC 
 

Antioxidant enzymes; 

Glutathione homeostasis 

 

 

TrxB 
 

 

OsmC 
 

Antioxidant enzyme 
 

 
DnaJ 

 

Heat shock protein; general 

stress marker 

 

 

RpoN 

 

RNA polymerase factor 

sigma-54; general stress 

marker 

 

 
TerA 

 

Tellurite resistance protein A; 

general stress marker 
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Psp variants 

 

Phage shock proteins; general 

stress markers 

 

 

ClpP 

 

ATP-dependent protease, 

proteolytic subunit; general 

stress marker 

 

 

HrcA 

 

Heat-inducible transcription 

suppressor; general stress 

marker 

 

 

 

 

 

 

E. coli K12, 

MG1655 

 

OxyR 
 

ROS sensor proteins 
 

 
Grx 

 

Antioxidant enzymes; 

Glutathione homeostasis 

 

 

Sod variants 
 

 
Antioxidant enzymes 

 

 

Cat variants 
 

 

Ahp variants 
 

Antioxidant enzymes 
 

 

 

 

 
E. coli 

 

ROS 
 

Metabolic oxygen byproducts 
 

 

YgiW 
 

 

 
Antioxidant proteins 

 

 

SoxS 
 

 

YhcN 
 

 

Upregulated by TCS Downregulated by TCS Sensitive to TCS 

 

Abbreviation: TrxB, Thioredoxin; OsmC, Peroxiredoxin osmotically inducible protein C-like 
 

*Effects of 2,4-DCP; a byproduct of TCS degradation. 
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Immunity and Inflammation: 

 

TCS has, for a long time, been recognized as an effective therapy for infectious 

dermatitis (Kalliomaki and Kuokkanen, 1979; Aliaga et al., 1983; Weitgasser et al., 1983), 

and the observed curative capacity of the compound was solely attributed to its 

antimicrobial activity. It was not until the end of last century that associations between 

TCS exposure and remission of non-infectious inflammation were made (Barkvoll and 

Rolla, 1994; Barkvoll and Rolla, 1995; Kjaerheim et al., 1995a), and the use of 

antibacterials as anti-inflammatory agents has gained deserved attention during the past 

two decades. For example, an appreciable number of antibiotics, including macrolides and 

quinolones, have been shown to possess ant-inflammatory activity (Korzeniowski, 1989; 

Iino et al., 1992; Van Vlem et al., 1996; Culic et al., 2001; Uriarte et al., 2004). Follow-up 

efforts have successfully provided solid evidence for the direct interaction of TCS with 

inflammatory pathways. 

 

Gaffar et al. (Gaffar et al., 1995) reported that TCS inhibits cyclooxygenase-1 (COX- 

 

1) and COX-2, 5-lipoxygenase and (LPO), 15-LPO, interleukin (IL)-1β-induced 

prostaglandin E2 (PGE2) in gingival cells. TCS was also shown to suppress a wider range 

of inflammatory mediators including IL-1β-induced prostaglandin I2 (PGI2) and 

arachidonic acid, tumor necrosis factor (TNF)α-induced PGE2, phospholipase A2 (PLA2), 

and COX (Modeer et al., 1996). Moreover, in a double-blind crossover study, participants 

who used a mouthrinse with added 0.15% TCS developed significantly less oral 

erythematous lesions than those who used a TCS-free mouthrinse (Skaare et al., 1997b). 

By then, the anti-inflammatory properties of TCS were established and were widely 

accepted within the scientific and medical communities. 
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TCS in prosthetic devices was found to have no influence on the acute phase response 

(Hernandez-Richter et al., 2001), and only modest differences were seen between TCS and 

stannous fluoride dentrifice (Kumar, 2015). Nevertheless, TCS, when applied 

intracrevicularly, improved clinical parameters of ginigivits (Suresh et al., 2001). In a 

recent double-blind, randomized, crossover study, it was concluded that TCS-containing 

toothpaste inhibits inflammation in peri-implant tissue (Ribeiro et al., 2018). 

 

To date, elaborations on the anti-inflammatory nature of TCS have been the focus of 

subsequent studies. Mustafa et al. (Mustafa et al., 1998; Mustafa et al., 2000; Mustafa et 

al., 2005) identified IL-1β, interferon (IFN)γ, major histocompatibility complex (MHC) 

class II, and PGE synthase-1, as targets of TCS in human gingival fibroblasts. Of note, 

studies to discern the subcellular localization of TCS show preference for nuclear, as 

opposed to cytosolic, accumulation. Although initial uptake was considerably higher in the 

cytoplasm, a great proportion of cytosolic TCS was eliminated after repeated washing, 

while nuclear retention was observed (Mustafa et al., 2003). This may explain the 

perturbed inflammatory signaling associated with TCS. Moreover, in primary human oral 

epithelial cells, TCS attenuated LPS-induced cytokine response including IL-8, IL-1α, and 

TNFα, and aggravated the anti-microbial response, which was mediated through micro 

RNA (miRNA) regulation of toll-like receptor (TLR) pathway (Wallet et al., 2013). The 

findings were also reciprocated in cells derived from diabetic patients, with an exaggerated 

TLR response (Neiva et al., 2014). It was revealed that TCS, nevertheless, abrogated LPS- 

induced TLR response, again, through regulating miRNAs (stimulating miR146a and 

inhibiting miR155s). 
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In skin and leukocytes of mice topically treated with TCS, alterations in inflammatory 

responses were mediated through TLR4 (Marshall et al., 2017). Likewise, TCS 

downregulated parathyroid hormone (PTH)- or PGE2-stimulated matrix 

metalloproteinase-13 (MMP-13) expression in rat osteoblastic osteosarcoma cells (Barnes 

et al., 2013). Since hyperactive MMP-13 is implicated in periodontal disease, it was 

suggested that TCS might have a protective role against oral inflammatory conditions 

through its action on that enzyme, among others (Pancer et al., 2016). 

 

Interestingly, favorable results have been observed for TCS against other 

inflammatory conditions including cardiovascular disease and hidradenitis suppurativa 

(Cullinan et al., 2015; Hessam et al., 2016). Moreover, the use of TCS-impregnated 

ureteral stents seems to be a promising approach to combat urinary tract infections (UTI) 

and associated inflammation (Cadieux et al., 2006; Elwood et al., 2007). Along those lines, 

an increased urinary TCS was related to increased serum IL-6 in pregnant women (Watkins 

et al., 2015), pointing at a possible pro- or anti-inflammatory role. 

 

In a unique effort by Barros et al. (Barros et al., 2010), TCS modulation of the 

inflammatory response in an ex vivo whole blood stimulation assay was investigated. In 

that study, TCS inhibited multiple inflammatory mediators induced by LPS, including 

interleukins, most notably IL-1 & IL-6, IFNs, and colony-stimulating factor (CSF) 2. 

Activation of type 1 T helper lymphocytes was interrupted through the action of TCS on 

CD70. In a related report, TCS also reduced the capacity of natural killer (NK) 

lymphocytes to lyse chronic myelogenous leukemia K562 cells (Udoji et al., 2010). 

Recently, chitosan-TCS particles reduced the expression of IL-1β-induced Cox2 and Il6, 
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among other immune molecules in gingival fibroblasts (Table 4) (Pavez et al., 2018), 

showcasing the vast amenability of this antimicrobial to nanoparticle manipulation. 

 

Other in vivo studies on rodents and marine organisms clarified further the 

immunomodulatory properties of TCS. For instance, in mice subjected to an acute, 

systemic E. coli infection, Sharma et al. (Sharma et al., 2003) demonstrated that co- 

treatment with TCS significantly reversed the damage caused by the bacteria. Specifically, 

TCS prolonged survival, lessened hepatic congestion, hemorrhage, and fatty changes, and 

reduced blood liver enzymes, serum TNFα, and the severity of bacteremia. In accordance 

with published data, TCS was similarly immunosuppressive in aquatic mussels (M. 

galloprovincialis) and clams (R. philippinarum) (Canesi et al., 2007; Matozzo et al., 2012). 

 

Contrary to the overwhelming evidence of the anti-inflammatory function of TCS, a 

number of studies have nonetheless identified a pro-inflammatory role by the antiseptic. 

For example, upon intratracheal instillation of TCS in Sprague-Dawley rats, elevated total 

cell (TC) count, polymorphonuclear leukocytes (PMNs), total protein (TP), LDH, TNFα, 

and IL-6 were observed in bronchoalveolar lavage (BAL) fluid (Kwon et al., 2013), which, 

except for TP, returned to baseline levels after 14 days of exposure. Consonantly, it has 

also been demonstrated that TCS exacerbates diethylnitrosamine-induced hepatocellular 

carcinoma in C57BL/6 mice (Yueh et al., 2014). Likewise, TCS was very recently found 

to increase Tlr4 expression to promote colitis and aggravate colitis-related cancer in 

C57BL/6 mice (Yang et al., 2018). 

 

It is evident from the wealth of information present that TCS is a modulator of immune 

and inflammatory reactions. The sum of data from in vitro and in vivo studies indicate that 
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TCS, on its own, is immunosuppressive. Nevertheless, increasing evidence seems to 

suggest that in the presence of an existing adverse condition, such as inflammation or 

tumor, TCS further potentiates and worsens the eventual outcome. Investigations into the 

molecular basis behind this unique behavior are particularly warranted. 

 

 

 
 

Table 4: Inflammatory and immune mediators responsive to TCS 

 

 
Model 

 

Target 
 

 
Response 

 

Biomarker 
 

Molecular Identity 

 

 

 

 

 

 

 

 

 

 

 

Human gingival 

fibroblasts 

 

COX-1/2 
 

 

 

 

 

 

 

 
Inflammatory mediators 

 

 

5/15-LPO 
 

 

PGE2 
 

 

PGI2 
 

 

Arachidonic acid 
 

 

PLA2 
 

 

PGE synthase-1 
 

 

IFNγ 
 

Immune/inflammatory 

cytokines 

 

 

IL-1β 
 

 
MHC II 

 

Cell surface proteins; adaptive 

immunity regulators 
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Cox2 
 

Inflammatory mediator 
 

 

Il6 
 

Immune/inflammatory 

cytokines 

 

 

Il1b 
 

 

Tlr6 
 

Innate immunity receptor 
 

 

 

 

 

 
Human primary 

oral epithelial cells 

 

IL-8 
 

 

Immune/inflammatory 

cytokines 

 

 

IL-1α 
 

 

TNFα 
 

 

miR146a 
 

Transcriptional regulators of 

TLR response 

 

 

miR155s 
 

 

 

 

 

 

 
 

Mouse skin and 

leukocytes 

 
S100A8/A9 

 

Inflammatory modulator; 

Ca2+-binding protein 

 

 

Tlr4 
 

 

 

 

 

Innate immunity receptors 

 

 

TLR4 
 

 

Tlr1 
 

 

Tlr2 
 

 

Tlr6 
 

 

Rat osteoblastic 

osteosarcoma cells 

 
MMP-13 

 

Endopeptidase; collagen 

degradation 

 

 

Human oral fluids 
 

IL-1α 
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IL-1β 
Immune/inflammatory 

cytokines 

 

 

IL-8 
 

 

MCP-1 
 

 

TIMP-2 
 

 
MMP regulator proteins 

 

 

TIMP-1 
 

 
MMP-8/9 

 

Endopeptidases; extracellular 

matrix degradation 

 

 

Human urine 
 

IL-6 
 

 

Immune/inflammatory 

cytokines 

 

 

Sprague-Dawley 

rats 

 

TNF-α 
 

 

IL-6 
 

 

 

 

 

 

 

 

 

 
Human whole 

blood leukocytes 

 
Csf2 

 

Hematopoietic stem cell 

growth and maintenance 

 

 

Ifna1 
 

 

 

 

 

 

 

Immune/inflammatory 

cytokines 

 

 

Ifna2 
 

 

Ifna4 
 

 

Ifna8 
 

 

Il-1f10 
 

 

Il-1f5 
 

 

Il-1f7 
 



45  

  

Il-1f8 
  

 

Il-1f9 
 

 

Il-6 
 

 

Il-11 
 

 

Il-13 
 

 

Il-25 
 

 

Il-19 
 

 

Il-21 
 

 

Il-9 
 

 
Cd70 

 

Cell surface receptor/ligand; 

Activated lymphocytes 

 

 

Bmp2 
 

Growth factors; bone and 

cartilage development 

 

 

Bmp6 
 

 

Tnfrsf11b 
 

TNFSF11 receptor 
 

 

Gdf3 
 

 

 

 
Growth/differentiation factors 

 

 

Gdf2 
 

 

Gdf5 
 

 

Gdf9 
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Inhba 

 

Hypothalamus-pituitary axis 

regulator 

 

 

Lefty2 

 

Left-right determination 

factor 2; Left-right asymmetry 

of organs 

 

 

Sprague-Dawley 

rats 

 

TNF-α 
 

Immune/inflammatory 

cytokine 

 

 

IL-6 
 

 

Upregulated by TCS Downregulated by TCS Sensitive to TCS 

 

Abbreviation: MCP, Monocyte chemoattractant protein; TIMP, Tissue inhibitor of 

metalloproteinase; Bmp, Bone morphogenetic protein; Gdf, Growth differentiation factor; 

Inhba, Inhibin beta A chain 

 

 

 

Genotoxicity and Carcinogenicity: 

 

Among the most important aspects of toxicological profiling of compounds is their 

interaction with the molecule of life – the DNA. Early efforts by Fahrig et al. (Russell and 

Montgomery, 1980; Kanetoshi et al., 1992) point at a possible role for TCS in somatic 

mutations observed in mice. TCS also caused a significant reduction in global DNA 

methylation in human hepatocellular carcinoma HepG2 cells; a finding associated with 

liver tumor (Ma et al., 2013). Similarly, TCS caused a dose-responsive increase in 

chromosomal aberrations in lung fibroblast V79 cells, but not in ovary CHO cells, of the 

Chinese hamster Cricetulus griseus (Rodricks et al., 2010). In a comparative study on 

Drosophila melanogaster using three mouthwashes, namely Cepacol® (0.05% 

cetylpyridinium chloride), Periograd® (0.12% chlorhexidinedigluconate), and Plax® 
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(0.03% TCS), it was concluded that only the ethanol content in Cepacol®, but not other 

active ingredients, caused mitotic recombination between homologues chromosomes 

(Rodrigues et al., 2007). On the other hand, TCS induced dose-responsive DNA damage 

in hemocytes of the zebra mussel D. polymorpha (Binelli et al., 2009a), and strand breaks 

in the digestive gland of U. tumidus mussels (Falfushynska et al., 2014). A similar dose- 

dependent DNA damage was also observed in the Earthworm E. fetida (Lin et al., 2010; 

Lin et al., 2012), but not in E. andrei (Chevillot et al., 2018). 

 

Comparing TCS to other toxicants in the larvae of freshwater insect Chironomus 

riparius, Martínez-Paz et al. (Martinez-Paz et al., 2013) found TCS, along with 

nonylphenol, to be the most potent in causing DNA breakage. It was also noted that TCS, 

either alone or in combination with carbendazim, induced DNA damage in D. magna (Silva 

et al., 2015). Using the brine shrimp Artemia salina, a time-dependent pattern of TCS- 

induced genotoxicity was identified (Xu et al., 2015). Moreover, TCS was genotoxic in the 

catfish Heteropneustes fossilis, goldfish C. auratus, and rainbow trout O. mykiss (Banerjee 

et al., 2016; Capkin et al., 2017; Wang et al., 2018b). Importantly, when TCS at an 

environmentally relevant concentration (3 nM) was treated to the freshwater protozoan 

Tetrahymena thermophila, notable DNA damage, without significant perturbation in 

growth or cell viability, was evident (Gao et al., 2015). In a more detailed study on E. coli, 

Gou et al. (Gou et al., 2014) revealed that the electro-Fenton transformation of TCS caused 

upregulation of a host of genes involved in the DNA repair machinery, indicative of DNA 

stress. These genes belong to base excision repair (mutT and nfo), nucleotide exision repair 

(uvrA and uvrD), mismatch repair (uvrD and ssb) and double-strand break repair (ssb and 

recN). Chromosomal stickiness, reduced mitotic activity, and ana-telophase bridges were 
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also noticeable in the bulb onion Allium cepa following TCS treatment (Herrero et al., 

2012). 

 

In a recent proof-of-concept study, the promising potential of a toxicogenomic 

approach as a follow-up to positive in vitro genotoxicity data was evaluated. Using TCS as 

a testing compound, it was shown that the antimicrobial is non-DNA reactive, and that it 

is genotoxic solely in vitro as opposed to in vivo (Doktorova et al., 2014). 

 

Ambiguity surrounding the carcinogenicity of TCS still remains today. Investigators 

have generally been able to provide evidence for carcinogenic effects in animal models but 

not in humans. Of the earliest studies in this regard was a report by Lyman et al. (Lyman 

and Furia, 1969) identifying TCS as a carcinogen in mice. Other studies on mice have been 

in agreement with that conclusion. For example, it was noted that chronic TCS exposure 

increased the incidence of liver neoplasms (Rodricks et al., 2010), and aggravated 

hepatocellular carcinoma (Yueh et al., 2014). Furthermore, TCS caused colonic 

inflammation and worsened colitis or tumorigenesis induced by dextran sodium sulfate 

(Sanidad et al., 2018). These findings, were, however, not paralleled in rats, hamsters, or 

baboons (Bhargava and Leonard, 1996; Rodricks et al., 2010). More importantly, in vivo 

human studies of TCS are scarce, and aspects related to TCS-induced oncogenesis are 

lacking. Consequently, whether TCS poses a carcinogenic hazard to humans is unknown 

and requires further investigation. Nonetheless, the interaction of TCS with human-derived 

cancer cells in vitro has recently gained considerable attention (reviewed under Therapeutic 

Proposals). 
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In light of available data, TCS demonstrates carcinogenicity solely in mice, and within 

a narrow range of tissues (the liver and colon), which constitutes limited evidence of 

carcinogenicity  according   to    ECHA 

(https://echa.europa.eu/documents/10162/23036412/clp_en.pdf/58b5dc6d-ac2a-4910- 

9702-e9e1f5051cc5). Hence,  TCS is not classifiable as a carcinogen 

(http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf). 

It must be noted that in case future assessment conclusively rules out TCS as a human 

carcinogen, caution with its use must still be exercised given the established 

carcinogenicity of its transformation products – dioxins, chloroform, and anilines (Halden 

et al., 2017). 

 

 

 
 

Table 5: TCS genotoxicity and carcinogenicity 

 

Model 
 

Effect 
 

Classification 

 

HepG2 cells 
 

Global DNA hypomethylation 
 

 

 

 

 
Limited evidence of 

carcinogenicity 

 

V79 cells 
 

Chromosomal aberrations 

 

 

 
Mouse 

 

Somatic mutation (positive spot test) 

Increased incidence of liver tumors 

Aggravated hepatocellular carcinoma 

Exacerbated colon tumorigenesis 

 

D. polymorpha 
 

DNA damage (positive Comet assay) 
 

N/A 

http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf)
http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_054.pdf)
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U. tumidus 

 

DNA strand breaks (Hoescht 33342 

fluorescence) 

 

 

E. fetida 
 

DNA damage (positive Comet assay) 

 

D. magna 
 

DNA damage (positive Comet assay) 

 

A. salina 
 

DNA damage (positive Comet assay) 

 

H. fossilis 
 

DNA damage (positive Comet assay) 

 

C. auratus 
 

DNA damage (positive Comet assay) 

 

O. mykiss 
 

DNA damage (positive Comet assay) 

 

T. thermophila 
 

DNA damage (positive Comet assay) 

 

A. cepa 

 

Chromosomal stickiness, reduced mitotic 

activity, and ana-telophase bridges (positive 

Feulgen reaction) 

 

N/A = Data from non-mammalian animals are not considered for ECHA 

mutagenicity/carcinogenicity classification 

 

 

 

Cellular Signaling: 

 

Adaptations to the ever-changing intracellular and surrounding environments are 

achieved, in large part, by effective communication. Transmission of information that carry 

specific instructions is executed by messengers that function in tandem within a defined 

pathway. Tasks, however, are usually accomplished through the sequential transduction of 

multiple messages along a complex, intertwining network that involves a wide assortment 
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of mediators (Uings and Farrow, 2000). Hence, the participation of cell signaling cascades 

in the response to xenobiotics cannot be overlooked. 

 

The use of human cell lines has provided a wealth of information particularly 

regarding the study of signaling molecules responsive to stressors and xenobiotics, 

including TCS. In H460 lung cancer cells, TCS promoted migration and invasion through 

focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 

botulinum toxin substrate 1 (Rac1) (Winitthana et al., 2014). Evidence similarly exists for 

the classical mitogen-activated protein kinases (MAPK) as targets of TCS. For example, 

proliferation of JB6 Cl 41-5a cells as induced by TCS was accompanied by activation of 

extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), and 

p38 MAPKs, in addition to Akt (Wu et al., 2015). Importantly, blocking either MEK1/2 or 

phosphoinositide 3-kinase (PI3K) significantly attenuated TCS-induced proliferation. In 

another study on rat neural stem cells, TCS-induced cytotoxicity and apoptosis were 

accompanied by activation of p38 and JNK, and suppression of ERK, Akt, and PI3K (Park 

et al., 2016). This points at the involvement of these proteins in both cellular survival and 

death as brought about by TCS. Recently, TCS was shown to activate p38 and JNK in vivo 

as detected in the hypothalamus of Sprague-Dawley rats and in vitro utilizing human Nthy- 

ori 3-1 thyroid follicular cells (Zhang et al., 2018). In that study, TCS stimulated 

thyrotropin-releasing hormone receptor through p38 MAPK, which, in turn, influenced 

thyroid peroxidase (TPO) level. 

 

In suppressing TLR signaling in whole blood leukocytes, TCS downregulated the 

expression of several signaling mediators, most notably, NF-kB-inducing kinase (Nik) and 

C-jun, which accounted for the overall blunted inflammatory response to LPS in these cells 



52  

(Barros et al., 2010). Furthermore, suppression of Mmp-13 expression in mouse 

osteoblastic osteocarcinoma cells by TCS was possibly related to its inhibition of Fos/Jun 

and AP-1 sequence binding in both the Mmp-13 and C-fos promoters (Barnes et al., 2013). 

