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 Age-associated cognitive decline (AACD) is a natural part of life. The difference between 

malignant and benign AACD can be difficult to determine in the early stages of dementia. Many factors 

affect an individual’s brain changes throughout their life; therefore, the detection of dementia 

commonly requires longitudinal studies. By the time the symptoms of dementia manifest the damage to 

one’s central nervous system is irreversible. The investigation of biomarkers for the early detection of 

dementia is ongoing.  Electroencephalogram (EEG) research, along with other neuroimaging and clinical 

testing, has shown that it is possible to detect subtle changes to the central nervous system before the 

onset of behavioral changes due to dementia. In this research, a sequential imaging oddball paradigm 

that utilizes upright and inverted familiar and unfamiliar faces were used to scrutinize the effect of facial 

inversion throughout healthy adult aging. The results indicate that late event-related potentials such as 

the P300 and late positive potential may be biomarkers for the tracking of age-related changes. 

Additionally, it may be concluded that the oddball paradigm is not the optimal way to elicit the face 

inversion effect. Further research is recommended in order to develop conclusions which could not be 

determined due to limited population and sample size. 
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CHAPTER 1: Introduction 

 Aging is a cardinal feature. Many factors affect aging-related physiological changes that 

individuals experience. For example, heavy cigarette and alcohol consumption can cause internal bodily 

stresses that may enhance the effects of aging. On the other hand, having an active lifestyle and healthy 

diet may prolong some of the negative effects of aging. The topic of aging has been a significant field of 

research for many years, utilizing a variety of methods for measuring the effects due to aging. By 

understanding how the body changes under normal aging conditions, it may become possible to detect 

the early onset of dementia or other malignant, age-related conditions. The information presented in 

the introduction is essential for the critical analysis of the background, results, and conclusions of this 

research. 

1.1 Age associated cognitive decline  

 Performance in cognitive and physical tasks reach a maximum in early adulthood and then 

performance on the majority of those tasks declines throughout senescence [1]. The first widely 

accepted claim suggesting a distinction between malignant and benign aging was made in 1962 [2]. The 

claim suggested that malignant aging resulted in dementia and early death while benign aging was 

relatively static. The original claim was not operationally defined but was widely supported by workers 

in the geriatrics discipline. The National Institute of Mental Health began work to develop criteria for the 

age-associated memory impairment which finally made its way into the DSM-IV as Age-Associated 

Cognitive Decline (AACD) [2]. The diagnostic criteria of which have been defined as such [2]: 

(1) The individual or a trusted companion must have noticed cognitive decline. 

(2) Onset of decline must be gradual and constant over at least a 6-month period. 



 
 

2 
 

(3) Any reported difficulties with the following: memory and learning, concentration and 

attention, thinking (problem solving, etc), language (word finding, comprehension), and 

visuospatial function. 

(4) Performance on quantitative cognitive assessments (for which there are age and education 

norms available for healthy individuals) must be at least 1 standard deviation below mean value 

for the appropriate population. 

(5) Exclusion criteria: "None of the abnormalities listed above is of sufficient degree for a 

diagnosis of mild cognitive disorder or dementia to be made." Other exclusion criteria would be 

as follows: (a) depression, anxiety, or other significant psychiatric disorders that may contribute 

to observed difficulties; (b) organic amnestic syndrome; (c) delirium; (d) postencephalitic 

syndrome; (e) postconcussional syndrome; (f) persisting cognitive impairment due to 

psychoactive substance use or the effects of any centrally acting drug. 

 Currently, the cause and effects of aging remains a significant and important field of research. 

Aging has been related to the deterioration of numerous biological systems and functions in the human 

body [3]. The underlying cause of senescence has been shown to entail changes in cellular metabolism, 

cell structure, cell-matrix interactions, neurotransmitter systems, and the rate and accuracy of DNA 

replication [3]. Further research has shown that the functional decline of mitochondria and stem cells 

during aging is related to the shortening of telomeres [4]. Telomeres are a structure at the end of each 

chromosome that is believed to be responsible for protecting genetic information during and after 

mitosis. The effects of telomere shortening were found to cascade and manifest as macro-scale issues 

such as oxidative stress, cancer, and functional decline of major organs (e.g. brain, liver, heart) [4]. It 

appears as if these biological functions can be influenced by interactions among genetics, environmental 
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and social factors [1]. However, there are those that think of aging as a disease that can be treated with 

pharmacologic interventions [4]. 

 Apart from cellular studies, macro-scale imaging methods such as functional (blood oxygen level 

dependent) magnetic resonance imaging (fMRI), MRI, and positron emission tomography (PET) have 

been used to investigate physiologic changes due to aging. In the systematic review by M. N. Rajah et al 

(2005), it was found that working and episodic memory abilities, which are related to the prefrontal 

cortex (PFC), declined in elders [3]. This phenomenon is believed to be related to the observed deficits in 

the right dorsal and anterior PFC, along with changes to the bilateral ventral PFC. As a result, functional 

compensation in left dorsal and anterior PFC may occur [3]. That review was consistent with other 

research studies that utilized fMRI and PET. For example, R. Cabeza et al (2002) showed similar working 

memory changes throughout aging with fMRI and PET, and that the PFC activity tends to be less 

asymmetric in older than younger adults [5]. The discussed neuroimaging studies are consistent with 

previous psychometrics of behavioral performance, shown in Fig 1. 

 While MRI, fMRI, and PET remain as part of the gold standard in clinical brain imaging, their 

relatively low temporal resolution (1-10 s) does not always allow for the distinction of the temporal 

order of events [6]. Aside from the high cost of use and poor temporal resolution, fMRI, MRI, and PET 

have relatively high spatial resolution (1-10 mm). While current medical imaging techniques are 

impressive, they still lack the signal to noise ratio (SNR) and spatial resolution required for non-invasively 

visualizing changes on a neuronal scale (1-10 μm) [R. M. Natasha]. Some researchers have chosen EEG to 

address the issues presented by other neuroimaging methods. EEG boasts a relatively high temporal 

resolution (1 ms), which allows for the investigation of the temporal order in which brain areas are 

activated [6].  A tradeoff of EEG is the significantly lower spatial resolution (~1 cm) and issues with 

imaging deep into the brain [7]. With regards to cost, fMRI MRI, and PET have a high principle (~1 million 
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USD) and high annual upkeep (100,000-300,000 USD) in comparison with EEG; costs of which can be as 

low as 10,000 USD, but get more expensive with high-density arrays, and have minimal maintenance 

costs across the lifetime of the device [7]. 

 

Figure 1. Behavioral manifestation of neurological changes due to aging [8]. 

 Distinguishing benign and malignant AACD from dementia remains a common research problem 

for many; therefore, guidelines have been set by the National Institute on Aging for ideal biomarkers. 

The ideal biomarker will be relatively uncomplicated to use, simple in design and implementation, and 

inexpensive [9]. It is believed that EEG may hold the key for these biomarkers, as it is cheaper to 

purchase, easier to maintain, and relatively simple to administer in comparison to other neuroimaging 

methods. However, the issue of identifying reliable biomarkers remains largely investigational. It is 

known that there are many differences between young and old EEG recordings under various 

conditions, which will be discussed in greater detail in Chapter 2 [10]. EEG studies of face perception 

have been widely investigated and suggested as a reliable source of biomarkers [11]. It has been shown 

that there can be statistically significant effects on preconscious face perception when EEG recordings of 
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old and young are compared [12]. Manipulations to the faces, such as scrambling, color inversion, and 

rotation are also different between young and old individuals [13][12]. Therefore it is believed that a 

trend may exist that shows electrophysiological changes in featural facial perception across the 

spectrum of healthy adult aging.  