 

The endocrine-disrupting activity of TCS, specifically its estrogenicity, has been of 

great interest to researchers. Kim et al. (Kim et al., 2014) utilized BG-1 ovarian cancer 

cells to show that the proliferative effects of TCS were mediated through ERα. Confirming 

the ER role, the use of ICI 182,780 reversed the proliferative properties of TCS along with 

associated perturbations in cyclin D1, p21, and Bax expression and protein levels. 

Likewise, the ER is implicated in TCS-induced proliferation of MCF-7 cells and increased 

breast tumor mass in mice (Lee et al., 2014; Kim et al., 2016; Lee et al., 2017b). This was 

similarly indicated by TCS inhibition with ICI 182,780 or kaempferol, and the stimulation 

of insulin-like growth factor (IGF) signaling, namely phosphorylated insulin receptor 

substrate (pIRS-1), pAkt, pMEK1/2 and pERK1/2 (Kim et al., 2016). Notably, kaempferol 

also inhibited TCS-induced VM7Luc4E2 cell growth (Lee et al., 2018). These observations 

are in congruence with an earlier report by Huang et al. (Huang et al., 2014) describing the 

estrogenic activities of nanomolar concentrations of TCS in the same cells. Investigating 

ER-responsive genes on the transcriptional and translational levels, it was shown that TCS 

induced pS2 but blunted ERα mRNA and protein levels the latter of which was related to 

elevated miR-22, miR-206, and miR-193b miRNAs. 

 

Recent studies have also argued for the dual effect of TCS on ER signaling. For 

example, Henry et al. (Henry and Fair, 2013) demonstrated that, when administered alone 

to MCF7 cells, TCS at 7 nM to 700 µM exhibits estrogenic activity but becomes anti- 

estrogenic in presence of E2. Along those lines, it was shown that TCS, on its own, lacked 
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any effect on rat uterine growth, but could still potentiate the effect of ethinylestradiol (EE) 

(Stoker et al., 2010). In a follow-up investigation, it was reported that TCS promotes EE- 

induced inhibition of ERα and ERβ expression, and when given alone does not activate ER 

at concentrations from 30 nM to 100 µM (Louis et al., 2013). Furthermore, TCS diminished 

E2 and estrogen sulfotransferase in sheep placenta (James et al., 2010). This is in contrast 

to the increased activity of ERβ but not ERα caused by a TCS-derivative mixture, which 

led to neurological and behavioral abnormalities in zebrafish (Liu et al., 2018). Also, 

Sprague-Dawley rats given TCS showed increased uterine weight and Calbindin-d(9k) 

(CaBP-9k) expression, which was also reciprocated in pituitary GH3 cells (Jung et al., 

2012). Reversal of both anomalies by ICI 182,780 and RU 486 points at a possible 

estrogenic role of the antimicrobial. 

 

Very recently, Serra et al. (Serra et al., 2018) challenged accumulating evidence of 

TCS estrogenicity by showing the lack of agonistic or antagonistic effect in vivo and in 

vitro. While up to 0.3 µM TCS did not modulate ER-dependent brain aromatase in 

zebrafish embryos, interference with the enzyme’s activity, and with E2 activation of the 

enzyme observed at 1 µM, was not attributed to TCS-ER interaction. Moreover, up to 10 

µM TCS lacked estrogenic effects in ER-expressing zebrafish liver cells as well as in MCF- 

7 cells (Serra et al., 2018). Additionally, in a screening study of the estrogenicity of a group 

of endocrine-disrupting chemicals on fish species, TCS failed to significantly elicit a 

response in an in vitro ERα reporter gene assay (Miyagawa et al., 2014). 

 

In light of available evidence, the general consensus seems to indicate that the 

estrogenicity of TCS is contingent upon multiple factors, including concentration, species, 
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duration of exposure, and whether TCS is administered alone or in combination with other 

molecules. 

 

With regard to the androgenic properties of TCS, it was revealed that TCS interferes 

with testosterone (TSN)-related transcription but promotes that dependent on androgen 

(Chen et al., 2007; Christen et al., 2010). In a recent in vivo study on weanling male rats, 

Riad et al. (Riad et al., 2018) reported that TCS, either alone or combined with 

butylparaben, reduced TSN, leutinizing hormone (LH), and follicle-stimulating hormone 

(FSH), while increased E2 was observed upon single TCS administration Also, TCS- 

induced proliferation and migration of LNCaP cells were significantly reduced in presence 

of bicalutamide, an androgen receptor (AR) antagonist (Kim et al., 2015). These findings 

support a previous report by Ahn et al. (Ahn et al., 2008) in which 1 µM TCS reduced E2- 

induced ER activation by 50% and AR in human BG1Luc4E2 ovarian adenocarcinoma 

cells and T47D-ARE breast cancer cells, respectively. Evidence for TCS estrogenicity was 

detected in MCF7 cells when [(3)H]estradiol was successfully displaced from the ER by 

the antimicrobial (Gee et al., 2008). Furthermore, 10 µM TCS attenuated E2-dependent 

ERE-CAT reporter gene induction, while 0.1 and 1 µM TCS inhibited TSN-stimulated 

LTR-CAT reporter gene in both T47D cells and S115 mouse mammary tumor cells (Gee 

et al., 2008). TCS was also determined to have a weak effect on AhR in recombinant rat 

hepatoma (H4L1.1c4) cells. Finally, Forgacs et al. (Forgacs et al., 2012) showed that TCS 

interferes with recombinant hCG stimulation of TSN in a novel BLTK1 murine Leydig cell 

model. Most recently, however, no significant influence on androgen synthesis or activity 

by TCS was observed in Wistar rats (Farmer et al., 2018). 
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Controversy surrounding the interaction between TCS and members of the peroxisome 

proliferator-activated receptors (PPARs) has gained considerable attention as of late. This 

has essentially stemmed from the apparent discrepancy between data obtained from 

humans and those from rodents. In comparing the differential modulation of TCS on 

PPARα in HepG2 cells and mouse hepatoma Hepa1c1c7 cells, distinct responses were 

observed by Wu et al. (Wu et al., 2014). Protein levels of PPARα downstream target, acyl- 

coenzyme A oxidase, were decreased in HepG2 cells but were increased in Hepa1c1c7, 

which also showed higher DNA synthesis and blunted apoptosis through transforming 

growth factor (TGF-β). PPAR signaling was similarly identified as a target of TCS through 

genome-wide CRISPR-Cas9 screening in HepG2 cells (Xia et al., 2016), zebrafish 

(Haggard et al., 2016), and Gallus gallus chicken embryos (Guo et al., 2018). In the latter 

model, PPAR signaling members Cyp7a1, fatty acid binding protein 1 (Fabp1), acyl-CoA 

synthetase long-chain family member 5 (Acsl5), acyl-CoA oxidase 2 (Acox2), perilipin 1 

(Plin1) were upregulated, whereas angiopoietin like 4 (Angptl) was downregulated. 

 

TCS administered to pregnant mice caused insulin resistance, hypothyroidism, 

diminished glucose transporter 4 (GLUT4) expression, and inhibition of Akt and mTOR 

phosphorylation (Cao et al., 2017; Hua et al., 2017). While thyroxine corrected these 

adversaries, PPARγ activator, rosiglitazone, solely reversed the decrease in Akt 

phosphorylation in adipose tissue and in muscle (Hua et al., 2017). PPARγ is known to 

ameliorate mTOR suppression-induced glucose intolerance in rats (Festuccia et al., 2014), 

further underlining the far-reaching effects of TCS action. 

 

Although TCS has been reported to promote hepatocyte proliferation in mice through 

PPAR (Rodricks et al., 2010), Yueh et al. (Yueh et al., 2014) found no appreciable 
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induction of PPARα following TCS treatment. Importantly, the authors also identified 

constitutive androstane receptor (CAR) as a possible aggravator of TCS-induced 

tumorigenesis, given the halved tumor number in Car–/− mice compared to their Car+/− 

counterparts. TCS, as is the case with PPARs, is reported to exhibit varying affinities for 

CAR and pregnane X receptor (PXR) in humans and rodents. A weak agonist for human 

CAR, TCS was found to be a reverse agonist for rodent CAR, an agonist for human PXR, 

and had no effect on rodent PXR (Paul et al., 2013). 

 

Calcium concentration within cells influences protein conformation and dynamics. 

Protein binding of Ca2+, on the other hand, maintains the ion’s content within a 

physiological range and sets forth diverse cellular activities related to gene expression, 

motility, secretion, and survival (Clapham, 2007). Beside proteins, intracellular Ca2+ levels 

are modulated by a variety of stimuli, including xenobiotic exposure. Through the Ca2+ 

channel ryanodine (Ry) receptor type 1 (RyR1), TCS increased cytosolic Ca2+ dose- 

dependently in primary skeletal myotubes irrespective of extracellular Ca2+ (Ahn et al., 

2008). Accordingly, muscle contractility was compromised upon TCS exposure in vitro 

and in vivo (Cherednichenko et al., 2012). Results from this study indicate that TCS 

impaired excitation-contraction coupling (ECC) in cardiac and skeletal muscles, and 

enhanced electrically-induced Ca2+ transients in myotubes without depleting intracellular 

Ca2+ and notwithstanding RyR1 blockage. TCS also efficiently blocked excitation-coupled 

Ca2+ entry and interfered with the bidirectional signaling between RyR1 channels and Ca2+ 

ions. Likewise, TCS compromised ECC in larval fathead minnows Pimephales promelas, 

as evidenced by altered RyR and dihydropyridine receptor (DHPR) mRNA and protein 
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levels, and weakened ligand binding to both receptors in adult muscle homogenates 

(Fritsch et al., 2013). 

In rat thymocytes, TCS elevated intracellular Ca2+ levels, and opened Ca2+-responsive 

K+ channels, eventually leading to membrane hyperpolarization (Kawanai, 2011). Also, 

TCS prevented Ca2+-induced mitochondrial swelling in rat liver (Teplova et al., 2017). A 

more in-depth analysis of TCS modulation of Ca2+ homeostasis was conducted on rat 

basophilic leukemia (RBL) mast cells (Weatherly et al., 2018). In this cell type, TCS 

caused mitochondrial fission, diminished membrane potential and translocation, with 

compromised ATP production and elevated ROS. These changes were associated with 

perturbed mitochondrial and endoplasmic reticulum Ca2+ and depleted cytosolic Ca2+ 

levels following antigen stimulation. Accordingly, TCS-induced degranulation of mast cell 

may at least in part be attributed to Ca2+ mobilization. 

Calcium modulation by TCS has also been investigated in other organisms. In C. 

reinhardtii exposed to 14 µM TCS, increased Ca2+ levels with oxidative stress, cell and 

mitochondrial membrane depolarization, compromised photosynthesis, and caspase 

activation were noted (Gonzalez-Pleiter et al., 2017). Importantly, chelation of intracellular 

Ca2+ ions by BAPTA-AM protected the algae from TCS-induced Ca2+ dysregulation. 

These observations strongly implicate Ca2+ as a mediator of a wide array of toxic anomalies 

attributed to TCS. 

 

Literature concerning the xenobiotic response to TCS has revealed important signaling 

pathways activated or suppressed by TCS (Table 6). Distinct outcomes exist among 

species, and even within the same species based on experimental conditions and model 
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under investigation. Although important milestones in TCS signaling have been achieved 

so far, there remains a lot to be discovered, especially in human-based systems, about the 

modulatory effects of TCS on cellular physiology. In particular, the response of many 

human cell types and tissues to TCS treatment is unknown, and identification of signaling 

pathways and their roles in cellular growth, metabolism, and overall function, is therefore 

advised. 

 

 
 

Table 6: TCS modulation of signaling pathways 

 

 
Model 

 

Target 
 

 
Response 

 

Pathways 
 

TCS Role 

 

 
H460 cells 

 

FAK/Akt 
 

Cellular migration and 

invasion 

 

 

Rac1 
 

 

 

 

 

 

JB6 Cl 41-5a cells 

 

 
ERK1/2 

JNK 

p38 

Akt 

PI3K 

 

 

 

 

 

Cell proliferation 

 

 

 

 

 

 

Rat neural stem 

cells 

 
JNK 

 

p38 

 

 
Cytotoxicity and apoptosis 
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 ERK 
 

Akt 

PI3K 

  

 

 

 

Sprague-Dawley 

rats hypothalamus 

and 
 

Nthy-ori 3-1 cells 

 

JNK 
 

 
Reduced TPO; 

hypothyroidism 

 

 
p38 

 

 

Whole blood 

leukocytes 

 

Nik 
 

 

 

 

 
Anti-inflammatory 

response 

 

 

Cjun 
 

 

 

Mouse osteoblastic 

osteocarcinoma 

 

Fos 
 

 

Jun 
 

 

Ap1 
 

 

BG-1 
 

ERα 
 

 

 

 

 

 

 

 
Cell proliferation 

 

 

 

 

 

 

MCF-7 cells 

 

ERα* 
 

 

pIRS-1 
 

 

pAKT 
 

 

pMEK1/2 
 

 

pERK1/2 
 

 

VM7Luc4E2 cells 
 

Erα 
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Ps2 
  

 

ERα 
 

 

pS2 
 

 

miR-22 
 

 

miR-206 
 

 

miR-193b 
 

 

 
Sheep placenta 

 

E2 
 

 

 
Anti-estrogenicity 

 

 

Estrogen sulfotransferase 
 

 

BG1Luc4E2 cells 
 

ER* 
 

 

Sprague-Dawley 

rats and GH3 cells 

 
CaBP-9k 

 
Estrogenicity 

 

 
LNCaP 

 
AR 

 

Androgenicity; cell 

proliferation and migration 

 

 

T47D-ARE cells 
 

AR 
 

Anti-androgenicity 
 

 

H4L1.1c4 cells 
 

AR 
 

Pro(anti)-androgenicity 
 

 
HepG2 cells 

 

Acyl-coenzyme A 

oxidase 

 
Blunted lipid metabolism 

 

 

 
Hepa1c1c7 cells 

 

Acyl-coenzyme A 

oxidase 

 

Enhanced lipid metabolism 

and DNA synthesis 
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TGF-β 
 

Anti-apoptosis 
 

 

 
D. rerio 

 

PPARα 
 

 

 

Enhanced lipid metabolism 

 

 

PPARγ 
 

 

G. gallus embryo 

livers 

 
PPARα 

 

 

 
ICR mice 

 

Akt 
 

Impaired glucose 

metabolism 

 

 

mTOR 
 

 

C57BL/6 mice 
 

CAR 
 

Tumorigenesis 
 

 

 
HepG2 cells 

 

CAR 
 

Enhanced hepatic 

catabolism 

 

 

PXR 
 

 

Rodent FAO 

hepatoma cells 

 
CAR 

 

Reduced hepatic 

catabolism 

 

 

Primary skeletal 

myotubes 

Ca2+ 
 

 

 

 

 
Diminished muscle 

contractility 

 

 

RyR1 
 

 

 
P. promelas 

muscle 

homogenates 

 

Ryr2 
 

 

Ryr3 
 

 

RyR 
 

 
Rat thymocytes 

 
Ca2+ 

 

Cell membrane 

hyperpolarization 
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RBL cells Ca2+ 
 

Mast cell degranulation 
 

 

C. reinhardtii Ca2+ 
 

Dampened photosynthesis 
 

 

Upregulated by TCS Downregulated by TCS Sensitive to TCS 

 

*TCS is anti-estrogenic in presence of E2 

 

 

 

Therapeutic Proposals 

 

The first specific action mechanism of TCS in prokaryotes was only demonstrated 20 

years ago, when inhibition of fatty acid synthesis in Escherichia coli was noted following 

exposure to TCS (McMurry et al., 1998b; McDonnell and Russell, 1999). TCS irreversibly 

inhibited the fatty acid biosynthesis enzyme, enoyl–acyl carrier protein reductase (ACP), 

by mimicking its natural substrate in vivo. Further, a mutated or an overexpressed ACP, 

encoded by fabI, was shown to confer TCS resistance in the bacterium. These findings 

established ACP as a specific, subcellular TCS target. Efforts have thus far revealed the 

susceptibility of a host of other pathogens to fatty acid synthesis by TCS. These include 

Staphylococcus aureus, M. tuberculosis, Helicobacter pylori, Haemophilus influenzae, 

Plasmodium falciparum, Toxoplasma gondii, Leishmania spp., and Trypanosoma spp. 

((Heath et al., 2000; Parikh et al., 2000; Beeson et al., 2001; Marcinkeviciene et al., 2001; 

McLeod et al., 2001; Surolia and Surolia, 2001; Lee et al., 2002; Roberts et al., 2003). In 

humans, fatty acid synthase (FAS) is the only multi-enzyme complex that is responsible 

for the endogenous synthesis of saturated fatty acids from acetyl-CoA and malonyl-CoA 

(Lu and Archer, 2005; Lupu and Menendez, 2006). Although a BLAST analysis of E. coli 
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FabI protein and FAS showed no homology, appreciable sequence similarities were 

nevertheless found with polyketide synthase and type I FAS of M. tuberculosis (Liu et al., 

2002). 

 

The success of cerulenin, a mycotoxin with fatty acid inhibitory action, in suppressing 

tumor progression in vivo has spawned several reports in support of fatty acid synthesis 

inhibition as an emerging target for chemotherapy (Pizer et al., 1996). The earliest study 

in this regard investigated the cytotoxicity of TCS in MCF-7 and SKBr-3 breast cancer 

cells (Liu et al., 2002). It was revealed that TCS at 10-50 uM is cytotoxic, anti-proliferative, 

induces morphological alterations, and inhibits FAS. These findings corroborate an earlier 

observation linking FAS inhibition with apoptotic death of breast cancer cells (Kuhajda et 

al., 1994; Kuhajda et al., 2000; Liu et al., 2002). TCS was similarly found to inhibit the 

development of methylnitrosourea-induced breast cancer in Sprague-Dawley rats (Lu and 

Archer, 2005). In human A-375 melanoma cells, TCS inhibited growth at 40 uM (Ho et 

al., 2007). TCS was similarly found to be dose-dependently pro-apoptotic in prostate 

cancer cells, with IC50 values as low as 4.5-7.8 uM (Sadowski et al., 2014). Whereas no 

cytotoxicity was observed in NIH3T3 fibroblasts at concentrations up to 60 uM, values of 

IC50 ranging from 0.74-62 uM were nonetheless observed in non-malignant prostate cells. 

This suggests two things; first, that prostate cells are relatively more sensitive to TCS 

toxicity than fibroblasts and presumably other non-malignant cell types, and second, that 

malignant prostate cells exhibit higher chemosensitivity compared to their non-malignant 

counterparts. This differential susceptibility could be due to overexpressed FAS in 

malignant cells. However, in contrast to these reports, at concentrations up to 345 uM, TCS 

was found to be preferentially cytotoxic to Y79 RB cells over mouse 3T3 fibroblasts and 
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human MIO-M1 Müller glia cells as indicated by IC50 values, creating a large therapeutic 

index of 7.1 and 5.3 respectively (Deepa et al., 2012). FAS suppression, depleted fatty acid 

content, lipid peroxidation, and apoptotic death were noted in Y79 RB cells at the same 

TCS concentration range (Vandhana et al., 2013). Recently, TCS at 40 uM was also shown 

to be effective against MiaPaCa-2 and AsPC-1 pancreatic cancer cells suppressing 

proliferation, and eliciting apoptotic death (Nishi et al., 2016). Of note, in a related study, 

TCS impeded mouse pre-adipocyte differentiation (Schmid et al., 2005). Given the 

regulation of food intake by FAS, and the susceptibility of adipocyte development to TCS 

inhibition, it was suggested that TCS may possess anti-obesogenic properties. 

 

The differential expression and activity of FAS in healthy and malignant tissues, where 

it is up-regulated in the latter (Pizer et al., 1997; Wilentz et al., 2000), indicates a possibly 

high therapeutic index. The long history of human use, and the ubiquity of TCS in 

consumer products, coupled with encouraging in vivo results, cements the antimicrobial as 

a promising candidate for chemotherapy. As noted earlier, it must be stressed that 

variations in the final outcome of TCS treatment largely depend on experimental setup. 

Moreover, limited data from animal studies suggest that in presence of a preexisting tumor, 

TCS administration seems to exacerbate the condition. This observation is concerning, and 

indeed warrants further investigation before TCS can be invested in for clinical trials. 

 

Conclusion and specific aims: 

 

TCS is a synthetic antimicrobial with a long history of human use. At concentrations 

well below those present in commercial products, data from in vitro and in vivo studies 

have provided evidence of adverse effects on diverse molecular pathways. Most alarmingly 
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is TCS enhancement of malignant cell proliferation in vitro and tumor growth in vivo. On 

the other hand, TCS has also been shown to be protective against malignant cell growth 

and proliferation, possibly opening the door for its use in chemotherapy. Clearly, dose and 

time dependence is an important factor in determining the eventual denouement of the 

chemical. In spite of the numerous publications dissecting the signaling pathways 

responsive to TCS, it is evident that a severe paucity surrounding human-based in vivo and 

in vitro studies still remains today. Future studies, thus, should focus on identifying 

signaling molecules differentially regulated by TCS, and characterize their roles in toxic 

or protective effects in different cell types. Insights gained from such revelations will be 

invaluable to possibly validate targets for drug development, or devise possible TCS 

adjuvants or inhibitors. 

 

The objective of this work is to provide an appraisal of the utility of TCS in 

chemotherapy. Toward this aim, we will investigate the influence of TCS on the growth 

and proliferation of leukemia cells, and delineate the molecular mechanisms underlying 

such an effect. Also, given the high prevalence of chemotherapy-induced anemia in cancer 

patients, we will study the interaction of TCS with human erythrocytes to elucidate the 

potential hemolytic properties of the antimicrobial. Finally, we plan to model drug 

formulations by examining if and how TCS activity is modulated in presence of detergent 

excipients. 
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ABSTRACT: 

 

Burkitt's lymphoma (BL) is the fastest growing human tumor. Current treatment consists 

of a multiagent regimen of cytotoxic drugs with serious side effects including tumor lysis, 

cardiotoxicity, hepatic impairment, neuropathy, myelosuppression, increased 

susceptibility to malignancy, and death. Furthermore, accessibility of therapeutic 

interventions in areas of BL prevalence are not as feasible as in high-income countries. 