1.2 The Electroencephalogram 

 The recording of oscillations of brain electric potentials on the human scalp was first 

investigated by Hans Berger in the 1920s and was referred to as electroencephalography [14].  Berger’s 

invention has led to the recording of electrical potentials on the surface of the brain, which is referred to 

as the surface EEG (sEEG) or electrocorticograms (EcoG). The standard scalp EEG is sufficient to provide 

large-scale and robust measures of neocortical dynamic function, and a single electrode can provide 

estimates of synaptic activation averaged over tissues masses containing roughly 100 to 1,000 million 

neurons. Many clinical applications of EEG have since been developed, such as measurements for the 

severity of schizophrenia, epilepsy, autism, and Alzheimer’s disease (AD) [15][16][17][18]. 

1.2.i Signal Source  

 The electrical activity on the scalp recorded by EEG is largely due to the excitatory postsynaptic 

potentials of synchronized neocortical pyramidal cells. The brain areas that are responsible for the EEG 

signal are thought to be areas of higher order processing that are only activated when deep brain 

structures relay to them [19]. In mammals, the nervous system is divided into two main organizational 

groups: the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS has three 

major structures: the brain stem, the cerebellum, and the cerebrum, shown in Fig 2 [20]. The brain stem 

is made of the spinal cord, medulla, and pons and is responsible for basic living functions such as 

breathing and allowing the CNS to communicate with the PNS, i.e. the rest of the body. The cerebellum 

is a highly dense and uniquely organized structure that is largely responsible for fine motor control. The 
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cerebrum is by far the largest structure in the brain. Smaller brain areas, such as the midbrain and 

diencephalon contain “relay stations,” such as the hippocampus, entorhinal cortex, thalamus, and 

hypothalamus that contain many projections to other brain areas, primarily the cerebrum [21]. Medical 

professionals have concluded that the EEG signal is unable to reliably measure these deep brain areas, 

and the EEG signal is largely limited to the cortical surface, which is composed primarily of vast branches 

of the apical dendrites from pyramidal cells [21]. 

 Scalp recordings are subject to several sources of noise as well as signal blurring due to volume 

conduction issues. Recording of noise from non-brain areas has been referred to as artifacts. Artifacts in 

EEG can include the electrical activity of muscles (eyes, tongue, face, neck, etc.), movement of the EEG 

electrodes, environmental noise (60 Hz lights, thermal changes), as well as electrical noise from the EEG 

amplifiers [21]. These artifacts can manifest as amplitude bursts in the EEG recording, or they can 

manifest as line noise that is constant throughout the entire recording. Electrical recordings of brain 

activity on the scalp are direct measures of brain function; albeit the brain signal must travel through 

seven layers of tissue to reach the scalp [14]. That electrical signal will be blurred, or spread out, as the 

voltage propagates through each layer due to conductivity, density, and volume changes. Volume 

conduction is a fundamental issue in EEG and the result is spurious coupling between electrodes due to 

common sources influencing two or more electrodes and producing apparently synchronous activity 

[20]. 
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Figure 2. Sagittal cross-section of the human brain. [22] 

 An individual neuron’s activity contributes very little to the resultant EEG signal. It is the 

summed activity of clusters of neurons, specifically postsynaptic potentials, which get measured by EEG, 

shown in Fig 3. The cortical surface is where most of the brain’s gray matter is found, which is primarily 

myelinated neuron dendrites. The myelination causes the presynaptic current to be quick and 

quadripolar, which results in a cancellation of the measured signal from the neuron. On the other hand, 

the postsynaptic axonal current is unidirectional and is relatively slow (unmyelinated), thus allowing 

clusters of postsynaptic currents to sum above the minimum detectable voltage [20]. 

 

Figure 3. Presynaptic (left) and postsynaptic (right) currents. The presynaptic current is quadripolar and 
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quick, which make it difficult to measure. The postsynaptic current is relatively slow, which causes a 

summation effect in the dendrite. [22] 

1.2.ii EEG Circuit, Electrodes, and 10-20 

 The EEG is similar to other biopotential measurements. It is a differential circuit with reference 

and ground electrodes placed on symmetric locations where no brain activity is present; such as the ear 

lobes, mastoids, or nostrils [21]. EEG electrodes can be either wet or dry. Wet electrodes require a 

conductive electrolyte gel to be applied to the scalp which improves electrode SNR and impedance; 

while dry electrodes may be capacitive or have arrays of prongs (i.e. spikes) that are in direct contact 

with the scalp [23]. Each electrode measures the difference between one channel and the average of all 

other electrodes [14]. For the purpose of this research, dry electrodes will be used, due primarily to 

availability. 

 Dry EEG electrodes are commonly made with tin alloys, gold alloys or silver/silver-chloride 

alloys, and may come in a variety of shapes and configurations, example in Fig 5. Scalp data are largely 

independent of electrode size due to volume conduction, although the electrode layout is critical [20]. 

The international 10-20 system is a standardized method for determining electrode placements, Fig 6 

[21]. The first letter is in respect to the anatomic location, e.g. P for parietal, O for occipital, while the 

numbers dictate the distance from the sagittal plane. 

 

Figure 4. Example of dry gold-plated EEG electrode, the g.SAHARA. 
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Figure 5. International 10/20 EEG electrode placement system. The letters represent anatomical 

sections, e.g. frontal, central, parietal, and occipital, while the letters represent distance from the 

sagittal plane. (a) Top view for a modified 21 electrodes plus reference (Pg1, A1, A2). (b) Left side view of 

symmetric electrodes [21]. 

 The 10-20 system has been adjusted to fit anywhere from 16 to 256 electrodes, and each 

different configuration is referred to as a montage of electrodes. The density of the montage can help by 

estimating the signal at a noisy electrode, source localization calculations, and higher resolution scalp 

current density mapping, to be discussed in subsequent sections [24].  

1.3 Event-related potentials  

 There are many experimental designs for EEG studies; such as assessing power and spectral 

changes over time during different experimental conditions, or assessing the temporal order of events in 

response to stimuli. The recording of the brain’s time-locked response to sensory stimuli is referred to as 

event-related potentials (ERPs) [25]. The event-related potential (ERP) is composed of various peaks and 

troughs that are named after their time signature and amplitude. For example, a positive deflection 
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point at about 300 ms is called P300, while a negative deflection point at about 200 ms is called N200. It 

has been widely accepted that the earlier (< 300 ms) ERP components reflect exogenous characteristics 

of the stimuli (e.g. volume, luminescence) while later ERP components are dependent on the mental 

operation being performed on the stimuli [23]. One of the most well understood paradigms for eliciting 

reliable ERPs is the oddball paradigm, first documented by Sutton et al in 1965 for the investigation of 

uncertainty and lie detection [27]. The oddball paradigm is dependent on a rare and unpredictable 

target stimuli interspersed with distractor stimuli. Subjects are instructed to focus on and respond to the 

target by either mentally counting or physically responding with various cues, such as finger or toe 

movements [28]. The oddball can elicit many different ERP components that are dependent on the 

stimuli, and many other ERP paradigms exist that can elicit other ERPs as well; although for the purpose 

of this experiment the following ERP components must be understood. 

1.3.i N170 and FIE 

 The human brain has a specialized area simply for the processing of human faces and is called 

the fusiform face area (FFA) [29]. In EEG studies there is an ERP signature specific to that region of 

interest called the N170 [11]. The typical N170 is about -5 μV and within 150 to 250 ms after stimulus 

onset and is maximal for normal upright human faces [11]. The N170 has been linked specifically to the 

processing of human faces or face like objects and familiarity has no influence on latency or amplitude 

[30].Clinical investigations of the N170 have shown that featural changes to faces (e.g. scrambled, size 

miss-match, color changes) along with configural changes (e.g. rotations, relative shapes/locations) can 

impact the N170 signature [11][31]. A common configural change that has yielded consistent results 

across research groups is the 180 degree rotation, or the inversion, of faces [32].  