Therefore, there exists an urgent need to identify new therapies with safer profile and 

accessibility. Triclosan (TCS), an antimicrobial used in personal care products and surgical 

scrubs, has gained considerable interest as an antitumor agent due to its interference with 

fatty acid synthesis. Here, we investigate the antitumor properties and associated molecular 

mechanisms of TCS in Burkitt lymphoma BJAB cells. A dose-dependent cell death was 

observed following treatment with 10-100 µM TCS for 24 h, which was associated with 

membrane phospholipid scrambling, compromised permeability, and cell shrinkage. TCS- 

induced cell death was accompanied by a elevated intracellular calcium, perturbed redox 

balance, chromatin condensation, and DNA fragmentation. TCS upregulated Bad 

expression and downregulated that of Bcl2. Moreover, caspase and JNK MAPK signaling 

were required for the full apoptotic activity of TCS. In conclusion, this report identifies 

TCS as an antileukemic agent and provides new insights into the molecular mechanisms 

governing TCS-induced apoptosis in BL cells. 

 

KEYWORDS: Lymphoma; Chemotherapy; Triclosan; Apoptosis 
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INTRODUCTION: 

 

Burkitt lymphoma (BL) is a malignant tumor of B lymphocytes, with metastatic 

dissemination to the nervous system, bone marrow, and abdominal tissue (Dozzo et al., 

2017). The most aggressive human tumor (Molyneux et al., 2012), BL is often caused by 

a chromosomal translocation of immunoglobulin and c-MYC genes. Malignant 

transformation is strongly associated with Epstein-Barr virus (EBV), human 

immunodeficiency virus (HIV), and malaria (Molyneux et al., 2012), although BL still 

occurs in absence of infection. Affecting patients of all age groups, BL is the most common 

cancer in children where malaria is holoendemic (Orem et al., 2007). 

 

The currently approved treatment for BL consists of a multiagent regimen 

colloquially known as CHOP (cyclophosphamide, doxorubicin, vincristine, and 

prednisolone). This standard approach remains insufficient, and short-intensive, periodical 

treatment plans are most often required, consisting of methotrexate, cytarabine, etoposide, 

ifosfamide, and carboplatin (Dozzo et al., 2017). However, constrained by economic 

factors, therapeutic interventions in areas where BL is more prevalent, as in Africa, are not 

as feasible as in high-income countries (Molyneux et al., 2012). Prognosis is similarly 

negatively influenced by such a reality (Hesseling et al., 2005). Furthermore, serious side 

effects of existing BL treatment include tumor lysis, cardiotoxicity, hepatic impairment, 

neuropathy, hemorrhagic cystitis, myelosuppression, and increased susceptibility to 

malignancy (Molyneux et al., 2012; Casulo and Friedberg, 2015; Ahlmann and Hempel, 

2016; Kurauchi et al., 2017; Luu et al., 2018). More alarming has been the mortality 

attributed to therapy in about 5% of BL patients (Hesseling et al., 2005; Hesseling et al., 

2009). Of note, antiretroviral therapy has thus far failed to reduce the incidence of 
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immunodeficiency-associated BL (Casulo and Friedberg, 2015). Therefore, there exists an 

urgent need to identify alternative therapies with preferentially lesser side effects and 

improved accessibility (Hesseling et al., 2009; Schmitz et al., 2012). 

 

Triclosan (TCS; 2,4,4´-trichloro-2´-hydroxydiphenyl ether; CAS 3380-34-5) is a 

broad-spectrum antimicrobial used in a wide variety of commercial products including 

household items, cosmetics, soaps, toothpastes, lotions, deodorants, and surgical scrubs 

(Jones et al., 2000). The mechanism of TCS action, aside from the disruption of cell 

membrane integrity (Guillen et al., 2004), relies on its inhibition of fatty acid synthase 

(McMurry et al., 1998b). This has ignited an interest among researchers to further explore 

the potential use of TCS as a chemotherapeutic agent by targeting fatty acid synthesis; a 

major source of energy in malignant cells (Schcolnik-Cabrera et al., 2018). 

 

To date, conflict in the literature regarding the effect of TCS on ultimate cell fate 

still exists. While several reports have described the antiproliferative activity of TCS in 

MCF-7 breast cancer cells (Liu et al., 2002; Vandhana et al., 2010), recent findings indicate 

that TCS promotes MCF-7 growth and invasion (Lee et al., 2014; Lee et al., 2017a; Lee et 

al., 2017b). A similar response was also observed in LNCaP prostate cancer cells 

(Sadowski et al., 2014; Kim et al., 2015) and H460 lung cancer cells (Winitthana et al., 

2014). Thus, the contrasting reports on the denouement of TCS exposure and the duality 

of its role poses a viable and feasibly exploitable avenue to further explicate its 

antineoplastic potential. Herein, we investigate the interaction of TCS with BJAB Burkitt 

lymphoma cells, and delineate the molecular mechanisms governing the antitumor role of 

the antimicrobial. 
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MATERIALS AND METHODS: 

 

Chemicals and reagents: 

 

All chemicals are of analytical grade and were purchased from MilliporeSigma 

(Burlington, MA, USA) unless otherwise noted. A stock solution of TCS was prepared in 

ethanol at 10 mM, and further diluted to testing concentrations in RPMI-1640 medium. 

Intracellular Ca2+ chelator glycine, N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2- 

[(acetyloxy)methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester (BTM) was purchased 

from Thermo Fisher Scientific (Waltham, MA, USA), p38 MAPK inhibitor SB2035080 

(SB) was from Selleckchem (Houston, TX, USA), while c-Jun N-terminal kinase (JNK) 

inhibitor XVI (JNK-IN-8) and pan-caspase inhibitor zVAD(OH)-fmk (zVAD) were from 

Cayman Chemical Company (Ann Arbor, MI, USA). All inhibitors were dissolved in 

dimethyl sulfoxide (DMSO) and then diluted to desired concentrations in RPMI-1640 prior 

to cell treatment. 

 

Cell Culture: 

 

B cell acute lymphoblastic leukemia BJAB cell line was grown at 370C with 5% 

CO2 in RPMI-1640 medium supplemented with 0.3 g/L L-glutamnie, 10% heat-inactivated 

fetal bovine serum, and 1% antibiotic-antimycotic mixture (Thermo). 

 

Cytotoxicity: 

 

Dual acridine orange/ethidium bromide (AO/EB) staining was utilized to 

distinguish live and dead cells based on membrane integrity. Control and treated cells were 

mixed with an equal volume of AO/EB staining solution (AO = 1 µg/ml; EB = 20 µg/ml), 
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loaded on a hemocytometer, and live and dead cells were counted and imaged with EVOS® 

fl Digital Inverted Microscope (Thermo). 

 

Phosphatidylserine (PS) externalization, membrane integrity, and cellular 

dimensions: 

 

Identification of the mode of cell death was achieved using Annexin-V-FITC (AV) 

and propidium iodide (PI) supravital staining (Thermo). Following treatment, cells were 

washed twice in PBS, resuspended in Annexin binding buffer, and double-stained with 

1.25% v/v Annexin-V-FITC and 20 µg/ml PI for 20 min at room temperature away from 

light. Two-dimensional analysis was subsequently carried out on a FACScan flow 

cytometer (Betcon Dickinson, Franklin Lakes, NJ, USA) at excitation and emission 

wavelengths of 488/530 (FITC) and 535/617 nm (PI), respectively. Forward scatter (FSC) 

and side scatter (SSC) properties were simultaneously determined. 

 

Oxidative stress: 

 

Generation of reactive oxygen species (ROS) was detected by the cell-permeant 

probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo). This 

nonfluorescent probe is oxidized by intracellular ROS into DCF whose fluorescence is 

proportional to ROS levels. Cells were preloaded with 2 µM H2DCFDA for 45 min at 370C. 

treated with TCS for 30 min, washed in PBS to remove excess, unbound dye, and 

fluorescence was analyzed on a FACScan at an excitation wavelength of 495 nm and an 

emission wavelength of 527 nm. 

 

Intracellular calcium: 
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Cell-permeable Ca2+ indicator Fluo3/AM (Biotium, Fremont, CA, USA) was 

utilized to measure cytosolic Ca2+ content. Nonfluorescent Fluo3/AM is hydrolyzed by 

intracellular esterases into Fluo3 whose fluorescence increases upon Ca2+ binding. To 

measure cytoplasmic Ca2+ levels, control and treated cells were washed in PBS, suspended 

in 2.5 mM CaCl2 solution containing 1 µM Fluo3/AM for 30 min at 370C in the dark, 

washed again in PBS, and finally subjected to FACS analysis. Fluo3 was excited by the 

488 argon-ion laser and emitted fluorescence was detected at 530 nm. Control and 

experimental cells were imaged with EVOS® fl Digital Inverted Microscope following 

staining with 5 µM Fluo3/AM. 

 

Nuclear chromatin condensation: 

 

Control and treated cells were incubated with 100 ng/ml Hoechst 33342 for 30 min 

at room temperature in the dark, and then imaged with EVOS® fl Digital Inverted 

Microscope. 

 

Oligonucleosomal DNA fragmentation: 

 

Genomic DNA was isolated from control and treated cells using Qiagen’s DNeasy 

Blood & Tissue Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s 

instructions. A total of 200 ng of extracted DNA was fractioned by 0.7% agarose gel 

electrophoresis, visualized with EB, and documented with UVP MultiDoc-ItTM UV trans- 

illuminator. 

 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR): 
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Total RNA was extracted using Qiagen’s RNeasy Mini Kit and assessed for 

quality and quantity on NanoDrop 1000 Spectrophotometer V3.7 (Thermo). A total of 1 

µg of RNA was denatured and reverse transcribed to cDNA using SuperScript™ III First- 

Strand Synthesis System (Invitrogen, Carlsbad, CA, USA). Synthesized cDNA was 

amplified by qRT-PCR (Bio-Rad iQTM5 Multicolor RT-PCR Detection System) using 

PowerUp™ SYBR™ Green Master Mix (Applied Bioscience, Carlsbad, CA, USA) and 

Sigma’s KiCqStart® SYBR® Green primers for CAT, SOD, GPX, GSR, BAD, BCL2, 

H2AFX, PARP1, and ACTB. Relative quantification of gene expression was achieved 

using the 2-ΔΔCT method. 

 

Statistical analysis: 

 

Results are expressed as means + S.E.M. Comparative analysis among the means 
 

was performed by Student’s t-test or one-way ANOVA with Dunnett’s post hoc test as 

analyzed by Prism 5.0 (GraphPad Software, San Diego, CA, USA). Significance was 

defined as a P value of <0.05. 

 

RESULTS: 

 

TCS induces cell death dose-dependently 

 

The cell membrane is a primary target of TCS (Villalain et al., 2001; Lygre et al., 

2003; Guillen et al., 2004). To assess the cytotoxic potential of TCS, BJAB cells were 

treated with 10-100 µM TCS for 24 h at 370C, and live and dead cells were distinguished 

based on membrane integrity as determined by AO/EB double staining. While AO stains 

live and dead cells green, EB only penetrates through damaged membranes imparting a red 

fluorescence on dead cells. As shown in Figure 1B&C, an exponential increase in the 
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percentage of EB-stained cells is observed with increasing TCS concentrations, an effect 

attaining statistical significance at 30 µM. This indicates a dose-dependent cytotoxic effect 

by TCS against B-cell lymphoma cells. 

 

TCS stimulates both AV and PI uptake 

 

To identify the pattern of cell death inflicted by TCS, a FACS analysis with AV 

and PI labeling was employed. Whereas AV is taken up by PS-exposing cells, those with 

a ruptured membrane are permeable to PI. Figure 2 shows that while untreated cells exclude 

both dyes, significantly increased AV and PI uptake was observed for TCS-treated cells. 

At 50 µM, TCS caused a significant increase in the percentage of AV-/PI+ cells from 2% + 

0.499 to 49.36% + 14.16. For cells treated with 75 µM TCS, AV+/PI+ cells represented a 
 

significant increase to 16.55% + 4.98, compared to a control value of 5.37% + 0.91, while 

those showing AV-/PI+ were 76.49% + 2.58; a significant increase from 2% + 0.499 in the 

case of control cells. Taken together, these data, coupled with the virtual absence of cells 

solely bound to AV, seem to implicate late apoptosis that has progressed to secondary 

necrosis as a mode of death. 

 

TCS-induced cell death is accompanied by shrinkage and enhanced granularity 

 

One of the morphological hallmarks of dying cells is shrinkage and increased 

granularity (Lizard et al., 1995; Lizard, 2001), seen as a decrease in FSC due to cell 

condensation and an increase in SSC due to surface complexity. Light scatter properties 

were therefore analyzed in order to estimate cell size and granularity following TCS 

treatment. 
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As depicted in Figure 3A-D, TCS exposure caused a significant decrease in FSC 

geomean from an average of 525.1 + 22.52 (control) to 422.9 + 25.68 (50 µM) and  304.9 

+ 27.35 (75 µM). The percentage of cells with a reduced FSC (<400) also increased from 
 

3.92% + 0.55 (control) to 15.65% + 3.78 (50 µM) and 32.72% + 3.07 (75 µM), while that 
 

of cells with FSC >800 significantly diminished following treatment with 75 µM TCS 

(11.43 + 1.99 vs. 1.98 + 0.79). As for SSC, significant elevations were noted following 

treatment with TCS (Figure 3E-G). At 75 µM TCS increased SSC geomean from 133 + 
 

9.30 to 175.72 + 17.60. Also, the percentage of cells with enhanced SSC increased from 
 

8.29 + 0.28 to 19.73 + 2.12 (50 µM) and 18.79 + 1.79 (75 µM). 
 
 

Collectively, the significant changes in cellular dimensions indicate that TCS 

treatment alters the light scatter behavior of cells, reflective of cellular shrinkage and 

increased surface complexity; two distinctive features of apoptotic cells. 

 
 

TCS increases intracellular Ca2+ accumulation 

 

Calcium is a major regulator of apoptosis. To assess the role of Ca2+ in TCS- 

induced cell death, cells were incubated with and without 25-75 µM TCS at 370C for 30 

min and stained with Fluo3 as described earlier. Figure 4A-C show that Fluo3 fluorescence 

intensity rises to 16.63 + 1.38 (50 µM) and 25.27 + 4.02 (75 µM) relative to an average of 

5.0 + 0.65 in the case of control cells. A significant increase in the percentage of cells with 
 

enhanced Fluo3 fluorescence was also detected at 50 µM (34.31% + 4.47) and 75 µM 
 

(42.85% + 3.31) TCS compared to control cells (8.89% + 1.25). 
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Because TCS lead to elevated Ca2+ levels, we were prompted to determine the 

contribution of Ca2+ mobilization to TCS-induced cell death. To this end, cells were 

incubated for 24 h at 370C in presence or absence of 50 µM TCS with and without 1 h 

pretreatment with 10 µM BTM, and cytotoxicity was then examined by AV/PI staining. 

As depicted in Figure 4 E&F, no significant difference in cell death was observed in 

presence of BTM compared to its absence (59.45 + 3.56 vs. 56.67 + 5.76), which indicates 

that TCS-induced Ca2+ increase was not necessary for the full apoptotic activity of TCS. 

 

TCS causes oxidative stress 

 

Perturbations in cellular redox state and excessive ROS production are associated 

with apoptosis. In order to examine the effect of TCS on ROS levels, cells were preloaded 

with 2 µM H2DCFDA for 45 min at 370C and then either left untreated or exposed to 25- 

75 µM TCS for an additional 30 min, before DCF fluorescence was subsequently detected 

as described earlier. Data in Figure 5A-C indicate that, compared to a control value of 2.89 

+  0.17,  TCS  at  50  and  75  µM  significantly  increased  the  average  geomean  DCF 
 

fluorescence to 5.90 + 0.49 and 8.0 + 0.62, respectively. The percentage of cells with 
 

enhanced  fluorescence  also  significantly increased  from  an  average  of  2.95%  + 0.24 
 

(control) to 14.01% + 2.24 (50 µM TCS) and 22.23% + 1.80 (75 µM TCS). 
 
 

Given the observed oxidative stress, it was of interest to identify the effect of TCS 

on redox enzymes regulating ROS levels. For this purpose, gene expression of key 

antioxidant enzymes was examined by qRT-PCR. As shown in Figure 5D-G, TCS 

significantly downregulated CAT, SOD, GPX, and GSR expression at all concentrations 

tested. Furthermore, we evaluated the contribution of oxidative stress in TCS-induced cell 
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death by incubating the cells for 24 h with and without 50 µM TCS in presence or absence 

of 1 mM ROS scavenger N-acetylcysteine (NAC). As seen in Figure 5 H&I, the percentage 

of cell death in presence of NAC is not significantly different from its absence (54.41% + 

3.47 vs. 55.45% + 2.97). This indicates that TCS treatment induces oxidative stress which 
 

is nevertheless apparently not required for its full cytotoxic effect. 

 

TCS perturbs BAD and BCL2 gene expression 

 

The expression pattern of Bcl-2 genes regulates apoptosis and participates in tumor 

progression. To interrogate the influence of TCS on BAD and BCL2 gene expression, 

control and treated cells were subjected to qRT-PCR analysis as described earlier. Figure 

6A shows that TCS significantly upregulates the proapoptotic BAD gene expression and 

significantly downregulates that of the antiapoptotic BCL2. This pattern is consistent with 

apoptosis and complements other findings in this study. 

 

TCS triggers DNA damage 

 

A prominent feature of apoptotic cells is systematically fragmented DNA. To 

elucidate the effect of TCS on DNA integrity, cells were treated with 25-75 µM for 24 h, 

and multiple methods were subsequently employed. Initially, nuclear condensation was 

evaluated by Hoechst 33342; a widely used DNA-binding dye whose fluorescence intensity 

is proportional to chromatin condensation. Figure 7A shows enhanced fluorescence in 

presence of TCS compared to the control cells, reflective of pyknotic nuclei. 

 

Next, we examined the degree of DNA fragmentation as caused by TCS exposure. 

The electrophoretic pattern in Figure 7B depicts oligomers of DNA extracted from control 
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and TCS-treated cells. While no significant DNA degradation is observed in untreated 

cells, those exposed to TCS exhibit pronounced fragmentation. Finally, in an attempt to 

investigate impaired or responsive DNA repair pathways, we analyzed mRNA expression 

profiles of major repair genes including γH2AFX and PARP1. TCS upregulated H2AX 

expression (Figure 7C) and downregulated that of PARP1 (Figure 7D). Taken together, 

these data provide evidence of compromised DNA integrity and repair mechanisms 

characteristic of cellular death. 

 

TCS-induced cell death is mediated through caspase and JNK signaling 

 

Multiple signaling pathways are implicated in the regulation of cell survival and 

response to stress stimuli. To identify signaling mediators required for the full cytotoxic 

activity of TCS, cells were preincubated with 100 µM zVAD(OH)-fmk, 100 µM Nec-1, 50 

nM NSA, 5 µM SB203580, or 5 µM U0126 for 1 h, or with 5 µM JNK-IN-8 for 3 h, before 

they were treated with 50 µM TCS for 24 h. 

 

As shown in Figure 8A, TCS-induced cell death was significantly, but not 

thoroughly, ameliorated in presence of zVAD (58.08 + 2.49 vs. 41.64 + 3.02), indicating 

that TCS is cytotoxic in caspase-dependent and independent mechanisms. Similarly, Figure 

8D shows that JNK inhibition significantly protects the cells against TCS toxicity (44.29 + 

4.12 vs. 35.25 + 2.21) identifying JNK as a requirement for the full cytotoxic effect of TCS. 
 

Notably, blockade of key elements of necroptosis signaling failed to significantly reverse 

TCS-induced cell death. These observations, along with other findings in this study, are 

strongly indicative of apoptosis as the type of cell death stimulated by TCS in BJAB Burkitt 

lymphoma cells. 
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DISCUSSION: 

 

TCS is a widely used antimicrobial with a long history of use in commercial 

products and clinical practice. Although previous reports have discerned both pro- and 

antitumor activities, the effect of TCS on blood malignancies has largely been overlooked. 

To the best of our knowledge, this report is the first to identify TCS as an anti- 

leukemic/anti-lymphoma agent. It was revealed that TCS induced apoptosis in Burkitt 

lymphoma cells at least in part through dysregulated calcium homeostasis, oxidative stress, 

and nuclear fragmentation. Moreover, the antitumor effect of TCS was mediated through 

caspase and JNK signaling. TCS concentrations used in this study are several orders of 

magnitude lower than those present in consumer products (Rodricks et al., 2010) and are 

within the range shown to be cytotoxic to a variety of cells (Liu et al., 2002; Ho et al., 

2007; Sadowski et al., 2014). 

 

During apoptosis, cells display a reduced volume (Figure 3A-D) as the cytosolic 

accumulation of Ca2+ (Figure 4A-D) activates Ca2+-responsive K+ channels leading to loss 

of KCl and osmotically obliged water (Lang et al., 2006b). A reduced FSC may also 

indicate dying cells as they fragment into smaller apoptotic bodies (Bortner and Cidlowski, 

2007). Although it is unknown what advantage this morphological hallmark gives to dying 

cells, it is thought to facilitate their engulfment by larger phagocytes. A coarser and more 

granular cell surface (Figure 3E-G) may result from wrinkled membrane or internal 

complexity reflecting changes in number and shape of intracellular organelles (Ramirez et 

al., 2013). 
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One important distinction that must be borne in mind is one between necrotic cell 

rupture and the disruption of cell membrane by TCS. As a lipophilic compound, TCS 

readily diffuses into the membrane where it is positioned perpendicularly to the 

phospholipid bilayer (Guillen et al., 2004). Consequently, alterations in membrane 

permeability ensue. Along those lines, our results show that TCS-treated cells become 

permeable to EB and PI (Figures 1 & 2), indicating compromised membrane integrity. 