 When the human brain is shown an inverted image it causes the brain to work harder; i.e. an 

increase in working memory, thus increasing the time to process the image [32]. This change in working 
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memory load and processing power has been referred to  as the face inversion effect (FIE). The N170 

was the first ERP component to be investigated for the FIE [13]. For inverted images the N170 was more 

negative which peaked about 7 ms later than for upright faces [13]. Again, the FIE feature was more 

consistent for complete face images as opposed to objects, face components, and scrambled face 

images. The FIE was quantified as the different between the upright and inverted ERP, but has since 

been investigated with more holistic processes [13][12]. 

1.3.ii P300 

 Cognitive processes such as reading, driving, or having a conversation are largely dependent 

upon one’s ability to direct their attention. The ERP component that best reflects this ability is the P300, 

which is found maximally along the longitudinal fissure in response to rare, anticipated stimuli [27]. The 

oddball paradigm has been a reliable method of eliciting two types of P300, the P3a and P3b. When the 

oddball paradigm includes distractor stimuli that are about as frequent as the target stimuli, the 

distractors can elicit a slightly different P300, called the P3a, while the target stimuli elicit the larger, 

broader P3b [33]. For the purposes of this research, the P3b shall be referred to as P300. The amplitude 

of the P300 has been related to attentional resource allocation when memory updating is engaged, is 

typically larger for salient stimuli, and requires the stimuli to be presented for 50 to 3000 ms [34][25]. 

The P300 latency is dependent on the time required to categorize the stimulus; therefore, more 

complex stimuli and attention tasks prolong its latency [25]. Research on the P300 has included the 

effects of mind-altering substances, tracking neurodegenerative diseases, and applications in brain-

computer interfaces [28]. 

1.3.iii N400 

 In respect to faces, objects, and words, the ability to retrieve semantic information is 

imperative. ERPs have been used in the investigation of semantic and episodic memory retrieval and 
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updating. Semantic processing demands have been related to the frontal-central N400 ERP component 

[26]. The N400 has been demonstrated across recognition memory paradigms at bilateral frontal 

electrode sites around 300 to 500 ms and has a larger amplitude when familiar faces, words, objects, or 

tones are presented [35][36]. The N400 has also been modulated by configural changes in familiar and 

unfamiliar recognition paradigms. When the object, word, or person to be recognized is inverted, the 

N400 was shown to decrease in amplitude and increase in latency [37]. One could suggest that an 

increase in working memory load also impacts the N400. 

1.3.iv LPP 

 As stated earlier, later ERP components generally reflect higher order processing demands and 

are largely dependent on the experimental condition and task. The late positive potential (LPP) has been 

referred to as the “parietal old/new effect” and can occur between 500 to 1000 ms post stimulus onset 

[35]. The LPP may be referred to as the P500, P600, P700, and so on. In respect to recognition, the LPP is 

believed to reflect the semantic recall/recognition, and is maximal for correctly recalled stimuli at 

centro-parietal locations [35][26]. Modulations to the LPP have been demonstrated for repetition; the 

LPP amplitude and latency will decrease when familiar stimuli are correctly recalled multiple times in a 

row [38]. Configural changes to familiar stimuli, such as inversion, also modulate the LPP by decreasing 

the amplitude and increasing the latency, while also introducing a false-positive for recognition effects 

[37].  



 
 

 
 

CHAPER 2: Background Literature Review 

 Treatment of AD would benefit greatly from effective biomarkers for presymptomatic or 

preclinical stages of AD. The beginning mechanisms of AD are still not clearly understood; however, it is 

known that amyloid beta accumulation and synaptic dysfunction are among the first assay biomarkers 

to be known [9]. Autopsies have shown that the buildup of amyloid beta plaques and tau fibrillary 

protein dysfunction can occur before the manifestation of behavioral deficits [9]. In the vast majority of 

cases, the variance in dementia severity could be accounted for by neuron density and presynaptic 

changes [26]. There are researchers that believe it is possible to detect these subtle neuronal changes 

via EEG before the onset of dementia symptoms [39]. Trends in EEG recordings for aging, MCI, and AD 

all follow a similar pattern at varying intensities. That is, a slowing of the EEG signal, reduced complexity 

of the signal, and pertubations in EEG synchrony [10]. These trends can manifest in several forms which 

are dependent on the EEG paradigm in question; although it is important to note that EEG research 

tends to have large variability among patients, specifically with dementia [10]. Because of this, it is 

currently difficult to reliably identify EEG biomarkers indicating the early onset dementia. 

 Slowing of the EEG signal can present themselves in two different ways: ERP components have 

increased latency and the fundamental frequencies are lower [10]. This is true for event-related spectral 

perturbations (ERSP) and event-related synchronization (ERS) and desynchronization (ERD) as well. 

Reduced complexity of the EEG signal has the following implications: there are less neural circuits 

involved in processing stimuli when compared to youth and the neural processing is more lateralized 

(symmetric) [38]. Reduced synchrony measures suggest a decrease in coherence, as it were, a decrease 

in communications between neural circuits [38]. These trends in EEG into senescence are exaggerated 

for dementia; although reproducing these results for discriminating AD patients from age matched 

controls remains difficult [40].  
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 Several ERP components have been scrutinized for changes due to senescence and dementia. In 

elders the N170 is not lateralized, while in youth it is right lateralized; although there are not always 

significant changes in N170 amplitudes due to aging [32][12]. The FIE in elders has also been shown to 

be attenuated; elders had no amplitude differences when compared to youths, but had similar latency 

changes as youth [12]. For AD and MCI, the FIE is commonly absent across many ERP components 

(N170, P300, N400, P600) [18][31]. This may be due to neural circuitry differences between elders and 

young adults. It has been argued that elders have different processing of faces altogether when 

compared to youth. Rossion et al (2008) argued that elders use a more holistic approach when 

processing faces, that is to say that their perception is most dependent on the ability to perceive 

simultaneous multiple features of a face as a whole [41]. Eye tracking studies have supported this 

notion; children and adolescents tend to have more featural processing of faces [42][43]. 

 As discussed earlier, increased aging suggests decreased mental capacity and working memory.  

As one may expect, ability to engage in mentally demanding tasks decreases with increased age [1]. This 

phenomena has been related to P300 amplitude and latency. P300s follow the trend that mental 

performance ability improves until early adulthood, at which point it slowly begins to decline into 

senescence [44]. Results from the critical analysis by Dinteren et al (2014) on P300s throughout aging 

are summarized in Fig 6 and 7; of which follow the mental performance trends identified by many 

behavioral psychologists [1][8]. These age related changes in performance ability and speed are 

analogous to white matter integrity [44]. For healthy young adults, the FIE for P300s is manifest as an 

increase in latency and decrease in amplitude; these changes are missing in demented patients and are 

commonly diminished in age matched elders [18][28].  
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Figure 6 Regression analysis of P300 latencies throughout the lifespan [44]. 

 

Figure 7 Regression analysis of P300 amplitude throughout the lifespan [44]. 

 

 Aging’s effects on familiarity ERPs has also been scrutinized. When elders are compared to 

youth groups, it is typical that familiarity is slower to recall; albeit face processing may be quicker or 

about the same [45]. In a study conducted by Galdo-Alvarez et al that investigated face processing of 

correctly recalling famous faces compared, a group of elders (60-81) and young adults (19-24) were 
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compared [37]. The study used a subjective measure of recognition that seemed to be correlated with 

familiarity ERP responses. Subjects were shown 200 images of famous faces and were instructed to 

respond with one of four possible button presses: (1) definitely know name and profession, (2) 

recognize but do not recall name, (3) unsure if familiar, and (4) definitely do not know. The results 

showed strong N400/P600 pairs for both groups in response to one and two button presses; however, 

the option one and two button presses were different (higher amp for one) for the young group but not 

for the elders. Additionally, the P600s amplitudes were consistently lower for elders than the young 

group. The FIE was also investigated in this study, and the results showed weakened amplitudes and 

increased latencies for the young group but no discernable N400/P600 ERP components for elders [37]. 