Therefore, caution must be exercised in interpreting EB/PI-positive cells as necrotic 

especially in light of solid evidence of apoptotic transformation. In fact, apoptotic cells are 

recognized by phagocytes via the display of the “eat me” signal (i.e. PS externalization). 

However, given the absence of phagocytes in vitro, the membrane of apoptotic cells 

eventually loses its permeability becoming permissive to vital dyes (secondary necrosis) 

(Silva, 2010). 

 

Calcium plays a crucial role in innumerable cellular processes, including signal 

transduction and regulated cell death. The asymmetrical architecture of phospholipids in 

the cell membrane is controlled by Ca2+-dependent scramblases, and Ca2+ accumulation 

(Figure 4) stimulates PS exposure (Figure 2) possibly through dysregulated activity of 

enzymes and transmembrane proteins (Suzuki et al., 2010). It has also been observed that 

inordinate liberation of sequestered Ca2+ ions from the endoplasmic reticulum into the 

mitochondria contributes to apoptosis by dephosphorylating Bad and opening of 

mitochondrial permeability transition pore (Zhivotovsky and Orrenius, 2011). Sustained 

pore opening causes a spill out of mitochondrial content, most notably Ca2+ ions and 

apoptosome components, and water influx, eventually leading to mitochondrial swelling 

and rupture. Furthermore, cytosolic Ca2+ accumulation leads to systematic DNA 
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fragmentation (Figure 7B) by activating Ca2+- and Mg2+-dependent endonuclease (Wyllie, 

1980). Similarly, the intranuclear presence of Ca2+ has been shown to influence chromatin 

organization (Figure 6A), modulate gene expression, and activate caspases (Zhivotovsky 

and Orrenius, 2011). 

 

We have also shown that TCS-induced apoptosis of B lymphoid cells is partially 

mediated through oxidative stress (Figure 5). Excessive generation of ROS contributes to 

nucleic acid (Figure 7), protein, lipid, and organelle damage, which in turn initiates the 

cellular death machinery (Redza-Dutordoir and Averill-Bates, 2016). This is in congruence 

with our previous report of TCS interference with the antioxidant master regulator, Nrf2, 

in primary human mesenchymal stem cells (Yoon et al., 2017). Recent studies have also 

described the prooxidative effect of TCS in thyroid follicular epithelial Nthy-ori 3-1 cells 

(Zhang et al., 2018) and retinoblastoma Y79 cells (Vandhana et al., 2013). Interestingly, 

TCS rather diminished ROS levels in MCF-7 variant breast carcinoma VM7Luc4E2 cells 

(Lee et al., 2018) as part of its antiapoptotic activity. 

 

Moreover, ROS activate p53 or JNK which unbalances mitochondrial Bcl2 proteins in 

favor of apoptosis. ROS similarly depolarize the mitochondrial membrane which facilitates 

the liberation of cytochrome c from to the cytoplasm where it forms the apoptosome in 

association with Apaf-1 and procaspase-9. Consequently, effector caspases (e.g.,  caspase 

3) execute apoptosis by cleaving cellular proteins (Redza-Dutordoir and Averill-Bates, 

2016). Indeed, we found that TCS upregulates BAD expression and downregulates that of 

BCL2 (Figure 6). BAD contributes to tumorigenesis (Marchion et al., 2011) and 

overexpression sensitizes tumor cells to apoptotic stimuli (Mok et al., 1999; Taghiyev et 

al., 2003) and reduces tumorigenicity (Jiang et al., 2013). BCL2 overexpression has  been 
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observed in follicular lymphomas (Fernandez et al., 2019) and is known to favor prostate 

cancer progression and metastasis (Furuya et al., 1996; Zellweger et al., 2005), and 

resistance to apoptosis in pancreatic tumor (Bold et al., 2001). 

 

A late feature of apoptotic cell death is systematic DNA cleavage by endonucleases 

downstream of caspase-3 (Collins et al., 1997). Apoptosis through the extrinsic or intrinsic 

pathways converge at activated caspase-3 which initiates DNA fragmentation. 

Nevertheless, apoptosis-inducing factor (AIF) and endonuclease G are both liberated from 

the mitochondria and may degrade the DNA independent of caspase activation (Elmore, 

2007). ROS may also directly oxidize the DNA (Redza-Dutordoir and Averill-Bates, 

2016). Since caspase (Figure 8A), but not ROS (Figure 5H&I), inhibition significantly 

rescued the cells from TCS-induced apoptosis, it follows then that DNA fragmentation 

(Figure 7B) in B-cell lymphoblasts, as caused by TCS, is most likely mediated through 

caspase stimulation. 

 

Our results also show that TCS upregulates H2AX expression (Figure 6C). H2AX 

encodes for H2A Histone Family Member X whose phosphorylation (γ-H2AX) is induced 

by double-strand breaks and a stalled replication fork (Gagou et al., 2010). In fact, 

phosphorylation at Ser-139 is induced by DNA fragmentation during apoptosis (Rogakou 

et al., 2000). Also, knockdown of both copies of H2AX in mice caused lymphoma and solid 

tumors (Bassing et al., 2003), suggesting that H2AX could be possess a tumor suppressing 

role (Kuo and Yang, 2008) which may therefore be targeted for therapy (Shay and 

Roninson, 2004). Some treatment modalities activate DNA repair to induce senescence in 

cancer cells (Shay and Roninson, 2004). It is important to note that radiation therapy is 
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known to induce DNA breaks, and γ-H2AX formation serves as a biomarker for 

radiosensitivity of cancer cells (Taneja et al., 2004). 

 

PARP1 encodes for poly(ADP-ribose) polymerase 1, an enzyme involved in chromatin 

remodeling, DNA repair, differentiation, proliferation, and tumorigenesis (Ahel et al., 

2008). As shown in Figure 6D, TCS downregulated PARP1 expression which indicates 

impeded proliferation and impaired DNA repair. Interference with DNA damage response 

has recently gained considerable interest for the development of novel chemotherapeutics, 

some of which are currently used in the clinic for various cancers (Ray Chaudhuri and 

Nussenzweig, 2017). Likewise, targeting PARP1 shows promise for cardiovascular and 

nervous disease (Pillai et al., 2006; Reinemund et al., 2009)). 

 

Our small-molecule inhibitor studies demonstrate that TCS-induced cell death is 

significantly, but not thoroughly, ameliorated under conditions of caspase inhibition 

(Figure 8A). Thus, TCS induces apoptosis in B cell lymphoma cells through caspase- 

dependent and independent mechanisms. Similarly, caspase activation by TCS has been 

detected in human primary placental syncytiotrophoblasts (Zhang et al., 2015) and 

choriocarcinoma JEG-3 cells (Honkisz et al., 2012). 

 

MAPKs are involved in the regulation of many cellular functions including 

proliferation, differentiation, apoptosis, and response to various stimuli. Activation of p38 

induces apoptosis (Wada and Penninger, 2004), and cells not rescued by ERK inhibition 

(Figure 7C) is congruent with its described role as a survival factor (Harada et al., 2004). 

On the other hand, Figure 8D shows that JNK inhibition attenuates TCS-induced cell death, 

identifying JNK as a target for TCS and as a requirement for its full apoptotic activity in 
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lymphoblastic leukemia B cells. JNK promotes proliferation and paradoxically many types 

of programmed cell death, including apoptosis (Wada and Penninger, 2004), depending on 

cell type and stimulus (Dhanasekaran and Reddy, 2008; Dhanasekaran and Reddy, 2017). 

In fact, maintenance of JNK in a dephosphorylated state has been shown to prevent 

apoptosis and hence contribute to therapy resistance (Candas et al., 2014). Accordingly, 

JNK activation accompanied TCS-induced apoptosis in rat neural stem cells (Park et al., 

2016) and hypothyroidism in Sprague-Dawley rats (Zhang et al., 2018). Conversely, TCS- 

induced proliferation of mouse epidermal JB6 Cl 41-5a cells was associated with, but did 

not require, JNK activity (Wu et al., 2015). 

 

Because impaired apoptosis is a hallmark of carcinogenesis, targeting apoptotic defects 

is an effective intervention that forms the basis behind the action mechanism of numerous 

chemotherapeutic agents (Wong, 2011). Drugs that modulate the Bcl-2 family of proteins 

and those that activate caspases are currently being investigated in clinical trials for 

different tumors including leukemias and lymphomas (Wong, 2011; Jiang et al., 2013). 

Other apoptotic hallmarks, such as Ca2+ overload and oxidative stress, have similarly been 

investigated as therapeutic targets (Giorgi et al., 2010; Ndombera et al., 2016). 

Furthermore, monoclonal antibody (mAb)-based therapies, administered either in isolation 

or conjugated to chemotherapeutic drugs, have also demonstrated efficacy against various 

diseases with more than 30 antibodies currently approved for treatment (Liu, 2014). Of 

particular relevance to BL is rituximab, an anti-CD20 mAb, which significantly improved 

BL prognosis in young and adult populations alike (Dozzo et al., 2017). Finally, 

microRNAs have recently been identified as regulators of cell death, survival, and 
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chemosensitivity in B-cell tumors (Leivonen et al., 2017), suggesting they could be 

pursued as pharmaceutical targets for prospective therapies. 
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FIGURE LEGENDS: 

 

Figure 1. TCS induces cell death dose-dependently. (A) Molecular structure of TCS. (B) 

BJAB cells were exposed to 10-100 µM for 24 h at 37°C, double-stained with AO/EB to 

distinguish live and dead cells. Cytotoxicity is expressed as the percentage of dead cells 

compared to untreated control cells. (C) Micrographs showing AO and EB uptake by live 

and dead cells, respectively. 

 

Figure 2. TCS stimulates AV and PI uptake. (A) Representative two-dimensional dot 

plots depicting the distribution of control cells treated with the vehicle and those treated 

with 25-75 µM TCS for 24 h at 37°C. (B) Arithmetic means + SEM of AV/PI uptake in 

control and TCS-treated cells. 

 

Figure 3. Effect of TCS on cellular morphology. (A) Representative histogram overlay 

showing FSC of control cells (black line) and those exposed to 75 µM TCS (blue line) for 

24 h at 37°C. (B) Arithmetic means + SEM of FSC in control cells and cells treated with 

25-75 µM TCS. (C) Arithmetic means + SEM of the percentage of cells with reduced FSC 
 

in control and treated groups. (D) Arithmetic means + SEM of the percentage of cells with 
 

increased FSC in control and treated groups. (E) Representative histogram overlay showing 

SSC of control cells (black line) and those exposed to 75 µM TCS (pink line) for 24 h at 

37°C. (F) Arithmetic means + SEM of SSC of control cells and cells treated with 25-75 

µM TCS for 24 h at 37°C. (G) Arithmetic means + SEM of the percentage of cells with 
 

enhanced SSC in control and treated groups. (H) Representative two-dimensional dot plots 

depicting FSC and SSC patterns in control and treated cells. 
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Figure 4. TCS increases intracellular Ca2+ levels. (A) Representative histogram of Fluo3 

fluorescence in control cells (black line) and those treated with 75 µM TCS (orange line) 

for 30 min at 37°C. (B) Arithmetic means + SEM of Fluo3 fluorescence in control cells 

and cells treated with 25-75 µM TCS. (C) Arithmetic means + SEM of the percentage of 
 

cells with increased Fluo3 fluorescence in control and treated groups. (D) Micrographs 

showing Fluo3 fluorescence intensity in control and experimental conditions. (E) 

Representative two-dimensional dot plots of AV/PI uptake in cells treated with 50 µM TCS 

with (orange plot) or without (red plot) 1 h pretreatment with 10 µM BTM. (F) Arithmetic 

means + SEM of the percentage of dead cells in presence and absence of BTM. 

 

Figure 5. TCS causes oxidative stress. (A) Representative histogram of DCF fluorescence 

in control cells (green line) and those treated with 75 µM TCS (brown line) for 30 min at 

37°C. (B) Arithmetic means +SEM of DCF fluorescence in control cells and cells treated 

with 25-75 µM TCS. (C) Arithmetic means + SEM of the percentage of cells with increased 
 

DCF fluorescence in control and treated groups. (D-G) Relative mRNA expression levels 

of antioxidant enzyme genes CAT, SOD, GPX, and GSR in control and TCS-treated cells. 

(H) Representative two-dimensional dot plots of AV/PI uptake in cells treated with 50 µM 

TCS with (turquoise plot) or without (red plot) 1 h pretreatment with 1 mM NAC. (F) 

Arithmetic means + SEM of the percentage of dead cells in presence and absence of NAC. 

 

Figure 6. TCS unbalances BAD and BCL2 gene expression. Relative mRNA expression 

levels of BAD (A) and BCL2 (B) genes in control cells and cells treated with 50 µM TCS 

for 24 h at 37°C. 
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Figure 7. TCS induces genotoxicity. (A) Micrographs of Hoechst fluorescence intensity 

in control and experimental conditions. (B) DNA laddering pattern in control and treated 

cells following electrophoretic migration through 0.75% agarose gel. (C) Relative mRNA 

expression levels of H2AX gene in control cells and those exposed to 50 µM TCS for 24 h 

at 37°C. (D) Relative mRNA expression levels of PARP1 gene in control cells and those 

exposed to 50 µM TCS for 24 h at 37°C. 

 

Figure   8.    Effect   of    small-molecule   inhibitors    on    TCS-induced    cell death. 

 

Representative two-dimensional dot plots of AV/PI uptake and arithmetic means + SEM 
 

of the percentage of dead cells following treatment with 50 µM TCS in absence (red plot) 

and presence of 100 µM zVAD (purple plot; A), 5 µM SB (blue plot; B), 5 µM U0126 (tan 

plot), 5 µM JNK-IN-8 (green plot; D), 100 µM Nec-1 (brown plot; E), or 50 nM NSA (pink 

plot). 

 

Figure 9. A working model for TCS-induced apoptosis in BJAB cells. TCS disrupts 

membrane asymmetry and permeability, elevates cytosolic Ca2+ levels, perturbs redox 

balance, activates caspase and JNK signaling, causing imbalance of Bcl-2 family of 

proteins, and nuclear fragmentation. 
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ABSTRACT 

 

Triclosan (TCS) is a broad-spectrum antimicrobial used in personal care products, 

household items, and medical devices. Owing to its apoptotic potential against tumor cells, 

TCS has been proposed for the treatment of malignancy. A major complication of 

chemotherapy is anemia, which may result from direct erythrocyte hemolysis or premature 

cell death known as eryptosis. Similar to nucleated cells, eryptotic cells lose membrane 

asymmetry and Ca2+ regulation, and undergo oxidative stress, shrinkage, and activation of 

a host of kinases. In this report, we sought to examine the hemolytic and eryptotic potential 

of TCS and dissect the underlying mechanistic scenarios involved therein. Hemolysis was 

spectrophotometrically evaluated by the degree of hemoglobin release into the medium. 

Flow cytometry was utilized to detect phosphatidylserine (PS) exposure by annexin-V 

binding, intracellular Ca2+ by Fluo-3/AM fluorescence, and oxidative stress by 2-,7- 

dichlorodihydrofluorescin diacetate (DCFH2-DA). Incubation of cells with 10-100 M 

TCS for 1-4 h induced time- and dose-dependent hemolysis. Moreover, TCS significantly 

increased the percentage of eryptotic cells as evident by PS exposure (significantly 

enhanced annexin-V binding). Interestingly, TCS-induced eryptosis was preceded by 

elevated intracellular Ca2+ levels but was not associated with oxidative stress. Cotreatment 

of erythrocytes with 50 M TCS and 50 M SB203580 (p38 MAPK inhibitor), or 300 M 

necrostatin-1 (receptor-interacting protein 1 (RIP1) inhibitor) significantly ameliorated 

TCS-induced PS externalization. We conclude that TCS is cytotoxic to erythrocytes by 

inducing hemolysis and stimulating premature death at least in part through Ca2+ 

mobilization, and p38 MAPK and RIP1 activation. 

Keywords: Triclosan; phosphatidylserine; eryptosis; hemolysis; p38 MAPK; RIP1 
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INTRODUCTION 

 
Triclosan (TCS), or 5-chloro-2-(2,4-dichlorophenoxy) phenol, is a broad-spectrum 

antimicrobial extensively used in personal care and hygiene products, clothing and textiles, 

kitchenware, and medical devices (Yueh and Tukey, 2016) (Figure 1A). A recognized 

endocrine disruptor, exposure to TCS may be implicated in a myriad of serious disease 

conditions including immune and thyroid disorders (Clayton et al., 2011). At the cellular 

level, TCS induces cytotoxicity, membrane damage, oxidative stress, and apoptosis (Yueh 

and Tukey, 2016). In particular, the antibacterial and cytotoxic effects of TCS are attributed 

in part to its inhibitory action on de novo fatty acid synthesis by inactivating fatty acid 

synthase (FAS). Because FAS is differentially upregulated in a variety of tumors (Wang et 

al., 2001), TCS along with other FAS inhibitors has been proposed as a promising 

antineoplastic agent against breast, epithelial, and prostatic cancer cells (Sadowski et al., 

2014). 

Owing to widespread exposure in humans, TCS has been shown to accumulate in 

various tissues and body fluids including the brain and blood (Geens et al., 2012). Red 

blood cells (RBCs), also known as erythrocytes, are highly specialized, terminally 

differentiated cells responsible for oxygen delivery and carriage of immune complexes. 

Whereas RBCs have an average lifespan of 100-120 days, various stimuli, including 

xenobiotics, may trigger eryptosis; the suicidal death of erythrocytes. Distinctive features 

of eryptotic cells include cell shrinkage, membrane blebbing, and lipid bilayer scrambling 

leading to phosphatidylserine (PS) externalization to the outer membrane leaflet. Adverse 

conditions that often precede eryptosis include energy depletion, osmotic shock, 

hyperthermia, and oxidative stress (Lang et al., 2012). 
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Accelerated eryptosis constitutes an integral part of the multifaceted 

pathophysiology of a plethora of diseases. These include metabolic syndrome, diabetes 

mellitus, anemia, renal disease, and cancer (Lang and Lang, 2015b; Lang et al., 2017). 

Moreover, the presence of eryptotic cells in the circulation is detrimental because they 

aggravate anemia and adhere to platelets and endothelial cells, giving rise to intravascular 

coagulation and thrombosis (Borst et al., 2012; Walker et al., 2014). Therefore, mature 

erythrocytes have developed an intricate and elaborate machinery to regulate survival and 

senescence. This regulatory network has calcium homeostasis at its core, in addition to 

intracellular mediators such as p38 mitogen-activated protein kinase (MAPK), caspases, 

AMP-activated protein kinase (AMPK), Janus kinase 3 (JAK3), and receptor-interacting 

protein 1 (RIP1), among others (LaRocca et al., 2014; Lang and Lang, 2015a). Cytosolic 

accumulation of calcium eventually leads to membrane scrambling, calpain-dependent 

blebbing, and cell shrinkage following KCl and water loss (Al Mamun Bhuyan et al., 

2017b). Similarly, eryptosis may be initiated through signaling cascades involving either 

the cyclooxygenase-prostaglandin E2 (COX-PGE2) pathway or the stimulation of 

phospholipase 2 (PLA2) and ceramide formation (Lang et al., 2012). 

Despite the revitalized interest in TCS as a cause for concern (Dann and Hontela, 

2011; Yueh and Tukey, 2016), and the prevalence of chemotherapy-induced anemia in 

cancer (Rodgers et al., 2012; Lang et al., 2017), very little emphasis has been placed on 

the interaction of TCS with erythrocytes. Thus, the objective of this study was to 

characterize the hemolytic and eryptotic potential of TCS in this cell type. It was revealed 

that TCS triggers premature cell death through membrane damage, evident as overt 

hemolysis, and loss of membrane asymmetry. Mechanistically, TCS-induced PS exposure 
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was characterized by cytosolic Ca2+ accumulation along with p38 MAPK and RIP1 

stimulation. 

MATERIALS AND METHODS 

 
Erythrocytes, chemicals, and solutions 

 
Fresh, lithium heparin RBC samples from consented, healthy adults were obtained 

from ZenBio (Research Triangle Park, NC, USA). Samples were washed in phosphate- 

buffered saline (PBS; 0.9% NaCl, 1 mM KH2PO4, 5.6 mM Na2HPO4; pH 7.4) at 3,000 

rpm for 10 min at 21C, and TCS exposure was conducted in vitro at 5% hematocrit in 

Ringer solution containing (in mM): 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2- 

hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), 5 glucose, 1 CaCl2; pH 7.4. To 

test for the dependence of TCS-mediated PS exposure on extracellular Ca2+ influx, or 

intracellular Ca2+ availability, cells were incubated in Ca2+-free Ringer solution in which 

CaCl2 was substituted with 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'- 

tetraacetic acid (EGTA) (Chem-Impex Intl., Wood Dale, IL, USA), or were cotreated with 

50 M TCS and 50 M Ca2+ chelator BAPTA-AM. Signaling kinases were evaluated by 

treating the cells to a combination of 50 M TCS and 50 M p38 MAPK inhibitor 

SB203580 (Selleckchem, Houston, TX, USA), 100 M pan-caspase inhibitor z-VAD-fmk 

(Selleckchem), 1 M protein kinase C (PKC) inhibitor Staurosporine (StSp; Cayman 

Chemical Company, Ann Arbor, MI, USA), 100 M casein kinase 1 (CK1) inhibitor 

(D4476; Cayman), 300 M RIP1 inhibitor Necrostatin-1 (Nec-1), or 1 M mixed lineage 

kinase domain-like (MLKL) peudokinase inhibitor Necrosulfonamide (NSA). All 

chemicals were of analytical grade and were purchased from Sigma (St. Louis, MO, USA) 
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unless otherwise noted. An ethanolic stock solution of TCS was prepared at 10 mM and 

diluted to desired concentrations in Ringer solution. 

Hemolysis 

 
RBCs at 5% hematocrit were exposed to 10-100 M of TCS in Ringer solution for 

1, 2, and 4 h at 37C. Following treatment, samples were centrifuged at 13,300 RPM for 1 

min, and the degree of hemoglobin release into the medium was measured by absorbance 

(A) at 405 nm using VersaMax™ ELISA microplate reader (Molecular Devices, San Jose, 

CA, USA). Cells suspended in distilled water constituted 100% hemolysis, and the relative 

percent hemolysis was calculated according to the formula: 

% Hemolysis = (As/Aw) x 100 

 
where As = absorbance of test sample, and Aw = absorbance of positive (distilled water) 

control. 