The results of that study suggest that advanced age can impair one’s ability to correctly recognize and 

recall information about a familiar person, which can be inferred based on the AACD theory [2].  

 In a similar study on familiarity by Saavedra et al, a familiar vs unfamiliar face recognition task 

was given to a group of young adults (20-37) [30]. The faces used were gray scale and matched 

controlled for luminescence, although there was one trial where faces were emotional (happy, sad) and 

the second trial with emotionally neutral faces. It was found that both trials elicited posterior temporal 

N170s and was modulated by the perception of facial emotional expression, as it were, higher amplitude 

for happy and lower for sad faces [30]. Additionally, several groups have reported repetition effects for 

the N170 in response to faces. An N250 is apparent when learned face images are repeatedly shown 

[30][46].  

 The culmination of this research can be succinctly stated as follows: elders have had more time 

to use their brains and prune unnecessary synapses, so one may assume their brains can be fine-tuned 

to optimally perform simple operations that young adults may still do faster, yet less efficiently. Of all of 

the research discussed, none of these researchers have examined the FIE throughout aging; only as a 

comparison between young and old. The face familiarity effects were shown to manifest as increased 
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P300, N400, and P600 amplitudes with minimal effects to latency. The FIE was shown to increase N170 

amplitude and latency while reducing P300, N400, and P600 amplitudes yet increasing their respective 

latencies. The research by Li et al showed face images can be used to distinguish between healthy aging, 

MCI, and AD; albeit with a small sample size. There exists the possibility that face images hold additional 

biomarkers that require scrutinizing. 



 
 

 
 

CHAPER 3: Research Problem 

3.1 Specific Aim 

 The specific aim of this research was to scrutinize the FIE differences across healthy adult aging 

with a unique paradigm. The suggested paradigm incorporates visually evoked ERPs where stimuli 

include three types of visual cues such as familiar faces, unfamiliar faces, and objects. What makes the 

paradigm unique is that it has less total image presentations than other paradigms used in research, 

although the inter-stimulus interval, image presentation times, and methods remain consistent with 

modern literature. The success of this research may obviate the need or reduce the time for longitudinal 

study to diagnose early onset malignant AACD such as MCI and AD by introducing new biomarkers that 

can be used with classification techniques. Advanced machine learning techniques may be applied in 

future research for further scrutiny of the recorded ERPs.  

3.2 Rationale 

 Current diagnostic tools for AD and MCI begin with a cognitive exam, such as the Montreal 

Cognitive Assessment (MoCA); however, the exams may be subjective and are only required if 

behavioral changes have been consistently evident for prolonged periods of time [2][Z. Nasreddine]. If 

the cognitive assessment score suggests malignant AACD, then a follow up test such as spinal tap, fMRI, 

and/or PET will be conducted to quantify the physiological progression of dementia. Behavioral 

symptoms of MCI and AD are only present when irreversible damage has been done to the CNS [9]. If a 

fast, non-subjective, and easily quantifiable screening method could be employed regularly at doctor’s 

visits for elderly patients, it is possible that clinical intervention could begin before the onset of 

malignant AACD. 

 Research has shown the potential of EEG to detect signs of dementia before onset of behavioral 

changes in the form of spectral changes and ERPs [39][48]. It is believed that well-known ERP 
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components, such as the N170, P300, N400, and LPP that have been compared between young and old 

groups can be used as biomarkers for early identification of MCI. This researcher team is unaware of any 

researchers that have investigated the FIE across the entire aging spectrum in a single study; albeit the 

FIE has been examined in multiple studies in children, adolescents, young adults, and elders. The goal of 

this research was to scrutinize the FIE across aging to determine if a trend similar to age-related changes 

in P300s exists. This could lead to the identification of possible biomarkers for the early detection of 

MCI.



 
 

 
 

CHAPER 4: Methods 

4.1 Sequential Image Paradigm 

 A Standard oddball paradigm was used. There were three classes of gray-scale, similar 

luminance and resolution images displayed in the center of a TV screen. The TV was a 1080p, 42-inch LG 

TV. The first class of images were the target group, which were familiar faces that consisted of well-

known US presidents and A-list actors; specifically former president Barack Obama, current president 

Donald Trump, and the actors Robert Downey Jr. (Iron Man, Sherlock Holmes), and Dwayne ‘The Rock’ 

Johnson. These faces were chosen because they were used in a similar sequential imaging paradigm in 

the Biomedical Instrumentation & Data Analysis laboratory at East Carolina University. The second class 

was unfamiliar faces, which consisted of unknown model faces. The third class of image was objects, 

which consisted of non-face-like objects, such as flower vases and chairs. All images were be cropped in 

an oval fashion in order to exclude hair, ears, neck, and any background, example in Fig 8, and were 

taken from publicly available databases.  

 

Figure 8. Example of sequential imaging paradigm. A familiar face (former president Barack Obama), an 

inverted unfamiliar face, and a random object.  

 There were four familiar faces, four unfamiliar faces, and eight random object images, making 

for a total of 16 unique images and a total of 32 possible images to be shown. Each of the 32 images 
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were shown 5 times for a total of 160 image flashes. Each image was shown for 500 ms with an inter-

stimulus interval of 1500 ms. The order of the images was a deterministic order set by the researcher to 

ensure that target images were never shown consecutively. Through the use of BCI2000 the images 

were shown and data were recorded in a format compatible with MATLAB [49]. In compliance with the 

standard P300 oddball paradigm, participants were instructed to respond with a dominant index finger 

button press when shown a familiar face, and a dominant middle finger button press when shown any 

other image [25].  

4.2 Participants and age groups 

 A total of 28 subjects were recruited, although 16 were included in the analysis. The excluded 11 

subjects had unremovable high frequency noise, lack of consistent ERP components, and one subject 

was excluded due to low MoCA score. For more details on subject metadata, see section 5.1. All 

recruited participants were volunteers with no effects from coercion. Recruitment was advertised via 

email list-servers through the university, by flyers posted on ECU’s campus, and by word of mouth. 

Interested volunteers were instructed to contact the researchers via email, at which time they were 

given more information about the study and were able to choose their time and date to have a 

recording session. This study aims to scrutinize the FIE across all of adulthood in healthy aging adults. 

Adulthood was divided into four age groups: developing adult (18-25), young adult (26-40), adult (41-

59), and elder adult (60+). For a statistical power of at least 80%, 12 participants are required for each 

group. 

 The age groups were based on the developmental psychology research presented by Craik and 

Bialystok as well as Park et al, and the P300 developmental study presented by R. v. Dinteren et al (refer 

to Fig 1, 7, and 8) [1][8][44]. The developing adult group (18-25) was chosen because with respect to 

United States law adulthood begins at 18, even though the gray matter in both the frontal and occipital 
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lobes are still developing well into the 20’s. In the developing adult range, variability was expected due 

to different rates of development and other life choices such as substance abuse and sleep deprivation. 

The young adult (26-40) group was chosen because that is the age range where memory and cognitive 

decline should be the slowest. It is believed this age range will have confounding variables from various 

life choices, such as sleep deprivation from having children, years of experience working, substance 

abuse, and physical activity. The adult age range (41-59) addresses middle-aged adults, which makes up 

the largest portion of the work force in the United States today [50]. It was believed this age group will 

show evidence of AACD regardless of lifestyle choices, although the extent of which will vary among 

individuals due to lifestyle choices. The elder group (60+) was chosen because this is when cognitive 

performance and memory functions have dropped about one standard deviation from peak 

performance in young adulthood, shown in Fig 1. It is believed that changes in fluid intelligence 

throughout aging are largely responsible for changes in P300 and other ERP components; on the other 

hand, crystallized intelligence continues to rise until 70 or so, shown as verbal knowledge in Fig 1. Elders 

were expected to have the largest variability due to the largest possible age range of any of the four 

groups.  

4.3 Exclusion criteria 

 Subjects were not allowed to participate if they had any internal pace-maker or electrical 

stimulator, as is specified in the g.tec SAHARA manual [51]. A MoCA score of 25 (out of 30) or below 

must be excluded from the study as well, because that indicates poor cognitive performance [47]. 

Participants data would be excluded if they had a history of seizures, schizophrenia, epilepsy, or mild to 

advanced autism, or if the participant was taking any selective serotonin reuptake inhibitors as this 

would impact the validity of their EEG recording [15][28][17] . Participants’ data would be not be used 

for analysis if after preprocessing and averaging epochs there was evidence of excessive artifacts, high 
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frequency noise that would not filter out, and/or if three or more of the ERP components to be 

investigated (N170, P300, N400, P600) were missing. 

4.4 Procedure 

 All participants were shared with a fellow researcher, Austin White, in the Biomedical 

Instrumentation & Data Analysis lab. Austin was also conducting his own thesis study using his own 

unique ERP paradigm. Both ERP paradigms were shown to each participant during each recording 

session. The order of the paradigms was alternated for each age group as to reduce any possible 

learning or nuisance variables. As stated in the IRB (MS1_UMCIRB 18-001073), participants were not to 

be kept for over 40 minutes. The following electrodes were used in the international 10-20 montage: 

FP1, FPZ, FP2, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6, T7, C3, CZ, C4, T8, CP5, CP1, CP2, CP6, P9, P7, P3, PZ, 

P4, P8, P10, PO O1, OZ, O2.The abided procedure is as follows: 

1. Participants arrived at their schedule time to the Biomedical Instrumentation and Data Analysis 

lab in the Science and Technology building (SZ 132). 

2. Informed consent was presented and the experimental protocol was elaborated before 

receiving a consent signature. All participants received a copy of the informed consent and 

protocol to take home. 

3. The MoCA (version 8.1) was administered and scored in order to assess their current state of 

cognitive well-being.  Participants were blind to their score until recording was finished. If their 

score was 25 or below, their data was excluded from analysis. 

4. A questionnaire, in Appendix B, was given to each participant to document their hand 

dominance, years of education, visual acuity, medications, history of seizures or mental illness, 

quality of sleep, and consumption of caffeine/energy drinks. If there is an extensive history of 

seizures and mental illness as described in the exclusion criteria, participants were excluded.  
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5. Each participant was seated in a comfortable chair five feet away from the 42” television 

monitor and was shown the target images in order to ensure familiarity. 

6. Once each participant was ready, the g.SAHARA cap was placed on their head with reference 

and ground electrodes attached to their ear lobes. An Impedance check was then done to 

ensure all impedances were below 5 kOhms [51]. 

7. The lights were turned off and white noise was played at a volume appropriate to drown any 

noises from outside the lab. All of the windows within the lab were covered to promote sensory 

deprivation. 

8. Participants were asked to remain still and to blink as little as possible during the paradigm.  

9. The participants were instructed to close their eyes for 10 to 30 seconds to ensure signal clarity 

before beginning all ERP paradigms. 

10. The first ERP paradigm was run. Participants were told to fixate their gaze on the center of the 

television screen for the duration of the ERP paradigm, which lasted last about seven minutes. 

Participants’ finger tap responses to stimuli were recorded to assess accuracy.   

11. Upon finishing the first ERP paradigm, each participant was asked if there was any discomfort. 

Then the second ERP paradigm was started as quickly as possible after another 10 to 30 

seconds of closed eyes. The second ERP paradigm will begin and lasted about seven minutes. 

12. At the end of the second ERP paradigm, both data sets were preprocessed and the epochs were 

averaged, then visually inspected for clarity of signal. If one or both of the ERP paradigms 

yielded excessively noisy data, then they were repeated a maximum of one time each.  

13. When any repeated ERP paradigms had been completed, the volunteer’s participation was 

considered complete. The lights were turned back on and the g.SAHARA cap was removed along 

with the reference electrodes. 
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4.5 Control of Variability 

 By administering the questionnaire, it is ensured that participants are not taking any neuroleptic 

medications and do not have a history of neurological disorders. The questionnaire, in Appendix B, 

records possible sources of confounding or nuisance variables commonly seen in EEG research; such as 

quality of sleep (i.e. sleep deprivation), years of education, prescription medication, and caffeine use 

[52][53][54]. Participants were also instructed to remain as still as possible during the recording 

procedure in an effort to reduce possible artifacts. Additionally, signal clarity was assessed by running an 

impedance check as well as administering the same procedure to each participant. 

4.6 Data Processing  

4.6.i Description of Techniques 

 The first and possibly largest hurdles in EEG signal analysis techniques are the removal of noise 

and isolation of brain signals. Frequency filtering techniques are typically the first wave of defense 

against artifacts. Hence bandpass filters (0.01 – 100 Hz) are often included in commercial EEG systems 

[21]. Following the bandpass filter, a variety of noise reduction techniques are possible; such as 

independent/principle component analysis (ICA/PCA), wavelet analysis, or predictive artifact removal 

algorithms.  

 PCA seeks to identify the successive signal components that account for as much as possible of 

the activity uncorrelated with previously determined components [55]. The utilized artifact removal 

algorithm in this research was artifact subspace reconstruction (ASR), which was developed for use in a 

MATLAB (Mathworks) plugin called BCILAB [56]. ASR can be used in real time or post-processing by 

utilizing a sliding-window PCA, which then statistically interpolates any high-variance signal components 

exceeding a specified threshold [56]. 
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 After filtering and artifact removal, it is common in ERP studies to segment the data into epochs. 

The length of these epochs will vary dependent on the ERP components of interest.  Each channel’s 

epochs will be stored relative to the channel. The epochs can then be studied as single-trial ERPs, which 

exposes the ongoing dynamics of the brain [55]. Alternatively, the epochs can be averaged for each 

stimuli type in order to improve SNR, smooth the ERP waveform, and to nullify random variance in the 

amplitude, latency, and scalp distribution of the ERP components [57]. Each channel’s averaged ERP 

waveform can then be investigated for ERP component’s amplitude and latency differences between 

stimuli and participants.  

  Other methods of signal analysis include scalp current density (SCD), dipole fitting, and source 

localization. As the voltage generated by the brain propagates through the scalp, it is already known that 

volume conduction will disperse the signal throughout the scalp. The calculation and visualization of the 

current measured on the scalp is referred to as SCD. The SCD makes no assumptions about the neural 

generators and any deeper media, and is dependent only on the scalp conductivity [J. Pernier]. Dipole 

fittings are the localization of a single equivalent vector that represents the center of gravity of the 

brain’s electrical activity in a given time range and region of interest [48]. These dipoles can be utilized 

to estimate the neural generators and the direction of signal propagation, thus allowing the researcher 

to make assumptions about brain dynamics. Source localization techniques are distinctly different from 

dipoles, as the source localization assumes a priori knowledge of the neuroanatomy [56]. The recorded 

scalp data is used to calculate the inverse solution, which is the projection of the scalp data through the 

skin, skull, and then onto the brain.  There are programs designed specifically to calculate and visualize 

the inverse solution, such as the Low-Resolution brain Electromagnetic Tomography (LORETA) 

developed by Pascual-Marqui et al [58].  
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 Frequency analysis in EEG research is very common, and changes in the frequency spectrum 

were some of Hans Berger’s first observations [14]. In general, the degree of cerebral activity is related 

to the average frequency of the EEG rhythm; that is to say, the frequency progressively increases with 

higher and more complicated degrees of activity [14]. Brain oscillations tend to be synchronized or 

desynchronized. Synchronized oscillations have high power over time and suggest that the brain is 

“idling,” or no motor or demanding cognitive tasks are being performed. Desynchronous activity is the 

opposite, and it shows that areas of the brain will act independently of one another in order to perform 

a rigorous task [14]. 