Detection of PS externalization and forward scatter (FSC) 

 
Following TCS treatment, 50 l of cells were washed in Ringer solution containing 

5 mM CaCl2 and resuspended in a total volume of 200 l. The resulting RBC suspension 

was stained with a 1% v/v solution of Annexin V-FITC (Thermo Fisher Scientific, 

Waltham, MA, USA) for 10 min at room temperature away from light. PS exposure and 

forward scatter FSC were subsequently determined by flow cytometry using a FACScan 

(Betcon Dickinson, Franklin Lakes, NJ, USA) at excitation and emission wavelengths of 

488 nm and 530 nm, respectively. 

Confocal microscopy 
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Control and TCS-treated cells were stained with Annexin-V-FITC as detailed 

above and a homogeneous 20 l cell suspension was spread on a glass slide before it was 

immediately examined with a Zeiss LSM 700 laser scanning microscope (Carl Zeiss 

Microscopy LLC, Thornwood, NY, USA) under a water immersion Plan-Neofluar 40/1.3 

NA DIC objective. 

Determination of intracellular calcium 

 
Cytosolic Ca2+ activity was determined by Fluo3/AM fluorescence (Biotium, 

Fremont, CA, USA). The membrane-permeant Fluo3/AM ester is hydrolyzed 

intracellularly by esterases into Fluo3 whose fluorescence increases upon binding to Ca2+ 

ions, thus serving as an indicator of Ca2+ content. Following TCS treatment, 50 l of cell 

suspension was washed in 5 mM CaCl2 Ringer buffer and incubated with 5 M of 

Fluo3/AM for 30 min at 37C under protection from light. Cells were washed twice to 

remove excess stain, resuspended in 200 l of 5 mM CaCl2 Ringer solution, and finally 

analyzed by a FACScan at 488 nm excitation and 530 nm emission wavelengths. The 

geomean of Fluo3-dependent fluorescence was subsequently determined. 

Measurement of ROS generation 

 

Oxidative stress was assayed by measuring the generation of reactive oxygen 

species (ROS) using the probe 2-,7-dichlorodihydrofluorescin diacetate (DCFH2-DA) 

(Thermo Fisher Scientific, Waltham, MA, USA). DCFH2-DA is a cell-permeant indicator 

that remains non-fluorescent until it is cleaved by intracellular esterases and in turn 

oxidized by ROS into the fluorescent DCF. Following treatment with 50 M TCS, 50 l 

of cell suspension was washed in Ringer buffer, resuspended in a final volume of 200 l, 
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and incubated with 10 M DCFH2-DA for 30 min at 37C in total darkness. DCF 

fluorescence was measured on a FACScan at excitation and emission wavelengths of 488 

nm and 530 nm, respectively. 

 

Statistical analysis 

 

Data are shown as arithmetic means + S.E.M. of at least three independent 
 

experiments conducted on RBC samples obtained from three different donors. The Student 

t test was employed to analyze differences among the means, and a value of P < 0.05 was 

defined as the cutoff for statistical significance. n denotes the number of technical 

replicates tested. To control for individual variation and differential susceptibility to 

external stimuli, only control and experimental cells from the same RBC specimen were 

compared. 

RESULTS 

 
TCS induces hemolysis time- and dose-dependently 

 
Various xenobiotics have been shown to exhibit a hemolytic activity against human 

RBCs (Lang and Lang, 2015b), and the cytotoxicity of TCS was demonstrated in various 

cell types (Honkisz et al., 2012; Zhang et al., 2015; Park et al., 2016) . To assess the 

hemolytic potential of TCS, erythrocytes were incubated with 10-100 M TCS for 1, 2, 

and 4 h at 37C, and hemoglobin release into the medium was measured as a function of 

cell lysis relative to cells lysed in distilled water. As depicted in Figure 1B, incubation of 

RBCs at the tested concentrations resulted in a dose- and time-dependent increase in 

hemolysis, an effect reaching statistical significance at 25 M following 1 h exposure. This 
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indicates that TCS exerts a hemolytic effect on RBCs that is proportionally related to length 

of exposure time and concentration used. 

TCS causes membrane phospholipid scrambling 

 
Previous studies have demonstrated that TCS induces apoptosis in a variety of 

human cell types including prostatic and placental cells (Sadowski et al., 2014; Zhang et 

al., 2015). In RBCs, among the distinctive features of eryptosis are PS exposure and cell 

shrinkage. To investigate the ability of TCS to stimulate eryptosis, RBCs were incubated 

in Ringer solution containing 10-50 M TCS for 4 h at 37C. Cells were then stained with 

Annexin-V-FITC and analyzed using flow cytometry. Cell size was simultaneously 

estimated from FSC. Our results show that TCS increased PS externalization with a 

statistical significance starting at 25 M (Figure 2A-C). Membrane scrambling was, 

however, not accompanied by alterations in cell volume as indicated by the unchanged FSC 

under control and experimental conditions (Figure 2D & E). Taken together, these data 

suggest that TCS leads to enhanced PS translocation characteristic of eryptotic cells 

without concurrent reduction in cell volume. 

TCS disturbs calcium homeostasis 

 
Membrane scrambling is initiated by increased activity of cytosolic Ca2+ (Lang et 

al., 2012). To test whether Ca2+ accumulation is precedent to PS exposure, cells were 

treated with 10-50 M TCS in Ringer solution for 4 h at 37C, stained with Fluo3/AM, and 

the fluorescence intensity was analyzed by flow cytometry. It was noted that TCS treatment 

induced intracellular Ca2+ levels, an effect attaining statistical significance at 50 M 

(Figure 3). 



129  

Elevated intracellular Ca2+ may be due to influx into the cell through Ca2+- 

permeable cation channels. To examine whether the increase in cytosolic Ca2+ was due to 

extracellular Ca2+ entry, cells were incubated with or without 50 M TCS for 4 h at 37C 

in Ringer solution or in Ca2+-free Ringer solution, and the ion’s activity was estimated as 

described earlier. As seen in Figure 4, Fluo3 fluorescence was not significantly altered in 

presence or absence of extracellular Ca2+, suggesting that TCS-induced elevated cytosolic 

Ca2+ was not consequent to extracellular influx of the ion. 

Next, we sought to assess the role of Ca2+ in TCS-mediated PS translocation. To 

this end, Annexin-V binding was detected in control and TCS-treated cells in presence and 

absence of extracellular Ca2+, or with and without 50 M BAPTA-AM (a selective Ca2+ 

chelator) for 4 h at 37C. Compared to unaltered Ca2+ conditions, the percentage of cells 

exposing PS was not significantly reduced neither when extracellular Ca2+ was removed 

(Figure 5A-C) nor when intracellular Ca2+ was chelated with BAPTA-AM (Figure 5D-F). 

Thus, preventing extracellular Ca2+ influx or depleting intracellular Ca2+ are apparently not 

required for the full PS-exposing activity of TCS. 

TCS does not induce oxidative stress 

 
The generation of excessive amounts of ROS is a recognized aggravator of 

eryptosis (Lang et al., 2014). We have previously shown that damage associated with TCS 

exposure is in part due to oxidative stress (Yoon et al., 2017). Thus, to test whether TCS- 

mediated PS translocation is preceded by ROS generation, cells were incubated with or 

without 50 M TCS in Ringer solution for 4 h at 37C, and ROS levels were assessed by 

DCF fluorescence using flow cytometry. Figure 6 demonstrates that ROS levels are not 
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significantly changed by TCS treatment, suggesting that TCS-induced eryptosis is not 

mediated through oxidative stress. 

Involvement of kinases 

 
Multiple signaling pathways have been implicated in eryptosis, including p38 

MAPK, caspases, PKC, and CK1 (Lang and Lang, 2015a). RIP1 and MLKL have also been 

recently described, revealing necroptosis as a distinct death pathway in RBCs (LaRocca et 

al., 2014). To identify kinases stimulated in response to TCS exposure, cells were 

incubated in Ringer solution with or without 50 M TCS in presence and absence of 50 

M SB203580 (p38 MAPK inhibitor), 100 M zVAD-fmk (pan-caspase inhibitor), 1 M 

StSp (PKC inhibitor), 100 M D4476 (CK1 inhibitor), 300 M Nec-1 (RIP1 inhibitor), or 

1 M NSA (MLKL inhibitor) for 4 h at 37C. PS translocation was subsequently evaluated 

as previously described. As seen in Figure 7, both SB203580 and Nec-1 significantly but 

not thoroughly blunted PS translocation, while no statistically significant inhibition was 

observed under caspase, PKC, CK1, or MLKL blockage. This identifies p38 MAPK and 

RIP1 not only as molecular targets of TCS, but also as essential requirements for its full 

eryptotic activity. 

DISCUSSION 

 
TCS is a high-volume, antimicrobial phenolic compound commonly used as a 

preservative in personal care products, textiles, medical devices, and food contact materials 

(Yueh and Tukey, 2016). Once absorbed, TCS is distributed and deposited in a variety of 

tissues and body fluids, including the liver, brain, and blood. Toxicological profiling of 

TCS has discerned its apoptotic potency in a variety of tumor cells, which could be 

exploited for therapeutic purposes. Thus, complementary to previous studies, this work not 
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only expands on current understanding of TCS toxicity, but also offers assessment of its 

therapeutic potential as an anticancer agent. It is worth mentioning that pathogens whose 

tropism involves the RBC are highly likely to transform infected cells into eryptotic 

corpses, as is the case with Plasmodium spp. (Foller et al., 2009). Thus, elucidating the 

effects of TCS on RBCs becomes more relevant considering that, in addition to its 

antimalarial properties, TCS is known to be effective against important hemoparasites, 

including Babesia, Trypanosoma, Leishmania, and Toxoplasma (Bork et al., 2003; Roberts 

et al., 2003; Otero et al., 2014). 

To the best of our knowledge, this is the first study to report that TCS stimulates 

eryptosis; the suicidal erythrocyte death. TCS elicited hemolysis and eryptosis in 

micromolar concentrations that are lower than the millimolar levels present in consumer 

products, and which are within the range shown to possess antitumor activity (Rodricks et 

al., 2010; Sadowski et al., 2014). It is important to keep in mind that TCS adversaries 

described herein are based on RBCs obtained from healthy individuals. Such findings may 

parallel effects of lower doses in RBCs from cancer patients considering the augmented 

susceptibility of those cells to eryptosis (Lang et al., 2017). Pending in vivo confirmation, 

data from this exploratory study provides evidence of a novel eryptotic sequela of TCS that 

may warrant careful consideration of its use for chemotherapy. 

Similar to findings reported by Miller et al. (Miller and Deinzer, 1980), TCS was 

shown to be highly toxic to erythrocytes causing conspicuous hemolysis indicative of direct 

membrane damage. The lack of ROS generation seems to rule out oxidative stress as a 

contributing factor in TCS-induced hemolysis, as was observed for para-hydroxyanisole, 

and in contrast to bisphenol A (BPA), two related phenolic compounds (Nohl and Stolze, 
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1998; Macczak et al., 2016). Circulating, naked hemoglobin is highly reactive and can 

participate in oxidative damage manifested as perturbations in endothelial cell function, 

hypertension, thrombosis, and atherosclerotic lesions (Miller and Shaklai, 1999; Reiter et 

al., 2002; Studt et al., 2005; Silva et al., 2009). Similarly, extravascular presence of free 

hemoglobin is associated with dysregulated iron homeostasis, renal tubular injury, and 

neuronal damage (Tracz et al., 2007; Lara et al., 2009; Pantopoulos et al., 2012). 

Our data also show that TCS causes a significant increase in eryptotic cells as 

detected by PS externalization, which is in congruence with its apoptotic activity observed 

in nucleated cells (Deepa et al., 2012; Honkisz et al., 2012; Szychowski et al., 2016). 

Several other compounds structurally related to TCS, such as BPA and other 

chlorophenols, have recently been shown to also trigger eryptosis (Macczak et al., 2016; 

Michalowicz et al., 2018). Under physiological conditions, eryptosis may be perceived as 

a counterpoise to erythropoiesis, preventing both anemia and polycythemia. This is because 

exposure of PS serves as a conserved flag on RBCs undergoing eryptosis for recognition 

and removal by the monocyte-macrophage system (Lang et al., 2003), thus acting as a 

safeguard against hemolysis. 

Inordinate eryptosis constitutes a common theme in a variety of life-threatening 

conditions including diabetes, hepatic failure, and malignancy (Lang and Lang, 2015a). In 

these cases and many others, eryptotic cells may adhere to endothelial cells and platelets, 

obstruct microcirculatory flow, and lead to thrombosis (Borst et al., 2012; Walker et al., 

2014). This is a consequence of the negative impact the eryptotic RBC membrane exerts 

on the cell’s deformability and aggregability. When RBCs form larger aggregates with 

rigid membranes, blood viscosity increases, causing enhanced flow resistance, and 
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eventually diminished tissue perfusion (du Plooy et al., 2018; Pretorius, 2018). The limited 

elasticity characteristic of eryptotic membranes may also hinder the cell’s ability to 

reassume its original biconcave shape following passage through the microvasculature 

(Pretorius, 2018). Therefore, identifying the impact of xenobiotics on RBC rheology is 

among the most important aspects of pharmaceutical assessment of potential therapies. 

The importance of Ca2+ activity in mediating eryptosis cannot be overstated, and 

the process has been referred to in the literature as “Ca2+-dependent” programmed cell 

death (LaRocca et al., 2014). Activated K+ channels in response to increased cytosolic Ca2+ 

lead to K+ efflux, membrane hyperpolarization causing Cl- outflow, dehydration due to 

water loss, and eventual cell shrinkage (Lang et al., 2012). Although TCS has been shown 

to cause K+ efflux prior to hemolysis (Miller and Deinzer, 1980), we observed no 

significant change in cell volume among healthy and eryptotic cells despite a significant 

increase in intracellular Ca2+. Likewise, the ionophoric effect of clofazimine was not 

accompanied by cell shrinkage (Officioso et al., 2015). 

Because both scramblase and flippase are Ca2+-sensitive, perturbations in the ion’s 

activity are associated with loss of membrane asymmetry (Lang et al., 2006a). In our study, 

we noted that TCS was able to cause membrane phospholipid scrambling with a significant 

increase in cytosolic Ca2+ at 50 M. This is in consonance with recent findings 

demonstrating Ca2+ dysregulation caused by TCS both in vitro and in vivo (Ahn et al., 

2008; Cherednichenko et al., 2012; Popova et al., 2018). Our data also indicate that neither 

PS exposure nor cytosolic Ca2+ was significantly blunted by Ca2+ depletion, underlining 

the dispensability of the ion in TCS-mediated eryptosis, and pointing at possible additional 

mechanisms. Similar findings were recently reported by Gao et al. for betulinic acid (Gao 
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et al., 2014). Presumably, due to their hydrophobicity, both TCS and betulinic acid may 

readily permeabilize through the membrane to exert their effects (Guillen et al., 2004). On 

the other hand, some xenobiotics such as regorafenib rather depleted intracellular Ca2+ 

while still inducing eryptosis (Zierle et al., 2016). It is important to note that the use of 

EDTA to chelate Ca2+ does not provide total elimination of the ion, which must be taken 

into consideration when evaluating the contribution of extracellular Ca2+ (Al Mamun 

Bhuyan et al., 2017b). 

In RBCs, oxidative stress participates in Ca2+ entry by opening cation channels in 

the cell membrane. We have previously shown that TCS perturbs the antioxidant response 

in human mesenchymal stem cells (Yoon et al., 2017), and oxidative damage by TCS has 

been detected in a variety of cell types (Ma et al., 2013; Szychowski et al., 2016). 

Nevertheless, we found that TCS-induced eryptosis was not accompanied by changes in 

ROS levels. Interestingly, other compounds such as carnosic acid, perifosine, and 

micafungin rather diminished ROS production as part of their eryptotic manifestations 

(Stockinger et al., 2015; Peter et al., 2016c; Egler and Lang, 2017). It is comprehensible to 

surmise that such an event is reflective of a suppressed metabolic rate and cellular 

adaptivity, which is compatible with the anti-inflammatory role of TCS (Barros et al., 

2010). 

The use of small-molecule inhibitors has allowed us to reveal the identity of 

molecular mediators targeted by TCS in erythrocytes. We observed that TCS-induced PS 

exposure was significantly inhibited by blockade of either p38 MAPK or RIP1. Inhibition 

of caspases, PKC, and CK1 provided some degree of protection against PS externalization, 

the extent of which, however, failed to attain statistical significance. Most recently, Zhang 
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et al. demonstrated that TCS promotes p38 phosphorylation in vitro and in vivo (Zhang et 

al., 2018), which is in accord to reports of TCS-induced p38 activation detected in 

Raw264.7 macrophages (Wang et al., 2018a), and rat neural stem cells (Park et al., 2016). 

Whereas p38 is a major orchestrator of eryptosis, RIP1 is known to be critical for 

necroptosis (LaRocca et al., 2014). Nonetheless, RIP1 may also signal for apoptosis, and, 

in fact, acts upstream of p38 MAPK (Lee et al., 2003a). Furthermore, necroptosis is under 

regulation by caspase-8 (LaRocca et al., 2014), adding to the complexity and further 

highlighting the interplay between apoptosis and necroptosis. Therefore, based on the 

identified role of RIP1, we were prompted to probe the involvement of the necroptosis 

executioner, MLKL, in TCS-induced RBC death. The results (Fig. 7G & H) demonstrated 

a lack of significant reduction in PS externalization under MLKL inhibition, thus possibly 

exonerating necroptosis as a mode of cell death. Notably, both pathways were recently 

found to be activated in HepG2 cells in response to Tanshinone IIA, a component of the 

red sage plant Salvia miltiorrhiza (Lin et al., 2016), which also possesses eryptotic activity 

(Zelenak et al., 2012). 

In conclusion, this report shows that TCS adversely affects the physiology and 

survival of RBCs by triggering premature cell death. It was revealed that the integrity of 

the RBC membrane is perturbed by TCS leading to phospholipid scrambling at least in part 

through loss of Ca2+ homeostasis and p38 MAPK- and RIP1-mediated mechanisms (Figure 

8). 
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FIGURE LEGENDS 

 
Fig. 1. TCS induces hemolysis dose and time responsively. A. Chemical structure of 

TCS. B. Arithmetic means ± SEM (n = 9) of RBC hemolysis following incubation for 1-4 

h in Ringer solution without (black bars) or with 10–100 M TCS (grey bars). ns indicates 

not significant; ***(p<0.001) indicates significant difference from control (Student’s t- 

test). 

Fig. 2. Effect of TCS on phosphatidylserine exposure and forward scatter. A. 

Representative histogram showing annexin-V-binding of RBCs incubated for 4 h in Ringer 

solution without (black line) or with (red line) 50 M TCS. B. Arithmetic means ± SEM 

(n = 9) of the percentage of annexin-V-binding RBCs following incubation for 4 h in 

Ringer solution without (black bar) or with 10–50 M TCS (grey bars). C. Confocal 

microscopy images demonstrating control and eryptotic cells with increased FITC 

fluorescence reflective of enhanced PS exposure. D. Representative histogram showing 

erythrocyte FSC after 4 h incubation in Ringer solution without (grey peak) or with (black 

line) 50 M TCS. E. Arithmetic means ± SEM (n = 9) of erythrocyte FSC after 4 h 

incubation without (black bar) or with 10–50 M TCS (grey bars). ns indicates not 

significant; ***(p<0.001) indicates significant difference from control (Student’s t-test). 

Fig. 3. TCS causes intracellular Ca2+ mobilization. A. Representative histogram 

showing Fluo3 fluorescence as a function of cytosolic free Ca2+ in RBCs incubated for 4 h 

in Ringer solution without (black line) or with (brown line) 50 M TCS. B. Arithmetic 

means ± SEM (n = 9) of Fluo3 fluorescence in RBCs following incubation for 4 h in Ringer 

solution without (black bar) or with 10–50 M TCS (grey bars). ns indicates not 

significant; ***(p<0.001) indicate significant difference from control (Student’s t-test). 
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Fig. 4. Effect of extracellular Ca2+ chelation on TCS-induced Ca2+ mobilization. A,B. 

Representative histograms showing Fluo3 fluorescence as a function of cytosolic free Ca2+ 

in RBCs incubated for 4 h without (black line) or with 50 M TCS in presence (brown line, 

A) and absence (yellow line, B) of extracellular Ca2+. C. Arithmetic means ± SEM (n = 9) 

of Fluo3 fluorescence in RBCs following incubation for 4 h without (black bars) or with 

50 M TCS (grey bars) in presence or nominal absence of extracellular Ca2+. ***(p<0.001) 

indicates significant difference from control (Student’s t-test). 

Fig. 5. Effect of extracellular Ca2+ chelation on TCS-induced PS exposure. A,B. 

Representative histograms showing annexin-V-binding RBCs incubated for 4 h without 

(black line) or with 50 M TCS in presence (red line, A) and absence (blush line, B) of 

extracellular Ca2+. C. Arithmetic means ± SEM (n = 9) of the percentage of annexin-V- 

binding cells incubated for 4 h without (black bars) or with 50 M TCS (grey bars) in 

presence and absence of extracellular Ca2+. D,E. Representative histograms showing 

annexin-V-binding RBCs incubated for 4 h without (black line) or with 50 M TCS in 

absence (blue line, D) and presence (sky blue line, E) of 50 M BAPTA-AM. F. Arithmetic 

means ± SEM (n = 9) of the percentage of annexin-V-binding cells incubated for 4 h 

without (black bars) or with 50 M TCS (grey bars) in absence and presence of 50 M 

BAPTA-AM. ***(p<0.001) indicates significant difference from control (Student’s t-test). 

Fig. 6. Effect of TCS on ROS levels. A. Representative histogram showing DCF 

fluorescence after 4 h incubation in Ringer solution without (black line) or with (purple 

line) 50 M TCS. B. Arithmetic means ± SEM (n = 9) of DCF geomean fluorescence after 

4 h incubation without (black bar) or with 50 M TCS (grey bar). ns indicates not 

significant. 
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Fig. 7. TCS-induced phosphatidylserine exposure is suppressed by SB203580 and 

necrostatin-1. A-G Representative histograms showing annexin-V-binding RBCs 

incubated for 4 h without (black line) or with 50 M TCS in absence (red line, A) and 

presence of 50 M SB203580 (blue line, B), 100 M zVAD-fmk (purple line, C), 1 M 

StSp (turquoise line, D), 100 M D4476 (brown line, E), 300 M necrostatin-1 (lime line, 

F), or 1 M NSA (green line, G). H. Arithmetic means ± SEM (n = 3) of the percentage of 

annexin-V-binding cells incubated for 4 h in Ringer solution without (black bar) or with 

50 M TCS (grey bars) in absence and presence of 50 M SB203580, 100 M zVAD-fmk, 

1 M StSp, 100 M D4476, 300 M Nec-1, or 1 M NSA. ns indicates not significant; 

**(p<0.01) and ***(p<0.001) indicate significant difference from TCS-only cells 

(Student’s t-test). 

Fig. 8. A working model for TCS-induced premature erythrocyte death: TCS causes 

calcium ion dysregulation resulting in elevated intracellular Ca2+ activity. Stimulation of 

p38 MAPK and RIP1 signaling in response to TCS culminates in phosphatidylserine 

translocation to the outer membrane leaflet; an event significantly abrogated by 

pharmacological interference with either enzyme. 
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ABSTRACT 

 

Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and 

medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to 

numerous health problems, including allergic, cardiovascular, and neurodegenerative 

disease. Using Caenorhabditis elegans as a model system, we here show that short-term 

TCS treatment (LC50: ~0.2 mM) significantly induced mortality in a dose-dependent 

manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment 

with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), 

but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of 

compounds susceptible to NIS inhibition, other structurally related chemical compounds 

were also examined. Of the compounds tested, only the toxicity of phenolic compounds 

(bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. 

Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated 

mortality by micellar solubilization. Once internalized, the TCS-micelle complex is 

inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) 

transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and 

surfactants are extensively used in commercial products, findings from this study provide 

valuable insights to devise safer pharmaceutical and nutritional preparations. 

 

KEYWORDS: Caenorhabditis elegans; PMP-3/ABC transporter; endocrine-disrupting 

chemicals; micelle; non-ionic surfactants; phenolic compound; triclosan 
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INTRODUCTION 

 
 

Endocrine-disrupting chemicals (EDCs) are exogenous compounds that perturb the 

physiology of the endocrine glandular tissue (Swedenborg et al., 2009). These compounds 

can disturb hormone production, release, transport, and metabolism (Kabir et al., 2015). 

Routes of human exposure are varied owing to the wide array of applications and sources 

rich in EDCs. Transdermal absorption from cosmetics and personal hygiene products, 

ingestion in drinking water and food packaging material, and inhalation in dust represent 

the major and most common forms of exposure that carry the greatest risk potential 

(Diamanti-Kandarakis et al., 2009). Furthermore, the developing neuroendocrine tissue of 

neonates is constantly being exposed to high concentrations of EDCs in breast milk and 

infant formula (Fang et al., 2010; Azzouz et al., 2016), incriminating these xenobiotics in 

developmental, neurological, and reproductive anomalies (Schug et al., 2011). 

 

Classification of EDCs is complicated as the number of newly identified, and 

erroneously recognized compounds, continues to steadily grow. Although many remain 

insufficiently characterized, phenolic EDCs are among the most common and well-studied 

classes. A prominent example is triclosan (TCS); an antimicrobial extensively used in the 

manufacture of plastics, toys, cosmetics, and kitchenware (Figure 1A). TCS has also been 

used for decades in hospital settings as an antiseptic and a disinfectant (Rodricks et al., 

2010; Dann and Hontela, 2011). The antimicrobial activity of TCS is attributed to the 

compound’s interference with the enzyme enoyl-acyl carrier protein reductase (FabI), 

which is required for fatty acid and biotin biosynthesis (Rodricks et al., 2010). Beside its 

antimicrobial properties, TCS toxicity has been studied in various living systems including 

humans, and the chemical has been shown to build up in body fluids including blood, urine, 
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and breast milk (Fang et al., 2010; Rodricks et al., 2010). Due to its widespread use and 

high chlorine content, TCS and its derivatives are ubiquitous in soil and aquatic 

environments, and have been detected in wastewater treatment systems as well as drinking 

water sources (McAvoy et al., 2002; Escalada et al., 2005; Benotti et al., 2009; Li et al., 

2010). 

 

The nematode Caenorhabditis elegans (C. elegans) has emerged as an attractive 

model animal for the functional analysis of various bioactive compounds (Tejeda-Benitez 

and Olivero-Verbel, 2016; Honnen, 2017; Hunt, 2017). Recent reports have shown that 

TCS exposure reduced the viability and fertility of wild-type C. elegans worms in a dose- 

dependent manner (Lenz et al., 2017; Yoon et al., 2017; Garcia-Espineira et al., 2018; 

Vingskes and Spann, 2018). To date, although significant progress has been made in our 

understanding of TCS toxicity, studies devoted to the identification of clinically or 

industrially relevant TCS inhibitors are extremely scarce. In this study, we demonstrate 

that non-ionic surfactants (NISs), such as Tween 20 (Tw20), Tween 80 (Tw80), NP-40, 

and Triton X-100 (TX100), act as potent antagonists of phenolic EDCs including TCS, 

bisphenol A (BPA), and benzyl 4-hydroxybenzoic acid (B4HB). Mechanistic analyses 

revealed that NISs inhibit TCS-induced mortality by micellar solubilization, and that 

internalized TCS-micelle complex appears to be exported by PMP-3 (encoding an ATP- 

binding cassette (ABC) transporter) protein. Given the concerns surrounding TCS 

exposure, our findings may provide an innovative approach to reduce the burden of TCS 

and other phenolic EDCs on ecosystems and human health alike. 
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METHODS: 

 

Chemicals and reagents 

 

All chemicals used in this study were purchased from Sigma Aldrich (MO, USA) 

and were of analytical grade. TCS and benzyl 4-hydroxybenzoic acid (B4HB) were 

prepared in ethanol as 0.1 M stock solutions. Bisphenol A (BPA) was dissolved in 

methanol to obtain a 0.1 M stock solution, while 0.1 M stock solutions of sodium dodecyl 

sulfate (SDS) and sodium azide (NaN3) were made in distilled water. 

 
 

Strains and maintenance 

 

C. elegans wild-type Bristol isolate (N2) and pmp-3(ok1087) mutant worms were 

obtained from the Caenorhabditis Genetics Center (CGC). All strains were cultured at 20°C 

in nematode growth medium (NGM) as previously described (Brenner, 1974). 

 
 

Toxicity assays 

 

Embryos were obtained by sodium hypochlorite (0.5 M NaOH and 1.2% NaClO) 

treatment of gravid hermaphrodites and incubated in M9 buffer (22 mM KH2PO4, 42 mM 

Na2HPO, 86 mM NaCl, and 1 mM MgSO4) at 20°C overnight, as described elsewhere 

(Yoon et al., 2016). Hatched L1 animals were either exposed to toxicants or were allowed 

to grow to adults on NGM plates for 3 days at 20°C before exposure. All chemicals were 

diluted in either M9 or M9/0.1% NISs to the final testing concentrations. Treatment groups 

were compared to the vehicle control, which did not exceed 0.2% in each case. The 

mortality rate was calculated visually by counting live and dead worms using a bright field 
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microscope (Figure 1B). Live worms exhibited normal locomotive behavior (Figure 1C), 

whereas dead worms were nonmotile and appeared rod-like in shape (Figure 1D). 

 
 

Antimicrobial susceptibility testing 
 

E. coli OP50 bacteria were grown at 37°C for 5 hours in Lysogeny Broth (LB) 

medium. Exposure was conducted in the same medium supplemented with TCS ranging 

from 0.001 mM to 0.05 mM with or without 0.1% Tween 20 (Tw20) for 24 hours at 25°C. 

The optical density (OD600) was measured spectrophotometrically every two hours as an 

indicator of bacterial growth. 

 
 

Pharyngeal pumping rate 

 

Wild-type adult worms were incubated for 1 hour at 25°C in M9 buffer with or 

without 0.1% Tw20, before they were plated on NGM and examined for pumping using a 

dissecting microscope. Grinder movements were monitored for one minute, and the 

number of pumps per minute (ppm) was recorded. 

 

 

Disruption of intracellular micelles 

 

NIS Micelles were heat-disrupted at 35°C. Following TCS treatment with or 

without 0.1% Tw20, two approaches were followed for micelle disruption (Figure 4A). In 

method I, worms were immediately incubated at 35°C for an additional hour, whereas in 

method II, removal of extracellular TCS-Tw20 complexes by sequential washing in M9 

buffer preceded incubation at 35°C. 
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Statistical analysis 

 

Results are expressed as arithmetic means  SD of at least three independent 

replicates (n>300). Comparative assessments between control and treatment groups were 

conducted using the paired t-student test. Statistical significance was determined by a p 

value of less than 0.05. 

 

RESULTS 

 

TCS increases mortality dose-dependently 

 

Amongst phenolic EDCs, we initially investigated TCS due to its widespread 

occurrence and well-documented toxicity (Rodricks et al., 2010). In eukaryotes, TCS 

disrupts mitochondrial oxidative phosphorylation and leads to profound increase reactive 

oxygen species (ROS) (Weatherly et al., 2016). We recently reported that TCS induces 

toxicity, at least in part, by disrupting SKN-1(SKiNhead-1)/NRF2 (erythroid-2-related 

factor 2)-mediated oxidative stress response in both C. elegans and human stem cells 

(Yoon et al., 2017). 

 

To initially determine the effect of TCS on C. elegans viability, synchronized L1 

larvae were treated with varying concentrations of TCS (0, 0.125, 0.25, 0.5, 1, 2, and 4 

mM) for 1 hour at 25C. As shown in Figure 1E, the mortality rate of L1 worms increased 

in a dose-dependent manner with a TCS concentration of half maximal response (EC50) of 

~ 0.2 mM. A similar dose-dependent pattern of increased mortality was also observed in 

adult worms (Figure 1F). These results suggest that TCS significantly increased the 

mortality of wild-type (N2) worms in a dose-dependent manner. 
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NISs abrogate TCS-induced mortality 

 

Hydrophobic substances can be emulsified in micelles formed by NISs such as 

Tw20 (Lu and Park, 2013), and the benzene ring in TCS imparts a hydrophobic nature to 

the antiseptic (Petersen, 2016). To test the hypothesis that TCS-induced mortality could be 

neutralized by NISs, both L1 larvae and adult worms were treated with 0.125-8 mM TCS 

in presence or absence of 0.1% Tw20 for 1 hour at 25C, and the mortality rate of both 

groups was calculated. Interestingly, co-treatment of TCS and Tw20 led to a profound 

decrease in the mortality of both stages when compared to TCS alone (Figure 2A and S1A). 

The highest TCS concentration susceptible to 0.1% Tw20 was around 8 mM and 4 mM for 

L1 larvae and adult worms, respectively (Figure 2A and S1A). 

 

To determine the minimum effective concentration of Tw20 required to confer 

protection against lethal concentrations of TCS, L1 larvae were incubated for 1 hour with 

1, 2, and 4 mM TCS in the absence or presence of 0.1, 0.02, 0.004, and 0.0008% Tw20. 

As for L1 larvae, at least 0.02% Tw20 was sufficient to protect against 4 mM TCS, while 

0.004% Tw20 was sufficient against 1 mM TCS (Figure 2C). Parallel to L1 larvae, the 

mortality rate of adult worms at 1 and 2 mM TCS was significantly abrogated with at least 

0.004% and 0.02% Tw20, respectively (Figure S1B). 

 

Next, we were prompted to test the effects of other NISs, including Tw80, NP-40, 

and TX100 on TCS-induced mortality. To this end, L1 staged wild-type worms were 

incubated with or without 0.5 mM TCS (minimum concentration with >80% mortality) in 

the absence or presence of 0.1-0.0008% Tw80, NP-40, or TX100 for 1 hour at 25C, and 
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the mortality rate was calculated as described earlier. As seen in Figure 2E, all NISs 

significantly protected the worms against 0.5 mM TCS dose-dependently. 

 

In industrial settings, anionic surfactants such as sodium dodecyl sulfate (SDS) are 

also added to commercial products to solubilize TCS (Babich and Babich, 1997). In order 

to determine if SDS is also capable of antagonizing TCS toxicity, we incubated L1 larvae 

with 0.5 mM TCS in the presence of 1, 10, and 20 mM SDS for 1 hour at 25C and scored 

the mortality rate as outlined before. Figure 2E shows the wormicidal activity of SDS at 

10 and 20 mM, and, more importantly, the failure of SDS at 1 mM to protect against TCS- 

induced mortality. Collectively, these observations suggest that TCS-induced mortality is 

abrogated by co-treatment of NISs (i.e. Tw20, Tw80, NP-40, and TX100), but not by SDS. 

 

We then sought to inquire whether Tw20 could also neutralize the antimicrobial 

activity of TCS. To this end, E. coli bacteria were cultured with or without 0.001-0.2 mM 

TCS in the absence or presence of 0.1% Tw20 for 24 hours at 25°C. We specifically 

cultured E. coli bacteria at 25°C, instead of 37°C, to preserve the micellar state of Tw20. 

Optical density at 2-hour intervals was measured as a function of bacterial growth. 

Although TCS unsurprisingly inhibited bacterial growth at all concentrations tested, 

significant resistance was observed under conditions of a combination of 0.001 mM TCS 

and 0.1% Tw20 (Figure 2D, compare (3) and (7)). These findings suggest that the 

inhibitory action of NISs against TCS is also observed in bacteria. 

 

Ingestion in C. elegans is accomplished through the pharynx and requires two 

sequential events; pumping and peristalsis. Pharyngeal movement is related to food intake, 

and is influenced by environmental conditions in the immediate vicinity of the worm (Song 
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and Avery, 2013). Thus, we examined if the protective role of Tw20 is related to restricted 

pharyngeal pumping, which would hinder TCS uptake. To this end, adults were exposed 

to 0.1% Tw20 or left untreated for 1 hour at 25°C. Worms were then plated and grinder 

movements (number of pumps per minute) were recorded under a differential interference 

contrast (DIC) microscope. Our results showed no significant difference in the rate of 

pharyngeal pumping in presence or absence of Tw20 (Figure 2B), which indicates that 

Tw20 does not neutralize TCS toxicity by reducing its physical intake. 

 

NISs mitigate the mortality induced by other phenolic EDCs: BPA and B4HB 

 

To assess the range of compounds sensitive to NIS interference, we tested the effect 

of NISs on other toxicants that are not recognized as EDCs (Figure 3A, left). Sodium azide 

(NaN3) is a polar, ionic salt commonly used as a solution preservative owing to its biocidal 

properties (Ishikawa et al., 2006). It interferes with mitochondrial oxidative 

phosphorylation by chelating iron ions required for cytochrome oxidase activity (Ishikawa 

et al., 2006). We evaluated the ability of NISs to subvert sodium azide toxicity by 

incubating L1 larvae with or without 0.2-1.6 mM sodium azide in the absence or presence 

of 0.1% NISs for 24 hours at 25°C. Figure 3B shows that the dose-responsive increase in 

mortality was not nullified by co-treatment with NISs. Ethanol (EtOH) is another polar 

compound with disruptive behavioral effects on C. elegans (Davies et al., 2004) (Figure 

3A, left). To test whether NISs could protect against EtOH mortality, L1 larvae were 

incubated with or without 10%-20% EtOH in the absence or presence of 0.1% NISs for 1 

hour at 25°C, and the mortality rate was subsequently scored. Our data show that 20% 

EtOH resulted in 100% mortality in wild-type worms which was not reversed by co- 

treatment with 0.1% NISs (Figure 3C). 
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Although we cannot exclude all other possibilities, these results indicate that 

molecular similarity among compounds may be a determining factor in their susceptibility 

to NISs. Hence, we examined two other chemicals that are closely related to TCS in terms 

of both their chemical nature (a common phenol ring) and activity (endocrine disruption) 

– BPA and B4HB (Figure 3A, right). The xenoestrogenic activity of BPA is associated 

with increased proliferation of ovarian and breast cancer cells (Dong et al., 2011), 

genotoxicity (Pupo et al., 2012), and elevated prolactin, estradiol, and progesterone levels 

in females (Miao et al., 2015). B4HB is a paraben widely used as a preservative in 

cosmetics and food processing (Ye et al., 2006). Exposure to parabens has been strongly 

linked to human health concerns mainly due to their estrogenicity and proliferative 

stimulation of breast cancer cells (Byford et al., 2002). Moreover, butylparaben has been 

shown to cause DNA damage in human sperm (Meeker et al., 2011). 

 

To test if NISs could protect against BPA-induced mortality, L1 larvae were 

incubated with or without 0.5-2.0 mM BPA in presence and absence of 0.1% NISs for 24 

hours at 25°C. In agreement with previous reports (Watanabe et al., 2005), BPA caused a 

dose-dependent increase in mortality, and, interestingly, co-treatment with 0.1% NISs 

significantly ablated BPA-induced mortality (Figure 3D). We also determined the 

wormicidal potential of B4HB and its sensitivity to NIS inhibition. To this end, L1 larvae 

were incubated with or without 0.25-1.0 mM B4HB in the absence or presence of 0.1% 

NISs for 1 hour at 25°C. As shown in Figure 3E, B4HB resulted in a significant, dose- 

dependent increase in mortality at all concentrations tested. Importantly, a similar pattern 

of inhibition to TCS and BPA was also observed in worms co-treated with B4HB and NISs 
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(Figure 3E). Taken together, these results suggest that NISs may protect against phenolic 

EDCs that share structural similarity to TCS. 

 

Micellar solubilization is required for NIS-mediated protection 

 

We next tested if NISs could inhibit the toxicity of TCS via micelle formation. 

Tw20 was chosen as a representative NIS as it showed potent inhibitory action against TCS 

concentrations with 100% mortality (Figure 2A). To this end, L1 larvae were incubated 

with or without 1 mM TCS in the absence or presence of 0.1% Tw20 for 1 hour at 25C 

(Figure 4A). As observed earlier, 1 mM TCS resulted in 100% mortality, which was 

reversed by co-treatment with 0.1% Tw20 (Figure 4B, Pre-incubation). 

 

To evaluate the importance of micellar solubilization for the anti-toxic activity of 

Tw20, micelles were heat-disrupted by upshifting exposure temperature to 35C 

(Markovic-Housley and Garavito, 1986) for an additional hour (Figure 4A, Method (I)). 

Notably, the mortality of worms co-treated with TCS and Tw20 significantly increased 

following the temperature upshift (Figure 4C, Method (I)). This seems to indicate that 

sequestered TCS molecules within Tw20 micelles were released upon temperature- 

mediated micelle disruption and regained their wormicidal activity. Furthermore, to rule 

out the contribution of extracellular TCS in the observed mortality following the upshift, 

extracellular TCS-Tw20 complexes were removed by repeated washing and L1 larvae were 

then upshifted to 35C for an additional hour (Figure 4A, Method (II)). Under these 

conditions, up to ~ 30% increase in mortality in comparison to Tw20-treated worms (Figure 

4C, Method (II)) was observed, which is attributed mostly to the internalized TCS-Tw20 

complexes. 
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The PMP-3/ABC transporter modulates the absorption, metabolism, and 

cytotoxicity of pharmacological agents (Das et al., 2006). Of recent, we have reported that 

lack of PMP-3 increases susceptibility to TCS (Yoon et al., 2017). A reporter gene analysis 

showed that pmp-3 (promoter)::GFP is expressed in the pharynx, muscles, intestine, and 

stem cell niche (Figure S2). To ask if internalized TCS-Tw20 micelle complexes are 

exported out of the worms’ bodies through PMP-3, L1 stage pmp-3(ok1087) loss-of- 

function mutant worms (pmp-3(-)) were treated as described in Figure 4A. As is the case 

with wild-type worms (Figure 4B), 1 mM TCS caused 100% mortality in pmp-3(-) mutants, 

which was significantly ameliorated in the presence of 0.1% Tw20 (Figure 4D, Pre- 

incubation). Importantly, the mortality of pmp-3(-) mutants was significantly enhanced 

following heat-mediated micelle disruption, an effect that was significantly higher than that 

of their wild-type counterparts (p<0.01, compare Figure 4C and 4E, Method (I)). 

 

Next, to test if accumulated intracellular TCS could increase the mortality in pmp- 

3(-) mutant worms, we co-treated L1 staged pmp-3(-) mutant worms with 1 mM TCS and 

0.1% Tw20 for 1 hour at 25C, before the temperature was upshifted to 35C following 

washing for three times (Figure 4A, Method (II)). Interestingly, TCS molecules released 

from Tw20 micelles at 35C significantly increased the mortality (76 ± 3.7%) of pmp-3(-) 

mutant worms more than that (34 ± 3.6%) seen in wild-type worms (p<0.01, compare 

Method(II) in Figure 4C and 4E). 

 

Taken together, these results point at two possible conclusions: First, Tw20 may 

inhibit the wormicidal properties of TCS by micellar solubilization. Second, export of 

internalized TCS-Tw20 micellar complex may be facilitated, at least in part, through PMP- 
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3-mediated detoxification mechanism. Although only TCS was evaluated under these 

conditions, it is reasonable to suggest that a similar pattern is likely mirrored by other 

phenolic EDCs and NISs. 

 

DISCUSSION: 

 

EDCs are ubiquitous in the environment and pose a global threat to human and 

wildlife health. To date, studies elucidating the toxicity of EDCs have received greater 

attention from researchers, while investigations devoted to the identification of EDC 

inhibitors are only recently emerging. For instance, just a few years ago, Sengupta et al. 

reported that atrazine inhibits TCS toxicity by activating the nuclear receptor HR96 (an 

ortholog of CAR/PXP/VDR) in Daphnia magna (Sengupta et al., 2015). In addition, the 

interaction of surfactants with other antibacterials such as amoxicillin and moxifloxacin 

has previously been examined (Schwameis et al., 2013). However, no studies have 

investigated the protective role of NISs against EDC toxicity in eukaryotic model systems. 