 The spectrum of neurophysiological frequencies ranges from 1 to about 60 Hz and is broken into 

frequency bands. In order of lowest to highest these frequency bands are: delta (1 – 4 Hz), theta (4 – 8 

Hz), alpha (8 – 12 Hz), beta (13 – 30 Hz) and gamma (30+ Hz) [21]. Each band reflects various states of 

cognition and are commonly assessed in sleep studies. The delta band is observed during deep sleep; 

theta is present during resting or meditation, alpha is commonly seen during visual tasks, beta is 

associated with motor movements and logical thinking, and gamma waves are still poorly understood 

but are present in a wide variety of EEG recordings [21]. These frequency bands are used in the 

assessment of event-related synchronization (ERS) or desynchronization (ERD) as well as event-related 

spectral pertubations (ERSPs). The time-frequency response to presented stimuli can be presented as an 

ERSP. The difference between ERSPS and ERS/ERD is the length of time over which power changes are 

measured. ERSPs are quicker and show the average frequency response over that short time span while 

ERS/ERD evaluates long-term changes in states of consciousness [59]. 

4.6.ii Processing Methods 

 All recorded EEG data was first loaded into MATLAB for preprocessing. A high pass filter of 0.1 

Hz and low pass filter of 30 Hz was applied before applying ASR for predictive artifact correction [56]. 
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The filtered and artifact corrected EEG data were then divided into epochs with the stimulus code 

metadata included in the BCI2000 recording output [49]. The epochs were averaged for each stimulus 

type (FF, UF, etc) and the data were plotted for initial assessment. In this assessment, if three or more 

ERP components were missing or unclear, or if there were excessive artifacts, then that participant’s 

data would be excluded from the assessment. 

 After preprocessing in EEGLAB, the filtered epochs were exported into FieldTrip for post-

processing [60]. FieldTrip is an open source MATLAB-based EEG/MEG data processing developed at the 

Donders Institute for Brain, Cognition and Behaviour [60]. Each individual’s data were averaged and 

group-wise grand averages were calculated and displayed using FieldTrip. The SCD calculations, 

frequency analysis, dipole fitting, and source analysis were all executed in FieldTrip. For additional 

information on the FieldTrip toolbox, see www.fieldtriptoolbox.org.  

4.7 Feature Extraction and Statistical Analyses  

 All features were extracted using custom scripts in MATLAB edited from the FieldTrip toolbox. 

ERP features were extracted from each individuals’ averaged epochs at their respective time ranges. The 

N170 was 0.15 to 0.25 s, the P300 was 0.25 to 0.36 s, the N400 was 0.3 to 0.6 s, and the LPP was 0.5 to 

1.0 s. A peak detection algorithm was used to extract peak latency and amplitude values for each ERP 

component. These amplitude peaks were examined for clustering as a function of latency. Additionally, 

each amplitude and latency peak were plotted as a function of the respective participants’ age in an 

effort to identify trends. In order to investigate the FIE, upright ERP components were compared to the 

inverted ERPs. The difference between upright and inverted peak latencies and amplitudes were found. 

In other words, subtract the inverted peak from the upright peak to yield a quantity that represents the 

FIE.  

http://www.fieldtriptoolbox.org/
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 The figures generated from the peak detection algorithms were examined for clustering and 

potential trends as a function of age. The features that were found to have favorable clustering or 

trends had their data points exported into SPSS (IBM). The Pearson correlation coefficients were 

calculated for those features as a function of age. The Pearson coefficients show the strength of 

association and direction of trend between the independent and dependent variables. A linear 

regression was then run on the data as a function of age. Similar to the Pearson coefficients, the 

strength and direction of the relationship of the variables was found with regression analysis. Univariate 

analysis of variance (ANOVA) was utilized to examine the between subject’s effects of all identified 

features. The output from ANOVA was used to assess the means and variances between the groups, 

which is quantified as the p-value and effect size (η2) in the form of F(dft, dfe) = p-value (η2). This is for dft 

the degrees of freedom (number of subjects, k) in each group and the dfe the total subjects, N, minus 

the group size (N-k). The p-value represents the probability of choosing a new, randomly sampled 

feature that is outside of the critical range. The effect size (η2) represents the percent variability in the 

dependent variable that is accounted for in the independent variable. It is common to assume that as p-

value decreases, the effect size increases [61].



 
 

 
 

CHAPER 5: Results 

5.1 Participants  

 The mean and sample standard deviation of the age for each age group is shown in Table 1 

along with the gender distribution, MoCA score, and years of education past high school or GED. All 

subjects reported on the questionnaire that they have normal or corrected 20/20 or 20/30 vision, which 

indicates they could see the presented stimuli clearly. All subjects considered for analyses were right 

handed. The button clicks recorded for accuracy showed no significant differences between or within 

groups; although, one participant misunderstood the direction and only clicked for target faces for their 

first paradigm. Some of the subjects were taking medications for birth control, type II diabetes, prostate 

health, and/or gastrointestinal steroids; although none of the medications listed in the questionnaire 

were known to be psychoactive or neuroleptic.  

Table 1. Mean and (sample standard deviation) for participants included in analyses. 

Group Age (years) MoCA Gender (M/F) Education (years) 

18-25 21.3 (0.5) 29.5 (0.5) 2/2 3.5 (0.5) 

26-40 31.3 (3.9) 28.8 (1.3) 3/1 6.5 (2.4) 

41-59 49.0 (8.1) 28.0 (0.8) 4/0 3.8 (1.3) 

60+ 66.5 (5.8) 27.3 (1.5) 1/3 4.8 (1.5) 

 

5.2 FIE Features 

 The grand averages of each age group at channel CZ are shown for upright and inverted images 

in Fig 9 and 10. The response to upright images was consistently larger amplitude for all ERP 

components, although the latency changes from the FIE are subtle when referring to Fig 9 and 10. The 
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LPP’s amplitude differences among different age groups are clearly illustrated in Fig 9 with the LPP of 

the youngest group being the highest amplitude. One may also suggest the N170 is present in Fig 9, 

albeit the physiological significance at channel CZ of the N170 is inconsistent with other literature and 

the N170 should be present for inverted faces in Fig 10, too. 

Figure 9. Grand average response to familiar faces at channel CZ. 

Figure 10. Grand average response to inverted (upside down) familiar faces at channel CZ. 
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 In respect to the N170, the FIE was expected to manifest as an increase in amplitude and 

increase in latency. The FIE features were extracted by applying a peak detection algorithm to the 

filtered ERPs. Peaks for inverted faces were subtracted from upright faces for their respective channel 

and stimuli.  At the ROI of the N170 (fusiform face area) no trends as a function of age were observed 

for peak amplitude, latency, or the FIE, examples in Fig 11 and 12. This trend was also true for the N400 

FIE. No trends were observed for ERSP analysis, either. It must also be noted that dipole fitting and 

source analysis yielded inconsistent results for all participants, which is likely due to small sample sizes 

and using only 32 electrodes when 64 or more electrodes are recommended for those analysis 

techniques [24].  

 

Figure 11. Result of upright minus inverted peak amplitudes for the N170 at channel P10.  
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Figure 12. Result of upright minus inverted peak amplitude latencies for the N170 at channel P8. 

 The only ERP components to display any FIE trends were the P300 and LPP. There were four 

noticeable FIE trends with between-subjects effects: FF FIE LPP latency at CZ, F(3,12) = 0.273 (η2 =.268), 

FF FIE P300 amplitude at FZ, F(3,12) = 0.047 (η2 =0.471), UF FIE  P300 at P4, F(3,12) = 0.55 (η2 = 0.155), 

UF FIE P300 Latency at OZ, F(3,12) = 0.133 (η2 = 0.362), detailed in Table 2. A positive Pearson 

correlation suggests that as age increases there is a positive trend in the difference between the upright 

and inverted image, and vice versa. Table 2 also includes the t-values and p-values from regression 

analysis. It should be noted that there were several observed trends for familiarity as a function of age. 