 

This work establishes the nematode C. elegans as a model for studying the toxicity 

of phenolic EDCs, and also demonstrates the potent ameliorative potential of NISs against 

the wormicidal properties of TCS and other phenolic EDCs, facilitated through micellar 

solubilization. The TCS-micelle complex appears to be exported out of the worms’ bodies 

at least in part through a PMP-3/ABC transporter (Figure 5A and 5B). However, following 

micelle disruption, released TCS seems to regain its activity and in turn perturbs the 

survival of worms (Figure 5C). In pharmaceutical and nutritional preparations, NISs have 

been used as solubilizers and stabilizers, but their potential effects on the detoxification of 
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EDCs have largely been overlooked. Therefore, our findings present broad insights into 

EDC intoxication, detoxification, and product formulation strategies. 

 

The activity of phenolic compounds is influenced by their percent saturation in 

solution (Ogata and Shibata, 2000). Micelle aggregates are formed when surfactants are 

dissolved in solutions at or above their critical micelle concentration (CMC). Surfactants 

can solubilize phenolics in the micellar phase and thus reduce their thermodynamic activity 

(Allawala and Riegelman, 1953). To put things into perspective, a saturated water solution 

of chloroxylenol, a phenolic disinfectant, was shown to exhibit comparable biocidal 

efficacy to a saturated surfactant solution with concentrations of many orders of magnitude 

higher (Mitchell, 1964). Moreover, Taylor et al. compared the efficacy of TCS against E. 

coli at 100% saturation in ammonium lauryl sulfate (ALS) solutions of varying 

concentrations (Taylor et al., 2004). Interestingly, the degree of bacterial growth reduction 

when ALS was increased was similar to that observed when less ALS and twice as much 

TCS were used (Taylor et al., 2004). This indicates that surfactant to EDC ratio, but not 

EDC concentration, determines the overall fate of EDC activity. Similarly, other phenolic 

antimicrobial agents, most notably rifampicin and isoeugenol, were found to be highly 

susceptible to inactivation by Tw80 (Nielsen et al., 2016). In E. coli, our data show that 

TCS retains its antibacterial activity at a minimum concentration of 0.001 mM when co- 

administered with 0.1% Tw20, suggesting that the bioavailable portion of TCS was 

sufficient to exhibit its bactericidal effect under these saturation conditions (see Figure 2D). 

This is corroborated by the contrasting synergistic effect of Tw80 on water-soluble 

antimicrobials such as polymyxin B and benzalkonium chloride (Toutain-Kidd et al., 

2009). It is important to note that, because TCS inhibits the synthesis of fatty acids, which 
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are abundant in surfactants, it has been surmised that TCS-resistant Staphylococcus aureus 

compensate for the anti-lipogenic effect of TCS by utilizing exogenous fatty acids 

presumably provided by the Tween surfactants (Morvan et al., 2016). In C. elegans, 

manipulating the NIS-TCS ratio showed that NISs are potent inhibitors of phenolic EDCs 

at very low concentrations. Our results revealed that NIS concentrations as low as 0.0008% 

significantly reduced the mortality caused by a lethal TCS dose of 0.5 mM (see Figure 2C). 

This remarkable inhibitory efficiency, compared to that seen in E. coli, could be ascribed 

to the outer cuticle that encapsulates the worms and imparts environmental and anti-toxic 

protection. 

 

In conclusion, the current study identifies NISs as potent inhibitors of phenolic 

EDCs in an eukaryotic model organism. The findings presented herein may pave the way 

for devising and developing potentially effective preventive and therapeutic strategies to 

control the widespread dissemination of phenolic EDCs, while still maintaining their 

beneficial antimicrobial properties. The observations presented here, along with those from 

previous studies, mandate further investigations based on a multidisciplinary approach, 

combining physicochemical and biological aspects, to fully characterize the direct 

interaction between NISs and EDCs. Future efforts should be directed toward investigating 

the complex interplay between NIS solubilization and its net effect on drug digestion, 

absorption, and overall activity in highly relevant vertebrate model systems. 
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FIGURE LEGENDS 

 

Figure 1. TCS induces mortality of wild-type worms. (A) Chemical structure of TCS. 

 

(B) Strategy for chemical treatment. (C and D) DIC pictures of wild-type worms in the 

absence or presence of TCS. (E) Percent mortality in TCS-treated wild-type L1 larvae. 

Standard deviation bars were calculated from at least three independent experiments 

(n>300). p<0.05(*); p<0.01(**); p<0.001(***); Not statistically significant (n.s.). 

 

Figure 2. Protective role of NISs against TCS. (A) Effect of Tw20 on TCS-induced 

mortality in L1 larvae. (B) Effect of Tw20 on pharyngeal pumping. (C) Dose-dependence 

effect of TCS and Tw20 on mortality. (D) Effect of Tw20 on the antimicrobial activity of 

TCS. (E) Effect of NISs on TCS-induced mortality. Standard deviation bars were 

calculated from at least three independent experiments (n>300). p<0.05(*); p<0.01(**); 

p<0.001(***); Not statistically significant (n.s.). 

 

Figure 3. NISs suppress the mortality induced by other phenolic EDCs. (A) Chemical 

structures of non-EDCs and phenolic EDCs. (B-E) Effect of NISs on toxicant-induced 

mortality. For NaN3 and BPA, total exposure period was 24 hours at 25°C. For EtOH and 

B4HB, worms were treated for 1 hour at 25°C. Standard deviation bars were calculated 

from at least three independent experiments (n>300). p<0.05(*); p<0.01(**); 

p<0.001(***); Not statistically significant (n.s.). 

 

Figure 4. Tw20 inhibits TCS-induced mortality via micelle formation. (A) Exposure 

strategy. (B & C) Effect of Tw20 micelle formation on TCS-induced mortality in wild-type 

worms. (D & E) Role of PMP-3 in the export of TCS-Tw20 micellar complex. Standard 
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deviation bars were calculated from at least three independent experiments (n>300). 

 

p<0.05(*); p<0.01(**); p<0.001(***); Not statistically significant (n.s.). 

 

Figure 5. A working model for NIS amelioration of EDC-induced mortality. (A) EDCs 

can act via receptor-based mechanism, but at high doses, EDCs may employ receptor- 

independent mechanisms. EDCs (e.g., TCS) may also inhibit PMP-3-mediated 

detoxification mechanisms (Yoon et al., 2017). (B) EDCs could be inactivated in vivo by 

NIS-mediated micellar solubilization and the EDC-NIS complex may be exported at least 

in part by PMP-3/ABC transporters. (C) Upon micelle disruption, liberated EDC molecules 

regain their toxicity and may inhibit PMP-3-mediated detoxification. 
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ABSTRACT 

 

N,N-Diethyl-3-methylbenzamide (DEET) is the most widely used insect repellent in the 

world. Adverse effects following DEET exposure are well documented. Moreover, DEET 

has been shown to possess cytotoxic and apoptotic properties in nucleated cells. Although 

red blood cells (RBCs) lack intracellular organelles, they nevertheless undergo 

programmed cell death termed eryptosis. Compromised RBC health contributes to the 

development of anemia; a condition affecting 25% of the global population. This study 

investigated the interaction between DEET and human RBCs, and explored accompanying 

biochemical and molecular alterations. RBCs at 5% hematocrit were incubated in presence 

and absence of 1-5 mM (0.02%-0.1%) of DEET for 6 h at 37°C. Hemolysis was 

spectrophotometrically determined by hemoglobin release, while major eryptotic events 

were analyzed by flow cytometer. Phosphatidylserine (PS) exposure was detected with 

Annexin-V-FITC, cell volume by forward scatter (FSC) of light, intracellular calcium with 

Fluo-3/AM, and reactive oxygen species with 2',7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA). DEET caused slight hemolysis at 4 and 5 mM, and significantly increased 

Annexin-V-FITC and Fluo3 fluorescence, with reduced FSC at 5 mM. Removal of 

extracellular Ca2+ abolished DEET-induced Fluo3 fluorescence but had no effect on 

Annexin-V binding. Importantly, blockade of eryptotic signaling mediators p38 MAPK, 

caspases, protein kinase C, casein kinase 1, or necroptotic kinases receptor-interacting 

protein 1 and mixed lineage kinase domain-like protein, with small molecule inhibitors, 

did not ameliorate DEET-mediated PS externalization. In conclusion, DEET elicits suicidal 

erythrocyte death; an event characterized by loss of membrane asymmetry, cell shrinkage, 

and elevations in intracellular Ca2+ mainly through dysregulated Ca2+ influx. 
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INTRODUCTION 

 

The World Health Organization (WHO) reports that a little less than one-fifth of the 

global burden of infections is caused by vector-borne disease, which accounts for around 

700,000 deaths annually (WHO. Global vector control response 2017–2030. Geneva: 

World Health Organization;  2017. 

http://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978- 

eng.pdf?sequence=1). Among the most infamous vectors are mosquitoes in the Anopheles, 

Aedes, and Culex genera. These blood-sucking insects are responsible for the transmission 

of serious diseases and pathogens including malaria, filariasis, yellow fever, dengue fever, 

chikungunya, Zika virus, West Nile virus, Japanese encephalitis, and St. Louis encephalitis 

(WHO. Vector-borne diseases: Report of an informal expert consultation. New Delhi: 

World Health Organization;  2014. 

http://apps.who.int/iris/bitstream/handle/10665/206531/B5139.pdf?sequence=1; WHO: 

Yellow fever fact sheet. http://www.who.int/en/news-room/fact-sheets/detail/yellow- 

fever) (Mackenzie et al., 2004; Mulatier et al., 2018). Given the lack of vaccination, 

prophylaxis by insect repellents remains one of the most efficient and widely used methods 

to prevent the spread of vector-borne disease worldwide. 

N,N-Diethyl-3-methylbenzamide (DEET) is the most commonly used insect repellent 

in the world (Fig. 1A) (Chen-Hussey et al., 2014). Since its introduction over half a century 

ago (Nentwig, 2003), DEET has demonstrated efficacy in reducing the transmission of 

http://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978-eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/259205/9789241512978-eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/206531/B5139.pdf?sequence=1
http://www.who.int/en/news-room/fact-sheets/detail/yellow-fever
http://www.who.int/en/news-room/fact-sheets/detail/yellow-fever
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vector-borne disease. The repellence properties of DEET may be attributed to its activation 

of olfactory receptor neurons (ORNs) in mosquito antennae, among other possible 

mechanisms (Leal, 2014). Products containing up to 100% DEET are available to 

consumers in a variety of formulations including sprays, aerosols, gels, lotions, sticks, and 

wipes (Diaz, 2016). 

Pharmacokinetic studies in animals indicate significant variability in oral and dermal 

absorption of DEET. In humans, although absorption rates may reach as high as 20%, 

extensive variations observed in animals may still be mirrored in man (Feldmann and 

Maibach, 1970; Blomquist and Thorsell, 1977; Reifenrath et al., 1980; Reifenrath et al., 

1981; Snodgrass et al., 1982; Moody et al., 1989; Moody and Nadeau, 1993; Taylor et al., 

1994; Selim et al., 1995). DEET reaches the systemic circulation, crosses the placenta 

(McGready et al., 2001; Barr et al., 2010; Diaz, 2016), and is chiefly eliminated in the 

urine. Major DEET metabolites excreted are N,N-diethyl-mhydroxymethylbenzamide and 

N-ethyl-m-hydroxymethylbenzamide, representing up to 42% of applied dose (Selim et al., 

1995). The unchanged parent compound has also been detected in urine (Smallwood et al., 

1992). Nevertheless, based on the inherent diversity of human use and consumption, 

variations in DEET bioavailability and metabolism are expected to be not uncommon. 

Intoxication related to DEET is well documented in animals and humans, with dermal, 

neurologic, ocular, psychotic, respiratory, gastrointestinal, and cardiovascular 

manifestations (Heick et al., 1980; Snyder et al., 1986; Heick et al., 1988; McKinlay et al., 

1998; Briassoulis et al., 2001; Bell et al., 2002; Jortner, 2006). Cases of accidental and 

suicidal death have also been reported following oral and dermal exposure to DEET (Veltri 

et al., 1994; Bell et al., 2002; Wiles et al., 2014). Populations at higher risk of adverse 
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DEET effects include children, workers in parks and manufacturing plants, and individuals 

with preexisting skin conditions (https://www.atsdr.cdc.gov/toxprofiles/tp185.pdf; 

https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+1582). To 

date, there exists a paucity in the literature concerning the cellular and molecular effects of 

DEET, and the potential toxic effects of the repellent on human red blood cell (RBC; 

erythrocyte) lifespan have not yet been reported. Responsible for gas exchange and transfer 

of immune complexes, RBCs have a lifespan of 120 days, after which they are removed 

from the circulation by the monocyte-macrophage system (Lang and Lang, 2015b). 

Although they lack intracellular organelles, most notably the nucleus and mitochondria, 

RBCs nonetheless undergo a specific form of programmed cell death known as eryptosis. 

Characteristics of eryptotic cells include membrane blebbing and phospholipid scrambling, 

cell shrinkage, intracellular accumulation of calcium and reactive oxygen species (ROS), 

ceramide formation, and energy exhaustion (Lang et al., 2012). As in apoptosis of 

nucleated cells, multiple signaling mediators similarly regulate eryptosis. Although still in 

their infancy, discovery efforts have discerned the existence of caspases, p38 mitogen- 

activated protein kinase (MAPK), casein kinase 1 (CK1), protein kinase C (PKC), receptor- 

interacting protein 1 (RIP1), mixed lineage kinase domain-like protein (MLKL), Janus 

kinase 3 (JAK3), 5' AMP-activated protein kinase (AMPK), and cGMP-dependent protein 

kinase (cGKI), (Lang et al., 2012; LaRocca et al., 2014; Lang and Lang, 2015b). 

Various xenobiotics and pathological conditions have been identified as modulators of 

eryptosis (Pretorius et al., 2016) and the effect of DEET on RBC lifespan remains an 

uncharted territory. In this report, we sought to investigate the interaction between DEET 

and human RBCs, which represent an excellent model to assess the toxicity of xenobiotics 

http://www.atsdr.cdc.gov/toxprofiles/tp185.pdf%3B
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs%2Bhsdb%3A%40term%2B%40DOCNO%2B1582
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(Hinderling, 1997; Schrijvers, 2003; Farag and Alagawany, 2018). Here, we show that 

DEET causes premature RBC death characterized by loss of membrane asymmetry and 

phosphatidylserine (PS) externalization, profound intracellular calcium accumulation 

secondary to dysregulated influx, and cell shrinkage. Interestingly, the eryptotic effects of 

DEET were not mediated through oxidative stress, did not depend on calcium availability, 

and are not significantly ameliorated by blocking of major cell death signaling pathways. 

 

 
MATERIALS AND METHODS 

 
Erythrocytes, chemicals, and solutions 

 
Fresh, citrate-phosphate-dextrose-adenine (CPDA-1)-anticoagulated RBC samples 

from consented, healthy adults were obtained from ZenBio (Research Triangle Park, NC, 

USA). Samples were stored at 40C according to standard blood banking procedures 

(Fernandes da Cunha et al., 2005) and used within 20 days of collection. Cell viability 

and validity for experimentation was verified by low (<5%) Annexin-V-FITC binding 

(Lupescu et al., 2014). Prior to experiments, RBCs were washed in phosphate-buffered 

saline (PBS; 0.9% NaCl, 1 mM KH2PO4, 5.6 mM Na2HPO4; pH 7.4) at 2500 rpm for 15 

min at 21°C, and were then incubated at 5% hematocrit in Ringer solution containing (in 

mM): 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic 

acid (HEPES), 5 glucose, 1 CaCl2; pH 7.4. For Ca2+-free Ringer solution, CaCl2 was 

replaced with 1 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

(EGTA) (Chem-Impex Intl., Wood Dale, IL, USA). 

Preceded DEET treatment by 30 min was the use of 50 µM BAPTA-AM (cell- 

permeable Ca2+ chelator), 2 µM of PKC inhibitor, Staurosporin (StSp) (Cayman Chemical 
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Company, Ann Arbor, MI, USA), 100 µM of CK1α inhibitor, D4476 (Cayman), 50 µM of 

p38 MAPK inhibitor, SB203580 (Selleckchem, Houston, TX, USA), 100 µM of pan- 

caspase inhibitor, Z-VAD(OMe)-FMK (Cayman), 100 µM RIP1 inhibitor, necrostatin-1 

(Nec-1), or 1 µM of mixed lineage kinase domain-like pseudokinase (MLKL) inhibitor, 

necrosulfonamide (NSA). All inhibitors were dissolved in dimethyl sulfoxide (DMSO). 

Where indicated, cells were co-treated with DEET and 1 mM of N-acetylcysteine (NAC). 

All chemicals were of analytical grade and were purchased from Sigma (St. Louis, 

MO, USA) unless otherwise noted. An ethanolic stock solution of DEET was prepared at 

1 M (20% DEET) and diluted to desired concentrations (1-5 mM; 0.02-0.1%) in Ringer 

solution. This concentration range reflects DEET blood levels encountered in cases of 

accidental and intentional intoxication in humans (Tenenbein, 1987; Wiles et al., 2014); 

Handbook of Pesticide Toxicology; https://toxnet.nlm.nih.gov/cgi- 

bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+1582). Moreover, DEET at this range has 

previously been shown to inhibit erythrocyte cholinesterase activity in vitro (Wille et al., 

2011). 

Hemolysis 

 
RBCs (5% hematocrit) were treated with 1-5 mM of DEET in Ringer solution at 37°C 

for 6 h, and the degree of hemoglobin leakage was determined spectrophotometrically 

using VersaMax™ ELISA microplate reader (Molecular Devices, San Jose, CA, USA). 

Following DEET treatment, cells were pelleted by centrifugation at 13,300 × g for 1 min. 

The resulting supernatant was assayed for hemoglobin content by measuring light 

absorbance at 405 nm. Results are presented as percent hemolysis compared to cells 

suspended in distilled water (100% hemolysis). 

https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs%2Bhsdb%3A%40term%2B%40DOCNO%2B1582
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs%2Bhsdb%3A%40term%2B%40DOCNO%2B1582
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PS externalization and forward scatter (FSC) 

 
Annexin-V-FITC binding was utilized as a measure of exposed PS. Briefly, following 

DEET treatment, the cells were washed in 5 mM CaCl2 Ringer solution, and a 

homogeneous 50-µl cell suspension was stained with 150 µl of 1% solution of Annexin-V- 

FITC (Thermo Fisher Scientific, Waltham, MA, USA) for 10 min away from light. FITC 

fluorescence and FSC were subsequently obtained on a FACScan (Betcon Dickinson, 

Franklin Lakes, NJ, USA) at excitation/emission wavelengths of 488/530. 

Determination of intracellular calcium 

 
Calcium was determined by Fluo3/AM cleavage (Biotium, Fremont, CA, USA). Upon 

intracellular hydrolysis of Fluo3/AM by esterases, Fluo3 fluoresces relative to Ca2+ 

binding. To determine cytosolic Ca2+ content, 50 µl of control and DEET-treated cells were 

washed and resuspended in 5 mM CaCl2 Ringer buffer, and then incubated in total darkness 

with 5 µM Fluo3/AM at 37°C for 30 min in a final volume of 200 µl. Fluorescence was 

then determined on a FACScan at excitation and emission wavelengths of 488 and 530 nm, 

respectively. 

Measurement of ROS generation 

 
ROS accumulation was measured by staining the cells with 2-,7- 

dichlorodihydrofluorescin diacetate (DCFH2-DA) (Thermo Fisher Scientific, Waltham, 

MA, USA). DCFH2-DA is non-fluorescent until cleaved by esterases and subsequently 

oxidized by ROS. A 50-µl homogeneous cell suspension was washed in Ringer buffer, 

loaded with 10 µM DCFH2-DA in a final volume of 200 µl, and incubated for 30 min at 

37°C in the dark. DCF fluorescence was then quantified by FACScan as a measure of ROS 

formation (Ex = 488, Em = 530). 
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Statistical analysis 

 
Data are represented as arithmetic means ± S.E.M. of triplicate measurements of three 

independent experiments conducted on RBC samples from different donors. Prism 5 

GraphPad was used for statistical analysis using Student’s t-test to compare two groups, 

and one-way ANOVA followed by Dunnett’s post-hoc test to compare treatment groups 

with the vehicle control. To account for individual variation, comparisons between 

untreated and treated groups were only carried out on samples from the same donor. 

 

 
RESULTS 

 
DEET induces weak hemolysis in human RBCs 

 
Cell-free hemoglobin is a marker of hemolysis. To determine the hemolytic potential 

of DEET, RBCs were treated with 1-5 mM of DEET for 6 h at 37°C, and hemoglobin 

leakage into the medium was subsequently assayed. Fig. 1B shows that DEET causes a 

modest, yet statistically significant increase in hemolysis at both 4 and 5 mM. This 

indicates that the cell membrane could be a major action site targeted by the repellent. 

DEET causes PS externalization 

 
Membrane phospholipid scrambling, the principal feature of eryptotic cells, was 

identified by binding of externalized phosphatidylserine to Annexin-V. To identify PS- 

exposing cells, RBCs were incubated in presence and absence of 1-5 mM DEET for 6 h at 

37°C, and the percentage of Annexin-V-binding cells was determined by flow cytometry. 

As shown in Fig. 2, DEET causes a statistically significant increase in Annexin binding, 
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reflective of PS exposure. Thus, DEET stimulated eryptotic transformation of RBCs. 

 
DEET reduces erythrocyte cell volume 

 
Cell size was determined by FSC. Fig. 3 shows light scatter properties of vehicle-only 

and DEET-treated cells. A significant reduction in FSC was observed in cells exposed to 5 

mM DEET compared to the vehicle control (Fig. 3A,B). DEET also caused an increasing 

trend in the percentage of cells with reduced FSC (Fig. 3C), and a significant decrease in 

the percentage of cells with an enlarged volume (Fig. 3D). Taken together, our data show 

that DEET-induced PS exposure is accompanied by cell shrinkage – a prominent feature of 

eryptotic RBCs. 

DEET leads to elevations in intracellular Ca2+
 

 
Dysregulated Ca2+ homeostasis is a key event during eryptosis. To investigate 

perturbations in Ca2+ homeostasis caused by DEET, erythrocytes were incubated with or 

without 1-5 mM DEET for 6 h at 37°C, and mean Fluo3 fluorescence intensity was 

measured as an indicator of intracellular Ca2+. Fig. 4 reveals that a statistically significant 

elevation in intracellular Ca2+ was only observed at 5 mM DEET. This is consistent with 

the PS-exposing (Fig. 2B,C) and volume-reducing (Fig. 3A,B) effects observed at the same 

concentration. Hence, DEET induces PS externalization with accompanying cell shrinkage 

and intracellular Ca2+ accumulation. 

Next, to probe whether the observed increase in Ca2+ is secondary to extracellular Ca2+ 

influx, cells were incubated for 6 h with either the vehicle or 5 mM DEET in presence or 

nominal absence of Ca2+, and Fluo3 fluorescence was then measured. While DEET 

increased Ca2+ levels when extracellular Ca2+ was available (Fig. 5A), the increase was 

completely abolished when Ca2+ was removed from the medium (Fig. 5B). This suggests 
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that Ca2+ influx accounted for DEET-induced cytosolic Ca2+ accumulation. 

 
Finally, to determine the importance of Ca2+ availability for the PS-exposing effect of 

DEET, cells were incubated for 6 h with the vehicle or 5 mM DEET in presence and 

absence of extracellular Ca2+, or were pretreated for 30 min with 50 µM of intracellular 

Ca2+ chelator BAPTA-AM before DEET exposure. The results shown in Fig. 6 indicate 

that DEET-induced PS exposure is not significantly rescinded neither by removal of 

extracellular Ca2+ (Fig. 6A-C) nor by chelation of cytosolic Ca2+ (Fig. 6D-F). Therefore, 

PS exposure by DEET apparently does not require Ca2+, an observation possibly pointing 

at other additional mechanisms. 

DEET does not increase ROS generation 

 
The buildup of ROS aggravates eryptosis. As a measure of ROS levels, DCF 

fluorescence was determined after 6 h treatment of RBCs to 1-5 mM DEET. Fig. 7A,B 

shows that no significant increase in DCF fluorescence was observed between vehicle and 

5 mM-treated cells. As supportive evidence, the eryptotic activity of DEET was also 

examined in presence and absence of 1 mM of free radical scavenger NAC. As can be seen 

in Fig. 7C-E, DEET-induced PS exposure was not reversed by cotreatment with NAC. 

These findings suggest that DEET-induced eryptosis is not mediated through oxidative 

stress. 

DEET-induced  eryptosis  is  not  dependent  on   a   specific   signaling   pathway 

The role of signaling mediators is fundamental to various cellular functions and 

responses, most importantly cell survival. To dissect the involvement of signaling enzymes 

in DEET-induced PS exposure, cells were pretreated for 30 min with specific inhibitors 

and then exposed to 5 mM DEET for 6 h at 37°C. As seen in Fig. 8, DEET-induced PS 
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externalization is not significantly reduced in presence of respective inhibitors of caspases 

(100 µM Z-VAD(OMe)-FMK), p38 MAPK (50 µM SB203580), PKC (2 µM StSp), or 

CK1 (100 µM D4476). Furthermore, blockade of necroptosis mediators, RIP1 (100 µM 

Nec-1) and MLKL (1 µM NSA), have similarly failed to protect RBCs from DEET-induced 

cell death (Fig. 9). Collectively, our data indicate that DEET-induced suicidal RBC death 

does not require the activity of a specific cell death pathway. 

 

 
DISCUSSION 

 
DEET is considered the gold standard of insect repellents, and formulations containing 

DEET are more effective than those without it (Tintinalli and Stapczynski, 2011). 

Environmental and public health agencies encourage DEET use, and more consumption is 

indeed on the horizon (Chen-Hussey et al., 2014). Although no adverse effects on RBCs 

following DEET exposure have been observed in humans, reduced hemoglobin and 

hematocrit found in small-scale animal studies were either unreliable or not associated with 

DEET treatment (https://www.atsdr.cdc.gov/toxprofiles/tp185.pdf; 

https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+1582). In 

particular, DEET exposure was reported to increase RBC count in Cyprinus carpio fish 

(Slaninova et al., 2014). Nevertheless, our data show that DEET reduces human RBC 

lifespan by stimulating premature eryptosis, characterized by PS externalization, Ca2+ 

influx, and cell shrinkage. It must be stressed, however, that these observations were only 

evident at DEET concentrations that parallel those detected in the blood of individuals 

following accidental and suicidal exposure. Use of DEET at the recommended doses is, 

therefore, unlikely to be detrimental to erythrocyte health. 

http://www.atsdr.cdc.gov/toxprofiles/tp185.pdf%3B
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs%2Bhsdb%3A%40term%2B%40DOCNO%2B1582


199  

Although minimal, the statistically significant increase in hemolysis brought about by 

DEET suggests that the repellent is capable of inflicting direct membrane damage and 

eventual cell destruction. This hemolytic effect could be augmented in cases of enhanced 

RBC vulnerability such as diabetes, cancer, and hemoglobinopathies (Rytting et al., 1996; 

James and Meyers, 1998; Kato et al., 2017). Hemolysis leads to a spill out of cellular 

contents, most notably hemoglobin, which participates in both acute and chronic injuries 

to vital organs. Nitric oxide depletion and oxidative damage, hypertension, and vascular 

occlusion are consequences of circulating hemoglobin (Doherty et al., 1998). Prolonged 

presence of hemoglobin in the circulation eventually leads to endothelial dysfunction and 

atherosclerosis (Minneci et al., 2005; Nagy et al., 2010). When hemoglobin escapes the 

circulation, impaired hepatic iron metabolism, tubular injury and renal failure, and immune 

dysfunction may follow (Schaer et al., 2013). 

The central finding in this report is the ability of DEET to cause loss of the RBC 

membrane asymmetry culminating in PS externalization. The presence of PS on the outer 

membrane leaflet represents a binding site for receptors on phagocytes for elimination of 

defective RBCs (Niemoeller et al., 2006). Therefore, physiologic eryptosis may be 

perceived as an insurance policy safeguarding against hemolysis. However, excessive and 

premature RBC death, as observed in the case of DEET, may outweigh their rate of 

clearance, thereby leading to hemolysis and compromised tissue oxygenation. Similarly, 

inordinate RBC death may outpace erythropoiesis in the bone marrow eventually causing 

anemia (Lang et al., 2008). 

Recent efforts also recognize the effects of eryptosis on hemorheology. For RBCs to 

efficiently carry out oxygen transport, they must withstand mechanical forces in the 
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circulation, which requires extreme structural flexibility. This is mediated by remarkable 

deformability and aggregability of healthy erythrocytes which is significantly 

compromised in eryptotic corpses (Pretorius, 2018). The alterations associated with 

eryptosis limit the capacity of the RBC membrane to deform, leading to increased blood 

flow resistance, hemodynamic stasis, and ultimately reduced tissue perfusion (du Plooy et 

al., 2018; Pretorius, 2018). Moreover, eryptotic RBCs adhere to transmembrane CXC 

chemokine ligand 16 (CXCL16) present on vascular endothelial cells (Borst et al., 2012), 

which have been shown to be susceptible to the proangiogenic activity of DEET (Legeay 

et al., 2016). Thus, eryptosis may have ramifications beyond the development of anemia, 

which include vaso-occlusive thromboembolic lesions and ischemic injury. At the 

molecular level, DEET has been found to cause DNA damage in primary human nasal 

mucosal cells (Tisch et al., 2002), and to modulate transcriptional activities of metabolic, 

oxidoreductive, and signal transduction genes in primary human hepatocytes (Das et al., 

2008; Mitchell et al., 2016). 

Parallel to PS exposure, we have also detected significant cell shrinkage – a distinctive 

feature of eryptotic cells. Diminished cell size is thought to be a consequence of Ca2+ 

channel opening and the ion’s intracellular accumulation, an event also detected in our 

study (Fig. 4 & 5). The buildup of Ca2+ leads to opening of Ca2+-sensitive K+ channels, 

membrane hyperpolarization due to KCl efflux, water loss by osmotic forces, and cell 

shrinkage (Lang and Lang, 2015a). Presumably, smaller, eryptotic cells may facilitate 

engulfment and degradation by larger phagocytes thus expediting their clearance from the 

circulation. 

Calcium signaling is a major orchestrator of programmed cell death. Scramblases are 
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Ca2+-sensitive enzymes responsible for the bidirectional movement of phospholipids 

within the lipid bilayer. Accumulation of Ca2+ therefore impinges on scramblase regulation 

and leads to loss of membrane asymmetry (Weiss et al., 2012). Our experiments revealed 

an increase in Ca2+ as part of DEET-mediated eryptosis (Fig. 4), that was chiefly through 

influx from the medium (Fig. 5). Based on the dispensability of the ion to DEET-induced 

PS externalization (Fig. 6), other possible mechanisms leading up to membrane scrambling 

cannot be excluded. In this regard, DEET resembles the eryptotic behavior of caspofungin 

(Peter et al., 2016a), micafungin (Peter et al., 2016c), and exemestane (Al Mamun Bhuyan 

et al., 2017a). 

Oxidative stress is among the major manifestations of eryptotic cells, and a number of 

life-threatening conditions lie at the intersection of oxidative stress and enhanced eryptosis, 

most notably diabetes, hepatic failure, and malignancy (Bissinger et al., 2018). It has 

previously been demonstrated that ROS accumulation stimulates the activity of Ca2+- 

permeable cation channels and thus promotes intracellular Ca2+ overload with subsequent 

PS externalization (Lang et al., 2012). Also secondary to oxidative stress is caspase 

activation (Pretorius et al., 2016). Our data in Fig. 7 indicate that DEET-induced PS 

exposure occurs independently of oxidative stress as was observed for caspofungin (Peter 

et al., 2016a), micafungin (Peter et al., 2016c), anidulafungin (Peter et al., 2016b), and 

sclareol (Signoretto et al., 2016). It is worth mentioning that various endo- and xenobiotics 

have been shown to possess a protective role against eryptosis in part by counteracting 

oxidative stress (Lang and Lang, 2015b). 

In order to identify the molecular pathways through which DEET reduces the RBC 

lifespan, we have employed a series of small-molecule inhibitors to scan for signaling 
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mediators involved in two cell death pathways; eryptosis and necroptosis. Our attempts in 

this regard were not fruitful as DEET still exposed PS under inhibition of all major cell 

death pathways (Fig. 8 & 9). It may be, however, that DEET does not require the specific 

action of a signaling mediator, or that a prominent role of such a player only becomes 

apparent at a later point during cell death. Another possibility is that DEET may activate 

multiple pathways such that inhibition of one is still outweighed by others. 

In conclusion, this investigation identified DEET as a stimulator of erythrocyte 

membrane scrambling with concurrent cell shrinkage and elevated intracellular Ca2+ 

mainly through Ca2+ entry from the extracellular space. Recent analysis concludes that 

DEET is both more toxic and less efficacious compared to other repellents including IR 

3535, Picaridin, and oil of lemon eucalyptus (p-menthane-3, 8-diol; PMD) (Diaz, 2016; 

Tavares et al., 2018). In fact, the existence of a DEET-sensitive receptor makes it possible 

to devise potentially safer alternatives (Leal, 2014). Thus, combined with entomological 

and epidemiological studies, examination of the biochemical and molecular interactions of 

current DEET competitors, Picaridin, IR 3535, and essential oils, and new repellents (e.g., 

ethyl anthranilate (Islam et al., 2017), is particularly warranted. 
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FIGURE LEGENDS 

 

Figure 1. DEET induces minor hemolysis. (A) Molecular structure of DEET. (B) RBCs 

were exposed to 1-5 mM DEET for 6 h at 37°C after which the supernatant was 

spectrophotometrically tested for hemoglobin content at a wavelength of 405 nm. Data are 

means + S.E.M. (n = 9). *(P < 0.05) indicates significant difference from vehicle-treated 

cells (ANOVA). 

 

Figure 2. DEET stimulates PS exposure. (A) Representative histograms showing 

Annexin-V-FITC fluorescence of RBCs treated with either the vehicle or 1-5 mM DEET 

for 6 h at 37°C. (B) Overlay histogram showing Annexin-V-FITC fluorescence by vehicle 

and 5 mM DEET-treated RBCs. (C) Arithmetic means + S.E.M. (n = 9) of the percentage 

of cells bound to Annexin-V following exposure either to the vehicle or to 1-5 mM DEET 

for 6 h at 37°C. ***(P<0.001) indicates significant difference from the absence of DEET 

(ANOVA). 

 

Figure 3. DEET reduces forward scatter. (A) Overlay histogram showing FSC of RBCs 

treated with the vehicle (grey peak) and those with 5 mM DEET (orange peak) for 6 h at 

37°C. (B) Arithmetic means + S.E.M. (n = 9) of mean FSC values for cells exposed to the 

vehicle or to 1-5 mM DEET for 6 h at 37°C. *(P < 0.05) indicates significant difference 

from vehicle-treated cells (ANOVA). (C) Arithmetic means + S.E.M. (n = 9) of the 

percentage of cells, exposed to the vehicle or to 1-5 mM DEET for 6 h at 37°C, with mean 

FSC of <200. (D) Arithmetic means + S.E.M. (n = 9) of the percentage of cells, exposed 

to the vehicle or to 1-5 mM DEET for 6 h at 37°C, with mean FSC of >400. *(P < 0.05) 

indicates significant difference from vehicle-treated cells (ANOVA). 
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Figure 4. DEET increases intracellular Ca2+ levels. (A) Representative histograms 

showing Fluo3 fluorescence of RBCs treated with either the vehicle or 1-5 mM DEET for 

6 h at 37°C. (B) Overlay histogram showing Flou3 fluorescence by vehicle and 5 mM 

DEET-treated RBCs. (C) Arithmetic means + S.E.M. (n = 9) of mean Fluo3 fluorescence 

by RBCs exposed to the vehicle or to 1-5 mM DEET for 6 h at 37°C. ***(P<0.001) 

indicates significant difference from the absence of DEET (ANOVA). 

Figure 5. Effect of extracellular Ca2+ removal on cytosolic Ca2+ levels. (A) Overlay 

histogram showing Fluo3 fluorescence of RBCs exposed to the vehicle only (black line) or 

to 5 mM DEET (turquoise line) in Ringer solution for 6 h at 37°C. (B) Overlay histogram 

showing Fluo3 fluorescence of RBCs exposed to the vehicle only (black line) or to 5 mM 

DEET (green line) in Ca2+-free Ringer solution for 6 h at 37°C. (C) Arithmetic means + 

S.E.M. (n = 9) of mean Fluo3 fluorescence by RBCs exposed to the vehicle or to 1-5 mM 

DEET for 6 h at 37°C in presence and absence of extracellular Ca2+. ***(P <0.001) 

indicates significant difference from the absence of DEET. ##(P <0.01) indicates 

significant difference from the corresponding treatment condition in presence of Ca2+
 

(ANOVA). 

Figure 6. Effect of Ca2+ removal on PS externalization. (A) Overlay histogram showing 

Annexin-V-FITC fluorescence of RBCs exposed to the vehicle (black line) only or to 5 

mM DEET (purple line) in Ringer solution for 6 h at 37°C. (B) Overlay histogram showing 

Annexin-V-FITC fluorescence of RBCs exposed to the vehicle only (black line) or to 5 

mM DEET (pink line) in Ca2+-free Ringer solution for 6 h at 37°C. (C) Arithmetic means 

+ S.E.M. (n = 9) of the percentage of cells bound to Annexin-V following treatment with 
 

the vehicle or with 1-5 mM DEET for 6 h at 37°C in presence and absence of extracellular 
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Ca2+. ***(P <0.001) indicates significant difference from the absence of DEET (ANOVA). 

 

(D) Overlay histogram showing Annexin-V-FITC fluorescence of RBCs exposed to the 

vehicle only (black line) or to 5 mM DEET (blue line) for 6 h at 37°C. (E) Overlay 

histogram showing Annexin-V-FITC fluorescence of RBCs pretreated with 50 µM 

BAPTA-AM for 30 min at 370C and then exposed to the vehicle only (black line) or to 5 

mM DEET (rose line) for 6 h at 37°C. (F) Arithmetic means + S.E.M. (n = 9) of the 

percentage of cells bound to Annexin-V following treatment with the vehicle or with 1-5 

mM DEET for 6 h at 37°C without and with BAPTA-AM pretreatment. ***(P <0.001) 

indicates significant difference from the absence of DEET (ANOVA). 

Figure 7. Lack of oxidative stress in DEET-induced PS externalization. (A) Overlay 

histogram showing DCF fluorescence of RBCs exposed to the vehicle only (black line) or 

to 5 mM DEET (green line) in Ringer solution for 6 h at 37°C. (B) Arithmetic means + 

S.E.M. (n = 9) of DCF fluorescence following treatment with the vehicle or with 5 mM 

DEET for 6 h at 37°C. ns (P >0.05) indicates insignificant difference from the absence of 

DEET (t-test). (C) Overlay histogram showing Annexin-V-FITC fluorescence of RBCs 

exposed to the vehicle only (black line) or to 5 mM DEET (red line) for 6 h at 37°C. (D) 

Overlay histogram showing Annexin-V-FITC fluorescence of RBCs exposed to the vehicle 

only (black line) or to a combination of 1 mM NAC and 5 mM DEET (turquoise line) for 

6 h at 37°C. (E) Arithmetic means + S.E.M. (n = 9) of the percentage of cells bound to 

Annexin-V following treatment with the vehicle, NAC, 5 mM DEET, or following 

cotreatment with NAC and 5 mM DEET for 6 h at 37°C. ***(P <0.001) indicates 

significant difference from the absence of DEET (ANOVA). 
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Figure 8. Effect of eryptosis inhibitors on DEET-induced PS exposure. (A-E) Overlay 

histograms showing Annexin-V fluorescence of RBCs exposed for 6 h at 37°C to the 

vehicle only (black line) or to 5 mM DEET without (red line, A) or with pretreatment for 

30 min with 100 µM Z-VAD(OMe)-FMK (purple line, B), 2 µM StSp (orange line, C), 100 

µM D4476 (blue line, D), or 50 µM SB (green line, E). (F) Arithmetic means + S.E.M. (n 

= 9) of the percentage of cells bound to Annexin-V following treatment for 6 h at 37°C 

with the vehicle or 5 mM DEET with and without pretreatment with Z-VAD(OMe)-FMK, 

StSp, D4476, or SB. ***(P <0.001) indicates significant difference from the absence of 

DEET (ANOVA). 

Figure 9. Effect of necroptosis inhibitors on DEET-induced PS exposure. (A-C) 

Overlay histograms showing Annexin-V fluorescence of RBCs exposed for 6 h at 37°C to 

the vehicle only (black line) or to 5 mM DEET without (blue line, A) or with pretreatment 

for 30 min with 100 µM Nec-1 (rose line, B) or 1 µM NSA (pink line, C). (D) Arithmetic 

means + S.E.M. (n = 9) of the percentage of cells bound to Annexin-V following treatment 

for 6 h at 37°C with the vehicle or 5 mM DEET with and without pretreatment with either 

Nec-1 or NSA. ns (P >0.05) indicates insignificant difference. ***(P <0.001) indicates 

significant difference from the absence of DEET (ANOVA). 
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Figure 9 



 

CHAPTER VI: SUMMARY 

 

 

The studies presented herein collectively support the following conclusions: (1) 

TCS is an effective antileukemic agent, evident by its pro-apoptotic properties 

demonstrated against BL cells in vitro; (2) TCS has a potent hemolytic and eryptotic 

potential against human RBCs; and (3) TCS is susceptible to inactivation by noncharged 

detergents often present in drug formulae as excipients. 

In chapter II, TCS was demonstrated to induce apoptosis in blood cancer cells, 

which is a very common action mechanism of chemotherapeutic drugs. At the molecular 

level, TCS disrupts the cell membrane permeability, leads to cytosolic Ca2+ overload, 

which in turn causes loss of membrane asymmetry, activates caspase, and induces 

systematic DNA fragmentation. In parallel, TCS interferes with antioxidant enzyme 

expression leading to excessive ROS accumulation and oxidative stress. This redox 

imbalance similarly stimulates caspase activity and JNK signaling; two pathways that were 

shown to be essential for TCS-induced apoptosis in Burkitt lymphoma cells. Of particular 

interest is the ability of TCS to favorably modulate the transcriptional regulation of survival 

genes (e.g., BCL2) that are common pharmaceutical targets in existing chemotherapies. 

Our study on TCS influence on RBC survival identified the antimicrobial as both 

pro-hemolytic and pro-eryptotic. Mechanistically, TCS was found to inflict direct 

membrane damage resulting in profound hemolysis, and cause a breakdown of membrane 

asymmetry culminating in phosphatidylserine externalization. As is the case with 

lymphoma cells, TCS increased cytoplasmic Ca2+ levels, but, conversely, was not pro- 

oxidative in erythrocytes. Employing a small-molecule inhibitor screening approach, we 
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were able to discern the indispensable roles of p38 MAPK and RIP1 as essential 

requirements for TCS-induced eryptosis. These findings suggest that caution with TCS use 

must be exercised given its potential contribution to the development of chemotherapy- 

induced anemia in cancer patients. Chapter IV unequivocally showed that nonionic 

detergents act as antagonists of TCS in vivo most likely through micellar solubilization. 

This is significant as noncharged detergents are incorporated as excipients in drug 

formulations which must be taken into consideration for drug development. 

Building on present observations, future efforts must be directed toward identifying 

whether or not TCS effects described herein and elsewhere are reciprocated in highly 

relevant animal models. Equally important is the identification of molecular and cellular 

mechanisms modulated by TCS in human-based systems (reviewed in chapter I). The 

advent of nanotechnology and monoclonal antibody-based therapies, along with the 

discovery of miRNA regulators similarly paves the way to numerous opportunities to 

further exploit TCS for therapeutic or prophylactic purposes. 
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