For the P300, the absolute value Pearson correlation range was about 0.26 to 0.44. For the LPP, the 

absolute value Pearson correlation range was about 0.30 to 0.58. For the N400, the absolute value 

Pearson correlation range was 0.45 to 0.57. The LPP and N400 correlations were all in response to 

familiar faces, indicating a familiarity effect due to aging. The P300 is also known to change throughout 

aging, which supports the claim that the methods used were valid [44].Familiarity was not the key 

feature to investigate in this research, but the results were consistent with the other researcher in the 

BIDA lab. 
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Table 2. Calculated Pearson correlation coefficients, the 2-tailed t tests and p-values from linear 

regression analysis of the most significant features along with the two example non-results features.  

Features 

Pearson 

Correlation 

Coefficient 

t-value 

 (two-

tailed) 

p-value 

(α = 0.10) 

FF FIE N170 Amp P10 0.010 0.036 0.972 

FF FIE N170 Lat P8 -0.368 -1.479 0.161 

FF FIE LPP Lat CZ 0.389 1.578 0.137 

FF FIE P300 Amp FZ 0.438 1.821 0.090 

UF FIE P300 Lat P4 -0.355 -1.908 0.077 

UF FIE P300 Lat OZ -0.551 -2.471 0.27 

 

 There were two features to reach statistical significance (α = 0.10) in the regression analysis; the 

FF FIE P300 amplitude at channel FZ, and the UF FIE P300 latency at channel P4, shown in Fig 13 and 14. 

The other two FIE features are shown in Appendix A. The only feature to achieve significance in both the 

between-subjects analysis and regression analysis was the FF FIE P300 amplitude at channel FZ. Both of 

the significant features’ respective t-values were not significant for two-tailed tests (t ≥2.35), although 

this is likely due to all groups having few samples (n = 4) and moderate variability in both age 

distribution and feature magnitude, shown in Fig 13 and 14. These statistics suggest the FIE for P300s at 

channel FZ is the most likely to be a reliable biomarker of age related changes; thus, one can support the 

claim that as age increases the P300’s amplitude in response to inverted faces decreases drastically 

while the response to upright faces decreases slightly. Also, the P300’s latency is prolonged as age 

increases. 
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Figure 13. Result of upright minus inverted peak P300 amplitudes at channel FZ. 

 

Figure 14. Result of upright minus inverted peak amplitude latencies at channel P4. 

 The grand average scalp voltage topography is shown for each age group in Fig 14 and 15, which 

shows an interpolated sliding time window of the measured EEG signal across the entire scalp. The other 

holistic analysis techniques, such as SCD, ERSPs, dipole fitting, and source analysis, yielded inconsistent 

results across and within age groups. The voltage topography can be related to the grand average ERPs 

and peak detection algorithms by displaying the time windows of activation. The peak detection 
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algorithm simply isolates one electrode on the scalp within the ERP component’s respective time range. 

For voltage topography plots of other stimuli and ERP components, see Appendix A. 

 

Figure 15. Grand average scalp voltage topography in response to familiar faces for P300s. a) 18 to 25, b) 

26 to 40, c) 41 to 59, and d) 60+.  

 A noticeable feature of the scalp voltage topography is the increased negativities in the youth 

groups, which suggests the cortex may be projecting towards the center of the brain (inward dipoles). A 

different feature is that the overall response to inverted faces is consistently less positive (more 

negative) than that of upright faces. Also, the response to inverted faces consistently has less activation 

than that of upright faces.  The time course of the scalp voltage topography suggests the youth group 

has a faster P300, although it may start later than the older groups. The eldest group is shown to have 

the longest period of high activation, suggesting their P300s may be the slowest to reach peak activation 

and have a larger period than the other groups.  
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Figure 16. Grand average scalp voltage topography in response to inverted familiar faces for P300s. a) 18 

to 25, b) 26 to 40, c) 41 to 59, and d) 60+.



 
 

 
 

CHAPER 6: Discussion 

 This research was designed to investigate healthy age-related changes to the brain’s response to 

upright and inverted face images. The FIE can be described as the difference between upright and 

inverted face images. It was found that not all of the discussed ERPs showed significant differences 

throughout aging or even the traditional FIE discussed in other research [13]. Despite the negative 

results of the majority of investigated features and channels, there were some significant results that 

were consistent with literature [41].  

6.1 The N170 and N400 

 The FIE of the N170 and N400 were both illusive components that showed no meaningful 

statistical significance throughout the duration of this research. Literature has shown that in response to 

inverted faces the N170 increases in amplitude and latency while the N400 decreases in amplitude and 

increases in latency [41][13]. The strongest N170 feature found in this study was a weak correlation 

(Pearson = -0.368) between the FIE and aging at channel P8 in response to familiar faces; otherwise, no 

significant trends at any other channels were noticed, and that goes for the N400 as well. Channel P8 is 

in close proximity to the fusiform face area, so there is likely physiological significance to this correlation 

[62]. Although, no other channels in that area showed the same strength of correlation, and the 

unfamiliar faces did not show any correlation. One may interpret those results as a lack of attention to 

detail during recording, poor SNR, and/or the sequential image paradigm was lacking.  

 It is the opinion of the author that the unfavorable ERP components are likely due to two main 

issues: effects due to repetition and participants’ individuality. The repetition effect is the brain’s ability 

to adapt to repeatedly presented stimuli. It is almost as if the brain anticipates the stimuli or is 

desensitized to the stimuli [63]. In respect to the N170, the repetition effect will extend the N170 out to 

about 250 ms and lower the amplitude slightly [46]. However, the face images were shown as the rare 
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stimuli in an oddball paradigm. It is possible that the participants’ brains began to anticipate the object 

images and the oddball face images were thus processed differently. Other studies to successfully show 

the N170 and FIE showed face images at higher rates [13][64][11]. It is entirely possible that the oddball 

paradigm is less adapted to producing reliable N170s, and therefore the FIE for N170s. 

 Genetic heritability may have had an impact on the performance of the N170 and N400, which 

has been shown to be true for the P300 by Anokhin et al [65]. This genetic influence on ERP components 

could have been avoided by recruiting more participants. Personal beliefs could have also factored into 

the performance of those ERP components. For the familiar faces used in the study, the current and 

preceding US presidents were used along with two famous actors, Robert Downey Jr and Dwayne ‘The 

Rock’ Johnson. It is possible that political preference or emotional memories associated with Trump or 

Obama’s elections could have impacted the ERP recordings, specifically for later ERP components [66]. 

The same could be true for emotional memories or personal preferences associated with movies in 

which the two famous actors appeared.  

 There are many personality factors that could have influenced the outcome of the later ERP 

components, such as the P300, N400, or LPP. Palomba et al has shown that the P300 and other late ERP 

components can be modulated by emotionally pleasant and unpleasant images [66]. Specifically, the 

P300 increases for emotionally pleasant and unpleasant images, while fronto-centrally located peaks 

around 400 to 500 ms can be increased for emotionally stimulating images. In the case of Palomba’s 

research, images of sexually attractive people or unpleasant images of accidents (e.g. car crashes) were 

shown. Similarly, Osterhout and Mobley et al have shown that different types of disagreements or 

semantic incongruences in sentences and word-object pairs can modulate late ERP components [67]. 

These reported results could lead one to believe that in the case of this study political preference and 

other individual beliefs may have impacted the performance of the N400 or LPP. 
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 The large negativity at the beginning of the P300, shown in Fig 15 and 16, suggests that there is 

an increase in excitatory projections from the hippocampus [44]. It is possible that this broad negativity 

interfered with the detection of the N170 via volume conduction.  A broad negativity was also present at 

the end of the P300, shown in Fig 15 and 16, was found to be stronger for inverted images. This 

negativity may be the beginnings of the N400 and may stem from subcortical regions such as the 

hippocampus (memory) or thalamus (relay station) [25]. The thalamus may be relaying the motor 

movements to the PNS, or the hippocampus may be more active for inverted images than for upright 

images due to difficulties recognizing and remembering associated memories. 

6.2 The P300 and LPP  

 The FIE was expected to manifest as a delay in latency and a decrease in amplitude for both the 

P300 and LPP in response to inverted faces [44][37]. Also, the difference between upright and inverted 

images were expected to decrease with advanced aging [37][12]. The results of the current study were 

mixed for familiar faces. The latency difference between upright and inverted images was found to 

increase for the LPP and decrease for the P300 at channels CZ, P4 and OZ respectively. Also, the 

amplitude difference between upright and inverted images was found to increase as a function of age. It 

is known that increases in working memory, especially with advanced aging, will cause a decrease in 

P300 [25]. Therefore one may interpret the P300 amplitude results as the inverted faces having 

drastically lower amplitudes for elders than the other groups. While the latency changes are a different 

story.  

 Two hypotheses have been presented on the brain’s functional changes throughout healthy 

aging. The first has been referred to as HAROLD, or Hemispheric Asymmetry Reduction in Old Adults, 

and the second is the dedifferentiation hypothesis [5]. Lateralization of the PFC activations tends to 

reduce throughout aging, which has been empirically shown in many high performing adults. That 
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evidence is what led to the HAROLD hypothesis [5]. Although, other evidence, such as reduced 

hemispheric asymmetry reflecting age-related difficulties in recruiting specialized neural mechanisms, 

has led to the dedifferentiation hypothesis. Both theories are credible, but research comparing high and 

low-performing elders has leaned more in favor to the dedifferentiation hypothesis [42]. To relate this 

to the results at hand, elders have been shown to develop “more automatic and efficient networks 

associated with effortless identification of faces which allows the emergence of human-specific social 

and communication skills,” [42].  In other words, high-performing elders may have fewer neurons 

allocated to specific simple functions, such as facial recognition. This phenomenon could manifest as 

P300 latency similar to that of a young adult for facial recognition tasks, although more complex neural 

functions such as recall could become more difficult for elders. This may account for the decrease in 

P300 FIE while the LPP was more pronounced. 

 The response to unfamiliar faces may be confounding the results of the research. The only 

noticed latency trends were for the P300 were for unfamiliar faces. As age increases the difference 

between upright and inverted face P300 latencies decreased. Eimer et al found that the FIE for the LPP 

was less exaggerated for unfamiliar faces [13]. It is known that P300’s are larger for human faces than 

other random objects in steady-state visual evoked potentials for brain-computer interfaces [Jin et al]. It 

may be possible that, in the context of the oddball paradigm, the inverted unfamiliar faces were just as 

salient, or even more so, than the familiar inverted faces. Especially in the case of high performing 

adults, the difference between inverted and upright faces could have been smaller due to the 

dedifferentiation hypothesis while the younger groups simply had increases in working memory to delay 

their P300s. 

 The P300 is thought to have many neural generators, such as the ventrolateral PFC, superior 

temporal sulcus, anterior cingulate cortex and the intraparietal sulcus [25]. These areas of activity 
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typically manifest the P300 best at or adjacent to central locations such as electrodes CZ and PZ. The PFC 

and cingulate cortex are believed to be active during decision making and emotional judgement or 

regulation [25], which can make them susceptible to modulation during stimulus presentation tasks. It 

may be possible that the inverted faces caused a delay in PFC or cingulate cortex activity due to 

processing difficulties; thus manifesting as an increased positivity in upright (Fig 15) and attenuated 

negativity and positivity in inverted (Fig 16). 

6.3 Familiarity 

 The goal of this study was to investigate the FIE throughout healthy aging in order to predict 

early-onset dementia. Both familiar and unfamiliar faces (FF and UF) were used along with random 

objects. Investigating familiarity was not a part of the specific aims of this research, although there were 

noticeable trends consistent with existing literature on the topic of familiarity in ERPs [13][30].  

 It is known that the N170 is unaffected by familiarity even in the context of the FIE [13]. But all 

other ERP components investigated can be influenced by familiarity [13][37][30]. In the context of this 

research it was noticed that the LPP was particularly affected by familiarity. Specifically, the LPP was 

larger for familiar faces and then diminished for inverted familiar faces while for unfamiliar faces the LPP 

was smaller and even more attenuated for inverted faces. These results serve to validate our ERP 

paradigm and methodologies; however, improvements could still be made. This may suggest that a 

different paradigm, possibly with a block-style sequential imaging as opposed to oddball, may be better 

for identifying trends for aging.  

6.4 Limitations 

 First and foremost the largest limitation of this study was the small sample size. Limitations to 

the recruiting area and an inability to pay volunteers severely curbed volunteer turnout. The other main 

limitation was poor recording quality. EEG research is plagued with many nuisance variables [28]. It is 
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the belief of the author that the 12 unsuitable datasets had to be rejected as the result of uncontrollable 

and random features of the respective participants; features such as genetics, diet, hair type, etc. As 

with other medical imaging techniques, each method has its pros and cons. MRI and PET have much 

higher spatial resolution but are more expensive for that reason. EEG has the fundamental inability to 

imagine deep within the brain and is influenced by volume conduction, but it has the highest time 

resolution of modern neuroimaging methods [14]. This volume conduction, and therefore EEG recording 

quality, can be impacted by features that change throughout aging, such as skull and skin composition 

and conductivity [68]. Neural changes due to aging can still be detected with EEG, although larger 

sample sizes are imperative.  

 For future recommendations, a block style single-trial ERP study should be considered. A higher 

density electrode montage would be preferred to facilitate dipole and source analyses. The brain’s 

ability to habituate to stimuli could be exploited in order to examine a dynamic contrast between young 

and old participants.  It may be possible to show a participant a large number (e.g. 30 to 50) of 

consistent objects (e.g. cars), then show them a smaller block (e.g. 10 to 20) of random (familiar and/or 

unfamiliar) face images in order to clarify the brain’s ability to habituate then readapt to new stimuli. 

This block style may shed more light on age-related changes on ERPs. Alternatively, multimodal 

investigations such as eye tracking or reaction timing may contain additional age-related biomarkers 

[35]. 



 
 

 
 

CHAPTER 7: Conclusions 

 The research study presented in this thesis was designed to scrutinize the FIE throughout 

healthy adult aging in an effort to find additional biomarkers for the onset of malignant AACD. Using 

ERPs may obviate or reduce the need for longitudinal study to detect early onset cognitive decline. The 

outcome of this research was that there are subtle changes in the FIE throughout adult aging; 

specifically, the changes in the LPP and P300 in response to inverted face images as opposed to upright 

yielded moderate correlations with age. Despite the small sample size of the final analyses performed, 

these outcomes suggest the FIE could be used to track brain changes due to aging. Future studies may 

include a block style single-trial ERP analysis that further scrutinizes the FIE between age groups. The 

dynamical contrast of changes to habitual stimuli may elucidate more brain changes that may benefit 

the current MCI and AD detection methods. Dementia is a serious disorder that is still not perfectly 

understood, and any way to detect its onset earlier may improve quality of life for elders or even save 

lives. The earlier dementia is detected, the sooner preventative actions can be taken in order to prolong 

healthy brain function and potentially halt disease progression. 
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APPENDIX A 

Additional plots of investigated images, FIE at different channels, and scalp voltage topography time 

windows.  

 

 

 



 
 

53 
 

 

 



 
 

54 
 

 

 



 
 

55 
 

 

 



 
 

56 
 

 



 
 

57 
 

 

 

 

 

 



 
 

58 
 

 

 



 
 

59 
 

 

 



 
 

 
 

APPENDIX B 

 



 
 

61 
 

 


